
99'ER ONLINE 
	

FEBRUARY 1987 	 PAGE 1 

lhe Edmonton 99'er Computer Users' Society-
p.o. box 11983 

Edmonton, Alberta 

CANADA T5d 3L1 

99'er ON LINE... is the news letter of the Edmonton 99'er 
Computer User's Society published ten times a year. 
Unless otherwise stated, all articles may be republished 
in other news letters provided that source and author are 
identified. We will credit authors quoted in 
99'er ON LINE. 

CORRESPONDENCE: 	Newsletter 	editor: 	Bob 	Pass, 59 Labelle Cr, 

	

St. Albert, Alberta, Canada 	T8N-266. 	(403)458-7658. 	All other 
correspondence should be sent to the address at left. 

OFFICERS: president Tom Hall, vice-pres Ken Godbeer, treasurer Jim Mulligan, 
secretary Roxanne Appelt 

DISCLAIMER: Information published in this newsletter is created by and for amateurs; 
therefore, we cannot guarantee the accuracy or use of presented intormation. 

REGULAR MEETINGS... 	of the Edmonton 99'er Computer User's Society are held on the second Tuesday 
of each month in room 849 of the General Services building of the University of Alberta from 7:00 

_till 10:00 PM and are open to all members in good standing. Non-members may attend their first 
meeting free of charge. 

ADVERTIZING... Commercial space is available in this news letter at the following rates: full page $20.00, 
half page $15.00, 1/4 page $10.00. Discuss your needs with Jim Mulligan at 467-6021, at the next meeting. 
or send °photo ready° copy to the P/0 Box above. Members may advertise their personal computer related 
items for free but are asked to limit their ads to about 50 words. Mail your ads to the editor's address or 
hand it to him at the general meeting; newsletter deadline 3'rd Monday of the month. 

MEMBERSHIP FEES: Family 12 months, $20.00, 6 months, $15.00. Students 12 months, $15.00, 6 months, $10.00. 	New 
member initiation, $20.00. 	 • 

JANUARY MEETING 

HAPPY BIRTHDAY TO US! 	The Edmonton 99'ers Computer Users' Group is five years.old this January and still going 
strong. 

CLUBLINEI99 -- The November issue of the magazine finally arrived and was distributed at the meeting. 	Jim Beck and 
Wally Berezowskx please pick up vour issues at the next meeting. We have about 5 extra issues each month which can be 
purchased for $4.00 a copy on a first come, first served basis. The subscription has been renewed through to 
February/87. We will conduct a review the product at the next oleeting. 

Attendance at the meeting was 33 people. It is good to see a load turn out for the meetings. Unfortunately, we 
forgot to hold the draw for door prizes again! February for sure. bodbeer will be providing about two dozen donuts 
at each imeeting at a cost of ten cents each; please leave money in the coffee fund piggy bank. Thanks Ken and thanks 
to Lois Meunier and Roxane Appelt too for bringing some more home baking. 

TOR Hall mentioned that Miller Graphics will announce on Friday, January 16'th, compatability with IBM. 	Watch this 
space for lore details as they become available. 

Bob Chapman (with able keyboard assistance from John Harbour) put on an excellent demonstration of Ti MULTIPLAN. Bob 
showed how to set up a simple spread sheet and demonstrated the concepts of spread sheeting and how to use some of the 
powerfull editing features of the package. 

Ron Hohmann has relinquished his duties as librarian of external newsletters due to other coimmitments. Thank yOU Pon 
for attending to this chore for the past year and a half. Paul Helwig has assume Ron's duties and has asked for one 
or two volunteers to help him cross index the news letter library. 

