

Clearing [House BIBS

by Jim Peterson, Tigercub Software, USA

At the Lima Multi-User Group Conference in 1990,
the problem of dissemination of TI information was
discussed. It has always been the custom for user
groups to exchange newsletters, and to reprint articles
from each others newsletters. With decreasing
membership, it was becoming too expensive for some
groups to maintain this exchange. Others were mailing
them in bulk every few months, which delayed receipt of
new information.

It was therefore decided to establish a Clearing
House BBS, to which text articles could be uploaded and
downloaded for rapid circulation. Irwin Hott, SYSOP of
the Spirit of 99 BBS of the Central Ohio 99'ers, agreed
to be the SYSOP, and the Central Ohio 09%'ers assumed
responsibility for establishing the BBS.

It was necessary to add a hard drive and other
equipment to the existing BBS, in order to receive this

large volume of files. To defray the cost, it was
decided to charge participating user groups §$30 for
initial membership, and a Jlesser fee to defray
maintenance costs in future.

The following user groups and individuals

contributed- Lima 99/4A Group, Twin TIers User Group,
Blue Grass 99/4 Computer Society, Tigercub Software,
Atlanta 99/4A Computer Users Group, Philadelphia Area TI
Users Group, Sacramento TI Modem Users Group, E. L.
Edwards, Great Lakes Computer Group Inc., NEWJUG 9%ers
Group, Boston Computer Society TI 99/4A User Group,
L-Town 99/4A User Group, S. Jean Hall, Cedar Valley TI
User Group, and C.0.N.N.I. Of these, the Lima User
Group contributed $200 and S. Jean Hall, C.O.N.N.I.
and Tigercub Software each contributed $100.

unreliable

Because of Myarc's support, we were

reluctant to purchase their hard drive controller. The
ESD corporation had announced a new hard drive
controller to be soon available. We waited for it- and

waited, and waited.

Finally in November of 1991 the Clearing House went
into operation, with a MYARC HFDC loaned by Chuck
Grimes. Irwin Hott, Chuck Grimes, Karl Romstedt, Ken
Marshall and Dick Beery donated much time in getting the
drive installed and operating, and in modifying Irwin's
already highly-modified TIBBS to work with a hard drive.

Unfortunately, there were still further delays in
announcing and publicizing the opening of the Clearing
House, and it has still not been well publicized.
However, a large number of articles have been uploaded
and are available for downloading by those who have
subscribed by becoming associate members of C.0.N.N.I.
The Lima Users Group alone has contributed about 125
files, including Charles Good's articles about many rare
and unreleased peripherals and software, Andy Frueh's
software reviews, etc. The Bluegrass User Group has

contributed about 15 articles by Mark Schafer, Steve
Burns, and others, and recent articles from the
C.O0.N.N.I. newsletter are also on file.

I have uploaded all 67 of my Tips From The
Tigercub, wupdated and edited and with obsolete
advertising removed. I have also uploaded about 40
other articles I have written— Extended Basic

programming tutorials, product reviews, TI world news,

commentary, etc.

Additionally, I have uploaded many excellent
articles from foreign newsletters which have not been
widely distributed in this country. These include 26

contributions from the Brisbane User Group in Australia,
written by Col and Garry Christensen, many of which
would be of great interest to assembly programmers;
several articles by Jan Alexandersson, from the Swedish
newsletter (but written in English!) on assembly
programming and the hidden commands in the PRK and
Statistics modules, etc. and about 25 articles from the

TI*MES of England,
subjects.

mostly by Stephen Shaw, on many

I have alsc uploaded numerous files from disks
supplied to me in the past by the now- defunct Central
Westchesters and by the K.C. 9%ers, and another 37
files written by a prolific author, Jim Swedlow, for the
User Group of Orange County newsletter,

And I have a stack of about 30 other disks full of
articles which I will check, catalogue, archive and
upload if T see any evidence that the board is getting
enough use to justify the considerable time that it will
take me to do so. All files in the Clearing House are
archived to cut down on downloading time. Irwin is
preparing a condensed catalogue of file descriptions for
each library, which will alsoc be archived and can be
quickly downloaded for reference, rather than wasting
leng distance time in browsing through file
descriptions.

User groups which have not joined the Clearing
House are urged to consider doing so. Any individual TI
user who would like access to this great collection of
information is also welcome to join, for the same $30
fee.

And anyone at all is welcome to browse through the
clearing House and see what we have to offer, although
you will not be able to download if you have not joined
us., Call the Spirit of 99 BBS at (614) 263-3412 and at
the main menu enter O for other.

And finally, the board will gladly accept uploads
of text files from anyone, and anyone who writes an
article for a TI newsletter is urged to upload a copy %?
us.

continued from page 7

must be opened before printing takes place and the file
should be closed when all printing has been completed.
Some program |ines to test the printer are:—

100 OPEN #1:"PIO"

110 FOR I=1 TO 10

120 PRINT #1:"THIS NUMBER 18";I
130 NEXT I

140 CLOSE #1

Connecting Peripherals

A TI Speech Synthesiser can be plugged into the 1/0
extension on the side of the CADET for those games and
programs that support speech.

A Peripheral Expansion Box can also be connected to

the I/0 extension of the CADET. Files stored in RAM1
and RAM2 can then be archived to disk for permanent
storage.

A Horizon RAMdisk can alternatively b gttached

through an interface card available separately.

When connecting a
Expansion Box to the

RAMdisk or the
CADET,

Peripheral
two precautions are

necessary. Firstly, as the CRU address of the CADET is
fixed at >1000, any card having the same CRU address
should be changed wusing its built-in dip switches.
Secondly, the 32K memory expansion card must be removed

from the PEBox. Although the 32K memory expansion in
the CADET and the 32K card in the PEBox can co-exist
peaceably, there will be a clash when RAM1 or RAM2 are
accessed as these devices are paged in onto the normal
32K being used by the external memory expansion.

Finally

) The computer can be switched off at any time while
in the Editor, the Formatter, the Games Loader or the

games themselves with no ill effects. BUT when using
the Editor, be careful to save any document you have
created onto one of the RAM devices first if it will be

required for later use.

(September 1992

TIsHUG NEWS DIGEST

Page 2)

TLsiUWE Software somz/eny 4 Disan o
SORT2/P3 4 PROGRAM 657
T SORT2/P3DV 4 DIS/VAR 80
Colummn by Rolf Schreiber SORT2A 2 DIS/VAR 80
SORT3P 5 PROGRAM 780
Software Releases for September SORT3P/DV 5 DIS/VAR 80
SORT3P1 4 PROGRAM 556
DISK A495 is the second disk in Earl Raguse’s collection SORT3P2 4 PROGRAM 686
of miscellaneous Extended BASIC programs. The disk SORT3P2/DV 4 DIS/VAR 80
is 8SSD and the programs on the disk run to three SORT4 25 DIS/VAR 80
pages on the menu. SORT4/P1 4 PROGRAM 603
SORT4/P1DV 4 DIS/VAR 80
Disk Directory page 1 SORT4/P2 5 PROGRAM 989
SORTS 17 DIS/VAR 80
A QUIT SORT5/P1 5 PROGRAM 958
B PRINT ASCII CHAR SORTS/P1DV 6 DIS/VAR 80
C CHANGE PRINT FONT SORT5/P2 6 PROGRAM 1033
D SET PRINT MARGINS . SORTS/P2DV 8 DIS/VAR 80
E SET LINE FEED SORTS/P3 5 PROGRAM 975
F MAKE BAR GRAPH SORT5/P3DV B DIS/VAR 80
G BELL TONES SORT5/P4 5 PROGRAM 1006
H SPRITE DEMO SORT5/P4DV 6 DIS/VAR 80
I TALKING TYPE SORT8 54 DIS/VAR 80
J CUSTOMIZE THE CURSOR SORT6/P1 10 PROGRAM 2158
K UPSIDE DOWN! SORTB/P1DV 11 DIS/VAR 80
L MY SECRET LOVE SORTB/P2 11 PROGRAM 2544
M LOW SOUND TEST SORT8/P2DV 13 DIS/VAR 80
N TWINKLE LITTLE STAR 80RTB/P3 10 PROGRAM 2210
SORTB/P3DV 11 DIS/VAR 80
Disk Directory page 2 SORT6/P4 12 PROGRAM 2693
SORT6/P4DV 13 DIS/VAR 80
A INVERSE VIDEO SUPERTRACE 24 PROGRAM 5715
B LINE TYPER
C MAKE LABELS DISK A506 is a memory manager for the TIS9/4A, with many
D WIPER DEMO powerful features. The program was written by Chris
E PAKDEMO Winter, a programmer from Germany.
F JUSTIFY DECIMALS
G WHITE ON BLUE A508 Diskname: MEMCRY MGR Format: SSSD
H THIS WONT WORK
I TAKE ME TO BALL GAME Filename Size Type / Length
J CATALOG DISK ———————— —mmm e
K PRINT QUOTE STRINGS MM 33 PROGRAM 8192
L RS232 FILE TRANSMIT MM-EPROG 32 PROGRAM 7708
M FILE TEST NOTE MM-PAR 2 PROGRAM 188
N DISPLAY NOTE MM-SOUND 11 PROGRAM 2456
MM-UPDATE 25 DIS/VAR 80
Disk Directory page 3 MN 33 PROGRAM 8192
MO 6 PROGRAM 1274
A BASS NOTES
B LOW SOUNDS DISK A507 is all about implanting assembly language
C BICYCLE BUILT FOR 2 programs into runnabie Extended BASIC programs. The
D SOUND TEST DEMO disk was compiled by George Meldrum, who pioneered
E PRINT IN 2 COLUMNS this procedure many years ago. Once AL (assembly
F A POCKET CANON language) programs have been implanted in this way,
G HORIZON DEMO they can be loaded into the computer from either disk
H SCREEN WIPERS or cassette, using only "OLD DSK1.filename" or
I WAVES AND BIRDS “OLD CS1".
J SPRITE DEMO
K XB LISTING FORMAT A507 Diskname: IMPLANTING Format: SSSD
L PLAY FUNNY NIM
M NOISE DEMO Filename Size Type / Length
N WORMY STUFF mm————— By e
—README 13 DIS/VAR 80
DISK A505 contains all the program and text files to BIG/SOURCE 11 DIS/VAR 80
accompany the series of tutorials on sorting, by Ron BIGFOOT1XB 44 PROGRAM 10955
Brubaker, that we ran in the TND earlier this year. BIGFOOT2XB 43 PROGRAM 10718
CENTIPEDE 32 PROGRAM 7874
A5056 Diskname: SORTING Format: DSSD DEBUG 19 PROGRAM 4584
DEBUG/MAN 44 DIS/VAR 80
Filename Size Type / Length DEBUGX 67 DIS/FIX 80
SRlien R Eeinereme— SAVEMM 13 DIS/FIX 80
BUBPOINT 4 PROGRAM 720 SOURCE 8 DIS/VAR 80
SHAHZSORT 12 PROGRAM 2787
SHPRINTS&D 13 PROGRAM 2837 DISK A508 is called Introduction to the UCSD p-System
SORT /1 23 DIS/VAR 80 and was written by Ron Williams of the Boston
SORT/2 25 DIS/VAR 80 Computer Society. The disk is a hybrid, containing
SORT/3 39 DIS/VAR 80 both text files suitable for viewing with TI-Writer,
SORT1 2 PROGRAM 214 and information which is accessible by the p-Code
SORT1/P1 2 DIS/VAR 183 system. Topics inciude the UCSD p-Code editor,
SORT1A 2 DIS/VAR 80 _ p—System file management, and ucsD Pascal
SORT2 2 PROGRAM 190 programming. This disk should be useful to anyone
SORT2/P1 3 PROGRAM 447 using the p—Code card on their TI99/4A, or attempting
SORT2/P1DV 4 DIS/VAR 80 to program in Pascal.
SORT2/P2 4 PROGRAM 621 continued on page 4

(Page 3 TIsHUG NEWS DIGEST September 1992)

continued from page 3
A508 Diskname: BOOKLET Format: SSSD
Filename Size Type / Length

Tﬂ:@%@@ SBD@[F) with Percy Harrison ;;E;EQE_ T BES;;RE_“E;

4
NBOQT 1 2 PROGRAM 238
Hi! Well the response for coloured monitors was so NBOOT2 2 PROGRAM 32
overwhelming that we have now completely sold out of NOBOOT1/S 3 DIS/VAR 80
them. Unfortunately the source for these has now dried NOBQQT2/0 3 DIS/FIX 80
up and no further coloured menitors will be available NOBOOT2/S 12 DIS/VAR 80
through the shop so tc those members who have missed out P1 11 DIS/VAR 80
I offer our apologies. The feedback from those members P10 23 DIS/VAR 80
who purchased monitors from us has been to confirm that P11 16 DIS/VAR 80
they are exceedingly pleased with the quality and P12 16 DIS/VAR 80
performance of the units and to date, touch wood, there P13 25 DIS/VAR 80
have been no adverse complaints. P14 12 DIS/VAR 80
P2 18 DIS/VAR 80
For those members who did not get along to the July P3 14 DIS/VAR 80
meeting the bad news is that we have not had any P4 16 DIS/VAR 80
response from Canada re the TIM/SOB Cards and so the P5 22 DIS/VAR 80
Directors have decided to ask for a refund of the monies PB 26 DIS/VAR 80
paid. Unless we can source an alternate supply or P7 26 DIS/VAR 80
another equivalent 80 column card this will mean that P8 26 DIS/VAR 80
the members who intended to use their colour monitor Pg 15 DIS/VAR 80
with the 80 column card will now have to purchase an PASCAL 54 DIS/FIX 128
interface card and kit to rum it on their TI 99/4A. At
present I have 7 only Interface Cards in stock and once Tigercub Reieases for September 1992

these are sold the price will increase from $12.00 to
$38.00 to cover the high production cost for a small TCC 10 is the tenth disk in Jim Peterson’s Tigercub

run. Note this is the cost price to the club and will Collection. The following programs are menu driven
not return us any profit. out of Extended BASIC.

The Faire committee is currently organizing a TI 1 8nerk
Club T - Shirt which we hope to have available for sale 2 Golden Sqguares
at our October meeting. It is estimated that the price 3 Dry Guich
of these will be in the order of $12.00 to $15.00 each 4 Plain of Jewels
and will be available in three sizes: Small, Medium and 5 Midnight Trail
Large so an early indication from members as to their 6 Ranch War
requirements would be greatly appreciated in order that 7 Game of One or Two
we can better forecast the number of each size required. 8 Four in a Row

9 Golf

PRICE LIST. 10 Home Runs

——————————— 11 Isolation
12 JCL Squares
Club Software Disks.
DISK TC-830 is a collection of physics programs, which
should be of interest to high school students and
See Page 3 of the August TND plus following: teachers alike. The following programs can be
selected from the menu.

