-

B IO R
OE2-S99°'cRS U.G. HEWMWSLETTER

Fall 1987 Issue

The @B MONITOR is the Newsletter of the @B-99'ers User Broup, is printed Sept. thru June and sent in exchange for other User Group
Newsletters. Send Exchange Newsletter to Frank Cotty, Bueensborough Comaunity Callege, Bayside, NY 11348, Credit original sources.

e = Pyl

“he QB 99’ers meets the second Saturday November 1987 %?Emba ?87
of each month September through May, at ? g g g g g § S M : g g 4 S
Queensborough Community College, Bayside 3 9101%1213@9 g 7 2121913
15 16 17 18 19 20 21 13 14 1
Ngw York, room $5225. See the calendar at 33 23 24 25 28 57 o8 00 21 25 D9 o4 95 28
right for the dates 29 30 27 28 29 30 31
Contents Pase
Editor’s Note 2
Word Counting. e 2
STYLE A LINE. e e
DISK LABEL II.............u... e e e e 4
XB Funnelweb Tutorials.............. 5
Key Board Layout 12
TI-MULTIPLAN e e e e e 13
COLISTER. 18

Articles for the DEC issue must be in by DEC 12

QB MONITOR ™~ GB—99 "er NEWSLETTER

WORD COUNTING WITH TI-WRITER Filename just used to save the file. At
by Ed Machonis the second prompt for Print Device enter
DSKn,FILENAME2. You can use the same

Did you know that you can count the drive but use a different filenanme.

nuaber of words in your essay using only Accept all the remaining defaults. The
Ti-Writer? Neither did I until I made a Formatter takes roughly one minute for
mistake one day and interchanged LM and each thousand words.
RM. Just proves that if you make enough When the Formatter is done, select
mistakes, something is bound to turn out Editor and load FILENAME2. VYou will
right. I may be re-inventing the wheel notice that each word is on a separate
but I have never seen this documented. line - now you get the idea!

To count the words in a DV BO file, Delete those leading 3 blank lines.
load the file into the Editor, Select SD Page down wusing FUNCTION 4 until you
and note the number of sectors used by reach the end of the file, deleting any
the file. Multiply this number by 40 lines inserted by the Formatter for page
to get a rough estimate. This number breaks if found. Subtract the number of
will be the Page Length. Now just enter blank lines previously counted from the
the following line as the very first line number of the last word and you
line: .LM O;RM 1;FI;PL nnn (nnan being have your word count.
the Page Length derived above) Next If your original file was very long,
count the nuaber of blank lines in your you may have to load FILENAME2 in
file, sections to find the end. Total the

Save to disk, QUIT and select the number of lines in each section loaded.
Formatter. At the first prompt enter the There are 313 words in thig file.

-------——mun—-u--_-___—u_—m_-mun--—-lwﬁ

In the April issue of the QB Monitor to provide our end of the work. Ed

was a 'Brain Teasers” article. The contributed four of the remaining

last two answers to these puzzles are articles each a gem in brevitiy of
given below (upside down on this page) programming.

Our newsletter exchange is increasing I just sat down to do this bimonthly

monthly. We are now exchanging with 90 issue to make up for not publishing an

bona fide Newsletter publishing UGs; Oct issue. What a luxury time is!

We are always looking for more.

Speaking of newsletters, all Note:

newsletters we receive from other At the last meeting the group decided

groups continue to be inserted in to have a monthly free disk available

three ring binders by month they were to each attendee. Each member who
received. If you haven’t looked over attends will receive a disk containine
the newsletters we have in the library member selected freeware programs.

you are missing out on the most Fach month a different member will be

valuable source of information for in charge of that month’s selection.
your computer. As a member you are Copying will be donated by Dennis
entitled to take home a binder and Coyle and Helen Griffin. Disks will
pass it on to other members. be purchased with group funds. If
yvou want 1o get in on this Jjust show

To show the quality of publication we up at meetings!

are working for we have included iwo

articles from other groups. The XB We received the latest version (4.0)

tutorial comes from Australia via the of the Funnelweb loader by way of the

Grand Rapids Area 99’er Computer Users Lima area Users Group, OHIO USA. It’s

Group. The second from the West Jax even better than the previous version

93’er News concerns TI-MULTIPLAN. 3.4..

We will be sending a check to Jim
Peterson for his tutorial/tips disks

As usual I have relied on Ed Machonis also available in our disk library.
Pg-2 i e e
A5G40 i OR B I - S
mown ¢ e =

IEME AL L

The 2nd word in the 2nd line originally read "listed®. Using STYLE A LINE, the printed article was corrected to read *typed®.

OB MONITOR ™~ GB—29 "er NEWSBSLETTER

STYLE A LINE
A TINYGRAM
by Ed Hachonis

TINYGRAM: A short progras which can
be typed in its entirety on one screen
without any program lines scrolling off
the screen. (REM statements can scroll
pff.) Popularized, I believe, by Hike
Stanfill of the Dallas TI Home Computer
Broup.

Firast of all let me make clear
this is not a novelty prograas. It
work horse, provided you have the
for it. What kind of work? Do you ever
have to print just a line or two, such
as a page header, an article or picture
title, a title for a data base printout,
a credit line for a reprinted newsletter
article, etc., etc. Further, would vyou
like to print this in an Expanded
Compressed ltalicized Double Strike
Underlined type style? Yes all the same
time! 1f so, this program is for you.

that
is a
work

What no printer? 1 will try to have
something for you next sonth. (A TINY
GRAM -~ NOY a printer!)

Many of you are familiar with ay 10
Line basic prograss, PRINTSTYLE and and
PRINTALINE. {(Both TINYGRAMS, written
before I knew the name existed.) I
pften use both of thes in titling data
base printoute or copy for the
Newsletter but it got to be a pain to
change between the two every time I
wanted to change a type style. Finally
the light dawned' Why not msarry the two?

STYLE A LINE is the result of that
marriage. One weajor revision was to
change an INPUT statement in PRINTALINE
to a LINPUT. No more need to enclose in
quotes any text lines containing comamas
or leading spaces

Using LINPUT required that
prograa run in extended basic. After
some streamlining by deletion of
unneeded features from PRINTALINE and
the consolidation of statements into
aulti-statement lines, we wound up with
9 Lines of code. (ARfter merging TWO TEN
Line ‘prograns. The power of extended
basic!')

the

Don‘t let ite brevity fool you. You
can select any of the 128 type styles
available on the Epson RX-BO and aany
compatibles. With line spacing and
margin variations, over 2000 different
selections can be had. (Hal¥ 1line
spacing and condensed superscript will
let you tack on several lines of coament
onto a photocopied article.)

Although there are better ways of
doing 1it, vyou can even produce a right
margin justified letter. (THIS is

Pg-3

novelty!) Using Eamphasized Pica, set
Left Margin at 13, and enter text. Two
screen lines will print text 54
characters wide (LINPUT uses two
character spaces.) Justify text by
inserting spaces between words so that
second line ends at screen edge. But it
will NEVER replace Ti-Writer!

Using the program is very easy. When

RUN, a senu is displayed for prograeaing

the printer. It is always best to
select *1" to clear the printer. If
your printer doesn’'t support a master

reset code, turn it off then on to clear

it. Coabine styles by successive
selections. Select Option 10 to input
text.