There have been some new releases to some of the software packages in our disk library. If you are using any of the 
following packages then check with our disk library for the latest version: 

HORIZON RAM DISK "MENU° ROS 5.5, 	C9q 3.0, 	FUNLWRITER 3.4, 	SIDEPRINT V2, 	PRBASE Y2, INCOME TAX CALCULATOR 1986, 
DISK MANAGER 1000 V7.5 

Other additions to the librarv include programs from the defunct HCM magazine volumes 4.1, 4.5, and 5.1 through 5.6. 
Or how about "NINJA" by Jil Beck, or the original 99'er proorams from Volume 1, Numbers 1 to 6 and Volume :, Numbers 1 
and 27 If you are interested in our history, check out ;9'er ONLINE, a disk prepared by Bob Burley featuring every 
article from our club newsletter up to March, 1987. 

!EDMONTON 
! 	,;)Q'er 

?

COMPUTER 

USERS' 

SOCIETY 



014.Nof 	wouic 	 t-.6c S•44.014.141 
1.).114 !-.0AE vrriti. 	NO Gorr 
n4S0104A11.1 ruut, 	nwprfr 	(IWA 

NoW cr'S Cr.•45. 	 Co.!, ART, 

1 " 	
AND TINE! 

."1/9 

• 

VOM'j 	 AM WAXY'S 
LOrr,4 

tts AmAx.x. 	IT iumest 
C.c.wrte Thlk PIKENIT 	MR.N.Nti 
Ing ■CES 	,..7•A•VIVE. 	0.11Urv 0' FINE 

OCAN.C.5' 	 IT ?kW / *3: 	YOOR. 	IMNA,T 

.51,14 u)11,1 
041,1 FL- ,* 
..•••■■ reIt Par, 

1:11; J• 
■•••• 

99 ER ONL I NE 

 

FEBRUARY 1987 	 PAGE 2 

         

Figured out what to do with that Christmas cheque from Aunt Sally? Well here are some 600D-BUYS: Edmonton Telephones 
has a limited supply of the Centonics 6LP printer for $199.00. 	It is fully compatable with the TI machine and 
features both a parallel and a serial port. 	Tractor feed is an option available for $35.00. Contact the 'et' 	Data 
Group. 	COSTCO is selling 20 pound clean edge tractor feed paper at $21.00 per box of 2500 sheets. just the thing to 
go with your new printer. 

Some of you have not yet paid your $20,00 hardware initiation fee. You are really not being fair to your fellow 
members who are supporting this group. How about it folks? 

Another "TI-Cares"package was received and has been placed in our library. It is a set of diagnostic proorams called 
TI-TEST designed to test out all parts of your system and attached TI peripherals. The disk is a "flippied with one 
side running in Hasic and the other in MiniMemory. Be sure to sign out the documentation with the disk. 

NEXLMEEIING 

The next meeting will be Tuesday, February 10'th at 7:15 PM. Same place as usual; General Services Building, U of A 
campus in room 849. 

The door prizes promised far the December meeting that did not materialize were there for the January meetina. 
However, we forgot to hold the draw!!! I guess we got carried away with Bob Chapman's demo of MultiPlan and the 
general melee that tends to characterize the final siages of our meetings. In any case, the door prizes will be at 
the February meeting. Would somebody PLEASE remind us to get the job done right this time? And, if you have any 
suitable items that could be used far a door prize, bring it !them) along. We will be glad to give it away for you! 

Planned for the February meeting is a demo of c99 by Paul Helwig: see other articals this month for more info. 	Also, 
the video tape of the Ottawa TI-Fair will continue if time permits. 

NE05111TER):5KETTE_AWDS 

This month's award goes to Michal Jaeoermann who has written a rather extensive introductory artical on c99, the 
latest programming language for the II-99/4A. If you are finding Basic to be just a bit too basic, you like SOME of 
the things that can be done with Assembly, and you find Assembly to be something devised by a madman that only the 
Saints can decipher, then perhaps c99 is the answer for you. It is a structured language like Pascal or Fortran that 
is compiled into Assembler code so you get all of the speed of the TMS 9900 chip at your finaer tips. Best of all. 
you don't have to learn any Assembly or " be at one' with the archetecture of the machine. All you need to get 
started is one disk drive, Memory Expansion, the Editor/Assembler module and a copy of c99 available from our library. 
Pretty soon you will be doing some REAL programming! 

