

Co-ordinator's Report

by Dick Warburton

Recentiy I examined a new notebook computer. I was
quite impressed with its power, versatility and
capacity. It included a 40 megabyte hard drive, would
run on its batteries for long periods and process large
complex programs very quickly. When you aillowed for the
hard drive, the floppy drive, the keyboard, the LCD
screen and batteries, it was hard to imagine where they
could actually put the circuitry for the computer. It
set me thinking about the rapid technological
development which has occurred over the past few years.
The rate of development has been phenomenal. One can
only wonder what an up to date TI99/4A would be |ike
today if it had been supported and developed with the
latest technology.

I still find that I have only mastered only a small
fraction of what is available for the TI99/4A. There is
still so much to learn and do with this machine.
Compared with the latest developments, it is

prehistoric. However you can actually learn quite a lot
about it, because it is accessible, open and basically
understandable. I suspect that few notebook users will
ever Know anything more about their machines than how to
run a few selected programs. Certainly they will not
attempt to get inside the computer. The more modern
computers will leave people quite ignhorant about how
they work and about basic principles, because they are
general ly inaccessible. The technology has been
minaturized. Parts now are too small to fix. I suspect
that with mass production, whole computers wilil become
throw away items in time. They will simply not be
repairable.

With such technology comes great benefits, if we
are sKilled enough and able to exploit its use for our
advantage. If we can master the software and can see
the applications, we have fantastic tools to work with.
Most people, I fear, like me, are not brilliant, iearn
fairly slowly, tend to stick to things we know weli and

lack the imagination and skills to make the most of
using them successfully. I suspect that for most
people, computers will remain glorified typewriters,
which can be switched over to playing games, or storing
some data from time to time. I fail to see how the
majority of computer users will benefit from the latest

computer designs. They will pay big bucks for the
latest and fastest machine. I know that they can carry
their computer wherever they go, perhaps even play

noughts and crosses at the traffic |lights, They can
impress their friends with the speed and smoothness of
operation. Some may even use them as high priced
typewriters. Just imagine every police officer being
issued with latest notebook computer. They could take
their statements on the spot, typing them in as we speak
(one finger only of course). Imagine the possible
savings in time and money. Bus drivers could record al
sorts of data about passengers while colliecting the
fares. A new arm of the Department of Census and
Statistics could be created. It could open up a whole
new way to collect Government information. However, for
most users, the usage will be fairly simple and
uncompl icated.

The problem I see developing, is that many people
will become dependent on these mind tools, unable to
understand how they work and in time unable to use the
basic skills to solve their own problems. They will
become even more dependent on technology and very
dependent on the suppliers of hardware and software,
unable to modify or repair the systems they use. They
will have |ittle computer Kknowledge beyond their own
area of expertise, However, TI99/4A wusers who get
really interested, can gain so much more from this
simpler but versatile computer. TI9Y/4A users can
select word processing or data management if they
choase, or they can load and play fascinating games, or
chal lenge themselves with chess or solitaire. TI9G/4A
users have a computer which uses speech quite well, can
program surprisingly good music, can be wused by the
artistic to create great designs and pictures and can

artwork available on other
and on: control a model

display much of the best
machines. The list goes on

train system or house alarms; use a spreadsheet; write
books; do compiex engineering computations. I never
cease to be amazed at what a humble TI99/4A can achieve

in the right hands. Wait till you see Ben’'s library
program in action; the Mudie revision. The use even of
a TIBG/4A is |limited only by our imagination and
intelligence. Features we take for granted on a TI99/4A
are often costly additions on another system, for
example speech. Use a RAMdisk and your system will be
up and running faster than the latest IBM clone. Some
of our members can either write or modify the programs
we use. We can modify or develop our own hardware. We
canh repair our own systems, cheaply, TI99/4A users can
learn how things work more easily. TI99/4A users can
have great enjoyment doing a whole range of things with
their TI99/4A. Other computers all have features in
some areas which are vastly superior to a TI99/4A.
e.g. Amount of memory for programs.

Vivid graphics,

Stereo Sound.

Superb desk top publishing,

However, I do not know another machine, on which I
can do so many things. I use a 286 machine at times.
The quality of its sound makes me squirm., It takes 45
seconds to load its basic system and get ready to run.
DOS is convoluted and awkward to use etc. My wife’s
Amiga system has brilliant graphics and sound. It
muiltitasks from a windows environment, However I get
fed up with the time it take to load each time it is
used., Getting it repaired when it broke down was a
nightmare, even under warranty. The problems went on
for months and no-one seemed to know how to fix it. We
finally received a new main board, which still played
up. While I have access at any time to a sophisticated
Amiga system, I find my simple but versatiie TI99/4A to
be more satisfying and enjoyable.

You can get more from your TI99/4A.
it further. The club can still help you to do it quite
cheaply. Disks and software are cheap. You can save
money with standard equipment. Unlike the Macintosh,
you are not locked into expensive peripherals and parts.
You can learn to build a RAMdisk, fix a console, repair
a keyboard or power supply, make your own PIO/RS232
cabies, even learn about using EPROMs on RAMdisks. You
can learn to program in a number of languages, even
learn how to fix monitors. Most of the technology in
use today, is understandable if we understand how a
TI9Y/4A works, There are developments T would |ike to
see for the TI99/4A. I am waiting for an interface for
a CD ROM player (with software). I would also |ike to
see a portable expanded system, one I could carry around
easily. I would love to see an interface for standard
hard disk drives, other than the Myarc. I suspect that
all these goals will be achieved in the near future,
because of the challenge the TI99/4A offers to so many
people world wide. The TI99/4A has brought me
tremendous enjoyment and satisfaction, let alone
friendship and company with a great group of people.
The TI99/4A has expanded my horizons in so many ways I
could hardly believe possible. I still think it is a
remarkable machine, when we consider how long ago it was
conceived. I suspect it wiil become the Rolls Royce of
vintage computers.

You can expand

Do not forget the Faire. Keep those ideas rolling.
See Ian Mullins about how you can help. o]

Treasurer's Report
by Geoff Trott

The renewals have been coming in and so we have had
a good month at the bank. Now if we can just obtain

taxation exemption status and become a non-profit
company in the eyes of the Australian Securities
Commission and we will be in good shape for our old age.
Income for April $2935.40
Payment for April $608.82
Excess of income over expenses for April $2326.58 ¢

@une 1992

TIsHUG NEWS DIGEST

Page 2]

Secretary's Noteboolk Decoding BPROM files

by Terry Phillips Appendix, by Ben Takach
Hope you made it along to the May meeting where a The edited EPROM code, the basis of the decoding
very interesting and Iinformative day was had by all. program, Information stored on EPROMs is always in such
There were plenty of demonstrations; we seem to havg a format.
i i i i ith members
particularly high interest in Page Pro, wi) '))
huddled over the computer set up for hands on This is the last in the series.
i i in hardware,
exparience. There was pienvy of dnteregt | ANEE 7FFF AFFF BFFF OF03 OF05 OF31 9F6A 9F38 OF39 9F4C 9F6B 9230 9234 BCO7 9F73 9F74
particularly getting RAMdisks up and running p ?; g A 0000 00O 0OUO 000D 000D 7FFF 9F40 9F43 9F44 OF4S5 BFLB 9F49 9ELB 9FSO OFSE OFGL
ing. In fact, there was something for 9F62 9F64 9FGS OF66 9F67 9F68 9227 FGE 000D 000D 0OCO 0000 0000 OOCO 000
and. adventir ng. reat BBQ lunch of sausages With 0000 QD00 000D 000D GOOD 1000 3F56 BFFE 1043 4026 SFFE SF06 3F69 4235 4217 8FO0
everyone, inciuding a gre : = 0000 0000 2000 3F56 BFFE 1044 4024 SFFE 3F69 4235 4F06 4217 BFO1 0000 0000 2020
all the trimmings. I think everyone had their fill. I 5F03 3F06 8F03 00CO 0000 1000 3004 3006 4FOA 4045 8F04 0000 0000 1020 3FU5 5001
i hot 3F06 BFOS 0000 0000 2020 5F06 3F35 3024 8F06 0000 0000 1043 5044 4F06 SFO3 8FO7
Know 1 was pratty exhausted afier slaving aver “the 0000 D00 1054 3F69 4052 8FOB 0000 2054 3F69 BFO9 000D 1054 4052 3003 BFFE 1FO9
stove for a couple of hours. 3002 SFFE BFOA 0000 0000 104C 403F BFFE 1056 4045 SFFE 5024 S03F S045 8F33 0000
0000 Q000 1056 D000 8F69 0000 0000 1F38 6057 3FOA 3006 3004 AF4D BF10 GO0 000D
) - g ; 1F38 6057 3002 3006 3005 8F11 OF11 0O0O 1003 3006 3001 8F12 000D ODOO 1003 3007
Memberships are continuing te roll-in, but fairly 3000 8F13 0000 0000 1000 3005 3007 S8FFE 1F09 3001 3004 3006 SFFE 8FL4 0000 0000
SLOWLY. At the time of writing this article there are 1001 3005 3006 BFFE 1F09 3000 3004 3007 5FFE 8F15 0000 2045 5F30 3029 4F6D S00B
; ; ; s of 30 April, 604C 3000 3005 3002 3F1A BF16 000D 1029 5008 604C 3FOA 3004 3000 3F1A 8F17 0000
44 members, with membership expiryfdate h 4 hias 0000 1F25 3002 3005 3000 3006 8FFE 1002 3005 3001 3006 3052 4053 4004 SFFE 6057
who have yet to renew. If you know of someone who 8FI8 D000 1052 3008 6052 5000 BF76 00O 1000 3004 3004 SF73 3052 4001 4009 4F53
not as yet renewed, please have a word in their ear. I 8F73 1052 3004 6052 8F77 0000 0000 1F73 400A 4052 4053 BF74 0000 1FOA 3004 3000
: : 3006 8FFE 1FOA 3004 3001 3006 SFFE 6057 BF19 1F39 6057 SF1A 0000 0000 2048 502D
will have a list of those people concerned at the next 3028 3024 5F30 6F03 303F 4F13 BF30 000D 00CO 1001 3F06 SFAC 6F03 4026 BF4C DOOD
meeting, so if you want to you can have a ook to see if 0000 0000 1001 3F06 SF4D 3F03 4026 BF4D 0000 0000 1FOO 3F10 8FFE 1ROl 3F11 SFFE
any of your acquaintances are on it. 3F69 3020 4F05 4F27 3F77 8F26 000C 1F00 3F11 GFFE 1FO1_3F10 SFFE 3F69 4F26 3F77

8F27 0000 2055 5023 3F00 3F12 BFFE 1F01 3F13 SFFE 3F69 4F29 8F28 0000 0000 1F56

) 3000 8FFE 1FO0 3F13 SFFE 8FFE 1F01 3F12 SFFE 3F60 4F28 8F29 0000 0000 1022 5055

Three new members have joined us since last month 5000 3F00 3F15 8FFE LFO1 3F14 SFFE BFFE 1F04 4054 SFFE 3F69 4F2B 3F76 8F2A 0000

and it is a big welcome to: 1FQO0 3F14 BFFE 1FOL 3F1S SFPE BFFE 1F04 3054 SFFE 3F69 &F2A 3F76 F2B 0000 1F25
: 5057 3F00 3F16 BFFE 1FO1 3F17 SFFE 3F69 4F56 4F2D 8F2C 0000 0000 1F00 3F17 BFFE

1FO1 3F16 SFFE 3F69 4F2C 8F2D 0000 0000 1FO0 3F19 FFE 1FO1 3F18 SFFE 6057 3F69

Mick Blayney Baratoga 4F2F BF2E 0000 2F06 5F25 5001 3F00 3F18 BFFE 1FO1 3F19 5FFE 3F69 4F2E 3057 8F2F

: 0000 0000 1FO0 SFO1 3206 3007 5F6B 3000 4006 8F6B 0000 0000 1F26 3F69 3020 3FO7
Lloyd Gibson Thallon (Qld) 3006 B201 4001 §225 0000 0O0D 1¥27 3F69 3006 8200 4000 8224 0000 0000 1F28 3F69
Daryl Boon Tahmoor 4005 8205 0000 0000 1F29 3F69 4004 8204 0000 0000 1F2A 3F69 4002 8202 0000 0000

1F2B 3F69 4003 4F6D B203 0000 0000 1000 3F2C 3F69 4007 4F6B 8207 0000 000D 1F2D
3F69 4006 8206 0000 0000 1F2E 4053 BFFE 1F2F 6057 3053 SFFE 4008 3F69 4F73 8208

Thallon, by the way, appears on my road atlas as a 4008 B20F 0D0O gggn 1ng gosa 8FFE 1F2F :%3 2F§§ ggE 1009 3204 Azgn ms'g gF69
horder 3057 5F74 820A 4009 820E 0000 0000 1208 4FO0 40 E 2023 3022 SFFE 4055 3001

small town about 70km over the New South Wales borde : 8208 0000 0000 1F06 3F69 8209 0000 0000 1200 4000 BFFE 1201 4001 SFFE BFFE 1208
near Mungindi. I doubt whether you could get a more ou 5204 3057 SFFE 3F69 504C 8222 0000 0000 1211 5210 5215 SF63 5216 5226 5239 5234
of the way place for a member of the club; never the 820C 0000 0000 0000 2C07 5211 5210 5215 6238 8235 0000 0000 1055 5005 3001 3F03
d if into any computing problems give 8FFE 2045 3050 3056 SFFE S8FFE 2233 3024 SFFE 8231 0000 0000 0000 0000 000D DOGD

less, Lloyd, if you run y 1001 3005 3002 5232 4000 3056 8232 0000 0000 0000 DOOO 1F25 5230 3000 3F4C 8230
us a call and we will do our best to solve them. 0000 0000 123075234 3F06 3020 3F03 8234 0000 DODO D000 1056 8233 000D DOQO 2021
6051 3056 BF54 0000 0000 2051 5F54 B217 0000 000D 1021 4F54 8236 00000000 2015

501D 4014 501C 4013 501B 4012 501A 4011 5019 4010 8F31 0000 D000 ZF31 3001 5CO1

Good to see Neal Negal from the Central Coast at 4018 BFFE 1024 3F47 SFFE 8F47 0000 0000 1F47 3000 8211 0000 0000 1005 3002 3005

the May meeting. Neal, looking a picture of health, 3000 3F06 4217 403F 8COL 0000 0000 1015 501D 3014 SO1C 3013 501B 3012 501A 3011
wrobs me: & |8tier recently as fol lons: 5019 3010 5018 8F24 Q0O DOCD 1F6A 4211 6024 BF25 000D 0000 1F24 SF6A SO3E 4007

3024 8F6A 0COD 0000 0000 1001 3000 BFFE 1002 3003 SFFE BFFE 1007 3006 SFFE SFFE
1008 3009 SFFE 5C00 5210 600F 3F33 3056 8210 0000 0000 1005 3004 8CO0 1008 4053

" i atirement 8FFE 1009 3053 SFFE 8FFE 1052 3F77 SFFE 8F38 1008 3053 BFFE 1009 4053 SFFE 8F39
) We have a monthly magazine :E. ihe ; ,:e $22r 0000 DOOD DOOD 1035 305D 304C 4217 8223 0000 000D 000D 0000 GOOD 0000 0000 DOOO
village and I was able to print out Christmas L 2058 6059 8239 0000 0000 1054 S0SB 8234 0000 0000 1058 4054 8238 0000 0000 2035
good wishes with pictures of deers, bells and a very EFFF 0812 wsg ggg; g;‘ﬂa 2054 2go§ f.ngE gggg ggﬂg 3006 35‘72 stg éggﬂ 6052 8F72
> - 2048 S0ZE 302 59 1F53 4FS5 4F5 '56 0000 0000 000! 0 0000 000D
thin Father Christmas. Very gradualiy some of the 000G 0000 0000 0000 1FS6 SO3E 4043 4044 3F52 4040 AF55 8F53 D000 0000 2042 4041
functions of the computer and the printer are entering 4039 4038 403C 403D 8F52 000D 1FS5 3004 3003 3000 5F50 4F71 304A BFS0 8C03 0000
; ; i i 1029 500B 303A SF50 3044 4C03 SF6D 8218 0000 0000 104A 4218 8219 0000 0000 121B

my grey matter, but I tind LT great e Myrwite thmki 304A 3F68 303F 3029 BCOS BF6C D000 0000 1F6C 4C08 8F6D 102A 3028 5FS1 4C04 8F51
it incredible how I can print pictures. My greates 0000 0000 1F3E 521D 3F55 3F51 8C09 8F3E 0000 0000 1C00 5033 3049 8221 BCO4 0000
frustration is fully understanding why, when I press 0000 103C 303D 402A 3F40 BFFE 103C 403D SFFE 8FFE 203C 303D SFFE 5COA 4F3C 3040
: h ight ke the answer is a LEMON 8COA 000D 0000 1COA 8226 0000 OO0 1F3F 303F 8FFE 1006 403F 3041 SFFE 302C 3FSE

what I think are the rig ys, ; € : 8F36 0000 0000 DOOD Q00O 0000 0000 0000 0000 1C06 303F 4F62 40OB SFFE 1042 5FS7
It has taken me 30 minutes to print this letter and 1 403F SFFE 302C 3006 8F37 0000 100B 3028 8F79 0000 0000 QD00 1F3C 3F4B 302C 8F3D
could have written it in half that time." 0000 D0CO 1F3A 4F69 4C0A 4CO6 BFFE 1C03 604A 3F3D SFFE 302C 8F3F 0000 0000 0000

