
Special Issue on Hard Disks
P.O. Box 214, Redfern, New South Wales, Australia, 2016 	$ 2

Hive NEWS
DIGEST

Focusing on the TI99/4A Home Computer

Volume 8, Number 9
	

September, 1989
Registered by Australia Post - Publication No. NBH5933

T1sHUG (Australia) Ltd. 	 TIsHUG News Digest 	ISSN 0819-1984
TIsHUG News Digest 	

1[111,1hZ
September 1989

Title Description Author 	Page No.

All correspondence to:
Backing up the hard disk General interest Takach,Ben 22

P.O. Box 214 Beginner's corner General interest Bobbitt,Chris 8

Redfern, NSW 2016 Bug report Myarc hard controller Trott,Geoff 4

Australia C99 tutorial Software hints Sheehan,Craig 12
Co—ordinators report General news Warburton,Dick 2

The Board Conversion tables
Emulate file pointer

Software hints
Software hints

Harris,D.N
Christensen,Garry

33
22

Extended BASIC Tutorial Software hints McGovern,Tony 9
Co-ordinator Fairware author of month Club news Trott,Geoff 2

Dick Warburton 	(02) 918 8132 Forth to you too! Software hints 33
Secretary From the bulletin board Mail to all 31

Terry Phillips 	(02) 797 6313 Games information Zork 3 Brown,Robert 17
Treasurer Hard disk drive — guided tour Software hints Christensen,Garry 27

Rolf Schreiber 	(042) 84 2980 Hard disk drive data Hardware review Paine,John 23
Directors HardMaster Software review Christensen,Colin 25

Robert Peverill 	(02) 602 4168 Interface IBM style keyboard Hardware project Wilkinson,Derek 5
Russell Welham 	(043) 92 4000 Making your own dictionaries Software hints Trott,Geoff 30

Myarc hard disk controller Product review Amadio,Lou 21

Sub-committees News from around the world General interest Bobbitt,Chris 32
Newsletter update General interest Amadio,Lou 34

News Digest Editor Power supply for hard disk Hardware project Amadio,Lou 6
Geoff Trott 	 (042) 29 6629 Quick hard disk back—up Software hints Christensen,Garry 21

BBS Sysop RAMdisk power supply problems Hardware project Trott,Geoff 6
Ross Mudie 	 (02) 456 2122 Regional group reports General interest 35
BBS telephone number 	(02) 319 1009 Secretary's notebook Club news Phillips,Terry 3

Merchandising TI—Base tutorial Database Smoley,Martin 13
Steven Carr 	 (02) 608 3564 TIsHUG software column Club software Phillips,Terry 4

Publications Library Techo time Hardware project Amadio,Lou 5
Warren Welham 	(043) 92 4000 They're off General interest Trott,Geoff 1

Software library Tips from the tigercub #34 Software hints Peterson,Jim 19
Terry Phillips 	(02) 797 6313 Transfers, cassette and disk Software hints Rebel,Eric—Paul 32

Printed by
'The University of Wollongong

Printery

TIsHUG Software Author of the Month
The Software Authors for this month are the Ottawa Users Group
for the Program DM1000. All Donations collected at the meeting
and sent in will be to them this month

trTt
by Geoff Trott

As you will read elsewhere in this issue, the last meeting was a very busy
one in a somewhat restricted area. We did not have time for some of our usual
activities, including the collection for the software author of the month. So
we will have to do that at the next meeting. I hope you remember that this
month it is for DM1000 and the Ottawa Users Group who have provided this
excellent program for all those with disk drives. I am sure that everyone will
want to contribute something for this program. Even those who cannot attend the
meeting can send in a contribution to the Software Author of the month so get to
it!

I received a letter from John Hagart of Gordonvale, North Queensland in

which he asks for help and suggests what I consider is a very good idea. He
points to the problem of being so far from someone to ask for help and wonders
if TIsHUG has tutorial disks to help users of Editor Assembler, TI—Writer,
Multiplan and other software to get started. He was typing in some assembly
language program from the TND and did not realise the significance of the
asterisks at the start of the lines. He says that he has a tutorial disk for
the Extended Display Package which he finds very useful (well done Craig). This
sounds to me like an excellent idea for the Special Interest Groups or for
another Special Interest Group to attack on its own. It may be only a matter of
collecting some suitable material from what is already available and packaging
it properly to provide the maximum help. It may also be a marketable idea to
other user groups around the world.

continued on page 34

Technical co-ordinator
Lou Amadio 	 (042) 28 4906

Regional Group Contacts

Carlingford
Chris Buttner 	(02) 871 7753

Central Coast
Russell Welham 	(043) 92 4000

Coffs Harbour
Kevin Cox 	 (066) 53 2649

G le be
Milce Slattery 	(02) 692 0559

Illawarra
Geoff Trott 	 (042) 29 6629

Liverpool
Larry Saunders 	(02) 644 7377

Northern Suburbs
Dennis Norman 	(02) 452 3920

Sutherland
Peter Young 	 (02) 528 8775

Membership and Subscriptions

Annual Family Dues
	

$25.00
Overseas Airmail Dues
	

AUS$50.00

lflIsIIIJG Sydney Meeting

The next meeting will start at 2 pm on
2nd of September at the Woodstock
Community Centre, Church Street,
Burwood.

TT

(Page 1 	 TIsHUG NEWS DIGEST September 1989)

1::1)-urthalattseo 	illapoirl
by Dick Warburton

What a day at our August Meeting. I estimated that
over one hundred people turned up for the bargains. I
promised myself that I would not buy too much, but I
cannot resist a bargain. I came home loaded. We also
signed up three new members on the spot. It is clear
that there is a strong interest in hardware, among
TI99/4A owners.

Unfortunately the room available was limited, and
we were unable to participate in other activities. I
think that we should have more days like this one, and
also make provision at our monthly meetings for hardware
swaps and sales.

Our console repair group is becoming a little more
experienced and confident. The new console tester has
already been put to good use, and it is clear that some
members are becoming much more confident about opening
up their consoles and tackling the problems. At the
meeting, people are doing a range of things technical.
Thanks to Ben Takach and his super desolderer, chips are
removed and replaced without drama or disaster. If you
have a console which has breathed its last, either bring
it over to Cyril's place, or send it, and our budding
brain surgeons will attempt to fix it. If you have some
old parts, for example keyboards, power supplies, mother
boards, etc which you do not need, donate them to the
console repair group. There will come a time when we
will have to be totally self reliant in these areas, so
we need to develop our skills now. If you know people
with old unused or broken consoles, tell them about the
club and what we are doing. Some might like to donate
old gear to the club. Some might like to get their
consoles fixed. People who join our club get pretty
good value for their subscription, particularly if they
get a console fixed cheaply. The willingness to help
each other is what makes this club such a great group to
belong to.

Our publicity 8roup is flagging. 	I need more
helpers to put some of our good ideas into operation.
We need a few hard working people to do a range of
things. Perhaps interested members could see me at the
next meeting, and get together after the main
activities. We need more publicity. If we can attract
about ten new members a month, our club will remain
strong, and be able to provide help and support for the
future. If you know someone with a TI99/4A then tell
them about the club. Tell them what we do for each
other, and what we can do for them. There are lots of
TI99/4As still out there, and we would like to find more
of them. The other interest groups are going well. Our
TI-Artist group, goes from strength to strength. More
and more software is being accessed, and more skill is
being developed. The numbers of interested people is
growing. 	The word processing is a small but quite
active group which is making considerable progress. 	I
am sure that some of you would like to attend an
interest group. If you have other suggestions, please
raise them at the next meeting, and we will try to
establish a group if the interest is sufficient. 	Small
groups seem to work well. 	I think we could run all
types of groups to meet our members' needs.

I have recently heard that Horizon RAMdisks are out
of production because of the present high costs of 32K
chips. These chips are selling at US$28 and the cost of
completing a RAMdisk is very expensive. In the US, the
trend is towards hard drives, which are retailing at
approximately US$185. It would seem that the price of
hard disks will drop soon, however the cost of the Myarc
controller is still quite high. A hard disk would
certainly add to the flexibility and power of the
TI99/4A. While mentioning hardware, let me offer a vote
of thanks to Lou Amadio and Geoff Trott and the boys in
Wollongong. What a great series of articles and
grojects keep appearing in the TND, and they actually
get built and demonstrated. Is there no end to what can
be done with a TI99/4A?

Do not forget the TI99/4A Faire in Melbourne on
14th October. 	It sounds really good, and a strong
representation from Sydney will help us and them. 	The
Directors are writing to other home computer user
groups, to float the idea of a combined home computer
faire, in Sydney, in 1990. The trip to Melbourne might
help us to prepare for our own exhibition. I have been
wondering about the idea of displaying our TI99/4As in
Regional Shopping Malls, in areas where TI99/4As were
sold. 	Do we have any volunteers to man a stand in a
centre? Let me know what you think of the idea. 	I
think it could generate increased -interest in our
machine. If you have any ideas for promotion, we will
discuss them and try to implement them, if we can get
sufficient helpers.

My thanks again to those members who give so much
time and effort to make the club what it is. I really
appreciate your help. Remember what Dawn Fraser says:
"No pain, no gain." If you would like to help the club
break some records, but are not sure how you can help,
see me and I am sure we can find something rewarding for
you to do. See you at the next meeting. C)

PAM
filat Mullah

We, the users of the TI99/4A, rely on many people
for our enjoyment of our computer, none more so than
those who have written software which we use and rely on
every time we use our computer. Some of this will be
commercial software which we should have paid for and
received value for our money in the form of a working
program with good documentation, but the majority of
software will be Fairware, which may not have cost
anything and yet still provides a working program and
good documentation. Software authors who produce good
useful programs and release them for us all to enjoy
under the fairware concept are the ones who are keeping
us all going. If you look at the price of commercial
programs for other computers which do the jobs that we
are able to do with our fairware programs, you will find
that $100 will not buy more than 1 program and you may
well need $1000 to get a state of the art program.
Fairware software costs the price of a disk initially
but if we use the program the onus is on us to send a
contribution to the authors to repay them for their
efforts and encourage them to continue development and
perhaps write a new program as well. We can be sure
that these authors are not relying on our contributions
to live, as they do not ask enough and we do not send
enough, if anything at all.

TIsHUG now offers us alternatives to sending the
money direct to the author. Of course sending the money
direct to the author is the best way to get on an
author's mailing list and to ask some pertinant
questions about the software or about improvements which
might be made in the next release. Another method is to
contribute each month by mail or in person to the
monthly fairware collection or to send in a contribution
to be spread amongst several products and their authors.
If you use this last method, be sure to send in a list
of software and the amounts for each.

The Fairware software product for this month is
DM1000, which comes from a user group, the Ottawa user
group in Canada's national capital. Everyone with a
disk system must have used this product at some time and
I cannot remember my computer system without DM1000.
Other similar programs have come along and in some
respects replaced DM1000 but if you have ever used it
then you should have made or now should make a
contribution towards its development 	and possible
evolution. 	Note that DM1000 is supplied with Funnelweb
on the fairware principle. They are separate products
and if you use both then you should contribute something
for both products. Just get your contribution into
TIsHUG as soon as you can and they will ensure that all
of it reaches Ottawa. Do not forget the other authors
of fairware software that you use and take up TIsHUG's
offer of forwarding your contribution on to them. C)

September 1989 TIsHUG NEWS DIGEST 	 Page 2

3TTIraCtU1743 ViaaeOltobat
by Terry Phillips

A nice day brought members out in droves to attend
the Buy, Swap and Sell day held at the August meeting.
Judging by the tables loaded with software and hardware,
and the number of smiling sellers and buyers the day was
certainly a success. This type of activity appears very
popular, so if you would like a repeat performance have
a word in Craig Sheehan's ear. He might just be able to
organize an event along similar lines in the not too
distant future.

Les Andrews, a member of the group's Publicity
Committee, placed an advertisement in the Weekly Trading
Post, advertising the August meeting. The result; an
outstanding success! Three people who read the
advertisement turned up at the meeting and joined TIsHUG
on the day.

An information sheet on the group's activities has
also been produced and copies given to TI Australia who
will make them available to people bringing in consoles
and hardware for repair. This method of advertising the
group will also, hopefully, bring in a few new members.
If you have an idea for advertising for prospective
members please see any of the Directors at the meetings
or contact one of us by mail or telephone.

Speaking of the new members, it is a big welcome to
the following:

Steven Newland - Alice Springs
John Korpusinksi - Canley Vale
Gus Martinez - Ermington
Mark Nielsen - Ryde
Phil Thomson - Keiraville

Hope you all enjoy your membership of the group.

Amongst the new members is a name some of you may
remember. Mark Neilsen was a member some years back and
was instrumental in getting the BBS up and running.
Great to see you back with us Mark.

And, continuing on the subject of membership, a new
class of membership was approved by the Directors at
their meeting on the 4th of August. 	This class of
membership to be known as Associate Member. 	An
Associate Member will be entitled to social privileges
of the group, however will not be eligible to receive
the monthly News Digest. An annual membership fee of
$10 shall apply for Associate Membership. This class of
membership was agreed to as there are a number of
people, mainly friends of members, who like
participating socially at meetings however in most
instances they do not own a TI99/4A, so our published
information is not of great benefit to them. If you
know someone in this category bring them along and sign
them up for membership. In order to accommodate this
class of membership it was necessary to frame a new
By-Law in accordance with Paragraph 9 of our Articles of
Association. All members should add the following new
By-Law to their copy of our booklet: Memorandum and
Articles of Association:

By-Law 19 - The club will admit Associate Members
who shall be entitled to social privileges, however this
class of member shall not be entitled to receive monthly
issues of the TIsHUG News Digest. Fees for this class
of member shall be as set from time to time by the
Board.

As from our next meeting it is hoped to kick off a
games room in the small upstairs room near our main
meeting room. This is at the request of some of the
younger members who are not so interested in other group
activities discussed at meetings. With a bit of luck we
will be able to set up a couple of computers in this
room and let the younger, and young at heart, members
have a bit of fun during the afternoon.

A letter has been forwarded to other major computer
user groups on the subject of a proposed home users
computer fair either to be held late this year or early
during 1990. I have written to Apple, Amiga, Commodore
etc., and now wait on a response. If this does get off
the ground it sounds like it could be a major activity.
Keep watching for further information as it comes to
hand.

If any member happens to be on the east coast side
of the USA during September, then I am advised that the
Mid Atlantic Ninety-Niners will be holding a TI99/4A
International Expo on Saturday September 16 1989 at the
Howard Johnson Inn, 5821 Richmond Highway, Alexandria,
Virginia from 9am to 5pm. It looks like it will be a
very big event judging by the pre-show publicity they
have mailed.

Here are a few items for sale. Contact the members
involved for further details.

Percy Harrison - telephone 8083181 - has a Cicada
312 Modem complete with press button redial hand set .
In perfect condition and for sale at $140.

Paul Barton - 4 Northrop Street Raby NSW 2566 -
seeks assistance in finding a good home for the
following:

Grey Console with built-in 32K $75, PEB $250, DSSD
disk drive $75, TI disk controller $75, RS232 card $100,
PIO cable $10, RS232 cable $10, Horizon RAMdisk $450,
Editor Assembler manual $25, TI-Writer manual $20, CTI
CPB80 dot matrix printer $200, RGB interface $10,
Modified joysticks $10, Extended BASIC $20, PRK module
$10, Meteor Multiplication, Video Games 1, Blasto, Disk
Manager 2, TI Invaders, Munchman, Integers, Alligator
Mix at $5 each. Also a collection of disks in a
lockable disk box, plus cassette programs and a cassette
recorder with TIsHUG News Digests going back to 1983.

That is it for this month. 	See you at the
meetings, and please remember to bring along your
membership card as these should be shown when making
purchases from the shop. This is necessary because of
Taxation Office rules. 0

confinuedfrompagel2

count = 1;
do (printf("%d\n",count);

count = count + 1;

while (count<10);
exit(0);

Figure 5b - The do .. while loop.

/* A "for" loop */

extern printf();

main()
(int count;

for (count=1 ; count<10 ; count++)
printf("%d\n",count);

exit(0);
}

Figure 5c - A for loop.

Whilst all of these programs produce the same
output, they all show some of subtleties of the 'C'
language. A "while" loop only executes the statement
following it if the condition being tested, in this case
if "count" is less than ten, is true. Once the
statement has been executed, the process is repeated
until the condition becomes false. "do .. while" loops
are slightly different in that the statement is executed
first, and then the test is made. This is done until
the condition is false. continued on page 11

(Page 3 	 TIsHUG NEWS DIGEST September 198

31DEtw
0::thltEffEla by Terry Phillips

Advice has been received from Dennis Faherty,
Inscebot Inc. of a soon to be released program titled
TI-Sort. An advance copy, minus any documentation, has
been received and it certainly looks a very professional
piece of software. Its prime use will be in sorting
large data bases created with TI-Base, where its sort
routines are much more efficient and faster. As a
companion disk to TI-Base it is highly recommended. 10
copies have been ordered and should arrive soon. Likely
cost is around the $20 mark. Dennis also advised that
Chris Faherty is currently working on the latest release
of TI-Artist which has changed sufficiently to be almost
a new product. It will contain such things as shrink,
expand, rotate and a greatly enhanced print capability.
It should be ready sometime later this year.

Some further copies of TI-Base and TI-Artist have
been received and placed in the shop for sale. Get in
early if you want a copy of either. TI-Base is $25 and
TI-Artist is $20.

Jim Peterson has written to advise that he has
reduced the costs of his 3 Nuts & Bolts disks to $10
(down from $15) and his 5 Tips from the Tigercub disks
to $5 each (down from $10). As your group is selling
Jim's range of software to members, these reductions in
prices are also applicable here. As I have said before
these disks are very highly recommended and I await your
orders.

Still not much happening in the way of new software
receipts, however I have placed 4 new disks in the
library and these commence the new "B" series of disks.

DISK Bl - Pictures from Darren Telford. This disk was
previously numbered A358.

DISK B2 - Tigercub Disk - contains Tips #58, a file on
setting up printers and a great addictive game called
TI-Tris.

DISK B3 - Melbourne TIMES disk - contains files included
in their March News Digest .

DISK B4 - Melbourne TIMES disk - contains files included
in their April/May News Digest .

Nothing more to advise this month. If you need
something from the library give me a call or write to
the club's address. 0

E Rtipurl
byGeoffTrott

I am one of the fortunate few who have been running
a hard disk on a TI99/4A (cow 	r of you all) for some
months now. I am using a DSR)M numbered H11 and
Myarc Disk Manager 5 version 1.29. I have to say that
overall I am very pleased with the operation of both the
disk controller and the disk manager program for all the
editing, spell checking and formatting that I do each
month for the TND and would not like to do without the
hard disk now. I must also say that I am using a
Mechatronics 80 column card, which may or may not cause
some of the problems I am about to describe. I would
just like to put on record my experiences with this
major piece of equipment for others to ponder and
perhaps for those better placed than I to do something
about fixing.

First there are the programs that do not work
properly with the hard disk. If programs are written to
allow the entry of complete names of files and not just
a disk number and file name then they should be able to

use the hard disk with little trouble. 	Unfortunately
authors try to make it simpler for the user by just
allowing a number to select a drive. This is not a bug
in the controller card, but is just a nuisance for
someone with a hard disk. However sometimes I have
found that using floppies on the controller card with
some of these programs can cause problems. For example,
the original PRBase will not work as the controller card
thinks the disk is not formatted or formatted in an
impossible way. This is because the controller card
reads the information on sector 0 to find out how to set
itself up to read the disk. Multiplan will not produce
a catalog of the disk with the arrow keys in Transfer
Load. Then there is the problem of fractured files.

Using floppies once again, either real ones or
emulated ones, if your files start to fracture then the
controller seems to lose track of which sectors are used
by which file and overwriting of files can occur. This
has occurred to me using Multiplan, which I use for
generating the index each month as well as keeping track
of the magazines which have been reviewed each month.
This means that I am constantly adding data to files and
creating new files which is guaranteed to produce
fractured files. I found that I had a number of files
on my floppy which were no longer readable by Multiplan
and when I looked at the file information blocks with
Disk Utilities I found that the files were using the
same sectors, but only where the files were fractured.
That is the first part of the file was OK, but the piece
stored somewhere else on the disk was also used by some
other 'file. Then the same thing happened while writing
and debugging a c99 program. This involves creating a
source file with the editor, compiling it which
generates an assembler source file, assembling this to
produce a D/F 80 object file which is then loaded into
memory. If all these files are stored on the same disk
and then the source is changed and added to, fractured
files are produced at every step. This caused the c99
compiler no end of problems as it wrote over the
fractured end of the source file. Not very nice! If
you know that there is this problem then you can make
sure that you do not produce fractured files by deleting
all the intermediate files before editing the source.

The other main problem occurs with DM5 and copying
files from floppy to hard disk. Sometimes the Disk
Manager will not copy a file from floppy to hard disk.
It just hangs up! If you copy the file to RAMdisk and
then to hard disk it all works! There does not seem to
be any rhyme or reason for this one.

Ben Takach has mentioned the lack of a viable
backup mechanism, although a second hard disk may be a
good option, but another lack is that of a good
exerciser program to locate and flag sectors which are
marginal and may give trouble in the future. I have had
a hard disk which developed bad sectors and it has
proved very difficult to recover the contents of that
disk because the only program that will allow files to
be copied is DM5 and this requires that the bit map
sectors be readable in order that it can calculate the
number of sectors used. One of those sectors is bad on
this disk and so the program just hangs. Not very
satisfactory for me. The strange thing is that all the
programs will execute or can be read, but I cannot write
anything to the disk as this requires access to the bit
map sectors. If bad sectors are such a problem there
should be a way of checking out the disk more thoroughly
than is currently possible.

Please do not be put off by all these problems. I
have not been as I have bought myself a hard disk system
which my son is currently trying to fill up with all the
games he can lay his hands on and to get running from a
set of menus. Perhaps I should get him to write an
article about this when he has finished. Also there is
a very useful utility which every user of a hard disk
should have and use. It allows the hard disk to be
safely parked before turning it off, which should
prolong the life of the disk. 0

(September 1989 TIsHUG NEWS DIGEST 	Page 4

	
-• 	 CONTI9CTS

i'=,,,--• 	,-., 7
, 	

I 	

,

I
.-27 .4

4--- BLFINK

INtito 71/ta
with Lou Arnadio

The August Swap and Sell meeting turned out to be a
fun day. A great deal of hardware and software changed
hands on the day, and this is how club members get to
try different items. I do not know how many people were
there, but the room was packed, and not many items were
left unsold. We need to have at least two such meetings
per year.

Correspondence

Two letters were received this month:

The first from Les Moore (Christies Beach, SA)
pointing out the errors in the Direct I/0 Interface (see
errata below). Thanks Peter.

The second from Michael Ball (Nowra, NSW) asking if
a console power supply is suitable to power the Direct
I/0 Interface. In a word, no, but the console power
supply may be used to power a stand—alone floppy disk
drive. Michael is also having intermittent console
lock—up problems. From his letter it sounds as if his
modules and/or module port socket in the computer need
cleaning. 	Module PCB contacts are easily cleaned using
a cotton bud moistened with alcohol. 	The module port
may be initially cleaned with a piece of cardboard cut
to size and very lightly moistened with alcohol. The
cardboard is inserted into the edge card socket inside
the module port, cut back and re—inserted as necessary
to clean the contacts. If this fails to cure the
problem, then the computer will have to be dismantled
and the port washed out with alcohol.

Hard Disk Display

The internals of a hard disk drive were displayed
at the August meeting. The display aroused a lot of
interest among members so we will be redisplaying the
unit at the September meeting, hopefully powered up and
running.

Hardware Hints

In the past, I have advocated the use of power
resistors in order to reduce the voltage to a circuit
and so improve heat dissipation. If, however, the
current load is not likely to be constant, resistors
will not provide the correct voltage drop. It is better
in these circumstances to use a power zener diode of the
appropriate voltage rating. For small voltage drops
(for example, 1 to 2 volts), you could use one or, more
power diodes (3A rating). At a current of I amp, power
diodes will drop approximately 1 volt each.

Errata: Direct I/0 Interface, TND July '89

Unfortunately gremlins have struck again and caused
an error in the wiring instructions for the Direct I/0
Interface article which appeared in the July '89 issue
of the TND. Please make the following corrections to
your original article on page 7:

I/0 pin 8 (All) connects to PEB pin 34

I/0 pin 17 (A7) connects to PEB pin 38

Thanks to Les Moore (ATTIC) for pointing out the
errors, and I apologise for any inconvenience that it
may have caused anyone who was building the interface.

Please note the.additional errata on this subject
published in the August '89 issue of the TND.

The power supply for the I/0 interface is easily
modified to allow it to power a floppy drive as well as
the Interface. The modification will be described next
month and includes 2A transformers, in lieu of 1A, and
the addition of a 7812 (+12V) regulator to the +18V
rail.

Errata: Special Function Key Emulation — August
'89, page 28.

The diodes across the relays are 1N4148 high speed
devices. A capacitor (0.1 uF) should also be mounted
across each diode.

Hardware Projects

I welcome any hardware contributions from club
members for this column. If you share your ideas and
experiments, we can all benefit.

This month we have contributions from two authors.
Derek Wilkinson has written an article on how to convert
an IBM style keyboard to interface directly with the
console. With a little luck, we should have a
photograph included in this issue of the TND. A
keyboard matrix table is included to aid in the wiring'
process. Derek also suggests a test circuit to assist
in making the correct connections. If you decide to go
ahead with this project, make sure that the keyboard
that you intend to modify has switch contact keys and
that the switches can be disassembled and converted to
dual key action (for FCTN and CTRL sequences).

The other contribution comes from Geoff Trott and
will no doubt be greeted with a sigh of relief from
owners of the Peter Schubert Mini PE System which
includes a RAMdisk. Geoff has modified the power supply
to prevent corruption of the RAMdisk ROS during power
up. 0

Interface to En IBM style Keyboard
byDerekVadnson

First you need a style of keyboard that uses
contacts that provides a short circuit output when they
are operated. Then by rearranging the wired matrix of
the keyboard you can arrange the resulting matrix to
provide the same 15 outputs provided by the TI99/4A
keyboard.

The function keys require a little more work, in
that each function key requires double key operation.
This can be obtained by modification of the function
keys to operate twin contacts. The main drawback being
that you will require extra keys. Spare keys are
available from places like Sheridans in Redfern. The
keys are usually designed to allow for twin contacts to
be mounted where a blanking piece is inserted in the
spare side of the key.