At the February meeting, Paul Helwig will demonstrate some c99 programs and offer a brie+ introduction. Read Michal's 
artical and contemplate joining SIGc99 !Special Interest Group c991 which we will form if there is enough interest 
shown by our membership. 

My thanks to Michal for an excellent artical. And don't forget to pick up your disk from me at the next meeting. 

If you have an item that you would specifically like to be published here and you cannot get access to our newsletter 
disk system, simply leave a message or file on the board to my attention and I will see that you too get an award disk 
once your item is published. Thanks to all of you for supporting this newsletter. 

CW '77/g 7q2friVa'' 	  



99' ER ONLINE 
	

FEBRUARY 1987 	 PAGE 3 

FIRST STEPS INTO c99 

by Michal Jaegermann 

This series (hopefully) of notes is meant for everybody who has a copy of the two club library disks containing the 
c99 compiler. You have probably heard that this is a very flexible and powerful language, but now you are scratching 
your head. It is sure not like the old familiar BASIC; how do I start using it? If this is the case - read on. If 
not, read on anyway. Maybe you will find out that it is a good idea to get yourself a copy. Please remember that c99. 
is shareware, so if you are going to use it regularly, you are expected to contribute towards the financial well being 
of the author. 

These notes will assuae version 2.0 or higher of the compiler. 	If you still have the one-disk version 1.x, replace it 
as fast as you can. There is a big qualitative step between this and later implementations. By the time you read 
these words, Release 3.0, the next uRdate which adds new features, should be available locally. So keep abreast of 
developaents. (Editor's note: release 3.0 is now available and should be in the library shortly.) 

Let ae say first of all that these notes are not intended to replace the documentation that comes with the compiler; 
reading it is still obligatory. Also, these notes will not be a substitution for C textbook (check your local public 
library) which will help YOU fill out the documentation. But (very big BUT), please keep in mind when you are readino 
C texts that c99 is not C. It is a version of small-C, i.e. a C-like language, which implements only a saall subset 
of the full language. It has syntax surprisingly close to an older brother but the semantics are often similar to 
what you will ;ind in the texts (a big smile). But some differences do exist, 50 not everything you will find in a C 
textbook will be valid here. And c99 has some functions and libraries which are very TI99 specific. I will try to 
help a little bit with these problems. 

After this long introduction let us see some programs. Probably the most famous one looks like this: 

main 0 

puts ("Hello, world!giE6 N.tt")..) 

This progrzgi, when compiled and executed, will display the greeting 'Hello, world!' on the screen. Layout and 
indentaion of the program is up to you; the format is to make the program readable and is not required by the 
compiler. The same program could have been typed in as follows: 

main(ltputs("Hello, world!** \'‘.); 3 
and compiler will not care, as lona as you do not break a line in the middle of a string to be printed. Unless you 
have very advanced stages of the BASIL disease, and really cannot contain yourself, do not use the second style. This 
is more important that it looks at the moment. If you are not convinced, then make a copy of any demo program from 
the c99 disk and reformat it with TI-Writer. You have a good chance that you will end up with valid code that wil 
execute once compiled. How about reading it? 

Now, what does all that mumbo-jumbo mean? Simplifying a little bit - everything in a C program is either a statement, 
a declaration or a function. A statement just tells a computer to do something. And it has to be terminated with 
seimicolon (;). 	Exercise: find a statement in the program above. A missing semicolon is a popular error in C 
programs. if the compiler comes back with a funny error message, check if you ended your stateaents properly. 	There 
is a good chance chat the compiler is contused; it is attempting a compilation of a previous line against the 
programmers' intentions. 