A475 Clubline 99 Vol 4 No.8 SSSD ...vvvunnnnns +e0:32.00
A476 Clubline 99 Vol 5 No.5 SSSD tvivireenennaenns $2.00 1 Science Friction
A404 XB #0 Money Money SSSD ..veivniiiiieniiaan- +..$2.00 2 Temp/Humidity Index
AS504 The Director SSSD R SRS SRR $2.00 3 Windchill Factor
TC820 Health and the Human Body SSSD$2.00 4 4-Stroke Engine Demo
TC860 Astronomy Disk #1 SSSD tvuevnn.n R $2.00 5 Jet Engine
TCCY9 Tigercub Collection #9 SSSD ...vsvvwaneressa.$2.00 6 Race into Physics
7 Water Tank Simulation
Hardware

DISK TC-850 is a collection of chemistry programs, which
AT Disk Control Card (DSDD Format) .eevevveveess $150.00 should also be of interest to high school teachers
5.25 Half Height Drive Double Sided$65.00 and students. The folliowing programs can be selected
R5232 Card for PE BoX civwesivssvaviirivivis +.+.$100.00 from the menu.
Modem Card (300Bd) for PE Box TR $60.00

1 Chemical Symbols
2 Table of Elements
Packaging and postage charges: 3 Grunge on Chemistry
4 Hydrogen
Surface Airmail 5 Laboratory Calculator
6 Peptide HPLC
1 to 2 Disks ————————— $1.90 1.90 7 Periodic Table
3 to 9 Disks ———————— $2.90 $3.60 8 Protein Predict
10 to 20 Disks ———-—— $3.90 $4.80 9 Chemistry Test
TI Artist Plus ——--——— $3,00 $3.70 10 Nuclear Chemistry
Display Master ———-—— $3.00 $3.70 11 GFW Calculator
TI Base ———=——m=mm --— $3.00 $3.70
TI Sort —————mm—me $3.00 $3.70 DISK TC-890 is a collection of programs designed to make
5.25 inch half-height a teacher’s job easier when it comes to working out
drive (1.25 Kg) —-————- refer to your local class marks, and grading students at exam time.
post office Extended BASIC is required, and allows for easy

selection of any program from the menu.

Bye for now.
1 Dritl
2 Easy Grader

continued on page 23

(September 1992 TISHUG NEWS DIGEST Page 4)

Techo THIN® with Geott Trot

MiniPE Systems

Bruce Boese bought a very neat system a few months
ago. It consists of a MiniPE system built into a
shallow box along with a power supply and 3.5 inch
floppy disk drive which fits under the console. There
is a ribbon cable connecting the I/0 connector of the
console to the MiniPE system. The MiniPE system
consists of 32K memory, RS232, PIO and a disk
control ler. Unfortunately, Bruce has had a lot of
trouble keeping the system running as he uses Extended
BASIC all the time and it was slowly becoming harder to
get Extended BASIC to start correctly. At the last
meeting we had a look at it, as it was mis-behaving
regulariy enough to try and find out what the problem
was.

The system worked well
plugged in, including the peripheral test

with any other cartridge
module and

Disk Manager 2 which allowed the disk drive to be
tested. It also did not matter which Extended BASIC
cartridge was used. It seemed to me that the problem

had to be because of the ROM in the Extended BASIC
cartridge and that it was being interfered with by some
other memory in the MiniPE system. The conly memory in
the system which is enabled all the time is the 32K RAM.

The other ROMs are only enabled when devices are used.
If we took the 32K chip out (it was in a socket),
Extended BASIC worked well. At this point [decided

that I needed to look at the signals around the 32K
memory to see if there were any not working fast enough.
I thought it must be that the RAM chip was putting data
on the bus at the same time as the ROM in the Extended
BASIC module.

When I had the system at home, I looked at all the
signals around the RAM and could not see any probliems.
Then I noticed that the OE(L) input into the RAM chip is
connected to OV. This means that whenever the chip is
selected, the output of the RAM is put on the bus. This
may be all right, but the processor puts out a signal,
DBIN(H), which the processor expects to be used to put
the data on the bus for it to read. That is, DBIN is a

timing signal to ensure that the bus traffic is
regulated correctly. Bruce’s system is a bit different
to most MIiniPE systems in that it is connected to the

conscle with a (short) length of ribbon cable, instead
of plugging directly into the console which may make its
timing more critical

With an intermitient problem |ike this one, I
thought it was worth adding an inverter and using
DBIN(L) to ensure that the OE(L) input to the chip was

asserted only when the processor determined that it

should be. Fortunately, that seemed to fix the problem,
at least as far as I was able to test. Extended BASIC
worked every time for me and all the other disk tests

worked well. I hope that Bruce also has no problem in
that area. There was a bit of a hitch with the 3.5 inch
drive, but that is another and a continuing problem with
those cheap drives.

So, I guess if you are having intermittent probiems
with Extended BASIC and a MiniPE system, you may well be
advised to ask to have this littie modification made
done to your MiniPE system. I will supply more details
upon request. o

The Communicantors

by Ross Mudie

Interested in the suggestion of a dinner on Saturday

night of the faire? See the Secretary's suggestion in
ALL NEWS file and tell Terry if you like the idea or
not. I am very much in favour of the proposal. SYSOP o

Treasurer's

by Geoff Trott

Report

Rolf and I have been working for the cilub for a
number of years in various capacities. Rolf has been
doing the layout of the TND since Shane gave it up,
Shane did this job (mainly by himself) for six years and
Roif wiil have exceeded that effort by the end of this
year. I think that he has done a marvellous job over
that time, setting and keeping a standard which has not
been approached by any other user group magazine. He
and Bob Montgomery did the first year while I was away
in 1987 and then Rolf and I did it on our own for a few
years until Bob Relyea volunteered to join the team some
years ago.

When we (from Wollongong) first started doing the
job, we had the feeling that the people running the club
did not trust us. Even with a few April Fool’s jokes, I
believe that we have always acted in a way to give the
members as much enjoyment out of their magazine as we
were able to. Fortunately, for the last few years, we
have had very good reiations with the directors, even
becoming directors ourselves.

Over the last two years both Rolf and I have been
finding that our work commitments have been making time
to do justice to the magazine harder to find. I am also
finding that I do not have time to do repairs as quickly
as I would like, nor the time to write articies on
software and hardware. As a result, Rolf and I have
decided that we will not be doing the magazine after
December 1992. We have informed our fellow directors of
this decision and so they may well be asking for
volunteers to take up this challenge.

Bob Relyea is still keen to do
the editing, so that one, or better two, people are
needed to produce the magazine. The steps that are
required start by taking the printed output generated by
Bob and 1laying it out into the basic form of the
magazine. Then this layout is sent to a printer for
copying and assembling. Finally, the finished magazines
are put into envelopes with mailing labels attached and
taken to the post office for mailing. There are about
180 magazines to be processed each month.

I understand that

$ 5756.65

$ 780,20

$204.55
o

Income for July
Payment for July
Excess of expenses over income for July

continued from page 19

START LWPI MYREG
CLR @>8375
MOV @VDP,R6
LI RO,>0400 LOAD (BASE ADDRESS OF SPRITE DESCRIPTOR TABLE)
LI Ri,HELT SPRITE
LI RZ,32 DESCRIPTOR
BLWP @WMBW TABLE

KEYBOARD DEVICE = O. SCAN ALL.

LI RO,>0300 LOAD (BASE ADDRESS OF SPRITE ATTRIBUTE TABLE)
LI R1,SDATA SPRITE
LI R2,6 ATTRIBUTE

BLWP @VMBW TABLE

LI RO,>0780 LOAD (BASE ADDRESS OF SPRITE MOTION TABLE)
LI R1,SPEED SPRITE
LI R2,4 MOTION

BLWP @VMBW TABLE

LI R1,>0100
MOVB R1,@>837A ONE SPRITE IN MOTION
LOOP CLR @STATUS

BLWP @KSCAN

MOVB @STATUS,@STATUS HAS KEY BEEN PRESSED?

LIMI 2 ENABLE INTERRUPTS FOR AUTO MOTION
LIMI O DISABLE INTERRUPTS SO VDP IS NOT AFFECTED ON READ/WR
JEG LoOP

*
CHECK INC R6 R6 IS USED AS A COUNTER TO KEEP

CI R6,>01E4 TRACK OF WHICH MAGNIFICATION
JLT GO LEVEL (1 TO 4) WE ARE ON.
MOV @VDP,RG

LOAD RO WITH DATA TO LOAD INTO VDP R1
CHANGE THE VDP REGISTER

GO MOV R6,RO
BLWP EVWTR
B €LooP
END

* For extra practice add a routine that shows the X
and Y position of the SPRITE on the screen as it moves.
HINT: Y 1location is lst byte in sprite attribute list.
X is the 2nd byte. Reud them, convert to ASTIT decimal
and redisplay with apprupriate text. Who will be First?

(Page D

TisHUG NEWS DIGEST

September 1992)

[file [Protocol

by Mark Schafer, USA

This article is way too late. About 10 years too
late. Texas Instruments should have read this article
before they made TI Writer! They are using the wrong
file format, and you probably are, too.

Let's look at how files are stored on disk. No, I
am not going to get technical and tell you how you can
use sector editors to look at and/or change things in a
file. This will be a general approach. First, you
should be aware that disks are divided into sectors.
Catalogue programs usually tell you how many of those
you have free on a disk. One whole sector is used for
each file to tell the computer everything it needs to
know about it before it tries to read or write to it
(the header sector). But I am not going to focus on
that, either. I am looking at the part of the disk on
which the content of the file is stored.

Now how many file formats are there? Only counting
the ones Extended Basic can manipulate on its own, there
are four:

Internal/Variable, Internal/Fixed,
Display/Variable, and Display/Fixed.
With any of these file types the computer never
splits a record between two sectors. If there is not

sector to store the next
next sector. This is

enough room on the current
record, it will start it on the
key to my discussion here.

Starting with variable-length files, the maximum
number of characters you can get in one record is 254
(253 in internal in BASIC). There are 256 characters in
each sector. As a8 quick technical excursion, the
computer uses the other two characters as a length byte
and an end-of-record marker (why it needs both is beyond
me). Anyway, you can optionally specify the maximum
record length when you open a file (in any language;
that is the beauty about this article: it applies to ALL
programming languages.) TI Writer files, for instance,
are in DIS/VAR 80 format, so they are limited to 80
characters per record.

Get ready because here comes one of my key points!
Why 1limit the record length to 80 characters when you
can have 2547 Well, you might say it takes up less disk

space. Wrong! Each record in a variable-length file
takes up only as many bytes as it needs to. In other
words, if you changed every DIS/VAR 80 file to DIS/VAR

254, nothing would change. It would still take up the
same amount of space and take the same amount of time to
load. Do not do that because TI Writer will not be able
to read them.

So, you might say, why reserve space for each
record you will never use? After all, TI Writer only
puts 80 or fewer characters in each record; even if the
format were DIS/VAR 254, the extra characters would
probably never be used. The point is there is no reason
not to. If they had done it this way, DIS/VAR 254 would
be the standard that DIS/VAR 80 has become. Then all
programs that used DIS/VAR files would be able to read
each other's files, although, they may not be able to
make sense out of them, but at least the option would be
available.

So if you use DIS/VAR or INT/VAR, you should only
use 254. The only reason not to now is to maintain
compatibility with other programs. And that is
unfortunate because that is a good reason. That is what
I mean about being too late. Oh, well, if compatibility
is not dimportant for a particular program you are
working on, then go with 254, This will give you the
ability to add more characters to the record should it
prove necessary later on without having to change the
record length.

Yes, I am also going to attack fixed-length
files. Now the maximum is 255 characters (254 in
internal in BASIC). The length byte and the
end-of-record byte are not needed since all records are
the same length. And since that is the case, the number
of records in each sector is fixed. So in most cases,
there will be unused bytes in every sector. We need to
try to reduce the number of unused bytes without taking
up more sectors.

record

Obviously, FIXED 255 does not work because you
would only get 1 record per sector no matter how small,
I will just give this one to you and tell you the reason
afterwards. Take 256 and divide it by the number of
bytes you plan to have in each record, and drop the
decimal. Then take this number and divide it into 256,
and drop the decimal again. This is what you should fix
the length at. For those of you who are not
mathematically inclined, let me give you a list of
numbers: 1 through 19, 21, 23, 25, 28, 32, 36, 42, 51,
64, 85, 128, and 256. You cannot use 256 since the
computer cannot represent that number in a single byte,
so you have to use 255 instead. If the length you want
to fix is not on the list, move up to the next higher
number that is. So if you want to use INT/FIX 43, 43 is
not on the list, so you would use INT/FIX 51 instead.

Let me explain. You see with 43 bytes per record,
you would get 5 records per sector on the disk. That
would amount to wasting 41 bytes per sector (trust me).
If you use 51 instead, you still get 5 records per
sector but only waste 1 byte per sector. Same argument
as above against "...but I am reserving more space than
I need." You will have the ability to add more
characters later on without taking up more space or
changing your file format. This will not work out every
time; you may have to change the file format some time,
but there is no reason to use 43 when 51 costs you no
more disk space. The same argument applies to every
number not on the list.

This is very important for the numbers between 128
and 255. If you use anything in that range, you will
only get 1 record per sector. As an alternative to
using 255, you might look for a way to reduce the number
of characters in each record especially if you are only
a little over 128. If you can get it down to 128, you
will not believe the space you will save! Suddenly, you
will get two records per sector taking only about half
the space!

This rule also applies to variable-length record
files. As a case in point, I had a program which used a
variable-length record file with 64 records. I put so
much space in each record, that the file took up the
full 65 sectors (one more for the header sector). So I
split it into two files, so I could get more records per
sector. On one file I get two records per sector; I get
three on the other, so the two files combined now take
up only 48 sectors! If I had read this article before,
they would both be INT/VAR 254 files. So remember even
variable files can benefit from the number list given
above. If you can lower the MAXIMUM number of
characters per record in files with consistently long
records, you can save serious disk space. But you would
still use VARIABLE 254,

In fixed-length records, the most efficient numbers
are the powers of 2 (128, 64, 32, etc.) because they use
every byte of a sector. This is why archived files are
in INT/FIX 128 format. It wastes no space in the fewest
reads.

Whereas all the above applies to any language, in
assembly language you have the option of using PROGRAM
files which use every byte up to the last sector, and
are therefore the most efficient (not to mention quicker
load time). So in assembly language, you might want to

think about this format for program-specific files.
This is the way fractals are stored in FRACTAL EXPLORER.
3]

(September 1992

TiIsHUG NEWS DIGEST

Page 6)

CADET Console Expansion

by Col Christensen, Brisbane

The CADET is a low cost system of expanding an
unexpanded, cassette only TI-89/4A into both a word
processor, complete with printer port, and an assembly
games machine. These are the two main functions for a
computer in the home.

The CADET is guaranteed for 12 months from the date
of purchase against manufacturing defects but not
against physical or other misuse by the owner .
Defective wunits must be forwarded to Colin Christensen,
17 Centaur Street, Redcliffe, Queensland 4020, phone
(07)284-7783 and repairs will be effected as soon as
possible.

The back-up battery should iast for three years or
more. It is an inexpensive i{ithium type commonly used
in smali calculators and available from electronics
component stockists or from some chemists.

Getting Started

The CADET plugs into the I/O port on the right side
of the TI-99/4A so that the printer port of the CADET
faces the rear of the computer. The console must be
switched off while connecting or disconnecting the
CADET. The CADET should not be used on a console with
built-in 32K memory expansion.

When the computer is switched on, the normal coiour
bar screen and then the selection screen show on the
screen. If a moduie has been inserted in the module
port, the selection screen will give more than one
choice. e.g.

1. TI BASIC
2. (Name of the module)

The inbuilt software s
CALLS typed in when in the
computer environment.

invoked through system
BASIC or EXTENDED BASIC

CALL wp

To load the Word Processor, type the command, CALL
WP, then press the ENTER key. This part of the word
processor is referred to as the Editor and is basically
the original version of the TI-Writer editor. This

version is not quite as versatile as the Funnelweb
Editor used more wuniversally today but ROM space
limitations forced the use of the shorter, original TI
program.

