THE Bugger

RE232 Debugger For The MYARC 94640
(C) 1989 T and J Software
Written By Jim Lohmeyer

Documentatian by Jim Lohmeyar
Edited by Tom Freeman

INTRODUCT ION

THE Bugger is an RS232 debugging system designed on and for
the MYARC 9640 computer, and will run in either the GPL
simulation, or MDOS modes. OGreat care has been taken to ensure
that it is fully self-contajined so it will neither write to any
memory locations outside of its own boundaries, nor corrupt any
other resource it borrows from the operating system during the
courge of 1its operations. It is for this yeason that
input/output the debugger handles is routed through the RS232
port to an external terminal. By implementing this I/0 scheme,
the program to be debugged will have access to all of the.
operating system's resources, including the host Kkeyboard and
gscreen, other than the RS5232/2 port.

- The Bugger is also a fully intelligent debugger in the sense
that it knows, at all times, which mode the computer is running
in (TI simulation or MDOS) and how the program has the memory
mapped. By keeping a tad on the status of the operating
conditions, THE Bugger is not confused by a program that switches
the operating mode or juggles the memory map. However, it 1is
possible for an executing program to map out THE Bugger during
normal operating conditions, so the user should take care not to
do so Dby accident. [(Ed. Note: In MDOS, if THE Bugger precedes
the program being debugged, then it resides ent1re1y in execution
page 0 and cannot be mapped out.]

THE Bugger is based upon RSBUG V3.0, which was used in the
development of the TI 99/8 .and MYARC 9640 computer operating
systems, but was never released. However, through extensive
modifications, revisions, bug fixes, and additions, less than 30%
of the original code survives intact. In form and syntax it 1is
much like TI's DEBUG and other debuggers based on it. The
essential difference between them and THE Bugger is that the host
ascreen (used by the program being debugged) is NOT wused by THE
Bugger either to input commands or display the information
requested. Rather they are royted through the RS232/2 port to
and from a terminal or another computer, thus not corrupting the
host screen, changing VDP registers etc. Several important
enhancements have also been added, in particular the ability to
set permanent breakpoints and to single step several instructions
at once, rather than just one, with one command.

THE Bugger debugging system PAGE 1

THE Bugger is a joint effort between the author and T and J
software to bring quality developmental products to the 9640
market. The author would also like to recognize Mr. Lou Philips
for his support of this project, and for approaching T and J
Software on the development of such a product.

Special cables may be required for use with THE Bugger. For
instructions on this and changing terminal protocols, please see

the Appsndix on p. 20
For more information or questions, please contact:
T & J Software

%1% Alma Real Drive
Pacific Palisades, CA 90272

THE Bugger debugging system PAGE 2

CONTENTS

COMDODNN UL W

INTRODUCTION
CONTENTS
LOADING
LOADING IN MDOS
LOADING IN TI MODE
THE COMMAND LINE
COMMANDS
A -- INPUT ASCII TO MEMORY
B —- SET/RELEASE BREAKPOINT
¢ —— CRU INSPECT/CHANGE
D —~ DISASSEMBLE INTO OPCODES
E -~ EXECUTE TASK
F -— FIND WORD/BYTE EQUAL
K -—— FIND WORD/BYTE NOT EQUAL
M —— MEMORY INSPECT/CHANGE 10
N -— MOVE BLOCK 11
P —— COMPARE BLOCKS 11
R —— RTIWP VECTOR INSPECT/CHANGE 12
S —~- SINGLE STEP 13
T — DISASSEMBLE AS DATA | 13
W — WORKSPACE INSPECT/CHANGE . | 14
X.Y.2, — BIAS VALUES 14
. = DECIMAL TO HEX CONVERSION 15
, —— HEX TO DECIMAL CONVERSION . 15
; - HEX ARITHMETIC | 15
= -— FIND ASCII STRING 16
Q@ —- MEMORY MAPPER 16
/ — RESET THE Bugger 16
“R - RESET 9640 ' 16
“B - SPECIAL BREAKPOINT 17
“C - PERMANENT BREAKPOINT | 17
“T - VDP STATUS REGISTERS 18
‘U - VDP STATUS REGISTERS -~ DYNAMIC 18
“V - WRITE TO VDP REGISTER 18
SWITCH OPTIONS .
“E - COMPUTER MODE | - 19
‘L - LINE LENGTH 19
“P - PRINTER OUTPUT 19
8 -~ DUMP STATUS 20
“W - DUMP WORKSPACE 20
‘D -~ DUMP DISASSEMBLY 20
APPENDIX 1 - CONSTRUCTION OF A NULL MODEM CABLE | 21
APPENDIX 2 ~ CHANGING THE BAUD RATE 21

-

THE Bugger debugging system PAGE 3

LOADING

THE Bugger can be loaded from either of the two 9640
environments. Loading procedures will vary greatly in different
circumstances and are described Dbelow. The disk provided
contains the following files:

BUGDOS

BUGGER

BUGGERS

BUGGERA \ - |
BUGGERC \ In order to fit on an SSSD disk, these files have
BUGGERE / been compressed into a single file BUGGERARC
BUGGERLOW/