KEY

Makeup of Keys
To allow for all the various function keys to

operate from one key you will reqire an extra 26 keys.
If you do not require all at once they can easily be
added later. You can also configure control funcions in
the same way. I have the Escape and Tab keys
configured.

You will first have to remove the electronic parts
from the keyboard. Some of the tracks on the board need
to be cut and be restrapped to provide the correct
matrix wiring. This job is not hard but can be very
time consuming. A small rotary engraving tool was found
to be ideal for cutting tracks and drilling holes in the
backboard for the extra contacts.

One obstacle I encounted was the replacement of the
electronic capitals lock key by a mechanical one. These
are hard to come by without pulling one out of a TI99/4A
console.

(Page5 	 TIsHUG NEWS DIGEST September 198

KEYBOARD MATRIX

7--ALPH--
LOCK

6 8 	9 	12

I
- P 	Y ENT

I 	I -?
- G --SHI-- S 	D

1 	 1 	1
; 	H --SPA-- L 	K

1 	1 	1 	1

I 	I
1 -- 5 --FCN-- 2

1 	1
Q 	T —CTR-- W

-- z
1

13 	14 	15

0 	I 	U

I 	 I
--- 9 -- 8 -- 7

I 	I 	I
- F

- J

— m
I

I 	I
-- 4

E 	R

When 	reconfiguring the keyboard matrix use a
different colour wire for each of the 15 leads of the
matrix. This will allow ease of tracing when something
goes wrong or you want to add extra keys to the
keyboard.

MATRIX.COLOUR CODE

1 	WHITE
2 	RED
3 	ORANGE
4 	YELLOW
5 	GREEN
6 	BLUE
7 	BLACK
8 	GREY
9 	RED-GREEN
10 LIGHT BROWN
11 BROWN
12 PURPLE
13 PINK
14 RED-BLACK
15 RED-YELLOW

I have been using the keyboard now for over 12
months. The problems encounted have been a couple of
sticking keys and getting lost when I use the normal
TI99/4A keyboard. I used a 25 pin D connector mounted
in the side of my console, this allowing the use of the
original keyboard if required without stripping the
console.

I also made up a keycheck indicator to allow ease
of checking the matrix and key operation. It is a
simple cicuit but saves a great deal of time when you
are having problems.

In I I
LEDS:1-15

T. T.

iiHr
fl HITS

Keyboard Matrix Checker
1.CONNECTOR TO MATCH YOUR KEYBOARD.

CHFCK'7. CORRFCT MATRIX OPERATION OF ERCH KEr.

see photograph on page 31

Funcdon FCTP1 key Function FC114 key Funcdon FC114 key
+ key 	 + key 	 + key

	

Delete Char 1 	 0 	[F

	

Insert Char 2 	Quit 	+) 	 G

	

3 	 W 	\ 	 Z

	

4 	([C

	

5 	T 	J 	i 	A

	

6 	 U 	Arrow up 	E

Arrow down X

Arrow left S

Similarly the control functions may be reproduced. 	0

LRAPA1(ihili'll 1Powatr qap pu'vbilvnao
by Geoff Trott

I was asked by a member to look at his miniPE
RAMdisk which consistently lost its ROS when power was
turned off. He was also having problems with floppy
disks being corrupted by his system, which is probably
another story. I had heard of at least one other
similar problem and was wondering what the problem was
and if there was an easy solution. When it arrived I
first checked the memory chips which were OK and then
made two modifications to the circuitry.

The first of these was to install a pullup resistor
on the WE (Write Enable) line to make sure that it was
high when the power was removed (battery backup). Then
I removed the components (resistor, diode and capacitor)
that were provided for the power up reset and wired the
reset to the reset line out of the console, which is a
suggested modification for Horizon RAMdisks. These
modifications did nothing to help with the problem so I
started looking further.

Using a storage oscilloscope I looked at the power
from the external power pack which was used for the
supply when it was turned on. I noticed that it took
about 3 charge cycles (30 milliseconds) before the
voltage reached a stable value and sure enough, during
this time signals like WE were changing level. This
seemed to me to point to a problem so I installed a
switch, after the 3 terminal regulator to test this out.
Even with switch contact bounce there was no loss of
data. So I then designed and built a little circuit
which waits for a while (30 milliseconds) after the
input voltage exceeds 6 volts and then turns on the
regulated voltage as quickly as possible. As well as
that I included a 5uf tantalum capacitor on the output
of the 3 terminal regulator to stop it oscillating.
This then enabled the power to be turned off at any time
without any loss of data. I wonder if the same problem
arises sometimes with the Horizon RAMdisk card in the
PEB! see circuit diagram on page 32 0

YSIEIT all Efill
IDgsk LEDulv

byLouAmadio
What? Not another power supply!

If you are wondering why there have been so many
articles on power supplies lately, it is because that is
what I have been working on. Consequently, it is much
easier to decide what to write about, especially in the
absence of any specific requests from club members.
Anyway, since this is a special "Hard Disk" issue, it
can be considered a timely article.

So, here we go again 	

Last month I described how to build a power supply
and enclosure for floppy drives. Although a hard drive
will fit in the same physical space as a floppy, its
power requirements are quite different. In the past few
weeks I have been testing the power requirements of a
number of hard drives. The results are presented below:

Make Model Cap +5V 	+12V
---- -----
NEC D5124 10Mb 0.7A 2.5/1.1A

NEC 	D5126 20Mb 0.6A 2.5/1.4A

Shu DE4766 10Mb 0.7A 2.5/0.5A

MS 	#3425 20Mb 0.45A 3.0/1.2A

(MS=Miniscribe, Shu=Shugart. First figure for +12V
is the start current).

If you compare these figures with those published
last month for floppy drives, you will see that hard
disks require approximately 50% more power. More

NOTE

15 PIM
CHNECTOR

Erase

Clear

Begin

Proceed

Aid

Redo

Back 9

7

8

It

0

Arrow right D

W

(September 1989 TIsHUG NEWS DIGEST 	Page 6

importantly, however, we need more than twice the
current capability for the 12 volt rail since a hard
drive has more inertia during start up. Consequently
the motor draws much more current during the first few
seconds while the disk comes up to speed. For example,
a typical hard drive will draw approximately 2.5 amps
from the 12 volt rail at switch on, falling to
approximately 1.2 amps when the drive reaches full
speed. Unless the power supply can deliver the initial
high current, the drive will simply not start.

Because of the wide range of current requirements,
I decided to construct the power supply using two
transformers, one for each rail. This ensures that one
supply does not affect the other, especially during the
critical start up phase. It is also likely that two
smaller transformers will be cheaper than one
multiwinding high current transformer, since the smaller
transformers are mass produced.

The 12 Volt Rail

Referring to the circuit, the +12 volt rail is
powered from a 2 amp 15 volt AC transformer. The
transformer is used with a full wave bridge rectifier to
produce 21 volts (unloaded) across the filter capacitor.
Under maximum load, during start up, the unregulated
voltage feeding the 12 volt regulator drops to about 15
volts, rising to about 17 volts when the drive is up to
speed. This is a satisfactory voltage margin for the
regulator. The current capability, however, needs to be
boosted as the voltage regulator on its own can only
handle approximately 1 amp maximum before it shuts down.
We need to boost the output to at least 3 amps or more.
This is the purpose of the pnp power transistor, and
this combination is much cheaper than using a high power
regulator. The only drawback in using a transistor in
this configuration is that we lose the current overload
protection inherent in the IC regulator.

Power dissipation in the transistor is 1.25*(17-12)
= 6.25 watts. The transistor (and the 12 volt
regulator) should therefore be mounted on a suitable
heat sink. This will ensure that the thermal
characteristics of the regulator will still provide some
protection should an overload occur.

The 5 Volt Supply

The 5 volt supply is a little simpler in that the
regulator can handle the full current requirement on its
own. The transformer is used in the centre tap mode
(0-6.3-12.6) with 2 diodes so it only needs a moderate
heat sink and can simply be bolted to a convenient point
on the metal chassis. If your hard drive behaves
erratically, it may not be getting enough voltage on the
5 volt rail. In this case simply use the 0-7.5-15 volt
tappings on the transformer.

Parts List

1 x Arlec 15V/2A multitap transformer (PT6978)
1 x Arlec 15V/1A multitap transformer (PT2155)
1 x mains fuse holder, 0.5A fuse
1 x 240V DPDT power switch
1 x finned Al heat sink
2 x lA power diodes
4 x 3A power diodes
1 x 2200 uF, 16V electrolytic capacitor
1 x 4700 uF, 25V electrolytic capacitor
4 x 4.7 uF TAG tantalum capacitors
1 x 4.7 ohm, 1 watt resistor
1 x MJE2955 pnp power transistor
1 x 7805 5V positive regulator
1 x 7812 12V positive regulator
1 x disk drive 4 pin power plug (female)
1 x 240V power lead, grommet and cable clamp
4 x adhesive rubber feet
1 x Aluminum box to suit
Miscellaneous wire, bolts etc

Construction 	 see circuit diagram on page 31

The easiest way to build the power supply is to use
point to point wiring. Secure the power cable to the

box with a suitable grommet and cable clamp. Make sure
that the green/yellow wire in the mains cable is
securely earthed to the box. Mount the power fuse (and
switch if required) at a convenient location on the
metal box taking into account the position of the
transformers. If you choose not to use a power switch,
the brown wire (mains active) should go to the fuse
first and then to each transformer primary in turn. The
blue wire (mains neutral) can be connected directly to
the other end of each transformer primary. Mount the
transformers and solder the power diodes directly to the
transformer lugs and then to the appropriate filter
capacitor. (The diodes are capable of supporting the
filter capacitors).

The 5 volt regulator can be mounted at any
convenient location together with the TAG tantalum
capacitors (4.7uF) on its input and output legs. Be
careful with the polarity of the electrolytic
capacitors. Terminate the +5 volt and ground leads to
the disk drive power plug as indicated on the circuit
diagram.

The 12 volt regulator, TAG capacitors, 4.7 ohm
resistor and power transistor are all located on a heat
sink prior to mounting to the metal box. Use point to
point wiring, making the connections as short as
possible. As this supply must be capable of delivering
up to 3 amps, use suitable wire between the filter
capacitor, power transistor and the disk drive power
plug. The collector (metal tab) of the transistor is at
12 volts, so it must be insulated from the heat sink
with a mica washer. You must also insulate the bolt,
which secures the transistor to the heat sink, with a
plastic eyelet. Connect the +12 volt output and ground
leads to the disk drive power plug as indicated on the
circuit diagram.

Power Up

Double check all of your wiring and connections,
especially the polarised devices (diodes, capacitors and
transistor). When you are satisfied that all is well,
power up and check all the voltages shown on the circuit
diagram, especially the position of the +5V and +12V at
the output plug. Finally plug in your hard disk, switch
on, and, as a final ckeck, measure the +5V and +12V
voltages again on the drive printed circuit board after
the drive comes up to speed.

Footnote

I was talking to Garry Christensen (TIBUG) recently
and he mentioned that he had installed his hard disk
into his PEB. He had modified the power supply in the
PEB by installing an additional 12 volt regulator,
specifically to power the hard disk. He also mentioned
that he did not have any problems with his HFDC card
which are normally attributed to excessive voltages in
the PEB. (Refer Ben Takach, "PE Box Unregulated Voltage
Levels", TND March 1989). My theory is that the extra
current drawn by the hard disk is reducing the
unregulated voltages in the PEB to a satisfactory level.

Modifying The PEB for Hard Disks

An article on modifying the PEB power supply with
an additional 12 volt regulator was first published in
the March 1988 issue of MICROpendium. The author (Eric
Bray) provided step by step instructions on how to add
the additional circuitry. In the article, Eric
specified a 1 amp regulator (7812) for the hard drive.
However, my experience with a small number of hard disks
suggests that this device may not be up to the task, and
you should substitute a high current regulator or adapt
the circuit presented above.

The other area of concern would be the ability of
the PEB transformer to supply sufficient current for PEB
cards as well as a hard and floppy disk. Naturally this
would also be influenced by the number of slots in use
in the PEB. In my opinion, the safest way is to build
the power supply described above. You should also read
Ben Takach's article (see above) before you use your
Myarc HFDC card. 0

Page7 	 TIsHUG NEWS DIGEST September 191

CIDIMtEr

by Chris Bobbitt, from Asgard News

This month we are going to discuss data base
concepts.

One of the most popular uses for a computer (only
after word processing) is "DATA BASE MANAGEMENT". I put
this in quotes for very good reason; this term is often
misused, rarely defined, and has been so maligned for so
long it is practically meaningless. However, there is a
definition for it. Data base management is the practice
of managing (running, or otherwise controlling) a
collection of related data. Data itself can be short
lengths of text, number, prices, or really any little
bit of knowledge that you would like to store on a
computer. Data can be anything from the stuff you write
on a PD99 form to the birthdays of your friends and
relatives to their names.

A data base, as I said, is a collection of related
data. What do I mean by "RELATED?" Well, for instance,
a single data base might contain the names and addresses
of your friends. It will most likely not contain the
pedigrees of of your dogs as well. In a data base, as
in life, things tend to be organized together. You
could put the pedigrees of your dogs with the names and
addresses of your friends (perhaps), but it hardly makes
sense. More likely, you might want to have a list of
your friends names and their phone numbers as well.
That would be related data. We can make an assumption
that the only purpose of putting data in a data base in
the first place is so that you can get it out later in
some coherent fashion. Mixing different data together
is not going to promote that. So, a data base is simply
a collection of data that seems like it "goes together".

A data base program (often called, improperly,
simply a "data-base"), is a program designed to "MANAGE"
your data base. What do I mean? Well, to be more
specific, it will typically allow you to type data into
a data base, find items of interest in the data base,
perhaps sort the data in some order, and eventually,
print out part or all of the data. There are many types
of data bases "Flat files", "relational" (and if you are
an old timer), "network" and "hierarchical". But, I am
getting ahead of myself now.

As you might have guessed, a data base program is
usually actually many little programs, which together
are often called a "DATA-BASE MANAGEMENT SYSTEM" (or, in
Government-speak, a DBMS). DBMS can be as simple or as
complicated as the programmer wants them to be. Some
are so complicated that you need a very sophisticated
"language" to talk to them in, you need to type in
commands in an order that the systems understands in
order to accomplish even the most basic tasks (like type
data in). The advantage to something that difficult?
Well, usually there is a trade off between power and
ease of use. Something that is really easy to use
usually cannot do anything really sophisticated, and
something really hard to use really is not worth using
for anything simple, but is the only way to do some
complicated stuff.

The two most common types of data base management
systems in the TI99/4A and the Geneve world are "FLAT
FILE" and "RELATIONAL". Actually, to be more precise,
the most common type of TI99/4A data base is the "flat
file" method. There are only two relational data base
management systems for the TI99/4A (albeit, two of the
more popular such programs). The other two types have
actually never been developed for the TI99/4A. There is
little loss, though, a relational data base is usually
as capable as those two ways of managing a data base.

What is the difference between the two? Well,
hundreds of articles have been written on the subject,
but it basically boils down to the way data is stored
and retrieved. In fact, storage and retrieval are the
entire reason for a DBMS. Everything in a DBMS is

LJmehow related to put data in the computer (or the data
base), and getting it out again. So, when we say that
is the. "only" difference, we paint it with a very broad
brush.

Before you can understand the difference between
these two systems, it helps to understand some more
basic terminology. A data base system can be viewed on
three levels; the physical, the user's view, and the
conceptual. The physical level is the way the computer
views the data base; it is how the computer actually
stores the data in the data base. -The user's view is
simply how the data is significant to you when you type
it in, as perhaps a listing of all your computer
equipment. The conceptual view is best understood as
the halfway point between the two views. It is the view
that both the computer and the user can understand. A
typical user usually does not understand (and probably
does not care) how the DBMS stores the data. The
computer, of course, can hardly understand human thought
processes or precepts. The conceptual level is the
bridge between the two. It is typically the level in
which the user interacts with the DBMS and the data
base.

The conceptual level is just that, an easy to
understand concept of the data base. 	A data base is
typically conceptualized as a "table". 	A data base
containing your friends names and phone numbers might
look like this in a table

: Name : Phone Number

: Dick 	: 918 8132

: Percy : 808 3181

: Peter : 528 8775

: Steven : 608 3564

Fortunately, a computer does not have too hard of a
time understanding what a table looks like either
Hence, both you and the DBMS understand the data.

Now let us go into what a data base itself actually
is. If you examine the table a little further, you will
notice that it is in two columns; one labeled "NAME" and
one labeled "PHONE NUMBER". In DBMS lingo, those
columns are known as "FIELDS". A field is exactly like
a column in a table. The rows of the fields are the
data in the data base (each individual row is known as a
/TUPLE", pronounced "TOO-PULL"). Tuples are also called
"RECORDS" in some data base programs. When you create a
data base, you have to tell it what "FIELDS" you want,
what type of fields they are (you will notice that the
"NAME" field is all text, while the "PHONE NUMBER" field
is all numeric), and how much space you should give
each. Once you have told the data base this
information, it creates on your data base disk something
called a "SCHEMA" (pronounced "SKEEMUH"). The schema is
the "DEFINITION" of the data base.

Once you have created the data base definition (or
schema), consisting of all your columns (fields) and
their lengths and types, you begin the process of
actually creating the data base. This is the laborious
part of the procedure where you actually type in all the
data into the data base. The part of the program where
you type in the data in your data base is typically
called a "DATA ENTRY SCREEN". This is a bit literal; in
the data base world it is called a "FORM". Some
sophisticated data base programs will allow you to
design the data entry screen, or form, even down to
placing the fields exactly where you want them on the
screen, and even the screen colours.

In some data base programs, the "FORM" is made to
be part of the "SCHEMA". As you type the data into the
data base through the form it is stored by the DBMS in
another format that is more readily managed by the
program. Again, that format is the physical view of the
data base, or the way the DBMS sees your data in your
data base. continued on page 18

(September 1989 TIsHUG NEWS DIGEST 	Page 8)

Extended EA= Tutofial
by Tony McGovern, Funnelweb Farm

I. Introduction

These Tutorials were originally written several
years ago to try to improve the abysmal standard of
programming apparent in magazine and User Group
Newsletters, and even commercial game programs at the
time. They appeared first in the Sydney TIsHUG
NewsDigest and later ones in the Hunter Valley 99
Newsletter after the formation of that group as a
separate entity. The standard of published programs
written in Extended BASIC has on the whole improved
since then, but not as much as it should have, and as
advanced users move on, new beginners take their places
on the basic console with Extended BASIC computers and
need to learn how to use them. Extended BASIC is no
longer the prime language on the expanded TI99/4A, but
it is still a very expressive and powerful language,
with features that have only been caught up with in
recent times on newer and more pretentious computers.
There does seem to be some continuing demand for
tutorial material on Extended BASIC, so I hope this
series will still be of value to new and old
programmers.

The series is intended neither as an elementary
course for absolutely raw beginners nor as a reference
treatise. It is meant for the interested user who is
willing to put some effort into understanding how
Extended BASIC works in order to make best use of it,
and wishes to develop a feel for how the machine
actually goes about its business. Plus assorted ravings
and ramblings on. This issue of the Tutorials
represents a mild going over of the original files,
mainly to remove some of the outdated topical material.

The aim of this series on TI Extended BASIC was
always to concentrate on those features which had not
received due attention in User—group newsletters or
commercial magazines. In fact most of the programs
published in these sources up to the original time of
writing had made little use of that most powerful
feature of Extended BASIC, the user defined sub—program,
or of some other features of Extended BASIC. Part of
the reason for this was the practice of some authors, a
practice still sometimes in evidence in magazines, of
rehashing the same material for several different
machines and publications, forcing the use of the lowest
common denominator of BASICs. Worse still were the many
programs which were object lessons in how to write
tangled and obscure code. A much neglected source of
help is TI's Extended BASIC Tutorial tape or disk. The
programs in this collection are unprotected and so open
for inspection and it is worth looking at their listings
to see an example of how sub—programs can give an easily
understood overall structure to a program.

Well, what are we going to talk about then?
Subjects covered are:

(1)User—defined sub—programs
(2) Prescan switch commands
(3) Bugs in Extended BASIC
(4) Crunching program length

Initially the discussion will be restricted to
things which can be done with the console and Extended
BASIC only. Original intentions were to cover LINKing
of assembly routines but the series petered out before
that. Ross Mudie has written extensively on this topic
in a series of TND articles in recent years so the gap
has been filled. Actually, for most game programming in
pure Extended BASIC with no assembler help, the presence
of the memory expansion does not speed up Extended BASIC
all that much, as speed still seems to be limited by the
built—in sub—programs (CALL COINC, etc.) which are
executed from GROM through the GPL interpreter. The
real virtue of the expansion system for game

programming, apart from allowing longer programs, is
that GPL can be shoved aside for machine code routines
in the speed critical parts of the game, which are
usually only a very small part of the code for a game.
Even so, careful attention to Extended BASIC programming
can often provide the necessary speed. As an example,
the speed of the puck in TXB, our first major exercise
in Extended BASIC coding, is a factor of 10 faster in
the finally released version than it was in the first
pass at coding the game. Curiously it has turned out
that the coding of this game is so finely fitted to the
way TI Extended BASIC handles things that the puck speed
has to be reduced for Myarc Extended BASIC to handle it
without losing track, even though it is supposed to be
much faster.

II. Sub—programs in Overview

Every dialect of BASIC, TI Extended BASIC being no
exception, allows the use of subroutines. Each of these
is a section of code with the end marked by a RETURN
statement, which is entered by a GOSUB statement
elsewhere in the program. When RETURN is reached
control passes back to the statement following the
GOSUB. Look at the code segments

290
300 GOSUB 2000
310
2000 CALL KEY(Q,X,Y):: IF Y=1 THEN RETURN ELSE 2000

This simple example waits for and returns the ASCII
code for a fresh keystroke, and might be called from a
number of places in the program. Very useful, but there
are problems. If the line number of the subroutine is
changed, other than by RESequencing of the whole program
(and many dialects of BASIC for microcomputers were not
even that helpful at the time) then the GOSUBs will go
astray. Another trouble, which you usually find when
you resume work on a program after a lapse of time, is
that the statement GOSUB 2000 does not carry the
slightest clue as to what is at 2000 unless you go and
look there or use REM statements or tail remarks. Even
more confusingly the 2000 will usually change on
RESequencing, hiding even that aid to memory. There is
an even more subtle problem; you do not really care what
the variable "Y" in the subroutine was called as it was
only a passing detail in the subroutine. However, if
"Y" is used as a variable anywhere else in the program
its value will be affected. The internal workings of
the subroutine are not separated from the rest of the
program, but Extended BASIC does provide four ways of
isolating parts of a program.

(1) Built—in sub—programs
(2) DEF of functions
(3) CALL LINK to machine code routines
(4) User defined BASIC sub—programs

The first of these, built—in sub—programs, are
already well known from console BASIC. The important
thing is that they have recognizable names in CALL
statements, and that information passes to and from the
sub—programs through a well defined list of parameters
and return variables. No obscure Peeks and Pokes are
needed. The price paid for the power and expressiveness
of TI BASIC and Extended BASIC is the slowness of the
GROM/GPL implementation in which the powerful TMS9900
CPU is hobbled by being forced to interpret another
language (GPL) for an imaginary 8—bit processor.

DEF function is a primitive form of user defined
sub—program found in almost all BASICs. Often its use
is restricted to a special set of variable names, FNA,
FNB,.., but TI BASIC allows complete freedom in naming
DEFed functions (as long as they do not clash with
variable names). The "dummy" variable "X" is used as in
a mathematical function, not as an array index

100 DEF CUBE(X)=X*X*X

does hot clash with or affect a variable of the
same name "X" elsewhere in the program. "CUBE" cannot
then be a variable whose value is assigned any other

Page 9 	 TIsHUG NEWS DIGEST September 1989

way, but "X" may be. Though DEF does help program
clarity it executes very slowly in TI BASIC, and more
slowly than user defined sub-program CALLs in Extended
BASIC.

CALL LINK to machine code routines goes under
various names in other dialects of BASIC if it is
provided (for example USR() in some). It is only
available in Extended BASIC when the memory expansion is
attached, as the TI99/4A console has only 256 bytes of
CPU RAM for the TMS9900 lurking in there. All we note
now is that the TI99/4A does it in a very civilized
fashion, LINKing by name to relocatable assembly
routines. Ask your PC or Apple or C64 owning friends if
their BASIC supports that. The Funnelweb system
supports all necessary assembly development functions
with the Extended BASIC module in an expanded system.
TI Extended BASIC contains a standard set of interface
routines that support the details of linking.
Unfortunately these have a great weakness in that
transfers of strings between Extended BASIC's VDP
storage and the memory expansion is done byte by byte
with a complete reset of the VDP read and write
addresses for each byte instead of transferring a block
at a time. The result is that assembly string handling
does not always speed things up all that much and this
has been a reason for lack of success of some Extended
BASIC support packages.

You should have your TI Extended BASIC Manual handy
and look through the section on SUB-programs. The
discussion given is essentially correct but far too
brief, and leaves too many things unsaid. From
experiment and experience I have found that things work
just the way one would reasonably expect them to do
(this is not always so in other parts of Extended
BASIC). The main thing is to get into the right frame
of mind for your expectations. This process is helped
by figuring out, in general terms at least, just how the
computer does what it does. Unfortunately most TI99/4A
manuals avoid explanations in depth presumably in the
spirit of "Home Computing". TI's approach can fall
short of the mark, so we are now going to try to do what
TI chickened out of.

The user defined sub-program feature of Extended
BASIC allows you to write your own sub-programs in BASIC
which may be CALLed up from the main program by name in
the same way that the built-in ones are. Unlike the
routines accessed by GOSUBs, the internal workings of a
sub-program do not affect the main program except as
allowed by 	the parameter list attached to the
sub-program CALL. 	Unlike the built-in sub-programs
which pass information in only one direction, either in
or out for each parameter in the list, a user
sub-program may use any one variable in the list to pass
information in either direction. These sub-programs
provide the programming concept known as "procedures" in
other computer languages, for instance Pascal, Logo,
FORTRAN. The lack of proper "procedures" has always
been the major limitation of many BASIC dialects as a
computer language. TI Extended BASIC is one of the
BASICs that does provide this facility. Not all BASICs,
such as the GW-BASIC supplied with IBM style ATs that we
bought recently for the laboratory, are so civilized.
Perhaps the suppliers of these machines do not really
want or expect anyone to program their machines
seriously in BASIC. You will find that with true
sub-programs available, that you cannot even conceive
any more of how one could bear writing substantial
programs without them (even within the 14 Kbyte limit of
the unexpanded TI99/4A let alone on a machine with more
memory).