You will need a copy of the TI-Writer User’s Manual
as a guide to the use of the word processor or,
alternatively, I have available printed copies of a
tutorial on its use. I will supply on request a free
copy to each purchaser of a CADET or they can be
purchased at $5 per copy posted.

By using the TI-Writer command SaveFile (SF), text

files created can be saved to two device names on the
CADET. The larger, RAMI, has a capacity of 24K bytes.
It will store up to 5 full pages of close typed text,

being about the full capacity of the TI-Writer text
buffer. The devicename, RAM2, has 8K bytes of memory,
sufficient for the average sized letter.

Both RAM| and RAM2 devices are housed in a battery
backed memory chip and their contents remain intact even
while the computer is switched off or the CADET remains

idle. Files can be loaded into the computer memory text
buffer from either of the devicenames using the
TI-Writer command LoadFile (LF) and entering the

appropriate devicename. A text file stored on RAM1 or
RAMZ2 cannot be deleted in the normai TI-Writer way. If
a new text file is saved to that devicename, the old
flags and pointers are overwritten and the old file will
not be accessible any more.

CALL FO

For the Text Formatter, type the command, CALL FO

then press the ENTER key. This call loads from the ROM
(Read Only Memory) a copy of the original TI text
formatter with a few modifications to effect
improvement. One is the elimination of the page form
feed at the beginning of printing and the other reduces
the blank lines printed at the top of each page from
three to one.

The formatter program is also |loaded automatically
when exiting from the Editor. Pressing "Q" to quit,
then "E" to exit, will bring up the Formatter option
screen. The QUIT key (FCTN[=]) which was disabled when
in the Editor is now active and can cause a computer
reset if pressed a few times. The only way of QUITting
from the Editor is through the Formatter.

CALL GL

For the Games Loader, type the command, CALL GL
from one of the BASIC environments then press the ENTER
key. A few screen prompts serve as a guide to use of
the tape recorder. Each games program is stored on tape
as a group of files consisting of from one to five
files. If a number of programs have been recorded
sequentially on tape, the beginning of each program is
indicted by a period of silence. There is no period of
silence between each file in a program.

For those with disk drives, the disk supplied with
the CADET contains this document as a text file and also
the program, TAPEITSAV. This program allows you to save
assembly games to tape in a form suitable for use by the
Games Loader. Only assembiy programs that normally run
in the Editor/Assembler option 5 environment or
Funnelweb option 3 (RUN PROGRAM) are suitable. Some of
these programs are copyright and some may be freeware.
Use them only if you have paid for the original
copyright programs or, out of conscience, have
contributed to the freeware author.

Printing

In BASIC or Extended BASIC, output can be directed
to the printer port using normal programming code. Only
DISPLAY/VARIABLE type records can be sent to the
printer, though, which covers 99% of normal needs. This
includes listing programs in one of the BASICS to the
printer.

The printer port responds to the print devicenames
of PIO or PIO.LF or PIO.CR. It is capable of data
output only, no provision being made for data input.
From the Editor, the PrintFile command should use the
devicename PIO while the Formatter needs to use in
almost all cases the devicename PIO.LF. If this name
does not drive the printer correctly, try PIO.CR.

The printer cable is usually made of a 16 way flat
ribbon up to about one and a half metres long with the
following plug connections at either end. The CADET PIO
port needs a 16 pin IDC plug and the printer requires a
36 pin Centronics connector.

CADET Printer
1 Strobe OUT 1
2 Data 2
3 Data 3
4 Data 4
5 Data 5
8 Data 6
7 Data 7
8 Data 8
9 Data 9

10 Busy IN 11

11 GND 20

12 +5v through 10 ohms
13 Spare

14 Spare

156 +5v through 1K ohms
18 Gnd 20

Te print from BASIC or Extended BASIC, normal file
programming commands are used. A file to the printer
continued on page 2

(Page ‘7

TilsHUG NEWS DIGEST

September 1992)

CADET Console Expansion Schematic

V8
L =~ 0O o T v [u..Tl -
1 U 0
FTTTTTT T 3 I
o Y L L (O B S ' ' |
{ — Ll - -
._4 m Lol oF _ h _ _ _ [] ﬂ
] o+ U7 A Pa [R0 > T Y O ‘
= o = G G] [A e A R
[]
o T - —- N E
=i O | R] b}
0 s} s - =
DRSS oy == | - DAl 5 U c
: SEal 1o { T T L T . ﬁu =
R = tiH o + =
- - - e i
o - =1 3 e A AT T
o e ™ — oM o
. Al o LAl ot o S S .|..v.u. UM O
S o, W _.‘.m
. —T— =T =t
4 — ot _ f e
- - - — . WwET T
: 0 G -
o < = o= O
= b T e L] E+E
. U7 Ed " -+] FEHococh
_ " - T Ll e e
o+ . e ME rdmasn
gp o] L il =) Oz bl
o] —] —te iy} - -
T | o ; = | s (L B
: R I A D
WE - ﬂ.ﬂ_ il
— Iplm} “ b
C @ Ewn =il T
woros Moo HILIL ETE QI
L A S] ﬁ Wi KO =
HeA A PR AR R R A, W)
9 o] — o 0 -
- i Fa
I A L
oo ™ [
LR] =G o
=
0 T
wd 4
-+ [S R
[~ T T T
T I
|
G W i W PO AT B =B - R Cof 0 P 40 o 40 H L
IEEEE MO m oo o 1_ _2111_ _1111
e LI L1 I W O I e ST I [1111
DI T T B | 18] [V B TR o f TS AT M = uw M = O &8 W [T sk o]
vt L = e e e f e - T T Z = I 0= Q0T e v et ettt
FCOTTTW =~ ~ 0O [l = ot (LT} OO T TTCT
B vy i v E
|] - I

Page 8)

TisHUG NEWS DIGEST

(September 1992

Algorithm Design
by Garry Christensen, Brisbane
We will start with a definition:

ALGORITHM - a systematic procedure for
problem or accomplishing some end.

solving a

Programming some tasks on the computer is easy.
Many short programmes can be written quickly and with
little fore-thought. This is not always the case. The
more complicated the problem, the more involved the
solution. There comes a stage when the programmer must
sit down and work ocut both how he will approach the
problem and how the programme will work.

An ALGORITHM is wusually the result of this work.
The algerithm is probably the most important part of any
programme yet it is so often ignored.

Once the algorithm has been written, the programme
is much easier to write and frequently will have fewer
bugs. That does not mean that algorithms only apply to
computing. An algorithm can apply to any situation
where a result is required. Consider the algorithm for
finding the partner of your dreams using a dating
service:

Send money.

Wait for reply from dating service.
Contact date.

Go out with selected partner.

Repeat until suitable partner is found.

This process is far from perfect as you may go
broke before getting married but the algorithm still
exists.

The first part of algorithm design is the analysis
of the problem. In simple cases, the answer is obvious
but sometimes it may require some thought to determine
the solution. Consider also that the solution may not
be unique. There may be other ways of doing the same
thing. Before even touching the keyboard, try to
determine that the method you have chosen is the best.

The second part is to determine the steps that will
lead to the solution. This part involves a method
called top-down development or step wise refinement.

Start with the steps written in very broad terms
(generally using English) then refine each step into a
series of more detailed steps. Each of these steps can
then be further refined, and so on until the steps are
close enough to the programming language to allow easy
conversion. Do not start to write programme code in
your algorithm until the very last step.

Let's consider the algorithm necessary to instruct
a robot to make a cup of coffee. The solution is simple
so lets define it in broad terms.

1 Boil the water.
2 Put coffee in the cup.
3 Put water in the cup.

obviously to cemplex for a robot
they need

These steps are
that has no experience in the human world so
to be defined further.

1 Boil the water.
1.1 Fill the kettle.
Plug in the power.
Turn on the power.
Wait until the water has boiled.
Turn off the power.

e
n ~om

Refine the steps still further.

1 Boil the water.
1.1 Fill the kettle.

1.1.2 Turn on the tap.
1.1.3 Wait until the kettle is full.
1.1.4 Turn off the tap.

Continue through all the steps using this method
until a full list of detailed instructions is produced.

As you can see, this is an easier
with detailed

way to end up
instructions than simply starting at the

top and working straight through. This method of
refinement can continue until the instructions are
something that the robot can perform. These are called

primative operations., In computer programming, the
primative operations are the statements that make up the
language.

There are two types of traps that I should point
out at this stage. The first is called the "first catch
your rabbit bug'. We have so far assumed that there is
a kettle for the robot to use and that there is a tap
available. Nowhere have we told the robot to "find a
kettle" or "go to the tap".

The second trap is called the '"initial state of
things bug". What will the robot do if the water is
already turned on. When told to "turn on the tap" it
may screw it out of the wall.

The secret
following in mind:

to writing an algorithm is to keep the

1. Start at high levels (use English to

very broad steps).

express

2. Concentrate on refining one step at a time.

3. Do not start writing programme code until the
steps are approaching the 1level of the
programming statements.

Let's now work through a couple of examples.

I will use the selection of all the prime numbers
between 1 and 100 as an example. (A prime number cannot
be evenly divided by any number other than 1 and itself,
eg 7). Problem: How do I determine whether a number is
prime.

The simplest answer is to divide it by all the
numbers less than the number in question and see if any
produce a whole result. That is a valid method but not
very efficient.

If the number is 50, dividing it by any number
greater than 25 cannot produce a whole result (50/26 =
l.something). If the number is called N, we need only
divide by all the numbers up to N/2.

To test all the numbers from 1 to 100, we need to
test them all in this method. The algorithm development
follows:

1 Set Ntol

2 Is it prime?

3 If so then print it.

4 Add 1 to N

5 Go to step 2 if N is not greater that 100.

Steps 1, 4, and 5 are very close to a basic
statement so the next step of refinement will convert
them to code. The others need a little work.

1 FOR N=1 TO 100
2 Is N prime?
2.1 Set D to 2
2.2 Is N/D a whole number?
2.3 If so, go to step 4 (not prime).
2.4 If not, add 1 to D.
2,5 If D is less that half of N, then go to
step 2.2.
3 PRINT N (this step is jumped over if not prime).
4 NEXT N

Further refinement is not needed.

1 FOR N=1 TO 100
2 Is N prime?

1.1.1 Place kettle under tap.
(Page 9 TisHUG

NEWS DIGEST

September 199@

2.1 FOR D=2 TO N/2.
2.2 IF N/D=INT(N/D) THEN step 4
2.4 NEXT D

3 PRINT N

4 NEXT N

The programme:

100 FOR N=1 TO 100

110 FOR D=2 TO N/2

120 IF N/D=INT(N/D) THEN 150
130 NEXT D

140 PRINT N

150 NEXT N

While this algorithm demonstrates the best way to
build up an algorithm, it falls short in cne point. The
approach to the problem is not necessarily the best.
Stop reading here and try to find a more efficient way
to find prime numbers.

Did you think of one? Follow the next algorithm
through. You will notice that I have used indenting to
separate the levels of detail. If you want only a brief
outline, read the parts of the algorithm that are not
indented. The further indented, the more detailed.

REM This method sets up an array of flags for each
number between 1 and 100.
1 Initialize the array
1.1 Dimension array
1.2 Set array pointer to 1
1.3 Set array element to O
1.4 Increment the pointer
1.5 Repeat until pointer in greater than 100
2 Remove the non-prime numbers
2.1 Set N to 2
2.2 Remove all multiples of N up to 100
2.2.1 Set pointer to value of N.
2.2.2 Check that this value has not been
removed by a previous pass
.2.3 If it has then go to step 2.4
.2.4 Add N to value of pointer.
.2.5 Set array element to 1,
.2.6 Go to 2.2.4 and repeat until pointer
is greater than 100.
2.3 Increment N.
2.4 Repeat until N is greater that 50 (100/2)
3 Print the remaining numbers.
3.1 Set pointer to 1
3.2 Does the flag indicate that the number is
prime?
3 If not them go to step 3.5
.4 Print the value of the pointer.
5
6

M[\JI\)N

Increment the pointer.
Repeat until end of array.

The programme will look like this.

100 DIM FLAGS(100)

110 FOR I=1 TO 100

120 FLAGS(I)=0

130 NEXT I

140 FOR N=2 TO 50

150 IF FLAGS(N)=1 THEN 190
160 FOR I=2*N TO 100 STEP N
170 FLAGS(I)=1

180 NEXT I

190 NEXT N

200 FOR I=1 TO 100

210 TIF FLAGS(I)=1 THEN 240
220 PRINT I

230 NEXT I

As you can see, the algorithm is easy to follow and
you will have to believe me when I say that it made the
programming much easier. I tried it first without an
algorithm and the result was both longer and less
efficient.

It seems that the computer science proverb is
correct: 'The sooner you start coding, the longer it
will take to write a programme that is correct'.

To give you a bit of practice at algorithm design,
I have included several problems. Write algorithms for
the following problems. One way to check the answer is
to continue on and write the programme. You might try

to write the programme first, then solve it using
step-wise refinement. Compare the answers, Are they
the same?

1. Write an algorithm for placing a phone call,

2. Include in the algorithm for question 1 the
possibility of busy signal, no dial tone and no answer.

3. Write an algorithm to test if a string is a
palindrome. (A palindrome is a word or sentence that
reads the same forward as backward, ignoring the spaces.
eg RADAR or A MAN A PLAN A CANAL PANAMA)

4. Devise an algorithm for a programme that will
ask for numbers to be input until the value O is entered
then print the largest number that was input.

5. Write an algorithm for a programme that will

ask for a input of a single positive number then print
the number with the order of the digits reversed. eg.
13542 results in 24531. o

continued from page 20

CR #60

0 (FORTH TALK TEST 12/1/86 E RAGUSE) HEX

1 : TALK 4 0 DO 4 SRC DUP FOOO AND 4 SRL 4000 + 9400 ! LOOP

2 4000 9400 ! 5000 9400 ! DROP ; : T TALK ;

3+ SRT 351A T 1 WAIT 7875 T S56E T 767D T 6489 T 1A42 T 56B3 T ;
4 : NR 3793 T 1830 T 4AAB T 7D99 T S6B3 T ;

5 : WN7875T7A11 T 71BE T 1A42 T 57C1 T 26CB T ;

6 : DK 3793 T 2480 T 4AAB T 3C4F T 3850 T 3793 T 1CD9 T

7 2480 T 3A7A T ;

8 : IM 3793 T 1830 T 61C6 T 67B6 T 71BE T 556E T 4AAB T 7717 T ;
9 : G5 3793 T 327E T 3850 T 3793 T 473D T 3793 T 473D T ;

10 : HG 6153 T 34E5 T 767D T 2FFC T ;

11 : TI 6696 T 2D19 T 3432 T S6B3 T ;

12 : TK SRT 2 WAIT NR 2 WAIT WN 2 WAIT DK 2 WATT IM 2 WAIT

13 GS 2 WAIT HG 3 WAIT TI 1 WAIT CLS 10 8 AT ." CHARGE!!!" CH ;
14 : TLK CLS 6 9 AT ." ENTER <TALK> TO HEAR ME TALE" ;

15 : TALK TK ; DEC TLK QUIT

Until next time
HAPPY FORTH TALKING. ©

continued from page 14

For those of you with 32K and a disk drive,
Multiplan has more features, 99-CALC is worth getting
if for no other reason than to see what can be done with
the 4A's 16K of VDP RAM. 99-CALC is also much easier to
master.

HOW TO ORDER: Send a disk and postage paid, self
addressed return mailer to:

Phil Barnes
24631 Via San Fernando
Mission Viejo, CA 92692

Phil will send you a flippy back with some good
public domain software on the flip side.

