LAST free COPY

-—— v - — - - - - - o

- e - - - - - -

- - - -— - - - - -
- - . e - - ane - - -

- - - - —— - - - -——— - ——
- - et e - - - - —— o —— -—————
- - —— - - - eme— - -
- - - - - - - - o P

Volume 1, Issue 2, MAY 1st., 1984

TI-LINES is the monthly newsletter of the OXON TI USER
group and the presentation of any material herein is
copyright of each individual author.

TI-LINES is produced and published by:

Peter G. Q. Brooks
29 Kestrel Crescent
Blackbird Leys
OXFORD OX4 s5DY

Telephone OXFORD 717985 (after 7 p.m.)

Every effort is made to ensure that the information given
in this newsletter is correct. The publisher cannot be held

responsible for any inaccuracies.

TI-LINES is also available to blind or partially-sighted
Users on audio cassette - contact the publisher for further
details.

Contributors to TI-LINES should ensure that their material
is submitted either as typed copy or in clear handwriting,
where it will be subject to limited editing and retyping.

Submissions should arrive by the first day of the month

prior to publication. It is the responsibility of the

author to ensure that no copyright infringement will occur

by the publication of any material contained in their article.

EDITORIAL COMMENTS

I was chatting to a pharmaceutical rep the other day at the hospital where I work,
and from him I learned the Gospel According To Mike (Horwood-3mith). “If you invite
4000 people to a meeting, 400 will respond, 40 will say that they are interested,

4 will tell you that they are definitely coming, and one will turn up.”

Cut of the 25 people to whom I originally sent the circular concerning the User
group, 8 responded over nine weeks expressing a strong interest, and after the first
issue, one sent me his stamps (and preferred to pay the total cost of the newsletter;
however, while this is fine for those working, those at school and those unemployed
might find it difficult to cover the cost - see later). The first copy cost 65p

to produce, excluding materials and postage (i.e., photocopying cost was 65p), and

I can see that future copies will become increasingly expensive. However, based on
Mike's Gospel I don't expect that all 25 will take up the subsidised subscription,

so I am quite happy to continue covering all but the postage cost for the foreseeable
future. If the Elite Eight take out a subscription it will cost me the vast sum of
about £6 a month - an amount which I (theoretically) earn from Home Computing Yeekly
for a week's software reviewing - and for the opportunity to shoot my mouth off in
public once again, that is a small price: to pay!

I've had one suggestion concerning the format of TI-LINES from fully~-paid-up member
Jan-Paul Nijman which agrees with my own idea, and that is to eventually produce
the newsletter as reduction-Xeroxed A5 in a similar style to that used by Tidings
(gone but not forgotten) and TI.MES. I've a feeling though that the cost could
soar considerably unless I can put in an order for a sizeable number of copies.
That's something to look at in the near future.

Something else to look at will be the possibility of carrying advertising, which
could eventually cover the cost of publication and thus place TI-LINES in the same
league as the 'free' newspaper. I have been compiling a list of soft- and hard-
ware suppliers who might be approached once the group has achieved some stability,
and I have decided to allow owners outside Oxfordshire to subscribe if they so wish.
A number of the local American User groups mail their newsletters all over the world,
and the material in them is largely concerned with local events, with little of the
reference material which I hope to f£ill TI-LINES with over the coming months.

Some of you might have wondered where the title TI-LINES comes from; I came across
it while reading a Texas manual on the 990 minicomputer series. It is an Input/
Output facility on the 990/5 and 990/10 only, and the connection seemed too good not
to make use of it. Any riveting alternatives will naturally be considered.

This second issue sees a continuation of the article on the Control and Function
keys with a discussion of tokens amongst other things; an article from outside the
group: Dave Hewitt of the Hoddesdon User group on making use of your own TV or video
UHF modulator; and the beginning of the BEGINNER'S BASIC which first appeared in
Tidings. This series made reference to another which appeared in Tidings: the

Maths revision series which may, if necessary, be brought in to swell the ranks as
it were. le will also be examining some of the data being produced by Richard
Blanden, who appears to have delved deeper into the %4A than anyone before him.
Later, if time permits, we will have an article concerning problems experienced with
a continental TV by GRAHAM DIACON.

Finally, there is a short questionnaire enclosed (with postage materials) which, if
you are feeling helpful, you might fill in. All replies will be treated in the
strictest confidence - in fact, once I have the necessary numerical data, I will be
destroying the returned sheets. I look forward to hearing from you.

2021- nb: vital information is omitted- see the ERRATA on p9 of the next issue.
This information applies to modulators in a METAL case not the plastic housed modulators. pp

MODIFY YOUR MODULATOR

S

by DAVE HEWITT (originally published under BABBLING BROOKS II in TI.MES, Spring 84)

For some time we have been wondering about the possibility of connecting a TI-99/L4A
directly to our home video recorder, or for that matter directly to a TV monitor
(i.e. RGB + composite video).

You may have noticed that many new domestic TV sets now come equipped with sockets
at the back to accept direct sound and video inputs, and in other models such as the
THORN TX10 chassis range (not the TX9 or 90 range however) a kit to adapt them is
available from the manufacturer's Spares department.

We looked at the video modulator circuits for other home computers and at a MULLARD
circuit for converting the type of signal produced by the 99/4A (i.e. R-y, B-y,

+ composite video. We undersiand that this somewhat odd arrangement for outputting
video from a computer is a hang-over from the machine's beginnings as an NTSC

model, or so an item in TIHOME's Tidings suggested.)

While contemplating the problem of making a unit which would encode this signal,

we wondered how Texas had overcome the difficulty. If you think about it (we would
be embarrassed to tell you how long it was before the penny dropped!) something of

the sort has to go on inside the UHF modulator (that little box which goes between

computer console and TV).

In fact, several stages of conversion and mixing (matrixing) go on inside this unit.
The colour information is added to the black and white (or, if you like, the
composite video has the chrominance information encoded on it) plus the sync-
pulses (to tell the TV where to start scanning and when to stop, etc.). There is
also one other vital signal which is added right at the end, and that is on a
separate sub-carrier of 6 Mcycles, and this is the audio or sound signal.