LOADING IN MDOS

The simplest method of loading THE Bugger in any environment
is to load it by itself for poking around the operating system to
find secrets and fix bugs. The file named BUGDOS has been
provided for this purpose. Simply type devicename.BUGDOS from
the MDOS command line, and the title screen will appear on Yyour
terminal or remote computer running a terminal emulator
(henceforth referred to collectively as '"terminal"). If the
terminal is not running, the computer will appear to lock up and
in. fact will have to be restarted with CTRL-SHIFT-SHIFT. Note
that the title screen also declares the address range used by THE
Bugger. This information will be useful when you are actually
debugging programs. | |

To actually debug your program (henceforth referred to as
the "task"), THE Bugger and the task will need to reside in the
computer simultaneously. Furthermore since the disk supplied
contains only DIS/FIX 80 object code for use with debugging
tasks, and MDOS will accept only memory image files, a little-
preparation is necessary. The simplest method 1s to use Paul
Charleton's LINK program (a fairware program) or any other
gsuitable program that assembles object c¢ode into MDOS image
files. LINK requires purely relocatable object code, 80 you must
write your program without any AORG's - the file BUGGER provided
is also relocatable. Thus you would locad THE Bugger, then your
object code, and then (in LINK) type @devicename.OUTPUTFILE. You
now have a MDOS image file suitable for loading, that will start

immediately with THE Bugger and allow you to take control of the
task.

_ You can also load THE Bugger after the task but you would
then have to program the task to branch to the beginning of THE
Bugger. In addition you would lose the advantage of being able
to use the BIAS command to easily start and find addresses in the
task (see pages 12 and 14 for explanations on how to do this).
Furthermore, many programs use buffer areas outside of, and
usually following, the address range of the program, 30 loading
THE Bugger after the task could be dangerous as well.

Another method of using THE Bugger with your task is to
leave a block at least >17EA in length at the beginning, with the
first instruction being a branch to the area after the block, and

THE Bugger debugging system PAGE 4

then LINKing it without THE Bugger. You can then run it alone,
and 1f there i3 a problem, quit it, load BUGDOS over it (it will
only overwrite the block) and then debug. You can make the task
qulit without running by replacing the first Dbranch with BLWP
@>0000 (0420 0000, if yqu sector edit the MDOS image file).

All things considered, LINKing THE Buggér and the task
together is much easier.

LOADING IN TI MODE

In TI .(GPL) mode the usual method of loading will be via E/A
Option 3. THE Bugger can be loaded before or after the task,
which should contain only relocatable code or AQORG code which
does not interfere with the loading of THE Bugger. The file to
use is BUGGER. The program name for entry is BUGGER. You will
then see the title screen with the address range for THE Bugger,
and cart begin to debug the task. Note that the task should not
auto-start or you will not able to enter THE Bugger.

If the task fills too much of the available space for
relocatable programs (>A000 to >FFFF) or occupies, along with any
possible buffers, at least part of each of the three 8K blocks
beginning at >A000, >C000, and >E000 then you may use the file
BUGGER6, which AORG's at >6000. Entry 1is gstill via defined
address BUGGER.

For use with Extended Basic, four files are provided on the
disk: BUGGERA, BUGGERC, BUGGERE, and BUGGERLOW (they have been
archived and compressed into one file BUGGERARC wusing Barry
Boone's Archiver 3.02 - you will have to reverse the process
first). These are uncompresseéed object code files. suitable for
locading in XB, and which AORG at >A000, >C000, >E000 and RORG
regpectively. Use of one of these files should enable you ¢to
load almost any XB assembly program that you write. If your
asgsembly code is relocatable you can use BUGGERA, which should
leave plenty of room for the XB program at the top of high
memory. If your code AORGs in high memory, BUGGERLOW will fit
inteo the available low memory space. BUGGERC and BUGGERE are
provided for unusual situations, but be careful with BUGGERE
since it leaves little room for the XB program at the top of high
memory (if the XB program serves only to load the assembly code
then there will be no difficulty). Of course these files are
loaded via the usual CALL INIT :.: CALL LOAD("DSK1.TASK) :: CALL
LOAD("DSK1l.BUGGERA") :: CALL LINK("BUGGER") etc. that are
outlined in the XB manual, and will not be reiterated here.

THE Bugger debugging system PAGE 5

THE COMMAND LINE

THE Bugger uses one letter commands to perform operations.