If you write Phil for information, be sure and send
an self addressed, stamped envelope (SASE) if you want a
reply.

Phil asks for a donation of $10 if you 1like the
program. It is well worth it!

MISTAKES DO HAPPEN

The copy of SIDE*PRINT that T distributed at the
May UGOC meeting had a BUG in line 270. For those of
you who got a copy there, the error is:

270 GOSUB 420 :: IF E=90 THEN 240 ::
>70 AND E<>83 AND E<>84 THEN 270 ::
70)-2%(E=84)::

IF E<
C=—(E=
IF C THEN ON ERROR 520 :: O

PEN #@:P$:: DISPLAY AT(21,8):"Printing ";
A$(A):Y$: : ELSE CALL CLEAR :: PRINT AS(A): :
END NOTES

This is the last of the Extended Basic series.

(September 1992

TiIsHUG NEWS DIGEST

Page 1 @

Tips from the Tigercub #64

by Jim Peterson, Tigercub Software, USA

Back in the days of David Ahl's Creative Computing
magazine, when computers were too expensive for hardware
hacking and had memories too small to run much of a
program, the emphasis was on ''recreational computing",
and the British TI'ers carry on that tradition. A
recent issue of their excellent TI*MES newsletter had
this challenge - write a program to set up a circle of
any chosen number of objects; starting at one, count
them off by 10's, removing every 10th object. What are
the numbers of the last two left?

This is my solution. It is not the best one, but
it does show how strings can be used to perform maths.

100 INPUT "NUMBER?":N

110 FOR J=1 TO N :: N$=N$&CHR$(J):: NEXT J :: IF N<10
THEN 140

120 N$=SEG$(N$,11,255)&SEG$(N$,1,9):: IF LEN(N$)>9 THEN
120

140 FOR J=1 TO 10 :: N$=SEG$(N$,2,255)&SEG$(N$,1,1)::
NEXT J :: N$=SEG$(N$,1,LEN(N$)-1):: IF LEN(N$)>2
THEN S40

150 FOR J=1 TO 2 :: PRINT ASC(SEG$(N$,J,1)):: NEXT J

Which reminds me that I forgot to give you the
answer to that short CALL SOUND puzzler in Tips #62. A
CALL SOUND, even with a positive duration, will be
interrupted by a BEEP.

Here is a bit of nonsense I worked up from an idea
by Tim Brooks. Save this by SAVE DSK1,BUGS,MERGE .
Then when you get a chance, load one of your friend's
favourite programs, add this to it by MERGE DSK1.BUGS,
and in the middle of the program somewhere put a line
with CALL BUGS.

32000 !@P+

32001 SUB BUGS

32002 CALL CLEAR :: CALL CHARSET :: CALL DELSPRITE(ALL):
: CALL SOUND(225,220,0):: PRINT "*ERROR 4 IN LINE 150" :
: PRINT "#BUGS IN PROGRAM"

32003 CALL SCREEN(8):: FOR A=1 TO 500 :: NEXT A :: A$(1)
="997E3CFF3C7EBD99" :: A$(2)="DB3CBD7E3CFFBDY9" :: X=1 :
: CALL CHAR(96,A%(X))

32004 RANDOMIZE :: CALL MAGNIFY(2):: FOR T=1 TO 2 :: FOR
A=1 TO 20 :: X=X+1+(X=2)%2:: CALL CHAR(96,A$(X)):: FOR
D=1 TO 20 :: NEXT D

32005 CALL SPRITE(#4,96,2,195,240%RND,-5,0):: NEXT A ::
NEXT T :: CALL CLEAR :: CALL DELSPRITE(ALL):: SUBEND

Here is a puzzle game for you brainy types. I
worked it up from a game by Jack Sughrue -

100 ! PSYCHO by Jim Peterson

110 CALL CLEAR :: RANDOMIZE :: CALL SCREEN(2):: FOR S=1
TO 12 :: CALL COLOR(S,2,16):: NEXT S :: CALL VCHAR(1,31,
31,96):: CALL KEY(3,K,S)

120 RANDOMIZE :: Y$(1)="+" :: Y$(2)="-" :: Y$(3)="x" ::
¥$(4)="/"

130 CALL VCHAR(1,3,32,672):: D$="" :: Y(0),X=INT(10*RND+
5)

140 DISPLAY AT(2,11):"PSYCHO ":" Enter P(lus), (M)inus,

(T)imes or (D)ivided by"
150 FOR J=1 TO 4 :: Y(J)=INT(1O*RND+5):: Z(J-1)=INT(4*RN
D+1)
160 IF Z(J-1)=1 THEN X=X+Y(J):: GOTO 180 ELSE IF Z(J-1)=
2 THEN X=X-Y(J):: GOTO 180 ELSE IF Z(J-1)=3 THEN X=X*Y(J
):: GOTO 180
170 IF X/Y(J)=INT(X/Y(J))THEN X=X/Y(J)ELSE Z(J-1)=INT(3*
RND+1):: GOTO 160
180 NEXT J :: R=6 :: FOR J=0 TO 3 :: DISPLAY AT(R,12):Y(
J):: R=R+2 :: NEXT J :: DISPLAY AT(R,12):Y(4)
190 DISPLAY AT(R+1,12):" " :: DISPLAY AT(R+3,12):X
200 FOR J=0 TO 3 :: D$=D$&STRS(Y(J))&Y$(Z(J)):: NEXT J :
: D$=D$&STR$(Y(4))&"="&STR$(X):: FOR J=1 TO 4
210 ACCEPT AT(J*245,12)SIZE(1)VALIDATE("PMTD"):A$:: IF
A$="" THEN 210
220 ON POS(''PMTD",A$,1)GOSUB 270,280,290,300
230 DISPLAY AT(J*2+4,12):"" :: DISPLAY AT(J*2+6,12):Y(J)
240 NEXT J

250 IF Y{4)=X THEN DISPLAY AT(19,9):"RIGHT!" :: GOTO 260
ELSE DISPLAY AT(19,9):" WRONG! OFF BY";ABS(X-Y(£)):: D
ISPLAY AT(21,3):D$

260 DISPLAY AT(23,2):"PLAY AGAIN? Y/N" :: ACCEPT AT(23,1
8)SIZE(1)VALIDATE("YN"):Q$:: IF Q$="N" THEN CALL CLEAR
:: STOP ELSE 130

270 Y(J)=Y(J-1)+¥(J):: RETURN

280 Y(J)=Y(J-1)~Y{J):: RETURN

290 Y{J)=Y(J-1)*Y(J):: RETURN

300 Y{J)=Y(J-1)/Y(J):: RETURN

Someone uploaded the New Testament books of the
Bible to DElphi, probably ported over from IBM files.
They included a program to break them into individual
verses and another to display them on screen. Neither
program worked properly, so I wrote this one to do it
right.

100 CALL CLEAR :: CALL SCREEN(16)::
L COLOR(J,2,1):: NEXT J ::
" by Jim Peterson

110 DIM I$(127),L$(24)

120 DISPLAY AT(24,1):"DRIVE #7?" :: ACCEPT AT(24,10)VALID
ATE(DIGIT)SIZE(1)BEEP:DN:: CALL CLEAR :: ON WARNING NEXT
130 X=0 :: OPEN #1:"DSK"&STR$(DN)&"." ,INPUT ,RELATIVE,IN
TERNAL :: INPUT #1:N$,A,A,A

140 INPUT #1:F$,A,B,C :: IF LEN(F$)=0 THEN 160
150 IF C=80 AND ABS(A)=2 THEN X=X+1 :: I$(X)=F$::
AY AT(X+(X>23),1-(X>23)) :STR$(X);" ";I$(X):: GOTO
140 ELSE 140

160 DISPLAY AT(23,1):"Read file #" :: ACCEPT AT(23,12)VA
LIDATE(DIGIT):FL :: IF FL<1 OR FL»X THEN 160

170 CLOSE #1 :: OPEN #1:"DSK"&STR$(DN)&"."&I$(FL),INPUT
:: CALL CLEAR :: DISPLAY AT(3,1):"Press any key at the b
eep" :: X=0

180 LINPUT #1:M$

190 IF POS(SEG$(M$,1,5),":",1)=0 THEN 220

200 IF FLAG=0 THEN FLAG=1 ;::

GOTO 220

210 X$=M$:: GOTO 250

220 IF T$<>™"" THEN M$=T$&" "&M$:: T$="" :: GOSUB 320 EL
SE GOSUB 320

230 IF LEN(T$)>27 THEN M$=T$:: T$="" ::
TO 230

240 IF EOF(1)<>1 THEN 180
250 IF T$<>"" THEN X=X+1
260 CALL SOUND(1,500,8)
270 CALL KEY(0,K,S):: IF S=0 THEN 270

280 FOR J=1 TO X :: DISPLAY AT(9+J,1):L$(J):: NEXT J ::
FOR J=104X TO 24 :: DISPLAY AT(J,1):"" :: NEXT J :: X=0
290 IF X$<>"" THEN M$=X$:: X$="" :: GOSUB 320 :: GOTO
230

300 IF EOF{1)<>1 THEN 180 ELSE IF X>0 THEN 250 ELSE CLOS
E #1 :: CALL SOUND(1,500,5)

310 CALL KEY(0,K,S):: IF S=0 THEN 310 ELSE 100

320 TF LEN(M$)<29 THEN X=X41 :: L$(X)=M$:: RETURN

330 IF SEG$(M$,28,1)=" " THEN X=X+l :: L$(X)=SEG$(M$,1,2
8):: T$=SEG$(M$,29,255):: RETURN
340 IF SEG$(M$,29,1)=" " THEN X=X+1
8):: T$=SEG$(M$,30,255):: RETURN
350 P=27
360 IF SEG$(M$,P,1)=""" THEN X=X+1
1):: T$=SEG$(M$,P+1,255):: RETURN
370 P=P-1 :: IF P»1 THEN 360 ELSE X=X+l
,1,28):: T$=SEG$(M$,29,255):: RETURN

FOR J=1 TO 12 :: CAL
DISPLAY AT(2,8):"BIBLE READER

DISPL

GOSUB 320 :: GO

1: L§(X)=T$:: Tg=""

11 L$(X)=SEGH(M$,1,2

11 L$(X)=SEG$(M$,1,P-
:: L$(X)=SEG$(MS$

Files ported over from IBM lack carriage returns,
which can be a problem if you want to do any editing. I
think this tinygram will do a good job of adding CRs to
any text file which has centered headers and indented
paragraphs.

100 DISPLAY AT(3,4)ERASE ALL :"CARRIAGE RETURN ADDER":"":
" This tinygram program will add carriage returns to any
text file which has centered"

110 DISPLAY AT(8,1):"headers and indented paragraphs."
120 DISPLAY AT(12,1):"Input filename?":"DSK" :: ACCEPT A
T(13,4):1IF$

130 DISPLAY AT(15,1):"Output filename?":"DSK" ::
AT(16,4):0F$

140 OPEN #1:"DSK"&IF$,INPUT :: OPEN #2:"DSK"&0OF$, OUTPUT
150 LINPUT #1:M$

160 IF M$="" THEN PRINT #2:CHR$(13):M$;ELSE IF ASC(M$)<3
3 THEN PRINT #2:CHR$(13):M$; ELSE PRINT #2:"'":M$;

170 IF EOF(1)<>1 THEN 150 ELSE CLOSE #1 :: CLOSE #2

ACCEPT

(Page 11

TisHUG NEWS DIGEST

September 1992)

Note that the program does all its work in line
160!

When text files are reformatted to a shorter line
length, using the Funlweb Formatter, there are often
long gaps at the ends of the lines, or between words if
Fill and Adjust is used, due to long words which would
have been hyphenated if the text had been originally
typed in the shorter length. This little program will
reformat text (containing carriage returns) to any
shorter length and allow you to optionally hyphenate
words which do not fit at the end of a line.

100 CALL CLEAR :: CALL SCREEN(5):: FOR SET=0 TO 12 :: CA
LL COLOR(SET,2,16):: NEXT SET
110 CALL CLEAR

120 DISPLAY AT(12,1):"Input filename?":"DSK" :: ACCEPT A
T(13,4)BEEP:1F$:: OPEN #1:"DSK"&IF$,INPUT
130 DISPLAY AT(15,1):"Output filename?":"DSK" :: ACCEPT

AT(16,4)BEEP:0F$:: OPEN #2:"DSK"&0F$,0UTPUT

140 DISPLAY AT(18,1):"Reform at to what length?" :: ACCEP
T AT(18,26)SIZE(2)VALIDATE(DIGIT):R
150 IF EOF(1)THEN 270 :: CALL CLEAR ::
$=P$&M$:: P§=""

160 L=LEN(M$)+(POS(M$,CHR$(13),1)<>0):: IF L<=R AND POS(
M$,CHR$(13),1)<>0 THEN PRINT#2:M$:: GOTO 150 ELSE IF L
<R THEN P$=M$&" " :: GOTO 150

170 C$=SEG$(M$,1,R):: CALL LASTPOS(C$," ",Y)

180 IF Y<>0 THEN 190 ELSE PRINT #2:C$:: M$=SEGH(M$,R+1,
255): : GOTO 160

190 IF R-Y<3 THEN C$=SEG$(M$,1,Y):: M$=SEGS(M$,Y+1,255):
: PRINT #2:C$:: GOTO 160

200 X=POS(M$," ",Y+1):: IF X=0 THEN X=LEN(M$)ELSE IF X=R
+1 THEN PRINT #2:C$:: M$=SEG$(M$,¥+2,255):: GOTO 160
210 DISPLAY AT(2,1):M$:: DISPLAY AT(8,1):SEG$(M$,1,R)
220 DISPLAY AT(12,1):SEG$(M$, Y+1,R-Y-1)&"-"&SEG$(M$,R, X~
R+1):: Z=R-Y

230 DISPLAY AT(15,1):"Hyphenate?" :: ACCEPT AT(15,12)SIZ
E(1)VALIDATE("YNyn"):Q$:: IF Q$="N" OR Q4$="n" THEN 260

LINPUT #1:M$:: M

240 ACCEPT AT(18,1)SIZE(Z):H$:: IF POS(H$,"-",1)=0 THEN
240

250 C$=SEC$(CS$,1,Y)BH$:: M$=SEGE(M$, Y+1+LEN(H$)~1,255)
: PRINT #2:C$:: GOTO 160

260 PRINT #2:SEG$(C$,1,Y):: M$=SEG$(M$, Y+1,255):: GOTO 1
60

270 CLOSE #1 :: CLOSE #2 :: STOP

280 SUB LASTPOS(A$,B$,Y):: X,¥=0

290 X=POS(A$,B$,X+1):: IF X>0 THEN Y=X :: GOTC 290

300 SUBEND

I really think that all program listings should be
published in 28-column fermat, as my Tips from the
Tigercub have always been published, because that is how
they appear on screen, making it much easier to key them
in accurately. However, if you absolutely MUST reformat
them, I think that this program will accurately reformat
to/from any length up to 79 PROVIDING that you first put
a carriage return at the end of every program line.

100 DISPLAY AT(3,6)ERASE ALL:"PROGRAM RELISTER":"":" Wi
11 reformat a LISTed XBasic program from any linelength
to any other length."

110 DISPLAY AT(8,1):" Each program line (not file line}

must end in a carriage return.”