2041 4042 403F 4F57 BF34 D000 0000 1F40 302C 3F55 4029 8CO6 0000 0000 1F36 521A
8FFE 1028 421B 6F34 3FFE 4F37 402B 3F3B 5F79 8214 0000 121A 4028 5F79 822D 0000

Keep at it Neal. You may have been able to write LF37 521B BFFE 1029 421A 6F34 3FFE 4F36 4213 3F3B 4008 821B 0000 121B 4029 822C

; ; 0000 0000 1007 5F43 4028 3045 8F43 0000 0000 1006 3004 3F43 SF4B 4028 3045 BFLB

the letter in hatt the time, but 1w qure you had more 0000 00CO 00O 104C 305D SO0B 4217 4215 3035 0000 8F3B 0000 000D 0000 KOO0 00O

fun doing it on the computer rather than with pen and 0000 0000 1F58 3F55 303C 303D 4F69 3F3B 8FFE 100B 3028 303C 303D 3F3B SFFE BF3A
9

paper ! 0000 0000 000D 0OQO G000 G000 0000 1F55 3F69 3F3B 400B BF3C 0000 103F 304C 8227

0000 D000 1045 6F69 BFSD 0000 103F 500B 3FSD BFFE 1FSD 404C SFFE 4FSA 8F55 0000
0000 2F69 404C BF5A QD00 0000 203F 300E 8FFE 123F SF5C 3028 303F 4F48 SFFE 4F4A

Jack Strong from Collaroy sent a short note with 300B 3051 4F32 823F 0000 0000 0000 123F 300B 305E SF4A 423E BF4A 0000 0000 D000

i e i that he has been caravaning for the 0000 0000 203F 300D SF32 BFFE 421C 300B 3051 823E 100B 305D 405C 303F 4024 4228
his renewal advising that he has . ; 3F75 4F32 8F78 0000 0000 1228 5F32 405C 300B 8F32 100B 305C 600B SF7S 303F BF7S
past couple of years, but hopes a more ordered life will 103C 303D SF3C 3FSE BFFE 1FSC 3024 SFFE 3028 4C0A 4FA6 SF78 BF5C 0000 0000 000D
enable him to attend meetings this year. . 104D 3F5C 304E SF6E 4F70 304D 8F6E D0OO D000 0000 0000 0000 1F44 302E 304D BF70

0000 0000 0000 0000 0000 0000 0000 1F48 402C 4FSC 421C 304C 3COC 8FFE 2028 4020
304C 0000 SEFE 821D 402C 8228 0000 0000 0000 0000 1F44 302E 6048 BF60 000D 0000

i ; i n Mable of Malabar sent a 1024 5034 3F60 5F46 4029 405C 8F46 000D 1COB 6F55 3FSC SFSB 421D 4F48 3F3B 4F63

With h!s renenul, Vliin k he has done on his 3037 4F6E 8FFE 105D 405C 3028 3FFE B21C 4024 8229 0000 0000 0000 0000 1040 405F
note thanking Geoff for the work he 8FFE 103F 3F46 SFFE 3028 0000 3FSE BFFE 1036 3F48 SFFE GFFE 120C 0000 4217 SFFE
RAMdisk, which is now up and running. 4F5C 8F48 0000 0ODO 0ODO 000D 1048 504D 302D 5F44 402C 8F44 0000 0000, 2F55 3024

3F44 404D 8F5B 0000 0000 1024 5F40 4029 303F 8F40 0000 0000 102B 321C SF49 4024
8F49 D000 0000 1FSC 4024 4F49 BF4E 0000 0000 1F48 402C 8F4F 000D DOCO 1F4E 303F

John Last from Mortdale, with his renewal, adViS?g 8FFE 1F4F 3FSS SFFE 3F3B 8FFE 2028 402C 304C 305D SFFE 303F 821F 0000 0000 0000

i i i ice with his 78 year o LFSC 3E3B 5F49 3F55 8COB 0000 0000 1F48 304C 3FS55 GO3F 6045 BCOC 0000 0000 1048

that hiz TL99/48 i dalng scrvic fh the Vol nteay’ Coast 504D 8F6F 0000 0000 0000 DOOO 102E 6FSF 3F3B BFSE 0000 0000 102A 3048 3034 BFFE
father who is a project officer wit e voku 104D 3FGE SFFE 8FSF 303F 4F44 BCO5 D000 0000 0000 0000 0000 OO0 0000 1C0S 303F
Guard in Wollongong. 8FFE 1038 403F SFFE BFFE 1FSF S02C 3FFE 3FGF BF41 0000 0000 1F41 S21F BFFE 102D

4220 6F35 3FFE 4F42 3F6F 3F3B 821F 0000 0000 121F 402D 822A 0000 D000 1F44 303F
BFFE 1039 5F57 403F SFFE 3F6F 8F42 0000 0000 1F42 6F6F 5220 8FFE 102E 421F 6F3S

That’s all for this month. Do not forget to come 3FFE 4F41 3F3B 8220 0000 1048 504D 3220 402F 822B 0000 0000 0000 0000 2038 4039

the ciub’s 403F 4F57 BF35 0000 0000 104C 405D 400B SF4A B216 1024 302C 8FFE 1029 3028 SFFE

along and vote on the proposed changes to he J 8FFE 102E 302D SFFE 8FFE 105C 305D SFFE 5215 3F33 8215 1032 5F61 422D 8F61 0000
Memorandum and Articles of Association at the ;“E 0000 1033 5F64 422D BF64 D000 0000 1F4F 5F62 5F40 8FFE 2F61 6F64 3FFE 3F68 403E
i i f this appeared in the ay 304B 303F 8F62 0000 000Q 1C06 3F62 3028 5COD 303F 5213 403E 8213 0000 0000 0000
meeting. Full GEFELLE @ PP 1032 5033 304B BCOD 0000 0000 0000 1213 5214 8F63 0000 0000 1030 SF65 402B BF65
newsdigest. o 000C COQD 1031 5F67 402B BF67 0000 0000 1028 3024 5F68 303F 8F68 0000 0000 122F

5F66 BFFE 2F65 6F67 3FFE 3F68 403E 304B 303F 8F66 0000 0000 000D 1F66 3028 SCOE
303F 5214 403E 8214 0000 0000 D000 1030 5031 304B 8COE 0000 000D 0000 203F 3047

Q 5F45 302C 3029 BFFE 122F 303F 5FFE 421C 4F5C 3F3B 822F DOOO 0000 121B 5F45 4F5C
]m @ W @ W Q 303F B8F45 0000 0000 102C 3046 403F 421C 3F3B 822E 0000.0000 2008 3028 S8FFE 100B
3001

SFFE 8F71 0000 0000 0000 0000 CO35 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ©

(Page3 TIsHUG NEWS DIGEST June 1992)

TIM = TI-Image Maker
by Christopher Pratt, PA USA

TI IMAGE MAKER is an internal console expansion
board designed to be installed in your 99/4A with a few
simple tcols. TIM upgrades your current TMs9918 video
display processor to the latest state-of-the-art and
fully compatible V9958 processor. This processor is
alsc compatible with the V9938 used in other upgrades.
OPA (Gary Bowsers company) used state-of-the—art CAD/CAE
designing and top design engineers to bring you the best
video upgrade for the TI in the smallest most compatible
package possible. The PC Board containing the V9958,
192K of VRAM, a special ASIC device, a 25-pin
monitor/expansion port for future video devices like
digitizers, GENlock, etc. and the analog RGB video
driver circuitry, has all been installed on a compacted
4" x 3" layout. TIM comes complete with:

* Step-by-step user installation guide

* Recommended RGB monitor guide, with detailed
specifications and pinouts for many
different monitors to ease in interfacing TIM
to your RGB momitor.

* Graphic demonstrations displaying the
of TIM

* Qur own GIF file viewer supporting the V9958

* Three disks packed with fairware software
which support the V9938/58 chips.

power

Also included with TIM is the improved SOB (son of
a board), a $50 value, and after reading over the
in—-depth review of the V9958 processor, we are sure you
will find that TIM is the best thing ever for your TI!
Tt costs $179 U.S. The SOB is an internal plug-in 2" x
2" PC Board with a 16K EPROM and two ASIC's which allows
you to replace GROMs O and 1 in your TI console with
OPA's own operating system featuring:

* 1007
system

* Updated to
devices

* True lower
and programs

* 4K micro-manager for cataloguing floppy,
ramdisk, hard drives, and from the catalog;
delete, view files and run Assembly, Object,
Forth or C99 programs

* System on power—up

compatibility with the 99/4A operating

be compatible with V9938/58

case to be added to all modules

The installation was easy enough as the
instructions were complete and detailed. All that needs
to be done is unplug the 9918 chip and two grom chips,
plug in the boards, solder one wire from each board to
the TI board and smoke test. The hardest part was
cutting an opening in the back of the case for the
25-pin DB plug. This plug is also the one thing that
one has to be careful with. Even though it is securely
mounted to the TIM board, the only one thing holding the
TIM board in place is the pins going into the 9918
socket. This is unavoidable, but one cannot insert or
remove the plug without holding the socket which can
only be done with the main power board removed from the
case, otherwise damage may occur to the pins that go
into the 9918 socket. That is the bad part. There is
no trouble wusing Basic, nor is there the massive
incompatibility problem. Some programs that do not
follow the proper rules will not work, though, which are
probably the same programs that will not work on 9640,..
but this is explained in the instructioms.

The design and construction of these cards is very
professional. OPA does top-notch work! TIM, SOB fire up
right away when the console is turned on. There is no
waiting for them to get their bearings.

As for SOB, it contains three socketed EPROMS that
can be updated if need be. It also contains a
Micro-manager that lists all the drives and the complete
menu from whatever cartridge is installed. It will list
all the programs available from a gram device if it is
active. One may catalog a drive and run a program from

that drive, or run a program from & cartridge, or gram
device. I have not had any problems with any
Micro-manager functions. It also gives the prompts in a
digitized voice. SOB contains a new character file
(true lower case) and replaces the TI logo with the OPA
logo.

Both of these cards work fine with the Horizon
ramdisk and P-Gram + cards, and thave the sane
operational priorities as the original TI system. Both
TIM and SOB have 1 year warranties and it is no secret
that Gary Bowser backs up his products., I am very happy
with the purchase and it is good to have 80 columns,
There are two SSSD disks with programs included with the
purchase. O

continued from page 7

380 CALL KEY(0,K,S):: IF K<49 OR X>53 THEN 380 ELSE K=K-
48 :: IF K=5 THEN DISPLAY ERASE ALL :: STOP

390 DISPLAY AT(13,1):T$(X): :"Input File: DSK": :"Outp
ut File: DSK": : : :

400 ACCEPT AT(15,18)BEEP:I$

410 ACCEPT AT(17,18)BEEP:W$

420 1

430 ! OPEN FILES & INIT

440 |

450 DISPLAY AT(lQ,l):"Working G e

460 IF K>2 THEN OPEN #1:"DSK"&I$,INPUT ELSE OPEN #1:"DSK
"&I$,INPUT ,FIXED 128

470 IF K=4 THEN OPEN #2:"DSK"&W$,0UTPUT,FIXED 128 ELSE 0
PEN #2:"DSK"&W$,0UTPUT

480 A=1 :: W$="" :: ON K GOTO 720,570,490,650

490 !

500 | DV80 -> DVBO ADD CR's

510 !

520 LINPUT #1:T$:: GOSUB 210 :: IF EOF(1)THEN 550

530 IF A THEN IF P THEN PRINT #2:I%;C$:: GOTO 520 ELSE
Q$=I% :: A=0 :: GOTO 520

540 IF P THEN PRINT #2:Q%;C$:1$;C$:: A=l
SE PRINT #2:Q% :: Q$=I$:: GOTO 520

550 IF A=0 THEN IF P THEN PRINT #2:Q%;C$ ELSE PRINT #2:

:: GOTO 520 EL

Qs

560 PRINT #2:13%;C$:C$:: GOTO 250

570 1

580 ! DF128 -> DV8D NO CR'S

590 !

600 LINPUT #1:1$:: W$=W$&I$:: K=1 :: S=LEN(W$)

610 IF SEG$(W$,K,1)=Z$ THEN 250 ELSE IF K>S THEN IF EOF(

1)THEN 250 ELSE W$="":: GOTO 600

620 P=POS(W$,N$,K):: IF P THEN PRINT #2:SEG$(W$,K,P-K)::
K=P+2 :: GOTO 610

630 P=POS(W$,Z$,K):: IF P THEN PRINT #2:SEG$(W$,K,P-K)::
GOTO 250

640 W$=SEG$(W$,K,255):: IF EOF(1)THEN PRINT #2:W$:: GOT
0 250 ELSE 600

650 !

660 ! DV80 -> DF128

670 !

680 LINPUT #1:I$:: IF ASC(I$)=128 THEN Ig=" "

690 WE=W$RIS&NS :: P=LEN(W$)

700 IF P>128 THEN PRINT #2:SEG$(W$,1,128):: W§=SEGH(WS,1
29,255)

710 IF EOF(1)THEN PRINT #2:W$&Z$:: GOTO 250 ELSE 680
720 1

730 ! DFi28 —-> DVBO ADD CR'S

740 !

750 LINPUT #1:I$:: W$=W$8TI$:: K=1 :: S=LEN(W$)

760 IF SEG$(W$,K,1)=£$ THEN 820 ELSE IF K>S THEN IF EOF(
1)THEN 820 ELSE W$="" :: GOTO 750

770 P=POS(W$,N$,K):: IF P THEN I$=SEG$(W$,K,P-K):: K=P+2
ELSE 800

780 GOSUB 210 :: IF A THEN IF P THEN PRINT #2:1$:C$:: G
0TO 760 ELSE Q$=I$:: A=0 :: GOTO 760

790 IF P THEN PRINT #2:Q%;C$:I5;C3 :: A=1 ::
SE PRINT #2:Q% :: Q$=I}) :: GOTO 760

800 P=POS(W$,Z$,K):: IF P THEN I$=SEG$(W$,K,P-K):: GOTO
820

810 W$=SEG$(W$,K,255):: IF EOF(1)THEN I$=W$ ELSE 750
820 IF A=O THEN GOSUB 210:: IF P THEN PRINT #2:Q$:C$ EL
SE PRINT #2:Q%

830 PRINT #2:1$;C$:C$:: GOTO 250

GOTO 760 EL

@une 1992

TiIsHUG NEWS DIGEST

o
Page 4)

T%@ B{EM@ S[ﬁ)@]}’) with Percy Harrison

Once again we have been very fortunate in getting
hold of some more Wang colour monitors and all back
orders have now been filled. There are still eight
monitors left in stock at the time of writing this
article, so any member still wanting to add a monitor to

their system should contact me as early as possible as
they will be issued in the same order as I receive
payment, which is $110.00 plus packaging and postage.

Because of the physical size and weight of the menitor I
would recommend that members within the Sydney
metropolitan area wanting a monitor contact me to make
arrangements to pick it up from my residence, so as fo
avoid possible transit damage and additional cost, as
most of these units are without boxes. They are all in
very good condition and are guaranteed to be in good
working order. Remember, if you are going to install it
in place of a TV set, you will need the interface card
available from the shop. If it is to run on a system
incorporating the TIM or Mechatronics 80 column cards,
then the interface card is not required.