Some punctuation marks are also used, in addition to the control

key together with a character. The latter will be.denoted with a

~ preceding the character, e.g. "R. The commands may be followed

by up to three parameters labeled Pl, P2, and P3, and if 8o, as

soon as vyou type the co nd letter, without the return key, a

gpace and Pl= will follow e command letter on the terminal

screen. The parameters may be followed by a special terminator
character to alter the command's function, and are listed with

/ each command. The spacebar will take you from one parameter to

/ the next, assuming multiple parameter commands, and the return

key will begin execution of the command. ~. (Ctrl period) will

abort most commands, as well as abort displays before they are

finished. In all following examples, < and > will refer to user
input. For example:

<D> P1=<2000><space> P2=<4000>return>

would indicate that you typed D, then Pl= appeared on the screen.
You then typed 2000 and pressed the space bar, following which P2
appeared on the screen. After that you typed 4000 and pressed
the return key. This would disassemble a block of memory from
>2000 to >4000. When you finished the two inputs only D P1=2000
P2=4000 would appear. ,

. Please note that all numbers input by the user in THE Bugger
must be in hex notation, but that you do not need to (indeed must
not) type the > character usually used to denote hex. If you
make a mistake in inputting a number you cannot Dbackspace.
However only the last four characters input are used by THE
Bugger, so just keep typing until you get what you want. For
example if after Pl= you type 1234AB78, THE Bugger will set P1
equal to AB78. If you type less than four characters, THE Bugger
will * insert leading O0's to make a total of four, e.g. 1A will be
set by the program to >001A.

In the functions allowing inspection/changing with one
parameter input, a "-" will back up to the previous address, and
the space bar will advance to the next.

THE Bugger debugging systam PAGE 6

A -—

COMMANDS

INPUT ASCII TO MEMORY

Examples: <A> P1=<A000><space> P2=<ACGOE>return>
or <A> Pl=<{A000><space> P2=<return>

Allows for typing of ASCII text from the specified address
in Pl to the address in P2 (in the first example, 14
characters from >A000 to >AQ00D inclusive). As you reach the
l1imit of characters on one line (16), the cursor will jump
to the next and display the current address, however you may
Jjust continue typing continucusly. If you type <return>
only for P2 (as in the second example), then the input will
be transferred to memory beginning at Pl until 1t is
terminated by °. (control period). If the address range 1is
terminated by V then the transfer is toc VDP memory. (You
can see text typed on the screen by using V and the location
of the screen image table.) [Ed. Note: For those familiar
with DEBUG, there is no G termination, since the program
runs in MDOS as well as GPL mode, and there is no GROM in

MDOS .]

SET/RELEASE BREAKPOINT |

Examples: Pl1={29A4)><{return>
.~ or KB Pl=<return>
o, oraKB> P1=<29A4><->
or Pl=<(~>

Sets or releases breakpoints at the address specified in Pl.

If the address is terminated by <{return> then the breakpoint
ig get, 1f by a <{(-> then it is cancelled. If no address is
specified in Pl then <Kreturn> will list all breakpoints
currently active;, and <-> will release all breakpoints. The
list of current hreakpoints carries the following prefixes.:

"N" - normal breakpoint
"S" — special breakpoint
"P" - permanent breakpoint

(for explanation of special and permanent breakpoints, see

page 17). These are one-word breakpoints and can Dbe set
consecutively.

The B command sets normal breakpoints, that is execution of

the task will halt at the first breakpoint it ‘reaches, and
the breakpoint will be released. You will see on the screen
the work "break" plus information from any switch options
that have been turned on (see page 20 for these). As you
use THE Bugger. be sure that there is always at least one
breakpoint active before vyou set the task running, or you
will not be able to take control again.

Note that the task halts hefore execution of the instruction
at the specified address, although that instruction is
listed (if disassembly is turned on).

THE Bugger debugging system PAGE 7

C -- CRU INSPECT/CHANGE

Example: <C> P1-<1100><return>

Reads the contiguous 16 bits starting at the base address
specified by Pl (e.qg. >1100, the disk controller card).
The bits are displayed in hex, and you may change them "if

you wish by typing the appropriate hex number. <return>
will exit the command. ([Ed. Note: The author's original
intent was for the <{space> termination to advance the CRU
bits displayed to the next 16, however this may not work
properlyl

DISASSEMBLE INTO OPCODES

Ex&mples {D> P1=<A000><{space> P2-<A020><return>
or <D> Pi=<A000>Xreturn>

Will disassemble memory starting at the address specified in
P1 to the address in P2. The address of the start of each
instruction, as well as the contents of that address are
listed before the opcode. If only Pl is given, the
disassembly starts at that address, and continues one
instruction at a time while the space bar is being pressed,
and ends when the return key is pressed. For termination of
the block disassembly before it is finished, press °.
(control period). ‘ |

EXECUTE TASK

Examples: <E> Pl=<return>
or <E> Pl=<1BEA>return>

Begins execution of the task using the RIWP vectors, which
have been set using the R command. Be sure to set them
before using the E command the first time, as they have
arbitrary values when THE Bugger is entered the first time.

You may specify the entry address by inputting it before
pressing <{return>. However the WP vector will not be set
correctly unless the task does it right at the beginning.
If you change the entry address from that present in the R
command, be careful that the WP is still the same. Note
that when the task is halted with a breakpoint, the PC
(program counter) is correct, so that you may use the E

command without P1 to continue after inspecting whatever you
wish. ‘

THE Bugger. debugging sygtem PAGE 8

F —-

FIND WORD/BYTE EQUAL

Examples: <F> P1=CA000> P2=<B000> P3=<4142><return>
or <E> P1=<A000> P2=<BO00> P3=<{4]1><(~->

Searches from the address in Pl to the address in P2 for the
hex number (word in first example, byte in second example)
specified in P3. <return> as terminator will search on even
addresgsses for the word value in P3 and <-> will search at
each address, odd or even, for the byte value in P3. All
matches will be listed, so if the address range is large and

the number of matches is also, then the first will scroll
off the screen.