When all this information has been processed and received some amplification it is
finally passed on to the UHF modulator itself. An Ultra High Frequency modulator
is the part of the circuit which takes the mentioned signal package and converts it
into the sort of output that your UHF TV aerial input socket is looking for. (e
could)go on about modulation for a lot longer, but it is already getting out of
hand!®). '

To cut a long story short, what you need to do is to disconnect the modulator from
the console and the TV and remove the three screws which hold the top cover on.

The part of the circuitry which we want to get at is the input into the UHF modul-
ator from the processing circuits which preceed it. This signal is at just the right
level and impedance to feed into the already-mentioned video input circuit on a TV
set or into the camera or auxiliary socket which is provided on most video recorders.
de have found that the audio circuit can be directly coupled to the audio input,

but the video circuit needs coupling through a 47 uF condenser (in practice any
condenser we tried between 10 uF and 1000 uF worked fine). With the modulator unit
turned so that the lead to the computer is coming out of the bottom, observe this
lead as it enters the box, and you will find that its inner cables divide 6 ways
(including the outer screen which has been made tidy by wrapping im a bit of thick
yellow sleeving). The audio signal is carried by the thin yellow wire which goes

to the bottom right hand side of the printed circuit board.

Cut this wire and fit a suitable piece of sleeving over it (to insulate the connec-
tion again when you have ‘finished). Join a fresh length of suitable audio single
screened wire to the junction of these wires, the inner cable being joined now to
the yellow audio lead. Fold back the outer screened wire of the new cable, fit
some sleeving over this and solder the end on to a convenient point on the metal
case of the box (the silver-coloured screening can of the modulator is ideal for

this purpose). Page 3

Fit the correct type of plug on the other end of the new cable to fit the audio
inputiof your TV or video. This lead may be used on its own for taking the output
of the computer's sound circuits to your stereo system, to give a better response
that the speaker on your TV might offer. '

If you wanted to be really clever you could add a volume control at this point,
but we will not go into that now.

Next locate the small 1 kilohm resistor which sits above and to the right of the
modulator. Solder another inner cable from the left hand side of this resistor,
again soldering the outer screening cable onto the modulator's screening can. Fix
a suitable plug on the other end of this lead and fit into the video input socket
of your video or TV.

Switch your video to the camera or aux. position and you can observe the output
from your computer via the channel which you would normally use for playing video
recordings.

This now allows you to make video recordings of your favourite video games, and to
have 'action replays'. Just think of that high score in your Alien-Mothers-in-Law
program which nobody would believe - well, now you can prove it!

In general we have found that the quality from the more sophisticated modulator
in your video is higher than that obtained from the unit supplied with the micro.
‘e use this direct-input facility to record professional titles on our home video
recordings, to do simple graphic headings, and even record some of the visually-
pleasing patterns produced by the Designs program given in an edition of Tidings
by Pete Brooks.

If you connect the inputs directly into the sockets on the back of a domestic TV
the gain in picture definition and stability is quite marked, and frees you from
that annoying tuner drift which often occurs as modulators and tuners warm up.

All that remains is to drill two holes in the modulator unit's casing, large
enough to accept the two new cables with protecting grommets. If preferred, one
could fit suitable chassis sockets on the 1id or case of the TI modulator so that
the unit can be unplugged from the new leads, or maybe a line socket could be used
on a short lead, but both of course should use proper co-axial screened cable.

Ye have attached 12 feet of lead on both outputs and have not encountered any
undue 'pick-up'. The UHF output from the TI modulator is not disturbed and may
be used at the same time without affecting either cable.

BEditor's note: if you decide to follow the instructions given in this article,
pPlease take every precaution possible to guard against any chance
of electric shock. Any reader undertaking the modification
discussed here does so at his own risk. The publisher and the
author cannot be held responsible for any damage which may ensue
as a result of this modification.

Both the editor of TI.MES, Clive Scally, and I have tried to persuade Dave Hewitt
to write regularly on hardware modifications which can be undertaken by TI-99/4A
owners in order to improve their systems, but in vain. Dave camnot find the time
to make a regular contribution. However, as a result of a recent telephone chat
to Dave I may be able to present another article in the near future which will
enable all those possessing a disk system to access BOTH sides of a disk. Note that
this will require DOUBLE-SIDED DIZKS, as the standard system uses only SINGLE-SIDED.
Dave assures me that the modification is ridiculously simple, involving the use
of asingle resistor to permit DSK1. and DSK2. accesses.

Page 4

BEGINNER'S BASIC II

U

by Peter Brooks (originally published in Tidings, V2.4, August 82)

Introduction

Although TI manuals have a reputation for being comprehensive and well-written,

it would appear that many owners have been experiencing some difficulty in
following the explanations given. It may be that this difficulty arises because
the manuals assume some basic understanding on the part of the reader, or, more
likely in my view, that the majority of readers are not used to reading what amount
to reference works. There is a degree of skill involved in sifting through and
absorbing the small amount of information required from the mass presented; this
problem was highlighted in a questionnaire sent out by TIHOME in 1982, in which
many responses indicated that BEGINNER'S BASIC would need to be presented in a very
elementary format, because many readers were putting the“Babbling Brooks” to one
side against the day that they felt equipped to understand them. (Babbling Brooks
was the title of a regular series which was comprised of several different items,
all of them aimed at the novice user.)

In the light of that feedback I started the Beginner's BASIC, aimed at the novice
novice (yep, two novices) user. The intention was not to replace the TI manuals,
but to supplement them, as the same information, when presented several different
ways, stands a better chance of being fully understood.

And if you think that my explanations don't improve matters, don't forget to write
in and air your views.

Back in the early days of computing, you really did need to be something of a brain-
box in order to program a computer. The early machines were programmed in binary
code, by setting banks of switches; a far cry from today's sophisticated machines,
some of which allow you to program verbally, by accepting speech input.

Someone had a brainwave, and made life a little easier, by allowing programmers

to enter their programs using either hexadecimal (base 16) or octal (base 8) code,
through simple keyboards. Later, the so-called 'high level' languages were
developed, and still are being developed. These allowed programmers to enter what
amount to English words, and one of the early languages was ForTran - Formula
Translation,a 'scientific' language, from which BASIC (Beginners All-purpose
Symbolic Instruction Code) was developed in about 1957 at Dartmouth College, USA.