120 DISPLAY AT(12,1):"Input filename?":"DSK" :: ACCEPT A

T(13,4):IF$:: DISPLAY AT(15,1):"Output filename?':'DSK"
:: ACCEPT AT(16,4):0F%

130 DISPLAY AT(18,1):"Present line length?" :: ACCEPT AT
(18,22)STIZE(2)VALIDATE(DIGIT)::A

140 DISPLAY AT(20,1):"Reformat to what length?" :: ACCEP

T AT(20,26)SIZE(2)VALIDATE(DIGIT):X :: IF X=A THEN 130
150 OPEN #1:"DSK"&IF$,INPUT :: OPEN #2:"DSK"&OF$,0UTPUT
:: IF X<A THEN 230

160 IF EOF(1)THEN 270 :: LINPUT #1:M$:: L=LEN(M$):: IF

POS(M$,CHR$(13),1)=0 THEN 18C

170 IF P+L<X+1 THEN PRINT #2:M$:: P=0 ::

PRINT #2:SEG$(M$, 1,X—P) :SEGS(M$, X-P+1,255):: P=0
160

180 IF L<A THEN M$=M$&RPT$("",A-L):: L=A

GOTO 160 ELSE
:: GOTO

190 IF P=0 THEN PRINT #2:M$; :: P=L :: GOTO 160
200 IF P+L<X THEN PRINT #2:M$;:: P=P+L :: GOTO 160
210 IF P+L=X THEN PRINT #2:M$:: P=0 :: GOTO 160

220 PRINT #2:SEG$(M$,1,X-P):SEG$(M$,X—P+1,255);:: P=LEN(
SEG$(M$,X-P+1,255)) :: GOTO 160 continued on page 18

Right Justified Text

This comes from Bill Gaskill of Grand Junction,
Colorado. The program that follows was saved Lo disk
from a working Extended Basic program after I (Bob) made
one or two slight alterations, The program does not
allow for any more than 28 characters to be typed in as
this is the width of the screen (hence, -28 in the
Accept at statement). In fact, if you type in exactly
28 characters then it will already be right—justified,
so if you want the program to work 1like the author
intended then type in less than 28 characters. Fifteen
to twenty would be a good number, As stated below, you
must keep pressing Enter in order to bring the program
to completion otherwise, the program will just 'sit'
there. You will need to press Enter less than ten
times. The rest of the article was written by Bill.

Routines to manipulate text strings have appeared
in MICROpendium numerous times over the years, including
routines to centre text on the screen, provide word wrap
simulation and others. This routine demonstrates how a
text string can be right justified. Most of the
programming that is included is overhead that is used to
let the user see what is occurring with the string while
the program is working on it. The actual right—justify
coding takes place in lines 140-190.

When the programs lcads you are prompted to enter a
string of text to justify. Once you do so and press the
Enter key the string in then divided into two strings at
the point where the first blank space is found. Among
other things, line 140 sets B$ to equal a blank space
and then T to equal the POSition of the first blank
space in the sring. line 150 then sets S to equal the
same position the first time around and then uses that
position to OSEGment the original string into two
strings. The display on your screen will show what C$,
the first half of the string, looks like and then just
below it, D$, which is the second part of the original
string.

Below both of the string segments E$ is displayed
just above the numeric ruler that is used to show you
what occurs with the string that will ultimately become
the right justified text. The justification process
takes place one action at a time so that you can observe
it. Just press Enter each time you wish to see another
part of the justification process take place.

When the string has been right—justified the
program will jump to the end of the process in line 220
and then display the new string. You may press Enter
again to do another string or simply end the program
with FCTN Quit.

100 CALL CLEAR :: CALL SCREEN(5):: FOR A=l TO 14 :: CALL
COLOR(A,16,5):: NEXT A

110 DISPLAY AT(1,5):"RIGHT JUSTIFY TEXT"
126,"00FF")

120 DISPLAY AT(3,1):"ENTER A STRING TO JUSTIFY
PLAY AT(6,1):" TrmmEmmmmmm

130 DISPLAY AT(lS,l):RPT$("|",28):"12345628901234567890
12345678" :: DISPLAY AT(2 1,1):RPT$(" ",28)

140 ACCEPT AT(5,1)SIZE(-28):4$:: B$=" " :: I=LEN(A$)::
IF I=28 THEN 220 ELSE T=POS{A$,B$,1):: G=T

:: DISPLAY AT(22,1):" "

150 S=POS(A$,B$,T):: C$=SEG$(A$,1,5):: D$=SEG$(A$,S+1,(
28-8))

60 DISPLAY AT(9,1):C$::

170 IF C$="" THEN E$=D$:: T=G+l

180 E$=C3&B$&DS$

190 DISPLAY AT(17,1):E$::
220 ELSE T=5+G

200 DISPLAY AT(23,1):"PRESS ANY KEY TO CONTINUE..."

210 CALL KEY(0,X,Y):: IF Y=0 THEN 210 ELSE 150

220 DISPLAY AT(5,1):A$:: DISPLAY AT(22,1):"TEXT IS NOW
RIGHT JUSTIFIED.";" '"

230 CALL KEY(0,Y,X);: IF X=0 THEN 230 ::
GOTO 120

:+ CALL CHAR(

s DTS
r

DISPLAY AT(11,1):D$
:: GOTO 150

A$=E$:: IF LEN(A$)=28 THEN

CALL CLEAR ::
0

(September 1992

TIsHUG NEWS DIGEST

Page '@

Til-Bits Number 19

by Jim Swedlow, CA USA

EA DISK ERROR CODES

Some programs (like Archiver) display a number when
they encounter a disk error (something like "IO ERROR
#7"). The numbers by themselves are of little use.
Here is what they mean:

0 UNKNOWN DEVICE - Could not find the specified
drive.

1 WRITE PROTECTED -~ The disk is write protected.

2 BAD OPEN ATTRIBUTE - One or more OPEN options
were illegal or did not
match the file characteristics.

3 TILLEGAL OPERATION - The book says that this code
should not be generated!

4 OUT OF SPACE - The disk is full or you are
trying to open more files than are
allowed (127).

5 END OF FILE - You are trying to read beyond the
end of the file,

6 DEVICE ERROR - The disk is not initialised, the
disk is damaged, the disk drive
is broken (oh no!), the drive door
is open, etc.

7 FILE ERROR - The file does not exist or you are
trying to read a BASIC file as if
it were data.

These are the same as the second digit in the BASIC
disk error codes.

MAGIC NINES
A fun program by Jim Peterson of the TIGER CLUB.

100 ! MAGIC NINES

110 CALL CLEAR

120 PRINT ::PRINT "ENTER ANY 3 DIGIT NUMBER":

"WITH 3 DIFFERENT DIGITS"

130 INPUT N :: PRINT :: IF N<>INT(N) OR N>999 OR N<100

THEN 120 ELSE N$=STR$(N)

140 IF SEG$(N$,1,1)=SEG$(N$,2,1) OR SEG$(N$,1,1)=SEG$

(N$,3,1) OR SEG$(N$,2,1)=SEG$(N$,3,1) THEN

PRINT ">USE 3 DIFFERENT DIGITS<" :: GOTO 120

150 N2§,N&$="" :: FOR J=1 TO 3 :: N2$=SEG$(N§,J,1)&N2%
:: NEXT J

160 N2=VAL(N2$) :: N3=ABS(N-N2)

170 PRINT N$;'" BACKWARDS IS ";N2$:: PRINT

180 N3$=STR$(N3) :: IF N3<100 THEN N3$="0"&N3$

190 IF N>N2 THEN PRINT N$;" MINUS ";N2$;" IS ":N33

ELSE PRINT N2§;" MINUS ";N$;"™ IS ";N3%

By Jim Peterson

200 PRINT :: FOR J=1 TO 3 :: N4$=SEG$(N3$,J,1)&N4$::
NEXT J

210 PRINT N3§;" BACKWARDS IS ";N4$: : N3§;" PLUS ";Na$
;" IS 1089": :

220 PRINT :"I KNEW THAT WOULD BE": : "THE ANSWER. LIST

THE": : "PROGRAM AND SEE!"

230 rrerrrpprnILALILLLLL

240 ! THE ANSWER IS !

250 ! 1089 !

260 trerprrprerrRLLILELLY
TI LIVES

The December, 1988 issue of PC Computing (a
magazine normally dedicated toc MS DOS machines) has an
article entitled "Gone But Not Forgotten". There is
coverage of most of the orphans (TI, Osborne, Eagle,
PCjr, etc). By the time you read this, you will not be
able to buy that issue, but it might be worth checking
out in your library. A couple of interesting quotes:

"The 99/4A and PCjr were early experiments in the
home computing market. They were not nearly as fast or
powerful as other computers of their time, yet in many
homes they continue to fulfill the role that visionaries
once predicted for them: they have evolved from somber,
cold pieces of machinery to tools that are useful and
fun."

"Fans of the TI 99/4A are legion, and they form a
network of users that is as 1lively as FO0G, if less
structured. TI user groups number 300 with the Chicago
group the largest at nearly 550 members. Other TI
organisations are small but spirited. The 14 member
north New Jersey group works with other New York area
computer groups to sponsor the TI Computer Fest which
each year draws about 300 people to attend workshops and
hear speakers."

[FOG is an international User Group for owners of
CPM and MS DOS machines — Ed]

TI WRITER MARGINS

For some of my editing, I use a device called a

hanging indent. It looks like this:
.IM3;IN-3

The first line is set to the left margin but
subsequent lines are indented. It could be called the
opposite of normal paragraph indentation.

- LM-3;INO

To do this, you must alter the left margin (.IM)
and indentation (.IN) settings. For this column, the
initial formatter settings were:

.FI;AD;1MO;RMS5;INS

This tells the formatter to FIll, ADjust, set the
Left Margin at 0, the Right Margin at 55 and to INdent
paragraphs by 5 spaces. An .INO would mean not to
INdent at all.

When I want to start the hanging indent, I add this
command :

.IM +3;IN -3

The "+3" after ".IM" tells the Formatter to move
the left margin three spaces to the RIGHT. I could have
said ".IM 4" but by using the plus sign I do not need to
know the previous margin setting. In the same manner,
the "-3" INdent tells the formatter to set paragraph
indentation three spaces to the LEFT of the left margin.

When I want to revert to the original
use this:

settings, I

.IM =3;IN +0

The -3 after <.LM> moves the left margin three
spaces to the LEFT or back where it was before the <.LM
+3> command. The <.INO> command cancels the hanging
indent (i.e., it tells the Formatter to stop indenting).
The + or - in the INdent command is relative to the
current left margin. If the left margin is set to '0O'
then a + or — is not needed.
combine a number of formatter
commands on the same line. They are separated with
semi-colons. This works for most (but not all)
formatter commands. The formatter commands can be
written with or without a space between command and
number, that is, you could write .LM7 or .IM 7 and get
the same result. Enjoy (o)

Notice that I

(Page 13

TISHUG NEWS DIGEST September 1993)

XB tips Number 20

by Jim Swedlow, CA USA
ERROR TRAPPING
We have talked here before about making your
programs 'user proof'. No matter what the user does,
your program should have a defense. A while back I
covered one area of vulnerability - when the user inputs

something from the keyboard. This month the subject is
error trapping.

Say, for example, that the program must access a
disk file to run. Fred Klutz, your program's user, puts
the wrong disk in the drive (or does not) put any disk
in). What happens? Well, your program opens a disk
file and the Disk Controller goes to the specified drive
to look for the file. When it does not find it, program
execution stops, an error message appears on the screen
and any data held in memory is virtually lost.

Extended Basic
let you decide what happens when an error

There is a way around this. Two
commands can

occurs: ON ERROR nnn and CALL ERR().

The default condition for ON ERROR is ON ERROR
STOP. This means that if an error occurs, program
execution stops and an error message is displayed. The
alternative is ON ERROR nnn, where 'nnn' is a line
number. With this, when an error occurs, program
execution transfers to the specified line number.

I do not fully understand error trapping. I can

use it but I do not understand it.
hang of error trapping, try intentionally causing an
error with TRACE active. You will see that the computer
does not exactly go to the error instructions even
though it follows them.

Once you get the

Here is an example of how ON ERROR works:

200 INPUT "File Name: ":A$
210 ON ERROR 500 :: OPEN #1,"DSK1."&A$

Program Continues

500 ! Error Instructions

510 PRINT "Could not find DSK1.";A$
520 ON ERROR 540 :: CLOSE #1

530 ON ERROR STOP :: RETURN 200
540 RETURN 530

Fearless Fred inputs a bogus file name in line 200.
We set the error trap in line 210. Our 44 tries to open
a file din line 210 but cannot find it. Control
transfers to line 500.

First we tell Fleckless Fred that the file name was
bad. Then we try and close the file. The code may seem
odd, but it works. Sometimes, if you do not close the
file an error will occcur when you re-OPEN it but closing
the file will also cause an error. So we put in an ON
ERROR before closing the file just in case.

You have three options with RETURN in an ON ERROR
routine. RETURN by itself will send you back to the
instruction that caused the error. RETURN NEXT will
return you to the very next instruction. And RETURN nnn
will return you to line number nnn. These RETURN's do
not work with GOSUB.

ON ERROR executes like a GOSUB. You could end the
error language with a GOTO but you would create a
pending RETURN that eats memory just as it does if GOSUB
is not followed by RETURN. It could cause a problem if
you use GOSUB later in the program!

Why the ON ERROR STOP in line 530, you ask. Well,
once an ON ERROR nnn is triggered by an error, error
control reverts back to ON ERROR STOP. However, I never
know if the CLOSE #1 will cause an error condition and I
do not want the ON ERROR 540 to be active after the file
is closed, so I override it just to be safe.

Back to program flow. We had an error when opening
the file, we told the user, we closed the file and we
returned back to asking for a file name. The process
starts over. If Fleabit Fred inputs a good file name,
our program can continue. Anticipating a problem, we
reset the error trap in line 210,

There is another tool you can use after ON ERROR
has transferred control to error trapping language. It
is CALL ERR(A4,B,C,D). Look it up in your Extended Basic
manual. It can tell you the error type, the line number
in which the error occurred and the file number
associated with the error if it is an I/0 error. This
information can be quite valuable in deciding what to do
with an error.

A couple words of caution.
trapping language to your program until you have
completely debugged it. Otherwise, other errors in the
program will be very difficult to locate.

First, do not add error

Second, your TI executes ON ERROR STOP until you
give it other instructions. In our sample program
above, an error before line 210 would not trigger the
error trapping language in line 500. Also, the ON ERROR
500 remains in effect until an error occurs or you
execute another ON ERROR statement. This means that if
an error occurs any where after line 210, the error
message, "Could not find . . ." will appear even if it
is not appropriate.

If you have more questions, just as when all else
fails, read the manual —- it does give good information
about Extended Basic.

ON PRE-SCAN AND USER SUBS

The Extended Basic book says that the first CALL
for ALL subprograms must be within the active pre-scan
area. It also states that all SUB and SUBEND statements
must be pre- scanned. In debugging a program, I found
that the first CALL of a user—defined sub does not need
to be pre- scanned. Only CALLs of BUILT-IN subs must be
pre- scanned.

This program will run without a hitch:

100 !@p-

110 CALL TEST :: END

120 !1@P+

130 SUB TEST :: PRINT "OK" ::
SUBEND

FREEWARE REVIEW: 9S-CALC

99-CALC is a spreadsheet written for the 4A. What
makes this program valuable is that it will run on a
bare bones system (no memory expansion and no disk
drive). It requires only a cassette player and Extended
Basic. A printer, disk drive, and memory expansion are
optional.

Given the small size of the requirements,
compares well with full featured programs. You can do
arithmetical functions (add, divide, subtract, multiply
and per-cent) and you can total and average columns and
rows.