FIND WORD/BYTE NOT EQUAL

Examples: <K> P1=<A000> P2=<¢B0O00> P3=<4142>return>
or <K> P1=<A000> P2=<B000> P3=<41X<->

operates exactly like the F command except that it lists all
addresses and their contents that do not match. Since in
most cases there will be a large number of "non—-matches,™
the 1list may Dbe very large. In this command “. does not

appear to stop the display -~ you will just have to wait for
it to end.

THE Buaoaaoar daebuaaina svstem PAGE 9

M -- MEMORY INSPECT/CHANGE

Examples: <M)> Pl1l=<{C000> P2=<C100><{return>
or <{M> P1=<C000>XXreturn,>

LLists all memory contents from the address in Pl to the
address in P2 in a block display., with the number of words
per line dependent on the line length set by THE Bugger for
the terminal. Or, as in the second example, dislays the
memory content of the address in Pl and allows you to change
it or accept its present value. In the latter case THE
Bugger will display, for example: |

CO000= 5252
You may then press <return> to accept the value and go on to
another command, <space> to accept the value and go .on to
the next address where the contents will be similarly
displayed, <-~> to accept the value and back up to the
previous address, or input a new value and then terminate
with <return>, <space)>, or <-> to exit, go on, or back up.
In the last three cases you would see, for example:

M P1=C000
C000= 5252 <5131 Xreturn>

or '
M P1=C000O
C000= 85252 <5151 ><space>
C002= 3353 <?>
or

M P1=C000
. CO00= 5252 <351351><->
BFFE= 5030 <7?>
(where ? would represent your next input).

The M command is one of the most useful in THE Bugger, Bince
in debugging the task you may find that you need to change a-
value at a given location, or you may find <that an
instruction was wrong and you can then actually change it
(if you can determine what the hex value would be) without
changing the source code and reassembling.

You may inspect or change VDP addresses in exactly the same
way by appending a V to the address, except that only byte
values are given.

: r..i" i‘.\. I

THE Ruaoar dabuaaina svstem PAGE 10

N -- MOVE BLOCK

Examples: <N> Pl=<C000> P2=<C100> P3=<(80)<return>
or <N> Pl=<C000> P2=<C100> P3=<{return>

Moves the number of bytes specified in P3 from the start
address in Pl to the address in P2. If no number is input
for P3 then the number of bytés moved is P2-Pl. The move is
made in forward order. VDP addresses may be used. |

P -- COMPARE BLOCKS

Examples: <P> P1l=<C000> P2=<C100> P3=<80)<return>
or <P> P1=<C000> P2=<C100> P3=<return>

Compares the number of bytes specified in P3 startinﬁ at Pl
to the bytes starting at P2. All locations 1in each Dblock
that differ are listed side by side. If no number is input

for P3 then the number of bytes compared is P2-Pl. VDP
addresses may be used.

THE Burnnar debuacaina svstam PAGE 11

R —— RTWP VECTOR INSPECT/CHANGE
Example: <R> <{return>

Allows for inspection or change of the workspace vector
(WP), the program counter, or current address (PC) and the
status (8T). After you type <R> the workspace will appear
on the next line, with the cursor following it allowing Yyou
to type in a new value if you wish. Whether you do so or
. not, the space bar will take you to the PC, whereas <return>
will accept the present or new value and exit the command.
If you have proceeded to the PC you may also change that
value and exit or go on to the ST. After ST you will exit
with either terminator. <-> is not an option here.

The PC will be used by the E coomand if there is no input
for P1. The S command will use the PC for all stepping.

As you begin to use THE Bugger for the first time with the
task, you will need to set the PC for the beginning of the
task. If you have made a list file of your program, and it
is entirely relocatable, then you will be able to set the X
(or Y or Z) bias to the end of THE Bugger (which is listed
on the title screen) and then use the relocatable addresses
from the list file each time an address is needed. Thus if
the entry address of the task is at the (first address you
would be able to set the PC to 0000X. This saves

considerable time in calculating addresses in the debugging
process, Please see the bias commands for further

explanation.

TLI® Dhimmaw Ambuisnnd s -u-+nm pAFF 19

N -- MOVE BLOCK

Examples: <N> P1=<C000> P2=<C100> P3=<80)<return>
or <N> Pl=<C000> P2=<C100> P3=<return>

Moves the number of bytes specified in P3 from the start
address in Pl to the address in P2. If no number 1s input
for P3 then the number of bytés moved is P2-Pl. The move is
made in forward order. VDP addresses may be used.