At the risk of shaming some of our members, I am
pleased to report that I did receive a letter commenting
on the quality of the software available from the shop
and would like to point out that the Iletter came from
our onty member in France. My sincere thanks to you,
Pierre, for taking the time and effort to iet me Kknow
what your thoughts were, regarding our scftware and
service. Also at the last meeting I did receive verbal
comments from two of our members regarding software
guality; many thanks to Peter and Tom,

Club Software Disks

A145 Scott Adams Adventures (DSSD) $2.00
A212 G Programming Language (S8S8D) $2.00
A214 PLUS! V1.0 (888D) . vvviiiiiiie i iinaaannn $2.00
A245 Telco V2.03 (DSSD) .vviiininn i innaanans $2.00
A249 Animation Demo’s (SSSD, 2 disks) $4.00
A261 Assembly Language Games (SSSD) $2.00
A354 Microdex 99 V4.2 (S88D)iiiiinnnnnn. $2.00
A380 Super—Cataloger (SSSD)c.iiiieeauennnn $2.00
A3B2 Boot (40 column vers, SSSD)ccvnvunn. $2.00
A386 Boot (80 column & hard disk vers, S8SD)$2.00
A399 Nuclear 997er (S8SD)vviiiniraes $2.00
A4D5 1000 WOrds ((898D) v v st o emewmesnmie s sase i | $2.00
A430 Configuring Funneiweb (SSSD) $2.00
A438 Hoxbug (888D) vwnawis on v ve s e w6 $2.00
A437 Nasty and Seggregation (SSSD) $2.00
A438 More Assembly Games (SSSD) $2.00
A430 Multiplan Exercises (DSSD) $2.00
A448 TI Print Shop (TIPS) V1.7 (888D) $2.00
A448A TIPS Graphics #1 (8S8D)covvin.n. $2.00
A448B Grips (TIPS Companion, 8SSD) $2.00
A450 Funnelweb 4.40 (DSDD)ccveiirininnnnn. $2.00
A450A Funnelweb 4.40 (SSSD, 3 disks) $4.00
A451 Multiplan V4.02 (888D)covviiinnnvnnnn $2.00
A453 The Nutcracker Suite (8S88D) $2.00
A456 Rememberance Music (88SD) $2.00
A482 Rediskit (888D) .uuwiwvwwewuassodas s daiaaniyn $2.00
AABE TI-EXEM (8BBDF 4 iosvusimi vt 5 v a5 $2.00
A464 I| Pastor Fido Vivaldi (DSSD) $2.00
A465 Lute Music (88SD)vveivniniiaiiivnn. $2.00
A466 Best of CONNI D.O.M. #54 (DSSD) $2.00
A487 The Singing TI (88SD)cvvvvivivninnnn $2.00
A468 Speech #1 (TEII, SSSD)vvevveriniiennn $2.00
A472 TI Writer Suppiement (S8SD) $2.00
A473 DM 1000 V5.0 (8S8D)ooiviiiiiiiiiinnn $2.00
A474 GIF Pictures (80 column card, DSDD) $2.00
A481 ARTCON (DSSD) . .viritieiiiiiiiiie e eeeaanns $2.00
A481A ARTCON (SSSD, 2 disSKS)iviivennrireannns $3.00
A482 Horizon Utilities (SSSD)cvviiiinnnn $2.00
A483 TI Tiler (888D) ...vvvvivevnnnecininninnnnns $2.00
A484 Mac-Labels V2.0 (88SD)ovvvrininnnnnnnnn $2.00
A4B5: YEQ(SSSDY: 5 uis oeiae s vamn e S0 SR $2.00
A486 Genealogy Record Keeping V1.12 (DSSD) $2.00
A487 XHi (80 column card, DSDD) $2.00
A488 LA 997ers Utitities (8SSD)cvvivinnnn $2.00
A489 FONTART #1 (TIA, SSSD}iiiininennnn $2.00

Tigercub Disks

TCC1 Tigercub Colliection #1 (S8SSD) $2.00
TCC2 Tigercub Collection #2 (S8SD) $2.00
TCC3 Tigercub Collection #3 (SSSD) $2.00
TCC4 Tigercub Collection #4 (SSSD) $2.00
TCC5 Tigercub Collection #5 (8SSD) $2.00
TCC6 Tigercub Collection #B (SSSD) $2.00
TCCT Tigercub Collection #7 (SSSD) $2.00
TC 911 Display Calculator (8SSD) $2.00
TC1015 Word Processing Utilities (S8SD) $2.00
TC1122 Screen Fonts (Archived, DSDD) $2.00
TC1131 Gemini Printer Utilities (88SD) $2.00
TC1145 Telecommunications Aids (SSSD) $2.00
TC1210 Graphics Printing (S8SD) $2.00
TC1211 TI Artist Pictures #1 (888D) $2.00
TC1212 TI Artist Pictures #2 (SSSD) $2.00
TC1213 TI Artist Pictures #3 (SS8SD) $2.00
TC1219 Ray Kazmer’s Xmas Card (SSSD) $2.00

TC1220-1229 TIPS Graphics (Archived, 10 DSSD) ...$20.00

Refer to last month’s magazine for availability of
hardware and modules.

Packaging and postage charges:

Surface Airmail
1 to 2 Disks $1.90 $1.90
3 10 9 Disks wuswvareisiman $2.90 $3.60
100 20 DESKS covwveaames $3.90 $4.80
TI-Artist PIUS .wsomvnwasuas, $3.00 $3.70
FIBESE wipi un sspiias i ssreay $3.00 $3.70
TLUGOET wovn o svvssmsapiimssives $3.00 $3.70
5.25 inch half-height drive Refer to your local
(1.25 kg) post office
Bye for now. @]

Jenny's Younger Set

G' day gang! I have a surprise for you this month.
The executive has approved a 'quiz competition'. The
object is to see who can write the best program for a
game. Anyone can enter, but I am more interested in
receiving something from the 'younger set', let's say,
under 18. It must be something original, not Jjust a
reprint of a game from a past issue of the magazine or
something like that. You may want to look at a few
games for ideas but the finished product must be your
own. Please end your entry on a cassette, as no entry
will be judged on a disk. The deadline is the 30th of
September and since the idea for the competition is
Vincent Maker's, we are going to let him do the Judging.
You can send it to him at the following address:

QUIZ COMPETITION
103 Rausch Street
TOCONGABBIE, 2146

or give it to the Editor at one of the club
meetings. You will probably need Extended Basic to give
yourself the best chance and what follows is a 'mini'
game given to me by Vincent to give you an idea of some
commands that you will need:

100 RANDOMIZE

110 B=INT(RND*10)

120 INPUT A

130 IF A=B THEN PRINT "RIGHT" :: GOTO 150 :: ELSE IF A>B
THEN PRINT "TOO BIG" ELSE PRINT "TOO SMALL"

140 GOTO 120

150 END

Let's see a good turn out for this competition. We
have not heard from a lot of you younger set for a while
and I know you are around as I see some of you at the
club meetings. We have an idea about the prize for the
winner but will keep you posted on this in the coming
issues. Be sure to be watching! JENNY o

[Page 5

TlsHUG NEWS DIGEST

June 19@

TleilUB® Software
@@HIH]E]DHT] by Rolf Schreiber

Software Releases for June 1992

This month I am releasing a total of eight disks,

including three from Jim Peterson’s Tigercub Software.
I hope that everyone will find something either useful,
or to their liking, among this month’s software. If you

do not find any of these disks worth buying, then please
let Percy Harrison know by phone or letter what your
personal software needs are, and we will try to
accommodate you, if at all possible.

DISK A420 contains 5 ATARI modules, converted to run out
of Extended BASIC, on systems fitted with 32K memory
axpansion. The games include such favouites as
Jungle Hunt, Donkey Kong, MS Pacman, Shamus and
Picnic Paranoia. The games are selected from a menu
and automaticalty load with a single keypress. A
great disk for our newer members and those with young

children.

A420 Diskname: GPL/12 Format: SSSD
Filename Size Type / Length
DONK 33 PROGRAM 8182
DONL 18 PROGRAM 4108
JUNG 2 PROGRAM 155
JUNH 33 PROGRAM 8192
JUNI 33 PROGRAM 8192
LOAD 9 PROGRAM 2037
MPM1 33 PROGRAM 8192
MPM2 33 PROGRAM 8182
PICNICH 33 PROGRAM 8182
PICNIC2 33 PROGRAM B192
SHAM 33 PROGRAM 8192
SHAN 15 PROGRAM 3584

DISK A431 is called Object Linker V3.0 and was written
by Art Green, the same person who produced the major
upgrades for TI Writer and Multiplan. This disk is
allows you 1o convert object files (DIS/FIX 80
format) into program files (memory image format).
Whilst being mainiy for programmers, the disk
contains extensive documentation which should be

enough to guide most people through the conversion
process.
A431 Diskname: LINKERV3 Format: SSSD

Filename Size Type / Length

LINKER 33 PROGRAM 7952

LINKES 8 PROGRAM 1700

LNKDOC 8 DIS/VAR 80

LNKDOCA 63 DIS/VAR 80

LNKDOC2 73 DIS/VAR 80

LNKDOC3 43 DIS/VAR BO

LNKINST 16 PROGRAM 3828

LOAD 3 PROGRAM 504

LOADINST 3 PROGRAM 504

RAGLIB 14 DIS/FIX .80

README 3 DIS/VAR 80

DISK A475 is from the Hamilton User Group
and was compiled by Stephen Johnson. This disk is
called Ciubline-99 (V4 N8) and contains a hangman
game (including a speech version), a geography quiz
on Canada, a lucky numbers selector, a graphics demo,

from Canada,

a chapter on learning assembly language, and a very
useful disk sector reading utifity (with source
code).
A4T5 Diskname: VOL4/8 Format: SSSD

Filename Size Type / Length

BILLPAYER 13 PROGRAM 3048

CANADA 53 INT/VAR 254

DISKREAD 5 PROGRAM 786

DISKREADS 30 DIS/VAR 80

DISK AS0

DRAWHORP
DRAWHORSP
HANG/FILE
HANG/WORD1
HANG/WORD2
HANG/WORD3
HANG/WORD4
HANGMAN
HANGMANSP
LOAD

MATHP
PLAN/MAKER
YLOAD

36
36
13
4
9
10

PROGRAM
DIS/VAR
PROGRAM
INT/FIX
INT/FIX
INT/FIX
INT/FIX
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
DIS/FIX

1418
80
8864
192
192
192
192
8857
8879
3022
726
1991
80

is the companion disk to A489 and contains the

second and third volumes of TI-Artist fonts from Paul
This disk is DSSD and needs a version

Scheidemantlie.

of TI-Artist to display the fonts.

A480
Filename Size
——README— 4
—README- 4
3DSM_F 26
BIGBLOCK_F 34
BLACK_F 33
BLOCK_F 34
BOLD_F 27
BROADWAY_F 33
COMP_F 22
FARQUK _F 39
HEADLNR1_F 40
HEADLNR2_F 13
LCHR/L_F 35
OLDE/SL_F 27
OLDE/SU_F 42
SAMPLER1_F 36
SAMPLER2_F 11
DISK A91

A49

TCC

TC-

Diskname: FONTS2&3

Type / Length

DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR
DIS/VAR

80
80
80
80

Format:

is part of the Boston Computer

DssD

Society’s disk

library and was written by J. Peter Hoddie, who is
well Known as a talented programmer

community.

This

program allows

in
you

the TI99/4A
to design

graphics screens in the Extended BASIC environment,
and the disk comes with comprehensive instructions.

1 Diskname: BCS11

Filename
CHAR

LOAD
READ-THIS
SAMPLE
WRITER

~7 is the
Collection.

O @ ~NDO W -

911

Size

45
3
22
18
8

Tigercub Software Releases

Type / Length

PROGRAM
PROGRAM
DIS/VAR
INT/FIX
PROGRAM

11181
512
80
128
1632

Format:

S88D

seventh disk in Jim Peterson’s Tigercub
This disk contains 14 games which can
all be selected from the menu shown below:

CAROM - shoot a billiard bal
PLANETARY DEFENSE -~ space shooting game
GETAWAY — avoid getting caught
SHEEP DOG - round up the sheep
WHITE KNIGHT - on a quest to collect treasures
BARS AND BALLS - drop balls; avoid obstacles
AHAMUR - govern the city of Sumeria

ARTILLERY BATTLE - shooting game
BOWLING — nine pin bowling; up to 20 players
ROMEO AND JULIET - rescue Juliet
SKY RESCUE - rescue captives from terrorists
TI~-TROGMAN - a maze game in TI BASIC
VERSAILLES - a maze game in TI BASIC

ZAN QUEST - a game of conquest

into the pockets

is a new program from Jim Peterson which emulates

a very sophisticated 6-window, 6-memory, 34-function,

14-digit display
versions of the program are included on the

calculator

on

your TI9G/4A.

Two
disk, a

continued on page 20

@une 1992

TlIsHUG NEWS DIGEST

Page 6)

TH-Bits Number 16
by Jim Swedlow, CA USA

[This article originally appeared in the User Group
of Orange County, California ROM]

HOW YOUR TI SAVES TEXT FILES

In our TI world,
Variable 80 (DV80) files.
Editor uses. What is DV80?

most text is saved in Display
This is what the TI Writer

Display means that the file is saved using ASCII
characters. If you use a disk sector editor to look at
a DVBO file, you will see that the text looks just about
the same as it was written. Internal files are not
always as easy to read (but that is another column).

A file is made up of records. In a DV80 file, each
record contains one line of text as it appears in the
Editor. Variable means that each record is only as long
as the text line.

Consider these two lines of text:

TI
99/4A

When this is saved on disk, there will be two
records in the file. The first record is "TI" and the
second is "99/4A". Each record is preceded by the
number of characters in the record in Hex. Hex FF is
used to mark the end of the file. The file would look
like this:

Hex 02 54 49 05 39 39 2F 34 41 FF
ASC i 9 9 / 4 A

In a Display Fixed 80 (DF8Q) file, each record
still contains one text line but is exactly 80
characters long. Your 4A pads each record by adding the
required number of spaces to the end of each text line.

WHY YOU NEED TO KNOW
HOW THE REST OF THE WORLD SAVES TEXT FILES

As a loyal TI user you may not think that you need
to know how others (MS-DOS, CPM, etc) save text files.
If you do any work with modems, however, you do.

The reason is that you may down load a text file
and find that it is Display Fixed 128 (DF128). Why?
There is a standard protocol in the TI world for
transferring files wusing XMODEM. It was designed by
Paul Charlton (creator of FAST TERM). The first record
is NOT the first line of text. Instead, it is the disk
header sector (which describes the file in a manner than
can be read by the disk controller).

If the first record is not the header, however,
your modem program (TELCO, FAST TERM, MASS TRANSFER,
etc) assumes that you are talking to a non TI system and
will save the file as DF128.

The reason, then, that you need to know how other
systems save text files it that you may get one.

HOW THE REST OF THE WORLD SAVES TEXT FILES

But there is more.
Instead, all

The short answer is DF128.
Unlike a DFB0 file, there is no padding.
of the text lines are run together. The end of each
text line is marked with a carriage return <CR or
CHR$(13)> and a line feed <LF or CHR$(10)>.

One record may have one, two or more text lines,
each ending with a CR and LF. If there is not enough
room left in a record for the next text line, enough of
the line is added to the record to bring it to 128
characters. The rest of the text line starts the next
record — followed by a CR and LF. The end of the file
is marked with CHR$(26), which in the IBM and CPM worlds
is <CTRL Z>.

Remember our sample text?

TI
99/4A

Since it well under 128 characters, the file will

only contain one record:

Hex 54 49 OD 0A 39 39 2F 34 41 0D 0A 1A
ASC T I 9 9 / 4 4

Hex OD O0A is
file marker CHR$(26).

a CR and LF. Hex 1A is the end of

CONVERTING FILES

There are a number of programs that convert files
from DF128 to DVBO or from DV80 to DF128. Some of the
assembly ones are quite fast. There should be a program
in this issue called CONVERT. It does those conversions
and two others.

A little background. Sometimes you may lock at a
file and notice that there are no CR's. If you reformat
such a document, everything will be jumbled into one big
paragraph. TI Writer stops reformatting when it hits a
CR. FUNNELWEB stops when it hits a CR or a blank line.
Either way, the document is a mess.