If you wish to change the type style,
or do repeated printings of the same
text, typing "171" or "“zzz" will return
you to the aenu. Option 9 will do
repeat printing of the same text and
styles can be changed as required. To
input new text, select Option 10 again.
When in text mode, pressing ENTER with
no text input will print a blank line.

Hatch
next to
"L*, not

those commas in Line 10, The
last data itea is a lower case
the figure 1,

BRAIN TEASER: MWhere is the data
set the left aargin at coluan 13?7

1 ! ##+ STYLE A LINE #x2
a TINYGRAM by Ed Machonis
@B-99ers, Bayside, NY

2 DIM P$(15):: FOR I=1 TO 15
t: READ P$(I)s: NEXT I

3 OPEN #1:"PIO",VARIABLE 132

4 CALL CLEAR :: PRINT “1 PIC
A/RESET*,*9 PRINT TEXT*,*2

ELITE*,*10 INPUT TEXT*,"3 EX
PANDED®,*11 SUPERSCRIPT","4

COMPRESSED*,*12 SUBSCRIPT®

9 INPUT "5 EMPHASIZED 13 1/
2 LINE 8P6 ITALIC i4 L
MARGIN 137 D’'BLE STRIK 15 R
MARGIN 678 UNDERLINE ?*:1

b P$(9)=" "LTEXS$ 1: PRINT #1
:CHR$ (27)&P$(1):: IF I=4 THE
N PRINT #1:1CHR$(27)&CHR$ (15)

IF 1<>10 THEN 4

7
B8 PRINT :"INPUT TEXT OR '111
* FOR MENU® :: LINPUT TRYS$

9 IF TRY$="111" OR TRY$="zz2
“ THEN 4 ELSE TEX$=TRY$:: P
RINT #1:TEX$ 2: 60TO 8

10 DATA e’",“l”E'4’G’—!”1S
0,51,1,1,aC

to

QB MONITOR ™

GIEBE—2% "aear NEWSLETTER

ST K IKIR SN STEC ST TR SR NS TIR DT YOI TR SEE SRR SNSD 2NSD IRT SO NS I SN AR TME SEKE BN SRR IRDT KR SR XENE M IS Y SR T SN X S o

7

DISK LABEL IX

Print Utility

A TINYGRAM From The

BY

Library of Ed Machonis

The original DISK LABEL was a 10 Line
Basic program and is on the TIMARC 4/86
disk in our Jibrary. It was written to
solve the problem of the missing disk
labels which were not included with
packages of bulk diskettes.

[have been using eailing labels as
disk labels for over tuo years without
any probleas. They are the preferred
label for my disks; the "store boughten®
kind are only used as tesporary labels
until a persanent one can be printed. I
$ind it auch easier to locate a disk in
a storage case when the name is printed
with an expanded type style. Colored
ribbons add a nice touch,

The label used as a title for this
article is an exaaple of the labels
generated by the program. The disk nase
appears on the first line in expanded
taphasized underlined double strike type
and is limited to 17 characters. The
second line is available for those disks
with laonger titles or where tuo titles
are appropriate d{great for flippies))
the sase type style is used. Centering
of titles is done by the prograa. 1f not
required, the second line is left blank
to enhance 2ppearance and locatability.

The 3rd, 4th and last lines are
linited to 28 characters, are printed
expanded cospressed double strike and,
pecept for the last line, are
underlined. The last line is also
italicized.

The 3rd line is used for describing
the disk contents, such as BANES,
UTILITIES, WP DATA, stc. The end of the
line can be used to identify back ups or
disk forsat such as BU, DSDD, etc,

The 4th line is for resarks and can
be used for language, loading info,
progras nases, etc, ¥hen required, the
3rd and even the 3th line can also be
used for remarks,

The last line is used to identify the
owner; handy for those round robin copy
sessions, ensuring you go home at Ieast
with the disks vyou arrived with.
Contering is automatic. It is also
useful for identifying a User Group’s

library copies.

Soon after DISK LABEL was published,
a fallow group eember suggested a
sodification to enable text typed for a
particular line to be used for the next
label 1f desired. This was done in
console basic and the original 3 sector
progras grew to 10 sectors.

In cleaning up and consalidating the
tode for this article, it was apparent
that Extended Basic's “Accept At*
statesent would make the progras a lot
aore user friendly, The progras was
rewritten and a 4 sector Tinygram is the
result,

Using the progras is very sisple,
just respond to the proapts. The progras
autoeatically limits the nusber of
charactars for the various lines of the
labsel so that you cannot type in too
long a line. If you notice a typing
error after pressing enter, not to
worry. Just continue with the other
entries and for "How Many?" enter zero,
You will be returned to the first line
and need only to accept the defaults
until the error is displayed. No need to
retype, just correct the error.

I always enter 1 for a quantity at
first and look aver the label to see if
it's as intended and then print the
nuaber of copies required. 1 often print
a faw extra copies for later use and
gither place thes in the back up's
jacket or in a label box. Saves
reloading the blank labels at soae
future time just to print a label or
two. 1f you trade many disks, the last
Iine of the extra copies can be left
blank.

Usage is not limited to disk labels,
It has been used to identify binders of
our User Broup’s newsletter library,
nase tags, place cards, bookplates, stc.

Epson cospressed sode is 137 coluans
wide, Printers with other widths say
change length of underlining. If so just
change the TAB getting of the null
strings for the respective lines,
Epson’s Emphasized aode takes precedence
over Compressed and cancels it upon

Pg-i

return to line &. Your printer may
require print code cancellation at the
end of line 7,

The print codes are for the Epson
RX-80 printer. 1f your printer requires
different codes, the cast of characters,
in order of appearance, are as followst

[ESC=E$aCHR$(27)]

ESCL°E* Enphasized
ESCL*6" Double Strike
ESCL"-1° Underline
ESCL"W1"® Expanded

ESCL"F" Cancel Eaphasized
CHR$(15) Coapressed
ESCL"-0" Cancel Underline
ESCL 4" Italics

EsCk*5" Cancel Italics

1} ### DISK LABEL 11 #%
A Tinygram by Ed Machonis
@8-9%ers, Bayside, NY

2 OPEN &1:°PID"

3 DISPLAY AT(3,1)ERASE ALL:"
DISK NAME?":D$ &1 ACCEPT AT(
§,1)812E(-17)sD$ tt DISPLAY

AT(7,1)1"Continued?®:C$ 13 A
CCEPT AT(8,1151ZE(-17):C8

& DISPLAY ATULL,)2 TYPE?": T
§ 1 ACCEPT AT(12,1)8I2E(-28
J1T$ ¢ DISPLAY AT(15,1)t"RE
NARKE?":R$ 1 ACCEPT AT(14,1
}SITE(-28)tR$ 12 E$=CHR$(27)

5 DISPLAY AT(19,1):"YOUR NAN
E?":N$ 1: ACCEPT AT(20,1)812
E(-28)N$ 2 INPUT "HOW MANY

COPIES? ":@ t2 FOR J=1 TO @

b PRINT #11ES4"E"JES4"6";ESL
no1*JESKN1"§ TAB((18-LEN(DS)
}/2); 08 TABC18)5**; TABL (16-L
EN(CS)1/2) ;L8 TAB(18)**Esk
*EYICHRS(13) TAB(2) TS,

7 PRINT #1:TAB(30);"";TAB(2)
jRE;TAB(30) " " ESL -0 ESL"4
"y TAB((J0-LEN(N$) }/2) N8 ESS
*" 11 NEXT J s2 607D 3

October 1987

QB MONITOR

The following tutoral comes from

Funnelweb Farm and are excellent
information on Extended Basic
programing. These were downloaded from

GEnie. And will take the next 3 issues
of Call Say. There is a lot of material
on subprograming technic. These cane
from a BBS called the EASY CHAIR
1-414-384-2720, 300/1200 baud. 24 hours,
8N1. It has RLE viewing and downloading
with Omegaterm and also Masstransfer MXT
(muliple xmoden transfers) for
downloading after you are verified. The
sysop told me that he got the Funnelweb
tutorials with the BBS software so
that's all I know of their history.