COMPARE BLOCKS

Examples: <P> P1=<C000> P2=<C100> P3=<80)<return>
or <P» P1=<C000> P2=~<C100> P3=<{return>

Compares the number of bytes specified in P3 startinﬁ at Pl
to the bytes starting at P2. All locations in each block
that differ are listed side by side. If no number 1s input

for P3 then the number of bytes compared is P2-Pl. VDP
addreases may be used.

THE Bunoar dubunninn svetam PAGE 11

R —— RTWP VECTOR INSPECT/CHANGE
Example: <R> <return>

Allows for inspection or change of the workspace vector
(WP), the program counter, or current address (PC) and the
status (ST). After you type <R> the workspace will appear
on the next line, with the cursor following it allowing you
to type in a new value if you wish. Whether you do so or
. not, the space bar will take you to the PC, whereas <return>
will accept the present or new value and exit the command.
If you have proceeded to the PC you may also change that
value and exit or go on to the ST. After ST you wull exit
with either terminator. <-> is not an option here.

Thg PC will be used by the E command if there is no input
for P1. The S command will use the PC for all stepping.

As you begin to use THE Bugger for the first time with the
task, you will need to set the PC for the beginning of the
task. If you have made a list file of your program, and it
is entirely relocatable, then you will be able to set the X
(or Y or Z) bias to the end of THE Bugger (which is listed
on the title screen) and then use the relocatable addresses
from the list file each time an address is needed. Thus if
the entry address of the task is at the first address you

would be able to set the PC to 0000X. This saves
considerable time in calculating addresses in the debugging

process, Please see the bias commands for further
explanation.

Cn o RS i
PULIC Bommamis e eyt mM -u-i-'nm Dﬂd"F |

S == SINGLE STEP

Example: <5> Pl=<{return>

or <S> Pl=<&>Xreturn>

or <S> Pl=<C000>X->

or <3> Pl1l=<D0O00>X+>
Causes THE Bugger to single step using the special
capabilities of the 9640, and is one of the most powerful
commands of the program. If <Kreturn> 1is pressed without
input for Pl then THE Bugger will step a single instruction.
If a number is input for Pl and <return?> pressed then THE
Bugger will single step that number of instructions. 1If the
input for Pl is terminated with & {-> then Pl becomes the
address to single satep to, and if it is terminated with a
{+> then single stepping will proceed until the contents of
address Pl are altered from the current state. Note that
because single stepping is done at an exceedingly slow rate,
it is dangerous to single step through VDP routines and the
operating asystem of the computer.

In all cases, as each instruction is stepped through, the
word ‘"astep" is written ¢to the screen and then additional
information is displayed if any or all of the three switches
“8, ‘W, and D have been turned on. Please see page 20 for
an explanation of what is displayed.

There is one case in which you cannot single step. If you
have stopped at a permanent breakpoint, then THE Bugger's
special code (an XOP) is ready to go back into the address
pointed to by the PC. - Since the S command also uses that
location, the single stepping cannot be done and if you trvy,
execution will in fact proceed until the next breakpoint.

T -— DISASSEMBLE AS DATA

Examples: <T> P1l=<AQ000><space> P2=CA020><{return>
or <T> Pl=<AQ00>Xreturn>

Functions exactly as does the D command, only the
disassembly 1s one word of DATA.

THE Riimnmamy rabiand nn ﬂu:‘l‘lnm PalkRE 1X

W -- WORKSPACE INSPECT/CHANGE

Examples: <W> Pl=<{(return>
or <W>» Pl=<{gpace>
or <W> Pl=<AXreturn>
or <W> Pl=<{A>Xspace>

Will display and allow changing of the workspace registers.
If Pl= is followed by <return> all sixteen registers of the
WP pointed to by the R command and their values are
displayed. If <space> is used then each register beginning
with RO is displayed and you are allowed to change 1it.
{space> will take you to the next register whether or not
there has been new input, and <return’> exits the command.
If <-> 1is pressed after a register is displayed or changed
the previous register is displayed. You may also enter a
register number (in hex, single digit) and then that
register is displayed immediately. Subsequently the command
behaves as if you had started with RO.

X,,Y.. Z.l = BIAS VALUES

Examples: <X> AQ00 <1BEAXreturn
or <Y> 1000 <2000><return>
or <Z> 0040 <3000>Xreturn>

X, Y, and Z are optional Dbias valuegs that can be set
independently. The previous value is displayed first (note
the defaults above, sget by THE Bugger) and you are then
given the option to change it, or accept the present wvalue.-
I1f the Dbias letter is appended to any hex value, e.q.
<0000X>, input for a parameter, THE DBugger will set the
value of the parameter to the sum of X and the input value.
For example, using the values listed above, if you type
0000X for Pl= then THE Bugger sets Pl1=1BEA, or if you type
1234Y for P2 then THE Bugger sets P2=3234.

As explained under the R command this can be particularly
useful if you have a list file with all relocatable
addresses on it, as the beginning of your program will begin
with address 0000 In the example above, X was set to 1BEA
because the length of THE Bugger is 17EA bytes,” and in MDOS
it begins at 0400 if loaded first.