99~CALC

You have full screen editing, can move from one
cell to an adjacent one or jump to any active cell., The
spreadsheet can be printed on a 80 column printer. You
can cpt to print formulas.

Phil Barnes, who wrote 99-CALC has truly come up
with an ingenious program. He uses every bit of memory
possible. For example, you can hide numbers under
column and row titles. The program is filled with nice
touches. 99-CALC comes with on disk documentation (that
prints 7 pages) and a sample file.

RECOMMENDATION: If you do not have memory
expansion and have need of a spread sheet program,
99-CALC would be a valuable addition to your library.

continued on page 10

(September 1992

TisHUG NEWS DIGEST

Page 1@

Keeping Track of Petrol Costs
by Ben von Takach

Politicians at times will say things on the spur of
the moment which happens to be something wise and the
truth. This proves the point that they are almost
human. I guess you may well remark that this is a
strange way to introduce a computer program. The
connection is the already famous remark by which one of
our otherwise lack lustre leaders will be long
remembered- "There is no such thing as a free lunch".

Now, dis you run this program you will be able to
prove conclusively that how true this statement is. Did
you know that if you live - say - in Sutherland and
accept my invitation to a free lunch in Wahroonga, then
by the time you pack your car in the garage the free
lunch has cost you more than ten dollars? This is
exactly what the program will calculate for you. The
printout example of a periodical report illustrates the
data produced by the program. Naturally one does not
have to print it to paper if it is not needed. The
results are displayed on the screen and if so desired
may be saved to disk as a DV/80 file for future use.

Analysing past reports and comparing these with
current costs yields interesting results. Did you know
that the average price of petrol in Sydney has risen
from the beginning of 1989 to July, 1992 by 39,6%(from
48 cents/litre to 67 c¢/1)? The rise has caused an
increase in my fuel costs per kilometre from 7 cents to
10 cents, which is a 43% increase. Considering that

incomes have not increased during the same period, this
is one example of our rapidly decreasing standard of
living.

So, if you wish to nurture your growing ulcers with
some more indisputable facts, here is a program for you.
It is almost 1ike 'star wars', except you will never
win. (The last statement is copyrighted. Politicians
may apply for details of the licence fee to the writer.)

How does it work? Just glance through the program
listing. It is all there! Finally, if you are too tired
to key in the program, give me a ring and I will upload
it on the BBS.

100
110
120
130

ISAVE DSK.FINANCE.FUELCOST*

1 fsjeokok ¥

I’* FUEL USED & COST C. *

| sodeok

140 !BY BEN TAKACH

150 ILAST REV. 2.July.89

160 ON WARNING NEXT

170 DIM L(25),C(25)

180 CALL CLEAR :: GOSUB 890

190 CALL CLEAR :: DISPLAY AT(8,3):"FUEL COSTS &
CONSUMPTION." :: DISPLAY AT(14,1): "Wish to see the
instructions (y/n) ?"

200 CALL KEY(3,RR,ST):: IF ST<>1 THEN 200

210 IF RR=78 THEN 220 ELSE IF RR<>89 THEN 200 ELSE GOSUB

700
220 CALL CLEAR :: DISPLAY AT(6,3):"FUEL COST &
CONSUMPTION." :: DISPLAY AT(1Q,1):"CALCULATES 1/100

km, M/Gal & Fuel Costs..." ::
"Print out required ? (y/n)"

230 FL=0 :: IF P$="" THEN P$="PIO"

240 CALL KEY(3,RV,ST):: IF ST<>1 THEN 240

250 IF RV=89 THEN DISPLAY AT(23,1):"Print Device?
11 ACCEPT AT(23,15)SIZE(-8):P$:: FL=1 ELSE
IF RV=78 THEN 270 ELSE 240

260 OPEN #1:P$,0UTPUT

270 CALL CLEAR :: DISPLAY AT(1,1):"Enter start & ending
dates of the period analysed (Max. 21 Char.
allowed): ":DD$

280 DISPLAY AT(6,1):"Initial Odometer Reading at Full
Tank (km) ?";R1

290 DISPLAY AT(8,1):"Final Odometer Reading at Full
Tank (km) ?";R2

300 DISPLAY AT(11,1):"How many fillups will be entered ?
"R

310 ACCEPT AT(4,1)SIZE(-21):DD$

320 ACCEPT AT(7,18)SIZE(-6)VALIDATE(DIGIT):R1

DISPLAY AT(23,1):

";P$

330
340
350
360
370
380
390
400
410
420
430
440

450
460

470
480

490
500

510

520
530

540

550

560
570

580
590

600
610

620
630
640
650
660
670
680
690
700
710
720

730

740

750

760
770
780

DISPLAY AT(22,1):"Type O to correct an earlier
entered incorrect answer"

ACCEPT AT(9,18)SIZE(-6)VALIDATE(DIGIT):R2 ::
THEN 270

ACCEPT AT(12,18)SIZE(-3)VALIDATE(DIGIT):RF :: IF
RF=0 THEN 290

IF RF>20 THEN DISPLAY AT(22,1)BEEP:"Only 20 Fillups

IF R2=0

are allowed per report. please REENTER." :: GOTO
350
RX=R2-R1 :: LX=0 :: CX=0 :: RO=7 :: CALL CLEAR

DISPLAY AT(1,3):RPT$("-",25):: DISPLAY AT(2,3):"

Fillups| Litres|Cost $|" : DISPLAY AT(3,3):
”I",‘RPT${”~",23};"I "

FOR T=1 TO RF :: DISPLAY AT(I+3,3):"|";I;".";TAB(12)
;HI ";TAB(ZO);"[";TAB(Z?) ;1r] n

IF I=20 THEN 420

NEXT I

FOR J=1 TO RF

ACCEPT AT(J+3,14)SIZE(~6)VALIDATE(NUMERIC):L(J)::

IF L{J)=0 THEN 430

ACCEPT AT(J+3,21)SIZE(-5)VALIDATE(NUMERIC):C(J)::

IF C(J)=0 THEN 440

LX=LX+L(J):: CX=CX+C(J):: NEXT J :: GOSUB 900

CA=CX/LX :: FCK=(LX/RX)*CA :: LK=(LX/RX)*100 ::

MG=RX/LX*2.82481 :: CALL CLEAR

DISPLAY AT(5,1):"TOTAL Km-s driven ";RX

?ISPLAY AT(6,1):"TOTAL FUEL USED (1)";INT(LX*100)
100

DISPLAY AT(7,1):"TOTAL COST ($)";INT(CX*100)/100

D}SPLAY AT(8,1):"FUEL COST (c/km)";INT(FCK*10000
)/100

DISPLAY AT(9,1):"AVER.COST/1 (c/1)";INT(CA*10000)/
100

DISPLAY AT(10,1):"litres/100km ";INT(LK*100)/100

DISPLAY AT(11,1):"miles/imp.gallon ";INT(MG*100)

/100

DISPLAY AT(22,1):"PUSH ANY KEY TO CONTINUE" ::

KEY(3,RV,ST):: IF ST<>1 THEN 540

IF FL=0 THEN 980 ELSE DISPLAY AT(22,1):"WISH A

PRINTOUT OF THE FULL REPORT OR THE SUMMARY (f/s)?"
:: CALL KEY(3,RV,ST):: IF ST<>1 THEN 550

IF RV<>70 AND RV<>83 THEN 550 ELSE IF RV=70 THEN 650

PRINT #1:TAB(10);"FUEL COST SUMMARY":TAB(10);RPT$
("-",17):: PRINT #1 :: PRINT #1:TAB(5);"For

period: ";DD$

PRINT #1:TAB(5);"TOTAL Km—s COVERED ";RX

PRINT #1:TAB(5);"TOTAL FUEL USED (1)";INT(LX*100
)/100

PRINT #1:TAB(5);"TOTAL COST ($)";INT(CX*100)/100

PRINT #1:TAB(5);"FUEL COST (c/km)":INT(FCK*10000
)/100

PRINT #1:TAB(5);"AVER.COST/1 (c/1)";INT(CA*10000)

/100

PRINT #1:TAB(5);"1itres/100km ";INT(LK*100)/100

PRINT #1:TAB(5);"miles/imp. gallon ";INT(MG*100)/
100 ;3 PRINT #1 :: PRINT 1:TAB(10);RPT$(" ",5)

CALL

:: PRINT #1 :: CLOSE #1 :: GOTO 980

PRINT #1: : :TAB(5);"Fill Up and Cost Details:": :
PRINT #1:TAB(5);"ODOMETER AT START (km)";R1 :: PRINT
#1:TAB(5);"ODOMETER AT END (km)";R2 :: PRINT #1
PRINT #1:TAB(5);" Fillups Litres Cost § "

FOR J=1 TO RF

PRINT #1:TAB(7);J;TAB(IS);L(J);TAB(ZB);C(J):: NEXT

J :: PRINT #1 :: GOTO 570
GOSUB 870
CALL CLEAR :: PRINT " FUEL COST CALCULATOR" ::

PRINT :: PRINT "The program will calculate, then
display and optionally print the following details:"
PRINT TAB(5);"Total fuel used (1)":TAB(5);"Total
cost ($)":TAB(5);"Fuel cost (c/km)":TAB(5);"Av. cost
(e/1)":TAB(5);"Consumption (1/100km)"

PRINT TAB(5);"Consumption (M/Imp.Gal.)" :: PRINT
:"The program will accept 20 fillups per report.
This limit will aid statistical evaluation of the
results."

PRINT "The results may also saved (printed) to disk
in DV/80 format. The Program may be ended after

a batch is completed, or it may be rerun,"

PRINT "You may proceed then with the next lot of

entries."
PRINT : : :: GOSUB 880 :: GOSUB 850
CALL CLEAR :: GOSUB 870

PRINT :"HOW TO PREPARE THE DATA": :"First fill up
your car and note the odometer reading.
This is the starting km."

(Page 15

TilsHUG NEWS DIGEST

September 1992)

790 PRINT "Subsequently note the date, the odometer
reading, the litres tanked and the amount paid each
time the tank is filled."

800 PRINT "You do not have to completely fill the tank
if you do not wish to do so ,except for the last
entry of the period. Just enter the data as "

810 PRINT "requested by the program."”

820 PRINT "The program may be modified to display other
data, e.g. the date of each refill or comments."

830 PRINT : : :: GOSUB 880 :: GOSUB 850

840 PRINT :: RETURN

850 DISPLAY AT(23,1):"PUSH ANY KEY TO CONTINUE" :: CALL
KEY(O,RR,ST):: IF ST<»1 THEN 850

860 RETURN

870 FOR XX=0 TO 14 :: CALL COLOR(XX,1,5):: NEXT XX ::
RETURN

880 FOR XX=0 TO 14 :: CALL COLOR(XX,16,1):: NEXT XX ::
RETURN

890 CALL SCREEN(5):: FOR XX=0 TO 14 :: CALL COLOR(XX,
16,1):: NEXT XX :: RETURN
900 DISPLAY AT(24,1):"ANY CORRECTIONS (y/n)?" ::
KEY(3,RV,ST):: IF ST<>1 THEN 900
910 IF RV=78 THEN 970 ELSE IF RV<>89 THEN 900
920 DISPLAY AT(24,1):"ENTER FILLUP No." :: ACCEPT AT(24
» 18)VALIDATE(DIGIT)SIZE(2):RO
930 LX=LX-L(RO):: CX=CX-C(RO)
940 ACCEPT AT(RO+3,14)SIZE(—6)VALIDATE(NUMERIC):L(RO): :
IF L(RO)=0 THEN 940
950 ACCEPT AT(RO+3,21)SIZE(-5)VALIDATE(NUMERIC):C(RO)::
IF C(RO)=0 THEN 950
960 LX=LX+L(R0O):: CX=CX+C(RO):: GOTO 900
970 RETURN
980 CALL CLEAR :: DISPLAY AT(12,1):"Wish to continue
with a new lot of entries, print report to a disk
file or exit the program? (c/d/e)"
990 CALL KEY(3,RR,ST):: IF ST<>1 THEN 990
1000 IF RR=67 THEN R1=R2 :: GOTO 220 ELSE IF RR=6% THEN
END ELSE IF RR=68 THEN 010 ELSE 990
1010 REM FILE PRINT ROUTINE; END WITH GOTOQ 910 COMMAND
1020 CALL CLEAR :: IF DV$="" THEN DV$="DSK1"
1030 DISPLAY AT(6,1):"DEVICE NAME? '";DV$
1040 DISPLAY AT(7,1):"FILE NAME? ";FI$
1050 ACCEPT AT(6,15)SIZE(~12):DV$
1060 ACCEPT AT(7,15)SIZE(-10):FI$
1070 DF$=DV$" ."&FI$:: OPEN #2:DF$,DISPLAY,VARIABLE
80,APPEND
1080 PRINT #2: :TAB(5);"Fill Up and Cost Details:":
1090 PRINT #2:TAB(5);"ODOMETER AT START (km)";R1 ::
PRINT #2:TAB(5);"ODOMETER AT END (km)'";R2 :: PRINT
#2
1100 PRINT #2:TAB(5);"
1110 FOR J=1 TO RF
1120 PRINT #2:TAB(7);J;TAB(16);L(J);TAB(23);C(J):: NEXT
J :: PRINT #2
1130 PRINT #2:TAB(10);"FUEL COST SUMMARY":TAB(10);RPT$
("-",17):: PRINT #2 :: PRINT #2:TAB(5);"For
period: ";DD$
1140 PRINT #2:TAB(5);"TOTAL Km-s COVERED " ;RX
1150 PRINT #2:TAB(5);"TOTAL FUEL USED (1)";INT(LX*100)/
100
1160 PRINT #2:TAB(5);"TOTAL COST ($)";INT(CX*100)/100
1170 PRINT #2:TAB(5);"FUEL COST (c/km)";INT(FCK*10000)/
100
1180 PRINT #2:TAB(5);"AVER.COST/1 (c/1)";INT(CA*10000
)/100
1190 PRINT #2:TAB(5);"litres/100km "; INT(LK*100/100
1200 PRINT #2:TAB(5);"miles/imp. gallon
"; INT(MG*100) /100 :: PRINT #2 :: PRINT#2:TAB(10)
sRPT$(™ ",5):: PRINT #2 :: CLOSE #2 :: GOTO 980

CALL

Fillups Litres Cost $ "

Here is a sample printout of a report that was mentioned
in the earlier part of the article. The above program allows
you to save your data to disk as well as to get a printout.

Fill Up and Cost Details:

ODOMETER AT START (km) 41376
ODOMETER AT END (km) 47735

Fillups Litres Cost §
1 63 40.89
2 63 41.9
3 61.69 39.42
4 56 35.78

5 20.26 13.51
6 50 31.95
7 61.02 39

8 63 40.9
9 60 38.95
10 56.8 41.8
11 59.23 37.6
12 59.97 40

13 62.04 42

14 30 20.97
15 63 42.78
16 60.6 40.48
17 61 41.79
18 62.41 43

FUEL COST SUMMARY

For period: 03/04/92 - 23/07/92
TOTAL Km-s COVERED 6359

TOTAL FUEL USED (1) 1013.02
TOTAL COST ($) 672.72

FUEL COST (c/km) 10,57
AVER,COST/1 (c/1) 66.4
litres/100km 15.93
miles/imp. gallon 17.73

Default Filing

by Steve Burns, USA

As I sit here going through my disks of newsletter
files wondering what this months "Editor's Desk" column
will be about I am suddenly hit with a realisation.
Although I had carefully planned how I was going to
organize my disks for past and present newsletter
articles it did not happen that way. My organisational
method has again slipped into what is normally known in
computer terminology as DEFAULT.