The details of how procedures or sub-programs work
vary from one language to another. The common feature
is that the variables within a procedure are localized
within that procedure. How they communicate with the
rest of the program, and what happens to them when the
sub-program has run its course varies from language to
language. Extended BASIC goes its own well defined way,
but is not at all flexible in how it does it.

Now let us look at how Extended BASIC handles
sub-programs. The RUNning of any Extended BASIC program
goes in two steps. The first is the prescan, that
interval of time after you type RUN and press ENTER, and
before anything happens. During this time the Extended
BASIC interpreter scans through the program, checking a
few things for correctness that it could not possibly
check as the lines were entered one by one, such as
there being a NEXT for each FOR. The TI BASICs do only
the most rudimentary syntax checking as each line is
entered, and leave detailed checking until each line is
executed. This is not the best way to do things but we
are stuck with it and it does have one use to be
mentioned later. At the same time Extended BASIC
extracts the names of all variables, sets aside space
for them, and sets up the procedure by which it
associates variable names with storage locations during
the running of a program. Just how Extended BASIC does
this is not immediately clear, but it must involve a
search through the variable names every time one is
encountered, and appears to trade off speed for economy
of storage.

Extended BASIC also recognizes which built-in
sub-programs are actually CALLed. How can it tell the
difference between a sub-program name and a variable
name? That is easy since built-in sub-program names are
always preceded by CALL. This is why sub-program names
are not reserved words and can also be used as variable
names. This process means that the slow search through
the GROM library tables is only done at pre-scan, and
BASIC then has its own list for each program of where. to
go in GROM for the GPL routine without having to conduct
the GROM search every time it encounters a sub-program
name while executing a program. In Command Mode the
computer has no way available to find user defined
sub-program names in an Extended BASIC program in memory
even in BREAK status. Extended BASIC also establishes
the process for looking up the DATA and IMAGE statements
in the program.

Well then, what does Extended BASIC do with user
sub-programs? First of all Extended BASIC locates the
sub-program names that are not built into the language.
It can do this by finding each name after a CALL or SUB
statement, and then looking it up in the GROM library
index of built-in sub-program names. You can run a
quick check on this process by entering the one line
program

100 CALL NOTHING

TI BASIC will go out of its tiny 26K brain and halt
execution with a BAD NAME IN 100 error message, while
Extended BASIC, being somewhat smarter, will try to
execute line 100, but halts with a SUBPROGRAM NOT FOUND
IN 100 message.

The Extended BASIC manual insists that all
sub-program code comes at the end of the program, with
nothing but sub-programs after the first SUB statement
(apart from REMarks which are ignored anyway). Now this
is a good way to do things as the main program is right
up front there for you to inspect. One of the great
annoyances about Pascal is that despite its pretensions
to structured style it forces you to hide away the main
program right at the end after all the procedures.
Extended BASIC then scans and establishes new variable
storage areas, starting with the variable names in the
SUB xxx(parameter list), for each sub-program from SUB
to SUBEND, as if . it were a separate program. It seems
that Extended BASIC keeps only a single master list for
sub-program names no matter where found, and consulted
whenever the interpreter encounters a CALL during
program execution. Any DATA statements are also thrown
into the common data pool. Try the following little
program to convince yourself.

100 DATA 1
110 READ X :: PRINT X :: READ X :: PRINT X
120 SUB NOTHING
130 DATA 2
140 SUBEND

September 1989 TIsHUG NEWS DIGEST 	 Page 10

When you RUN this program it makes no difference
that the second data item is apparently located in a
sub-program. IMAGEs behave likewise. On the other hand
DEFed functions, if you care to use them, are strictly
confined to the particular part of the program in which
they are defined, be it main or sub-program. During the
pre-scan DEFed names are kept within the allocation
process separately for each sub-program or the main
program. Once again try a little programming experiment
to illustrate the point.

100 DEF X=1 :: PRINT X;Y :: CALL SP(Y) 	PRINT X;Y
110 SUB SP(Z) 	DEF X=2 	Z=X 	DEF Y=3
120 SUBEND

This point is not explicitly made in the Extended
BASIC manual and has been the subject of misleading or
incorrect comment in magazines and newsletters. A
little reflection on how Extended BASIC handles the
details will usually clear up difficulties.

TI BASICs assign nominal values to all variables
mentioned in the program as part of the prescan, zero
for numeric and null for strings, unlike some languages
(some BASICs even) which will issue an error message if
an unassigned variable is presumed upon. This means
that Extended BASIC cannot work like TI Logo which has a
rule that if it finds an undefined variable within a
procedure it checks the chain of CALLing procedures
until it finds a value under that name. However, unlike
Pascal which erases all the information left within a
procedure when it is finished with it, Extended BASIC
retains from CALL to CALL the values of variables
entirely contained in the sub-program. Some recent
BASICs on other machines now allow subprogram variables
to be specified either as static (can be very handy) or
transient (which saves storage space in between CALLs),
but Extended BASIC is at the fully static end of the
spectrum. The values of variables transferred into the
sub-program through the SUB parameter list will of
course take on their newly passed values each time the
sub-program is CALLed. A little program will show the
difference.

100 FOR I=1 TO 9 :: CALL SBPR(0):: NEXT I
110 SUB SBPR(A):: A=A+1 	B=B+1 :: PRINT A;B
120 SUBEND

The first variable printed is reset to 0 each time
SBPR is called, while the second, B, is incremented from
its previous value each time. Array variables are
stored as a whole in one place in a program, within the
main program or sub-program in which the DIMension
statement for the array occurs. Extended BASIC does not
tolerate attempts to re-dimension arrays, so information
on arrays can only be passed down the chain of
sub-programs in one direction. Any attempt. by a
Extended BASIC sub-program to CALL itself, either
directly or indirectly from any sub-program CALLed from
the first, no matter how many times removed, will result
in an error. Recursive procedures, an essential part of
TI Logo, are not possible with Extended BASIC
sub-programs, since CALLing a sub-program does not set
up a new private library of values.

All of this discussion of the behaviour of TI
Extended BASIC comes from programming experience with
Version 110 of Extended BASIC on a TI99/4A with 1981
title screen. Earlier Versions and consoles are not
common in Australia, but TI generally seems to have
taken a lot of trouble to keep new versions of programs
compatible with the old. On the other hand TI has also
been very reticent about the details of how Extended
BASIC works. The Editor Assembler manual has very
little to say about it either, less by far even than it
tells about console BASIC.

Another simple programming experiment 	will
demonstrate what we mean by saying that Extended BASIC
sets up a separate BASIC program for each sub-program.
RUN the following

100 X=1 :: CALL SBPR :: BREAK
110 SUB SBPR 	X=2 :: BREAK :: SUBEND

When the program BREAKs examine the value of
variable X by entering the command PRINT X, and then
CONtinue to the next program BREAK, which this time will
be in the main program, where you can again examine
variable values.

We will now summarize the properties of Extended
BASIC sub-programs as procedures in complete Extended
BASIC programs, leaving the details of joining up the
various procedures to the next section.

(a) Extended BASIC treats each sub-program as a separate
program, building a distinct table of named variables
and DEFed functions for each.

(b) All DATA statements are treated as being in a common
pool equally accessible from all sub-programs or the
main program as are also IMAGE statements,
CHARacters, SPRITEs, COLORs, and File specifications.

(c) All other information is passed from the CALLing
main or sub-program by the parameter lists in CALL
and SUB statements. Extended BASIC does not provide
for declaration of common variables available on a
global basis to all sub-programs as can be done in
some languages.

(d)Variable values confined within a sub-program are
static, 	and 	preserved 	for the next time the
sub-program is CALLed. Some languages such as Pascal
delete all traces of a procedure after it has been
used.

(e) Extended BASIC sub-programs may not CALL themselves
directly or indirectly in a closed chain. Subject to
this restriction a sub-program may be CALLed from any
other sub-program.

(f) The MERGE command available in Extended BASIC with a
disk system (32K memory expansion optional) allows a
library of Extended BASIC sub-programs to be stored
on disk and incorporated as needed in other programis

Photograph of 2-way interface connectors

continued from page 3
A for loop consists of three

expressions, each separated by semicolons (";"). The
first expression is executed before anything else is
done. Then the second expression is tested and the
following statement executed in the same way as a
"while" loop. Finally, after the statement has been
executed, and before the test is repeated, the third
expression is executed. The expression "count++" means
exactly the same as "count = count + 1". It should be
noted that each of these loops only executes the single
statement that follows it. For this reason, curly
brackets are used in Figures 5a and 5b in order to make
two statements syntactically equivalent to a single
statement.

As with last month, do not forget to experiment
with the programs and concepts described in this months
article. 	The description of loops above was rather
quick and abstract. 	Write a few programs that use
loops, such as a multiplication table or a table of
squares, for example. The more you experiment, the
sooner you will master ec.99'.

Next Month
An introduction to sub-programs. 	These form a

basis for 'c99' programming, and simplify the task of
creating new programs.

0

(Page 11 	 TIsHUG NEWS DIGEST September 198

part 2
byl:YaigSheehan

In last months article on programming 'C', we had
an introductory look at PRINTF, learnt how to use the
compiler, as well as leaving you with a problem to
solve. Before reading this article, it would be
advisable to review the above material. This month we
will look further at PRINTF and have a short look at
simple loops.

The problem left at the end of last months article
was to figure out what that sequence of characters "\n"
did in PRINTF, since they were not printed on the
screen. For those of you who did attempt to solve this
(shame!), Figure 2 gives a program that will allow you
observe the effect of "\n".

/* What does "/n" do? */

extern printf();

main()
(printf("Some text\nMore text\n");
exit(0);

Figure 2 - The comment says it all.

Type in, compile and run the program in the same
manner as that described in last months article. When
the program is run, you will notice that "Some text" and
"More text" are displayed on two separate lines. The
"\n" is used to symbolize new line. Such a code is
required since two different PRINTFs will display their
strings directly following each other, not on separate
lines. In order to display the next item on the next
line, the "\n" is required. The program in Figure 3a,
and its output in Figure 3b, should illustrate this more
clearly.

/* Our third PRINTF demonstration */

extern printf();

main()

/* The next two lines... */
printf("ABCD\n");
printf("EFGH\n\n");

/* ...have the same effect as: */
printf("AB");
printf("CD\nEF");
printf("GH\n\n");

exit(0);

-65,536 and 65,535, and "char", which holds a single
character. Extensions to these basic types that are
available in 1c991 are arrays, pointers, and arrays of
pointers (more on these in a later article).

Unlike BASIC, variables must be declared before
they are used. By declare, it is meant that the
computer is made aware of the variables existence before
the program starts. Figure 4 shows a program that uses
numeric variables to hold a time.

/* Short routine to print a time that is set from */
/* within the program. 	 */

extern printf();

main()
(int hour, minute, second;

/* "Set the time */
hour 	= 9;
minute = 45;
second = 32;

/* Write time to screen */
printf("%d:%d:%d\n", hour, minute, second);

exit(0);

Figure 4 - Declaring some variables.

The variables are defined by placing the word "int"
followed by the names of the variables that are
required. Each variable name is separated by commas,
and a semicolon follows that last variable name.
Character variables are defined in a similar way, except
that "char" is used instead of "int". The three lines
that follow the declaration "set" the time and are
printed with the PRINTF function. 	Another special
feature of PRINTF is also shown in this program. 	Just
as "\n" is a symbol for new line, "%d" prints the next
variable in the argument list which must be an integer.
In this example, the value of "hour" is printed,
followed by a colon, then the value of "minute", another
colon, the value of "second" and finally a new line.

Of course, straight line programming can achieve
little more than the example in the first part.
However, loops permit much more complicated operations.
There are three simple types of loops: while,
do .. while and for. Figures 5a, 5b and 5c below show
each of these loops. The output for all three example
are the numbers 1 to 9, each printed on a new line.

/* The "while" loop */

extern printf();

main()
(int count;

Pro remnithl

c99 (11?
car

count = 1;
Figure 3a - Another PRINTF program. 	 while (count<10)

(printf("%d\n",count);
ABCD 	 count = count + 1;
EFGH

exit(0);
ABCD
EFGH

Figure 5a - A simple while loop.

/* The "do .. while" loop */

extern printf();

main()
(int count;

continued on page 3

Figure 3b - The output from the above program.

So far we have only printed messages on the screen.
To do useful tasks, variables and loops are required.
In 'c99', there are two basic variable types: "int",
which can hold a single integer (whole) number between

(September 1989 TIsHUG NEWS DIGEST 	Page 1

ITI:tnat netta-atl #2
by Martin—Sraoley, Nord:IC:oast 99'ers
Copyright 1988 by Martin A. Smoley

I am reserving the copyright on this material, but
I will allow the copying of this material by anyone
under the following conditions. (1) It must be copied
in its entirety with no changes. (2) If it is retyped,
credit must be given to myself and the NorthCoast 99ers,
as above. (3) The last major condition is that there
may not be any profit directly involved in the copying
or transfer of this material. In other words, Clubs can
use it in their newsletters and you can give a copy to
your friends as long as it is free.

First some of Marty's shorthand from last month.
Marty's theory will signify the beginning of some text
which should not be taken as fact, but as my
interpretation of an item. <E> means press <ENTER>.
Last for now is ">", the greater than sign. I will use
">" when program segments are displayed at the left of
every line. The position immediately to the right of
the ">" will be column one. Take the example >12345.
You should think of the number 1 as column one. The >
does not exist. It is for reference only, the same as
when you type in an Extended BASIC program, at the head
of each line you see > but it is not part of the
program. Also, in Tutorial 2, I have listed some
Command Files with line numbers instead of ">" in the
left most column. This is to allow for explanation of
specific lines only. Line numbers are not used in
Command Files, but from now on you will have to use
FunnelWeb or the Editor Assembler Editor to create the
Command Files, and this will be easier on me. Since we
are on the subject I might as well fill you in. The
editor which comes with TI-Base is not bad. By editor I
am referring to the part of TI-Base you use to write and
save Command Files. However, in TI-Base version 1.02,
when you enter about 33 lines you run out of memory
space. If you want or need to use the TI-Base editor
you could produce a bunch of Command Files that run each
other and get the job done quite well. I prefer to have
the luxury of writing larger files if needed. I also
prefer the use of embedded control codes as printer
commands, which at this point are not available in the
TI-Base Editor. There are two more reasons to
contemplate an outside editor. The first is that the
Command Processor that runs your Command Files truncates
or chops off all lines at 40 characters. This means you
can set tabs at 40 columns and after typing commands on
the right half of the page you can tab over past 40 and
type in comments. TI-Base will never see the comment so
they will not interfere with the program logic or slow
the speed down. Last, I print out lots of hard copies
to check my work. It is hard to print files created by
the TI-Base Editor in Int/Fix 40 Format.

TNAMES

Now I would like you to make a correction in the
database we created for Tutorial 1. The problem is in
the "XP" field of the database, "TNAMES". As it was
displayed in SCREEN FOUR the XP dates were "Month-Year",
(02-88), etc. This configuration does not sort to a
desirable conclusion in a character field (further
explanation later). In order to get what we want out of
a "SORT ON XP" command we need the year first and the
month second, that is "Year-Month", or (88-02). Since
we only have five names in TNAMES you can edit the file
and change them. I have placed a printout of TNAMES
below for your convenience. You are, of course, going
to have to learn something along the way. Let us say
that you are really trying to learn TI-Base and you were
working frantically on something when this newsletter
arrived. Reading to this point you want to start
editing immediately. In order to get going you must
CLOSE your present file, point TI-Base at disk 3 (which
is where you have the database named TNAMES), un-SORT
the file, and change the colours if you do not like the
present screen colours. If you had the little program

that is listed below, you could type DO EDTN and TI-Base
would do the rest. So let us make one. Fire up
FunnelWeb, choose the Formatter menu and press 1 for
EDITOR. Press CTRL[0] to change from word wrap mode.
You should see a hollow cursor. At that point you can
type in the Command File, EDTN. When this is done save
it to disk under the name EDTN/C, and print out a hard
copy which you can compare against the listing below.
Remember, you do not type in the line numbers, and any
line with an asterisk in the first column is a comment
line.

0001 * Command File to EDIT TNAMES
0002 * 	PROGRAM NAME = EDTN
0003

• 	

SAVED AS EDTN/C
0004
0005 CLOSE ALL
0006 SET DATDISK=DSK3.
0007 USE TNAMES
0008 SORT OFF
0009 TOP
0010 COLOR WHITE DARK-BLUE
0011 EDIT
0012 CLOSE ALL
0013 RETURN

Let us attack this little command file. 	Lines 1
through 4 can be anything you need to refresh your
memory about this program. Line 5 is a good idea for
every command file you own. This line has saved me many
times. If there are not any databases open, then 5 will
do nothing. Line 6 is not really needed and you can
leave it out. I do change drives on occasion with this
statement, but you should remember to change it back at
the end of the command file with a similar line. The
reason it is here is to demonstrate that the CLOSE ALL
should come at the very beginning of the command file
before you do something like line 6 and confuse the
system. Line 7 will open TNAMES on drive 3 as per line
6 or where ever DATDISK is located if line 6 is omitted.
You can also use "USE DSKx.TNAMES" where x is any drive
number, including a HORIZON RAMdisk, which I use. SORT
OFF will un-SORT the file and TOP will point TI-Base at
the first record in the database, as BOTTOM would point
TI-Base at the last record. Line 10 is all you need to
change the foreground and background colours. See page
4-2 of the manual for colours available.

And Now The Editor!

Line 11, EDIT, will put you in edit mode using
whatever database file is open. In this case TNAMES.
While you are in EDIT you can use arrow keys or enter to
move around. 	You can then type over any item you want
to change. At this time it is the XP field. 	This is
important! 	You can also use FCTN[6] to page up, or
enter, or FCTN[5] to page down to the next record. This
could cause a problem as the changes you have made will
not always be saved. If you make any changes you should
always use FCTN[8.1 to register, or save, your changes
and move to the next record. If you are on the last
record in the file, you should still press FCTN[8].
This will not end the editing session and you will
remain in the last record. You can then press FCTN[6]
to page up, or FCTN[9] to leave the editor. In this
case you would be returned to line 12 of our command
file and TNAMES would be closed. RETURN will end the
program and take you back to the dot prompt. Marty's
theory: If I am editing a file without a program, I
close the file with CLOSE or CLOSE ALL as soon as I have
finished. This allows TI-Base to update all of the
records. One last idea on this command file. I either
SET TALK ON in the first line of this command file or
more often it is already on when I run EDTN. This will
allow me to read lines 1 through 7 on the screen while
the database is being un-SORTed. I can then see if this
is actually the program I wanted, with the right
database, and that I have changed the location of the
DATDISK. The beauty of little command file programs
like this is that you can build on them and add things
you realize you want as you go along. The command file
will not forget any of the details from one day to the
next like I'd°. Also, once you have the first one done
you can copy it to a new name, (COPY DSK2.EDTN/C
DSK2.NEWED/C). You can then use MODIFY COMMAND NEWED to

(Page 13
	 TIsHUG NEWS DIGEST September 1989

edit this new command file to handle another database,
or do whatever you wish. It is much easier than typing
a completely new command file from scratch.

Important Tip!

I have discovered that a command file created with
FunnelWeb in DV/80 format can be copied or edited by
TI-Base and the DV/80 format will not be changed.
Therefore, if you create the command file below with
FunnelWeb and save it to the name BLNK/C on your
DATDISK, you can then copy it to a new name, re-edit it,
and save it with MODIFY COMMAND, and it will remain a
DV/80 file.

>SET TALK ON
>*
>* 	Command File BLNK
>*
>*
	

Save as BLNK/C
>*
>* Use as a seed file for DV/80
>*
>* Copy to a name of your choice
>* 	and type over this stuff.
>*
>RETURN

This means you will then be able to print the
command file with FunnelWeb for a hard copy. I try to
make sure that all my hard copies have the program name
and pertinent comments at the top. Then if I am writing
a new command file I can look over these hard copies and
then merge chunks of previously written material with
FunnelWeb LF Merge capabilities.

Let us get started on this month's project. 	We
need another database to try some new routines. Create
TNTST2 using the instructions below. Some of this is a
repeat so skip over the parts you know and get right to
the data entry. If this does not look slightly familiar
you should refer back to Tutorial number one for more
help.

>CLOSE ALL <E>
>CLEAR <E>
>CREATE TNTST2 <E>

When the CREATE screen comes up enter the following
fields, and when you enter the 0 (zero) in the last
column of field 4 press FCTN[8] and wait for TI-Base to
create the file for you.

arrows to move, enter to advance
FIELD DESCRIPTOR TYPE WIDTH DEC

1 TDATE
	

8
2 NUM1
	

7 	2
3 NUM2
	

7 	2
4 	ID
	

7 	0

After pressing FCTN[8] TI-Base will ask if you want
to enter data now. 	Answer yes and enter the data
supplied below. 	Take your time, there are a lot of
numbers here and you may get confused.

REC TDATE 	NUM1 	NUM2 	ID
0000 03/16/88 100.11 	100.22 0712881

0001 02/29/88 200.11
	

200.22 0713831

0002 08/27/88 300.11
	

300.22 0717851

0003 03/03/88 400.11
	

400.22 0820871

0004 12/30/87 500.11
	

500.22 0921861

0005 06/06/88 600.11
	

600.22 0717851

0006 04/22/88 700.11
	

700.22 0921861

0007 01/21/88 800.11
	

800.22 0713831

0008 05/12/88 900.11
	

900.22 0820871

0009 06/17/88 1000.11 1000.22 0713831

0010 03/01/88 1100.11 1100.22 0921861

0011 08/03/88 1200.11 1200.22 0713831

I double spaced the data above to make it as clear
as possible. 	If you make any mistakes, this is a good
time to convert EDTN. Type COPY DSK2.EDTN/C
DSK2.EDTST2/C <E>. After copying it use Modify Command
to change lines 1 through 4, and change line 7 to USE
TNTST2. Press FCTN[8] to save and you are done.
(Please note that numbers in angle brackets <27>
indicate one character whose ASCII code is in the angle
brackets. GT)

* Command File TNTST2

SET TALK OFF
SET RECNUM OFF
SET HEADING OFF
SET LINE=80

CLOSE ALL
SET DATDISK=DSK2.

CLEAR
COLOR WHITE DARK-RED
WRITE 2,8," TI-Base Demonstration to"
WRITE 4,8,"open two databases at one"
WRITE 6,6,"time and find data in File #2"
WRITE 8,6,"which is related to an ID No."
WRITE 10,7,"in File #1. With some very"
WRITE 12,7,"simple math implementation."
wRITE 14,9,.***********************"
WRITE 16,9," 	Running: TNTST2 	"
wRiTE 18,9,u***********************”
USE TNAMES

LOCAL CDATE D 8
WRITE 20,2," Enter the Date MM/DD/YY"
WRITE 21,2," Within Quotes"
READ 21,18,CDATE
WRITE 22,5,"Current Date: ",CDATE
SORT ON ID

CLOSE
USE TNTST2
SORT ON TDATE

CLOSE
SELECT 2
USE TNTST2
TOP
SELECT 1
USE TNAMES
TOP

LOCAL BLNK C 4
REPLACE BLNK WITH "<27>E<27>G"
PRINT BLNK

LOCAL TESTID N 7 0
LOCAL TEMP C 60
WHILE .NOT. (EDF)
REPLACE TEMP WITH "<27>E<27>G" TRIM(LN) ;

" " 	TRIM(FN) 	" " 	MI ;
" " 	ID

PRINT TEMP
REPLACE TESTID WITH 1.ID

DO DSK2.NUMTST2
COLOR WHITE DARK-BLUE

WRITE 17,9," Running: > TNTST2 <
SELECT 1

MOVE
ENDWHILE

CLOSE ALL
SET RECNUM ON
SET HEADING ON
SET TALK ON

RETURN

The command file on this page may look complicated,
but it is not. We will go through it together, and I
will try to explain the important parts. I hope you
have read Tutorial 1 so I can skim over the routine
parts and concentrate on the rest. Remember do not
enter the line numbers. Lines 1 through 9 are strictly
house keeping except for CLOSE ALL, and from now on I
will consider it house keeping. CLOSE ALL should be
part of every MAIN command file. By MAIN I am referring
to a command file that may run other command files, but

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

(September 1989 TIsHUG NEWS DIGEST 	Page 14

is not itself run by a previous command file. 	This
command file runs NUMTST2 as you can see in line 48.
You would not want to close all the files in NUMTST2 it
would bomb the program. I intend to have my data disk
in drive 2, line 9 clears the screen and changing the
screen colours has no real value. The WRITE statements
from 11 through 19 are to demonstrate user prompts. The
lines I have included are not important, but it will
give you some idea of ROW—COLUMW display. Line 20 is
the beginning of the real stuff. USE TNAMES opens that
database which it expects xo find on drive 2. After
line 8, TI—Base will expect to find all command files
and databases on drive 2, and I will not waste space
bringing it up again. There is a three line cluster
which is important. The lines are 20, 26, and 27.
Their purpose is to open, sort and close a file. This
is identical to lines 28, 29, and 30. However, lines 21
through 25 are of interest. Line 21 initializes the
LOCAL variable named CDATE, which is a D (date type)
entry with a length of 8 characters. A variable is a
place to store some type of information. In this case
it will be the Current DATE (CDATE) which you will type
in when asked. Lines 22 and 23 will ask you to enter
the date and 24 will place the cursor on the screen one
space after "Within Quotes", and wait for your input.
Note: with Version 1.02 all Characters, or Dates, which
are characters, must be input enclosed in quotation
marks, "09/01/88". Line 25 will write the message
"Current Date:" and display whatever you type in for
CDATE. For your information: I have initialized CDATE
close to its use for your benefit. I will continue this
procedure in this program, but from then on variables
should be initialized at the beginning of a command
file. This little chunk (lines 21-25) was stuck in here
because TI—Base likes to have a database open before you
READ to a variable. And line 25 WRITEs to screen line
22. You will notice that screen line 22 does not scroll,
like the rest. You can put a message there and it will
stay put until a CLEAR or another WRITE 22,x removes it.
Some of these things will be apparent when you run this
program, or DO TNTST2. Line 31 leads us into a very
complicated and confusing area. I will try to cover it
as thoroughly as possible. I will re—analyze it many
times in the future. It is that important.