BASIC was apparently intended originally to help engineering and computer science
undergraduates understand the principles of programming; a kind of 'Janet & John'
language which could be used to build up to the more complex languages used.

But, BASIC proved to be so popular, precisely because it is so easy to learn and
use, that it is still the predominant language around today, despite the fact that
much more powerful languages have since been developed. In other words, it is as -
if most people are still using 'ga@o-goo ga-ga' baby language as their main means
of communication, which is a source of irritation to all academics and some of the
'professionals’'. This is why you will see articles in the popular computing press
which decry the amateur programmer and his BASIC, and why you won't stand much
chance of getting a job in the computer industry if you have only BASIC under your
belt.

To the average amateur, however, BASIC doesn't seem much like a simple language,
until they see programs written in Assembly Language or Pascal, or even Forth.

One hurdle that I found was that I couldn't grasp how the computer actually under-
stood BASIC. Page 5

Most books will tell you that computers only 'understand' machine code (which can
mean binary code, octal, hexadecimal, or even something called microcode!). Even
now, I have gained only a broad understanding of what goes on, and I have found that
the key to understanding BASIC is a little understanding of what goes on 'behind the
scenes' - in other words, how the computer 'sees' things.

To begin with, from the moment that we switch the computer on, programs are running.
There is a program which prepares and produces the screen display, sending it to the
TV together with instructions for synchronisation. There is a program which checks
the keyboard to see which keys are being pressed and what should be done if any are.
There are others which actually execute the BASIC programs which you write, and yet
others which handle the flow of information between computer and peripherals.

Unfortunately, even today, very few details are available about the internal
workings of the 99s, so one can only speculate in some cases about what goes on
inside. You can get an inkling of the volume of work being done by the machine

if, after selecting TI BASIC, you turn up the volume of the TV (hopefully properly
tuned to the right channel) when you will be able to actually 'hear' the cursor
blinking on and off. If you then press a key like ENTER for example, you will
hear the tone change as the computer responds. Type a valid instruction like

CALL CLEAR and enter it (and make sure it IS correct or you'll blow your socks off
with a deafening error tone!) and you can hear the machine at work. lihen you
enter something, by pressing ENTER or using one of the other entry keys: FCTN X

or FCTN E (replace FCTN with Shift on 99/4s), the computer runs part of a program
which compares what you have typed with what amounts to a list or dictionary of
instructions which it can ‘understand'; if it finds that what you have _entered
doesn't appear in the list, it runs another part of a program which deals with
errors. Otherwise it will execute whatever machine code routines (and there are
many) it needs to use in order to carry out the commands which you have issued.

ihen you enter a BASIC program, there is a lot which you the User do not realise
is happening. %Yhen you type a line number followed by a BASIC statement, and then
ENTER it, the computer runs a general check to see if what you have entered is
allowed by the rules which have been laid down by the designer. Try entering

100 RUN

and see if it is accepted. TI BASIC won't allow RUN to be used as a statement

in a program. Assuming that the line you have typed ‘is not replacing one which
exists already, the computer then replaces all the RESERVED WORDS (like PRINT, IF,
FOR, INPUT, etc.) with TOKENS, which are single characters and therefore take up
far less room in memory. Certain other symbols (like =, +, &, -, etc.) are also
replaced. This aspect of the operation of the machine is being covered in issues
1 and 2 of TI-LINES.

There are at least two facets to any attempt to write a program. One is the
language used - in this case BASIC, which will be looked at in greater detail .
later. The other is probably the most difficult thing to understand or to explain,
and that is what it actually means to '£rogram'. I am handicapped by the fact that
it is now 7 years since I first"learned’to program, and I find it very difficult to
remember exactly what it was like before then.

I have yet to find a simple way of getting the novice programmer to realise that
he or she has been programming for years without ever being conscious of it. If
you have ever written a shopping list you've written part of a program; every
waking hour is filled with little programs which you have learned over the years:
ones which make you get dressed before goingrout, which make you open your mouth
before shovelling food in, which make you open a door before trying to go through
it. In theory, anyway. This doing things the right way round is an example of
something called an ALGORITHM, a rule or set of rules which are used to achieve an
objective, and is an integral part of any progranm.

Page 6

I have tried giving programming examples which make people think: my favourites are
of the smoking and shopping variety. You either write down the sequence of actions
involved in lighting up, or in sending the kids to the shops for a tin of beans.
The trouble is that while these illustrate the principles of programming and of
logical thinking, they have no relevance to BASIC, unless you happen to have a
robot tacked onto your 99. The above examples are concerned more with the control
of things, whereas BASIC is more concerned with processing data.

A better example might be if I was to ask you to do some arithmetic for me. If I
asked you to add four numbers together, how would you set about it ? You might ask
for the first number, and then perhaps write it down. You would then ask for the
second number, and write that down under the first, and so on. Once you had the
four numbers, you'd add them up, writing the answer underneath. You might then
tell me what it was. '

There are three separate actions occurring here. The first is INPUT, the second is
PROCESSING DATA, and the third is QUTPUT. Things are not always so cut and dried,
as you will come to find out; sometimes processing halts for further input, some-
times there is no output, sometimes no input as such. But generally programs can
be divided up into those three sections. The sequence has to be right, too, before
the program will work properly. You couldn't give me the answer BEFORE I'd given
yu the numbers, for example. The INPUT section is fairly obvious: it consists of
you prompting me for the numbers, and me giving them to you when you are ready for
them. The PROCESSING is also fairly obvious - it consists of you doing the adding
up. The OUTFUT consists of you telling me what the answer is.

Not all processing involves arithmetic, however; at least, not in the sense implied
above. Suppose that I had asked you to sort some words into alphabetical order
"instead. Again there would be an INPUT section, where you prompted me for the words,
perhaps writing them down on individual ‘cards. The PROCESSING this time would
involve shuffling the cards around according to a:set of rules (an ALGORITHM,
remember ?) until they were sorted. The OUTPUT might consist of you reading the
cards out to me, or storing them away somewhere without reading them out at all.