CONVERT, when converting a DF128 file to DV80, can
add a CR to blank lines, to the end of paragraphs and to
lines that start with a period (Formatter commands).
This takes a little longer but it makes the file much
easier to edit. Also, CONVERT can add CR's to DV80
files that lack them.

NOTE TO OTHER USER GROUPS

I have now written 20 XB Columns and 20 in the TI
BITS series. From time to time, other user groups have
published some of my work in their news letters. If
anyone wants a complete set, please send me two (2) DSSD
disks or four (4) SSSD disks, a return mailer and return

postage. My address is 7301 Kirby Way, Stanton, CA
90680.
Enjoy.
100 ! CONVERT
110 ! Version 1.0

!
!
120 ! 09 Aug 88
!
!

130 ! By Jim Swedlow
140 ! Based on XPREP by Carl Walters
150 !

160 DISPLAY ERASE ALL:: CALL SCREEN(5):: FOR A=0 TO 14
:: CALL COLOR(A,16,1):: NEXT A

170 FOR A=1 TO 4:: READ T$(A):: NEXT A

180 N$=CHR$ (13)&CHR$(10):: Z$=CHR$(26):: C$=CHR$(13):: G
O0TO 300

190 DATA DF128 -> DV80 add CR's,DF128 ~> V80 no CR's,
DVBO -> DV80 add CR's,DV80 -> DF128

200 CALL KEY :: Q$,S,P,K,I$,W$:: !@P-

210 !

220 | STRING CHECK SUB

230 !

240 P=1 :: IF I$=" " OR I$="" THEN I$="" :: RETURN ELSE
IF ASC(I$)=46 THEN RETURN ELSE P=0 :: RETURN

250 !

260 ! CLOSE FILES AND END

270 !

280 CLOSE #1:: CLOSE #2:: DISPLAY AT(19,1)BEEP:"DONE"
290 FOR P=1 TO 100 :: NEXT P

300 !

310 ! TITLE SCREEN

320 !

330 DISPLAY AT(5,5):"CONVERT Version 1.0":

:"Press For"

340 FOR S=1 TO 4 :: DISPLAY AT(1445,1):STR$(S);™" ";T$(S)
:: NEXT S :: DISPLAY AT(19,1)BEEP:"5 End Program”

350 !

360 ! PICK FUNCTION

370 1 continued on page 4

(Page7

TIsHUG NEWS DIGEST

June 1992)

XB tips Number 17

by Jim Swedlow, CA USA

[This article originally appeared in the User Group
of Orange County, California ROM]

SPEEDING UP EXTENDED BASIC

I have been looking for ways to speed up Extended
Basic programs and have found some interesting things.

Most of the information in this article is based on
a FOR NEXT 1loop. To compare, for example, <PRINT A>
with <PRINT A;>, I ran a program like this:

10 INPUT A$

20 FOR A=1 TO 1000
30 PRINT A

40 NEXT A

Line 10 1is <INPUT A$> to make sure that the
pre-scan time did not skew the results and to give me a

marker to start my stopwatch.

I ran the program three times and then averaged the

run times. Next I changed line 30 to:
30 PRINT 4;
Again, I ran the program three times and averaged

the run times. Then I did the same thing with DISPLAY

AT. The results were:

Line 30 Run Time
PRINT A 105.5 seconds
PRINT A; 57.6 seconds

DISPLAY AT(5,5):A 66.3 Seconds

The loop with no line 30 took about 10.6 seconds.
Therefore, PRINT A takes a little less than a tenth of a
second to execute.

What follows are some things that I tried and the
results. Some conclusions challenge advice I have read
and some is new.

REMarks AND ! TAILS

the material I have read suggests that
execution

Most of
removing REM/! lines and ! tails will improve
time. It will, but not by very much.

1 TO 1000 loop took 10.6 seconds. Adding
INSIDE the loop increased
The same applied to a !

A plain
either a REM or ! 1line
execution time to 11.2 seconds.
tail.

Removing these will only slightly speed up your

program.
INSIDE ARRAYS

I wondered if it took longer to access one member
of an array versus another, I DIMentioned an array at
200 and then loocked at different members.

I expected to find some relationship between the
number and the time (faster to access the beginning or
end). What I found was that the run time depended on
the size of the number inside the parenthesis:

Array Members Run Time

15.3 seconds
15.6 seconds
16.0 seconds

B(1) to B(9)
B(10) to B(99)
B(100) to B(200)

Apparently the more digits a number has, the lenger
it takes Extended Basic to read and digest it. Further,
it takes about the same amount of time to access any
member of an array.

DEFinitions ARE GLACIAL

I knew from experience that DEFinitions were time
consuming but I was surprised to find out just how slow
they are. I ran a loop with a calculation done through
a DEF and then without the DEF. The DEF loop was 55
seconds slower than the non-DEF loop.

It takes a long time (in computer terms) for your
4A to find a DEF (NOT counting the actual time to
execute the calculation). Avoid DEFinitions!

ORDER OF VARIABLES

One of the things your TI does during pre-scan is
to build a variable table. This is a table of all of
the variables in the program and the memory location of
each variable's current value.

Each time your program uses a variable, it first
searches the table for the variable and then goes to the
memery location to find the value.

Our TI's list
first wvariable it
the table and the
beginning.

variables in reverse order. The
finds in a program is at the end of
last variable found is at the

I created a program with 26 variables and then used
one of them inside the loop. Times were:

Variable used Run Time

First in program 19.0 seconds
Last in program 12.4 seconds

Your TI finds your variables in either the order of
use or whatever order you placed them in the pre-scan
list. These results suggest that if you change the
order so that infrequently used variables appear first
and those that are used often appear last, your
execution time should decrease.

To test this, I toock a program that had the
variables listed in alphabetical order. I rearranged
them to reverse order of use. The results were
impressive:

Variable Order Run Time

Alphabetical
Reverse use

14.3 minutes
12.5 minutes
This step reduced run time 1.8 minutes or 12%
percent. NOT BAD!

LINE NUMBERS

Your TI also uses a line number table. This table
is similarly in reverse order (first line last, 1last
line first, etc). When you use a line number in your
program (GOTO, etc), your 4A must search the line number
table to find the memory location of the line contents.
Then it reads the line instructions, crunches them and
executes.

I constructed
this:

a program that looks something like

10 INPUT A$

20 FOR I=1 TO 1000
40 NEXT T

50 RETURN

Lines 60 through 2050
- 200 lines -
are all REM lines
<60 REM>, <70 REM>, etc

2060 RETURN

2070 SUB A :: SUBEND

continued on page 18

@une 1992

TlsHUG NEWS DIGEST

Page a

To See or Not to C

by Geoff Trott

This is the second articie in a series on the
language C and its implementation on the TI99/4A by
Clint Pulley. 1In the first article, I gave a simple
program and told you how to compile, assemble and load
it in the Funnelweb environment. The program and the
script Jloader file for using it will be repeated here
for easy reference.

AUTO

ASSM

FILE "DSK1.FIRSTC;0"
STOP

FILE "DSK1.CSuUP”
FILE "DSK1.CFIO"
FILE "DSK1.PRINTF"
LAST START

/% A first program in c99 by Geoff Trott x/
/x x/
#include "DSK1.8TDIO"

extern printf{);

maing)

printf("Hello Geoff");
exit(0);
}

The first thing to note is that the C language is
relatively unstructured. That s, lines do not mean
very much. Statements can be on more than cne line (we
are used to that in BASIC with a 28 column screen) and
more than one statement can be on the same line (as in
Extended BASIC using the statement terminator ::). All
this means that statements must have a terminator, which
in the case of C is ";" Groups of statements for
procedures, loops or conditionals are placed within
curly brackets "{ }" to indicate the start and end of
the group of statements. So in the simple program
above, the two executable statements, "printf" and
"exit" are within the "{ }". This is identified as the
main procedure by the main() statement preceding the
brackets. All the rest of the indenting and spacing is
in the interests of readability. The whole procedure
could be on one line like:
main(){printf("Hello Geoff");exit(0);}

The first two lines in the pregram are comments. A
comment starts with the two character sequence "“/x" and
ends with the two character sequence "x/". Like other C
statements, a comment c¢an go over one line or be con a
iine with other statements. Anything can be in a
comment other than another comment. You cannoi nest
comments. The third fine tells the compiler to read in
the file specified. This will be some C code or
statements and is why the compiier reports more lines
processed than are in the program you typed in. The
fourth line tells the compiier to tell the assembler
that this function will be loaded in later with the rest

of the support functions, in this case in “PRINTF".
These routines are in what are normally called
“libraries"” of compiled (and assembled) code.

Note that most words are in lower case. The case

of letters s significant in C. The usual thing is to
use lower case mostly, with occasional use of upper
case, However, as the output of ¢899 goes to the
assembler which only recognises upper case letters
except in comments and text fields, names of procedures
must be eventually converted to upper case for the
assembler. This means that names which only differ by
the use of the case of the letters (TesT and test say)
will end up being the same. Also procedure names must
differ in the first 6 characters, also for the
assembler, although they can be much longer than that
for C itself. In fact the compiler only looks at the
first 6 characters of any name.

S0 how do you learn to use a new language? One of
the good ways is to look at some program that someone
else has written and try to see if you can work out what
has been done. 1In the case of C, this can be done by
looking at the examples on the reiease disk where there
are both source files and some documentation to go with
some of them. As an example, I shall take the string
routines as I have spent some time getting them to work

properiy. There are 4 files associated with these
procedures. STRINGDOC contains the documentation of the
procedures, what they do and how to use them. STRING;C

is the source code of the procedures, STRINGS contains
this code compiled and assembled while STRINGI is an
include file which contains the definitions needed for
the procedures to be used.

A look at the first three procedures in the
documentation file gives the following information.

Length of string:

strien(s)
char xs;

Compare two strings:

stremp(st, s2)
char *s1, %s2;

This returns an integer which is less than zero
if s1 is "less than" s2; zero if st is identical to
s2; and greater than zero if s1 is "greater than" s2.

Compare n characters of two strings:

stnemp(si, s2, n)
char %s1, %s2;
int n;

This returns an integer which is less than zero
if the first n characters of s1 are "less than" the
first n characters of s2; zero if the first n
characters of s1 are identical to the first n
characters of s2; and greater than zero if the first
n characters of st are “greater than" the first n
characters of s2.

The above paragraphs briefly describe three
procedures which all return a value based on the length
of a string for the first one and a comparison between
two strings in the case of the last two. I guess one of
the first points of discussion should be about strings,
what are they?

Strings are arrays of characters or vectors of
characters or groups of characters or words or
sentences. They are a number of characters which are
grouped together and stored in sequential memory
locations and referred to by one name. 1In C, as in al
modern languages, all variables must be declared to have
a particular type before they are used. For strings,
the variable type is “char" and the string must be
declared as an array of sufficient size to be able to
hold all the characters plus one more. This extra
character is used to hold an “end of string” character.
In BASIC, the strings have an extra character which
contains the count of the number of characters in the
string and is the first character stored in the string
storage area. In C, the "end of string" character is
the iast character stored in the string storage area.

Let us now have a |ook at the code for these three

procedures. This is in the file STRING;C and the start
of it follows.

/%

*x string function library

*k

*x contributed by

xx Tom Wible

*x 203 Cardinal Glen Circle
*x 8terling, VA

*x USA 22170

*X

[Page 9

TisHUG NEWS DIGEST

June 1992)

¥x Modified by Geoff Trott, 28 June 1989
*x 20 Robsons Road, Keiraville, NSW 2500, Australia
*%
x/
#define NULL O
fasm
DEF STRLEN,STRCMP,STNCMP, INDEX, RINDEX
DEF STRCPY,STRCAT,STNCPY,STNCAT
#endasm
strien(s) /% returns string lengthx/
char xs;

{
int n;
n; =0
while (ks++) n++;
return (n);

The first few lines are comments and so can be
skipped over. Then a define statement sets the name
NULL to be zero. This is |like an EQU statement in
assembler, except can be used more generally than in the
assembler. NULL will be the "end of string" character
for the strings. #asm ... #endasm are statements which
surround assembler code. Whatever is between these two
words is sent straight to the assembier without the
compiler doing anything to it. In this case the names
of all the procedures in the file are (in upper case)
are DEFined ready for the loading process, This is
followed by the first function, strlen(s), to return the
iength of the string. Note the use of comments on the
end of the line with the function name.

This function counts the number of characters in
the string s. This is done by the “"while" statement,
using "n" as a counter. The value of "n" is returned as
the length of the string. Now let us examine some of
the details. The code of the procedure is between the
"{ }" and starts with the declaration that "n" is an

integer. This is one of the two base data types for
c99, along with "char" for characters. Then "n" s
initialised to zero and the "while" loop is entered. A

"while" loop executes until the logical expression in
parentheses becomes false. The while loop consists of
one statement, “n++". If there were more statements
that were 1to be executed in the "while” loop, these
would be enclosed in "{ }". The "n++" statement uses
one of the wuseful C operators, increment. Instead of
having to say "n=n+1", "n++" does the same thing. It is
a bit more wuseful in other contexts also. $So the
"while" loop is simply incrementing the counter "n"
until the expression "xs++" is false. This is where the
explanation becomes a bit more difficult.
Return back to the start of the procedure
"strien(s)". What exactly is “s"? Well we would expect
it to be the string, except that a string is an array of
characters and we can only pass a single entity to a
procedure. What is actually passed is the address of
the first character in the string. This is called a
pointer in C. A pointer is a variable which contains an
address which points to the data. A pointer is most
useful for arrays but can be used for any data. A
pointer has to be identified with the type of the data
which -it is addressing so that when it is incremented it
will point to the next item in the data. This is like
the auto—increment in registers where if a byte is moved
the register contents are increased by one but if a word
is moved the contents are incremented by two. This is
done in this case by declaring that the data pointed to
by the pecinter is a character. “¥s" returns the
character pointed to by “s" The statement "char xs;"
declares that the pointer s is a character pointer.

conditional

Foliowing on from that, the “while"
clause of (xs++) returns the character peointed to by “s
which will have a non-zero ASCII code (and so be treated
as TRUE) until the last character in the string appears
which is the "end of string” character and is defined to
have an ASCII code of zero which is also the value of
FALSE. The "++" operator increments the pointer each
time it is executed and because it appears after the
variable, it is done after the character 1is returned.
The same statement could be written as "while(xs++ !=

NULL)" which is transiated as while the character is not

equal to NULL, increment the pointer and do the
following statement. This then covers all the
statements for this function. It simply counts all the

characters in the string until it reaches the "end of
string” character and returns that value. Notice that
the parameter that is passed in the procedure call is
declared outside the "{ }" that enclose the procedure
code while the wvariables wused in the procedure are
declared inside the "{ }" and are local to the
procedure.

stremp(s1, s2) /x compares si to s2, returns n<0
if s1 before s2, etc ¥/
char xs1, %s2;
{
int ri12;
for (; (%xs1) '= NULL; s1++, s2++) {
ri2 = (xs1) — (%s2);
if (r12) return (ri12);

}
r12 = (xs1) — (*s2);
return (ri2);

}

The next procedure compares two strings and returns
zero if they are identical and a non-zero value if they
are not. 1In this case pointers to two strings are
passed to the procedure and these are declared as
pointers to "char”s. Inside the procedure an integer
variable is needed so it is declared first. The work is
done with a "for" loop with two statements in the “for"
loop enclsed in “{ }". The indenting is to make it more
obvious where the loop is. In this case the difference
between the ASCII codes of the characters is calculated
and if this is not zero a return is made with that
difference as the returned value. So as soon as the
strings differ the procedure ends and a non-zero value
is returned. If the strings are the same, there must be
a way of identifying when to finish the loop. This is
in the conditional clause of the “for" function. Inside
the parentheses following the "for" statement there are
three groups of statements separated by ":". The first
group of statements are executed once at the start of
the loop and used to initialise variables. This is like
the first number in the BASIC statement FOR I=1 TO 10
STEP 1. First I s initialised to 1. 1In this case
there is nothing to be initialised so this is blank but
the ";" is still required. The second set of statements
define the terminating condition of the leop (like the
second number in BASIC). In this case it is when the
“end of string” character appears in the first string.
The third group of statements are executed once at the
end of every time through the loop and are usually used
to define how the variables are to be changed (|ike the
STEP statement). In this case the pointers to both
strings are incremented to point to the next characters
in the strings. So the “for" loop causes the characters
in both strings to be compared until either there is a
difference or the first string finishes.