TWLIE o |r-|ﬂ;-.u-; rMahlhiimrmi mm nu:j'l'ﬂl;‘l bﬁﬁp 14

-~ DECIMAL TO HEX CONVERSION -

Example: <.> <512>return>
terminal will display =0200 on the same line

simply converts the decimal number input 1nto a four digit
hex number and displays it. Whole numbers from 0 to 65535
can be 1nput but not negative numbers., If a number larger
than 63335 is input, which would result in a hex number with
S or more places, only the last four are displavyed.

There is a minor bug in THE Bugger in that Pl= should be
displayed after you input . but it isn't.

-— HEX TO DECIMAL CONVERSION

Example: <, > Pl=<0200return>
terminal will display 512 on the next line

Converts the number input into Pl (one to four digits) into
a decimal number and displays it. In this case, numbers

from >8000 to O FFFF are displayed as negative decimal
numbers. | |

-- HEX ARITHMETIC

Example: <;)> Pl={1234)> P2={567><return>
* terminal will display:
H1=1234 H2=567
Hl1+H2=1798B
H1-H2=0CCD
H1*H2=0062 S56EC
H1/H2=0003 Remainder=01FF

displays the four major mathematical functions using the
values input for Pl and P2.

THE qun-r dnbuaning svatam PQGE 15

nR ~

FIND ASCII STRING

Example: <=> P1=<A000> P2=<B000>
Enter String to Find (30 char max)
{your string>{return>

Searches for an ASCII string of up to 30 characters,
starting with the address in Pl and ending with that in PZ4.

It will list only the first match, or inform you that it 1is

not found. THE Bugger begins the search at each address in
the range Pl to P2, so that if the string begins with the
address at P2, then a match i3 made.

MEMORY MAPPER

Example: <@> Pl1=<EF> P2=<6>{return?
or <@> Pl=<{return>

Maps the physical page number in Pl into the execution page
number in P2. If <{return’> only is pressed for Pl then the
current page map is displayed (eight execution page
numbers). A minor bug has occurred in that the execution
pages are sometimes listed as 10 to 17 rather than 01 to 07.

You must be very careful not to map out the page(s) in which
THE Bugger is contained, or the computer will fresze up.

However it does allow you to investigate all the physical
pages of the 9640, by mapping them into an unused execution

page.

RESET THE BUGGER

Displays the title screen and re-initializes the RS232 card.

RESET 9640
Resets the computer by performing a BLWP @O0.

THF Runoar dabucaina svstem PAGE 16
P TUNPEAE £ : . o FATNY)

- er . ee——

HB_

ﬁC-_

SPECIAL BREAKPOINT

Examples: <"B> Pl=<(29A4><return>
or <"B> Pl={return>
or <"B> P1=<29A4>¢{~>
or <*"B> Pl={->

Functions like the normal breakpoint (B), only after
breaking to output the word "break"” and any data signalled
by the switch options it does not return to the command
line, but keeps on executing the task, and the breakpoint i=
cleared. Pressing <return>, <-> or <data’>{-> function to
list all the breakpoints, c¢lear all the breakpoints, or
clear one breakpoint, as with the B command. If a
breakpoint of one type is set at a given address , it must
be cleared before using another type at that address, or the
first type will remain.

PERMANENT BREAKPOINT

Examples: <°"C> P1=<{29A4><return>
or <°C> Pl=<{return>
or <"C> Pl=<29A4><->
or <“C> Pl=<->

Functions like the normal breakpoint. but will remain in
memory and not be reset after it is executed. THE Bugger
takes great care to ensure that a permanent breakpoint will
be removed from the task long enough for the original
instruction to be executed when an E command is performed
directly after a permanent breakpoint. Pressing <return>,
(=> or <data>{-> function to list all the breakpoints, clear
all the breakpoints, or clear one breakpoint, as with the B
command. If a breakpoint of one type 1is set at a given
address , it nmust be cleared before using another type at
that address, or the first type will remain.

This command is esgpecially useful when you wish to
repeatedly examine data after the same address in the task,
but under different circumstances.

THE RuaAamner dAashinsi mn evetram PAGRE 17

P —

*T - VDP STATUS REGISTERS
Example: <°T> Pl=<return>

Displays the contents of the nine VDP status registers.

~U - VDP STATUS REGISTERS - DYNAMIC
Example: <*U> Pl=<6>}<return>

Dynamically displays the contents of the VDP status register
contained in Pl.

“V - WRITE TO VDP REGISTER
~ Example: <“V> P1l=<XXYY>return>

Writes the value YY to the VDP register XX

THE Buimmer dehuaninn nvntnﬂlPﬁGE 18

thE_

ﬂL.-

-I\P_

SWITCH OPTIONS

___'=-__--_“_‘—
[—— — T I " Frr 1r—

The following "switches" which in each case toggle between
two modes, are available at any time. Default mode is OFF
in all cases.

COMPUTER MODE

Toggles the computer Dbetween MDOS and TI modes and maps
itself accordingly to accomodate the mode switch.