Edited 08/22/87

EXTENDED BASIC TUTORIALS FUNNELWEB FARM

Call Say

I. INTRODUCTION

In this series of notes on TI
Extended Basic for the TI-99/4a we will
concen~ trate on those features which

have not received due attention in
User—group newsletters or commercial
magazines. In fact most of the programs

published in these sources make little
use of that most powerful feature of XB,
the user defined sub-program, or of some
other features of XB. Worse still is to
find commercially available game
programs which are cbject lessons in how
to write tangled and obscure code. The
trigger for this set of tutorial notes
was a totally erroneous comment 1in the

TI- S.H.U.G Newsdigest in Jun 1983.
Some of the books I have seen on TI
Basic don't even treat that simpler

language correctly, and I don't know of
any systematic attempts to explore the
workings of XB. The best helper is TI's
Extended Basic Tutorial tape or disk.
The programs in this collection are
unprotected and so open for inspection
and it's worth looking at their listings
to see an example of how sub-programs
can give an easily understood overall
structure to a program.

Well, what are we going to talk
about then ? Intentions at the moment
are to look at:

(1) User-defined sub-programs (2)
Prescan switch commands (3) Coding for
faster running (4) Bugs in Extended
Basic (S5) Crunching program length (6)
XB and the Peripheral Box (7) Linking in
Assembler routines

FPage 5

QB—99’er NEWSLETTER

Initially the discussion will be
restricted to things which can be done
with the console and ¥B only. Actually,
for most game programming the presence
of the memory expansion doesn't speed up
XB all that much as speed still seems to
be limited by the built-in sub-programs
(CALL COINC.etc) which are executed from
GROM through the GPL interpreter. The
real virtue of the expansion system for
game programming, apart from allowing
longer programs, is that GPL can be
shoved aside for machine code routines
in the speed critical parts of the game,
which are usually only a very small part
of the code for a game. Even so careful
attention to XB programming can often
provide the necessary speed. As an
example, the speed of the puck in
TEX-BOUNCE 1is a factor of 1@ faster in
the finally released version than it was
in the first pass at coding the gane.

Other topics will depend mainly on
suggestions from the people following
this tutorial series. Otherwise it will
be whatever catches our fancy here at
Funnelweb Farm.

II. SUB-PROGRAMS in OVERVIEW

Every dialect of Basic, Extended
Basic being no exception, allows the use
of subroutines. Each of these is a
section of code with the end marked by a
RETURN statement, which is entered by a
GOSUB statement elsewhere in the
program. When RETURN is reached controtl
passes back to the statement following
the GOSUB. Look at the code segments.

290 300 GOSUB 2000 310
2000 CALL KEY(Q,X,Y):: IF Y=i THEN
RETURN ELSE 2000

This simple example waits for and
returns the ASCII code for a fresh key-
stroke, and might be called from a
number places in the program. Very
useful, but there are problems. If the
line number of the subroutine is
changed, other than by RESequencing of
the whole program (and many dialects of
Basic for microcomputers aren't even
that helpful) then the -GOSUBs will go
astray. Another trouble, which you
usually find when you resume work on a

program after a lapse of time., is tha-
the statement GOSUB 2000 doesn't car-v
the slightest clue as to what is at 27 2
unless you go and look there or use M
statements. Even more confusingl- e
2000 will usually change on RESec o=
ing, hiding even that aid to m- V.

There is an even more subtle prot -

October 1987

QLB MONITOR

you don't really care what the variable
"Y" in the subroutine was called as it
was only a passing detail in the sub -
routine. However, if "Y" is used as a
variable anywhere else 1in the program
its value will be affected. The
internal workings of the subroutine are
not separated from the rest of the
program, but XB does provide four ways
of isolating parts of a progran.

(1) Built-in sub-programs (2) DEF
of functions (3) CALL LINK to machine
code routines (4) User defined BASIC
Sub-programs

The first of these, built-in sub-
programs, are already well known from
console Basic. The important thing is
that they have recognizable names in
CALL statements, and that information
passes to and from the sub-programs
through a well defined list of
parameters and return variables. No
obscure Peeks and Pokes are needed. The
price paid for the power and express
iveness of TI Basic/XB is the slowness
of the GROM/GPL implementation.

DEF function is a primitive form of
user defined sub-program found in almost
all BASICs. Often its use is restricted
to a special set of variable names.
FNA,ENB., but TI Basic allows complete
freedom in naming DEFed functions (as
long as they don't clash with variable
nanes). The “dummy" variable "X" is
used as in a mathematical function, not
as an array index

100 DEF CUBE (X)=XxX*xX

doesn't clash with or affect a
variable of the same name "X" elsewhere
in the program. "“CUBE" can't then be a
variable whose value is assigned any
other way, but "X" may be. Though DEF
does help program clarity it executes
very slowly in TI Basic, and more slowly
than user defined sub-program CALLs in
XB.

CALL LINK to machine code routines
goe under various names in other
dialects of Basic if it is provided (eg
USR() in some). It is only available
in XB when the memory expansion is
attached, as the TI-99/4a console has
only 256 bytes of CPU RAM for the
TMS9900 lurking in there. We will take
up this topic later.

You should have your TI Extended
Basic Manual handy and look through the
section on SUB-programs. The discussion
diven 1s essentially correct but far too

Call SsSay

Page &

QB—99 " er NEWSILETTER

brief, and leaves tooc many things
unsaid. From experiment and. experience
I have found that things work just the
way one would reascnably expect them to
do (this is not always sc in other parts
of XB). The main thing is to get into
the right frame of mind for your expect
-ations. This process is helped. by
figuring out, in general terms at least.
just how the computer does what it does.
Unfortunately most TI-99/4a manuals
avoid explanations in depth presumably
in the spirit of "Home Computing". TI's
approach can fall short of the mark, so
we are now going to try to do what TI
chickened out of.

The user def ined sub-program
feature of XB allows you to write your
own sub- programs in Basic which may be
CALLed up from the main program by name
in the same way that the built-in ones
are. Unlike the routines accessed by
GOSUBs the internal workings of a
sub-program do not affect the main
program except as allowed by the
parameter list attached to the
sub-program CALL. Unlike the built-in
sub-programs which pass infor- mation in
only one direction, either in or out for
each parameter in the list, a user
sub-program may use any one variable in

the .list to pass information in either
direction. These sub-programs provide
the programming concept known as
“procedures" in other computer
languages, for instance Pascal., Logo,
Fortran. The lack of proper
"procedures" has always been the m&jor

limitations of BASIC as a computer
language. TI XB 1is one of the BASICs
that does provide this facility. Not
all BASICs. even those of very recent

vintage are so civilised. For example
the magazine Australian Persocnal
Computer in a recent Iissue (Mar 84)
carried a review of the IBM PC)r

computer just released in the US of A.
The Cartridge Basic for this machine
apparently does not support procedures.
Perhaps IBM don't really want or expect
anyone to program their own machine
seriously in Basic. You will find that
with true sub-programs available, that
you can't even conceive any more of how
one could bear writing substantial
programs without them (even within the
14 Kbyte limit of the unexpanded
TI-99/4a let alone on a machine with
more memory) .