The final statements cover the case that the “"for"
loop finishes normally. In this case either both
strings are identical and the difference in the two
character codes will be zero (both NULL) or the second
string will not be finished so that it will be longer
than the first and so greater and the result returned
will be negative. .

stnemp(s1, s2, n) /x compares n chars of s1 to s2,
returns n<0 if s1 before s2 x/
char xsi, xs2;
int n;
{
int r12,i;
if (n < 1) return(0);
for (; n > 1; =—n, si++, s2+4) {
ri2 = (xs1) - (xs2);
if (r12) return (ri12);
it (ks1 == NULL) return {ri2):

}
r12 = (xs1) - (xs2);
return (r12);

}

continued on page 17

(June 1992

TisHUG NEWS DIGEST

Page 10]

Writing in Machine Code

by J.E. Banfield
For the serious machine code programmer, you will
need to have available:

1. A MiniMemory module or its equivalent
2. A copy of the TMS8900 Microprocessor Data Manual
published by Texas Instruments Incorporated 1982

Also highly desirable:

3. TMS9918A/TMS9928A/TMS9929A Video Display Processor
manual, TI 1582

4., For convenience, a calculator with hexadecimal
functions, for example Casio College fx-1008.

For design and for writing interface programs you
might need the TMS9201 and TMS9902 Data manuals.

However, do not despair; this series of articles
can be followed without the above. If necessary,
machine code can be examined and entered from Extended
BASIC using PEEK and POKE etc. I would not recommend
it.

All numbers in this series are in hexadecimal (or
binary) unless otherwise stated or preceded by R.

For convenience 1 keep a summary of machine
operation codes in descending numerical order. This
enabies de-compilation of a program. For npersonal
reasens, I wuse the DEC Macro 10 mnemonics or near
equivalent rather than the TI Assembler mnemonics. This
may irritate assembler programmers but has the advantage
that you can clearly distinguish machine code
descriptions from assemblier, even though the latter as
machine code ultimately.

Figure 1 gives my summary of the machine code with
mnemonics, headed MacroT De-compiler. For each set of
codes an address description (mode) is appended: D,S,
d,5, c,s etc. I will explain as we go.

Each machine code instruction is organized as a two
byte, 16 bit one or two 16 bit data words containing
address information.

MiniMemory Module

in the use of EasyBug,
pages

For detailed instructions
refer te the MiniMemory Command Module Data Book,
64 to 71.

Plug in your MiniMemory module, turn on the power
to your console and select EasyBug using Key 2. After
you bring up "?" on the screen, type in M0O2B2 and then
press enter. A line;

MO2B2 = C8
comes up.

M02B3 = OB
which is the next byte in memory. I have selected an
address in the console 0000 to 1FFE segment (ROM): in
fact the machine code entry for KSCAN (the GROM entry is
at address 02AE). The instruction word is thus C8 0B.

Press the space bar to display the next line:

Find € in Figure 1: "MOVE D,s"
This translates as: move the word at address
defined by S to the location defined by D. (Note that

in assembler
order, a very good
mnemonics.)

such a move uses the operands in opposite
reason for using different

The full bit pattern fer the instruction is:
1100 1000 0000 1011
c 8 0 B

Opcodes F to 4 leave 12 bits remaining after t
opcode to specify two full 6 bit address specifications,
first the destination address "D" followed by the source

address "8". Thus the source address specification, the
right hand six bits are:
00 1011 that is OB.

The first two bits "0", specify the address mode as
Ac; Accumulator (register in assembler). Thus the
source address is Ac"B" (or R11), from which the data is
taken by the processor for transfer to the destination
address in memory specified by "D". The accumulators
(registers) are in fact ordinary memory locations and
can be used or addressed as in any other memory access.
How their location is defined (for example by
instruction 040) is left for another occasion. Once
defined, these specified addresses can be addressed
simply (4 bits) and can be used (except Ac"0") as index
registers.

For this instruction
destination "D" are:
100000

the 6 bits specifying the

The first two bits, 10 ar 2, refer to the @.+2
mode. The second four bits, zero, indicate no index
registration and so the destination address is to found
in the next two lines:

MO2B4 = 83

M0O2B5 = D8

so that the destination address is at M83D8 in the
console RAM.

In summary: MOVE 83D8,RB

The accumulator “B"™ (R11) has a special function in
the TMS8900 processor in the it holds the return address
for calling routines. Since the next instruction calls
ancther subroutine it will Ac"B" for this purpose and so
the original return address, now at M83D8 is saved for
later use.

Next Instruction

Press the space bar
instruction is thus revealed.
MO2B6 = 08
MO2B7 = AO . 08 AD
constituting the next instruction.

Look at Figure 1. The code 08A lies below the
opcode 06C and above 088 and it ‘“belongs to the 068
code. The bit pattern:

0000 0110 1010 0000
0 8 A 0
\ 0868 part /\ S address part /

twice more. The next

Once again the S address, of 2 type specifies @.+2
mode. The instruction code 068 or JSP is a jump and
save program counter. The current contents of the
program counter are transferred (saved in Ac"B" (R11))
and the contents of the source address are transferred
to the program counter of the CPU. These contents are
revealed by again pressing the space bar twice:

MO2B8 = 08

MO2B9 = 64

so that the JUMP address is 0864. We will not inquire
at this stage what the subroutine at 0864 does;
eventually it will return to the address saved to Ac"B"
by the calling program and this will be MO2BA. (Very
much later, at the end of the KSCAN routine, the return
address will be taken from M83DS.)

Thus, back from the 0864 subroutine, the processor
reads the next instruction, space bar twice:
MO2BA = 04
M02BB = CC

The instruction, from Figure 1, is coded 04C and is
SETZS. This sets the source memory to zero (the
contents of the source address are, in fact, ignored).
The instruction:

0000 0100 1100 1100

\ 04C /\ 0Cc [/
splits up into a 10 bit opcode and a six bit source
continued on page 14

[Page 11

TisHUG NEWS DIGEST

June 1992)

Scott Foresman Mathematics Series

Reviewed by Charles Good, OH USA

I cannot say enough nice things about this
software. It is, din my opinion, far superior to the
MILLIKEN MATH SEQUENCES TI cartridge software many of us
are familiar with. When it comes to teaching students
NEW mathematical concepts, as opposed to just
reinforcing previously learned concepts with drills,
there is nothing better than the SCOTT FORESMAN
MATHEMATICS COURSEWORK SERIES. None of the basic Maths
education software for Apple or MS-DOS computers is as
good, in my opinion. You can actually sit a student
down in front of the computer, start up the module, and
have the computer do the complete job of teaching the
student an unfamiliar Maths concept without any further
human intervention. I have done so with my lst grade
daughter and 5th grade son, and I have talked to a
couple of primary school educators who use 99/4As and
who have confirmed that these cartridges are actually
self teaching. 1 find this amazing! This software is
computer assisted learning at its very best.

All cartridges in the MATHEMATICS COURSEWCRK SERIES
were written by Thomas Hartsig. They seem to be
designed for in classroom use, but also can be used at
home. Each makes 1liberal use of sprites and colour
graphics, music, and especially speech, and each is
based upon a particular theme. The powerup cartridge
menu gives a choice of several activities, the last
being a random review of the others. At the beginning
of each activity, the student is given the choice of 1-
A TEACHING EXAMPLE, or 2- PRACTICE EXERCISES. Selecting
1- really shows the magic of the cartridge. The problem
is set up graphically on screen step by step. Digits
float around the screen as the problem is solved, and
while all this is happening the computer TALKS the
student verbally and with on screen words through each
step of the solution. You really have to see all of
this to appreciate how good these tutorials are.

When 2- PRACTICE EXERCISES is selected a problem is
displayed and the student is asked to solve it digit by
digit, usually from right to left, just as the problem
would be done with pencil and paper. A wrong answer
gets a "try again' the first time. If the student waits
too long the computer prompts on screen and verbally
"your turn" a couple of times and if no solution is
attempted the computer then solves the problem, If too
many problems in a series are solved incorrectly or not
at all the computer says "you can do better than this"
and immediately begins to display some additional
TEACHING EXAMPLEs,

The better known software in this series,
cartridges that are not rare, include ADDITION AND
SUBTRACTION 1, as well as ADDITION AND SUBTRACTION 2,

MULTIPLICATION 1, and DIVISION 1. The activities of the
"rare" ¢1983 cartridges are listed below., Both
NUMERATION cartridges are listed in TI's last 1983 price
list. None of the others are mentioned in official TI
promotional literature.

NUMERATION 2- at the carnival.

This was available from some dealers in late 1983
but was less commonly available than Numeration 1.

TI, in its 1983 pamphlet "Texas Instruments Home
Computer Program Library" 1Ilists this cartridge as
appropriate for "late primary, 10-12 years".

1- 4 DIGIT NUMBERS. (Write four thousand two
hundred five. Which digit is in the hundred's
place?)

2- COMPARE NUMBERS. (Which of two is larger?)

3- Rounding numbers (To the nearest 10s with 5 or
more rounding to the next digit.)

4- 5 AND 6 DIGITS

5~ 7, 8, AND 9 DIGITS

6~ DAILY USE OF NUMBERS (Weigh produce on a scale
and round to the nearest 10 ounces.)

7- REVIEW.

MULTIPLICATION 2- Mighty Multiplication.

This has a cute graphic of a 1little flying super
hero, Mighty, who saves the day if you answer correctly.
I wrote about this module previously under the topic of
"never released software" but I subsequently found it
listed on some TRITON catalogs.

1- MULTIPLYING 10 AND 100. (3x10=7 3x100=7)

2- MULTIPLES OF 10 AND 100 (3x7=? 3x70=? 3x700=?)

3- 2 AND 3 DIGITS TIMES 1 DIGIT.

4~ 2 DIGITS WITH RENAMING. (I used to call this
"carrying".)

5- 3 DIGITS WITH RENAMING.

6~ MORE THAN 1 RENAMING.

7- WORK PROBLEMS.,

8- REVIEWING IT ALL

ADDITION AND SUBTRACTION 3

1- ADD 2 DIGIT NUMBERS.

2— SUBTRACT 2 DIGIT NUMBERS

3~ REGROUP OBJECTS ("13 ones equals 1 ten and 3
ones.")

4— ADD WITH RENAMING

5~ SUBTRACT WITH RENAMING

6— ADD 3 DIGIT NUMBERS

7- SUBTRACT 3 DIGIT NUMBERS

8~ REVIEW.

NUMERATION 1- Under the Big Top.

TI considers this suitable for "early primary 5-7
years" The cartridge was available from some dealers by
the end of 1983 but I never personally saw one in the
stores. :

1- NUMBERS TO 9

2— COMPARE NUMBERS (3<5)

3- HOW MANY TENS

4~ NUMBERS TO 99

5- NUMBERS IN ORSER ("5 is one less than 6.")
6- ORDINAL NUMBERS (First, second, third, etc.)
7—- NUMBERS TO 999

8- REVIEW

FANTASTIC FRACTIONS 1

1- WHAT IS A FRACTION

2- A FRACTION OF MANY ("How many boxes are black?
How many total ©boxes . are there? What
fraction are black?)

3— EQUAL FRACTIONS (1/2 = 2/4)

4— MIXED NUMBERS (Whole number plus fraction, such

as 2 1/4)
5~ APPLICATIONS (Show 5 1/3 on ruler scale.)
6- REVIEW

DECIMAL DELI 2

There is reference to a DECIMAL 1 in the
literature, but I have never seen DECIMAL 1.

1- PLACE VALUE (ones,
thousandths; 92.475 equals "ninety two and four
seventy five thousandths")

2- COMPARING, ORDERING ("5.374

5.334")

3— COUNTING PLACES (35.8284, four decimal places)

4— MULTIPLYING DECIMALS

5- ZEROS IN THE PRODUCT (0.04 x 0.1 = 0,004; "We
need two zeros in front of the four to make three
decimal places.")

6~ APPLYING DECIMALS
costs $3.93.

tens, tenths, hundredths,
hundred

is greater than

(Each roast beef
What is the cost of 7 sandwiches?)

sandwich

7- REVIEW e

Renew Noww!

Gune 1992

TiIsHUG NEWS DIGEST

Page 12)

Programming Musie part 2

by Jim Peterson, Tigercub Software, USA

In Part 1 I showed you how to set up a musical
scale to create notes, and how to merge in various
little routines to create a variety of musical effects,
but I did not tell you how to figure out what numbers to
put in between those GOSUBs. So, here is the little
program that makes it all easy.

100 CALL CHAR(127,"000FQ80F0868F870000F08080868F87000080
8080868F8700008080808689870") : : CALL CHAR(131,"000000000
0609070")

110 CALL CHAR(132,"0000120C483020400000221C0810200000201
0201030200000003CFF"):: CALL CHAR(136,"000000FF3C")

120 CALL CLEAR :: S$="GFEDCBA" :: CALL CHAR(4S5,"00000000
FF"):: A$=RPT$(S$,3):: FOR R=2 TO 22 STEP 2 :: IF R=12 T
HEN 130 :: DISPLAY AT(R,1):RPT$("-",28)

130 NEXT R :: CALL CHAR(98,"0020202834242830™)

140 FOR R=1 TO 21 :: DISPLAY AT(R,1):SEG$(A$,R,1);::
NEXT R

150 DATA 127,127,128,128,129,129,130,130,131,131

160 DATA 1/16,1/8,1/4,1/2,1/1

170 FOR R=1 TO 20 STEP 2 :: READ N :: DISPLAY AT(R,15):C
HR$(N);:: NEXT R :: FOR R=3 TO 19 STEP 4 :: DISPLAY AT(R

,16):"™.";:: NEXT R

180 C=132 :: FOR R=1 TO 17 STEP 4 :: DISPLAY AT(R,17):CH
R$(C);:: C=C+1 :: NEXT R

190 FOR R=1 TO 17 STEP 4 :: READ M$:: DISPLAY AT(R,20):
M$;:: NEXT R

200 DATA 35,33,32,30,28,27,25,23,21,20,18,16,15,13,11,9,
8,6,4,3,1

210 FOR R=1 TO 21 :: READ N :: N$=N$&CHR$(N)::
T(R,6):STR$(N);:: NEXT R

220 G$="b" :: Z=-1 :: GOSUB

320 :: IF F=0 THEN 230 ELSE GOSUB 330 :: GOTQ 240

230 G$="#" :: Z=1 :: GOSUB 320 :: IF F<>0 THEN GOSUB 330
240 DISPLAY AT(24,1):"Shortest note? 1/" :: ACCEPT AT(24
,18)VALIDATE("12468")SIZE(2)BEEP: L :: T$="1/"&STR$(L)::

DISPLAY A

RESTORE 160 :: FOR J=1 TO 5 :: READ L$:: IF L$=T$ THEN
260
250 NEXT J :: GOTO 240

260 DISPLAY AT(24,1):"Is it dotted? Y/N" :: ACCEPT AT(24
,19)VALIDATE("YN")SIZE(1) :D$:: D=l-(D$="Y")

270 T==3+J%4

280 FOR R=T TO 19 STEP 4
DISPLAY AT(R+2,11):STR$(D*1.5);:: D=D*2
260 GOTO 360

300 FOR R=1 TO 20 STEP 2
HR$(N);:: NEXT N

310 GOTO 310

320 DISPLAY AT(24,1):"How many "&G$&" on upper scale?" :
: ACCEPT AT(24,28)VALIDATE("01234567")SIZE(1)BEEP:F :: R
ETURN

330 Yg$="" ::
letter?"
340 ACCEPT AT(24,18)VALIDATE(S$)SIZE(1)BEEP:1$:: IF POS
(Y$,L$,1)<>0 THEN 340 ELSE Y

$=Y$&L$

350 S=1 :: FOR K=1 TO 3 :: P=POS(A$,L$,S):: DISPLAY AT(P
,2):G$;:: DISPLAY AT(P,6):STR$(ASC(SEG$(N$,P,1))+Z);:: S
=P+1 :: NEXT K :: NEXT J :: RETURN

360 OPEN #1:"PIO" :: FOR R=1 TO 22 :: FOR C=3 TO 30 :: C
ALL GCHAR(R,C,G):: CALL HCHAR(R,C,30):: R$=R$&CHR$(G)::
NEXT C :: PRINT #1:R$:: R$="" :: NEXT R :: STOP

:: DISPLAY AT(R,11):STR$(D);::
:: NEXT R

:: READ N :: DISPLAY AT(R,15):C

FOR J=1 TO F :: DISPLAY AT(24,1):"On which

Get yourself a piece of sheet music and compare it
to the screen display from that program. You will see
that music is written on two sets of 5 lines. The upper
set is marked at the left end with something Ilike a
fancy script capital S; it is used to write the higher
notes, including the melody, which a pianist plays with
the right hand. The lower set, marked with a scrt of a
backward C, contains the low notes played with the left
hand. Your sheet music probably has a wide space
between the sets, to make room for the lyrics, but there
are really only three notes between them.

