TI LINES
Whilst reading TI-LINES you will find Peter reporting that
ZXC is about to do HGT or that UUU is about to be on sale.

Alas TI-LINES contained a lot of rumours that have no basis
and a large amount of vapourware.

Many things reported by Peter didn't happen. He was a very
credulous reporter.

This does not detract from his lengthy articles, but do treat
the reports of new and coming items with a large pinch of salt.

2021 bb

Volume 1, Issue 3, June 1lst., 1984

TI-LINES is the monthly newsletter of the OXON TI USER
group and the presentation of any material herein is
copyright of each individual author.

TI-LINES is produced and published by:

Peter G. Q. Brooks
29 Kestrel Crescent
Blackbird Leys
OXFORD OX4 5DY

Telephone OXFORD 717985 after 8 p.m.

Every effort is made to ensure that the information given
here is correct. The publisher cannot be held responsible
for any inaccuracies.

TI-LINES is available to blind/partially-sighted Users
on audio cassette - contact the publisher for details.
It is also available on associate subscription + Users
outside Oxfordshire for £10 p.a. Back issues are £1
including post and packing.

Contributions to TI-LINES are welcomed. It is the
responsibility of each individual author to ensure that
their material does not infringe copyright, and that it
is presented in as legible a form as possible, when it
may be subject to retyping and limited editing. Any
artwork should fit within a maximum A4 area and should
not contain colour. Very high contrast line drawings are
preferable and these may be produced by arrangement with
the publisher.

OXON TI USERS TI-LINES V1.3 JUNE 1984

Index to articles

Page

EDITORIAL. ccctesesscsssensoseocnsescssencsasasassoscssssosssccsasasncansonsnses’d

New format TI-LINES. Associate Members. Who gets TI-LINES.
Errata. New section for the younger OTIUs from DAVID BROWN.

BULLETIN BOARD .« cscovassseooasccocccssssacsssassoseasnssasacnsscsancosensonsossold

Two lots of goodies for you to consider

BEGINNER'S BASIC IT¢.ceceresecrascscacascscssoscssosasescsscssssscsnsscnsncsceed
The First Steps - LET PRINT LIST RUN RESEQUENCE Variables Separators

ERRATA.................-.............................n.-....---...............9

Oops! I and II

LETTERS evececesceceseccscsenssscassoassesnssascsssanssssssasascssssscnnncsesssd

Stephen Shaw and the RS232 card information

THE CONTROL AND FUNCTION KEYS IIececceseccoscsosssacecsossossoncoasessssceseell

On and on it goes...

BOOK REVIEW..occeceseoacsanoscocsssesscscssscssssessncssassasacnsacsesnonsessslld

KEC 30 HOUR BASIC by Clive Prigmore National Extension College

CLOSE 8 T £
Who is making the 4A now ? The Speech Recognition System.
UK version of Extended BASIC to come,

EDITORIAL

Hello and welcome to the first of the subscribed copies of TI-LINES, and to a new
format. I have managed to obtain reduction-copying facilities and it is my intention
to replace the original A4 size issues with A5 booklets as soon as it is practical,
thus making any collection of TI-LINES consistent.

As a result of Home Computing Weekly publishing a letter from me concerning Oxon TI
Users I have had many enquiries from owners resident outside Oxfordshire who would
like membership details. My letter mentioned the facility whereby TI-LINES is read
onto cassette for the benefit of blind/partially-sighted Users, and my willingness
to expand that side of things if there was sufficient demand. HCW readers took that
to mean that they were being offered subsidised (£1.50 p.a.) membership as well, and
a dozen letters arrived over the following few days. I sent a circular back to each
one explaining the state of affairs, and offered Associate membership for £10 p.a.
To date only one enthusiast has taken up the offer and to Mr B. MUNRO SCOTT a warm
welcome. I hope that we can provide you with plenty of information and entertainment
over the coming months and that you will feel free to contribute anything and every-
thing which you think might be of interest.