In theory what you are supposed to do is to sit down and specify the problem that
you want to solve, or the game that you want to play. You then write down as many
of the steps involved as you can, elaborating where necessary. You go over this many
times, trying to iron out errors, making sure that you have covered everything
(which of course you never have), until you are satisfied that you have done all
that you need to. You can then begin to write the program in the language which
" you have chosen. :

“hat usually happens though is that you sit down at the console with a rough idea
of what you want to do, and you begin writing, testing each little bit as you add
it, until you have a program which works. Until you present it with something which
it can't handle, in which case you now have to go right back to the beginning in
order to find out what went wrong, and by now you've forgotten exactly why you did
certain things, and you still keep getting INCORRECT STATEMENT IN 460, although 460
looks OK to you... At this point you wish you'd kept notes on what you have been
doing, and the three scribbled comments on the back of an old beermat don't mean

a thing a fortnight later, and you might as well throw the whole thing over and take
up fishing. Nice quiet hobby, fishing.

If you've been bitten by the programming bug though, you'll be back, having been
struck by a bolt of wisdom on platform 7 at Reading General, breezing into the
house, commandeering the telly in the middle of Coronation Street, and four hours
later you're looking out the flies and the keep net...

In time, if you are lucky, you will come to develop a programming style which suits
you, and if you are really lucky, one which permits you to program with the minimum
of hair-tearing. Don't expect this stage to be reached for quite some time, though,
unless you are undergoing tuition. Or reading this series.....

Page 7

THE CONTROL AND FUNCTION KEYS

PART II

Peter B f o0oks

In the first part of this article we looked mainly at ASCII rather than at using
the CTRL and FCIN keys, primarily because before you can discuss the keyboaxrd scans
and ‘'active' keys, you need some basic knowledge as background. So far we have
glanced briefly at the function of CTRL and FCTN in their roles as control and
editing keys, and at their use to obtain TOKENS. The Users Reference Guide (URG)
gives a list of almost all the control characters, but you may have been confused
WtMrﬁuwmsm'hmﬂ'md%mm'mhmamtmtmdﬁ&mMSusﬁkw
codes listed on page 93. Quite why there should be a difference between the two
modes is not clear.

A 'mode', in case you were wondering, refers essentially to the way in which the
computer has been programmed to respond according to what it happens to be doing.
“hen you are running a program, the computer is in RUN mode and will not respond
in quite the same way as it would in IMMEDIATE mode. Immediate mode is the one

you get when you select TI BASIC (or Extended BASIC, for example) - it means that
the computer will respond 'immediately' to certain commands, rather than storing
them away for later execution (i.e., what happens when you enter program lines).

For example, in RUN mode, pressing and holding down FCTN and then pressing 4 will
BREAK the program - the computer will then return to the IMMEDIATE mode. However,
if you perform the same key presses in Immediate mode, the computer will 'ignore'
any instructions which you have just typed (but not ENTERed), and present you with
a fresh line ready for another command.

Try this:- get into Immediate mode, making sure that there is no program currently
resident - if necessary type NEW and press ENTER - then press and hold down the
CTRL key and press these other keys one after another:

the comma (,), the letters A to Z, the full stop (.), the semicolon (;),
the equals (=), and the digits 8 and then 9.

Release the CTRL key and press and hold down the FCTN key and then press 4 to
perform the BREAK. The display will scroll up, a fresh 'prompt' will appear (the
'greater than' symbol), and the cursor will indicate that the computer is ready to
receive instructions. If you had pressed ENTER instead of BREAK, the response
would have been an error tone and the message BAD NAME - i.e., the computer would
NOT have ignored what you had typed.

BASIC mode therefore is. what you are in when using TI BASIC, and Pascal mode is
what you are in when using the UCSD Pascal system which is available for the TI.

Now thoroughly confused, you probably wonder what on Earth all those control
characters which you have just entered are supposed to do. Last issue I gave

two short, very similar routines to print out on screen all of the User-definable
graphics characters (UDGs), and I mentioned that it was possible to use the CTRL
key to replace one of the routines, which is what we have now done. You might
choose to simplify things and just use CTRL with the alphabet keys (A -~ Z); the
intention is simply to provide a visual indication that any incoming program is
being loaded successfully. There is a set of tables later which gives, amongst
other things, a list of the ASCII characters 127 to 255 and, where possible, the
keys to be pressed to obtain those characters on the screen (in a program listing,
for example). In some cases, more than one combination of keys can be pressed -
for example to get the character whose code is 133 - and in some instances you
may find that your keyboard gives slightly different results: RICHARD BLANDEN tells

Page 8

me that on his 4A FCTN Q gives ASCII 185 instead of 197, which means that his key-
board is probably decoded differently.

The lists contain more information - for example, the TOKENS, which we will examine

a little more closely later - but our interest at the moment centres around the

UDGs. Having placed them on the screen with the CTRL key, get a program which you
have already recorded on tape, and begin the OLDing sequence (see page 9, last issue),
Just to see the effect.

Once your program has OLDed successfully, type NEY and press ENTER. The UDGs
won't now be on screen: place them there as described earlier with the CTRL key.
Note that the 'shapes' are still defined. Most, if not all of them, will be blocks
of apparently randomly-scattered dots and lines, but what you are actually looking
at is part of your BASIC program. To digress a little (again), when you typed

NEV' and entered it, the computer DIDN'T remove your BASIC program from memory.
“hat it did do was to alter a 'system variable'. System variables are values
referred to, and in use by, the computer as it not only runs your programs but
also when in Immediate mode, etc. Somewhere in memory the computer stores details
about any resident BASIC program: where it is currently stored, for example. One
system variable holds the address in memory where the listing begins, another
where it ends. If those two system variables hold the same value (so that the
'listing' begins and ends at the same place) then there is no BASIC program on
board as far as the computer is concerned. NEVW alters the 'end of listing'
variable, and if we had been given access to machine code as standard (PEEK, POKE
and USR or similar) we would have been able to 'recover' a program if we had
inadvertently NEWed it.