The screen display shows letters at the left, which
are not on the sheet music. Those are the names of the
notes, which we will have to refer to a couple of times
to get started; observe that the notes are named A
through G and then repeated.

The numbers along the left side are the numbers you
will key in to play those notes. However, the screen
display is set up in the key of C, which is played
entirely on the piano white keys. The sheet music you
want to program from may be in a different key, so - The
computer is asking you how many there are of something
that looks like a squashed lower case b -~ I guess that
is why they call it a flat? It means that the note will
be played a bit lower, on the black key just left of the
white key - and we will program it one number lower.
So, look next to that capital S and see how many flats
there are. If none, type O. Otherwise, the computer
will ask which letters they are next to. Type them in,
one at a time, and presto — the computer will put them
on the staff and adjust the numbers accordingly.

If there were no flats, the computer will want to
know if there are any sharps — those are what you get by
typing a shift 3 on the keyboard, and they mean that the
note is played on the black key above the white key, and
is programmed one number higher.

Now, the computer needs some information in order

to help you set up the length of your notes - how long
they are socunded. The various notes are depicted at the
right. A 1/16 note is a little black egg with a stenm
(it may go up or down, makes no difference) and two
flags on the stem. A 1/8 has only one flag and a 1/4
note has none. A 1/2 note is a hollow egg with a stem
and a whole note has no stem.
- Those little doodads to the right of the notes are
rests, used to indicate a silent pause of the same
length as that note — more on that later. Look through
your sheet music and find the shortest note. Tell the
computer, It will want to know if any of those shortest
notes are dotted — have a little dot to their right, as
the screen display shows. A dotted note is played half
again as long as normal. Presto again, the computer
will show you the duration number to key in for each
note. Then, if you have a printer attached, it will
print out an Extended Basic screen dump of that screen —
you will have to squash your own b's and sketch in the
notes and rests.

If your software library contains an assembly
screen dump, delete that last program line and put in a
CALL INIT, CALL LOAD and CALL LINK to get a better
printout - or ask me for it. If you do not have a
printer, why not copy those numbers right onto the
corresponding lines and spaces on your sheet music, and
number some of the notes. Now we are ready to make
music! Let's keep it simple at first, just a single note
melody - and I hope you picked a simple piece of music.
Clear the TI's brain with NEW, then merge in that line
100 scale from part 1 by MERGE DSK1.SCALE . In the same
way, merge in one of those line 1000 CALL SOUND
routines. Put in a temporary stopper line 999 STOP, and
a line 110 D=200 to set the duration.

The melody is almost always on the upper set of 5
lines. 1If a note has 2 or 3 eggs on its stem, as they
usually do, the upper one is the melody note - we will
get into harmony later. Start with 1line 110. Check
your chart to see what number denotes the length of the
first note - maybe 2, if so key in T=2 :: Then check to
see what number applies to the position of the upper egg
of that note. Maybe 22, so key in A=22 GOSUB 1000
Enter RUN, and if you have done everything correctly,
you will hear the note. You might decide already that
you want to change that 200 in line 110.

Now for the second mnote. If it is of the same
length as the first, you do not have to type anything -
that is what makes this shorthand method so quick and
easy. If the note position is also the same, you do not
key that in either - just another GOSUB 1000.

If you have EZ-KEYS or another "hot keys" program,
you can program a control key to put in the GOSUB 1000
with just one keypress — wish I had thought of that when
I was programming music by the diskfulll So keep
plugging along, keying in durations and notes. After
every half dozen notes or so, type RUN to see if

(Page 13

TiIsHUG NEWS DIGEST

June 1992)

everything sounds OK so far - it is easier to catch
errors before they are too far back in the music.

You can get up to 5 screen lines on one line
number, but you might better stick to 3 lines. You will
note that the sets of notes are divided by vertical

bars. You might program the notes between bars on a
separate line, then add a ! followed by the words of the
song that go with those notes — I find that a very good
way to track down sour notes.

Regarding those bars - it might help you sometime
to know this. At the beginning of the music, right
after the big script S and the flats and sharps, you
will see something like a 3 over a 4, or a 4 over a 4,
or whatever - but often a symbol such as a barred C is
used instead. A 3 over a 4, for instance, means that
the notes between two of those bars will add up to 3/4 -

might be three quarter notes, or two eighth notes and
two quarter notes, or whatever, but they will add up to
3/4. Sometimes the very first notes will add up short,
but in that case the very last ones will make up the
difference.

The notes between those two bars make up a bar of
music, and the emphasis is on the first note - for
instance, that 3/4 is the 1-2-3, 1-2-3 beat of waltz

time. While you are keying in that music, you might
come to one of those rests. You can just key in its T=
value and then A=0 for a silent note. However, computer
notes stop so abruptly that somehow a rest just does not
sound right, so I often just use the previous note

instead.

You may come across one of those flat or sharp
symbols next to a note im the music. Give the note a
number 1 lower if a flat, one higher if a sharp, and the
same for any subseguent occurrences of that note, until
you find next to it a symbol that looks like the sharp
sign with half its legs knocked off; that means to go
back to normal. You might also come across that symbol
to tell you to play a normally flat or sharp note as if
it was not.

I think that covers all that you absolutely have to
know for now, and I have horrified all serious students
of music just about enough. There are all kinds of
other squiggles on the sheet music but usually they are
not essential in programming music. There is one other
time-saving shortcut that I should tell you about right
now. Most music consists at least partly of musical
phrases, of a series of notes, which are repeated two or
more times within a melody. So, the first thing you
should do before you start programming a scng 1s to
search through the music for such phrases.

If you find one, of more than a few notes, that is
repeated elsewhere - and make sure it is repeated
exactly the same - mark it off each place it occurs and
label it 500. If you find a second repeating phrase,
label it 600, and so on. Then, when you start
programming, start with line 500, key in that series of
notes first, and end it with RETURN. If you have
another phrase, put it in lines starting with 600, again
ending with RETURN.

Now, start programming from the beginning of the
song in line 120, but when you come to one of those
phrases, just put in GOSUB 300 - the program will jump
to that line number, play those notes, and come right
back to where it was.

In Part 3, we will get into programming in 3-part
harmony, bass notes, auto-chording, and all kinds of
things. o

continued from page 11

address which specifies the S type address as an
accumulator, "C" (R12), since the first two bits of the
six are 00.

The TMS99800 processor always reads the source
address even if it is going to ignore its contents and
over-write it with something eise, in this case zeros.

CRU Addressing

Although Ac"C" can be used as an accumulator in the
usual way, it also has a special function for the
TMS8800 in that it defines the CRU base address.
Instructions 1D, 1E and 1F use it to add the offset
(doubied) to the base address to locate a CRU bit. In
this case, the base address is set to zero and this
selects "RAMBLK" level of the TI99/4A, which is active
low only if A3, A4 and A5 are low. Figure 2 shows the
logic diagrams (part) involved,

300
Uso7
93 121 2 . use7
24 f? : z] DO EAN;
783
1900 1901
Figure 2. TI99/4A Schematic Diagram

Extracts from sheets 2 and 3
Note: U507 is a 74L832 chip, a quad OR gate

Output 1levels from U300 strobe matrix |ines of the
console keyboard and pressed keys connect interrupt
ports of U300 to these levels. Thus the stage is set
for detection of a key press.

More in a later contribution.

9900 “"MacroT” De-compiler

F I0RB 0B ROT
E IOR 0OA ASHL c,s
D MOVB 09 LSHL
C MOVE 08 ASHR
B ADDB
A ADD D,S
9 COMPB 074 MOVMS
8 COMP 070 SETOS
T SUBB 06C MOVSS
6 SuUB 068 JSP
5 ANDCB 064 8T8
4 ANDC 060 808
05C ATS S
3¢ DIV d,s 058 A0S
38 MUL 054 SETCS
050 MOVNS
34 STCR c,S 04C SETZS
30 LDCR 048 XCT
044 JUMPA
2C EXOP d,s 040 LWPJ
28 XOR 03E LREXx
24 TZC d,8 03C CKOFx
20 TOC 03A CKONx nil
038 RRWP
1F TBIT 038 RESETx
iE 8BZ off. 034 IDLEx
1D SBO
030 LIMI +2
1C SKIPOP 02E LWPI
1B SKIPUG
1A SKIPUL 02C STSR s
19 SKIPNO 02A STWP
18 SKIPC
17 SKIPNC 028 CI
16 SKIPNE c 026 TIORI
156 SKIPG 024 ANDI s, .2
14 SKIPUGE 022 ADDI
13 SKIPE 020 MOVEIL
12 SKIPULE
11 SKIPL . Address of current instruction

10 SKIPA
continued on page 20

(June 1992

TiIsHUG NEWS DIGEST

Page 1@

S@T@ﬁﬁﬂg part 6

by Ron Brubaker, USA

This chapter describes a sorting algorithm called
Quicksort II. It is one of the finest sorting methods.
It is slightly faster than the shell sort for longer
lists but due to its complexity it loses the race on
shorter sorts to the more straight forward shell sort.

The Quicksort IT algorithm sorts in a very simple

manner. First, it chooses a value near the centre of
the list, which is not necessarily near the middle
value. It then looks at the elements to its left

starting with the first. If the first is smaller than
the value chosen it moves to the next value. This
continues until a larger value is found. Then it looks
at the vakue at the right end of the list. If this
value is larger than the value originally chosen it
moves to the next-to-last segment. Whenever it has
found an element to the left of the middle value that is
too large, and an element to the right of the middle
value that is too small, it swaps them. Inevitably, it
will end this phase of its work with all of the smaller
values to the left of the arbitrary middle value and all
of the larger values to the right. Then it divides the
list into parts by storing the indices of the first and
last elements of the piece containing the larger values
in two stack arrays L() and R(). It then chooses a
value in the middle of the remaining piece, the one with
the smaller values, and begins the process of sorting
them inte two parts again. Ultimately, it reaches the
point, where, given a list of three numbers, if you put
the smallest one on the left and the largest one on the
right, they are sorted. By this time it has a bunch of
unfinished business on the stacks where it has sorted
the ends of the pieces of the list it has not finished.
These are retrieved one at a time and are resolved,
often causing more items to be placed on the stack in
the process.

Seems 1like a weird way to do business, but the
proof is in the results and this thing is fast! Try it.
Be careful though, if you make a mistake in the program
it may never get done and you will have a lot of fun
finding your error.

Each of the following is a full working program in
which the sorting routine is used as a subroutine to
facilitate incorporation into your favourite program.

PROGRAM 1

100 ! *
110 !'PROGRAM TO DEMONSTRATE
QUICKSORT II

120 !

130 !Based on an article on

sorting in the Sept 81

issue of Interface Age
by Gene Cotton.

140 !
NUMERIC —- VERSION
E 4330
150 !'VARIABLE KEY
160 ! S1=CURRENT STACK VALUE
170 !L()=STACK VALUE FOR LEFT END OF LIST
180 !R()=STACK VALUE FOR RIGHT END OF LIST
190 ! L1=LEFT END OF CURRENT SEGMENT
200 ! R1=RIGHT END OF CURRENT SEGMENT
210 ! L2=LEFT POINTER IN CURRENT SEGMENT
220 ! R2=RIGHT POINTER IN CURRENT SEGMENT
230 ! X=VALUE OF MID POSITION VARIABLE IN
CURRENT SEGMENT
240 ! T=TEMPORARY VARIABLE TO HOLD VALUE
DURING SWAP
250 ! N=LENGTH ARRAY(A)
260 !NOTE, THIS PROGRAM ASSUMES THAT THE ARRAY
TO BE SORTED IS A().
270 !THE STACK ARRAYS L() AND R() SHOULD BE
280 !DIMENSIONED APPROXIMATELY 1/3 AS LARGE AS A()

290

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

640
650
660
670
680
690
700
710
720

730 !

740

750 !

760
770
780
790
800
810

100 !

110

120
130

140

150
160
170
180
190
200
210

!
SORTING ROUTINE

DIM A(100),L(33),R(33)
IMAGE ####

GOTO 640

51=]

L(1)=1

R(1)=N

L1=L(S1)

R1=R(S1)

S1=S1-1

L2=L1

R2=R1
X=A(INT((L1+R1)/2))
IF A(L2)>=X THEN 450
L2=L2+1

GOTO 420

IF X>=A(R2)THEN 480
R2=R2-1

GOTO 450

IF L2>R2 THEN 540
T=A(L2)

A(L2)=A(R2)

A(R2)=T

L2=12+1

R2=R2-~1

IF L2<=R2 THEN 420
IF L2>=R1 THEN 590
§1=S1+1

L(S1)=L2

R(S1)=R1

R1=R2

IF L1<R1 THEN 360
IF S1>0 THEN 360

RETURN
1

GENERATE A LIST OF
RANDOM NUMBERS

RANDOMIZE

PRINT "HOW MANY NUMBERS DO YOU WANT";
INPUT N

PRINT

FOR I=1 TO N

A(I)=INT(100¥RND)+1

PRINT USING 310:A(I);

NEXT I

PRINT

1 0 3¢ i 3 3k

CALL SORT ROUTINE

GOSUB 330
!

ROUTINE TO PRINT THE
SORTED LIST

PRINT

FOR I=1 TO N

PRINT USING 310:A(I);
NEXT I

PRINT

END

PROGRAM 2

1 s

'PROGRAM TO DEMONSTRATE
QUICKSORT II

!