The Elite Eight mentioned in the last editorial didn't quite make it but their
numbers were made up by others. I also send complimentary copies out to ROEERT BATTS
of TI who has been extremely helpful in many fields over the last several months; to
CLIVE SCALLY of TI-99/4A EXCHANGE who organises a national User group; to PAUL DICKS,
who is the founding father of the TI User groups in this country and who is still
active - TIHOME still exists as a software collection which Paul administers as well
as being a columnist on the newsletter which is put out by his successors; to STEPHEN
SHAW, who, as I write, has just become the father of a bouncing baby boy - so to
Stephen and Cathy congratulations and when will George start programming ?

Our total strength ,(measured in TI-LINES) is 14 and I hope that it grows - but not
too much or I'll go broke! :

I learned an object lesson last issue when I published DAVE HEWITT's modulator
modification article. As a result of severe postal difficulties (the GPO lost not
only his article but also a disk into the bargain) Dave sent me his original rough
copy from which I extracted what I thought were all the pertinent details. . However,
I didn't feel competent to reproduce his diagram as I lack the specialist knowledge
to be certain of not makingany mistakes. That proved to be my downfall as I missed
important data which had been placed on the diagram concerning the 47uF capacitor.
An errata page elsewhere deals with that and with my second downfall (object lesson
number 2): I didn't even copy my own notes carefully enough when producing the ONES
& TWOS COMPLEMENT article last issue. There are two major errors in thé explanation
which make a mockery of the whole thing - well, almost. That too is dealt with in
the errata section. My apologies both to Dave and to anyone who has been going bald
trying to make sense of both articles! ’

STOP PRESS: For all the younger TI enthusiasts there will be a section devoted to
their ideas and interests. It will be edited by DAVID BROWN of 59 Appleford Drive,
Abingdon, so if you have anything please send it to him for consideration. His phone
number is Abingdon 24813.

I've had a few questionnaires back and I'm beginning to get an idea of the general
interests and equipment of members - well, of five of them anyway. Most have
indicated that they would be willing to advise and assist fellow members and I will
publish relevant details in the next issue. Thank you for your help and I will do
my utmost to see that your needs are met. .

Finally, I would welcome reviews from members of programs, books, etc., gtc. and
anything else which is publishable - articles, programs, letters, criticisms -
anything which lets you play the game instead of just spectate.

BULLETIN BOARD

FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE

GARY HARDING of Flat 2, 12 Belmont, Lansdown Road, BATH BAl 5DZ is selling some of
his equipment - items which he will not be using because he has replaced them. He

isn't on the phone, so please write to him in the first instance. Here is a list

of his items:

Terminal Emulator II module: £19
Speech Synthesiser: £19
Personal Record Keeping module: £19
Blackjack and Poker module; £4

Complete collection of the
Scott Adams Adventure cassettes: £ 4 each

RS232 card: £60
Microline 82A printer £200

MRS. E. ROBERTS, Abingdon 21215, is also selling some equipment - a complete setup
for £125, which she would like to sellA all at once. It comprises:

TI-99/4A Console
Extended BASIC module
Speech Synthesiser
Joysticks

a number of modules including PARSEC, The ADVENTURE module, and
PIRATE, VOODOO CASTLE, ADVENTURELAND, and various other cassette
games.

Please contact Mrs Roberts if you are interested or know of someone who wants to buy
a complete setup as either a starter or as a back-up.

As a rider to the items above, if you are wondering about buying a Speech Synthesiser
then there is a series coming shortly which will explore it as never before, covering
not only the in-depth analysis of the process used to produce the high-quality speech
which TI have kept quiet about for the last four years (Pitch-excited Linear
Predictive Coding) but also details about how YOU can modify the speech data which

is already provided (raising the pitch of the voice - or lowering it, and initial
experiments with the REFLECTION COEFFICIENTS in altering the pronunciation) and about
the production of all sorts of sounds and effects. This project has been three years
in the making and is still far from finished.