Think of a Lazy Susan, or a rotatable table. This
table has 5 areas on it with low partitions between each
area. You can take from one to five file folders which
are filled with sheets of paper and place one in each of
the five areas. You must stand in one spot, but you can
SELECT one of the five areas to be positioned directly
in front of you. The area SELECTed, (1 to 5), is the
one where you can do the most work, but you can see over
the partitions to do limited things with the information
in the files which are not directly in front of you. If
you can grasp this concept and visualize the 5 different
slots, or areas, you are going to catch on fast.
Remembering, or keeping track of what can be done in
non—SELECTed slots is a challenge. 	Now, line 31 and
beyond. 	Line 31 SELECTs slot #2, 32 opens the database
named TNTST2 in slot #2 and 33 points TI—Base at the
first record in the file. Line 34 SELECTs slot #1, 35
opens the database named TNAMES in slot #1 and 36 points
TI—Base at the first record in that file. Remember that
both of these databases were previously SORTed to our
specifications. Well, we have done it. At this point
we have opened two databases at the same time. TNTST2
is open in slot #2 and TNAMES is open in slot #1, and if
we do not count all the junk I put in to add flash to
the program, we did it with about 12 lines of code. I
told you that we would get through this somehow. If you
examine and keep track of this stuff one piece at a
time, you will get the hang of it sooner than you think.

01 * Command file NUMTST2
02 *
03 CLEAR
04 	WRITE 15,9,"************************"
05 	WRITE 17,9," 	Running: NUMTST2 	"
06 	WRITE 19,9,"************************"
07 WAIT 2
08 COLOR WHITE DARK—GREEN
09 	WRITE 17,9,"Looking For ID No.",TESTID
10 WAIT 2
11 	LOCAL TNUM1 N 10 2

12 	LOCAL TNUM2 N 10 2
13 	LOCAL STNUM1 N 10 2
14 	LOCAL STNUM2 N 10 2
15 	LOCAL T C 8
16 REPLACE T WITH " TOTAL"
17 SELECT 2
18 TOP
19 REPLACE BLNK WITH "<27>4 "
20 PRINT BLNK
21 WHILE .NOT. (EOF)
22 	IF TESTID = ID
23 	PRINT TDATE,BLNK,NUM1,BLNK,NUM2 ;
24 	 BLNK,ID
25 	REPLACE STNUM1 WITH TNUM1 + NUM1
26 	REPLACE TNUM1 WITH STNUM1
27 	REPLACE STNUM2 WITH TNUM2 + NUM2
28 	REPLACE TNUM2 WITH STNUM2
29 	ENDIF
30 MOVE
31 ENDWHILE
32 REPLACE TEMP WITH " 	 I I ;

33 	" 	
34 PRINT TEMP
35 PRINT CDATE,TNUM1,TNUM2,T
36 PRINT BLNK
37 	REPLACE BLNK WITH " "
38 PRINT BLNK
39 RETURN

Note: although there is a command file just above,
we will be discussing the previous command file until we
reach line 48. Do not get confused. We just left line
36.

Lines 37, 38 and 39 make up a small group. Their
purpose is to initialize the LOCAL BLNK for 4
Characters. Fill it with the control codes that set the
printer to Emphasized and Double strike, and send the
codes to the printer. Entering the control codes can
only be done with TI—Writer or FunnelWeb at this time.
There will be some useless repetition concerning control
codes. I will explain later.

Line 40 and 41 initialize two more variables to be
used in the WHILE loop. TESTID is to hold a Number with
the length of 7 and 0 decimal places, and TEMP has been
discussed previously. Let us get into the meaty part.
The way I have set this loop up it will continue to do
everything from line 42 through line 53 until it reaches
the End Of File marker, (EOF), for the database TNAMES
which we have located in slot #1. Note: TNAMES is in
slot #1, and slot #1 is our currently SELECTed slot
because the last slot we worked with was slot #1, in
line #34. I will keep at this concept as we go along.

Line 42 has a simple but important job. 	It
immediately checks to see if we have hit the EOF in
whatever file is open, in the slot we are facing. In
this case it is slot 1 and the file is TNAMES. WHILE it
does does encounter the (EOF), it goes directly to the
line after the ENDWHILE, which in this case is line 54.

Lines 43, 44 and 45 are seen by TI—Base as one
continuous line because of the semicolon (;) at the end
of lines 42 and 43. So in this line TI—Base is going to
take the 2 control codes directly after WITH and hold
them. It will then TRIM the trailing blanks from LN and
attach it behind the control codes, and then it will
stick 2 spaces behind that. It will TRIM the trailing
blank spaces from FN, attach it to our growing string,
and then throw in another blank space. It will then
tack MI on that followed by 2 more spaces, and last but
not least ID. We did not TRIM MI because MI does not
have any extra blank spaces. We did not TRIM ID because
it is of (N)umeric type (a number) and TRIMming is only
used on (C)haracter strings. Then TI—Base takes this
whole mess we have put together and sticks it into the
variable we call TEMP.

Note: If you look back at line 41 you will see we
made TEMP with 60 spaces. When you fill up a variable
with all kinds of junk, like we just did, you must make
sure the variable is big enough to hold it all. In line
46 we PRINT all the junk we just put into TEMP.

(Page 15
	 TIsHUG NEWS DIGEST September 191

I would like to also mention that the junk we
filled TEMP with was related to TNAMES, (LN, FN, MI,
ID). Using this type of data gathering it is up to us
to be sure TI—Base is pointed at the right slot and that
that slot contains the database which holds the
information we want. In line 47 we put the same ID
number from above into the holding area we named TESTID.
The phrase 1.ID is another way to tell TI—Base that we
want the ID number from slot #1. At this time the 1 is
for your information only, and does not have any real
effect on the program except to assure me that I am
getting ID from slot #1. TI—Base's Author uses this
form of data gathering in the command file named
PROCESS, manual page 5-5.

Well here comes line 48. When TI—Base hits line 48
it leaves the command file named TNTST2 with everything
exactly as it is and executes the command file named
NUMTST2 on Disk 2. So now we start looking at the lines
in NUMTST2. Line 3 CLEARs the stuff left on the screen
by that other command file. Lines 4, 5 and 6 put up a
new message. TI—Base WAITs 2 seconds, then it changes
the colours to WHITE on DARK—GREEN. In the same instant
it reWRITEs a new message to line 17, followed by the
TESTID. This is the Identification Number we brought
with us from that other command file. We will use it to
find related data in the database you typed all those
numbers into a short time ago.

TI—Base WAITs a couple more seconds just for kicks
and we are on our way. Lines 11 through 15 initialize
all the variables we will need in this program. We can
also use variables from that other command file, but we
cannot send these variables (lines 11-15), back there.
If we needed to send something back over there, we could
put it in one of the variables from that command file
(like TEMP) just before we RETURN and then we could use
that information when we RETURNed to that other command
file. I did not use the names of the 2 command files in
that explanation because it was even more confusing that
way.

Line 16 places some blank spaces and the word TOTAL
into T for later use. In line 17 we SELECT slot #2,
which is where TI—Base holding the database TNTST2. TOP
in line 18 is only to make me feel secure. We should
already be at the TOP of the file. Lines 19 and 20
stick the control code for Italics into BLNK and PRINT
it.

Note two things: one, we needed a blank line
printed anyway, which this gives us, and two, that BLNK
came over from that other command file. Now, in line 21
we have another WHILE loop. The WHILE loop that runs
from line 21 through line 31 has the same definition I
gave earlier, but we will do different things while we
are inside this loop, and it will be looking for the
(EOF) for TNTST2 in slot #2.

I cannot believe I have written so much. Well,
since I am using up so much Newsletter space, here is a
promotion for my sponsor.

Join The NorthCoast 99'ers UG

NorthCoast has 3500 plus programs in its library
and produces a great little Newsletter. You can take
full advantage of the club's services by mail, and you
will be certain of receiving my wonderful tutorials in
the future. 	The membership cost for someone living in
the continental United States is only $15.00. 	You can
send your membership fee to me, Martin A. Smoley, 6149
Bryson Drive, Mentor, Ohio, 44060. Make all checks
payable to NorthCoast 99'ers User Group, do not send
cash, and I will expedite your membership personally.

OK, NUMTST2, line 22. When we get to this point
TI—Base is looking at the first record in NUMTST2, which
we have SELECTed in slot #2. Therefore, in line 22, IF
the value in TESTID matches or is equal to the value in
ID, then TI—Base will execute all the lines between the
IF (line 22) and the ENDIF (line 29). Remember, TESTID
holds the ID number which matches the LN, FN and MI we
just printed in from the database TNAMES. ID holds the
ID number from the current record of the database

TNTST2. 	I will not follow the program accurately
because TI—Base will not find a match to make the IF
true until the sixth record of this database. So let us
say it finds a match which makes line 22 true.

Line 23 prints the information held in TDATE, NUM1,
NUM2, and ID under the person's name from TNAMES. Lines
25 and 26 make up an accumulator that keeps a running
total of the NUM1 part of any matching records.
Similarly lines 27 and 28 keep a running total of the
numbers in NUM2 if the ID match is true. Coming from
line 28 to line 29, TI—Base ignores 29 and goes directly
to line 30. This line tells TI—Base to MOVE its pointer
to the next record in the file. So we are now looking
at the next record in the database TNTST2.

The ENDWHILE in line 31 is not ignored by TI—Base,
and TI—Base is sent back to line 21 to test the new ID
we now have against TESTID which remains the same. This
loop goes around and around. Each time it does, it
moves to the next record and then checks for (EOF). If
it is not the End Of File, and it has data to work on,
it immediately tests to see IF the ID numbers match,
etc.

When it runs out of data or hits the (EOF), line 21
sends TI—Base directly to line 32, the first statement
after the ENDWHILE. TI—Base then puts the dashed line
into TEMP and prints it. TI—Base then prints the
current date (CDATE), which you entered at the beginning
of that other command file, the totals in TNUM1 and
TNUM2, and the word TOTAL. In lines 37 and 38 TI—Base
turns Italics off, at the printer. We then RETURN to
that other command file named TNTST2. In doing so we
throw away all the LOCALs we initialized in this command
file.

When we land back in the command file named TNTST2
we land on line 49, which changes the screen colours.
Line 50 WRITEs this command files name to the screen
over screen line 17, which was left there by that other
command file. Line 51 SELECTs slot #1, so we are once
again working with TNAMES. Line 51 MOVEs TI—Base's
pointer to the next record, for a new name, and line 53
sends us back to line 42 to start the whole process over
again.

These two loops will ratchet through the names in
TNAMES one at a time, and for each name in TNAMES, will
completely search TNTST2 for any information that is
related to that name by comparing ID numbers in TNAMES
to ID numbers in TNTST2. It will continue to search
until it runs out of names, or records, in TNAMES. At
that time 42 will send TI—Base to line 54. ALL
databases will be CLOSEd, things that were turned off
will be turned back on and the whole thing is finished.
In line 58 you are RETURNed to the Dot Prompt.

That just about wraps this tutorial up except for a
few things I said I would get back to. I threw around a
lot of control codes in this set of command files. If
you are using FunnelWeb to produce your command files,
you can carry these ideas back to the LABEL program we
did last month. Fire up FunnelWeb and retype the
command file called LBLS1/C, but this time name it
LBLS2/C. There are only about 32 lines and most of them
are very short. Leave out the present line that reads
LOCAL BLNK C 1. Next, add lines 37, 38 and 39 from
TNTST2. Insert them between the line that says TOP and
WHILE .NOT.(E0F). This will cause your printer to print
in Emphasized and Double strike Mode. If you do not
like that, try what I did in line 43. You can
concatenate (1) control codes on the front and rear of
a character string. There are lots of ways to do it.
Before my mind goes completely I am giving up. I copied
the printout from this months stuff below. I would also
like' to add that this set of command files make a nice
club demonstration.

Vivannovitch Elexxie I. 0712881
03/16/88 	100.11 	100.22 	0712881

09/11/88 	100.11 	100.22 	TOTAL

condnuedonpage26

September 1989 TIsHUG NEWS DIGEST 	 Page 16

111111TaTIMEIdaldl

by Robert Brown

Welcome to a new look Games Info. Stephen has now
lost interest in the TI99/4A and has left it up to
myself to continue these excellent articles. I am
heavily involved in school and I have not had time to
write more excellent, fab articles, so since this is in
the holidays, I can now right many articles in store for
future issues of the TND.

In this new look issue, we continue our series on
Zork, this month Zork III...

Well, you have come a long way since you first
stood by the mailbox outside the house in the forest.
You have defeated the thief, outwitted the Wizard of
Frobozz, and now, you stand at the foot of the endless
stairs, ready to embark on the final part of your
journey. So, pick up the lamp, turn it on, and head
along due South until you come to the shore of the lake.

Drop the lamp (say goodbye to it; you will not be
seeing it again), and jump into the lake. 	Brrrr!!!
Pretty cold! 	So, do not stay in there long; swim west
and then go South into the Scenic Vista. 	Kind of a
strange place, with changing numbers on the wall and a
bare table.., not quite all that scenic, eh? Well, get
the torch, and wait for the number to change to "II."
Then, touch the table.

My oh my! You are in a room from Zork II, Room 8,
as a matter of fact. However, you do not have much time
to sight see, so get the can of Grue repellant, then try
moving East, and you will find yourself back in Scenic
Vista again. Now wait for the number to change to
"III," then touch the table again. This time, you are
in a Damp Passage. Drop the torch, and just wait there
until you are pulled back to Scenic Vista.

Okay, you are finished here, so move along North to
the shore, and again jump in the lake. Splash! It has
not gotten any warmer; in fact, you just dropped the can
of repellant. So, go Down, and you will be on the lake
bottom. Ah, there it is! But, could there be'something
else there, too? "Get all", and you will have not only
the repellant but also an amulet. This is one of those
"wonderful" variable things; it may take more than one
try on your part to get both items. In the meantime,
you cannot stay in the icy waters too long, and sooner
or later a hungry fish will come looking for you.

Therefore, it is best to save the game before you
jump in from the Western Shore. So if you die in the
water, or get eaten by the fish, or picked up by the Roc
(while you are swimming on the surface), you do not have
to start all the way back at the beginning. By the way,
this is the only one of the Zorks where you do not lose
points if you die. But, all the items you have
collected so far get scattered all around, and it is
time consuming to go look for them.

Okay, now you have the can and the amulet, so head
Up to the surface, then South to the Southern shore.
You can see a cave to the South, and it looks kind of
dark. In fact, it *is* dark in there, which is why you
have the repellant. So, spray the smelly stuff on
yourself, and go South, and you will find yourself in a
Dark Place. Go South again, then East, and you will be
in the key room. Whew! At least there is some light in
here! And by the light you can see a strange key. Get
the key, then move the manhole cover and go down.

And here you are on an aqueduct. Since you cannot
go back (the Grue repellant would not have lasted that
long), you might as well go forward. So, just head
along North and you will come to the Water Slide. Go
North down the slide, and guess where you are? 	In the
Damp Passage! 	And there is the torch, so pick it up,
because you are certainly going to need a light source,
especially when you think of where you are going next.

So, from the Damp Passage hike along West to the
Junction (you cannot get the sword out of the rock, so
do not even try), then South into Creepy Crawl, and
Southwest into the Shadow Land. Here we come to another
variable portion of the game. You will have to wander
around in the Shadow Land until a cloaked and hooded
figure appears. When that happens, the sword will
suddenly materialize in your hand, and you will be able
to fight.

However, since there is no way of telling when that
will happen, you just have to keep moving around until
it does. 	At least you will get a chance to practice
some elementary map—making! 	Also, this is the most
dangerous part of the game, as the figure is quite
capable of killing you, too! So, best to save before
you enter Shadow Land.

When the mysterious figure finally appears, attack
him with your sword until he is badly wounded and cannot
defend himself. At that point, get his hood. The
figure will then disappear, leaving the cloak behind.
Get that also. Now, you have,to get out of here; and I
cannot tell you exactly how, since there is no way of
knowing exactly where you were when the fight started.
However, if you go Eastwards, you will exit the Shadow
Land at either the Creepy Crawl or the Foggy Room. From
either place, go North to the Junction.

From the Junction, it is West through the Barren
Area, and West again to the Cliff. Bet you just cannot
wait to climb down the rope, huh? Well, pick up the
bread first, then go down to the ledge. Well, well, a
chest! Too bad you do not have a key to open it. In
fact, there is no way for you to open it at all. But do
not despair, there is a way of doing it.

Just wait around and someone will come along the
top of the cliff. You may not really trust him, but tie
the rope to the chest when he asks, and wait around some
more. Eventually, he will return and help you back up
the cliff. He will also give you a staff, which is what
you are really after here. Take the staff, then go back
down to the ledge, and from there, to the Cliff Base.

Now trek South to the Flathead Ocean, and do a
little more waiting. Sooner or later a ship will come
floating by. As soon as you see it, say: "Hello,
Sailor." The man in the ship will throw something onto
the beach for you. Take a look, and you will see it is
a vial. It will come in handy later, so pick it up.
Now comes the fun part: You have to wait for the
earthquake. (Notice how you have been doing a lot of

waiting around? I hope you are a patient person!)

While you are waiting, you might want to wander
around a little, although you have been to most of the
accessible places by now. In any case, wherever you
are, once the earthquake hits, make your way to the
Creepy Crawl, and from there East into the Tight
Squeeze, then East again into the Crystal Grotto. Then
all the way South to the Great Door, and East into the
Museum Entrance.

Now, open the East door, then go North into the
Museum. Look at the gold machine (it is a time machine,
in case you were wondering), then set the dial to 776.
Here comes the fun part: Push the machine South into the
Entrance, then East into the Jewel Room. Get into the
machine, and push the button. Aha! Now you are back in
776 GUE, but the time machine seems to have vanished!
No matter, wait for the guards to leave, then get the
ring (and *only* the ring!), then open the door, go out
into the Entrance, open the North door and go North.

By golly, the machine is right there! Put the ring
under the seat, turn the dial to 948, get in, and push
the button. Whew, you are back in the right time period
again. Get out of the machine, look under the seat (you
will get the ring automatically when you do this), then
back South, and South again, to the Royal Puzzle.

Okay folks, you are about to enter the absolute
nastiest part of the game. 	You must follow the

Page 17 	 TIsHUG NEWS DIGEST September 1989

instructions *EXACTLY* as given, or you will never get
out. And, since it would be easy to make a mistake
here, I strongly recommend you save the game.

1. Go Down the hole, then push the South wall.
Then go East, South, East, East. Push the South wall,
get the book, and push the South wall again.

2. Push the West wall twice. Then go East, South,
and push the East wall.

3. Now, go straight North until you come to the
marble wall, and push the East wall.

4. Now, go West, South, South, South, South, East,
East, North, North, North, and push the West wall.

5. From there, go East, South, South, South, West,
West, West, West, North, North, North, West, North.
Push the East wall three times.

6. Now, West, West, South, South, East, East,
South, and push the East wall.

7. Okay, now West, West, West, North, North, North,
East, East, and push the South wall two times.

8. From there, West, South, South, East, East,
North, and push the West wall two times.

9. Now, South, West, and push the North wall until
it will not move any more.

10.Then West and North. 	Finally! 	You have
maneuvered the ladder under the hole (which was the
purpose of all this pushing and running around), and now
you can just go up and out! WHEW!!!

Okay, you have solved the Royal Puzzle and you have
the book, so go North to the Museum Entrance, then open
the East door and get your other stuff from the Jewel
Room. Then it is back West to the Great Door, and from
there back to the Junction. Now, East into the Damp
Passage, and NE to the Engravings Room.

Well, we have here yet another (!) of those
variable events: Sooner or later, an old man will be
sleeping here. If he is not there the first time you
arrive, walk around a little and return. When you
finally do see him, wake him up and give him the bread.
He will eat it and then make visible to you a secret
door. He will then vanish.

Okay, you are getting closer to the end! Open the
door, and go into the Button Room, then North to the
Beam Room. Put the sword in the beam, then go back to
the Button Room and push the button. Now, back North to
the Beam Room and North again into the Mirror Room.
There will be an opening in the Mirror, so go North one
more time, and you will be inside.

Now, do not let 	the 	long 	and 	complicated
descriptions scare you! It is not really as bad as you
think (it is worse! Hehehehe ..just kidding!). First,
raise the short pole. Then, push the white panel twice.
Now, push the pine panel, and go North.

Okay, so here you are, standing a little too close
for comfort to the Guardians of Zork. If I were you, I
would not try going past them quite yet! Open the vial,
then drink the liquid. 	While nothing seems to have
happened, you have in fact become invisible. 	Now you
can walk North until you come to the locked door. Knock
on the door, and the Dungeon Master will open it and let
you in.

All right, hang in there, you have reached the end
game! Go North, then West, then North again. The
Dungeon Master will be following you. Go North to the
Parapet, set the dial to 4, and push the button. Now,
go South, open the cell door, and step inside. The
Dungeon Master will not follow you in. Once inside, you
will notice a bronze door in one of the walls. However,
you cannot open it yet! Something else has to be done.

And it will have to be done by someone else. So, first
tell the Dungeon Master to go to the Parapet. Then tell
him to turn the dial to 1, and then tell him to push the
button.

All right!! The magic moment has arrived! 	Unlock
the bronze door with the key, open the door, and go
South!

And there you have it, the solution to all the Zork
Family. Well not really. Beyond Zork has been
released, but in a different format, ie text and
graphics, a new style of adventure for Infocom (but not
available on the TI99/4A). Well that wraps up another
well designed NEW LOOK GAMES INFO. I hope you enjoyed
it and much as I did.

In coming issues, we have a look at Karate (yes now
available for the TI99/4A) and many other adventures for
the TI99/4A, as well as drawn maps on the adventures
(see coming TNDs).

Well, until next month (cannot wait!!), see ya.
Do not forget you can write to me at 141 Beecroft

Road, Beecroft 2119 or leave mail on the BBS to GAMES.

continuedfrompage8
After you have typed in a lot of records, or tuples

into your data base, you will probably want to do
something with them. There are many ways to use the
data. Most likely you will want to create a "REPORT"; a
print out of part or all of the data. You might want
the data in the "REPORT" to be sorted by one of the
fields (remember, columns) in your report. You might
want everyone who lives in the (02) area code. In some
databases, you are limited in how you can access your
data. More sophisticated databases have what is known
as a "QUERY" capability; really some way to ask
"QUESTIONS" of your data base, such as "WHO ARE THE
PEOPLE IN MY PHONE LIST NAMED FRED, AND WHAT ARE THEIR
TELEPHONE NUMBERS?".

Of course, most databases will not simply let you
enter a sentence like that one. That is the way to get
data from the data base in the user's view. Usually you
have to use a "QUERY LANGUAGE". This language is a
semi—algebraic way of getting certain records from the
data base. For instance, to get data from one popular
PC data base you would type "SELECT ALL FROM MYPHONELIST
WHERE NAME EQUALS FRED". After entering that "QUERY",
the data base would list all the data base records with
the name "FRED" in them, and incidently their phone
numbers as well. Again, this is a conceptual approach.
The data base might convert the conceptual version of
the query into something like "select, myphonelist,
name=fred". The conceptual way is considerably easier
to understand.

In order to get the list of "FREDs" sorted, in some
data bases you have to make another table of just people
named Fred, and then have the data base sort it in
alphabetical order. Some data bases will let you
combine this into one step.

As mentioned above, once you have entered data into
the data base you will want to create a report. Almost
all data bases will let you designate, to some degree or
another, how you want selected records printed on the
page; the order of the fields, etc. Some will let you
draw lines and boxes around fields, even. This
designation is called the "REPORT". Sometimes it too is
saved as part of the schema, but usually not.

. As mentioned above. 	Mere are several type of
data bases. The two found in the T1-99/4A and Geneve
world are the relational and flat file. Before you can
understand them, you should have a firm grasp of the
concepts elucidated above. We will tell you Lhe
difference between the two in the next issue 	of
Beginners Corner. 	 C)

(September 1989 TIsHUG NEWS DIGEST 	Page 18)

TipS TIMM ljilM TigeTC11111) #34

tyy Jinn Peterson, Tigercub Software, USA

Tigercub Software
156 Collingwood Ave
Columbus, OH 43213

Distributed by Tigercub Software to TI99/4A Users
Groups for promotional purposes and in exchange for
their newsletters. May be reprinted by non-profit users
groups, with credit to Tigercub Software.

Over 130 original programs in BASIC and Extended
BASIC, available on cassette or disk, only $3 each plus
$1.50 per order for postage and packing. Entertainment,
education, programmer's utilities.

Descriptive catalog $1, deductable from your first
order.

Tips from The Tigercub, a full disk containing the
complete contents of this newsletter numbers 1 through
14, 50 original programs and files, just $15 postpaid.

Tips from the Tigercub volume 2, another disk full,
complete contents of numbers 15 through 24, over 60
files and programs, also just $15 postpaid. Or, both
for $27 postpaid.

Nuts & Bolts (No. 1), a full disk of 100 Extended
BASIC utility subprograms in merge format, ready to
merge into your own programs. Plus the Tigercub
Menuloader, a tutorial on using subprograms, and 5 pages
of documentation with an example of the use of each
subprogram. All for just $19.95 postpaid.

Nuts & Bolts No. 2, another full disk of 108
utility subprograms in merge format, all new and fully
compatible with the last, and with 10 pages of
documentation and examples. Also $19.95 postpaid, or
both Nuts & Bolts disks for $37 postpaid.

Tigercub Full Disk Collections, just $12 postpaid!
Each of these contains either 5 or 6 of my regular $3
catalog programs, and the remaining disk space has been
filled with some of the best public domain programs of
the same category. I am not selling public doMain
programs; my own programs on these disks are greatly
discounted from their usual price, and the public domain
is a free bonus!

TIGERCUB'S BEST 	 PROGRAMMING TUTOR
PROGRAMMER'S UTILITIES BRAIN GAMES BRAIN TEASERS
BRAIN BUSTERS! MANEUVERING GAMES 	ACTION GAMES
REFLEX AND CONCENTRATION 	TWO-PLAYER GAMES
KID'S GAMES MORE GAMES WORD GAMES ELEMENTARY MATH
MIDDLE/HIGH SCHOOL MATH 	VOCABULARY AND READING
MUSICAL EDUCATION 	KALEIDOSCOPES AND DISPLAYS

For descriptions of these send a dollar for my
catalog!

While they last, and the supply is limited, I will
sell a single Texas Instruments cassette interface cable
for $2 with any order for cassette software.

My sincere apologies for a serious goof in the Sort
Watcher program in Tips #33. The GOSUB in line 120
should go to line 1020, not 32767! Also, in line 210
please change the 920 to 930.