For all intents and purposes, every single statement can be usually replaced by a whole group of statements, provided 
You enclose thea in a pair of braces like this t .... 1. These braces define the liaits of a prograa module and is 
treated as a single entity, much like a subroutine is in BASIC. Since our program above consists only of a single 
statement, then the braces can be skipped and the compiled code will be exactly the same. But it is a good idea to 
keep these extra eabelishments. One reason is for readability. Another reason is that you will be able to use this 
module in a library and add it to another program in the future. Or perhaps you wish to expand this progra by adding 
a second statement: 

puts ("from my old, faithful TI99/4a.miliv \n"); 

Now braces are necessary, 

Now functions. Lets try to write a c99 function which will take a number from 0 to 3 and then print on the screen a 
corresponding digit. 	should start with a good name. How about "putdigit". Names can be long and elressive. ThE 
only problem with c33 is that later the assembler will not accept more than the first six characters. 	ihe functions 
"putdigit" and 	'putdigit2" would end up with the same name. 	Names like "put2digitil will take care of this, but 
sometimes you have to move with a little bit of grace. Just make sure that the first six characters of function names 
are unique, 	Ok.„, so putdigit has to accept, as an argument, one number, 	Therefore its header .,411I look li'Le this: 

putdigit (number) 
int number; 

it the rest of "putdigit" goes here 21 



99' ER ONLINE 
	

FEBRUARY 1987 	 PAGE 4 

Here we told our compiler that the function will need one argument which is declared to be an integer ("int number;" 
is a declaration). 	Don't forget the semicolon. 	This is only information for the compiler so that it will deal with 
an object as an integer type. In c99 we may have only integers, characters and pointers to thee. I'll leave pointers 
alone, for a while. Text between A and 1/ is a comment. Comments may span many lines and nearly anything goes 
inside. Nested comeents are, alas, not allowed in c99. 

Back to our conversion program. 	We will use the fact that the ASCII values for digits are consecutive numbers 
starting with ASCII for zero. So the value for two is the value for zero plus two. 	We may write something as 
follows: 

putdigit (number) 
int number; 

int work; 

work = number + '0'; 
putchar (work); 

An expression "int work;" (semicolon - watch out) declares a local variable, which our function will use for internal 
purposes. Local means that the variable is invisible to all other parts of the program external to the function. And 
if another function uses a local variable with 	same name, there will not be the slightest of correlations between 
the two variables. This is very different from 	but if you have used CALL type subroutnes in XBASIC, you will be 
fasiliar with this logic. 	This feature of C makes possible handling functions in a 'black box' manner and the 
creation of libraries. Your own special purpose libraries in particular. Once you have defined an interface, then 
what is going on inside of a function is irrelevant, as long as the results are the same. All programs which use the 
function are not concerned with implementation details. For example, you may replace the body of putdigit with a 
single statement " putchar (number + '0');" without changing its meaning. the symbol '01 is just a replacement for a 
longer code which the computer uses to display a symbol for zero. You may put there, manually, a numeric value of the 
code, but you have to know which one it is. the computer has a big enough memory so we'l let it worry about it! This 
applies to any printable character. Non-printables can be referred to by their code values, but more popular ones 
have their own names - like, for example, n, which stands for a "newline". Check your documentation. 

"putchar" is the name of a,predefined display function, which comes together with the compiler. Every C compiler in 
the world comes with a set ot more or less standard functions which perform some basic tasks. The reasOn for that is 
that the language itself does not contain, for example, any I/0 at all. Also other important tasks are left to 
library functions. It follows, that if you do not like the behavior of a function, vou may reimplement this function 
in your own way. it also follows from that, that the power of a particular compiler depends very much on supplied 
libraries. This is one of the most important differences between different releases of c99.. 

I am talking all the tiee about functions, but, you can tell, usually a function takes some arguments and returns some 
value. We can see arguments, but what about results? That is correct. Every C function takes some number of 
arguments - starting from zero - and always returns something. You may not care what is returned, it may be a 
garbage, but something is returned always. How about "putdigit"? We may aake it return information if an attempt to 
display a digit was succesful or not. Always a popular choice. Let see. 

putdigit (number) 
int number; 

if ((number e. Of 1 (number 	9) 
return (0); 

else 

putchar 	+ number); 
return (-l); 

Hope that this code is self explanatory. A vertical bar is a symbol for a "bitwise or", which behaves like OR in 
X=BASIC. The symbol for a "bitwise and° is &. Logical operators and && are missing in c99. Therefore it is a 
good Idea to use 0 - all bits off - and (-1) - all bits on - for boolean values. 