Default, as you probably know,
during the course of using a program that requires you
to make a decision at a certain point and you do not.
This leaves the decision up to Fate (well actually, up
to whatever the programmer has decided what is most
likely to work, but quite often the two are close to
equivalent). How does this compare to my disk
organization ? Very well. Through careful planning I am
able to loock through at least 10 or 12 disks each time T
need to find a particular article. This is roughly
comparable to the method I use to organize my downloaded
files for the new programs we introduce into the
library.

is what happens

The only difference is that I have to look through
about 20-30 disks, I do have a method of sorting disks

though... those with labels and those without. Nice
neat method. T used to think that it was because I
short on disks, or disk cases, but with those problems

solved, I still find myself slipping in to the same old
habits of sticking a file here and a disk there.
Despite what others may think, I really DO know where
everything is (uh, at least roughly). And despite all
my excuses, I know that this mess is DEFAULT of de user.

o TN

(September 1992

TiIsHUG NEWS DIGEST

Page 1 6)

TI-Base Tutorial #19

by Martin Smoley, USA

This months project is quite insignificant as far
as innovative programming techniques are concerned, but
it concerns a utility which I have wanted to create for
a long time. This is the simple ability to type in the
data for a mailing label and print the label and/or save
the data for later use. I know this sounds untrue, but
as many times as I have thought to myself that I should
whip something up to do this task, I have not! So this
month I am going to take care of my problem and drag you
along for the ride. NOTE: There are some other reasons
for this project which I will try to explain later.

I whipped up INPUT/C, which you see to the right.
For those of you who are still struggling, it was not
nearly as easy as I make it sound. It took forever to
get those IF statement to work the way I wanted, and I
kept using more LOCALs than I was allowed. I would alsc
add that every CF 1 have, should be called a
semi-finished product. Almost every time I usea CF I
can see something I would like to change. Here are a
few tricks I wused in INPUT that you might find
interesting. First I set up LOCALs to handle the
keyboard input. This allowed me to print a label even
if I did not save the data to the Db, Next, I used the
data from RECord O as headings for the input screen.
The use of RECord O, coupled with the fact that the only
direct connection between INPUT and your Db is made in
the Sub~CF(INPSV) means that it should be quite easy to
adapt INPUT to any Db you may be using.

CREATED 04/06/90 CHANGED 04/06/90
FIELD DESCRIPTOR TYPE WIDTH DEC

1 have modified our old
standby database TNAMES
te accommodate thoughts.

1 NM N 004 00 for future projects. It
2 LN c 015 is not necessary for you
3 FN c 015 to make these changes.
4 MI c 002 The CFs should work fine
5 NL N 004 00 with the original Db.
6 SA c 025 You can change the name
7 CT [of 020 of the Db used in INPUT
8§ 3T & 0oz and let it go at that.
9 ZpP c 005 I will not place more
10 PR c 012 than a few names in our
11 XP D cos . DEMO Db so a conversion
12 ID c 007 can be made at any time.

000 1 TNAMES9000000/00002

Database TNAMES90

RFC N9 iH N Ml KL A
070 4 Last Wame .. FList Mame . MI
0001 i Srelmy artin Al

et TP P xp 3

6149 Bryson Orive Mentor

* INPUT/C
CLOSE ALL
SET TALK OFF
CLEAR
WRITE 9,4," . LOADING .. "

LOCAL IFN C 15
LOCAL IMI C 2
LOCAL ILN C 15
LOCAL ISA C 25
LOCAL ICT C 20
LOCAL IST C 2
LOCAL IZP C 5
LOCAL IPH C 12
USE DSK1.TNAMES90
* you can use the original TNAMES
LOCAL INP C 2
DO DSK1.INPSC
WHILE (INP<'"Q ").AND.(INPO"g ™)

WRITE 5,1," <> <"
ll'> <|r
WRITE 9,1,"> &
WRITE 13,1,"™> <"
" O <"
WRITE 17,1,™> £

READSTRING 5,2,IFN
READSTRING 5,19,IMI
READSTRING 5,23,ILN
READSTRING 9,2,ISA

Streer AGArass Clty cionens ST 7ip Phene ..., 7N/ (L 7T
OH 44080 2i6-051-1661 £/ Mu461}

READSTRING 13,2,ICT

READSTRING 13,24,IST

READSTRING 13,28,IZP

READSTRING 17,2,IPH

WRITE 22,2,"Selection ==> R "s
" mn

READSTRING 22,16,INP
WRITE 22,16;" iwavs PROCESSING "
IF (INP="Q ").OR.(INP="q ")
CLOSE ALL
RETURN
ENDIF
IF (INP="S ").OR.(INP="s ")
DO DSK1.INPSV
ENDIF
IF (INP="P ").OR.(INP="p ™)
DO DSK1.INPLBL
ENDIF
IF (INP="SP").OR.(INP="sp")
DO DSK1.INPSV
DO DSK1.,INPLBL
ENDIF
WRITE 22,16," "
REPLACE INP WITH "R "
ENDWHILE
CLOSE ALL
SET HEADING ON
SET RECNUM ON
SET TALK ON
RETURN Copyright Martin A. Smoley 1990

Another possibility would be to use RECord 1 to
blank the previous on-screen entries and set the length
of each entry. That would allow you to create a
universal input screen that would change its
characteristics depending on the database .that was
opened. Changes could be handled by a Sub-CF that was
called by a number stored in the 0 RECord and the use of
a DOCASE. If this is a little too much for you, just
use INPUT as a simple data entry CF and forget about the
extra junk. Entering the data into the screen is more
user friendly then using EDIT and I like to be able to
use upper and lower case letters for commands. The CF
will keep you posted as to what it is doing and it will
automatically assemble an ID number for a name which is
saved. The only automatic feature is the creation of NM
by the INPSC CF. You will notice that it finds the last
value for NM and makes the newest entry one number
higher than that. This keeps the last entries at the
end of the Db, no matter what their sort order should
be.

At the end of an entry session you should run the
CF named INP'RN. This CF will sort our Db on Last Name,
First Name, renumber the NM field and then re—sort on
the NM field. This is the way I like TNAMES90 sorted,
you may have another idea. You should note that I have
placed one blank space at the beginning of many of the
RECord 0 fields. This will return that record to the
head of the Db when sorting on those fields.

ENTER INFORMATION
First Name ... MI Last Name

INSTRUCTIONS

> SO < Enter the data between
! the greater than "»"
Street Address and less than "<" signs.
3 < Press ENTER after each
item is entered, First
BEEF wenmeviviiiii ST Zip Name <E>, Middle Initial
> SO < <E>, Last Name <E>, etc.
When all the data is
Phone SELECTIONS entered you can select
> < Q or q Quit Save, Print, SavePrint,
S or s Save Redo or Quit. When you
P or p Print make a single character
SP or sp Save Print entry, the character
R or r Redo must be to the left and

the blank space must be

Selection ==> R to the right.

renumber NM field INP'RN/C
CLOSE ALL

LOCAL NUM N 4 O

USE DSK1.TNAMESSO

SORT ON LN,FN

TOP

[Page 17

TiIsHUG NEWS DIGEST

September 1992)

WHILE .NOT. (EOF)
REPLACE NM WITH NUM
MOVE
REPLACE NUM WITH NUM + 1
ENDWHILE
SORT ON NM
CLOSE ALL
RETURN Copyright Martin A. Smoley 1990

* INPSC/C
SET HEADING OFF

SET RECNUM OFF

FIND O

WRITE 1,12,"ENTER INFORMATION"
WRITE 3,2,FN

WRITE 3,19,MI

WRITE 3,23,LN

WRITE 7,2,54

WRITE 11,2,CT

WRITE 11,24,ST

WRITE 11,28,ZP

WRITE 15,2,PH

WRITE 15,20,"SELECTIONS"

WRITE 17,20,"Q or q Quit"

WRITE 18,20,"S or s Save"

WRITE 19,20,"P or p Print"

WRITE 20,20,"SP or sp Save Print"
WRITE 21,20,"R or r Redo"

RETURN Copyright Martin A. Smoley 1990

* INPSV/C
WRITE 22,16," SAVING DATA "
LOCAL INM N 4 O
LOCAL FIN C 1
LOCAL LIN C 1
LOCAL PZ C 2
LOCAL AS C 2
BOTTOM
REPLACE INM WITH NM
APPEND BLANK
REPLACE NM WITH INM+1
REPLACE FN WITH IFN
REPLACE MI WITH IMI
REPLACE LN WITH ILN
REPLACE SA WITH ISA
REPLACE CT WITH ICT
REPLACE ST WITH IST
REPLACE ZP WITH IZP
REPLACE PH WITH IPH
REPLACE FIN WITH FN
REPLACE LIN WITH LN
REPLACE PZ WITH ZP
REPLACE AS WITH SA
REPLACE ID WITH FIN | LIN | PZ | AS | PH
RETURN Copyright Martin A. Smoley 1990

* INPLBL/C
SET PAGE=000
LOCAL TEMP C 40
WRITE 22,16," ... Printing Label ...
PRINT (Drft),(E),(LF)
REPLACE TEMP WITH TRIM(IFN) | " ";

n

| IM | " " | ILN
PRINT TEMP
PRINT ISA
REPLACE TEMP WITH TRIM(ICT) | ", ";
[IST | ™ " | 1ZP

PRINT TEMP, (LF), (LF)

RETURN Copyright Martin A. Smoley 1990 ©

continued from page 12

230 IF EOF(1)THEN 270 :: LINPUT #1:M$

240 L=LEN(M$):: IF L+P>X THEN PRINT #2:SEG$(M$,1,X-P)::
M$=SEG$ (M$,X-P+1,255):: P=0 :: GOTO 240

250 IF M$=CHR$(13)THEN 230

260 IF POS(M$,CHR$(13),1)<>0 THEN PRINT #2:M$:: P=0 ::
GOTO 230 ELSE PRINT #2:M$;:: P=LEN(M$):: GOTO 230

270 CLOSE #1 :: CLOSE #2

MEMORY FULL ©

Title Sereem for TI-Base

by Bill Gaskill, USA

EDITOR'S NOTE: Here is an interesting article that
I (Bob) have retyped from the May, 1992 issue of TIdbits
(Memphis, Tennessee). I just got done doing the
revision that he suggested and it worked well, first
'pop'. If you have never used a sector editor before
than this might be a good chance to get started. I use
Disk Patch on Funnelweb more often than not.

Here is a quick modification that I made to a
BACKUP copy of the TI-Base to spruce up its title
screen. It was done by copying the SCRN file from the
TI-Base disk onto a freshly initialised disk and then
sector editing SCRN to achieve the desired results. It
is important to use a newly initialised disk and to have
only the SCRN file on it.

This operation may appear to be really complex
because there are so many bytes listed (in their HEX
addresses), but it really is a piece of cake. Here is
what it does. When TI-Base boots we all know that it
displays a title screen and a time-out bar while it is
loading. What this project does is modify the TI-Base
name that is spelled with T's and I's and B's et cetera
and changes all of them to the Texas state map outline.
This same outline has shown up in custom cursor programs
over the years, and I will admit that I did not care for
the map outline of Texas as a cursor. However, here it
is in inverse video and it really puts some life into
the title screen. Honest!

Here is what you do:

1. Copy the SCRN file from the TI-Base disk onto a
newly formatted one.

2. Load your favourite sector editor and go to
sector »>23.

3. Type in DC (the hex code for decimal 220) in
the following bytes:

3E 3F 40 41 42 43 45 46 4C 4D 4E 54 S5A 5B 5F 60 61 62 68
69 6D 6E 74 77 7B 7D 81 87 90 91 95 96 98 99 94 9C 9D OE
A2 A3 A4 A5 A6 AA AF BO B8 BS BD BE C4 C7 CA CE D3 D7 EO
El E5 E6 EC EF F2 F6 F9 FC

4. Write these changes to disk and move to sector
>24, Now type in DC at bytes:

00 09 OA OE OF 15 16 17 1B 1F 23 24 28 29 24 2B

5. Save these changes to disk and you are done
editing.

6. Now copy the SCRN file onto your BACKUP TI-Base
disk, letting it overwrite the one already
there if you wish as you do not need to erase
the original one before the new one is copied.
You are now done!

All that remains is for you to boot up TI-Base and
see what a neat difference that subtle change makes.
You can play around with the SCRN file in other ways
too. For example, I have now changed mine so that it
lists me as the owner of the program and it carries such
things as my address, all done in inverse video
characters. T also corrected the AUUGUST 28, 1990 date
on the title screen so that August has conly two U's
instead of three. Hope you 1like the results but
remember, do NOT do this with anything but a backup
copy.

EDITCR'S NOTE: To accomplish the date modification
mentioned above you simply go to sector >22 and change
the screen to ASCII characters. If you are using Disk
Patch this is done by pressing Fctn 2. Then move the
cursor down to the 'A' of August and type right over the
date the necessary correction. This means that when you
are finished typing it 1in correctly, you are one
character short of where the original date ended. Just
erase the unneeded '0' and you are finished. Make
sure ycu rewrite the sector by using Fctn 8 and pressing

(September 1992

TiIsHUG NEWS DIGEST

'Y'. Have fun! Page 183

Sprite Tutorial

by Mack McCormick, USA

Definition: Any shape or colour. Can occupy screen
positions independent of any character already present.
Once set into motion, can move independently of direct
program control. You can magnify or make double size.

How they can be used: Up to 32 sprites on the
screen at any one time, Can be used in GRAPHICS and
MULTICOLOR modes. Also can be used in BIT MAP mode but
not the automatic moticn feature (according to TI)

Sprites cannot be used in the TEXT mode.

There are three tables which
information needed to use sprites:

contain all the

SPRITE ATTRIBUTE TABLE
Sprite Position
Sprite Colour

[=ai I

2. SPRITE DESCRIPTOR TABLE
a. Sprite Pattern Identifier
b. Specify magnified or double sized sprites.

3. SPRITE MOTION TABLE
a. Define X and Y velocities of Sprites.

DEFAULT LOCATIONS OF SPRITE TABLES

Table Table Begins at this VDP address
SPRITE ATTRIBUTE TABLE >0300
SPRITE DESCRIPTOR TABLE >0400
SPRITE MOTION TABLE >0780

Sprites are numbered from 0 to 31. Here is how the

screen is defined for Sprites:

Columns are labeled starting from the left from 0O
to 255 (300 to >FF). Rows are numbered from top left,
the first row is numbered 256 (>100), followed by the
numbers 0 to 190 (0 to >BE). Fach screen location
defined in this manner is referred to as a pixel. A
pixel is the smallest area of the screen you can turn on
or off. Here is the way it looks:

Pixel 1 is in row >100 column >02.
Pixel 4 is in row >BE column >01.

Here are the formulas to convert row and column
locations to pixel locations:
GRAPHIC TO PIXEL CONVERSIONS
GRAPHIC ROW TO PIXEL ROW GR*8-7=PR

GRAPHIC COLUMN TO PIXEL COLUMN GC*8-7=PC

PIXEL ROW TO GRAPHIC ROW INT[(PR+7)/8]=GR
PIXEL COLUMN TO GRAPHIC COLUMN INT[(PC+7)/8]=GC

SPRITE ATTRIBUTE TABLE

Begins at VDP >0300 by default.
present position of sprites and their
sprite takes up four bytes in the table.
is the row or Y position of the sprite. The second byte
is the column or X position. The third byte references
the pattern of the sprite as to where it is located in
the Sprite Descriptor Table. The fourth byte is the
early clock attribute and also codes for the colour of
the sprite.