The details of how procedures or
sub~ programs work vary from one
language to another. The common feature
is that the variables within a procedure
are localised within that procedure.

-

Octodber Calil

@Bthelgﬁméﬁﬁ‘ﬁémit‘ﬁ’thﬁﬂthS 1te
the pr a

ogram. and what happens to them
when the sub-program has run its course

varies from language to language. XB
goes 1its own well defined way., but is
not at all flexible in how 1t deos It
Now let's look at how Extended
Basic handles sub-preograms. The RUNning
of any XB program goes in two Steps.
The first is the prescan, that interval
of time after you type RUN and press

ENTER, and Dbefore anything happens.
During this time the XB interpreter
scans through the program, checking a

few things for correctness that it
couldn't possibly check as the lines
were entered one by one, such as there
being a NEXT for each FOR. The TI
BASICs do only the most rudimentary
gyntax checking as each line is entered,
and leave detailed checking until each
line 1is executed. This is not the best
way to do things but we are stuck with
it and it does have one use. At the
same time XB extracts the names of all
variables, sets aside space f r

them. and sets up the procedure by
which it associates variable names with
storage locations during the running of
a program. Just how XB does this is not
immediately clear, but it must involve a
search through the variable names every
time one is encountered, and appears to
trade off speed for economy of storage.

XB also recognizes which built-in
sub-programs are actually CALLed. How
can it tell the difference between a
Sub-program name and a variable name?
That's easy since built-in sub-program
names are always preceded by CALL. This
is why sub-program names are not
reserved words and can also be used as
variable names. This prccess means that
the slow search through the GROM library
tables is only done at pre-scan, and
Basic then has its own list for each
program of where to go in GROM for the
GPL routine without having to conduct
the GROM search every time it encounters
a8 sub-program name while executing a
program. In Command Mode the computer
has no way provided to find user defined
sub-program names in an XB program in
memory even in BREAK status. XB ailso
establishes the process for 1looking up
the DATA and IMAGE statements in the
program.

Well then, what does XB do with

user sub-programs? First of all XB
locates the sub-program names that
aren't built into the language. It can

do this by finding each name after a
CALL or SUB statement, and then looking

Say

rFage 7

1N AW SEEu B1ECER . Findex of
built-in sub- program names. You can
run a quick checg on this process by

entering the one line program
196 CALL NOTHING

TI Basic will go out of its tiny
26K brain and halt execution with a BAD
NAME IN 100 error message, while XB,
being somewhat smarter, will try to
execute 1line 100. but halts with a
SUBPROGRAM NOT FOUND 1IN 100 message.
The XB manual insists that all
sub-program code comes at the end of the
program, with nothing but sub-programs
after the first SUB statement (apart
from REMarks which are ignored anyway).
XB then scans and establishes new
variable storage areas, starting with
the. variable names in the SUB
XxX (parameter list), for each
sub-program from SUB to SUBEND, as if it
were a separate program. It seems that
XB keeps only a single master 1list for
sub-program names no matter where found.
and consulted whenever the interpreter
encounters a CALL during program
execution. Any DATA statements are also
thrown into the common data pool. Try
the following little program to convince
yourself.

100 DATA 1 116 READ X :: PRINT X ::
READ X :: PRINT X 120 SUB NOTHING 13@
DATA 2 140 SUBEND

When you RUN this program it makes
no difference that the second data item
is apparently located in a sub-program.
IMAGEs behave likewise. On the other
hand DEFed functions, 1f you care to use
them, are strictly confined to the
particular part of the program in which
they are defined, be it main or sub.
During the pre-scan DEFed names are kept
within the allocation process separately
for each subprogram or the main program.
Once again try a 1little programming
experiment to illustrate the point.

166 DEF X=1 :: PRINT X;Y :: CALL
SP(Y) :: PRINT X;Y 11¢ SUB SP(Z) :: DEF
X=2 :: 2=X :: DEF Y=3 120 SUBEND

This point 1is not explicitly made
in the XB manual and has been the
subject of misleading or incorrect
cemment in magazines and newsletters., A
little reflection on how XB handles the
details will usually clear up
difficulties. TI BASICs assign nomina.
values to all variables mentioned in th-=
program as part of the prescan., zero f'r
numeric and null for strings, un.: e
some languages (sSome Basicsg even) w :th

QB MONITOR

will 1issue an error message if an
unassigned variable 18 presumed upon.
This means that XB can't work like TI
LOGO which has a rule that if it finds
an undefined variable within a procedure
it checks the chain of CALLing
procedures until it finds a value.
However, wunlike Pascal which erases all
the information left within a procedure
when it is finished with it, XB retains
from CALL to CALL the values of
variables entirely contained in the
sub-program. The values of
transferred into the sub-program through
the SUB parameter list will of course
take on their newly passed values each
time the sub-program is CALLed. A
little program will show the difference.

160 FOR I=1 TO 9 :: CALL SBPR(Q)::
NEXT I 1190 SUB SBPR(A):: A=A+l :: B=B+l
:t PRINT A;B 12@ SUBEND :

The first variable printed is reset
to @ each time SBPR is called. while the

second, B, 18 incremented from its
previous value each tine. Array
variables are stored as a whole in one
place in a program, within the main
program or sub-program in which the
DIMension statement for the array
occurs. XB doesn't tolerate attempts to

re-dimension arrays, so information on
arrays can only be passed down the chain
of sub-programs in one direction. Any
attempt by a XB sub-program to CALL
itself, either directly or indirectly
from any sub-program CALLed from the
first, no matter how many times removed,
will result in an error. Recursive
procedures, an essential part of TI
LOGO, are NOT possible with XB
sub-programs, since CALLing a sub-
program dces not set up a new private
library of values.

All of this discussion of the
behaviour of TI Extended Basic comes
from programming experience with Version
110 of XB on a TI-99/4a with 1981 title
screen. Earlier Versions and consoles
are not common in Australia, but TI
generally seems to take a lot of trouble
to keep new versions of progranms
compatible with the old. On the other
hand TI has also been very reticent
about the details of how XB works. The
Editor/Assembler manual has very little
to say about it, less by far even than
it tells about console Basic. I am not
presently aware of any discussion of the
syntax of the Graphics Programming
Language (GPL)., let alone of the source

code for the GPL interpreter which
resides in the console ROM of every
99/4a.

variables

QLB-99 er NEWSLETTER

Another sSimple programming
experiment will demonstrate what we mean
by saying that XB sets up a separate
Basic program for each sub-program. RUN
the following

100 X=1 :

¢+ CALL SBPR :: BREAK 110
SUB SBPR :: X=2 :: B

REAK :: SUBEND

When the program BREAKS examine the
value ‘of variable X by entering the
command PRINT X. and then CONtinue to
the next program BREAK, which this time
will be in the main program, where you

can once again examine variable values.