Now, because the UDGs definition area in memory, and the TI BASIC program listing
area, begin at roughly the same point,(see last issue) we can 'see', to a limited
extent, what a BASIC program 'looks like', by examining the UDGs without

redefining them. (Again, had CALL CHARPAT() been included in TI BASIC, we could
have obtained the current definition strings for the 'undefined' UDGs, and thus
examined part of the BASIC program without using machine code commands. You can

try this with Miniliemory, but I doubt if it is possible with either Editor/Assembler
or Extended BASIC + 32K RAM Expansion, because they don't make use of VDP RAM in
quite the same way.)

For example, take the BASIC instruction OPTION BASE - disregard the O or 1 for
the moment. ¥hen stored in the computer's memory, OPTION and BASE are 'tokenised‘
- that is, ASCII 158 is placed in memory instead of the full word OPTION, and
ASCIT 241 in place of BASE. In two consecutive memory locations therefore are

the binary equivalents of 158 and 241 decimal. In hexadecimal, 158 is 9E, and
241 is Fl. Co what ? you might say.

Yell, try defining a graphics shape to be "OEF1" - you can do it very simply with
say CALL CHAR(159, "9ZF1") in the Immediate mode, and then use CTRL 9 to place the
character whose code is 159 on the screen. The shape you see is OPTICN BAZE as

it appears in memory through our 'window'. Try translating other tokens in the
same way, and then go one step further: take a simple phrase like "HELLO MA",

work out the ASCII codes for each of the letters and the space, translate then

into hex (the text is 8 characters long, and the resulting hex string will be 16
digits long) and then use that with CALL CHAR() to redefine ASCII 159. You should
have arrived at "4BLSACLUCLF2040L41". Put the character on the screen with CTRL 9
to see what 'HELLO MA' will look like when stored intermally.

Now, quit, select TI BASIC again, put in this routine, and run it:

100 CALL CLEAR 150 FOR I=1 70O 128
110 DIM TEeizes 180 TECI»="HELLO HA"
120 FOR I=12Z% TO iS3 178 HERT I

130 PRINT CHRECI:: 120 5070 150

140 MEST I Fage 9

TCKENS IN TI BASIC : KEYBOARD - DIRECT : AFTER STEFHEN SHAW TIDINGS V2.3 1082

ASC STROKE FUNCTION ALTERNATIVE
127 FCTN V Unused (DEL) |
128 CTRL , Unused
129 CTRL A ELSE
130 CTRL B Unused
131 CTRL C Unused
132 CTRL D IF
133 CTRL E GO CTRL Shift D
134 CTRL F GOTO
135 CTRL G GOSUB
136 CTRL H RETURN
137 CTRL I DEF
138 CTRL J DIM
130 CTRL K END
140 CTRL L FOR
141 CTRL M LET
142 CTRL N BREAK
143 CTRL C UNBREAK
144 CTRL P TRACE
145 CTRL Q@ UNTRACE CTRL Shift A
146 CTRL R INPUT ~ CTRL Shift .F
147 CTRL S DATA
148 CTRL T RESTORE CTRL Shift &
140 CTRL U RANDCMIZE
150 CTRL V NEXT
151 CTRL W READ CTRL Shift S
152 CTRL X STOP
163 CTRL Y DELETE
154 CTRL Z REM
155 CTRL . ON
156 CTRL ; PRINT
157 CTRL = CALL
158 CTRL 8 OFTION
159 CTRL 9 OPEN
160 CLOSE
161 SUB
162 DISFLAY
163 Unused

ASC STROKE FUNCTIGN

164
165
166
167
168
169
170
17

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
108
199
200

e B RS B R I N e)

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
TBEN
TO
STEP

-e

R~ v e

Unused
Unused
Unused
Unused
Unused

+ VY A

/
A

Unused
Quoted string

Unquoted string

ALTERNATIVE

FCTN)

Page 1

ASC STROKE FUNCTICN

201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227

Line number
ECF
ABS
ATN
Ccos
EXP
INT
LOG
SGN
SIN
SQR
TAN
LEN

Unused
REC

Unused
Unused
Unused
Unused

Unused

ALTERNATIVE

ASC STROKE FUNCTICN

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251

252
253
254

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
BASE
Unused
VARIABLE
RELATIVE
INTERNAL
SEQUENTIAL
OUTFUT
UFDATE
APPEND
FIXED
PERMANENT
TAB

ALTERNATIVE

Using the CTRL (Control) key, all the User-definable characters may be brought directly
onto the screen (and into listings) through the keyboard, rather than by using CHRE()

as is necessary on the TI-99/4.

During cassette OLDing in TI BASIC, incoming program

data is transferred into the same area of memory used to contain definitions of any

User-defined characters which may subsequently be used.

This explains the appearance

of 'pre-defined' shapes reported by some users when pressing either CTRL or FCTN and

other keys.

CLOSE
cos
DATA
DEF
DELETE
IIM
DISFLAY
EISE
END
EQOF
EXP
FIXED
FOR
GO
GOSUB
GOTO
IF
INFUT
INT
INTERNAL
LEN
LET
LG
NEXT
ON

CTRL = ©

TOKENS : BY RESERVED WORD / SYMBOL

CODE KEYSTRCKE(S) TOKEN
203 ' OFEN
249 OPTION
220 OUTPUT
204 PERMANENT
241 ~ POS
142 °n PRINT
157 °= RANDOMIZE
214 READ
160 REC
205 RELATIVE
147 Ss REM
137 %1 RESTORE
155 % RETURN
138 S5 RND
162 SEGg
129 % SEQUENTIAL
139 % SGN
202 SIN
206 (/) SQR
250 STEP
140 °L STOP
133 2 , ®shift D STRY
135 ¢ SUB
134 % TAB
132 %p TAN
146 °r , shift F THEN
207 70
245 (%/) TRACE
213 UNBREAK
141 M UNTRACE
208 UPDATE
150 % VAL
155 °©, VARIABLE
£

FCTN =

Indirect = ()

string symbol = g

CODE KEYSTROKE(S)
159 °g

158 °s

241 (%))

251 (%/)

217

156 °;

149 %

151 %, Sshift s
222

244

154 %z

148 ®r , ®snift ¢
136

215

216

246

209

210 (¥/)

211

178 ©2

152 °x

219

161

252

212

176 %0 (zero)
177

144 °p

143 %o

145 °q , ®shift A
248

218 (%)