Steven Shouse of TIRUG sent this improvement to the
GRAPHPAGE in Tips #33 -

100 OPEN #1:"DSK1.GRAPHPAGE",OUTPUT
PRINT #1:TAB(4);RPT$("2,75):: FOR J=57 TO 1 STEP -1

J$=STR$(J)

The 99/4A National Assistance Group (which is a
commercial enterprise, not a user's group, although they
charge a fee to "join"), sells public domain programs at
$3 each, but you cannot order individual programs, you
have to buy a package deal.

I sell good copyrighted programs, written by
myself, for $3, I let you pick and choose, even just one
program if you want. I do not pretend to be a user's
group (I know that Tigercub often gets misspelled as
Tiger Club but I cannot help that!), and I do not charge
you to "join".

The reason for these remarks is that one of the
public domain programs sold by that group is listed as
SAMARKAND. It may be only an odd coincidence that I
wrote a random music composer entitled SONG OF SAMARKAND
and put it in public domain because I did not think it
was worth selling. Anyway, if you want it, here it is.

100 CALL CLEAR
110 REM - SONG OF SAMARKAND programmed by Jim Peterson -

Version 3
120 RANDOMIZE
130 CALL CHAR(94,"00")
140 CALL CHAR(95,"00")
150 CALL SCREEN(11)
160 PRINT "From the Third Movement of":"":" 	THE

NEVER-ENDING SONG":"":" 	by Emir Abdul
Aziz".""." 	 IT

170 PRINT • • • • • • • • • •
180 FOR J=1 TO 23
190 CALL

HCHAR(12,5+J,ASC(SEOW"THE"SONG"OF"SAMARKANDMJ,
1)))

200 NEXT J
210 CALL HCHAR(11,6,94,23)
220 CALL HCHAR(13,6,94,23)
230 M$="187EFF42668124C3DB665A18423C5AA542817E995A001800

24BDBD3C667E66668100243C0042187E5AA53CC3427E3C8181
7E5AE7669924187E429924008181DBC3"

240 DIM N(30),S(21)
250 F=220
260 FOR J=0 TO 36
270 X=X+1+12*(X=12)
280 IF (X=2)+(X=5)+(X=7)+(X=10)+(X=12)THEN 310
290 Y=Y+1
300 N(Y)=INT(F*(1.059463094"J))
310 NEXT J
320 CALL HCHAR(1,1,32,320)
330 CALL VCHAR(1,31,95,96)
340 CALL HCHAR(24,1,95,64)
350 CV=2
360 K=8
370 K=K-INT(5*RND+1)+INT(5*RND+1)+2*(K>21)-2*(K<l)
380 IF (K<1)+(K>21)THEN 370
390 CALL SOUND(-999,N(K),O,N(K)*CV,0,3.75*N(K),30,-4,5)
400 X=INT(40*RND)
410 IF X>12 THEN 370
420 ON X+1 GOTO 430,490,540,580,660,730,770,850,870,

970,990,1040,1060
430 IF INT(4*RND)<3 THEN 390
440 FOR T=K TO 20
450 CALL SOUND(-999,N(T),0)
460 NEXT T
470 K=1
480 GOTO 390
490 FOR T=K TO 1 STEP -1
500 CALL SOUND(-999,N(T),0)
510 NEXT T
520 K=T+1
530 GOTO 390
540 FOR T=K TO 1 STEP -1
550 CALL SOUND(-999,30000,30,30000,30,3.75*N(T),30,-4,0)
560 NEXT T
570 GOTO 370
580 FOR TT=K TO K-INT(5*RND+1)STEP -1
590 IF TT<2 THEN 370
600 FOR T=1 TO INT(7*RND+3)
610 CALL SOUND(-999,N(TT),0,2*N(TT),0)
620 CALL SOUND(-999,1.03*N(TT),0,2.06*N(TT),0)
630 NEXT T
640 NEXT TT
650 GOTO 370
660 FOR T=K TO K-INT(3*RND+3)STEP -1
670 IF T<2 THEN 370
680 FOR D=0 TO 15 STEP 2
690 CALL SOUND(-999,2*N(T),D,3*N(T),D,3.75*N(T),30,-4,0)
700 NEXT D
710 NEXT T
720 GOTO 370
730 FOR X=1 TO 15
740 CALL SOUND(-999,N(X),O,N(16-X),O,N(1),30,-4,5)
750 NEXT X
760 GOTO 370
770 FOR T=K TO K-INT(4*RND+1)STEP -1
780 IF T<2 THEN 370

Page 19
	

TIsHUG NEWS DIGEST September 1989

790 CALL SOUND(100,N(T),0,2*N(T),0,3.75*N(T),30,-4,5)
800 FOR TT=N(T)TO N(T-1)STEP -10
810 CALL SOUND(-999,TT,0,2*TT,0,3.75*TT,30,-4,5)
820 NEXT TT
830 NEXT T
840 GOTO 370
850 CALL CHAR(32,SEWM$,2*INT(57*RND+1)-1,16))
860 GOTO 370
870 IF INT(4*RND)<3 THEN 390
880 CALL SOUND(-3000,N(K),0,2*N(K),0,3.75*N(K),30,-4,0)
890 FOR J=1 TO INT(5*RND+5)
900 S(J)=INT(21*RND+1)
910 NEXT J
920 CALL SOUND(-1,30000,30)
930 FOR T=1 TO J-1
940 CALL SOUND(-999,N(S(T)),O,N(S(T))/1.68,0,

3.75*N(S(T)),30,-4,0)
950 NEXT T
960 GOTO 370
970 CALL CHAR(95,SEGUMS,2*INT(57*RND+1)-1,16))
980 GOTO 370
990 IF INT(4*RND)<3 THEN 390
1000 FOR J=220 TO 660 STEP 20
1010 CALL SOUND(-999,J,0,880-J,0,3.75*N(12),30,-4,0)
1020 NEXT J
1030 GOTO 370
1040 CALL CHAR(32,"0")
1050 GOTO 390
1060 CV=CV+(CV=2)/2-0.5*(CV=1.5)
1070 GOTO 370

If you are trying to exchange newsletters and are
using the listings of user groups published by Texas
Instruments and by others, you are finding that they are
way out of date! Send me a disk and some return postage
- or just send $1.50 - and I will send you my address
list of about 140 groups I exchange with. It is updated
every month from return addresses on newsletters I
receive.

For those of us who are still struggling along with
one disk drive, this routine will transfer any number of
D/V80 files, totalling up to about 42 sectors, from one
disk to another in one pass, and will optionally save
under changed names.

100 DIM M$(2000),F$(25),C$(25):: CALL CLEAR ::
T$=CHR$(1)

110 DISPLAY AT(8,6):"TIGERCUB FILEMOVER"
DISPLAY AT(15,1):"PRESS ENTER WHEN FINISHED"

120 F=F+1 :: IF F>25 THEN 130 ::
DISPLAY AT(12,1):"FILENAME? DSK"&T$
ACCEPT AT(12,14)SIZE(-12)BEEP:F$(F):: IF F$(F)<>T$
THEN 120

130 F=F-1 :: FOR J=1 TO F 	ON ERROR 260 ::
OPEN #1:"DSK"&F$0),INPUT
DISPLAY AT(12,1):"READING "&SEG$(F$0),3,255)

140 X=X+1 	LINPUT #1:M$(X) 	C=C+LEN(MgX))
150 IF C>10000 THEN DISPLAY AT(20,1):"INSUFFICIENT

MEMORY FOR "&SEG$(F$0),3,255):: GOTO 190
160 IF EOF(1)<>1 THEN 140
170 X=X+1 	M$(X)=T$:: CLOSE #1
180 W=W+1 :: NEXT J
190 X=0 :: DISPLAY AT(15,1):""

DISPLAY AT(12,1):"INSERT COPY DISK AND
PRESS":"ENTER"

200 CALL KEY(0,K,ST):: IF ST=0 THEN 200 ::
DISPLAY AT(13,1):""

210 FOR J=1 TO W 	IF F$(J)=CHR$(2)THEN 230
220 DISPLAY AT(12,1):"FILENAME? DSK"&F$0)::

ACCEPT AT(12,14)SIZE(-12)BEEP:C$0)
230 NEXT J :: FOR J=1 TO W 	IF F$0)=CHR$(2)THEN 250

:: OPEN #1:"DSK"&C$0),OUTPUT
DISPLAY AT(12,1):"SAVING "&SEG$(C$0),3,255)

240 X=X+1 :: IF M$(X)<>T$ THEN PRINT #1:M$(X):: GOTO 240
ELSE CLOSE #1

250 NEXT J :: END
260 ON ERROR STOP :: DISPLAY AT(22,1):"CANNOT OPEN

"&SEGS(F$0),3,255):: F$(j)=CHR$(2):: RETURN 180

Here is a very ingenious idea published in the
Corpus Christi User Group newsletter by H. Macdonald.
He could not find the author or newsletter which gave
him the idea, so if you know, tell me and I will print
due credit.

I have modified it a bit. This short routine will
load quickly and enable you to bypass loading and
running the Menu Loader program on a disk when you
already know the filename of the program you want to
run.

Save the Menu Loader under the filename MENULOADER
and save this routine under the filename LOAD. Be sure
to save it before you try it, because it erases itself!

100 CALL INIT :: CALL LOAD(-31806,16)::
DISPLAY AT(12,1)ERASE ALL:"RUN MENULOADER? (Y/N)"

110 CALL KEY(3,K,S):: IF S=0 THEN 110 ELSE IF K=78 THEN
130 ELSE DISPLAY AT(12,1)ERASE ALL:"LOADING
MENULOADER" :: RUN "DSK1.MENULOADER"

130 CALL CLEAR :: CALL LOAD(-31952,55,215,55,215):: END

Here is one with a bit of a surprise at the end.
Key the v,A in line 190 as FCTNIVJ, CTRIA,], CTRIAAj.

100 CALL CLEAR :: CALL SCREEN(16)
110 DATA 80C0A09088445269,0000000000007EB1,

0103050911224A96,0000000101010100,21409C2A492A1CCO,
9999336600001824

120 DATA 8482395492543903,0000000000808080,
E0809880E7702010,18244281423C0000,0F190307E1020408,
00000OFF80808080

130 DATA 000F13E620221D00,0CFB34670A22DC00,814224FF,
30DF2CC641443B00,00F0C86F0447B87F,00000OFFO1F901F9

140 DATA 8OFF808686808686,00FF006666006666,
OOFF003F3F3F3F3F,01FF01F9F9F9F9F9,8086868086868093,
0066660066660OFF

150 DATA 00666600666600E6,3F3F3F3F3F3F3F3F,
F9F9F9F9F9F9F9F9,00000000E01C3AE2,938OFF,FFOOFF,
E60OFF0007080807

160 DATA 3FOOFFOOFF1988FF,F901FFOOFF8744FF,
1F0909OFF3198AFC

170 FOR CH=96 TO 129 :: READ CH$:: CALL CHAR(CH,CH$)::
NEXT CH

180 DISPLAY AT(1,14)ERASE ALL:"sab"
DISPLAY AT(2,13):"cdefg" :: DISPLAY AT(3,14):"hij"
:: DISPLAY AT(4,12):"klmnopq"

190 DISPLAY AT(5,12):"rsssstu"
DISPLAY AT(6,12):"vwwwxyzr
DISPLAY AT(7,12):"1))) v,A"
DISPLAY AT(9,12):"TIGERCUB"

200 DISPLAY AT(11,12):"SOFTWARE"
DISPLAY AT(13,7):"156 COLLINGWOOD AVE." ::
DISPLAY AT(15,7):" COLUMBUS OH 43213" ::
CALL HIGHCHAR

210 GOTO 210
220 SUB HIGHCHAR :: FOR CH=32 TO 129 ::

CALL CHARPAT(CH,CH$)::
X$=SEWCH$,3,12)&SEG$(CH$,13,4)::
CALL CHAR(CH,X$):: NEXT CH :: SUBEND

Thanks to Ramon Martinez in the Orange County User
Group news letter - a double NEXT is accepted if the
pre-scan is turned off.

100 J=1
110 !@P-
120 FOR J=1 TO 100 :: IF J/100INT(J/10)THEN NEXT J ELSE

PRINT J :: NEXT J

A computer without a program is like a car wiLhoul

gas. If everyone who filled up at a self-service pulup

drove away without paying, how soon would all the gas
stations be closed?

Memory full! Jim Peterson

continued from page 24

Tulin ; 	Model 	: HDS : CYL : RWC : WP 	Notes
	+— 	 -+ — + 	

: 	TL 226 	: 	4 	640 	640 	640 Wedge servo-do
*-- 	 *-- *— 	+ 	+ not use on IBM XI

TL 238 	: 	4 	: 640 : 	 : controller

: 	TL 240 	: 	6 	: 640 : 640 : 640 :

TL 258 	6 	: 640 :
+--- 	+— 	+— 	+— 	 +
: 	TL 326 	4 	: 640

-+— 	+ 	
: 	TL 340 	: 	6 	: 640
	+ 	--+
	 + 0

(September 1989 TIsHUG NEWS DIGEST 	Page 20)

Hard disks have a provision for 2 ribbon cables:
one for data (20 wires) and the other for control
signals (34 wires). Apart from the high rotational
velocity (approximately 3000 RPM), it is the separate
data cable that contributes to the high speed access of
a hard disk system.

Configuring the HFDCC

Ensure that the DIP switch settings on the HFDCC
are correctly set: one is for configuring floppy drives
and the other sets the Communications Register Unit
(CRU) address that the card will occupy. The address,
if changed from the default of 1100, must not clash with
any other device CRU.

Configuring the Hard Disk

As with floppies, hard disks must be set up to
respond to a drive identifier (eg WSD1 for the #1 hard
disk) and only the last hard drive (if there is more
than one) should have the terminating resistor pack.
The 34 conductor cable that connects to the hard
drive(s) must not be shared with any floppy drives.

Using the Hard Drive

The Myarc manual has step by step instructions on
how to format and use the hard disk system. The only
other advice is to ensure that you have a means of
backing up your data as hard disks can crash in a big
way without warning.

PS. 	Rolf, all I need now to enjoy the benefits of
a hard disk system is a HFDCC.

Lon 	 0

Quick Hurd Disk Back-up
by Garry Christensen, Brisbane

It is important to back up your hard drive on a
regular basis but I am sure you are aware of the time
that it takes. This program is not a replacement for a
proper back-up but may suffice for the more regular
ones.

If you are like me, you will not have used half of
the hard disk. The other half is just sitting there
(spinning actually) blank.

The BACKUP program will copy, sector for sector,
the contents of the disk onto the second, unused half.
If necessary you can recover the sectors and write them
onto to first half.

I have tried to anticipate all situations that may
occur when backing up your hard drive. The program
checks that less than half of the disk has been used and
issues an error if some of the contents will be erased.

At this stage, this program is designed for those
drives with a clean bit-map. Sectors that have been
marked as unusable may prevent this program from being
used.

Warning: 	Performing a restore will over write the
contents of the first half of the disk and any files
created or edited since the back-up will be lost.
Performing a restore without first backing the disk up
will result in the loss of all data on the disk.

Instructions for use.

The operation of this program is as simple as
following the on-screen prompts. You will first be
requested to enter the drive number.

After this is done, select the function required,
back-up or restore. This is done with FCTN[1.1 and
FCTNL2.1 keys respectively to prevent the possibility of
key-bounce or the speed of the Geneve 9640 from causing
the selection of the wrong function.

RETii 	ifrlig447
072witturo011etr

byLouAmadio

(With extracts from the Myarc Hard and Floppy Disk.
Controller manual)

The introduction of the Myarc Hard and Floppy Disk
Controller Card (HFDCC) has been the most significant
hardware release since the introduction of the Horizon
RAMdisk. The card was first released in 1988 and has
undergone some modifications to the DSR during that
time.

If you look at the specifications of the HFDCC you
can be forgiven for wondering if Myarc has overdone it a
bit. According to the manual:

The Myarc HFDC is a powerful and versatile disk
controller that will allow you to use up to three
hard drives at a time with up to 134 Mb capacity on
each drive. It will also allow you to control up to
4 floppy drives (40 or 80 track) which may be single
or double sided and either 5-1/4 or 3-1/2 inch size
or any combination of these sizes. The floppy
drives may be any standard capacity up to 1.44Mb.
By adding a second floppy disk controller, it is
possible to control a further 4 drives for a total
of 8 floppies.

In addition to the above, the card has been
designed to allow Streaming Tape backup facilities. The
software for this option has yet to be released.

Floppy Emulation

The HFDCC has the ability to emulate a floppy drive
in a number of ways:

1) "DSK1." emulation allows the use of software that
looks for a file in floppy drive #1.

2) "DSK." emulation allows the use of software that
looks 	for a particular disk name, for example
"DSK.TIMP" for Multiplan.

3) DSK1 file emulation: All of the files on a floppy
disk are "cloned" onto the hard disk. Reading and
writing to this area of the hard disk is similar to
accessing a physical floppy drive.

The HFDCC must be used in a TI PE Box. It is also
advisable to replace the standard plastic clamshell with
a metal TI unit to aid in cooling the on-board voltage
regulators. (See relevant article TND March 1989

Selecting a Hard Drive

Drives from XT or AT computers or their clones are
suitable for the Myarc HFDCC. What to buy is generally
a matter of what is available at the best price. Second
hand 10 Mb drives from XT computers are very cheap, but
require a lot more capacity from the power supply:

Drive Type 	Max Amps (+12V)
5-1/4 in Full Height 	5.0A
5-1/4 in Half Height 	2.5A
3-1/2 in Half Height 	1.5A

Warning: The FEB does not provide sufficient power
for a hard disk. However, a low power hard disk may be
powered from the PEB provided that the power supply is
modified (see Micropendium, March 1988)

Connecting the Drive

Before connecting anything, examine your hard drive
and write down any information on the drive,
particularly the serial number, model number and any
indication of the number of heads and number 	of
cylinders. 	This information is required during the
formatting process.

(Page21 	 TIsHUG NEWS DIGEST September 1.98

If restore is selected you will be asked to type
the word RESTORE to ensure that this is the desired
procedure.

At this stage, a warning message is issued and you
are required to press a key to continue. After a short
delay for the calculation of parameters, the program
proceeds with the task at hand.

Both the current sector being read and one being
written to are displayed as well as the last sector to
be used. When this sector is reached, the procedure is
complete.

This program is distributed under the concepts of
Fairware. Monetary donations are not necessary however
letters from users or donations of software will be
appreciated. Of course, if you feel the desire to throw
your wealth at me I could put it to productive use. C5

Adjust Emul te File PointeT
by Carry Chrigensen, Ilrisbane

This utility allows you to change the file that is
active for the DSK1 emulate function of the Myarc HFDCC.

Extended BASIC

It can be used in several ways. The first is to
execute the Extended BASIC program called TEM'. Here
you will be asked to input the device number, path name,
and filename. An entry may look like this:

1.STORE.UTIL.GENERAL

This file must be an emulate file that has been
established using MDM5. While there is error checking
incorporated, errors are not reported. You are returned
to the title screen regardless of whether the operation
was successful.

The pointer to an emulate file can be cancelled by
giving the device number only. This results in no
emulate file being marked as active on the hard disk.

1

Entering the above name would result in the emulate
file pointer on hard drive number 1 being cleared.

Editor Assembler

You will find a file called "EM/Sl" included on
this disk. This is the source code for this program
that can be permanently set for one specific file.

Near the beginning of the program you will see the
following lines:

NAME TEXT "
BYTE 0
EVEN

After the word TEXT and in between the inverted
commas, insert the device number, path name, and
filename as before. Assemble this code and the
resultant object code can be used any time to set the
file active.

You may wish to generate several of these programs
for the more commonly used emulate files. Once again,
the device number alone will de—activate all emulate
files on the hard disk.

While all care has been taken, the author can
accept no responsibility for data lost while using this
program. No bugs have been located but be aware that
this program bypasses all protection by using direct
sector access. Ensure that your hard disk has been
backed up onto floppy disk.

The source code for these programs can be found in
Bug—Bytes, June 1989.

©king up the Hurd Disk
byl3enTakach

Life is certainly much easier since the hard disk
is part of my TI99/4A system. It works fast, it is
convenient, saves a lot of diskettes and most important
of all, I have instant access to every file.

Like other Myarc products released in the past, the
hard disk control card and disk manager is in need of
some polish, revision and update. The find option of
the disk manager is somewhat primitive, thus one has to
remember and type in the exact file name, but it will
locate the requested file quite fast.

One of the less well understood feature of the hard
disk system is the backup procedure. It is not a big
job to produce a backup copy of a floppy disk. Backing
up a 1440 sector DSDD diskette may be completed in 10 to
12 minutes, including verified formatting. Such disk
may hold up to 360 kbyte of data. Backing up a hard
disk with 10 Mbyte of information stored under 30 to 50
sub—directories would take at the above rate about 8
hours. This would be more acceptable if the backup
process would be automatic. Unfortunately one has to
sit there and constantly change diskettes. This is the
paradox of the super fast electronic information
transfer. One can save a lot of time whilst producing,
gathering and transferring vast amount of data, and then
has to waste a full working day to protect it.

This becomes all the more evident for the owners of
the Myarc hard disk control card. The announced
streamer tape backup is not yet supported by the so far
released software or firmware. Using the resident
diskette backup routine is painfully slow and it eats up
a lot of disk space. The system manual makes no mention
of the formatting details, however it appears the
density is less than 18 sectors/track. Further, if one
encounters a read or write error half way through the
backup process then there is no manual option to find
and exclude the offending file. One has to abort the
process with several hours down the drain.

Although the file by file backup option is more
time consuming, one may save those several hours in the
long run by being able to monitor the process, and an
eventually corrupted track or file is easily pinpointed.
The file by file backup is best combined with the
technique of archiving to save diskette space.

This method proved to be the best of the many
unfavourable choices, as I found out after many wasted
hours and frustration. I still had to spend 8 long
hours at the keyboard, but managed to backup 8 Mbyte of
data on 11 floppies. This method has one unavoidable
disadvantage. One does not and cannot backup the
directory structure. Thus the complete directory
structure has to be manually recreated after a hard
drive failure. Creating 40 to 50 directories is also a
lengthy task.

How does it work?

I used The Extended BASIC version of ARCIII. This
program does not recognize the hard drive, thus one has
to first transfer the files to a valid drive. I used 2
drives (drive 1 and 3) and a RAMdisk (drive 2). The MDM
files (the hard disk control program files) are saved to
DSK1.. directory of the hard disk except its LOAD
program. The ARCIII_XB program was renamed LOAD and
saved to disk and placed in drive 1 (the MDM program
files may also be saved to this disk again minus the
LOAD program). The RAMdisk (drive 2) was used for
source and target disk whenever space permitted it, else
drive 3 was the nominated target drive. CALL MDM from
console BASIC loaded the disk manager and all the files
of one directory were copied to the RAM disk. I
selected Extended BASIC option after quitting out of
MDM, thus ARCIII was booted at once. The archived file
was subsequently copied to the backup disk in drive 3.

continued on page 26

(September 1989 TIsHUG NEWS DIGEST 	Page 22)

EaturC 	Daatt
from Sparta PCBoard Hard Disk Conference, updated by Bob

Arnold of Random Access BBS.

ibis hard drive data is supplied as a guide only. Drive makers can and quite
frequently do change drive models and specifications without notice. The author
assumes no responsibility for the use of this information in any form.

Abbreviations: HDS - Heads
CYL - Cylinders (Tracks)
RWC - Reduced Current Write Compensation (0 indicates RWC

on all the time)

	

WP 	- Write Pre-Compensation - Usually 0 or number of CYL's

Where specifications are unknown the box is left blank.

	

— 	+ 	--+ - 	+ 	 +- 	
: Atasi 	Model 	: 	HDS 	CYL 	: 	RWC 	: 	WP 	: 	Notes

--+ --+
: 	AT3020 : 	3 	635 	: 	0

+-
: 	0 	:

-F-- 	+
AT3033 	: 	5 	: 	635 	: 	0

---+
0 	:

--+
AT3046 	: 	7 	: 	635 	: 	0

---+ 	---+
: 	0 	:

--+
AT3051 : 	7 	: 	733 	: 	0

---+ 	---+
: 	0 	:

: 	AT3085 : 	8 	: 	1024 	: 	0 0 	:
-+

: Bull : 	Model
+---

+--
: 	HDS 	: 	CYL 	: 	RWC

+---

+
: 	WP 	: 	Notes

: 	D530 : 	3 	: 	987 	: 	987
+----

: 	987 	:

: 	D550
+---

: 	5 	: 	987 	: 	987
+-- 	 -+

: 	987 	:

: 	D570 7 	: 	987 	: 	987 : 	987 	:

: 	D585
1---

: 	7 	: 	1166 	: 	1166 : 	1166 	:
+— +

+-- +--- + +-- 	 +
: CDC 	: 	Model
+-- .