Contains the
colours, Each
The first byte

When the computer moves sprites it updates the
information in the sprite attribute table. The more
sprites it has to update the longer it takes to execute

the program. To shorten this time place a value of >DO
as the Y location of the lowest numbered non-moving
sprite. Always let the final unused sprite be undefined

by specifying the Y location as »D0.

The third byte references a pattern in the Pattern
Descriptor Table. Can range from >00 to 3FF, For
example if the third byte contained >80 it would point
to >0400 through >0407 in the Sprite Descriptor Table.

The fourth byte controls the early clock and
colour. The first four bits control the early clock.
If the last bit (3) is reset to zero the early clock is
off and the Ilocation of the sprite is said to be it's
upper left hand corner. This means the sprite will fade
in and out on the right hand side of the screen. If bit
3 is on the sprites location is shifted 32 pixels to the
left. The sprite can then fade in and out from the left
side of the screen.

Bits 4~7 of byte four contain the colour. Same as
other VDP colours 0 to >F.

Here is an example Sprite Attribute:

Sprite 0 Sprite 1

SAL DATA >3356,>8001,>A828,>810F,>D0
AV A (Third Sprite Undefined)
YX / colour

pattern

SPRITE DESCRIPTOR TABLE

Just like the pattern descriptor table for
characters. Usually begins at >0400. Addresses >0400
through >0407 are defined as sprite pattern >80.

You can also make sprites magnified or double sized
by writing a value to the two least significant bits of
VDP register 1.

SPRITE MOTION TABLE

Describes the X and Y velocities o each sprite.
This table begins at »>0780. Before a sprite can be
placed into motion several conditions must be met. Your
program must allow interrupts using LIMI 2 but before
accessing VDP RAM you must disable interrupts with a
LIMI 0. You must indicate how many sprites will be in
motion by placing a value at CPU address >837A. For
example if sprites 2, 5, and 7 are in motion you must

place an >8 at address >837A which will allow motion of
0 through 7. A description of the motion must be placed
in the Sprite Motion Table. Each sprite takes up four

bytes in the table. The first byte is the Y velocity,
the second byte is the X velocity. The third and fourth
bytes are used by the interrupt routines, just be sure
you Ileave space for them. The following are allowed as
values for X and Y velocities:

A value of >01 will cause the sprite to move one
pixel every 16 VDP interrupts. About once every 16/60
of a second.

A thought: Have you ever seen a screen dump program
that would dump sprites? It could be done by obtaining
their location and pattern and converting to printer bit
graphics., Have fun!

CALL SPRITE
PROGRAM PLACES A HELICOPTER
SPRITE IX MOTION BY ENABLING
INTERRUPTS. PRESS ARNY
KEY TO ALTER MAGNITICATION
BY MACK MCCORMICK

LI I S
R

DEF START
REF VMBW,VWTR,KSCAN

HELI ~ DATA >007F,>0000,>0107,>0E0E HELICOPTER PATTERN DESCRIPTION
DATA »1EBE,>FFBF,>0F07,>020F BiOCK 2
DATA »0O0FF ,>8080,>COF8, »04C2 3
DATA >DACA,>FEFC,>F8EQ, >40F8 4
SDATA DATA »>7080,>8008 INITIAL SPRITE DATA
DATA »>DO0O >D0 PREVENTS GHOST SPRITES
*
SPEED DATA >UAOF,>0000 SPRITE SPEED FOR AUTO MOTION
STATUS EQU »837C GPL STATUS BYTE
VDP DATA >O0LEQ INITIAL VALUE OF VDP REGISTER 1
MYREG EQU >8300 MYREG IN 16 BIT HIGH SPEED AREA OF MEMORY
-

continued on page 5

(Page 19

TIsHUG NEWS DIGEST

September 1992)

Beginning [Forth - part 19
by Earl Raguse, UGOC, CA USA

Part of the credit for my writing this article
belongs to Ron David, of fast trig functions, I trust
you remember that, for arousing my curiosity to the
point of investigating the SAY word on George Smythe's
Forth disk which I call SuperForth because of all the
lovely utilities thereon, and says "TI Forth is ready to
start.”" This disk boots from Extended Basic, and it is
in the 1library. I had not paid much attention to SAY
because I thought it was a specialized one shot word
that could only say the above sentence by making use of
a lot of hex coding. Boy, was I wrong, as you will see.

Anyway, one night, Ron David showed me some Forth
Assembly coding he had done to make Forth speak. He had
nicely included the equivalent Assembly coding to
explain each Forth Assembly code. I could easily read
it but did not really comprehend how he was doing it.
It encompassed three or more screens, but it worked.
His word SAY could speak any of the 300 plus words in
the vocabulary given in the Editor/Assembly Manual
Appendix 24.6, page 422. This is the same list that is
in the Extended Basic Manual without the location
addresses.

This caused me to read the E/A Manual more

thoroughly and to take a better look at the SAY word on
SuperForth. Now that I knew the source of all the Hex
numbers (vocabulary addresses), and having read the E/A

Manual page 349, Section 22 SPEECH, I could now make
sense of George Smyth(e)'s talking word. He uses only
Forth elementary words and no Assembly language; I will
explain its rather simple operation in detail, hopefully
even the most novice among you will understand it. Here
is the word definition.

HEX

: TALK (addr-—-) 4 O DO 4 SRC DUP FQOO
AND 4 SRL 4000 + 9400 ! LOOP 4000 9400 !
5000 9400 ! DROP ;

Despite the apparent simplicity of the word TALK,
it really does work. I will summarise here what is said
in the E/A Manual but I advise you to read at least
pages 349 and 352 for yourself. If you are not Assembly
oriented, the programs will not mean much, and you can
ignore all the discussion on timing. Apparently Forth
is slow enough that the extra microsecond delays
required by Assembly are not required by Forth.

Essentially, what the E/A Manual says, is that you
need to write an address to the Speech Synthesizer
Module via SPCHWT (addr >940Q0) and then >40 to indicate
the end of the address, then »>50 to cause execution.
Loading of the speech address (from Appendix 24.6)} must
be done digit-wise, least significant digit first.
{(they say nybble, but a nybble is half a byte, or 4
binary bits, which is what it takes to define one Hex
digit). Now that I have impressed you with my knowledge
of bytes and nybbles I will never bring it up again, a
digit or a character is the same as a nybble. The
manual also states that the digit "x" must first be
prefixed by >4, as in >4x.

Unfortunately, it is necessary for me to emphasise

that a Hex number(digit) is processed in the computer
as four binary bits, so is a decimal digit for that
matter.

Referring to the definition of TALK, the word SRC
(Shift Right Circular) causes shifting of the number on
the top of the stack in bitwise fashion. Four bit
shifts is equivalent to shifting one digit. Shifting by
amounts other than groups of four will give strange
results if you are not thoroughly binary oriented, and I
will not discuss that. Circular shifting means that
bits shifted out at right are inserted at the left so no
bits are lost. Hence 4 SRC just moves the least
significant digit (LSD) to the left end of the number,

that 1is 1234 becomes 4123. The DUP word simply saves
this result for further shifting on the next pass
through the loop. SRL (Shift Right Logical) does

essentially the same thing except that bits shifted out
on the right fall into the bitpit and are never heard
from again. The vacated bits on the left are not
replaced with zeros, so 4123 becomes 412 after SRL four
times. The 4 bits of 3 are lost.

Note that in Forth it is not necessary to prefix
Hex numbers with > (as in assembly) if one specifies
HEX, as in the definition above, prior to using numbers,
but in this discussion, it seems safer to do so, except
when citing actual parts of the definition, to insure
there is no confusion as to the type numbers being
referred to.

The purpose of the 4 SRC is to move the LSD to the
left end of the number to be picked off by the FOOO AND
instruction. Recall that the AND word compares two
numbers on the top of the stack bit by bit, if both bits
are "1" then a "1" is put on the stack, else a "O" is
put on the stack. Remember also, that each 4 digit Hex
number is 16 binary bits, and (Hex) >F is equivalent to

"1111". Thus when >4123 is ANDed with >F000, the result
is >4000. The 4 SRL simply moves this right one place
to 400. The 4000 + adds 4000 to get 4400, and now we
have the digit prefixed by the required »4. The
properly prefixed digit dis then loaded into SPCHWT by
the 9400 !

LOOP repeats this process three more times to load
the other three digits of the Speech Address into »>9400.
Next 4000 9400 ! stores the required >40 to end this
address. Then 5000 9400 ! stores the execution
instruction in SPCHWT and the phrase represented by the
Hex address, is spoken by the Speech Synthesizer Module.

You may properly wonder why the two zeros are at
the end of all the numbers when we are specifically only
required to load two digits, that is, one byte, sorry, I
said that I would not use that word again. See how
unreliable I am. I forgot that I might think it
necessary to answer the above question. The zeros are
to fill out the rest of the sixteen bit number. When
the computer is reading only one byte, it reads the most
significant ones and if we did not pad the number with
two zeros, it would read the most significant byte as
zero or possibly garbage. This is as little beyond me,
if you want details ask an Assembly Language expert.

Each execution of TALK will say only one phrase. I
say phrase, because some of the addresses contain two or
mere words to be vocalised. To avoid writing TALK so
many times, I have defined the simpler word T to
represent TALK.

: T TALK ;

Thus the process of making the TI 99/4A talk is
just to look up the word you want said then get the Hex
address and follow that address with T. Simple enough,
even I can do that; see the example given as Screen #60
FORTH TALK TEST. I will not tell you what it says.
That is your incentive to type and run this screen.

If you have not previously incorporated the music
words from BFORTH6 and 7, into your BSAVED fast loading
Forth, you must load them first or delete the CH word at
the end of line 13 which plays the bugle call CHARGE at
the end of the message. Furthermore this screen uses my
Useful Forth Word WAIT which is defined below for those
of you who do not have a copy of ASF#2. The word WAIT
must be loaded before attempting to load and use TALK.

: WAIT (sec) 7200 * Q DO LOOP ;

WAIT produces approximately a one second delay, in
a loop to provide the required wait period in seconds.

For the curious, note that I have redefined TALK at
the end of the screen, but it works anyway. That is
because each definition has been separately compiled and
each application of the word uses its own version.
Redefining a word does not change the previous
definition. To change it you must first FORGET it. Is
not Forth wonderful? continued on page 10

(September 1992

TiIsHUG NEWS DIGEST

Page 2@

in Machine Code

by J.E. Banfield

Writing

The Video Processor, part 1

The TIS%/4A relies on the TMS9918A series of video
processor chips, which differ mainly in their video
output specifications, which need not concern us. This
processor is a very complicated integrated circuit,

probably much more complicated than the TMS9900 CPU
chip, at least its data manual is three times as thick
as the TMS98900 manual.

The video processer controls a 16K dynamic RAM

it uses for screen display data, the colour table
and sprite definitions. There is sufficient dynamic RAM
address space left over toc be a very significant
addition to other TI99/4A RAM; the BASIC interpreter
uses it extensively. I use it as a buffer for disk
data. For example, a full disk track can be set in VDP
RAM prior to transfer to a DMA memory in my disk
control ler.

which

The control levels required tc interface the video
processor are defined in Table 6-1, extracted from the
data manual. We can now face the job of screen control.

Screen Border Control

colour is controlled by the
rightmost 4 bits of register 7 in the VDP chip. To
change this colour code, we need to write to that
register, 1 for black, F for white, etcetera.

The border screen

This write 1o VDP register can be done in various
ways. I chose here a long method which is less
complicated than the alternative described later. The
method of writing a program using the MiniMemory Easybug

option was detailed in the last article and will not be
repeated here. Enter the following program starting at
M7FCO.
MTFCO 02 01 MOVEI 1,

01 00 "black”

02 02 MOVEI 2,

87 00 VDP register 7

D8 01 MOVB @.+2, 1

8C 02 VDP write address

10 00 SKIPA nil (delay)

D8 D02 MOVB @.+2, 2
8C 02 vdp write address
10 FF SKIPA minus 1 (STOP)

Note that the first byte written contains the data,
the second byte specifies a write to register 7 (see
Table 6-1). Now press "." and type "E7FCO<enter>". The
border colour goes black and we enter an infinite |oop.
Turn off the console and back on again (or reset any way
you can).

Let us examine the program.

MTFCO 02 01
0000 0010 0000 0O0CH1
\ 020 /\
op—code S address
MOVEI Ac 1

See Figure 1 in the last article. The instruction
moves the Iimmediate data, to be found in the next word
(01 00) to Ac 1.

Move the contents of the left hand byte in Ac 1

(that is 01) to the address given in the next word,
which is 8C Q2.
1000 1100 0000 0010

This has the address line of A14 high which enables
the VDP chip for writing to as can be seen from Figure
6-1 and Table 6-1, that is U100 pin 14 (CSW(L)) will be
low and pin 13 (MODE) will be high.

The next instruction is a delay which is required
by the Video Processor chip. The following instruction
is similar to 7FC8 but specifying the source as the left
mest byte of Ac 2, so the second byte written is 87,
defining VDP register 7. The final instruction, SKIPA
minus 1, as explained in the second last article, enters
an infinite loop, in effect causing a stop.

OK, if all goes well we will make a change to avoid

the inconvenience of the infinite loop. Change the
instruction at 7FD2. 1In Easybug type:
M7FD2 04 60 JUMPA @.+2
7F EO address 7FEOQ
This instruction is made from:
M7FD2 04 60
0000 0100 0110 0001
\ 044 / N\
op—code § address
JUMPA @.+2
Then enter a short program at 7FEO.
M7FE0 02 06 MOVEI 8,
70 E5 GROM address
04 60 JUMPA @.+2
00 B0 ROM address
This loads Ac 6 with a GROM address (miniMemory

GROM entry?)
in the console ROM.

and the next jumps to the GPL interpreter
Check this by executing T7FCO.

There is no change to the border colour but "“?" is
displayed. Now change the colour data by:

M7FC2 09

and repeat the execution of 7FCO.

Now examine the contents of M83FE.
M83FE = 8C
M83FF = 02
Incredibie, the VDP write data address is in console RAM
and we did not put it there!

Sacred Sites

TI, in its wisdom (??), have sequestrated certain
addresses for specific purposes and you may only change
their contents AT YOUR PERIL. 1In particular:
83FA (Ac D or R13 in GPL interpreter)
83FC (Ac E or R14 in GPL interpreter)
83FE (Ac F or R15 in GPL interpreter)

Although we must not change the contents of these
registers, there is no bar to wusing them as data as
described for Ac F later.

Multiple VDP Byte Write

Time and space is running out fast so I will leave
detailed explanation of these routines to a later

article. However, vyou might like to try them out and
analyse the code. This routine writes a selected byte a
number of times as defined in the data to incrementing

VDP addresses. I use it to set up track data for

M7FC4 02 02 formatting disks.
0000 0010 oo0QCcoO 0010
\ 020 /\ M7C60 €O FB MOVE 3, @ B+
op-code S address Ct 03 MOVE 4, 3
MOVEI Ac 2 02 43 ANDI 3,
FF 00
The data in the next word (87 00) is placed in Ac 02 44 ANDI 4,
2. 00 FF count
D8 03 MOVEB @.+2, 3
M7FC8 D8 01 8C 00 VDP write data
1101 1000 0000O0 0001 06 04 S0S 4
\ _/\ 4N 16 FC SKIPNE minus 4
op-code D address S address 04 5B JUMPA @ B (return)
MOVB a.+2 Ac 1

(Page 21

TIsHUG NEWS DIGEST

September 1992)