Lets try some further modifications in order to define a function which will print a hex digit. 

puthex (number) 
int number; 

if ((number 	0) 1 (number 	151 
return (01; 

A if argument out of range, then function just 	 returned, so "else' clause is riot 
necessari 



99' ER ONL INE 
	

FEBRUARY 1987 	 PAGE 5 

If (number ( 10) 
putchar 	+ number); 

else 
putchar l'A' + number - 10); 

it everything ok... 	brag about it If 

return (-1); 
3 

Here you have an example in a little bit different style. Once again, please remember that the indentation is for 
ease of reading only, so if you would like to execute more then one statement after the "if° clause, then braces would 
be necessary. The compiler will not second guess your intentions. 

As an exercise, you could write a version of "putdigit" which will accept as arguments a number and a base and will 
either print the corresponding digit in a given base and return negative one, or it will return 0, if printing will be 
impossible. 

Once we have a function, how about using it in a program. Every C program, by convention, has a function or module 
called "main" which calls up all the other guys required to perform the real job. Lets try something very simple 

it Great experimental program in c99. It prints something. t/ 

*define LIMIT 20 

main 0 

int i; 

for (i = 0; 	( LIMIT; i++) 

	

if (putdigit (i) == 0) 	 \ 

\n\K TH.97 
puts   was not a valid input!4;IL1 
break; 

; 

else 
putchar ("); 

) it end of 'for" loop ti 
exit (0); 

) It end of main ti 

putdigit (number) 
it Prints on screen a decimal digit, if possible. Returns 0 if 

failed and -1 otherwise 	 ti 

int number; 

if ((number s 0) : (number '? 	; 
return (0); 

else 

putchar ('0' + number); 
return (-1); 

Comments: *define is equivalent to the LET statement in BASIC or the EQU directive in assembler. 	It lets you define a 
meaningful name to a constant. Also, if a constant was used in twenty different places in your program, and you 
decide to change it, it is enough to edit one #define directive, instead of hunting for all occurences of the number. 
For typographical reasons this is not evident, but Idefine" has to start at the left margin. 

"for (i = 0; 	LIMIT; i++)" is a familiar iterative (FOR-NEXT) 	loop, 	but with an important twist. 	The 	three 
statements inside tell what to do at the start. when to terminate, and what to do at every iteration. 	"i++' is 
equivalent to "i = i + 1", and just means to incremenE the loop indeg by one. You may use any form. The difference 
with this from other languages is that C allows for these three statements virtually anything. You may cram a whole 
program there, but do not overdo it. You may spent long hours decipherino your own smart ideas! On the other hand a 
construct "for (;;)" is a verv popular C idiom and it means 'loop forever'. (Exercise: does it make any sense7) 

"break', 	when encountered, leaves a loop immediately (only one at a time, if you have nested loops). 	For "etit (n)' 
function check your documentation. 



PROFESSIONAL COPYING & DUPLICATING 
o Rcpons 	• Specifications 	 • Price Lists 
• Briefs 	 • Proposals 	 • Directories 
• Manuals 	 • Address Labels 	• Newsletters 
• Flyers 	 • Transparencies 	• Resumes 

• Letterheads 

Prices Include 
COLLATING, 81/2" x 11", 81/2" x 14-, WHITE, COLOURED OR 3 HOLE BOND 