: 	HDS 	: 	CYL 	: 	RWC
+ 	+--

a 	WP 	: 	Notes
+

Wren I : 9415-5-21
+--

: 	3 	: 	697 	: 	697
+--

: 	0 	:

. 9415-5-36
+---

: 	5 	: 	697 	: 	697
+-- 	+--

-.-- +
: 	0 	:

: 9415-5-48
+----

: 	5 	; 	925 	: 	925
+-- 	 +----

+ 	 .
: 	0 	: Drive connector Jl 	:

2
Wren II

: 9415-5-57 : 	6 	: 	925 	: 	925
+-- 	+-- 	i

+ pin 	may need to 	.
: 	0 	: be disabled when 	:

: 9415-5-67
+---

: 	7 	: 	925 	: 	925
+

+ used on an AT
: 	0 	: 	 .
+ 	+

: 9415-5-77 : 	8 	: 	925 	: 	925
i 	i

:
+ 	+

: 9415-5-86 : 	9 	: 	925 	: 	925 : 	0 	:
+ 	+

: 9415-5-25
+---

: 	4 	: 	615 	: 	615
+-- 	+-- 	++-

: 	300 	:
+ 	+

: 9415-5-38 : 	5 	: 	733 	: 	733
+--- 	+---- 	+--

: 	733 	:
+

: 9420-5-30
+---

: 	3 	: 	989 	: 	989
+-- 	+

: 	0 	:

: 9420-5-51 : 	5 	: 	989 	: 	989
-1---+
: 	0 	:

+ +-+- +-- ' + 	 +
: CMI
+

: 	Model
+

: 	HDS 	: 	CYL 	: 	RWC
i--- 	+-- 	+--

: 	WP 	: 	Notes
+

: 	CM 3426
+---

: 	4 	: 	612 	: 	612
+-- 	+-- 	+

: 	612 	:
+ 	+ 	serv 	:

: 	CM 5205
+---

: 	2 	: 	256 	: 	256
+----- 	+-- 	+

Wedge 	do
: 	256 	: not use on IBM XT 	:
+ 	+ controller

: 	CM 5410 : 	4 	: 	256 	: 	256 : 	256 	:
+--- +-- 	+-- 	+ + 	+
: 	CM 5616 : 	6 	: 	256 	: 	256 : 	256 	:

: 	CM 6426
+---

4--- 	+-- 	-I--
: 	4 	: 	615 	: 	256

+ 	+

+ 	+
: 	256 	:
+-- 	+

: 	CM 6426S : 	4 	: 	640 	: 	256
	_+_______+ 	

: 	256 	:
+--

: 	6 	: 	640 	: 	640
+ 	+ 	+

: 	CM 6640
+---

: 	256 	:
+ 	+

:Fujitsu 	: 	Model : 	HDS 	CYL 	RWC
+--

: 	WP 	: 	Notes

: 	M2230AS : 	2 	: 	320 	320
+--

: 	320 	:

M2233AS : 	4 	: 	320 	: 	320 : 	320 	:

: 	M2234AS : 	6 	: 	320 	: 	320 : 	320 	:

: 	M2235AS
+---

: 	8 	: 	320 	: 	320 : 	320 	:

: 	M2230AT
1— 	 1--- 	+—

2 	: 	320 	: 	320
+ 	-1---

--+
320

: 	M2233AT : 	4 	: 	320 	: 	320 : 	320 	:

: 	M2241AS
+---

: 	4 	: 	754 	754
-F— 	 +—

754 	:

: 	M2242AS : 	7 	: 	754 	: 	754
+

754

: 	M2243AS : 	11 	: 	754 	: 	754 : 	754 	:
+

: Hitachi: 	Model 	: HDS : CYL : RWC : WP : 	Notes
+— 	4--- 	+ 	--4--- 	+-- 	 +-- +

: 	DK5Il -3 : 	5 	: 699 : 	: 300 :
+-- 	+ --+ 	+— 	-.-- + 	 :
: 	DK5Il -5 : 	7 	: 699 : 	: 300 : 	 :
+--- 	 +-- 	+------+
: 	DK511 -8 : 	10 : 823 : 	: 400 :

+-- +— 	 + 	 +

+-- 	 +---
: IBM 	

•

Model 	: HDS : CYL : RWC 	WP : 	Notes
+ 	 +— 	 + 	+ 	
: 	20 Meg 	: 	4 	: 615 	: 128 :

+ 	-+-- 	+--
: 	30 Meg 	5 	733 : 	: 300 :

+— 	+ 	+ 	+

+-- 	+ 	 +-- 	 .--
: IMI 	: 	Model 	: HDS : CYL : RWC : WP : 	Notes
F--- 	+ 	 F— 	 + 	H- 	 + 	+ 	

: 	5006H 	: 	2 	: 306 : 306 : 214 :

: 	5012H 	: 	4 	: 306 : 306 : 214 :
4-- 	 4-- 	+ 	

: 	5018H 	: 	6 	: 306 : 306 : 214
+--- 	 1--

+--- 	 +-----
: Irwin/Olivetti 	: HDS : CYL 	RWC 	WP 	 Notes
+— 	 +—

: 	416 	: 	2 	: 819 	:
+----+-- -+— 	 +— —+
: 	510 	: 	2 	: 628 	 +- HD/TAPE

-F-- 	1-- 	 4--
: 	516 	: 	2 	: 819 : 	 +— HD/TAPE

-4--- 	+--
: 	HD561 	: 	4 	: 180 : 128 : 180 :

+---

LaPine : 	Model 	: HDS 	CYL : RWC 	WP 	 Notes
4---- +

: Titan20 	: 	4 	: 615 :
i---

+ 	+ 	 +
: Maxtor : 	Model 	. HDS : CYL : RWC : WP : 	Notes
+-- 	+ 	 +-- 	+-- 	 :

: XT -1065 	: 	7 	: 918 : 918 : 918 : When attaching the :
+-- 	+-- 	+-- 	+--- + XT 1065 8 XT -2085 :

: XT -1085 	: 	8 	: 1024 : 1024 : 1024 : to the IBM AT, you :
+-- 	 +-- 	-+-- 	 + may need to disable:
: XT -1105 	: 11 	: 918 : 918 : 918 : drive connector JI :
+— 	+-- 	+--- -+--- -+-- --- -+ pin 2. 	 •
: XT -1140 	: 15 	: 918 : 918 : 918 : 	 :

+-- 	+-- 	+
: XT-2085 	: 	7 	: 1224 : 1224 : 1224 :

+-- 	+-- 	 +
: XT -2140 	: 11 	: 1224 : 1224 : 1224 :
+ +-- 	+-- 	 + 	+
: XT -2190 	: 15 	: 1224 : 1224 : 1224 :
+ +-- 	 +-- 	 + 	 +

	

: Micropolis Model 	: HDS : CYL : RWC : WP : 	Notes

: 	1302 	: 	3 	: 830 : 830 : 400 :
+--- 	 -i— — 	+
: 	1303 	: 	5 	: 830 : 830 : 400 :
4--- 	+-- 	+-- 	+-- 	+------+
: 	1304 	: 	6 	: 830 : 830 : 400 :
+ +-- 	+-- 	+ 	+------+
: 	1323 	: 	4 	: 1024 : 1024 : 1024 :
+ 1--- +-- 	+-- 	+ 	+
: 	1323A 	: 	5 	: 1024 : 1024 : 1024 :

: 	1324 	: 	6 	: 1024 : 1024 : 1024 :
+ 	+-- 	+ 	+-- 	+

	

1324A 	: 	7 	: 1024 	: 1024 : 1024 :
+ + 	+ 	,-- 	+ 	4

	

1325 	: 	8 	: 1024 	: 1024 	: 1024 :
+--- 	 +-- 	 +------+
. 	1353 	: 	4 	: 1024 :
+--- 	+------ +-- 	+ 	+------+
: 	1353A 	: 	5 	: 1024 :
+--- 	+ 	+-- 	+-- 	 +
: 	1354 	: 	6 	: 1024 	: 	•
	+ 	+

: 	1354A 	: 	7 	: 1024 	: 	.
+-- 	 +-- 	+-- 	+-- 	 +--

Notes : MicroScience Model : HDS : CYL : RWC : WP :

	

325 	: 	4 	615 :

: 	HE 612 	: 	4 	: 306 : 306 : 306 :
4-- 	1-- 	-F-- 	+

:

• 	

HH 725 	: 	4 	: 612 : 612 : 612 :
+-- 	+-- 	+-- 	+--

: 	HH 1050 : 	5 	: 1024

+-- 	+-- 	+-- 	+-- 	+--

	

MiniScribe Model 	: HDS : CYL : RWC : WP 	Notes
+-- 	 +— 	+ 	+____ 	

: MS 1006 	: 	2 	: 306 : 153 : 0 	:

: MS 1012 	4 	: 306 : 154 	0 	:
+--- 	-F—

• •
• •

Page23 	 TIsHUG NEWS DIGEST September 1989

11.■ •■••■ ..1,■■• 	 .1- .4._ 	_._._,...._ 	-_+ 	+ 	 +
: 	Model 	: 	HDS : 	CYL 	: 	RWC 	: 	WP 	: 	Notes 	

+ + __
: RMS 	: 	Model 	: 	HDS
4-- 	 .1--

: 	CYL
+----

: 	RWC
1,--

: 	WP 	: 	Notes
4.-- 	 + + 	

: 	306 	: 	306 	: 	0 	: 	 :
i____ 	 + 	+

: 	RMS 503 	: 	2 : 	153 : 	77 : 	77 	: : 	MS 2006 	: 	2
.4— 	

: 	MS 2012 	: 	4 : 	306 	: 	306 	: 	0 	: : 	RMS 506 	: 	4 : 	153 : 	77 : 	77 	:

: 	MS 3012 	: 	2
4____

-I-- 	4-- 	+ 	+
: 	612 	: 	612 	: 	128 	: : 	RMS 512 	: 	8 : 	153 : 	77

1--
: 	77 	:
+ 	 +

: 	MS 3212 	: 	2
+___

-F- 	 +
: 	612 	: 	612 	: 	128 	:

+ 	 : *____
+_____ +___ : 	MS 3412 	: 	4 : 	306 	: 	306 	: 	128 	: 	 :

+ 	 : 4-- 	+ : Seagate 	Model 	: 	HDS
4- 	+---

: 	CYL : 	RWC : 	WP 	: 	Notes
+

.4— 	+-
: 	MS 3425 	: 	4 : 	612 	: 	612 	: 	128 	:

: 1---+ ST 206 	2 : 	 : 306 : 128 : : 	128 	: 	 .

: 	MS 4010 	; 	2 : 	480 	: 	480 	: 	0 	:
+ 	+

f___ +
: 	ST 212 	: 	4 : 	306

_+__
:
+____

• •
: +__ 	+ : 	MS 4020 	: 	4 : 	480 	: 	480 	: 	0 	:

+---+ ST 213 	: 	2 : : 	612 : • • 	 : .
: 	MS 6032 	: 	3 : 	1024 	: 	1024 	: 	512 	:

+ 1— +- 	-1-
+-- +-- + 	 :

: 	ST 225 	: 	4
i--

: 	615
i---

: 	615 : 	300 	: 	 •
+ 	 . : 	MS 6053 	: 	5

-4-
: 	1024 	: 	1024 	: 	512 	: 	 :

+- 	 4-- 	+ 	 : 4 615 : 615 : 300 	Use RLL 	 : : 	: 	controller
: 	MS 6074 	: 	7 : 	1024 	: 	1024 	:

4--+ 1--

: 	ST 238 	:
+__ +__ 	 •

: 	ST 251 	: 	6 : 	820 :1___ :4_128 :
. : 	MS 6085 	: 	8 : 	1024 	: 	1024 	: 	512 	: 	 :

4-- 	+ 4- : 	ST 277 	: 	6
1-- 	_l___

: 	820
+__

:
+__

: 	820 : Use ALL controller :
+__ 	*--- 	: : 	MS 8212 	: 	2 : 	615 	: 	615 	:

: 	ST 406 	: 	2 : 	306 : 	128 : 	128 	: 	 :
. 	MS 8425 	: 	4 : 	615 	: 	615 	:

	 + +- 	 + 	t--
+ 	+ 	 ,____ ,__ 	 + 	+ 	 :
: 	ST412 	: 	4
I-- 	 -

: 	306 : 	128
+--

: 	128 	: 	 :
+ 	 .

4--

; 	ST 419 	: 	6 : 	306 : 	128 : 	128 	: 	 :
--+

: Mitsubishi 	Model 	: 	HDS
+-

: 	CYL 	: 	RWC 	: 	WP 	Notes
4---

: 	ST 506 	: 	4 : 	153
4--
: 	128

-F--
: 	128 	: Unbuffered seek 	:

: 	MR 522 	: 	4
+-

: 	612 	 : 300 	:
+---
: 	ST 706 	: 	2

*--
: 	306 : 	128 : 	128 	:

: 	MR 533 	: 	3 : 	971 	: 	•
+--

: 	ST4026 	: 	4
+--
: 	615 : 	615 : 	615 	:

: 	ST4038 	: 	5 : 	733 : 	733 : 	733 	:

+ : 	ST4051 	: 	5 : 	977 : 	977 : 	977 	: +- 	 + 	 -F-

: NEC 	: 	Model 	: 	HDS
4 	4-- 	 4---

: 	CYL 	: 	RWC 	: 	WP 	: 	Notes 1---- 	 4--
: 	ST4096 	: 	9

-I--
: 1024
+----

: 	1024
+

1-- 	+
: 	1024 	: + 	+--- 1--- 	 +

: 	310 	: 	310 	: 	128 	:
4-- 	 i-- 	+

: 	5124 	: 	4
-.--

+-- +---- 	 +

: 	5126 	: 	4 : 	612 	: 	612 	: 	128 	:
+--- *---- +-- +-- 	 + +--

: 	5146 	: 	8
+--- 	+-- 	+ 	+
: 	615 	: 	615 	: 	128 	: : Shugart 	Model 	: 	HDS : 	CYL : 	RWC : 	WP 	: 	Notes

+ 	 + 	 + .-- 	1-- 	 -F- 	

: 	SA 604 	: 	4
1--
: 	160 :

+-- 	----.--

1--

+ •

: 	SA 606 	: 	6 : 	160 :
+--

:
+ 	 :

+ 4-- 	 1--
: Newbury: 	Model 	: 	HDS

1---- 	 1---
: 	CYL 	: 	RWC 	: 	WP 	: 	Notes

: 	SA 612 	: 	4 : 	306
I

:
+--

: 	 :
+ .• : 	NDR 320 	: 	4 : 	615 	:

+ 	 :
+--

: 	SA 712 	: 	4 : 	320 : 	128
+--

: 	128 	: 	 •
+

-4-- 	4--
: 	NDR 340 	: 	8 : 	615 	: 	• 	 :

4. 	 :
+--- 	+-- +--

+--- 	+--
: 	NDR 1085 	: 	8

4-- 	 4

; 	1024 	: 	 :
1 4-- 	+—

: 	NDR 1105 	: 	11
4-- 	+- 	+-- 	+ 	 :
: 	918 	. 	 :

.

+ 	+--
: Syquest 	Model 	: 	HDS : 	CYL : 	RWC : 	WP 	: 	Notes

	+

: 	NDR 1140 	: 	15
4-- 	+-- 	+ 	 •

: 	918 	: 	 :
: +-- 	 +

+-- 	+--- 	–+----
: 	SQ 306 RD : 	2

+----
: 	306

+--
: 	306

+-- 	+--
: 	306 	:

+ +--
: 	NDR 2190 	: 	15 : 	1024 	. 	: 	 •

+---
: 	SQ 312 RD : 	2

+----
: 	615

+
: 	615 : 	615 : Remove jumper W3 	:

	___+

SQ 325 F 	: 	4
4--- 	 --+--

: 	612 : 	612 : 	612 	:
+- 	+

+ : 	SQ 338 F 	: 	6
+

: 	612 : 	612
4--

: 	612 	:
-1---

+ 	+ 	 +--
: Priam/Vertex Model 	: 	/IDS

4--
: 	CYL 	: 	RWC 	: 	WP 	: 	Notes 	. +-

: 	V130 	: 	3 : 	987 	: 	987 	: 	987 	:
-I-- 	-I-- 	-F-----+

: Tendon : 	Model 	: 	HDS : 	WP 	: 	Notes
	 + +--

: ID40 (Y150); 	5
4

: 	987 	. 	987 	: 	987 	:
+ i 	+--

: 	CYL : 	RWC
+--

: ID60 (V170): 	7 : 	987 	: 	987 	: 	987 	:
1-- 	1-- 	4--- 	+

+---
: 	TM 252 	: 	4 : 	306 : 	306 : 	306 	:

+--- 	+
. 	V185 	: 	7

+--

. . 	1166 	: 	1166 	: 	1166 	:
+

: 	TM 262 	: 	4 : 	615
+----

: 	615
+--

4-- 	+
: 	615 	:

+ +--- 	+--
: 	TM 362 	. 	4

+--
: 	615
+--

:
+-- +

+ +- 	+ 	+ : 	TAN 501 	: 	2 : 	306 : 	128 : 	153 	: 4--- 	+--
:Quantum : 	Model 	: 	HDS : 	CYL 	: 	RWC 	: 	WP 	: 	Notes

+ 	 + : 	TAN 502 	: 	4 : 	306 : 	128
+

: 	153 	:
+

4--- 	+ 	 1--
: 	Q520 	: 	4

4-- 	 4--
: 	512 	: 	256 	: 	256 	:

I 	I 	+ Wedge servo 	do 	: : 	TAN 503 	: 	6 : 	306
i---

: 	128
+

: 	153 	:
--+

-F-

: 	Q530 	: 	6
-I-

: 	512 	: 	256 	: 	256 	: not use on IBM XT 	:
+ 1- 	 4-- 	controller

+-- 	1--
: 	TM 602S 	: 	4 : 	153 : 	128 : 	153 	:

+ + : 	Q540 	: 	8 : 	512 	: 	256 	: 	256 	: 	 •
+

-F-- 	 +-
: 	TM 603S 	: 	6 : 	153 : 	128 : 	153 	:

+
-+- 	 + 	 4---

1--- 	--I--
: 	TM 603SE : 	6 : 	230

I--
: 	128
+---

: 	128 	:
+ 4--- +- +

: Rodime : 	Model 	: 	HDS : 	CYL 	: 	RWC 	: 	WP 	: 	Notes 	• : 	TM 702AT : 	4
+--

: 	615
4---

: 	615 : 	615 	:
+ i-- 	+ 	4-- 	-+ 	 + +-

: 	RO 101 	: 	2 : 	TM 703 	: 	5
I

: 	695
+

: 	695 : 	695 	:
i-- 	+

: 	192 	: 	96 	: 	0 	:
4----

: 	RO 102 	: 	4
+--+

: 	192 	: 	96 	: 	0 	: : 	TM 703AT : 	5
1-- 	 1--

: 	733 : 	733 : 	733 	: 	 .
+ 	 , +

: 	RO 103 	: 	6
+— 	 +— 	+
: 	192 	: 	96 	: 	0 	: : 	TM 705 	: 	5

-F-
: 	962
+-

:
+-

• :
+- 	 + 	 : +--

: 	RO 104 	: 	8
+ 	+

: 	192 	: 	96 	: 	0 	: : 	TM 755 	: 	5
+--- 	i

: 	981
+--

: 	981 : 	981 	:

1--
: 	RO 201 	: 	2

+--- 	 +
: 	320 	: 	132 	: 	0 	:

+- 	 +
+

4--
: 	RO 202 	4 : 	320 	: 	132 	: 	0 	: + 	+- 	 -i---

. Toshiba 	Model 	: 	OS
+-----
: 	CYL . 	RWC

+
: 	WP 	: 	Notes

-4
-1-

: 	RO 203 	: 	6
-4-- 	+- 	 +- 	 +

320 	: 	132 	: 	0 	:
+------+

4-- 	+--- 	-4--

: 	MK53FA 	: 	5
4-----

: 	830 : 	830
4

: 	512 : Drive connector J1 	:

RO 204 	: 	8 : 	320 	: 	132 	: 	0 	:
+ 	 +- 	+

i-- 2 	 to 	:
: 	MK54FA 	: 	7 : 	830

-1----
: 	830
1---

+--- 	+ pin 	may need
: 	512 	: 	be disabled for AT :
+ 	1--- 	 : 	RO 201E 	: 	2 : 	640 	: 	640 	: 	0 	:

4- 	 + 1--

i---
: 	MK56FA 	: 	10 : 	830 : 	830

i
: 	512 	: 	 .

+-- 	+--- RO 202E 	: 	4 : 	640 	: 	640 	: 	0 	: +---

: 	RO 203E 	: 	6 : 	640 	640 	: 	0 	:
+

: 	RO 204E 	: 	8
--F- 	 1--

: 	640 	: 	640 	: 	0 	: continued on page 20
+-- 	

(September 1989 TIsHUG NEWS DIGEST 	Page 24)

BET Dia inGlt
DistributedbyAsgardSoftware.

by Col Christensen, Brisbane
HardMaster, Version 2.0, is a sector manager for

use with the Myarc Hard—floppy Disk Controller card and
comes on disk as memory image files with filenames of HM
and HN. It loads quickly using Editor Assembler option
5 type loaders. Obviously to use the program, one needs
an expanded TI99/4A system or 9640 Geneve, the Myarc
Hard Floppy Disk Controller Card and at least one hard
drive. A printer is useful but not necessary.

On loading the program, the user is given the
option of which hard drive number to access. Does the
sound of having more than one hard drive make your mouth
water? After that number is input and checked to be
valid and available, a list of command options is
displayed as shown below. At the completion of any
command, this list of options will be reprinted on the
screen making it unnecessary to have to remember the
commands and the parameters each needs.

EDit s PRint s s 	QUad s DIrectory
FInd s s w/$ PAck s b AScii s s MAp
HDrv n FDrv n OutDev TRee FB b EXit

The postscript, "s", stands for sector, the "w" for
word of 2 bytes, the "b" for byte, the "$" for ASCII
string and the "n" for number.

Command inputs all must begin with a 2 letter
command name and followed, in most cases by parameter
numbers in hexadecimal but do not use the ">" sign
before the numbers. The command and each parameter must
be separated by one space character.

All output to the screen or printer uses the
hexadecimal format with one exception. That is in the
record length of fixed or variable files (for example,
D/V 80). We are used to seeing them as decimal numbers
in all common directory listings and for convenience,
this has been maintained.

A status line is displayed at the bottom of the
screen during most phases of operation of the program.
The status line shows which drive has been selected, the
disk name, the disk size and the sector number being
accessed. The status line is continually being updated
as different sectors are being read.

The running of some functions can be interrupted by
pressing a key to pause and press again to resume.
Those functions with a pause facility also have been
provided with the opportunity for the user to BREAK
altogether. To do this press FCTN[4j, FCTN[9j or
CTRL[Cj. If output is going through the RS232 card and
you press FCTN[4J, the DSR routine in the RS232 will
detect this keypress, perform a break, and give an error
code which will appear on the screen as "Device error".
In this case the printer file is not closed and
information may still remain in the printer buffer. The
next time the printer is used, the first part of the
printout may not be as it should be. This is no fault
of HardMaster and can be prevented by BREAKing a
printout with the FCTN[9] or CTRL[CA combination that
HardMaster looks for.

By the way, most commands in this program are used
to read the contents of disk sectors and they cannot
change any of the contents of a disk unless you intend
it that way. Only two commands allow changes to the
disk but, before this happens 	though, 	you must
consciously change the default input from N to Y.

The Commands

HD and FD options allow the user to change the
drive number you wish to access. Hard drive number
input allows 1 to 3 while Floppy drive allows for drives
1 to 9. If you have a DSK1 emulation file on the hard

disk, this can be accessed as FD 1 and it would be
assumed that the first mechanical floppy drive would be
configured to DSK some other number. Horizon RAMdisks
set to any drive number up to 9 and any CRU address can
be accessed.

The EDit s command is the most versatile and will
be the most used. When you suffix the ED command with a
sector number and press the <ENTER> key, the contents of
the sector will be displayed in hexadecimal on the
screen together with instructions on key usage. The
CTRL key is used in combination with W to Window from
hexadecimal to ASCII, with B to go Back one sector, with
N for Next sector higher and with C for esCape to
command mode.

Although you are not told on the screen, the
FCTN[5j, FCTN[6j, FCTNI4j and FCTN[9] are also active as
these keys on the Geneve are so easy to use. In EDit
you can skim the cursor over the sector display with the
FCTN and arrow keys or you can type over the contents on
either the hexadecimal or ASCII window. On the
hexadecimal window, you are allowed to type only
hexadecimal digits.

The only ways out of this command are CTRL[C], the
escape keystroke or FCTN[9j, the BACK key combination.
If you have previously typed over any of the sector
contents on the screen purposely or accidentally, you
will be given the option to save or not to save the
changes to disk.

Sector number inputs when using the hard drive can
be from one to five digits up to FFFFF and for the
floppy drives up to 4 digits. In either case trying to
access a sector number greater than the disk size as
shown on the status line at the bottom of the screen
will result in an error message.

PRint s s will print out to the output device name
in memory the contents of the sectors from the start
sector to the end sector entered as parameters. You get
a printout of both the hexadecimal contents and also its
ASCII representation. Of course some values in
hexadecimal have no ASCII counterpart so a dot is
printed instead.

OutDevice allows you to change the output device
name from the default of PIO. This command needs no
parameters. After typing OD, and pressing <ENTER>, you
are asked to type in the name of the device to which you
want the output to go. This can be through the RS232 or
to a floppy or RAMdisk file. Output cannot go to the
hard drive as the Peripheral Access Block used for the
printer differs from the requirements of the hard drive.

QUad is based on the Forth system of displaying 4
sectors at a time on the screen. You can step through
sectors quite quickly this way if you are searching for
some known visual characteristic of a disk sector.
Because the contents of four sectors will not fit onto a
forty column screen, horizontal windowing is employed.
The same CTRL keys as for EDit are active and FCTN[4],
FCTN[5], FCTN[6j and FCTN[9] are too.

The DIrectory report contains information to
include: the filename; the number of sectors that the
file occupies; file type abbreviated to 3 characters;
length of record if applicable (the only numeral in the
program shown in decimal notation); the sector number
that the file descriptor record (FDR) is stored on; and
the sector clusters where the actual file is stored on
the disk. If the file on the disk is fractured, more
than one cluster is shown.

Directory 	is 	a multi—purpose routine. 	It
automatically categorizes your disk into one of three
types. In all cases you will first have to indicate
whether you want the output to the screen or to the
printer. If you have changed the default from PIO to a
disk filename, then that is where the output will go.
What the routine does in each of the three circumstances
varies as shown below.

(Page 25 	 TIsHUG NEWS DIGEST September 1989

1. Hard drive. 	You will have to type a path name
to read a directory on the hard drive. The hard drive
caters for a root directory as well as sub-directories,
each of which may have pointers to more sub-directories.
To access the root directory, just type the path name,
ROOT. To access a sub-directory, such as for example,
ADV, type the full path name (for example, TI.GAMES.ADV)
placing a period between each, but no period at the end
even though 	the last entry is a sub-directory.
Including the disk name in the path name is not
required.

2. Floppy drive formatted by Myarc Disk Manager 5.
This format, a little like the hard drive, has a root
directory and can have also up to three sub-directories.
When using the command, DI, with this type of disk,
HardMaster checks the disk and if there are
sub-directories as well as the root directory, presents
an option list from which to choose. 	If no
sub-directories are found, then the root directory is
automatically processed.

3. Floppy drive initialized TI-style. 	When you
want a directory of this type of disk, the program goes
straight on to show the directory.

FInd s s w/$ - a search of the disk is made from
the starting sector, the first "s", to the ending
sector, the second "s", for the 2-byte word or the ASCII
string of any length that is entered. The two byte word
or string is looked for at both even and odd addresses
and the search can even detect a match formed by
bridging the last of one sector and the beginning of the
next. Output of results can be directed either to
screen or printer.