!Based on an article on

sorting in the Sept 81

issue of Interface Age
by Gene Cotton,

!
ALPHABETIC - VERSION

!VARIABLE KEY

! S1=CURRENT STACK VALUE

!L()=STACK VALUE FOR LEFT END OF LIST
!R()=STACK VALUE FOR RIGHT END OF LIST
! L1=LEFT END OF CURRENT SEGMENT

! R1=RIGHT END OF CURRENT SEGMENT

! L2=LEFT POINTER IN CURRENT SEGMENT

[Page 15 TIsHUG NEWS DIGEST June 1992]

220 ! R2=RIGHT POINTER IN CURRENT SEGMENT 130 !Based on an article on
230 ! X$=VALUE OF MID POSITION VARIABLE IN sorting in the Sept 81
CURRENT SEGMENT issue of Interface Age
240 | T$=TEMPORARY VARIABLE TO HOLD VALUE by Gene Cotton
DURING SWAP 140 ! *
250 ' N=LENGTH ARRAY A$() NUMERIC -~ VERSION
260 INOTE, THIS PROGRAM ASSUMES THAT THE ARRAY WITH POINTER
TO BE SORTED IS A$().
270 !THE STACK ARRAYS L() SHOULD BE DIMENSIONED 150 !VARIABLE KEY
APPROXIMATELY 1/3 AS LARGE AS A$(). 160 ! Sl=Current stack value
280 !'THE STACK ARRAY R() SHOULD BE DIMENSIONED 170 'L()=Stack value for left end of list
AS LARGE AS A$(). 180 IR()=Stack value for right end of list
200 [k 190 ! Li=Left end of current segment
SORTING ROUTINE 200 ! RIl=Right end of current segment
Fdok 210 ! L2=Left pointer in current segment
300 DIM A$(15),L(15),R(15) 220 ! R2=Right pointer in current segment
310 GOTO 630 230 ! X=Value of mid position variable in
320 S1=1 current segment
330 L(1)=1 240 ! T=Temporary variable to hold value
340 R(1)=N during swap
350 L1=L(S1) 250 ! N=Length Array(A)
360 R1=R(S1) 260 !Note, This program assumes that the array
370 S1=S1-1 to be sorted is A().
380 L2=L1 270 IThe stack arrays L() and R() should be
390 R2=R1 280 !dimensioned approximately 1/3 as large as A()
400 X$=A3$(INT((L14+R1)/2)) 290 !
410 IF A$(L2)>=X$ THEN 440 SORTING ROUTINE
420 L2=L2+1
430 GOTO 410 300 DIM A(100),P(100),L(33),R(33)
440 IF X$>=A$(R2)THEN 470 310 IMAGE ####
450 R2=R2-1 320 GOTO 640
460 GOTO 440 330 Sl1=1
470 IF L2>R2 THEN 530 340 L(1)=1
480 T$=A$(L2) 350 R(1)=N
490 A$(L2)=A$(R2) 360 LI=L(S1)
500 A$(R2)=T$ 370 R1=R(S1)
510 L2=L2+1 380 S1=S1-1
520 R2=R2-1 390 L2=L1
530 IF L2<=R2 THEN 410 400 R2=R1
540 IF L2»=R1 THEN 580 410 X=A(P(INT((L1+R1)/2)))
550 S1=S1+1 420 IF A(P(L2))>=X THEN 450
560 L(S1)=L2 430 L2=L2+1
570 R(S1)=R1 440 GOTO 420
580 R1=R2 450 IF X>=A(P(R2))THEN 480
590 IF L1<R1 THEN 380 460 R2=R2-1
600 IF S1>0 THEN 350 470 GOTO 450
610 RETURN 480 IF L2>R2 THEN 540
620 ! e 490 T=P(L2)
READ A LIST OF RANDOM 500 P(L2)=P(R2)
ORDERED NAMES 510 P(R2)=T
L 520 L2=L2+1
630 READ N 530 R2=R2-1
640 FOR I=1 TO N 540 IF L2<=R2 THEN 420
650 READ A$(I),R(I) 550 IF L2>=R1 THEN 590
660 NEXT I 560 S1=S1+1
670 DATA 15 570 L(S1)=L2
680 DATA "WASHINGTON, GEORGE",1,"JEFFERSON, THOMAS",3 580 R(S1)=R1
690 DATA "FORD, GERALD",37,"KENNEDY, JOHN",34 590 R1=R2
700 DATA "FILLMORE, MILLARD",13,"ARTHUR, CHESTER",21 600 IF L1<R1 THEN 390
710 DATA "ADAMS,JOHN Q",6,"LINCOLN, ABRAHAM",16 610 IF S1>0 THEN 360
720 DATA "ROOSEVELT, FRANKLIN",31,"REAGAN, RONALD",39 620 RETURN
730 DATA "CARTER, JAMES",38,"WILSON, WOODROW",27 630 ! ¥
740 DATA "MONROE, JAMES",5,"ROOSEVELT, THEODORE",25 GENERATE A LIST OF
750 DATA "ADAMS, JOHN",2 RANDOM NUMBERS
760 1%*
CALL SORT ROUTINE 640 RANDOMIZE
650 PRINT "HOW MANY NUMBERS DO YOU WANT'";
770 GOSUB 320 660 INPUT N
780 ! ok 670 PRINT
ROUTINE TO PRINT THE 680 FOR I=1 TO N
SORTED LIST 690 P(I)=I :: A(I)=INT(100*RND)+1
ok sedkokokesk 700 PRINT USING 310:A(I); :: NEXT I
790 PRINT 710 PRINT
800 FOR I=1 TO N 720 1 ek
810 PRINT A$(I) CALL SORT ROUTINE
820 NEXT I
830 PRINT 730 GOSUB 330
840 END 740 1
PROGRAM 3 ROUTINE TO PRINT THE
SORTED LIST
100 !kdoksk
110 '"PROGRAM TO DEMONSTRATE 750 PRINT
QUICKSORT IIL 760 FOR I=1 TO N :: PRINT USINC 310:A(P(I));:: NEXT I
120 %%

[June 1992 TIsHUG

NEWS DIGEST

Page 16)

100
110

120
130

140

150
160
170
180
190
200
210
220
230

240

250
260
270

280
290

300

310
320
330
340
350
360
370
380
390
400
410

430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

PROGRAM 4

(B2

! PROGRAM TO DEMONSTRATE

QUICKSORT IT

sk

!Based on an article on
sorting in the Sept 81
issue of Interface Age

by Gene Cotton

3

ALPHABETIC - VERSION

WITH POINTER

ek k

IVARTABLE KEY

! Sl=Current stack value

IL()=Stack value for left end of list
'R()=Stack value for right end of list
! Ll=Left end of current segment

! Rl=Right end of current segment

! L2=Left pointer in current segment

! R2=Right pointer in current segment

! X$=Value of mid position variable in

current segment

! T$=Temporary variable to hold value

during swap

!P()=Sorting pointer array
! N=Length Array A$()
!Note, This program assumes that the array

I'The

to be sorted is A$().
stack array L{) should be dimensioned

approximately 1/3 as large as A$().

! The

as large as

1 sksisk

stack aray R() should be dimensioned
A3().

SORTING ROUTINE

DIM A$(15),L(15),R(15),P(15)

GOTO
S1=1

L(1)=

640

1

R(1)=N
L1=1(S1)
R1=R(S1)
$1=81-1

L2=L1
R2=R1

X$=A$(P(INT((L1+R1)/2)))
IF A$(P(1.2))>=X$ THEN 450
L2=12+1

GOTO

420

IF X$>=A$(P(R2))THEN 480
R2=R2-1

GOTO

450

IF L2>R2 THEN 540
T=P(L2)
P(L2)=P(R2)
P(R2)=T

L2=12+1

R2=R2-1

IF L2<=R2 THEN 420
IF L2>=R1 THEN 590
81=5141

L(S1)=L2

R(S1)=R1

R1=R2

IF L1<R1 THEN 390

750 DATA "CARTER, JAMES", 38, "WILSON, WOODROW",27
760 DATA '"MONROE, JAMES", 5,"ROOSEVELT, THEODORE", 25
770 DATA "ADAMS, JOHN",2
780 ! ek

CALL SORT ROUTINE

790 GOSUB 330
800 !

ROUTINE TO PRINT THE
SORTED LIST

810 PRINT

820 FOR I=1 TO N

830 PRINT USING " ##
840 PRINT A$(P(I))
850 NEXT I

860 PRINT

870 END (@]

":R(P(I));

continued from page 10

The final procedure is very similar to the previous
case except that the number of characters to be examined
causes a few changes. Another integer is declared (but
not used) and the loop exit test is now determined by
the value of n which is decremented in each loop. This
means that at most n characters are examined, which is
what the procedure is supposed to do, while a test must
be included for the possibility that both strings end
prematurely. Only one test is required as if only one
string ends prematurely, the strings will be different
at that point and the other return will be taken.
Notice that the logical test for equality is two "="
characters. The last two statements are to do the nth
and last 1tfest. there is aiso a test on n before the
foop starts to make sure that the loop can finish. The
result returned if n is less than 1 is equal ity and no
comparison is made.

I hope you have followed my explanations here.
Please contact me if you want more on any part of the
explanations. Next month I will give you a main program
to test 1these procedures and look at some of the other
procedures in this library. (o]

continued from page 21
[If bl=b2 this is the result]

Loop Z0
SWAP 0DZ
DROP 0 [false flag]

NOTES On SORTS$ etc

Note 1. T is adrZ since we set the loop index to
be adr2.
Note 2. Subtracting b2 from bl results in a value

which is used as a flag (f) by IF,thus:

f is O (false) if bl=b2
f is <0 (true) if bl<b2
f is >0 (true) if bl>b2

Any nonzero value is a true flag.

Note 3.

The sign of the flag f is be used during

610 IF SI>0 THEN 360 an alphabetical sort to decide which character has the
620 RETURN larger ASCII value, since the ASCII values increase
630 !¥*%¥ ek unifermly from 0 to 9, A to Z and a to z.
READ A LIST OF RANDOM
ORDERED NAMES Note 4. If the comparison results in a non-zero
value because the characters compared are not equal, the
640 READ N words after the IF are executed and LEAVE causes exit
650 FOR I=1 TO N from the DO loop, because if any character in one string
660 P(I)=I differs from the other, the strings are not equal and
670 READ A$(I),R(I) our cencern is only which has the larger ASCII value.
680 NEXT I If the result is zero (ie the characters do match) LOOP
690 DATA 15 causes a return to the word following DO and another
700 DATA "WASHINGTON, GEORGE",1,"JEFFERSON,THOMAS",3 pair of characters are selected for comparison. When
710 DATA "FORD, GERALD",37,"KENNEDY, JOHN",34 the required count (u) of characters has been tested and
720 DATA "FILLMORE, MILLARD",13,"ARTHUR, CHESTER",21 no inequality found, the loop is exited. The SWAP DROP
730 DATA "ADAMS, JOHN Q",6,"LINCOLN, ABRAHAM",16 after the loop gets rid of the garbage on the stack
740 DATA "ROOSEVELT, FRANKLIN",31,"REAGAN, RONALD",39 leaving the +/-1 or O flag. [

(Page 17

TlIsHUG NEWS DIGEST

June 1992)

How to Use Arrays

by Andy Frueh, OH USA

I have considered myself decent in
programming for a few years.

me. I could not figure out what "dimensional

meant. Obviously, it was a powerful thing, but I could
not quite figure out how to use them. Why would I want
to?

For those who are just starting out, strap yourself

in. This could be a bumpy ride.

How can I explain arrays? Well, I suppose the same
way I explained them to myself when I finally understood
chart in the
It has a certain number of rows and

them. An array is nothing more than a
computer's memory.
a certain number of columns.

I assume most of us understand this BASIC command.

10 A=5 This sets the variable A to the value of 5. The

next line could say 20 PRINT A-5 When that program runs,
your answer would be O.
5 you get zero. Simple!

An array is a
variables.

slightly more

10 DIM A(5) Since there is one

parentheses, it is a "one dimensional" array. You could
say it has 1 row and 5 columns. Your next line could
say 20 A(O)=1 :: A(1)=2 :: A(2)=4 :: A(3)=8 A{4)=16
HANG ON! Why did I start with 07 Because to the
computer, counting starts with 0. I realize that this
confuses some people. If you would rather start
counting with 1, place this statement in the beginning

of your program...
THAT mean? Well, you can use OPTION BASE 0 or
BASE 1 in your programs. You use OPTION BASE only ONCE.
This tells the computer whether you are going to
counting with 0 or 1. If we had OPTION BASE 1 as line 5
in our little program, the numbers in parentheses in

line 20 would each have to be increased by one, so they

would be values from 1-5.

In our program (let's use OPTION BASE 1), we have
with 5 columns or

set up a one dimensional array,
elements. You cannot get a picture in your mind?
basically, this is what we have:

Well,

O [1]2]3]4]5 |

[1]2]4]8]16]

Array
A Value:

We can use more than one row. Here is another

little program and it's chart.

5 OPTION BASE 1
10 DIM A(2,2)

20 A(1,1)=1 :: A(1,2)=2 :: A(2,1)=3 :: A(2,2)=4
1 J1]2]
Array y | mmmm——mee
A 2 [3] 4]

You may have 7 dimensional arrays in Extended
BASIC. For example, you might need to write an address
program. You decide that each piece of information will
be stored separately. For example, although the street
address is asked for on one line, the number, street,
and apartment number are all going tc be stored in a
different variable. You could do this:

5 OPTION BASE 1
10 DIM A$(3,3,1,1,1,7,2)

The first set of three would be first name, middle
initial and last name. Three pieces of information are
in the FIRST DIMENSION of the array. The next set of

Extended BASIC
However, one thing eluded
array"

A=5 and if you subtract 5 from

complicated set of

number in

OPTION BASE 1 What the heck does
OPTION

start

three would be the street number, street name, and
apartment number. Next, the user would enter the city.
This 4is the only piece of information in this dimension
(dimension 3). The 4th dimension would contain the
state, and the fifth would be the zip code. Dimension 6
could be used to store 7 pieces of information on the
person at that address. Profession, where they work,
etc, The last and 7th dimension has two pieces of
information to it. The first would be the area code,
and the second, the phone number.

How about a "practical" illustration? The program
below will load in two full screens of a text file. We
have 28 columns available to wus normally in Extended
BASIC, using the PRINT routine. There are 80 columns in
a standard text file (D/V 80). Some quick Maths tells
us that we will need 3 screen lines to display 1 text
file line. OK, some more quick Maths. There are 24
lines on a screen, so we can only put 8 lines of the
text file on one screen. If our program loads in TWO
screens, we would need a total of 16 text file lines.
Qur math is now out of the way...we know what we need to
do.

The program below will load the text into the array
TEXT$(). It is two dimensional. Remember that means
that there will be two major pieces of data. These two
pieces will be the number of screens and the lines in
each screen. For example, in the program below, I use
DIM TEXT$(2,8). The way I am using it is like this: the
two represents the "pages" or number of screens, In TWO
screens, I need 8 LINES.

10 OPTION BASE 1

20 DIM TEXT${2,8)

30 CALL CLEAR::INPUT "Text file?":A$
40 OPEN #1:A$,INPUT

50 FOR S=1 TO 2::FOR L=1 TO 8

60 INPUT #1:TEXT$(S,L)

70 NEXT L::NEXT S::5=0

80 CALL CLEAR::S=S+1

90 FOR L=1 TO 8

100 PRINT TEXT$(S,L)::NEXT L

110 CALL KEY (0,K,ST)::IF ST=0 THEN 110 ELSE IF S<2 THEN
80 ELSE END

You may get an error message if the text file is
less than a total of 16 lines. Watch out for this! You
will need to press a key between pages. If all 8 lines
are not completely filled, neither will the screens be
filled. o

continued from page 8
Run times depended on line 30:
Line 30 Run Time
GOSUB 50 26.9 seconds
GOSUB 2060 12.6 seconds
CALL A 15.6 seconds

GOSUB 50 took 1longer than GOSUB 2060 as the
computer had to wade through 202 lines to find line 50
in the line number table versus one line to find line
2060.

Clearly, in long programs, put your frequently used
subroutines and groups of code at the end of your
program.

SUMMARY

For other ideas read the September, 1984 issue of
Millers Graphics' "The Smart Programmer" and a November,
1983 article in "99'er Home Computer Magazine" by John
Dow, "Squeezing the most out of TI Basic",

Experiment. You will find other time savers. If
you run some of the programs in this article you will
probably get slightly different times because you may be
mere accurate with your stopwatch and your programs may
differ slightly from mine.

I hope that these ideas will help you write and

(June 1992

TisHUG NEWS DIGEST

refine your Extended Basic Programs. o
Page 1@

Tl-Base Tutorial #1e

by Martin Smoley, NorthCoast 99'ers, USA

I am reserving the copyright on this material, but
I witl allow the copying of this material by anyone
under the following conditions. (1) It must be copied
in its entirety with no changes. (2) If it is retyped,
credit must be given to myself and the NorthCecast 9%ers,
as above. (3) The last major condition is that there
may not be any profit directly involved in the copying
or transfer of this material. In other words, Clubs can
use it in their newsletters and you can give a copy to
your friend as long as its free.

* HAPPY NEW YEAR %

* Find Past Members FPM5/C
CLOSE ALL
LOCAL FDT C 6
LOCAL LDT C 5
* SET TALK OFF
SET RECNUM OFF
SET HEADING OFF
PRINT (f)
USE TNAMES
CLEAR
WRITE 8,1," Enter Date as YY/MM"
WRITE 10,1," Enter First Date: B8B/05"
WRITE 14,1," Enter Last Date: 90/02"
READSTRING 11,20,FDT
READSTRING 15,19,LDT
WHILE .NOT. (EOF)
PRINT NM,FDT,XP,LDY,ST,SA,ZP
IF (((XP>FDT).AND.(XP<LDT)).OR.;
((XP=FDT}.0R.(XP=LDT))).AND. ;
(ST="0H").AND.(SA<>"No Newsletter"):
.AND. (ZP<>" Zip ")
PRINT (LF)
PRINT
PRINT (LF)
ENDIF
MOVE
ENDWHILE
CLOSE ALL
SET TALK ON
SET RECNUM ON
SET HEADING ON
RETURN Copyright Martin A. Smoley 1980

I cannot believe it is 1990 already. I have not
made any New Year resolutions, but if I had known I was
going 1to live this long. I would have taken better care
of myself.