243

Page iii

TOKEN CODE KEYSTROKE(S) TOKEN COLE KEYSTROKE(S)

QUOTED STRING 199 (%) & 184 T,
UNQUOTED STRING 200 (fY) = 190
LINE NUMBER 201 (°B) < 191 g
#H 253 (%/) 5 192 I
, 179 3 + 193 Ty
; 180 4 - 194 T
: 181 c"j * 195 fM
) 182 / 196 Iy
(1835 °7 A 197 Tq
CTRL = ¢ FCTN = Indirect = () string symbol = ¥

CONTROL/FUNCTION KEYCODES : "UNUSED* RESULTANT SEQUENCES (TI BASIC) : PROGRAN

NEW

100 REM A% = "insert single ctrl/fetn character here"
110 FOR L = 1 TO LEN(AZ)

120 PRINT ASC(SEGZ(AZ, L, 1));

130 NEXT L

EDIT 100

100 delete 'REM' to give A = "sequence"

RUN

Printout of ASCII codes of sequence occurs

In some instances, 'unused' control/function characters have a use in Extended BASIC,

and there may well be additional language modules which employ further 'unused' codes,

R TR TR ST MR R Em M s TR e e R TR e T e Er WR e wm T e n e W Gm SE OGP G wm % e S e e e e W en e

Fage iv

The sequence runs like this:

Clear all the UDGs of shapes; come back into TI BATIC

Clear the screen

Reserve space for a string array which has 129 elements (0 - 128)
Print out all the UDGs in a continuous string -
Put the text "HELLO MA" into every element of the array

Go back and do (5) again until BREAK is pressed

A\n £ N
N N N N N

If you leave this running for some time, you will notice one or two peculiar things
happening; see if you can explain what they are and why they occur (answers next
time).

Above all else, you should be able to recognise your 'HELLO MA' pattern appearing
over and over again in the UDGs, although it probably won't sit squarely in each
character - it may overlap from one character to the next. You'll have to BREAK
the program to stop it running. Try different groups of letters to see the shapes
that different words or sentences produce.

OK, you say, now what ? I still don't see how to use CTRL or FCIN in my own
programs.

‘ell, if you examine the CALL XEY() command in the URG, you'll see that with some
Keyboard scans the FCTN and CTRL keys are 'active' - they will return a number if
you press a combination of either CTRL or FCTN and certain other keys - and in
others they are not. If you want to provide some special keys to be pressed, to
provide some options for the user, you could use "PRESS 1 FOR this, 2 FOR that,"
etc., OR, you could use "PRESS CTRL AND 1 FCR this, AND 2 FOR that," etc.

Because the TI use of CTRL characters is non-standard, they will not have the
same power as on other systems, but they can be used to extend your range of
keys for use as menu options.

However, it must be said that it is probably simpler and easier NOT to use CTRL
or FCTN in this way - in menus, you are unlikely to need to use more than the
keys A - 2 and O - 9 for any program that you could write for the 99s.

“here CTRL does have a use is in listings. Instead of using the laborious (and
space~consuming) CHRZ() function (with or without loops, to manipulate the UDGs,
you could employ the characters directly: for example, instead of:-

PRINT CHRZ(128);CHR#(129);CHRZ(130) : CHRZ(131);CHRZ(132);CHRA(133) :
CHR/(1734) ;CHR#(135) ;CHRA(136) = & »

You COULD shorten it to:-

FOR I = 128 TO 134 STEP 3

PRINT CHR{(I);CHRA(I+1);CHRY(I+2)
NEAT I

PRINT : :

But better to use:-
PRINT "CTRL , CTRL A CTRL B":"CTRL C CTRL D CTRL E":"CTRL F CTRL G CTRL H": :

where, obviously, you don't type C-T-R-L in full, you press and hold down the CTRL
key and then press the key for the letter or punctuation mark shown. Don't forget
to make a note somewhere of the keys that you have used, and in what sequence, for
reference (although you can edit any such line and replace "PRINT" with "Ag=",
and then encompass the following FRINT statement with quotes. You can then run a
loop of 1 to LEN(AZ), and PRINT out the ASCII cedes - AZC(CEGE(AZ, loop, 1));
w#hich will show you which char:cters are 'hidden' in the listing. Illext issue we'll
uce this technique to uncover some interesting things.).

Page 1C

Note that after the first RUNning of any program containing the UDGs directly in
listings, they will 'appear' in their redefined form in the listing. Remember this
when producing hard copy on any printer capable of reproducing the listing exactly.

We now come to a more detailed examination of the tables of tokens. I have arranged
them by ASCII code and by alphabetical key word. It might be useful here to stop
and point out the difference between key words and Reserved words. A key word

seems to be,universally, the BASIC word which is replaced by a token when listings
are entered ('tokenisation'). A Reserved word is one which has been reserved for
the computer's use and the user cannot employ them as variable names. In this
respect, LIST, RUN, CON(TINUE) etc., are Reserved words but not tokens, while LET,
IF, PRINT, etc., are both key words AND Reserved words. (Just as you cannot have
100 RUN in TI BASIC, you also cannot have 150 CON = 3000 or 1000 FOR IF = THEN

TO ELSE STEP GO....1100 NEXT IF!). The URG lists the Reserved words, and in the
tables here the key words are given. Notice that there are even tokens for +, -,

/s & (,), etc., and that some key codes are 'unused'. Under certain circumstances,
if placed in a listing these will produce gobbledegook in TI BASIC; some DO have a
use in Extended BASIC (see Stephen Shaw's list in Tidings) and others have some
function but at the moment we know the function and not the language!

Some of them are UPRCZ, DAT¥, etc., (related to me by Richard Blanden) and I have
seen these before in a TI 990 manual. This tends to support the belief that the
99/4 and /4A are cut-down versions of full-blown mini-computers, complete with
mini-computer operating systems. (For example, in the FILE PROCESSING commands,
the file description PERMANENT is given, suggesting that there is possibly also a
TEMPORARY description. The URG says that PERMANENT may be omitted as all 99 files
can be considered permanent - if that is the case, why have PERMANENT at all ?
Because the mini-computer operating system from which the 4 and 4A system is
derived uses PERMANENT and TEMPORARY ?...)