BEGINNER'S BASIC II

By Peter Brooks (originally published in Tidings, V2.5, October 82)

The First Steps

This series will attempt to slowly introduce the novice. to BASIC on the TI-99 and
to the principles of 'programming'. It is not intended as a replacement for the TI
manual, but will try to offer a different perspective so that your chances of under-
standing the commands and functions are increased. If, as the series progresses,
there are still points which you feel have been inadequately covered, please write
in with details of the problem area(s).

If you have ever used a calculator which possesses one or more 'memories’, you will
be familiar with the idea of 'storing' numbers in a machine. On calculators,
however, the memories tend to be identified by numbers also: Memory 1, Memory 2,
and so on, so that storing 26.5 in Memory 7 is achieved by keying '26.5 STO 7',
where STO is the store command. To recall the contents of Memory 7 to the display,
you might use 'RCL 7', where RCL is the 'recall' or 'retrieve' command.

On computers, a similar system exists. In this case though, the memories are not
preset as they are on calculators, and their identification is made by 'name', not
number. Thus the computer 'memories' can be called A or SOCK or MEMORY or EGEERT
or even something which gives a clue as to what is being stored there - for example,
if you needed to store the number 365 as part of a calculation involving Time in
years, you might call the memory DAYS.

BASIC's way of storing and recalling numbers is different from that used on the
* calculator. To store 365 in DAYS, BASIC uses:

LET DAYS = 365

The number or ‘expression’ (equation) on the right of the equals (=) sign is
'assigned to' (stored in) the memory indicated on the left of the equals sign; in
this case, the memory is called DAYS. On the TI computers, as on many others, the
use of LET is optional - which means that if you leave it out, the computer won't
throw a fit - so that:

DAYS = 365

is also acceptable. The memories in computers (which are really storage areas
inside memory chips) are called VARIABLES, and are more versatile than on most
calculators. You can use one sort of Variable to store numbers - NUMERIC VARIABLE -
and another sort to store letters (letters, numbers as sequences of digits,
punctuation marks etc.) called STRING VARIABLE. To enable the computer and you

to distinguish between a variable which stores numbers from one which stores
letters, the name of the letter-storing (STRING) variable has a dollar sign tacked
onto the end. (There are other types of variable, but they are not available on

the Texas.) The.assignment (storage) of data to such variables is also carried

out differently: .

DAY = "MONDAY"

('#' is the closest that this typewriter gets to a dollar). Whatever is to be
assigned to a string variable needs to be enclosed in quotation marks. There are
other ways of assigning data to these variables which don't require the use of
quotes, but we will delve into that later.

Another difference is that although you can assign a string of digits (a number!)
to a string variable, that variable can't be used directly in expressions (equations).
It CAN be used indirectly, but again, we will delve into that later.

If you find it difficult to think of the variables in terms of 'string' and ‘numeric’,
it might help you to think of them as ‘text' and 'mathematical’ or ‘words memories’
and 'number memories'. As long as you are familiar with the terms NUMERIC and

STRING that's all that matters.

We'll try out a few examples on the TI-99s. In order to avoid repeating instructions,
I will 'indent' anything which is to be typed into the computer followed by ENTER,
thus:

ICKYPOO = 2

As you can see from the name of the variable, this is going to be a rather informal
series. Switch the computer on and select TI BASIC. We will initially be using
the computer in the so-called IMMEDIATE MOLE, where the computer will execute any
instructions there and then, instead of storing them away for later execution as in
a PROGRAM.

Let us try out one or two things.
DAYS = 365

If you have remembered the instructions earlier, you will have typed DAYS = 365
and then pressed ENTER. The computer will have created a Numeric Variable called
DAYS and assigned the number 365 to it. The question now is: how can we recall
the contents of the variable to the screen ? What is the recall or retrieve
instruction ?

There is a command available, called PRINT, which allows us to print data on the
TV screen. If PRINT is used with a numeric variable, it will fetch whatever number
is currently assigned to that variable and put it on the screen.