{a) XB treats each sub-program as a
separate program, building a distinct
table of named (REFed) and DEFed
variables for each.

(b) All DATA statements are treated
as being in a common pool equally
accessible from all sub-programs or the
main program as are also IMAGE
statements,CHARacters,SPRITEs ,COLORs,
and File specifications.

(c) All other information 1s passed
from the CALLing main or sub- program by
the parameter 1lists in CALL and SUB
Statements. XB does not provide for
declaration = of common varlables
available on a global basis to all
sub-programs as can be done in some
languages.

(d) Variable values confined within
a sub-program are static, and preserved
for the next time the sub-program is
CALLed. Some languages such as Pascal
delete all traces of a procedure after
it has been used.

(e) XB sub-programs may not CALL
themselves directly or indirectly in a
closed chain. Sub ject to this
restriction a sub-program may be CALLed
from any other sub-program.

(f) The MERGE command available in
XB with a disk system (32K memory
expansion optional) allows a library of

XB sub-~ programs to be stored on disk
and incorporated as needed in other
programs.

III. SUBPROGRAM PARAMETER LISTS

In the last chapter we saw how

Subprograms fitted into the overall
workings of Extended Basic. In this
chapter we are going to go 1into the
details of writing subprograms. Most of

the fiddly detail here concerns the

October 1987 Call

QB MONITOR

congtruction G the ilamd l0r R
. attached to CALL and SUB statements. and
some of the little traps you can fail
into.

Any information can be transmitted
from the CALLing program to the CALLed
subprogram via the parameter list, and
anything not transmitted this way
remains private for each program, Wwith
the exception of the DATA pool which is
equally accessible to all. If something
is mentioned in the parameter list then
it is a two-way channel unless special
precautions, provided for in XB, are
taken. In this case the CALLing progran
can inform the subprogram of the value
of a variable, but not allow the CALLed
program to change the value of the
variable as it exists in the CALLing
program. Arrays however, numeric or
string., can't be protected from the
follies of subprograms once their
existence has been made known to the
subprogram through the parameter list.

Let's for starters take a very
simple but useful example, vwhere a
program needs to invoke a delay at
various points. Now some BASICs (and TI
LOGO) have a built-in function called
WAIT. XB doesn't have this command so
you have to program it. It can be done
by a couple of CALL SOUNDs or with a
FOR-NEXT loop. Let's use an empty loop
to generate the delay., about 4 millisec.
each time around the loop, and place the
loop in a subprogranm.

23¢ CALL DELAY(209) 670 CALL
DELAY(200/D) 99¢ CALL DELAY(T) 3000 SUB
DELAY(A):: FOR I=1 TO A =:: NEXT I
: :SUBEND

This is easier to follow when
editing your program then using a GOSUB,
and you would need to enter the
subroutine in every subprogram Since
GOSUBbing or GOTOing cut of a subprogram
is verboten. Also it's less messy than
writing the delay loop every time. The
example shows several different CALLs to
DELAY. The first supplies a number, and
when DELAY is CALLed., the corresponding
variable 1in the SUB list, A, 1s set to
200. This is a particular example of
the kind of CALL from line 67@ where the

expression 20@/D is first evaluated
before being passed to DELAY to be
assigned to A. Variable D might for
instance represent the level of
difficulty in a game. The CALL from
line 99@ invokes a numeric variable T,

and A in the subprogram is set to the
value of T in the CALLing program at the
time when the CALL is executed.

Sayv
QB—99er NEWSLETTER

Pag= =

Nothing untoward happens te T in
this example, as the DELAY subprogram
does nothing to change A. Now it may
not matter in this instance if T did not
retain its value after the subprogram
CALL. Suppose instead the delay was to
be called out in seconds. Then a
subprogram on the same lines DELAYSEC
might go

230 CALL DELAYSEC(2) 990 CALL
DELAYSEC(T) 4@0@ SUB DELAYSEC(A) :: A=AQ
4010 FOR I= 1 TO A :: NEXT I :: SUBEND

Now after DELAYSEC has been
executed with the CALL from 99@, T will
have value 250 times its value before
the CALL. This won't be a bother if you
don't use T again for its previous
value. If the CALLing program Specifies
a numeric constant as in line 239, or a
numeric expression, the change in A in
the subprogram has no effect on the main
program. Suppose you can'‘t tolerate T
being changed in line 990 (and this kind
cof thing can be a source of program

bugs). You will find that XB allows for
forcing T to be treated as though 1t
were an expression, thus isolating T

from alteration by the subprogram. if T
is enclosed in brackets in the CALL (not
SUB) list. Suppose DELAYSEC 1is aiso
called from line

970 CALL DELAYSEC((T))

If this CALL 1in line 970 is
followed by "the CALL from line 9390, T
not having been altered in the
meanwhile, the same delay will Dbe
obtained, but if the order of CALLs were
reversed the second delay would be 250
times the first. In the language of XB
this 1is known as "passing by value" as
distinct from "“passing by reference".
This can only be done for single
variables or particular array elements,
which behave like simple variables in
CALL lists. Whole arrays cannot be
passed by value, but only by reference.

Expressions and constants can only be
passed by value, and its hard to see
what else could be done with then. In

the example as written, a, different
variable name was used in the SUB, but
if you remember the little experiment in
the last chapter you'll see that it
wouldn't make any difference if T had
been used in the SUB list instead of A.

Now let's complicate things a
little by flashing up a message on * e
bottom line of the screen during e
delay interval.

October 1987

QLB MONITOR
200 CALL MESSAGE(300." YOUR TURN
NOW") 27¢ CALL MESSAGE(T.AS) 3000 SUB
MESSAGE (A,A$) :: DISPLAY AT(24,1):As 3010
FOR I=1 TO A :: NEXT I :: DISPLAY
AT(24.1):"" 3020 SUBEND

The SUB parameter list now contains
a numeric variable and a string variable
in that order., Any CALL to this
subprogram must supply a numeric value

or numeric variable reference, and a
string value or string variable
reference, in precisely the same order

as they occur in the SUB list. In the
little program segment above, line 20@

passes constants by value and line 270
passes variable references. There is no
reason why one cannot be by value and

one by reference if so desired.

h1s8 process can be extended to any
number of entries in the parameter list,
provided the corresponding entries in
the SUB and CALL lists match up entry by
entry, numeric for numeric, string for
atring. The XB manual does not say so
explicitly, but it appears that there is

no limit apart from the wusual line
length problens, on the number of
entries in the list. This is the only
apparent difference between the

parameter list in XB subprograms and the
argurent lists for CALL LINK("xxxxxx", ,
++e«) to machine code routines in XB,
and Minimemory and E/A Basics.

One little freedom associated with
built~in subprograms is not available
with user defined subprogranms. Sone
built-ins, such as CALL SPRITE permit a
variable number of items in the CALLing
list. Parameter lists in user defined
subprograms must match exactly the list
established by the SUB list or an error
“INCORRECT ARGUMENT LIST in ..." will be
issued. To compensate for this
inflexibility user defined CALLsS allow
whole arrays. numeric or string, to be
passed to a subprogram. Conplete arrays
may be passed Dby reference only.
Individual array elements may be used as
if they were simple variables and may be
protected from alteration by bracketing
in the CALL list. An array is indicated
in the parameter list by the presence of
brackets around the array index
positions. Only the presence of each
index need be Iindicated as in AQ).
MATCH(,,) indicates a three- dimensional
array MATCH previously dimensioned as
such, explicitly or implicitly. Don't
leave 3spaces in the list. If the
subprogram needs to know the dimensions
of the array these must be passed
separately (or as predetermined elements
of the array). Tl Basics are weaker

Call Say
QBR—99’er NEWSLETTER

Page l1e

than some others in that they do not
pernit implicit operations on an array
as a whole, a very annoying deficiency.