The use of CTRL and FCTN to obtain these tokens is of little real practical help
when programming, but it is a tool with which to dig a little deeper into the 99/4A
(but not unfortunately the 99/4, which has no CTRL or FCTN keys), without needing
to expand it. ,
-Although we will have articles later for those possessing MiniMemory and the like,
this initial foray is for those who have just the console and who want to play
detective (my favourite past-time bar none!). :

In the table of tokens by ASCII code, you'll see that after ASCII 198 there are
tokens but no key-strokes. There is also a block between ASCII 160 and 175 which
also cannot be accessed directly from the keyboard. (If YOU find anything different,
please let us all know.).

In the next issue of TI-LINES we'll look at ways of accessing these 'indirectly' -
some initial details are given in the tables - and hopefully play around with the
effects of editing lines, and discover the devastating effect of ASCII code O.

Now for some fun. Clear'any program from your computer, type:
1REM

(note: no spaces) and then press and hold down the CTRL key, and press U and keep
it pressed to bring the auto-repeat into play. When you reach the end of the 4th
line, where the cursor will stop and the machine will make rude beeping noises,
press CTRL A and then ENTER. CTRL A gives 'ELSE' which will serve as our ‘end of
listing' marker. \

Ye now have a TI BASIC statement which is 4 lines long - or do we ? CTRL U is the
token for RANDOMIZE, and we have around 107 of them, so LIST and watch the longest
TI BASIC line you'll ever see. (Well, almost: 'SEQUENTIAL' is one letter longer, but
we can't get the token for it directly from the keyboard).

Page 11

This is where life gets complicated. Type EDIT 1 and press ENTER. Eventually
the screen will stop scrolling and the last word on screen will be ELSE, but where
is the cursor ? (F64000 question). Answer: sitting over the 'R’ in 'REM'. Where
is that ? ($128000 question). Answer: I don't know, but try using FCTN D to move
along the line (wherever it may be) and watch the screen scroll up one line for
every character sideways that you move the cursor. Bring the auto-repeat into
play and be prepared for an all-time-great crash (not audible). The psychedelic
flashing, flickering colours and shapes you see are caused by the computer being
forced to clog-dance through its own work area, upsetting the colours, ‘patterns’,
even the Sprite descriptors. To get back to normality, exit from your ‘editing’
with FCTN 4 (BREAK) and then type RUN and ENTER. If all goes well, your normal
screen colour should return and the shapes on screen (if they have been visible!)
should resolve into normal letters etc.

I suspect that there may be a use for this. (You may suspect that I have a screw
loose. I suspect that you may be right...)

If you possess a spirit of adventure, play around with this some more and let us
all know what you find!

MICROTIPS

Although the manual doesn't tell you so, the keys R, C, and E are ‘active' when you
OLD and SAVE to cassette. You can, for example, type SAVE CS1 and press ENTER, and
then press C, and the computer will act as if you have already been through the full
SAVE sequence and now want to check the program which has just been SAVEd. This
has the advantage that you can check a program which you already have on cassette
and compare it with the program which you have onboard to see if they are the same
(perhaps to try and avoid making duplicate copies of an amended program). On the
other hand, you may have wanted to SAVE the program but been called away to deal
with a major catastrophe (the dog's been sick in the washing machine, your eldest
has just taken the ears off the guinea pig with the Flymo, and the cat from next
door has just dug up the gerbil you carefully laid to rest last week. And the week
before. And the week before that...) in which case you can press E and exit, just
as if you had encountered an error and decided not to pursue matters further.

This is one of those tips which can be of immense use to some owners and of no use
whatsoever to others. 1I've always found it very useful: I have this habit of not
checking a program with C having SAVEd it, and this enables me to check it later
when I suddenly feel uncertain about the reliability of my cassette recorder. In
addition I occasionally use CS2 to SAVE programs (usually because I've either gone
and typed the wrong instruction without checking what I was doing, or because I've
had trouble with my CS1 RECORD lead), and to check it I then change the leads

round (well organised, you see), type SAVE CS1, press ENTER, and then press C, which
allows me to check the program.

Editor's note: There have been no entries for the Bulletin board and no response
to Gary Harding's request for assistance. If any member feels that
they could be of some help, please don't hesitate to get in touch
with me.

Page 12

ONES & TWOS COMPLEMENT

Peter Brooks

Don't worry if this leaves you with glazed eyes and gasping for air. It's a

complex concept and I can't claim to be able to make the explanation easy. If

you can't follow it at all, the solution is straightforward. Cough politely, and
move on to the next article. Next month, try reading it again. And the month after
that. Until suddenly, you'll find bits dropping into place. You may even read

a far more clearly-explained account in the meantime; either way, the exposure to

it here will have paved the way.

Although you may not think so now, sooner or later you're going to take an interest
in programming in machine code - if you haven't done so already. %hen you reach that
point, it can help a little if you have already been exposed to some of the concepts
involved. In fact, if you have Extended BASIC, it can help to explain how NOT
functions in statements 1like IET A = NOT B.

To begin with, we have to broach the thorny subject of the BINARY numbering system.
We may be surrounded by binary. systems (e.g., light switches: ON and OFF - or, like
mine, ON, fizz-banglouch! and OFF) but we are so decimal-oriented that counting in
tens seems the only way to count.

Until, that is, the day that number one son comes home, holds up ten fingers, and
‘tells the family that he can count up to 1023 on them.

In the decimal or DENARY system, the digits O to 9 are used in combination to
represent quantities. If you were brought up to think of numbers in this form:-

Thousands ' Hundreds' Tefis Units Tenths Hundredths

1000 100 10 1 1/10 1/100
then life may bea little easier for you.

The decimal number 123 is really ONE hundred plus TWO tens plus THREE units (a
UNIT is Maths Jargon for ONE), or (1 x 100) + (2 x 10) + (3 x 1). 1In the case
of the headings above, each column is the 'BASE' (10) times the value of the one
to its right. Notice how it can be extended in both directions.

In the dreaded BINARY system, only the digits O and 1 are used in combination to
represent quantities. The column headings are then:=-

Thirty-twos Sixteens Eights Fours Twos Units

or:-

2 16 8 4 2 1

Decimal 123 when expressed in binary terms is (1 x é4) + (1 x 32) +(1 x 16) +
(1x8)+(0x4)+ (1x2)+ (1x1)or 1111011.