TRee needs no parameters and produces a list of
directories, emits a beep, and then a full list of
directories and their associated filenames with the
sector numbers that contain their DDRs and FDRs. If you
only want the directory names, then the beep indicates
when to break out of the routine. Output can be
directed to the screen or printer. The printout is
tabbed over to start with a left margin of 10 by using
the printer code of <27>"1"<10>. This margin makes the
printout more suitable for filing in a ring binder or
similar folder.

AScii s s is the printout of the sectors specified
in your input. The two parameters following the AS
command represent the starting and ending sectors to be
accessed. Only the ASCII representable characters are
printed in 4 lines of 64 characters. Byte values below
32 and above 127 are printed as spaces. Maybe one day
you cannot access a text data file in its entirety but
you can print out most of the accessible sectors and so
recover on paper or disk much of the file. The disk
file can be edited with TI-Writer.

MAp directs to the output device the sector
allocation table or bit-map of the disk in the current
drive. With big differences in the bit-maps of hard
drives and floppy drives, the program automatically
selects the form of printout suitable for the particular
kind of drive.

The floppy drive printout will show each sector on
the disk and whether it is marked off as used or free.
One thing to be aware of in interpreting the printout is
that the bytes on sector 0 that represent used and free
sectors are bit reversed from the order of the sector
usage on the disk. For example, the byte 3F (00111111)
on sector 0 will indicate the following series of
sectors to be used(X) and free(-) with XXXXXX--.

It is not practicable to show the sector allocation
table of a hard drive as individual sectors because of
the immense amount of paper and time needed to print it.
The printout has been confined to listing the
hexadecimal bytes of the bit-map plotted against the

sector numbers that they represent. 	Remember in
interpreting the table to take into account the number
of sectors your hard drive allocates for each AU. Not
like the TI99/4A bit-map, each byte representing 8 AUs
is not bit-reversed.

Note that the MAp procedure for the hard drive
begins by reading the bit-map sectors from >1F backwards
towards sector 1 until it comes to a sector containing
non-zeros. It then assumes, well the author does
anyway, that this is the last of the used bit-map and
prints out the allocation table from sector 1 onwards
until the end of this sector. Very good in theory but
unfortunately your hard drive may have contained bad
sectors when it was formatted, and parts of the bit-map
towards the logical end of the drive accordingly could
have been marked off as used. If MAp prints out the
allocation table past the obvious end of used bit-map,
then it can be interrupted with FCTN[9] or CTRIAC].

PAck s b will not have a great deal of use but can
be handy when re-writing a dud directory by first
packing the sector with zeros. (I avoided the use of a
command name, Fill, because Fl is already used for
Find.) 	"s" is the sector which has to be packed and b
is the byte for each of the >100 places. 	Before the
command is executed to disk, you must confirm your
intention by changing the default option of N to Y.

FB b allows a change of screen colours. Foreground
and Background colours will be set by the 2 nybble
parameter suffixed to the command. The default colours
are F4 with F the white foreground and 4 the blue
background.

EXit is provided as an "out" because the normal
quit key has been disabled. If you entered HardMaster
from Funnelweb then this program keeps Funnelweb's
colours and on exit, it returns to Funnelweb. This
feature makes it a suitable program to run through
Funnelweb's load option screens.

condnuedfmnapage22

One can judge the size of the archived file; archivin
saves roughly 50% of disk space. In my case the files
filling 30238 sectors of hard disk space were backed up
on 11 diskettes, the archived files using up 14692
sectors. To sum up, it was a tedious work, I sure will
be glad when Myarc gets around to release the software
support for the streamer tape backup. 0

continued from page 16

Smoley Martin A. 0713831
01/21/88 	800.11 	800.22
	

0713831
02/29/88 	200.11 	200.22
	

0713831
06/17/88 	1000.11 	1000.22
	

0713831
08/03/88 	1200.11 	1200.22
	

0713831

09/11/88 	3200.44 	3200.88 	TOTAL

Aardvark Grant E. 0717851
06/06/88 	600.11 	600.22 	0717851
08/27/88 	300.11 	300.22 	0717851

09/11/88 	900.22 	900.44 	TOTAL

Jones Quincy W. 0820871
03/03/88 	400.11 	400.22 	0820871
05/12/88 	900.11 	900.22 	0820871

09/11/88 	1300.22 	1300.44 	TOTAL

Whitman Raymond (Slim) A. 0921861
12/30/87 	500.11 	500.22 	0921861
03/01/88 	1100.11 	1100.22 	0921861
04/22/88 	700.11 	700.22 	0921861

09/11/88 	2300.33 	2300.66 	TOTAL

ts.)
R Ft%

.
.

6 R
n o n g
:=q; = 	hz$

g. 	A.)
co C., Oxl

5 R. 	cn
p _cm 	0
K

o
w a

*4
ry

= n 	PO crq 0

o
" 0
0

g g

E
e.*< tri

4'6 ea
0 5 * =

(September 1989 TIsHUG NEWS DIGEST
	

Page 26)

'Ile Barri! Mak Duive
a guided tour, by Garry Christensen, Brisbane

At regular intervals a product comes along that has
the potential of changing the way everybody uses their.
TI99/4A. I remember the upheaval that occurred when
Horizon introduced the RAMdisk. A similar situation is
upon us with the Myarc Hard/Floppy Disk Controller Card.

I do not think that anyone who has seen this device
in action has not said "I must get one of those", even
if it has been qualified with "one day".

Myarc did well with the manual that accompanies the
device, giving instructions for the use of MDM5,
interfacing with BASIC, hardware specifications and low
level access. It is this final point that I wish to
concentrate on here.

Unlike the documentation that accompanied much of
the TI99/4A equipment, Myarc have provided considerable
detail about accessing the hard disk with assembly
language. The manual lists the parameters required and
the addresses to be used when utilizing the on—board
sub—programs. It also details the layout of the data in
the important sectors on the hard drive. Whilst this
data is supplied, it must be considered as the 'minimum
necessary'. If you intend to make any use of the data,
there is some investigation left to be done.

Loading The Sectors.

The 	first thing that has to be done before
examining the sectors is to load them into memory. This
is not as difficult as it might first seem because we
have at our disposal a wonderful program called SuperBug
II, by Edgar L. Dohmann. Load SBUG (or another
comparable debugging program) by using the Editor
Assembler 'Load and Run' option. Do not use option 5
because there are no utilities loaded into memory with
this option.

Dump the REF/DEF table by using the command "D
3F80,3FFF". Find the name DSRLNK and note the word that
immediately follows it. This is the entry address for
the routine.

For the following section, refer to page 46 of the
HFDCC manual. Using the "M" command load these values
into memory starting at >834A: >0000, >8101, >F000,
>0000, >0000, >0000, >3000.

The first word is used to return the sector number
actually read from a floppy disk and is not used for
hard disk. The next byte is the unit number (hard drive
1, in this case) with the first bit set to 1. This
indicates that the data from the disk is to go directly
into CPU RAM. The following byte is the read/write
flag, >01 to read and >00 to write.

The next word is the address that the sector is to
be loaded into. CPU memory is specified in the previous
bytes so the sector will load into CPU RAM starting at
>F000.

The sector number is next. 	The highest sector
number that can be represented with a 2 byte word is
65535. My 20Mb drive has 78720 sectors so there is
clearly a problem when you have a drive bigger than
about 15Mb. Two words are used to specify the sector
number. Consider the number being right justified in 32
bits eg. >00013380. The least significant word is at
address >8350 and the most significant at >8352.

For the first access that we are going to do, both
are zero. If however you want sector >20, the words
would be >0020,>0000.

>8354 is unused at this time and >8356 points to
the VDP address of the op—code that we wish to use. For
floppy disk, the op—code for sector access is >10 and

for the hard disk it is >20. 	A length byte must be
included, obviously >01.

After setting >8356 to >3000, exit the change
memory function of SBUG. Re—enter the same function
with the VDP address, "M 3000V". This time each byte
must be entered separately, >01 first then >20.

Almost finished. All that is left is to execute
the DSRLNK routine. Check the REF/DEF table again and
find the address for the DSRLNK routine. The value that
I get is >2120. Once again we need to change some
memory, this time in CPU. "M E000" will get us started.
This address is to be the start of a very small program
to branch to the DSRLNK. Enter these values:

>0420,>2120,>000A

When the above 3 words are dis—assembled they
produce:

BLWP OSRLNK
DATA >000A

If your address for the DSRLNK routine is
different, use it. Lastly set a breakpoint at >E006 so
that the computer will not go wandering off on its own.
Set the workspace to >E800, the program counter to >E000
and the status byte to >0000. Use the "R"function for
this.

Before going any further, check that you have done
everything correctly. Is it OK? Good, now enter "E" to
execute. You will see the HFDCC come on, a flash from
the hard drive then SBUG will tell you that it has
encountered a breakpoint.

Dump >100 bytes from >F000 with "D F000,F100".
Surprise, there is the data from sector 0 of your hard
disk.

Play around with this a little before going on.
Reset the values using a new sector number, set the
breakpoint and the program execution parameters and go
again. Look at the results. You have at your disposal
a primitive sector editor because to rewrite the sector
you only have to change the read/write flag at >834D to
>00.

Before you change too much, it may be a good idea
to know what you are looking at. Here is a dump of part
of my sector O.

4844 2020 2020 2020 2020 99C0 2020
013A 131D 13A5 B24F 1107 0020 021A
0087 0072 007E 007C 006C 0081 0035
0000 0000 0000 0000 0000 0000 0000

Before I go any further I must mention something
called an Allocation Unit (AU). An allocation unit is a
block of consecutive sectors. There may be up to 16
sectors in one allocation unit. The disk is considered
as a series of allocation units, the size of each being
determined by the size of the disk.

All pointers are one word so the maximum number of
allocation unit's on the disk is >FFFF. If it has a
large storage capacity, there is a larger number of
sectors per allocation unit.

Allocation units are only used to find a file. All
directory descriptor records (DDR) and file descriptor
records (FDR) are located on the first sector of an
allocation unit. The remainder of the allocation unit
is rarely used. All files start at the first sector in
an allocation unit and use consecutive sectors, unless
the file is fractured.

Volume Information Block and Directory Descriptor
Records.

OK, let us go through sector O. Refer to page 62
in the manual for this section.

(Page 27 	 TIsHUG NEWS DIGEST September 198

The first 10 bytes are set aside for the name of
the hard disk, that much will be obvious. The next word
is the total number of allocation units on the disk.
Remember that the number of sectors on the disk is this
number multiplied by the number of sectors per
allocation unit (more about that in a minute).

Byte 12 is the number of sectors per track. The
following three bytes are a mystery. The manual says
that they should be "WIN" but this is not the case.
They have been used to store some data necessary for the
operation of the disk.

Bytes 16 and 17 are also formatting parameters.
These are listed in the manual however only one part is
of interest to us. The first nybble is the number of
sectors per allocation unit minus 1.

Look at the example above. You will see that the
word is >131D. The first 1 means that I have 2 sectors
per allocation unit (1+1). All pointers and values must
be multiplied by 2. If you have a calculator that will
do hexadecimal arithmetic, get it out now. If you do
not, here is a great chance to practice on paper.

You will see that I have >99C0 AUs on the disk and
2 sectors per AU. A total of >13380 sectors (78720
decimal).

The next two words contain the date and time of
creation. The time is first. Write the value down in
binary notation. The first 5 bits are the number of
hours (24 hour clock), the next 6 are the minutes and
the final 5 is the seconds divided by 2. When you
catalog your disk you will see that the seconds are
always even.

Do the same with the date. The first 7 represent
the year, the next 4 are the month and the final 5, the
day.

In 	the 	printout of my sector 0 the words
>13A5,>B24F are the time and date. Breaking them into
binary gives 0001 0011 1010 0101, 1011 0010 0100 1111.
When split they look like this:

	

00010 	2 Hours
011101 29 Minutes

	

00101 	10 Seconds (x2)

1011001 89 Year

	

0010 	2 Month

	

01111 	15 Date

byte 22 is the number of files in this directory
and byte 23 is the number of sub—directories. I doubt
that this needs any further description.

There is no room in this sector to store the
pointers to all the files that may be under this
directory. Another sector is used just to store these
pointers, called the file descriptor index record. The
word starting at byte 24 is the AU of this list.
Remember that this number must by multiplied by the
number of sectors per AU to get the physical sector
number.

Check your disk and have a look at the FDR. It
should look something like this:

026D 0267 01B4 01B5 01B6 01B7 01B8
01B9 0065 0215 0216 0217 0218 0219
0086 0021 01BB 0000 0000 0000 0000

Each word is the AU of the file descriptor record
for each file. We will come to FDRs shortly. All
entries are sorted into alphabetical order. When a new
tile is added, it must be plated in the correct place in
this chain of pointers. The 128th entry in this record
always points back to the DDR that it belongs to.

As you are aware, the hard disk can emulate DSK1 in
a number of ways. 	One method is called DSK1 file
emulation. 	In this method, the entire floppy disk is

copied sector by sector and is used on the hard disk
just as it would be on a floppy. The word at byte
number 26 is the pointer to the emulate file that is
active. The actual value given is the AU of the file
descriptor record. If it is >0000, there is no file
active. Ihe demonstration program deals with this word.

tinally there is the list of pointers to the DDRs
of all the sub—directories. Each pointer gives the AU
of the DDR. In the example of the volume information
block above, the first entry points to the first
directory, and so on until a 0 is reached. These
entries are also sorted in alphabetical order.

The DDRs are the same format as sector 0 (the
volume information block) except that "DIR" is present
and the emulate pointer is replaced with a pointer to
the parent DDR. The parent DDR is the directory that
contains this directory. 	Following this 	path of
pointers will lead back to the VIB.

Sector Usage — the Bit Map.

All disks must keep record of which sectors are
used. The hard disk is no different. The bit map
starts on sector 1 and is quite simple to follow. Each
bit represents an allocation unit. If the bit is 1, the
AU is used. 	The bits are taken in order from most
significant to least significant. 	To calculate the
actual sector number represented there is a little
mathematics to do.

Take the sector number that you are looking at and
subtract 1. Multiply this number by >100 and add the
number of the byte. Multiply that by 8. The result is
the AU represented by the first bit in that byte. By
means of an example, on sector 6 the >50th byte in the
sector may be >80.

(((6-1)*>100)+>50)*8 = >2280

In this way you can calculate the position of any
used or unused sector on the disk. Look for the end of
your bit map, calculate the sector number and have a
look to see if you are right.

An extra feature that the hard disk has over and
above the floppy drives is a separate bit map for the
DDRs and FDRs. On my disk, all the first sector has
been set aside for DDRs and FDRs. The files do not
begin until sector >1000. When a DDR or FDR is created,
it is put in this area and the sector marked off in
sector 1. Unless the disk has a large number of files,
all the descriptor records are at the beginning.

File Descriptor Record.

If you have followed through this far you will be
able to track down any file descriptor record on the
hard disk. The FDR will direct you to the file itself.
Refer to page 64 in the manual.

The following is an example of one of the FDRs on
my hard disk.

5359 5354 454D 2020 2020 0000 3900
05A0 0000 0000 61BC B266 61BC B266
4649 0000 0000 02D0 0020 0000 0894
OB63 0000 0000 0000 0000 0000 0000

The first 10 bytes are the name of the file. Bytes
10 and 11 give the record length if it is greater than
255 bytes. At this stage there are no programs for the
TI99/4A that will take advantage of this, however MDOS
for the Geneve 9640 does have support for this type of
file.

Byte 12 describes the file attributes. I will not
be listing all the functions of the bits here because
they are well described in the manual. Please note that
.in the manual, bit 0 is the least significant bit. The
example above indicates that the file is a program,
protected, has been modified since the last back—up and
is a DSK1 emulate file.

(September 1989 TIsHUG NEWS DIGEST 	Page 28)

Byte 13 indic-ates the number of records per sector.

Bytes 14 and 15 tell you the number of sectors
allocated to the file. A very large file may have more
that 65535 allocated to it so the most significant
nybble is stored in the most significant nybble of the
extended information area. This is the MSN of byte 38.
Place this value in front of the value in bytes 14 and
15 to give the true file length.

The value of byte 38 is 0 and the length is listed
as >05AO. The total length in sectors is >005AO.

The end of file offset is located at byte 16.
Variable length and program files may not necessarily
end at the end of a sector. This byte indicates how
many of the bytes in the final sector are to be included
in this file. There will often be garbage in the
remaining unused bytes. In the above example the offset
is 0 so the file does end at the end of the sector.

The logical record length in byte 17 is set to the
record length for fixed length records, the maximum
length of a record for variable length records and 0 for
program files and the data files that make use of
extended record lengths. In the case of DV80 files,
this byte is set to 80.

Bytes 18 and 19 and the second nybble in byte 38
indicate the number of sectors actually used in this
file. If you open a file and specify its size, that
number of sectors is allocated for its use. You may not
have written to all the sectors at that stage. The
value derived from this part of the FDR indicates the
highest sector written to for variable length files and
the highest record written to in the case of fixed
length files.

The next 4 words are the date and time that the
file was created and last updated. I have covered the
encoding of time and date already.

Bytes 28 and 29 are always "FI".

On a hard disk, fractured files are quite common.
Long files may be split into many fragments. I once
assembled a large source code and sent the list file to
disk. The assembler wrote a small portion of object
code then some list file, then some more object code and
so on. The resultant object and list files were tightly
interwoven.

To allow for the case where there is not enough
space for pointers to all the parts of the file in one
FDR, the controller creates another FDR in which to
continue the table. This is called an offspring and the
original. is the parent.

Bytes 30 and 31 are the pointer to the AU of the
parent FDR. If this is the parent, this value is O.
Bytes 32 and 33 point to the AU of the offspring FDR.
This chain of parent and offspring FDRs can continue
until the file is stored or the disk is filled.

Where there are more than 1 sector per allocation
unit, the offspring FDRs may be placed on any unused
sector within the AU. If this is the case, the most
significant nybble of byte 39 points to the sector
number within the AU of the parent FDR and the least
significant nybble points to the sector of the offspring
FDR.

The above example is the parent FDR and it has no
offspring.

The word starting at byte 34 gives the total number
of AUs used for the FDRs for this file and the next word
is the pointer to the file descriptor index record.
This record contains pointers to all the FDRs in this
directory and the pointer to it allows the user to
follow the path back to directory. The example shows
that the file descriptor index record is at AU >0020.

The 	function of 	the bytes in the extended
information area have already been covered.

Up to this point, there have been few differences
from the FDRs on a floppy disk where the functions are
common. The pointers to the file are different. The
hard disk points to the AU at the start of the file
fragment and points to the last AU used. These two
pointers are called a cluster.

The clusters are 2 words each and occupy the rest
of the sector from byte 38. The chain of clusters is
ended by a O. Only one cluster is shown in the example.
This file is continuous from AU number >0894 to >OB63.

With the information above you should be able Lo
load any sector from the hard disk and to follow any
valid path from sector 0 to the file that you are
looking for. Are there any uses for this information?

You may wish to write a sector editor for the hard
disk or modify one that is used for floppies. A sector
editor for both the hard and floppy disks is presently
under development in Australia and will be available
soon. here may be other simple utilities that could be
useful. There is one such program listed below as a
demonstration of the information that I have discussed.

Demonstration — Change Emulate File Pointer.

It is not unusual to have several DSK1 emulate files on
the hard disk. Only one can be active at one time.
This program is loaded from Extended BASIC and will
change the active emulate file without going through
MDM5.

The device number, path name and filename are passed to
the assembly program from Extended BASIC, the file is
located and the AU of the FDR is written into the
pointer in sector O.

In Extended BASIC the following program can be used.

100 CALL CLEAR
110 CALL INIT
120 CALL LOADCDSKLEM/0")
130 INPUT "ENTER #.Pn.Fn":A$
140 CALL LINK("START",A$)

In simple terms the assembly portion can be listed
as follows:

Get filename.
Get number of sectors per AU.
Get list of directory pointers.
Point to next name in the path name.
Find the DDR.
Repeat the above steps until the filename is

reached.
Find the FDR.
Check that it is an emulate file.
Load sector 0, change pointer and write sector O.

The routine to find the DDR or FDR is simply:
Get list of pointers.
Get first pointer.
Get sector.
Look for match of names.
Next pointer and repeat until found or no more

pointers.

Please note that the format of the string passed to
the program is important. 	An example may be
"1.TEMP.BLANK". 	The "1" indicates which hard drive is
to be used. Entering only the device number (eg "1")
will result in the pointer being cleared. No DSK1 file
emulation will be active.

There is error trapping, however it 	is not
reported. 	I have attempted to keep the size to a
minimum. In keeping with this philosophy, I have given
the DSRLNK routine a "short back and sides" that would
make the toughest drill sergeant smile.

Source code listed in Bug—Bytes, 	June 	1989,
starting on page 9.

(3

(Page 29 TIsHUG NEWS DIGEST September 1989

7S1EtT
DataDDEOIEEPIC

by Geoff Trott

This month I will only have time to try and explain
the program which appeared in the last TND. Next month
(with luck) I will give the source of the string
procedures used in the program and explain how I have
used them. I am glad that Craig has started a series on
c99 as he is explaining it much better than I will so I
commend those articles to you if you cannot follow what
I am saying. Perhaps between the two of us you might
see some light!

The first two statements are "#include" statements.
These are special statements as they do not need a ";"
at the end. They tell the compiler where to go to get a
source file, like the ".IF" in TI—Writer or "COPY" in
Assembler. The first of these is part of every C
language and defines the defaults for the standard I/0
library routines. The second file contains the
definitions of the string procedures which I have
compiled and made into a library. The next lines down
to "main()" define variables which become global
variables and so available to all procedures used in
this program. More than one variable of a particular
type can be declared in each statement and they may also
be intialized to particular values with an "="
operation. There are a number of integer variables
declared but the most interesting variables are the
character variables. "c" is a single character
variable, and "*p3" indicates that "p3" is a pointer to
a character. I shall return to pointers in a moment but
it can be considered as a variable which stores the
address of a variable. All the rest are single
dimension character arrays of various sizes, some of
them initialized. For example, "at[21="@"" defines a
two character array which is initialized to the string
"@". The string "@" is not quite the same as the
character V, as a string is always terminated by the
null character ('\000') and so will have two characters

and '\000' rather than just V. Note the use of
the single and double quotes. A back slash followed by
a number is a way of specifying a non printing character
using the octal number system. The number can have a
maximum of three digits with the first one of three
having a maximum value of 3 with the others having a
maximum value of 7 (octal number system). So "ffcr"
will contain the 3 characters: form feed, carriage
return, null. "al" contains the 26 capital letters
followed by a null, "fname" contains the name of a file
(DSK2.) followed by a null and "nc" contains just a
null.

That took a long time and we have not yet entered
the program! However you need to understand the
variables that will be used in the program and how to
set up your own. The main program starts with "main()
(" and ends with the matching ")" just before the
procedure "putwd()". Notice that the "C" is actually on
the next line but it does not have to be. C is free
format so you can put many statements on one line or one
statement on many lines, as I did with the declarations.
It is good practice to try and set programs out neatly
so they are easy to follow using indenting and by in
general only putting one statement on a line. I have
not done this exactly, but hopefully only where it makes
sense to deviate from this ideal. The main program
starts with some more variable declarations which now
become local to the main program and will not be
available to any procedures. Some integers and pointers
to character variables are defined. Then the processing
begins.

The first thing that happens is that a file is
opened for writing the output and the single character
"*" is written to it using "fwrite", a function in the
standard library. Then the sector byte counter and the
line byte counter are initialized. The line byte
counter determines when there are enough characters to
almost fill the D/V 80 record while the sector byte
counter is used to determine when a sector is full.

"puts" outputs a message to the screen and the "\n"
character moves the cursor to the start of the next line
on the screen. The program then enters a "for" loop, to
read in 26 files, one for each letter of the alphabet,
and process them to the output file. This loop does
most of the processing.

The first thing that happens is that the current
letter of the alphabet is concatenated onto the end on
the filename in "fname" and this name is shown on the
screen as well as used to open a file. Then the current
word "wore" is initialized to be the letter of the
alphabet, a pointer is made equal to the address of
"s1", which holds the record to be written in the output
file. The first record of the file is then read into
"buff", and the number of characters in "buff"
determined. "s1" is loaded with the first character of
"buff" followed by "*" and this is output. Then follows
the house keeping for "sect" to keep track of how many
bytes are left in the current sector. "fwrite" outputs
the number of characters specified, whereas if "buff"
has only one byte in it there are no words for this
letter of the alphabet and a null byte is written using
"fputs". This is done using the "if" clause which
involves 3 statements inside the "()" if the "if"
clause is true. Note the double "==" in the test as the
single "=" is used for assignment of values. If there
are words in the input file starting with this letter of
the alphabet, they are processed by the "while" loop
which ends just before the "fclose" statement, which
closes the input file. Following that the end of letter
record is written ("@") and the next value of the "for"
loop is started. When the "for" loop is finished, two
records are written' consisting of "formfeed" and
"carriage return" characters. Finally the output file
is closed.

All the work of getting the next word is done by
the code in the while loop while the work of outputting
the words or parts of words is done by the procedure
"putwd". Getting the words is complicated by the format
I have used when adding and changing words in the letter
files. Writing words is similarly complicated by the
format needed by the dictionary files. To get a word
from the input buffer the program looks for a space
which defines the end of the first word in the line.
Subsequent spaces define the additions to the end of
that word. Each word is sent to "putwd" as it is
isolated. After one record is handled the next one is
read. If it is not empty the number of characters is
determined and the "while" loop continued. If there are
no more records in the file the length is set to zero,
the output buffer is written and variables are set up
for the next file.

Procedure "putwd" has no parameters passed to it as
it uses the global variables defined in the first few
lines. Some local variables are defined, including some
pointers, and then the first statement is an unusual
"for" loop which executes a blank statement a number of
times. As can be seen, there are multiple statements in
the "for" clause. The statements are separated by
commas and those before the first semicolon are executed
first and only once. These initialize the pointers "pl"
and "p2" to be the addresses of the buffers "wore"
(containing the last word) and "word" (containing the
next word) respectively and sets the counter "n" to
zero. Between the two semicolons is the test for
continuation of the loop which in this case is that the
character pointed to by "pl" is the same as the
character pointed to by "p2". After the second
semicolon are the statements executed at the end of each
loop, in this case both pointers are incremented and the
counter is incremented. So this complex statement
finishes when the two words differ from each other with
the pointers at the characters which are different and
"n" with the number of characters which are the same.
Then there is a diagnostic check on the input to make
sure that the words are in alphabetical order and output
of a message if they are not. Then a null is stored at
the next character in "sl" using the pointer "p3" just_
in case the number of characters to be written would
make the record larger than 80 characters or require
more than the 256 characters in a sector and then the
current record would be written. continued on page 35

September 1989 TIsHUG NEWS DIGEST
	

Page30

Drive Power Plug
(top view)

Prom tht Bull'Ittin Boum11
MAIL TO : ALL
MAIL FROM : ROSCO

MAIL TO : ALL
MAIL FROM : TI-ARTIST

This is a new file in the news menu to help people
with problems that they might be having with different
graphics programs they might use. Also from time to
time I will put items of interest concerning graphics
programs etc. Also how to animate your picture files.
An interest group has been set up and is held after each
TIsHUG meeting to give demonstrations on the latest
graphics programs from America. If you need help leave
a message for me TI-ARTIST and I will try and figure it
out.