Arrays may be DIMensioned within
subprograms. This will introduce a new
array name to the program, and an array
or variable name from the SUB parameter
list can't be used or an error message
will result. 1In the following code the
main program passes, among other things.
an array SC to subprogram BOARD (perhaps
a scoreboard writing routine in a gamel.

100 DIM 8C(2.5) ::
BOARD(P.AS() ,S8C(,)) 4000
BOARD(P,A8(),5(,)):: DIM AY(S)::
4080 SUBEND 5000 SUB REF(V,A(},B(.))::
-aaa == SUBEND

450 CALL
SUB

BOARD generates internally an array

AY() which is passed to another
subprogram REF (maybe this resolves
ties) along with SC(,), which BOARD

knows as S(,), and REF in its turn as
B(.,} ~- the same name could have used in
all places. There 1is however no way
that the main program or any subprogram
whose chain of CALLs doesn't come from
BOARD can know about the array AY().
This would hold equally well for any
variable or array, string or numeric,
first defined within BOARD and whose
value has not been communicated back to
the CALLing program via some other
variable mentioned in BOARD's parameter
list.

By following this line of reasoning
you can see that there is no way for a
subprogramr whose chain of CALLs does not
come through BOARD to know about array

AY(). The only way around this is for
AY() to be DIMensioned in the main
program (even if this 1is its only

appearance there) and the message passed
down all necessary CALL-SUB chains.

This idea of DIMensioning an array
only within a subprogram is particularly
useful if the array 1is to READ its
values from DATA statements and to be
used in the subprogram. This could be
done again from any other subprogram
needing the same data, without having to
pass its name up and down CALL-SUB
chains. Remember that DATA statements
act as a common pool from which all
subprograms can READ. If the array
valueg are the results of computations
then these values must be passed through
the'CALL parameter lists.

For completeness note that .
although the XB manual has nothing to
say about it, IMAGE statements for

hd

October 1987 Call

sSay

Page 11

fé‘rr@ttilgg%& .I::\El?pu a;t; ac%%giflgg ;(B‘etﬁ%t tﬁgﬂggda}?ag%‘]ﬁﬁncks on

from any part of a program in the sane
way as DATA statements and not confined
to the subprograms in which they occur
as are DEF entries.

[t 1is not necessary 1t0 nave any
parameters in the list at all.
Subprograms used this way can be very
helpful in breaking up a long progran
into more manageable hunks for ease of

editing. We shall also see in later
chapters - that there can be other
benefits as well.

One more XB statenment for

subprograms remains, the SUBEXIT. This
is not strictly necessary as it |is
always possible to write SUBEND on a
separate line and to GOTO that line if a
condition calling for an abrupt exit is
satisfied. Like a lot of the little
luxuries of 1life however, it is very
nice to have and makes programs mnuch
easier to read and edit. It does not
replace SUBEND which is a signal to the
XB pre-scan to mark the end of a
subprogram. SUBEXIT merely provides a
gracious and obvious exit from a
subprogram (awkward in some Pascals for
instance). The next chapter will
demonstrate typical examples of its use.

IV. USEFUL SUBPROGRAM EXAMPLES

In the previous chapter vwe used as
an example a DELAY subprogram which
could, with a little refinement, be used
to substitute for the WAIT command
available in some other languages. You
can extend this idea to build up for
yourself a library of handy-dandy
subprograms which you can use in
programs to provide your own extension
of the collection of subprograms that XB
offers.

For our first example let's take
one of the more frustrating things that
TI did in choosing the set of built-in
subprogranms. If you have Hinimemory or
E/A you know that the keyscan routine,
KSCAN, returns keyboard and joystick
information simultaneously., while XB
forces you to make separate subprogram
CALLs, KEY and JOYST., to dig it out.
Since these GPL routines are slow it is
difficult to write a fast paced game in

an equal footing as
cartridge games. On the other hand in
games where planning and not arcade
reaction 1is of the essence there is no

is done by many

St L [N 0 SRR S DN B
torcea to make a once—ana-for-ail choice
and not be able to use either at any
stage of the game.

The subprogrammers approach to this
problem, once it realised that it can be
done (and we have commercial XB games
where the writers haven't) is to write
the game using joysticks., but replacing
JOYST by a user defined sub-program JOY
which returns the same values as JOYST
even when keys are used.

The first step in telling whether
keys or joysticks are being used is to
check the keys, and if none have been
pressed then to check the joysticks. If
a key has been pressed then its return,
K, has to be processed so that the
direction pads embedded in the keyboard
split-scan return the corresponding
JOYST value. A subprogram along the
lines of the one used in TEX-BOUNCE does
just this.

900 SUB JOY(PL.X,Y) ¢ CALL
KEY(PL.K.,ST) :: IF ST=@ THEN CALL
JOYST(PL.X,¥):: SUBEXIT 91& X=4x((K =4

OR K=2 OR K=15)-(K=6 OR K=3 OR K=141)

920 Y=4%{((K=15 OR K=14 OR K=0)}-(K=4 OR
K=5 OR K=6)) 93@ SUBEND

PL 1is the player (left or right
joystick or side of the split keyboard)
number and is unaltered by the
procedure. The simple-minded approach
for converting K to (X.Y) values by
using the XB logic operators (one of the
more annoying omissions from console
Basic) seems to work as well as any.
The subprogram as written checks the
keys first but balances this out Dby
putting the processing load on the key
return,

This is as good a time as any to
sharpen your own skills by working out
alternative versions of this procedure,
and also by writing one for mocking up a
substitute CALL XEY routine to return
direction pad values even if a joystick
is used.

i}

TOR Y~ @B—99 Ter NEWSLETTER

Gz IO T

TI-99 /44 KEYBOARD LAYOUT

h N7 N ™\ \ \
2 3 4 5 6 (7 (9 1 FCTN
CTRL
SHIFT
\ J\ /\) L / y {) J NO SHIFT
- 4 Y s \) N\
Q W Y & (R I E: (v (U Y o (/
\. \ 7\ N\ YA \ J \ J
N/
n Yo)3 (s (u) ;])
Jl ENTER
\ N\ /\ \ — \ v / S ./
Y4 N rx N rC R VV fB N (N TN f' 3 Y
SHIFT SHIFT
\ /\ N\ /\ \ \ 7\ / J
N
AL?H;AT! 1! (
vocx i CTRL %: SPACE FCTN
L 1N

PRO:KAM NAME:

Notes :

ORIGINAL SOURCE UNEMNMOWN.

Pg~-12

Tt T TR AR
Hyr
Forvot el oren
West Jax PFERS

I think that most of us have at zome time acquired a Multiplan
package and because we don’t understand the package and it’s many
powers, have stored it away with other items that we seldom if ever
have occasion to use.

The Multiplan package is a very powerful and useful tool which has
a multitude of uses. [have desiqned a template or madel which allows
me to use Multiplan at least once a month. I decided that as long as I
had it T might as well use 1f.