10 	  90 
25 	  1.75 
50 	  2.50 
100 	  4.00 
250 	  9.00 
500 	  16.00 
1000 	 NMA 
2500 	 70.00 
5000 	  130.00 

PRICES PER ONE ORIGINAL 
ALL ORDERS SUBJECT TO FEDERAL SALF-S TAX 

— SERVICES — 

• 2 Sided Copies 	 • Transparencies 	 • Stapling/Padding 

• Enlargements 	 • Paper Sales 	 • Cerlos Binding 

• Reductions 	 • Folding/Cutting 	 • Laminating 

Two Locations to handle all your Professional Copywor* Pnrtung Services 
AMPLE FREE PARKING 

NORTHERN 
C:1122,YCgCrs1TRII 

13212 ST. ALBERT TRAIL 
EDMONTON, ALBERTA 

broadmoo( Ai:Alone(' ,,„ 
163 ATHABASCAN AVENUE 

SHERWOOD PARK. ALBERTA 

455-8961 	464-4343 
"We make a Good Impression" 

99 ' ER ONL I NE 

 

FEBRUARY 1987 	 PAGE 6 

       

IMPORTANT! The comparison operator '==" is different from an an assignement "=". 	If you wrote '0 = putdigit (i)' then 
you are trying to assign a return value of putdigit to a constant 0 and the compiler should barf on you. But if yOU 
tried to compare values of two variables using "=', then you will create a bug because you will have made the value of 
one of th2 variables equal to the other instead of comparing them. 

Note that the arguaent name in a call to putdigit is a different one than in it's definition. That is ok just as it 
is in XBASIC subroutine CALLs. The compiler only has to know that it is going to pass one integer to a function. 
Nates have to be consistent only inside one function - like main or putdigit. This feature greatly enhances the 
portability of functions via libraries. 

After all this work,it is time to compile our Opus Magna. Please refer to your documentation for details. 	Let us 
only note here that the c99 compiler does not produce object or directly executable code; it produces 9900 source code 
which has to be assembled with an assembler such as that contained in your Editor/Assembler package, which is the mst 
popular one. If you wonder whv the compiler does not create a runable object file, which would be possible in 
principle, there are a number of different reasons. Not all of them of the same validity. 

One is a tradition. The first C compiler was written in an environement which stressed the philosophy of creating 
sets of specialized tools, which performed single tasks well and passed its efforts further down a line. Most L 
compilers have followed suit. Another reason, not independent, of course, is that a compiler written in that tanner 
does not have to contain an assembler: why duplicate an existing assembler that works perfectly well? It needs a 
source code generator, that is true. but it does not have to know anything about invalid or multiple labels, 
unresolved references and all that stuff which is necessary for linking programs. We do not have a separate linker. 
and this is a lot of code, So it helps to keep the compiler small. Still another reason is that our arrangement 
makes possible an intervention into assembler input - either manually, by a programmer, or by filter programs. An 
example of such is a code optimizer, which you will find on your c79 disk. Lastly, if there are some capabilities 
which you need badly and are difficult or impossible to get in a C function, one may write library functions in 
assembler, add them in an appriopriate spot and assemble the whole ball of wax togeiher. This ensures great 
flexibility, though it requires some knowledge of assembler programming and c99 interfaces. But not everything at 
once. 

So you compiled your program, removed all typos, assembled, found in the documentation how to make it run, and it runs 
and even is doing what was expected. Great! Try something else of your own invention and stay tuned for future 
instalaents. 

nova 
COMPUTERWARE 

52 AIRPORT ROAD 	EDMONTON 
ALBERTA 	T5G OW7 

(403) 452-0372 

44°p Texas Instruments 
Home Computer 

TI-99/4A SOFTWARE 	HARDWARE 
SOON AVAILABLE: 

THE GENEVE BY MYARC -(TI-994A Compatible, 
IBM STYLE KEYBOARD, 640K, 12 MHz, with' 
MYARC ADV. BASIC, DOS, PASCAL) 

IBM COMPATABLES 

CLEARANCE OF PLATO SOFTWARE FOR APPLE II, 
AND APPLE Ile 

VISA, MONEY ORDER, COD, CH.1E 
OPEN MON.-SAT. 1PM to :'" 

PROFESSIONAL 
REPRODUCTION 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