Generally, in computer terms eight binary digits (BITS) are used at a time - a BYTE -
and this gives column headings of:-

128 6+ 2 16 8 4 2 1

The combinations of Os and 1ls range from 00000000 to 11111111, which, in decimal
terms, runs from O to 255. (Work it out: 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1).

Page 13

Corrected
issue 3:

O To
- {47

When it comes to treating these combinations in a byte as numbers and trying to
perform a little maths with them (as you would when programming in machine code)

a few difficulties arise. Firstly, for straightforward Maths you won't be able to
count higher than 255 decimal unless you begin to use short machine code routines
to handle several bytes at once (in the 99s case, there are special machine code
commands which work on two bytes at a time, giving combinations of O to-65535.).

Secondly, you won't be able to handle fractions, nor will you be able to cope with
negative numbers, so any subtractions like 4 - 6 will not be possible.

To get round this last problem, the use of a byte to represent a number is changed.
Only 7 out of the 8 bits are used to represent a number and the 8th bit is used as
a 'sign' bit - to indicate whether the other 7 bits represent a positive or negative
number.

We can now count from O to +127 (00000000 to 01111111), and with the 8th bit set,
we can count from O to -}28 (00000000 to 11111111). However, life is never simple,
and it is not as easy as that. To show why this particular method of indicating
the sign won't work correctly, try adding 3 and -3. The result should be O. Using
the simplistic system just outlined, 3 will be 00000011, and -3 will be 10000011.

00000011
10000011 +
10000110

The result is -6. If you have any difficulty deciding how the result was arrived
at, drop me a line and I'll give a shortie in a later issue on simple Maths in
binary. .

So, how can we represent negative numbers accurately ? The answer is confusing
and complicated. There are two steps involved. The first is 'inversion', or
ONES COMPLEMENT (otherwise also known as NOT). What you do is to produce the
positive version of the number which you want to make negative. To get -3, then,
you begin with +3, which is 0000001l in binary. You then make all the 1ls into Os,
and Os into 1ls. This will turn 00000011 into 11111100. Are you with me so far ?

Then you add 1 to the inverted bits. This turns 11111100 into 11111101, and to all
intents and purposes 11111101 is -3. Note that the 8th bit is set to 1, signifying
a negative number. This addition of 1 to Ones Complement is called TWOS COMPLEMENT
and is a very important procedure. .

To test this rather odd-looking method of obtaining a negative number, let us again
try adding 3 to -3. What we now have is:-

00000011
11111101 +
100000000

We have ended up with a 9 digit binary number. Har, har! I hear you say. So much
for your Maths. However, bytes only come in groups of 8 bits, and the 9th bit is
actually 'lost' - it is an ‘overflow' - leaving us with 00000000, which is zero in
any numbering system.

Twos Complement takes advantage of this overflow and subsequent loss of the 9th
bit. And no, I don't know why they call it Twos Complement when there is no 2.

Having got this far, let us examine some other combinations. What, for example,
does 11111111 represent ? The 8th bit indicates that it is a negative number, only
which one ?

To discover this, we need to reverse the procedure involved in Twos Complement.

Page 14

Important: Refer to ERRATA in issue 4 (Page 9) 2021 bb

We must first subtract 1, and then invert the result. 11111111 - 1 = 11111110.
Inverting this gives 00000001, or 1. Thus 11111111 is actually -1! If you are not
convinced, try producing -1 using Twos Complement. Remember, get the positive form
first: +1 is 00000001. Then invert (Ones Complement): 11111110. Then add 1:
11111111, '

What then is the largest negative number that you can produce ? Earlier I said
that using the first (and incorrect) method the largest value was -128. What
does that look like in binary ? Take +128: 10000000. Invert: 01111111. Add 1:
10000000. That may have caused a double-take, but it is correct.

So far we have examined just a few numbers. Is there an easier method ? Well,
in fact there is. If you look at the numbers again, see if you can spot the pattern:

BINARY UNSIGNED SIGNED
NUMBER DECIMAL DECIMAL
00000011 3 +3
11111101 253 =3
11111111 255 -1
10000000 128 -128

The 'unsigned' values are those you get if you forget that the 8th bit is acting

as the 'sign'. First, notice that if you forget the '+' and '-', the signed and
unsigned values always add up to 256. Second, notice that with the negative values,
if you subtract 256 from the unsigned decimal value, you obtain the signed value.
Or, to put it more logically, the negative value is 256 minus the positive value.
Thus -3 is 256 - 3 (=253), -1 is 256 - 1 (=255) and sa on. No need to go through
all the Twos Complement process. To reverse the process, you simply subtract the
unsigned value from 256. (I know it sounds confusing, but keep at it!).

To check this, try obtaining the negative value for 103 using both methods.

Using Twos Complement, 103 in binary is 01100111; inversion gives 10011000, add 1
is 10011001 (which is 128 + 16 + 8 + 1, or 153), representing -103.

Using the last method, 256 - 103 is 153. Quick, eh ?

Having suffered all that, how does it help to explain how NOT works in Extended
BASIC ? VWhen used thus:

A = NOT B

NOT operates as an inverter, giving ONES COMPLEMENT. If Twos Complement gives the
negative value of a number, and Ones Complement is 1 less than this, then NOT is
equivalent to producing the negative number minus 1. Thus NOT B is the same as
-B-1, the use for which escapes me for the moment...

CLOSE FILE

That's all there is for this issue, I'm afraid. Until things stabilise, I will not
be able to condense the material in each issue, or provide a greater variety of
subjects. There is one piece of good news, however. TI may have withdrawn from the
market, but in the wings there are a number of medium-sized firms waiting to put a
number of products onto the market. The voice recognition unit has gone on sale

in the USA, the quality of software is increasing all the time while the price is
slowly becoming more realistic, and I understand that the current dearth of TI's
own Extended BASIC module may be eased by an independent producer, PARCO ELECTRICS

of Honiton in Devon. We are waiting for licensing agreements to be settled it seenms,

and then we could be in for a bright year in 1984. /

¢ bt e