At this point I really believe that I have covered
all the functions of TI-Base. Therefore, I intend to
rambie along in a haphazard manner and build my
tutorials on things which I am doing during the month
the tutorial is due. If possible I will link my
tutorials to the previous month and relate the work to
TNAMES, or some other small database to give you a
working model of the idea I am presenting.

Last month I gave myself the task of puliing the
names of past members out of the NorthCoast membership
list for the purpose of sending them a letter. We are
having a swap meet at the February meeting and we wanted
to give ex-members the chance to sell their TI99/4A
components (current members should read about this item
in the Newsletter). This was actually an easy task to
start with, but I managed to complicate it considerably,
as usual. The first thing I did was to print out a
complete old membership list. As I backup my disks I
save the old disks to a storage box with the most
current at the front and the oldest at the back. I
still bhave disks from 1983. This means that I can back
up two or three disks and find all the past NorthCoast
members. By writing a command file that looks through
these data bases using a date range and a couple other
parameters, I can extract the names I want. I expanded
TNAMES and edited it so it would give me some probliems.
That may sound strange, but it is exactly correct. If
you want to do a job with a specialized command file,
you need a small data base to test the command file.
The data base should contain data with a wide variety of
dates, names, addresses, etc. to thoroughly test your
command file. I look through the data base I wish to
use and pull out items I think will give me problems.
Then I incorporate these probiems into my small test
data base so I can iron them out before I try it on the
important data. It may sound like a lot of effort to
keep changing TNAMES, but TNAMES is one of my most
productive debugging tools.

Since the last listing of TNAMES I have added
record 0 (Zero). You will notice that it is really a
description of the fields. The CT field contains the
word City and the last date the data base was modified.
You should aiso notice that many of the fields in record
0 start with a blank space. In most cases that blank
space will return record 0 to the top of the 1list when
the data base is sorted on those fields. Using record 0
gives me a nice printout with no added effort when I am
printing the data base, and I have the Heading and
Recnum turned off. There are many ways to keep record 0
from being mixed in with the rest of the data when you
do not want it there. You can see one of my methods for
accomplishing this task at the very end of the IF
statement.

x Find Past Members FPM8/C
CLOSE ALL
USE DSK1.TNAMES
SET PRINTER=DSK1.PASTNMS
SET RECNUM OFF
SET HEADING OFF
PRINT (f)
PRINT
LOCAL FDT C 5
LOCAL LDT C 5
SET TALK OFF
CLEAR
WRITE 8,1," Enter Date as YY/MM"
WRITE 10,1," Enter First Date: 88/05"
WRITE 14,1," Enter Last Date: 90/02"
READSTRING 11,20,FDT
READSTRING 15,19,LDT
WHILE .NOT. (EOF)

Listing of modified TNAMES database. 01/01/90
REC M LN 1] I SA {1 STIP PH oG ID
0008 0 Last Name First Name MI Street Address City 01/01/30 ST LZip Phone XPDt Group ID-No.

0002 1 Aardvark Grant E. 9995 State Rt. 84
0003 2 Aardvark Willard J. No Newsletter

0008 3 Jones Jan U. 456 Skytop Drive
0008 § Jones Quincy W. 37285 Burgandy Lane
0000 5 Smoley Martin A. 8149 Bryson Drive
0007 b Vilario Aulga J. 9238 Townsend Road
0004 T Yivannovitch Elexxie I. 111 E. 98th. St
0001 8 Whitman Raymond (Slim) B. 2574 East 254th.

Geneva OH 44014 1-465-9876 89/12 NOCO 0717851

0H 1-485-7689 88/09 NOCO 0717852
Vale (0 80012 80/08 NOCO 0321891
Mentor-o n-the-Lake OH 44080 257-1029 90/03 NOCO 0820871
Hentor OH 44060 216-257-1661 90/02 NOCO 0713831
St. Louis MO 63174 314-888-8641 90/08 NOCO 0804831
Cleveland OH 91023 541-5415 88/05 NOCO 0712881
Eastlake OH 44094 951-2345 89/09 NOCO 09218681

(Page 19

TisHUG NEWS DIGEST

June 1992)

IF (((XP>FDT).AND. (XP<LDT)).0OR.;
((XP=FDT}.OR. (XP=LDT))).AND. ;
(ST="0H").AND. (SA<>"No Newsletter");
LAND. (ZP<>™ Zip ")
DO DSK1.SV’'PRNT
ENDIF
MOVE
ENDWHILE
CLOSE ALL
SET TALK ON
SET RECNUM ON
SET HEADING ON
SET PRINTER=PIO.CR.LF
RETURN Copyright Martin A. Smoley 1990

r s s P ot e

SV’PRNT

X

SET PAGE=000
CLEAR

LOCAL TEMP C 40
WRITE 10,5,"Saving name to DV/80 file"
SET PRINTER=DSK1.PASTNMS

PRINT
SET PRINTER=RS232.CR.LF.DA=8
PRINT (E)
WRITE 10,5," Printing one Label
¥
REPLACE TEMP WITH " v
. Exp. Date: " | XP
PRINT TEMP
PRINT (CR), (LF)
REPLACE TEMP WITH TRIM(FN) | " ";
MDD " " LN
PRINT TEMP
PRINT SA
REPLACE TEMP WITH TRIM(CT) | " ";
8T L 2P
PRINT TEMP

PRINT (CR), (LF)
RETURN Copyright Martin A. Smoley 1990

Let us get to the command files. FPM5/C is only
included to demonstrate my heavy use of PRINT statements
in the testing of complicated clauses. I created FPM5/C
as you see it except the IF statement was a simple "IF
(XP>FDT).AND. (XP<LDT)". I ran the command file which
printed the data it was using, for my verification.
Then 1 added the rest of the IF requirements (one at a
time) and ran the command file each time to see the
resul ts. You will notice that this particular IF
statement has seven requirements before the PRINT
commands within the IF-ENDIF will execute. This amount
of programming power is also usable with the ,FOR ciause
which was discussed last week. After assuring myself
that things were going the way I wanted, I moved along
to the two command files you see on this page. I
rearranged the top 10 lines of FPM8 so they will scroll
up the screen before talk is set off. I might also
place a (WAIT 5) just before CLEAR. This allows me a
quick glimpse at what is going on in this command file
when 1 use it four months from now. The important items
would be, that I am using TNAMES and PRINTing to a file

named PASTNMS, both on DSKi1. The items for you to
concentrate on at this point in the command file are
SET PRINTER=DSK1.PASTNMS, PRINT (f) and PRINT. SET

PRINTER=DSK1.PASTNMS tells TI-Base that until I make a
change, send everything to be PRINTed to a DV/80 file on
disk drive number 1. PRINT (f), sends one character to

the DV/B0 file, my command to set the printer to
Condensed Mode. The next PRINT command tells TI-Base to
PRINT the record it is pointing to, which in this case

is record 0 (zero). This puts my headings at the top of
PASTNMS. After the CLEAR, FPM8 asks you for the oldest
allowable search date and the latest alliowable search
date. FPM8 should give you more instructions about
entering these dates, but I did not want to waste the
newsletter space. FDT should be the oidest date you
want and LDT would be the newest or latest date. Note
that in TNAMES, XP is not a date field. It is
C)naracter type field. For this reason I put in the
examples "88/05" and "90/02" to remind me of the type of
input I must make. I am not sure, but I think this is
the first time I am using user input for the execution
of a search clause (IF) and the input must be exact or
the IF statement will not find a match, or it might

match everything. The IF clause says if XP is equal to
or in between the items I entered (FDT and LDT) and ST
equals OH and SA is not "No Newsletter" and ZP is not
" Zip ", then DO DSK1.SV’PRNT. "TI-Base is capable of
doing some pretty complicated stuff.” If all these
requirements are met, TI-Base will DO the command file
SV'PRNT. SV’PRNT SETs the PAGE fength to 000 then sends
the complete record it has found in the IF clause to the
DV/80 file with the first PRINT. The line that reSETs
the PRINTER to DSK1.PASTNMS means nothing at this point,
but it will be needed the next time SV’PRNT is run. I
am saving the records to a DV/80 file so that I will
have a complete Funnelweb list of all the people who
will receive the letter. Now I need a label. The
command SET PRINTER=RS232.CR.LF.DA=8 points TI-Base
toward, and sets up, my printer, as you should recognize

by now. PRINT (E) sets my printer to Emphasized Mode
and the rest of SV'PRNT prints the label I want
(hopefully). At the completion of the Ilabel, TI-Base

RETURNs to FPM8 at the ENDIF statement. TI-Base then
MOVEs to the next record in the Database and loops back
up to the WHILE statement. If it has not hit the End Of
File marker the statements in the WHILE Iloop will be
executed. When the whole Database has been searched
(one record at a time) for the records I want, the data
base is closed and everything is reSET to my normal
SETUP. I only use my RS232 for printing labels, so I
reSET my PRINTER to PIO.CR.LF.

NOTE: Due to my use of the Formatter to print the text
in these Tutorials, the spacing of S8ET statements may
not be correct. The spacing in the command file listing
should be correct and that is what you should follow.

TIP: If your command file has
data base and you still get a "database not in use”
error later in the command file, this probably means
that you have made a mistake in the IF clause.

Continued Next Month. o

successfully opened a

continued from page 14

Notes: D Full destination address, B bits
d Accumulator destination address, 4 bits
L] Full source address, 6 bits
s Accumulator source address, 4 bits
c Count, 4 bits or 8 bits

off. Offset from CRU address in Ac"C", doubled
Address Modes: 0 Ac, accumulator
1 @Ac, accumulator indirect
2(0) @.+2 symbolic memory
2 @.4+2(Ac) indexed memory
3 @Ac add 1 or 2 to Ac,
auto-increment

% Not valid for TMS9900
Figure 1. Mnemonics o

continued from page 6

fully commented version to allow you to learn how Jim
programmed his calculator, and a stripped down

version ready to run. The disk comes with detailed
documentation

TC-1015 is entirely devoted to word processing
utilities, written by Jim himself, as well as from
other sources. The various programs can all be
selected from the menu which loads automatically when
XB is selected. The following utilities are
available:
1 Carriage Return Adder
2 Reformatter+ V1.2
3 Tigercub Labeler V2.1
4 Tigercub Printall V.1.86
5 Printer Options
6 Text Reformatter
7 Program Rel ister
8 Text to Program Converter
9 28 Column Converter C

(June 1992

TiIsHUG NEWS DIGEST

Page 20)

Beginmimg [Forth - part 16

by Earl Raguse, UGOC, CA USA
SIMPLE SORTING

I am about to deliver on the promise I made Ilast
time to show how to sort in Forth. The word today is

SORT$ and it expects (adrl adr2 cnt) on the stack., If
you compare SORT$ to CSTR$ you will find great
similarities between the words. In fact the only

differences are the substitution of ROT for SWAP and the
dropping of the 0= at the end of CSTR$.

is demonstrated in Screens #51
through #5353, the heart of the matter is really all on
Screens #52 and #53. If you have any file called
NAMELIST (equated to NL because it is used so often) and
the variables N, TEST and TEMP and the prompting words
on Screen #52, then the word SF (SortFile) will do a
"bubble sort” on a file, in this case Screen #56, a
dummy NameList file, generated for demo purposes - no
copywrite infringement intended, Mother Goose. There is
a display of the result, Screens #51 and part of #52
provide a means of creating this file using MAKEFILE
which is equated to MF for ease of use. This is mostly
by way of demonstration and can only create a file which
looks like a phone number 1list. One could save and
retrieve this file to and from disk using the techniques
which were described in BFORTH #15.

The word SORT$

MF (MakeFile) permits one to create a file on a
screen using the very flexible Forth full screen Editor.
The file, of course must be formatted properly according
to the byte count assigned to each field. In this case
20 bytes for the name and 15 bytes for the phone number.
Within a field, bytes (characters) may be anywhere.
When you have properly entered the data on the screen,
you can transfer it to NAMEFILE using LOADFILE equated
to LF, and then PRINTFILE shortened to PF lets you
display it to the screen.

If you should ever try to load more characters into
a variable than was assigned for it in the ALLOT
statement, Forth crashes in a very strange way and you
have to reboot. I can attest to that from perscnal
experience, which I will relate later. That is when you
become thankful for BSAVED Forth. I learned this the
very hard way.

The sorting is done only on the name field, but
when REV (see later) switches the two file entries, it
switches the phone numbers as well as the names. At
first I had REV only switching the names, CMOVEing 20
bytes, because I had ALLOTTed only 20 bytes to TEMP and
to TEST. When I found that I was sorting the names
quite well but was not yet moving the numbers with the

names, I just increased the 20 to 35 for CMOVE. That
seemed like it worked fine, but after the sorted file
was displayed Forth had a SF? ; no amount of key

pressing could get Forth off dead center. It did not
recognize QUIT, ABORT, MON or any other word that I
could find. Power reset was the only answer.

Since the sorting was done completely and correctly
I was at loss as to where to look. I worked backwards
through Screen #53 verifying each loop by itself and
they all worked fine. I thought surely it had something
to do with the sorting loops so I did them all single
step and they worked by themselves. I finally traced it
back to REV which had been working sc nicely before. I
partitioned it all off but the first 35 CMOVE to TEMP,
still ok, Bang!!! It suddenly dawned on me I that I had
not increased the ALLOT for TEMP when I increased the
CMOVE from 20 to 35. Let that be a lesson to yal!! When
you realize that I had to reboot after most every test
try, you see that the troubleshooting session got rather
frustrating. I get smart slowly.

Located elsewhere herein, is a table showing how
the word SORT$ works in detail. If you study this and
understand it, you will also understand CSTR$, you may
then start wearing your ADVANCED BEGINNER IN FORTH Badge.

When SORT$ is used in the word TST (TeST), Screen
#53, a test is made only to see if the flag left by
SORT$ is greater than zero, meaning the string at adrl
is greater than the string at adr2. If so the word REV
is executed and the strings are exchanged and FLAG is
set to l. TST is used in a loop named SF1 (SortFile 1)
which is in turn used in another loop called SF
(SortFile). The successive application of TST and REV
eventually sorts the strings into alphabetical order.
When a test of FLAG by SF shows that there have been no
string REVersals in the last pass through SF1, the loop
is exited and the words PF (PrintFile) prints the sorted
file and .END (PrintEnd) notifies you that it is sorted.
The sorting time is only a couple of winks.

Screen #54 1is not really part of the essentials,
and you may skip it if you like but you will miss all
the fun. Tt is set up to allow you to watch the "bubble
sort" process. Actually, when you are watching it looks
more like a "settling" process with the heavy strings,
like ZIGGY, sinking to the bottom. The words DS
(DisplaySort), DSL (DisplaySortLoop), and T (Test) have
been embellished from that on Screen #53 to label what
is going on and delays have been inserted to slow it
down enough to follow.

Please do not procrastinate. Enter these screens
and watch how SORT$ works, it 1is certainly an
educational process.

SORT$ And How It Works

The definition of the sorting word SORT$ is,

: SORT$ (adrl adr2 cnt--) 2DUP + ROT DO DROP 1+
DUP 1- C@ I C@ - DUP IF DUP ABS / LEAVE ENDIF LOOP SWAP
DROP ;

Assuming that address #1 (adrl), address #2 (adr2)
and the count of characters to compare (u), are on the
stack at the time of execution of SORT$, the Table below
shows what will be on the stack following the execution
of each component word of SORT$.

TABLE 1
SORT$ ANALYSIS

WORD STACK CONTENTS

SORT$ adrl adr2 u

2DUP adrl adr2 u adr2 u
+ adrl adr2 u (adr2+u)
ROT adrl u (adr24u) adr2
DO adrl u (or £ later)

[adr2+u and adr2 become the loop limit and starting
index value]

DROP adrl

1+ adrl+l (set = Z)
DUP Z&

1- Z adrl

C Z bl [bl=ch at adrl]
I Z bl adr2 [note 1]
C Z bl b2 [see bl]
- Z i [note 2]
DUP Zff

IF Zf

[If pl1<>b2 is true, execution goes to the word
following IF else, to the word following THEN]

DUP Zff
ABS Z f ABS(f) [note 3]
/ Z (£/ABS(f))[note 4]

LEAVE [loop limit set = I]
THEN [marks end of IF seq]

[If bl<>b2 this is the result]
LOOP Z (+/-1) [leave loop]
SWAP {(+/-1) Z

DROP (+/-1) [true flag]

continued on page 17

(Page 21

TIsHUG NEWS DIGEST

June 1992)