In this article I will do a walkthrouagh on a template that I use to
reconcile my checkbook and do the statement balancing., then save the
file for later recall. This allows me to store the actual statements and
checks away in a box in the attic or garage., or wherever a person stores
things that are seldom uzed. If I need information concerning my
checking I just go to that Multiplan file and obtain the data. You can
also do a printout of any given month. The months are alzo linked.

Before I tallk about my template, there was an article in the April
198 issue of MICROpendium page 75, which was written by Earl Hall of
Chicago Il, that tells how to change disk drive and printer defaults sa
that you don’t have to change them every time you want to use
Multiplan. At this point I will go through a walkthrough for the
changes using Advanced diagnostics. The first thing to do to make the
ij0b easier is to initialize a disk and copy the MFINTR file tao it. The
reason for this is that it makes finding the right data blocks easier.
Another tip which will speed up the use of multiplan is to arrange the
program files in a certain order on the disk, which effects access time.
This should be done in the following order. QOVERLAY. MFHLF, MFCHAFR,
MEDATA, MPINTR, and MFBASE.

At Lter vyou have saved the MFIMNTR fi1le to a new disk, Leoad up Diags.
and Edit Sector Z2Z(Z4), which will be the first data sectar. Shift
into ASCII screen mode and find the words DSE1 and RSZIZ and it's
defaults. Move the cursor to the appropriate spots to change DSKIL to
DEEZ and RSZZIZ to FIOD. The RS23IT data after that should be hBlanked out
hy using the space bhar, if vou use delete character., The end of the
data block will be mezzed up. Mow Write Sector back to the dizk and you
Are all et

The first thing to do is fo insert the Multiplan Cartridae and
pPlace the Program disk in drive #1. For those with two or more drives,
te data disk should be placed in drive #2. I have written thiz article
with the assumption that yvou have at least two drives. After loading
the program set, select 0% for OFTIOMS and enter “"N° for no
auto-recalc. If you don’t make this selection the proaram will ao into
Fecalc mode after each entry.

The fir=t thing we want to do after loading the Multiplan files, i=
to set up the various workspaces by naming the work areas and afterword
we will enter our formulas for doing the necessary calculations.

QLB MONITOR —~ QB—-99”exr NEWSLETTER

Pg-13

v

First uvse FCTMI1)1(HOME), this places the cursor at rowl, columnil
(FIC1). Starting at FRiIiC1l, select ALFHA and type in "CHECKS®, then press
FCTM X which will enter the name and advance the cursor down aone row.
Next enter °__ T (6 underline characters) and press FCTN D which
will enter the underline characters and advance the cursor one column
to the right, Now use FCTM E to put the cursor at the beginning of the
second column. NMow type in "Date’ and FCTN X and then enter > 7 (4
uwnderline characters) and press FCTHN D then FCTH E. Repeat the
procedure for the next three columns entering the following names
TFAID_TOT, "AMOUNT®, and "DEFOSIT. For the next column we don’t want to
enter the underline characters, the reason will he explained later.
However at R1C& we want to enter "BALAMCE® . Mow we will name your
areas. First HOME the cursaor and hit M for Mame. The first field
should now display the name that vou typed in, Hit CTRL A to advance to
the next field and then FCTM 4 and CTRL 4 twice. Then hit SHIFT coloen
and enter 55, The field should now read Rl1:55CX (where X equalszs the
current column). Do this for all six of the coluwnns with the names
which vou have typed in.

Mow we want to format our columns, I used 55 rows as that was two
maore than the largest amount nf checks that [had written 1n a given
month. First HOME the cursor to RIC1 and then check to see if the help
lines are at the lower area of the screen., If not CTRL A will bring
them up. Now enter F for FORMAT and then select columns and using CTRL
A to advance to each field, select the following. Before we start
formatting the columns starting at line three, keep in mind that for
the first field we can hit FCTN 4 which will place the cursor at the R
in RIZCX (with X being the current column). Now hit CTRL 4 twice and
pmheerve the cursor. Hit SHIFT colon and then S55. The field should naw
read RZ:35CYX, which meand from FRZCX to RISCX. Enter I for decimal and
hit CTRL A then C for center then CTRL A and SHIFT dollar siagn +for
Dollar format. Then use CTFL A again and enter 2 for the default of two
culumns after decimal point. Mow for column two we want to enter G for
Gen, CTFL A, G for Gen, CTEL A, and leave the rest of the defaults. Do
the same with column 2. In columns 4, S, and & we want to enter D for
Decimal, dollar sign for dollarsz, and 2 for decimal places. However in
column 6 we want to start in row 2 instead of 3. Now we must format
the width of our columns as follows. Here we want to start at row 1 and
select F for format and use the samne procedure as before in the first
field. Columns 1 and 2 can be left at te TIMF deftault width. Three
should be 15, 4 and 5 should be 2 and column & should be 10,

Mow lets enter a formula §0r subtracting the checks and adding the
deposits. Flace vour cursar in the cell at RIC4 and hit the equal sian.
Note that the command line Aszks for a wvalue. lUsing the up arrow. move
the cursor up one row to FE2C6 and then hit SHIFT minus. You will notice
that the cursor returned to R3IC&4., but a formula started to build on the
command line. Mow move the cursor to RZC4 and hit SHIFT plus and the
cursar will again return to RICA. hMow move the cursor to RICS and hit
enter this time. This will enter vour formula to take the balance at
F2CA subtract the check wvalue at FEC4 and then add (if any) the wvalue
of the depnsit at RICS, then place the new balance at RIC6. The formula
should read thus R[-11C-ROC-21+FRCL-11. Hext use CTRL A to get the help
linee and enter C for Copy. Then select D for down and far the number
of rows as S22 gince we are startinc at row Z. This will copy the
formula down to the desired 5% rows.

QB MONITOR &~ QB—99’er NEWSLETTER

Pg-14

Mow we want to set up an area for reconciling the checklog againcet
the monthly bank statement. Advance the cursor to RSICL and type in
O0STD_CE and this will be where we will enter the checks that were
written after the statement date. At R&61C2 enter FND DEF for pending
deponsits after the statement date. Mame the cells R6Z2:77CX and then
select Format Cells and use R&2:77CX then use D for decimal, Shift
dollar sign for dollar format, and 2 decimal places. Move the curzor to
R77C1 and hit the equal sign and type in SUMOSTD CK) and hit enter. At
R77CZ use SUM(FND_DEF). this will cause the total of what is entered in
go to R61CE and type in "S_BAL®Y and Lthese cells R61:62C7 as such, this
is where we will enter the ending balance from our bank statement. then
at F64:45CT we want to assign “CE_BALT to carry our balance forward and
use it in our next formula. Now assiagn R&67:468CE% "CORR™, this will be
the final value to see whether we need to correct our checkboak or
not.

Now we can enter the final mathematics formulas. First at R&SCE
enter the following formula by hitting the squal sign and typing
RL—-10JCL+Z]. This will carry the total from column 6 to this space.
Mext, at F&ABCZ hit egqual again and enter the following formula to
comput the correction if any. RI{-&IC-RI+RICL-Z2I+F[+QICL-1]1-RL-Z1C, then
hit enter. If you follow this formula step by step you will see that it
takes the S_BAL(statement balance) and subtracts the SUM(OSTD_CE) or
total nf outstanding checks, then adds SUMIFNMD_DEF) or the total
pending deposits, and then subtracts the CE_BAL to find out if the
statement balance is equal to our checkbook bhalance.