LINE LENGTH ’

Toggles the length of the output line between 40 (OFF) and
80 (ON) columns to accomodate different terminals or
computers.

PRINTER OQUTPUT
This option is not available. 1In order to print your output

you should use the terminal to log to disk or printer. If
"L is toggled to 80 columns, the output will be in neat 80
column format, even if your terminal screen is 40 columns
and does not appear even. In any case most output is less
than 40 columnsg, except for memory dumps. ~

THE Bhinmar doablhiinninm avatroam PARGE 19

T C e —

ﬁS_

HID_

DUMP STATUS

Toggles the display of the values of WS, PC, and ST, as well
as symbols "disassembling” the value of the first 6 bits of
the status register. These are: ,
L - Logical greater than

— Arithmetic greater than
- Equal
- Carry
- Qverflow

-~ 0dd parity |
Note that for a breakpoint, the listed values for WP and ST

VO MmE

~are those prior to execution of the instruction at the

breakpoint (the PC indicates the address of the
instruction}. FPor single stepping they are listed twice,
both before and after execution of the instruction. Thus
you will see on the second line the PC after the instruction
and the new (possibly changed) values of WS and ST.

DUMP WORKSPACE

1f ON dumps display of the values of the workspace registers
(pointed to by the WS of the R command). A slight bug is
preasent here in that in the case of single stepping the
values prior to execution of the instruction are listed but

not after. You can still inspect the WS after the step by

entering the W command without parameters.

DUMP DISASSEMBLY
When this switch is ON, disassembly of the current

instruction that has just been single stepped, or the next

ingtruction to be carried out after a breakpoint has Dbeen
executed, is displayed to the terminal, as is the address
and its contents (first one, 1f the instruction takes two or
three words). NOTE: each time you execute the D command
this switch is turned off!

T Hnnnnr ramiinaina svstam PQEE 20
< " R % O PR

A —

APPENDIX 1 - CONSTRUCTION OF A NULL MODEM CABLE

The author used a TI99/4A running FAST-TERM at 2400 baud and
even parity as a terminal during the writing and debugging of
this program. [Ed. Note: TELCO was tested and worked at 7El.
We were unable to get MASS TRANSFER to work because of inability
to change parity] To connect your terminal's port, or the second
computer's RS232/1 port to the host computer's (the one running
THE Bugger) RS232/2 port you will need a special cable. If vyou
have a modem cable and TI's RS232 Y cable/splitter you should be
able just to connect the modem cable to the RS232/2 plug of the Y
cable (which for .some strange reason is labelled "PORT 1" on
oursg'!). This worked in our system. You may not want to disable
your modem cable however, so we are including the correct pin
connections to make a dedicated cable. Please note that the
information in the TI RS232 manual is incorrect.

Terminal or computer Computer with
with term. emulator THE Bugger
1

16

14

19

7

0 13

NN AWN -

APPENDIX 2 ~ CHANGING THE BAUD RATE

To change the baud rate for THE Bugger's output, find theé
following code near the beginning of the program: 4B00 0008 00QOQ.
The 0008 occurs at byte >D0 of sector 1 of BUGDOS, b. »>6C of s. 2
in BUGGER and BUGGER6, and b. >1A of s. >4 in the uncompressed XB
files. Change the 0008 according to the following table:

BAUD RATE . CHANGE TO

110 0000

300 0002

600 0004

. 1200 0006
- 2400 0008
4800 000A

9600 000C

19200 000E

Note that if you make a change in an uncompressed file you must
change the 7 to an 8 before the checksum at the end of the line.

TLIE Risvamow ddabhiami me evetraeam PAGRE 21

T And J Software - LIMITED WARRANTY

T and J Software warrants THE Bugger Ver.ll, which it
manufactures, to be free +from defects in materials and
workmanship for a period of 90 days from the date of purchasae.

During the 90 day warranty period T and J Software will replace
any defectiva product at no additional charge, pravided the
product is returned, shipping prepaid, to T and J Software. The
Purchaser is responsible for insuring any product so returnad and
assumaes the risk of loss during shipping.
Ship to:
| T and J Software
915 Alma Real Drive
Pacific Palisades, CA 90272

WARRANTY COVERAGE - THE Bugger program is warranted
against defective material and workmanship. THIS WARRANTY
I8 VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR
OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

REP FT WARRAN - After the 90 day Warranty
period has expired you may return any original defective .
diskette, along with a check for $4,00 to cover shipping and
diskette costs, and we will replace it. |

THE Bugger Ver 1.1

Supplement for Ver 1.1

Additional code and documentation by Tom Freeman

THE Bugger Ver 1.0 had some errors in coding and screen
display which were discovered after its release, as well as cone
important non-functional command. These have been corrected, and
some hew commands added. Where a previously existing command has
been modified or a new explanation provided, please indicate this
on your copy ¢of the full documentation. Thilis supplement may be
appended to the original documentation, but the last page is
meant as a replacement for page 3, the Table of Contents. Please

note the change for Appendix 2 listed in the next paragraph under
“A.