TI-ARTIST.

MAIL TO : ALL
MAIL FROM : LIVERPOOL

One error in SPLIT/MKII. Should read
150 L=L+1 	LINPUT #1;A$ 	B$(L)=A$

Bye for now LARRY

MAIL TO : ALL
MAIL FROM : RLE#1

I would just like to inform everyone that RLE#1 is
a new sub-editor. In this file, I have put a picture of
Bugs Bunny. To look at it, you need to capture it (ie
log it to disk) and then go into TI-Writer and edit out
the first line ie uploaded by Then re-save it and
it will load through Max RLE loader. If you do not have
this loader, I will upload it for you in the next few
days.

By the way, you cannot view the RLE#1 file with
TE2.

Robert Brown (a person on many talents)
— — — - - — —

MAIL TO : ALL
MAIL FROM : SHOP

I am thinking of selling my system as I may need to
downgrade to' IBM. I am now a full time Tech Teacher and
need an IBM compatible. My system consists of:

2 computers (1 silver 1 grey), PE box, 2 Disk
drives, 720K RAM, 32K, RS232, Multiplan, Disk Manager 2,
Editor Assembler, Extended BASIC, Plato, 200 plus disks
of software, a modem (300 baud) and heaps of
documentation, magazines etc ---- Offers please ---
Phone me on (02)637 6772 at home

MAIL TO : ALL
MAIL FROM : SHERLOCK

For Sale 	
TI 32K Card 50.00
TE2 module plus book 30.00
Extended BASIC module plus book 30.00
TI-Writer module plus book 30.00
Editor Assembler module plus book 25.00
Technico 9900 development board including EPROM

Programmer RS232C interface plus documentation

For Sale
TI99/4A silver console with UHF modulator and

inbuilt 32K; PE box and interface; 184K RAMdisk; 1.1
RS232 card; TI disk controller with Disk Manager 2;
Double sided disk drive; Speech Synthesizer; Cassette
tape player; 2 joysticks; Naverone cartridge expander.

12 modules with books including Extended BASIC,
MiniMemory, TE2, Multiplan; approximately 40 disks and
20 tapes of software

All club magazines from February 1983 and many
other informative books.

All this and more for $1000 or nearest offer.
Phone Alistair on (02)745 3543.

Photograph of Modified IBM Keyboard

For Sale For Sale For Sale
======== ======== ========

Urgent sale required. Dick Smith Dataphone II 300
baud modem, extra long cable to connect to phone. Must
sell to get a 1200 baud modem to assist with work for
the WIA (Wireless Institue of Aust) VK2 (NSW) Division.
A steal at only $50.00

Please leave message on this BBS or call me at home
on (02)608 3564 after 7:00 pm weeknights till 10:30 pm
or all day on the weekends if you can get me

Thanks to you all: Steven Carr TIsHUG Shop Manager

A

Hard Disk Power Supply (Half Height Only)
314-1 0.SA

—/ 	 iS

3,11
FoSG

2a.,m,

iGv T
vir

7 9 05

6±---
4=7 	' /4 F

4- -) 00),AF
4-7 	4-7 3...5V

—7.1f

nr.■•■ •■ 7g 2

GA 14'849 _/ /5VP.A

(Page3i
	

TIsHUG NEWS DIGEST September 1983

Modification to MiniPE RAMdisk Power Supply
From 7805 output

.41" v
— — 	 — —

Imo- !

DC Supply
unregulated

GND

To 7805 Input To +5V
Logic
Supply

co- WO?

Tir nsfeT Plrogtra ri s between
Cassette and Disk

by Eric-Paul Rebel, Netherlands

Normally OLD DSK1.PROGRAM; SAVE CS1 will work. But
what when the file is too large and even CALL FILES(1)
will not help?

After loading an INT/VAR 254 from disk you can type
in:

CALL LOAD(-31888,63,255).
This will act like CALL FILES(0) and sometimes the

program can be saved. If not, it is really too big too
fit on cassette.

But how can you get a file from cassette on your
disk that will not load because it is too big?

Simply by using the DSKBUF program. How? Type in:

RUN "DSKx.DSKBUF/EXB" 	(only ones)
CALL LINK("SAVE") 	(this will save the disk buffer)
OLD CS1 	 (the program has to load now)
CALL LINK("LOAD") 	(this will restore the. disk buffer)
SAVE DSKx.PROGRAM 	(or any name you like)

DEF SAVE
DEF LOAD

VMBW EQU >2024
VMBR EQU >202C

SAVE MOV @VDPTOP,R0
MOV ROXAVTOP
LI R1,DSKBUF
LI R2,>4000
S RO,R2
BLWP @VMBR
LI RO,>3FFF
MOV RO,@VDPTOP
RT

LOAD MOV OSAVTOP,R0
MOV RO,@VDPTOP
LI R1,DSKBUF
LI R2,>4000
S RO,R2
BLWP @VMBW
RT

711/1310/4k. hfaT,73
by Chris Bobbin, fmn Asgard News

Asgard release Page Pro 99 at US$24.95 plus US$4.75
Airmail delivery.

Page Pro 99 composes a 66 line page full of text,
graphics and lines. There are no formatters, no cryptic
commands or functions, just a "what—you—is—what—you—get"
screen, and the ability to paste in pictures and type
text.

It will allow up to 28 pictures of any size or
shape anywhere on screen. It will let you type text in
a complete large font and a small font of your choice
(both with upper, lower case, numbers and symbols) and
draw lines anywhere you need them. 	It will create
almost anything (maps, newsletters, etc). 	Has three
densities, from "rough draft" up to reproduction
quality.

It will type in any direction (up, down, etc), can
load on pictures and get rid of them at your option, can
read in a text file and paste it into the page, save it
as a text file, load in new fonts etc.

It comes with a collection of artwork and fonts, as
well as utilities to convert TI—Artist fonts and
instances into Page Pro 99 format, as well as make 2
column justified text for use in Page Pro 99. Arrived
6/6/1989.

Genial Macintosh to TI99/4A program
Genial Computerware is reportedly working on a

program that will allow you to move Macintosh pictures
to a TI99/4A. They placed a sample of the program up on
US BBS networks recently

First—Base words
First Base is reportedly entering the beta—testing

stage of development.

GIF for the TI99/4A
GIF graphics transfer protocol for the TI99/4A is

in development for converting MAX/RLE from black and
white to colour.

Computer Fix Aust has BIZTEL smart modems on sale
that have Auto dial, Auto Answer, Auto Baud protocols
(2400, 1200, 300). Price only $299. Will work with
Telco, Mass Transfer, Fast Term, etc.

SAVTOP BSS 2

DSKBUF END Eric—Paul Rebel
Merelstraat 27
1223 NR HILVERSUM
The Netherlands 0

Note for Telco users, Telco Auto dial will change
modem to Baud rate that the Auto dial is set for. So
you can set four Auto dial programs to dial the BBS at
300, 1200, 1275, 2400 rate. Just call up auto dial and
press 1, 2, 3 or 4 and it will do the rest. 0

(September 1989 TIsHUG NEWS DIGEST 	Page32)

Taail 	713Dau lat2 session
Author unknown

Introduction

According to our source there are quite a few
people out there who got the TI-Forth disk and
documentation when TI made them available to user
groups. But not very many do much with it. Why? Well,
the TI manual is not a tutorial, it assumes that you
know something about Forth. Though packed with useful
information there are no "HOW TO" instructions for the
beginner. We will try to get you started from the very
beginning. Hopefully we will strike a happy medium,
somewhere in between teaching and providing information
that is useful to you.

What is Forth?

There was much hype when it was made available,
some of it was much TIL (Threaded Interpretive Language)
and it will be hard for you to believe that there is no
GOTO command. If that is hard to swallow, there is
more. It uses RPN or post-fix notation (RPN = Reverse
Polish Notation). In other words, it is not 2 + 2 that
equals 4 but 2 2 + .

We will find out more as we go along, for now let
us just say that Forth is very powerful, quite a bit
faster than BASIC, compact, but perhaps more difficult
to learn than BASIC. As a matter of fact, knowing BASIC
may make it harder on you, because you will be thinking
BASIC until you get the hang of Forth.

Getting started.

Before you do anything with your Forth disk, get
out a Disk Manager and make a backup copy. Do all your
work and experimenting with this copy unless you are
prepared to get a new Forth disk. Now plug in the
Editor Assembler, opt for 3 (LOAD and RUN) and enter
DSK1.FORTH. After a moment the screen shows
"BOOTING..." which is soon replaced by a menu. These
are the LOAD options. For right now you need to concern
yourself with only 2 of them: the normal or the 64
column editors. Your choice will depend on several
factors: 1) your eyesight, 2) your monitor, and 3) how
well you have adapted to using 'windows'. So jump right
in and enter -64SUPPORT. After your disk drive is
through you will see a tiny 'oke, meaning the 64 column
editor has been booted. To see what your screen will
look like type 34 EDIT <enter>. If you can read what is
displayed on your screen, you will want to stay with
-64SUPPORT. If it is hard on your eyes, settle for the
40 column editor. 	To get an idea what it looks like,
hit FCTN[9j(ESCAPE), then enter TEXT COLD. 	Forth will
re-boot and when it is done, enter -EDITOR. (From now
on, 'enter' will mean to type in the word followed by
the ENTER key.) Again enter 34 EDIT to see what your 40
column editor looks like.

Programming in Forth consists of editing SCREENS,
such as that number 34 screen you called up for editing.
But we are not ready for that, yet. Hit ESCAPE
(FCTN19.1) and enter FLUSH and do this: Make yourself an
overlay strip so you can edit easily. Keys and their
functions are explained on page 5, Chapter 3, of the
TI-Forth manual. Now here is another thing you might
want to find out right now: a display colour that suits
you. Since you are still in the so-called 'interactive'
mode of Forth (no program is running) you can enter this
ditty :

: SEE 252 22 DO I DUP . 7 VWTR KEY 2 = IF ABORT ENDIF
LOOP ;

After you get the tok', type SEE.
Do not worry if you cannot read anything, at times

the foreground and back ground colours match and there
is nothing to be read, keep hitting any key and the
colours will change. When you see a combination which
gives you a good screen display, write down the last
number (bottom of the screen) and continue to step

through the loop (or exit via FCTN[4.1).

You have accomplished 2 things:

1) you know which editor you will want to use
2) you have chosen a screen colour. 	 0

CIDUI.711'041:D31 	7EIhO

This short program is for the user of a second hand
motor car with the speedometer calibrated in miles
rather than kilometers. Changing the range in line 110
will give various ranges, and I have arranged for the
miles to be rounded up if over .5 kilometres.

1 REM D.N.HARRIS
2 REM 5TH AUGUST 1989
3 REM YES I DID GET AN URGE TO PROGRAM
4 REM JUST WHEN I WAS ABOUT TO GO TO
5 REM THE MEETING!
100 DEF KILO(MILE)=MILE*1760*3*12*2.54/100000+.5
101 OPEN #1:"PIO"
102 PRINT #1:"MILES";TAB(40);"KILOMETRES-TO NEAREST

WHOLE ROUNDED UP"
103 PRINT #1:RPT$(" ",80)
110 FOR MILE=0 TO IR) STEP 2
118 MILE$=STRUMILE)
119 KILO$=STRUINT(KILO(MILE)))
120 PRINT #1:TAB(4-LEN(MILE$)); MILE$;

TAB(40-LEN(KILO$)); KILO$
130 NEXT MILE

This program prints quite reasonably aligned
tables. It also shows the way DEF can be used without
confusing reference to the term "function", so for
example in compiling a table of temperatures one could
DEF FAHR(CENT)=9*CENT/5+32.5, the .5 being added so as
to round up. If one wanted to round down one would make
the constant 31.5, or for truncation one leaves it at
32. In this case one could look at the whole group of
numbers resulting if one got rid of the string handling
functions, or if one wanted to round to 2 decimals the
constant becomes 32.005 and it is necessary to multiply
by 100 before taking the integral value, then one can
divide by 100, then one can convert to strings, and
allow a TAB value for a LEN of up to 5 including the
decimal point. Some people would say a swear word and
print ragged tables, but having struggled through a Tech
course in Computing, I like to get the output looking
professional and the documentation clear and possible
even for me to understand in the wrong mood when tired!
A few lines of program will in this case print a
foolscap page of output. When planning to print tables
it is a good idea to think of the range that will be
printed, as foolscap allows about 66 lines, so 1 to 60
step 1 or 0 to 120 step 2 will fit a foolscap page. If
the printer starts to put ink all over the platen maybe
you made a wrong guess about the interval! Printing
tables justifies a computer, but if all you want is to
play games or handle documents, a games machine or a
dedicated word processor would do the job better. 0

confinuedfawnpage34

TI Focus, June '89: PRESS to have 80 to 90
revisions on original concept and will be available in
about August; Review of Page Pro 99 which supports
graphics and text in columnar form; use of REM in BASIC;
report on the Lima Multi Users Show; review of Dijit 80
column card and a BASIC "Magic Nines" program .

Topics, LA 99ers, June '89: TI-Sort (for TI-Base)
can handle 99,999 records; Art Green has released V4.2
of TI-Writer clone; Inscebot are working on a hard disk
version of TI-Base and TI-Artist Plus; hard disk user
tips; historical information on the TI99/4A computer;
using "RUN" within Extended BASIC programs; Two Way
Print utility; controlling spaces after the period in
TI-Writer by using the " " character; Genial Traveller
Diskazines overview and Beginning Forth #13.

Page33 	 TIsHUG NEWS DIGEST September 1989j

continued from page 1
John Hagart also asked if anyone has a Logo module

for sale and Logo programs on disk. He is helping out
at his local primary school, supervising children doing
lessons on the school's computers. He would like to be
able to practice at home on his TI99/4A. TI—Logo is
quite a good version of Logo and I have found the manual
that comes with it to be quite good as a guide to using
Logo. There are a set of programs called the Logo
Curriculum Guide which come with a manual and several
disks of programs designed for the young with lots of
graphics and other features. I am sure that some of the
things that can be done with TI—Logo would be very
difficult to do on other machines. Can anyone help
John? If you can, write to him at 8 Griffin St.,
Gordonvale, Nth Qld 4865; phone (070)56 1196.

More from the continuing saga of the hard disk

drive that has corrupt sectors. I received a disk from
Garry Christensen of Brisbane (thanks Garry) a few weeks
ago with all the articles which are in this issue and
which appeared in Bug—Bytes first, along with the
program Hard Master by his father Colin. By the way, I
hope Colin is better now and recovering from his heart
attack. Back to the subject at hand. Hard master
allowed me to make the directories on the hard disk
whole again and even allowed them to be listed out so
that I now know the names of all the files on the disk.
Unfortunately one of the corrupt sectors is used by the
bit map and so Myarc Disk Manager 5 still will not run
on that disk. This means that there is no easy way to
copy files off the hard disk as there is no other
program which will allow files to be copied. I could
copy all files except program files by writing a program
to treat them as data files, but this would be a lengthy
process. Program files have me beaten at the moment.
If they are BASIC then they could be OLDed and then
SAVEd but if they are anything else there is no utility
which I know of which will do it easily. Does anyone
have any ideas? Meanwhile John Vandermey has his
controller card back at last and has kindly left his
disk with me for more time to see if I can get any more
from it.

The editor's system is now virtually complete with

the purchase of a monitor and RS232 card. The system
consists of console, Mechatronics 80 column card and its
power supply, Commodore 1084S video monitor which plugs
directly into the 80 column card (or Geneve), PE box
with 32K byte memory expansion, TI—RS232 card, 256K
bytes Printer Buffer, Brother HR-15 daisy—wheel printer,
Myarc Hard and Floppy Disk Controller card, 20M byte
hard disk, double sided double density floppy drive
(courtesy John Paine) and power supply for hard disk. I
am very pleased with the monitor which gives a very
clear picture on 80 columns and did not require and
extra circuitry or even modified cabling. The monitor
came with two cables, one for the Amiga and one for a
PC. The PC cable was perfect for the Mechatronics card.
If someone were looking for a dual purpose monitor this
one would seem to provide all the facilities required.
With all this great equipment at the editor's disposal I
am hoping that someone will volunteer to take on the job
next year to give me some time to do other things. I
can always hope I suppose!

Lou is always asking me difficult questions about

hardware and good ways for members to expand their
systems. He has done an excellent job of putting his 2
way expansion system into a neat enclosure which he will
be showing at the meetings. The difficult questions
relate to what would be best to choose as the two cards
to install in the expansion slots, given that there are
only 2 slots and they take PE box cards. The ideal mix
would have 32K memory (if not already in the console), a
disk drive, a printer port (RS232 or PIO), a RAMdisk and
perhaps a serial port for a modem. If that could be
done in two cards then you would have a rather neat and
powerful system. The obvious way to go would be an AT
Multifunction card and a RAMdisk card. The not so
obvious way would be to use a TI disk controller card
(more readily available?) with a RAMdisk card and 32K
memory inside the console or attached to the RAMdisk
card and a simple PIO port also attached to the RAMdisk
card. What do you think? If you like these ideas or

wish to inject some other ideas, talk or write to Lou so
he can gauge which way most people would like to go and
if you get the chance, have a look at his (Mark 1)
enclosure. I am sure that you will be impressed at what
he has done. 0

Ne

W

by Lou Amadio

Local Newsletters

ATICC, 	July 	'89: 	Old committee 	re—elected
unopposed; seven part article on "The Making of a
Portable" by Jan Janowski; "Sprites in G", an article on
how to program in advanced G; Extended BASIC Sprites;
Redefining the cursor; Multi—Keyboard Scanning; an RGB
monitor kit from Colin Cartwright and two pages of
useful function key overlay strips.

Melbourne Times, April '89: Glossary of computer
acronyms; Geneve Notes, autoexec and menu files; Peeping
into Pascal by Peter Gleed; The Power of AND (part 4) by
Craig Miller; Reminder of TI Fair, October 14th;
Multiplan tutorial, Costing for Profit by Peter Gleed.

TIUP, July '89: BASIC program to produce wrappinc,
paper; general information on the Zork adventures;
beginners notes on handling cassette 	players and
designing graphics; 	using the Editor Assembler
cartridge; configuring Tunnelweb and how to wire up a
pair of joysticks.

Bug Bytes, June '89: Reminder of the program
competition which has been organized as part of the
Melbourne Faire; The Hard Disk, a Guided Tour; using a
mouse with MyArt; documentation on Disk—Edit by Col
Christensen; Sound and Assembly and Direct Keyboard
Access. Bug Bytes, July '89: Two new fairware programs
from the Christensens: one to back up a hard disk on to
itself and the other to facilitate the transfer of
programs from disk to cassette; article on Sound in
Assembly; Cassette Tips and Hints and the Funnelweb
Report by Tony McGovern.

Overseas Newsletters

TIdbits (Mid South 99ers), July '89: New EPROM
the Mechatronics 80 column card from Barry Boone fixes
some bugs; new commands for My—Word; upgrade for 99
FORTRAN; cSHELL99 (written in C) provides a GEOS like
shell for the TI99/4A; Sign Shop (similar to Print Shop)
by Peter Hodie; future speculation on the second
anniversary of the introduction of the Geneve includes a
20 MHz version with a minimum of 2 Mb RAM; Z80 card for
the PE Box; Texaments to supply a high speed sort
utility for TI—Base owners; Geneve Notes by B Miller.

CIM 99, July '89: A lot of useful information
written in French!

ROM, June '89: BASIC file handling; BASIC program
to check the linearity and convergence of monitors and
TVs; assembly language Boot Tracking; new high
resolution 80 column graphics program from Germany;
RAGTIW word processing program with new editor and
formatter commands.

Northern NJ 99ers, July '89: 	Telco Terminal
Emulator V2.1 reviewed; upgrade for TI disk controller
recognizes a fourth drive and head step times; upgrade
for TI RS232 adds TP and SIO (for RS232 defaults);
review of text scanner and use of special BASIC commands
resident in the PRK module.

Spirit of 99, July '89: Problems in keeping new
members; review of Page Pro 99 for combining text and
pictures; review of Jiffy Card to produce quality
greeting cards; TI—Writer V4.2 has a number of useful
improvements over the original version; Legends II to be
released soon and several TI—Base Tutorials.

continued on page 33

(September 1989 TIsHUG NEWS DIGEST 	Page34)

tElwand CG-TDsnlp L'atpDTIo
Meeting summary.

Banana Coast 	10/09/89 Sawtell
Carlingford 	20/09/89 Carlingford
Central Coast 	9/09/89 Toukley
Glebe 	 7/09/89 Glebe
Illawarra 	18/09/89 Keiraville
Liverpool 	8/09/89
Northern Suburbs 28/09/89
Sutherland 	15/09/89 Jannali

BANANA COAST Regional Group
(Coifs Harbour area)

Regular meetings are held in the Sawtell Tennis
Club on the second Sunday of the month at 2 pm sharp.
For information on meetings of the Banana Coast group,
contact Kevin Cox at 7 Dewing Close, Bayldon, telephone
(066)53 2649, or John Ryan of Mullaway via the BBS,
user name SARA, or telephone (066)54 1451.

CARLINGFORD Regional Group.
Regular meetings are normally on the third

Wednesday of each month at 7.30pm. Contact Chris
Buttner, 79 Jenkins Rd, Carlingford, (02)871 7753, for
more information.

CENTRAL COAST Regional Group.
Regular meetings are normally held on the second

Sat rday of each month, 6.30pm at the Toukley Tennis
Club hall, Header St, Toukley. Contact Russell Welham
(043)92 4000

GLEBE Regional Group.
Regular meetings are normally on the Thursday

evening following the first Saturday of the month, at
8pm at 43 Boyce St, Glebe. Contact Mike Slattery,
(02)692 0559.

ILLAWARRA Regional Group.
Regular meetings are normally on the third Monday

of each month, except January, at 7.30pm, Keiraville
Public School, Gipps Rd, Keiraville, opposite the
Keiraville shopping centre. Contact Lou Amadio on
(042)28 4906 for more information.

LIVERPOOL Regional Group
Regular meeting date is the Friday following the

TIsHUG Sydney meeting at 7.30 pm. Contact Larry
Saunders (02)644 7377 (home) or (02)708 5916 (work) for
more information.

At next Liverpool meeting will be using the Page
Pro 99 program. This program is the most outstanding
Desk Top Publisher ever made for the TI99/4A computer.
Any one into TI—Artist or Word Processing be prepared
to have your socks blowing to the noon. 	(It is
fantastic.) Press is due any time now. 	Legends II
(expanded to a third disk which slowed the release)
will be here any time now.

NORTHERN SUBURBS Regional Group.
Regular meetings are held on the fourth Thursday

of the month. If you want any information please ring
Dennis Norman on (02)452 3920, or Dick Warburton on
(02)918 8132.

Come and join in our fun. Dick Warburton.

SUTHERLAND Regional Group.
Regular meetings are held on the third Friday of

each month at the home of Peter Young at Jannali at
7.30pm. Group co—ordinator is Peter Young,
(02) 528 8775. BBS Contact is Gary Wilson, user name
VK2YGW on this BBS.

TIsHUG in Sydney
Monthly meetings start promptly at 2pm (except for

full day tutorials) on the first Saturday of the month
that is not part of a long weekend. They are held at
tile Woodstock Community Centre, Church street, Burwood.

Regular items include news from the directors, the
publications library, the shop, and demonstrations of
monthly software.

Unfortunately, a couple of the planned activities
for the August meeting had to cancelled due to problems
at the venue. However these will scheduled for later
months. Many apologies for any members inconvenienced
because of this. Meetings for the next two months are:

September 2 — Ross Mudie will demonstrate how to
exchange programs an mail between two computers via
modems. 	First a TI99/4A will be connected to a
TI99/4A, followed by a TI99/4A to IBM connection. 	The
first part of series of lectures on using TI—Writer's
transliterates will be presented. In addition, the
TI—Artist SIG will meet.

October 7 — What have the various special interest
groups achieved over the last six months? When do they
meet? How can 'you become involved? All of these
questions will be answered with presentations from each
of the SIGs. The TI—Artist SIG will meet and the final
lecture in the transliterate series will be presented.
The remaining meetings for 1989 will be held on
November 4 (Full day workshop) and December 2.

	

Craig Sheehan (Meeting coordinator). 	 0

For Sale
One only 512K byte RAMdisk for a MiniPE system including
clock for $300. Phone Les Andrews on (02)319 2572

Photograph of 2-way interface connectors

confinuedfionipage30 	 This is determined by
the number of characters left in "word" after differing
from "wore" with 1 added for the length byte. If the
record is written, the variables and pointers are reset.
Then the count of characters which were the same (plus
128) is stored in the output string using the pointer
"p3" and the remainder of "word" is copied to the output
string. The variables and pointers are adjusted
accordingly and then the contents of "word" are copied
into "wore".

Note that there are two lines commented out within
"/* */" which are debugging lines I have left in. These
are ignored by the compiler.

If you are confused about pointers then you are not
alone. 	They are very useful but require a good
understanding to not make mistakes. 	An asterisk in
front of a pointer means the value of the variable to
which the pointer is pointing. An ampersand in front of
a variable means the pointer to that variable. All
array names are in fact pointers and if you want to
return a value from a procedure to the main program
(other than a single integer) you must do it using a
pointer. Pointers are associated with variable types so
that when arithmetic is performed it is done according
to the data type. For example pointers to character
variables are incremented by 1 while pointers to
integers are incremented by 2 since characters occupy
only one byte while integers occupy two bytes of memory.
C also allows pointers to be incremented before or after
their values are used. It is a difficult concept to
explain in a short space but I shall continue with more
about pointers next month (or perhaps the one after)
when I return to look at the string functions. 0

1--age35
	

TIsHUG NEWS DIGEST September 1989

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