If T get a CORR value other than zero. I firzt check to =zee whether
I may have entered a value wrona, and if s0 enter the correct amount.
I+ all is well with my entriez, I know that I need to chanqge my
checkbook as there is a mistake somewhere in my figqures that are
veually done mentally anyvway.,

Mow hit FCTHM 8 for Fecalc and when it iz finished, the areas that

have formulas related to them should contain $0.00. if not, rechecl the
formulas and try again. If all goes well we can now lock opur formulas
by selecting L for lLLock and then F for formulazs and the formulas will

be permenantly locked in. Befere savinag vour template to dizk moce the
cursor o R2C6 and then when youw load it vou will start at that point
every bime you load it.

When you go to uzse the template the first time, just enter the
balance where you wish to start in the checkbonl. When saving each
month s file I name it for the statement month such as JAKNRTY whiach
contains the last of December and the first of January checks contained
in the statement for January. After the firzt month haz heen saved,
from then on, since you will start in R2C4A your can qo to External copy
immediately after loading the template, which I named CHECELOG. To do
this hit X for esternal, then C for copy then enter the previous
month*s file name and then CTRL A to advance to the next field. Mow
enter R&6SCT and the template will load the previous month™s CE_RAL and
continue from there in the calculations.

I hope you find this as usetul as

< [have and [hope to do some more
Multiplan articles in the near future.

QE MONITOR &7~ QB—99°’er NEWSLETTER
Pg-15

GE MONITOR ™~ GB—99 "ar NEWSLETTER

COLISTER
A TINYGRAM
by Ed Machonis

Another 28 coluan lister? #hy not?
This one happens to be ay favorite and
not just because I wrote it. 1 like it
because it does the job the way I want
it done, but then 1 wrote it that way.

At the tise I wrote COLISTER, 1 had
no access to any program that could do
what I wanted done, which was to be able
to list a program to disk or printer in
28 coluen format, the way it appears on
the screen.

A 28 coluen listing makes it easier
for the reader to type in the prograa
with less chance for error, It also
makes it sispler to check for errors
should any creep in. One only has to
check the end of each line as it appears
on the screen against the printed
listing to see if any characters were
omitted or added. (Home Cosputer
pagazine never did learn this lesson.)

But the biggest reason is that it not
only saves the work of typing ina
prograas in 28 colusn format, but it
eliminates the chance for typing errors,
By letting the computer do the work,
nothing can go wrong. (If you believe
this, 1 have a fantastic deal on a
Bridge I'd iike to tell you about')

Why ngt just LIST to Printer or Disk?
It's not that simple. The cosputer will
list the progras in 80 cclusn format.
Why not set the printer's right wmargin
at 787 It will work up to a point. The
point being a prograe line of more than
80 characters. The cosputer will send a
carriage return after the BOth character
and start printing the rest of the code
on a new line, Listing to disk will also
give you an 80 coluan listing,

Since I originally wrote this progras
several years ago, two prograes that do
the same work have been brought to ay
attention. One is 28 Coluan Converter by
dJim Peterson, published in Tigercub Tips
$18, and the other is COLIST, a Fairware
progras by the McGoverns. Both are very
nice prograas and you &ay well find thea
more useful to you than the one
presented here. (I had originally named
sy progras COLIST but have since renaned
it COLISTER to avoid confusion.)

COLISTER has a couple nf features not
available in the other prograss. First,
it will print a blank line between
program lines, 1 +teel this amakes it
easier to "read” the program, especially
the spaghetti code I am prone to. It
tacilitates picking out a line nuaber in
the aiddle of the prograa when following
those 60T0s and orELSEs,

Second, it TABs the output & spaces.
This centers the listing when aerged
into 40 coluan text in Tl-Writer's
Editor, and provides a margin so hard
copies can be loose leaf bound.

COLISTER does not require that a
prograa’s line nuasbers be resequenced in
order to list it. A lot of my prograa
lines are nuabered frog 1 to 10, Default
resequencing (100,10} would sometises
destroy their Tinygras status. (COLISTER
is a good example, One Tinygram "trick®
is to use single digit line numbers to
gain 3 few extra character spaces for
your code.)

COLISTER will print to either disk or
printer. Listings printed to disk can
the be merged with text in TI-Writer's
Editor. Do not print the listing through
the Foraatter unless you have. aodified
your Formatter {file to ignore the
special format command characters that
are also often found in prograes.

This Tinygras uses only 4 sectors of
disk space, which tan be reduced to 3
sectors by deleting Line 1. It earns its
keep on &y 555D utility disk. {Small is
Beautiful)

Using COLISTER is very simple. First,
load into semory the progras you want to
list. Next sake a3 DV B0 listing by
typing LIST "DSKn FILENAME". Don't use
the same filenase as the prograa or the
listing can overwrite the prograe.

Then load and RUN COLISTER., At the
tirst prompt, enter the DSK number and
the tilenane used above. For the second
proapt, enter the print device name.
This "can be either P10, RS232, or
DSKn.FILENAME2. Again, use a different
filename if reading fros and writing to
the same drive.

[you don't want the blank line
between prograam lines, just change the
FOR stateaent in Line 8 to read: FOR I=0
70 L-1. The TAB setting in this line can
also be changed or eliminated, as

desired. If for some reason you want a
listing with a difterent width, say 40
colusns for those “other” owners, just
thange the value of € in Line 5, (The
reason it's in Lline 5, and being
constantly updated, is because that's
where the room was. Another Tinygras
“trick*.)

I# you prepare program listings for
newsletters, I think you'll find this
progran useful. The algoriths used to
detect a new line number is relatively
unsophisticated, It hasn't failed ame
yet, but I's sure that somcone, soseday
will write code that will trip it up.
For that reason it is well to always
look over the output to be sure that
lines have not been split or joined when
they should not have been,

tt s#e COLISTER ##+#
& Tinygras by Ed Machonis
@B~99ers, Bayside, NY

2 PRINT :*1st LIST your prog
ra to diskThen RUN COLISTER®

3 PRINT 1;:"INPUT FILENAME?

ex:D5Kn. LIST" 11 INPUT F# 3
INPUT "OUTPUT FILENAME? ex:
P10 or DSKn,LIST28 :":P$

4§ OPEN #1:F$,INPUT :: OPEN &
3:P$,0UTPUT :: ON ERROR 10

5 C=28 :: LINPUT Bl:A$ 2 IF
LENCA$)C(BG THEN 8

& LINPUT #13B$:: IF VALISEB
$(A8,1,POSIAS," *,2))1CVALIS
EGS(B$,1,POS(BS," *,2))) THEN
F=1 31 G0TO 8

7 A$=A$LB$:: IF LEN(BS$) =80
THEN &

B A<LEN(A$):: L=A/C+.99 5: F
OR 1=0 TO L sz PRINT #3:TABY
£);SE6$(A$, 1414, C) ey NEXT 1
:1 IF EOF(1)AND F=0 THEN CL
OSE #1 :: CLOSE #3 :: END

§ IF F=1 THEN F=0 :: A$=""
¢ 6OTO 7 ELSE 3

10 ON ERROR 10 :: RETURN 7

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