NEW COMMANDS

—3-— 34 % 3§ & F 4

“A = PRINTER BAUD RATE CYCLE

This command will cycle through 8 choices of baud rate, from
110 to 19200, for a serial printer connected to the RS232/7
port (see “P). The default is 9600, and invoking the
command will always turn the printer OFF. If you wish to
change the default, you may change the code directly in the
same way as described in Appendix 2 (p. 21). The data to
change 1s 000C directly following the 0008 used for the main
1/0 baud rate. IMPORTANT NOTE: The data to search for is
now 4B00 0008 000C, not 4B00 0008 0000. |

“F - PIO PRINTER CARD CYCLE

Cycles through the three brands of RS5232 cards presently
available for the computer (TI, Myarc, CorComp — TI is the
default). This is necessary because, in contrast to output
through the RS232 port, direct output through the PIO port
differs in the three cards. As with “A the PIO ouput is
turned off if the command is invoked.

"G - PIO PRINTER OQUTPUT ON/OFF

Toggles output to a printer connected to the . PIO port (of
the host computer) on and off. Everything output on the
screen will also be directed to the printer until it is
toggled off.

1 - MAIN I/0 BAUD RATE CYCLE

Cycles through the eight baud rates available, as described
in Appendix 2. The result must match the baud rate at the
terminal, 80 in general this is a risky operation and may
lock up the computer. The best method is to change the
default, as described in the Appendix. .

- THE Bugger debugging system PAGE 23

"P - PRINTER OQUTPUT ON/OFF

P -
1)

2)
3)

1)

3)

This is a change from Ver 1.0 as the command is now

operational. The printer must be connected to the RS232/1
port. Other comments under “G apply here as well. You may
still log from the terminal if it has that capability.

THE COMMAND LINE -~ CHANGES

There are some additions and changes to the information on

5.
comma <,> can substitute for a space to go from one

parameter to the next.
If <+> and <~> do not have other meaning they may also
substitute for the space.
Appending P to the hex input value will add the present value
of the program counter to the hex value. For example <D>
Pl=<OP><return> will begin disassembly at the present program
counter. |
IMPORTANT ~ the abort character has been changed to “Z, due to
difficulties we had with *“. on some terminals (the terminal
locked up).
For values from “A to “Z typed from the terminal. yYou will see
the same visible characters on the the terminal as you see on
this line. Some terminal emulators already do this, but most
terminals do not, so this is the only way to see what you have
typed.

CHANGES TO COMMANDS

2 -+ 1+ + 43 £+ F 3T F YT

A -~ INPUT ASCII TO MEMORY

The termination character for P1 only is °2.

B -- SET/RELEASE BREAKPOINT

If disassembly has been turned on with "D, then when you
releage ALL breakpoints with <-> after Pl all released

- breakpoints will be listed, along with disassembly. of the
opcode at that address. This is a quirk in the way the code
was written, and in no way affects the operation.

C —— CRU INSPECT/CHANGE

This was not properly documented. There is in fact a P2,
for which you should enter the number (1 to F, 0=16 or >10)
of bits you wish to inspect. For some reason, with entry of
9 to 16 bits, the change is not actually made, s0 you should
actually only enter 1 to 8. In addition, the space
termination will take you to the next 16 bits (hence if you

wish to CHANGE something in the next eight, you must retype
the value) and <-> takes you back.

THE Bugger debugging systam PAGE 24

D --

ﬁC-

ﬁP_

DISASSEMBLE INTO OPCODES

The termination/abort character is now “Z.

RTWP VECTOR INSPECT/CHANGE

The <-> terminator now works to back up to the previous
vector.

SINGLE STEP

The last paragraph for this command was not correct - in
fact the problem was a coding error which has now been
corrected. You may now single step after &a permanent
breakpoint with no difficulty, and the breakpoint will be
restored as soon ags you have 'stepped” away. On the other
hand if a breakpoint of any type is encountered during
single stepping, execution will HALT immediately before the
breakpoint, and that information will be displayed. 1In
other words the breakpoint is still ‘"active". However,
because the breakpoints use the XOP opcodes (2C40, 2C41, and
2C42) if your program happens to contain these specific data
or opcodes, THE Bugger will get VERY confused!

Please also note that as soon as you have executed this
command, all present information requested by the switch

‘options will be displayed, and then the first step executed.

The new information will be d1sp1&yed after each step is
executed as well.

DECIMAL TO HEX CONVERSION

The screen will now display Ple,

PERMANENT BREAKPOINT

As noted under S above, a single step can also be executed
after a permanent breakpoint. An inadvertant bug that did
now allow permanent breakpoints above »>8000 (!!) has also
been corrected.

PRINTER OUTPUT ON/OFF

As noted on p. 23, this option IS now available.

- DUMP STATUS

Due to our terminal locking up when °“S was typed, and
because we think that this is one option you will probably
usually want ON, the default has been changed to ON. The
defaults for "W and °“D remain OFF.

DUMP DISASSEMBLY

Execution of the D command no longer turns this switch off.

THE Bugger debugging system PAGE 25