PRINT DAYS

The number 365 will be printed underneath the instruction. It appears with both
a leading and a trailing space (one in front and one behind), which you cannot
actually see. The leading space will be replaced by a minus sign if the number
is negative. The trailing space prevents any following information from being
confused with the number, a type of 'formatting' of the display. Formatting can
involve a lot more, but again we can deal with that subject in more detail later
in the series.

Let's try some other variables:
NAMEZ = "DONALD DUCK™

If we try printing the contents of the string variable called NAMEZ,
PRINT NAMEZ

‘Donald Duck' is printed undermeath without any leading or trailing spaces, which
is something to bear in mind for future use.

PRINT NAME$; NAME¥

Now, if you ENTERed this correctly with a semi-colon (;) between the two NAMEZ,
your display should now show a line which reads 'DONALD DUCKDONALD DUCK'. The
semi~colon is known as a PRINT SEPARATOR, and tells the computer that once it has
printed something it should wait on the same line, as the next PRINT instruction
is to have its information printed directly after the previous information. This

6

also demonstrates the lack of spaces between the text! There are two other PRINT
SEPARATORS: they are the comma (,) and the colon(:).

PRINT NAMEZ , NAMEZ

This time the second printing places the 'DONALD DUCK' about halfway across the
screen from the beginning of the first printing. The comma separator tells the
computer to begin printing the next piece of information at the halfway point,
unless it has already passed that point, in which case it will rrint on the begin-
ning of the next line down.

PRINT NAME¥ : NAMEZ

This time the two items are printed one under the other; the colon tells the computer
that it should begin printing the next item on the next line. The colon is actually
a very handy separator in that if you use several of them together you can print
several blank lines between items, or even just print several blank lines after

the last printed item, which causes the screen's contents to 'scroll’ upwards; for
example .

PRINT :s:3:

A quick recap, then, on PRINT SEPARATORS: after the data in an instruction to PRINT,
a semicolon means: ‘'hang about, there's more to go next to this lot'; a comma means:
'start the next lot halfway across the screen, unless you're already past it or the
next lot is more than half a screen's width in length,in which case start at the
beginning of the next line'; and a colon means: ‘*start the next lot at the beginning
of the next line‘.

The PRINT instruction is a very flexible one, and there are more facets to its
format which we will look into later.

A =10
A$ = "GREEN BOTTIES"
PRINT A ; A¥

The above is an example of the kind of thing that you can do with separators. You
have told the computer to store the number 10 in a 'number memory® or NUMERIC
VARIABIE called A, and to store the phrase "GREEN BOTTLES" in a ‘word memory' or
STRING VARIABLE called A¥ (pronounced 'A-STRING'), and then to print the contents
of the numeric variable A, to wait on the same line, and then to print the contents
of the string variable Af straight after the first item. The result on screen is:
10 GREEN BOTTLES. You may now gasp with amazement.

Now let us introduce the dreaded LINE NUMEBERS. Suppose that we wanted to store the
three statements above without executing them there and then, and check that the
computer had stored them correctly ? Let's call them statements l, 2, and 3
(complicated, eh ?):

1 A=10
2 A§ = "GREEN BOTTLES"
3 PRINT A 3 A

Note that by giving each statement a number, you have told the computér not to
execute each statement as it is entered, but to store it and wait to be told when
to do something else. The computer will list out the statements in the right order
when you tell it to:

LIST
and you can check to see if everything has been entered correctly.

Finally, we tell the computer that we'd 1like it to execute our statements, by giving
7

it the instruction:
RUN

vhereupon 10 GREEN BOTTLES appears on screen. The computer screen colour changes
from cyan (a sort of pale blue) to green for the time it takes to execute the
three statements, and then returns to cyan when finished, as well as printing
DONE to make sure that we know that the computer is ready to accept further
instructions. The CURSOR (that little black square which keeps flashing on and
off) also returns.

In effect what you have done is to enter a PROGRAM into the computer, admittedly
not a particularly scintillating one, but a program nevertheless. Ah, but... I
hear you say,...we've seen REAL programs in the magazines, and they don't have nice
neat 1, 2, 3 line numbers, they have 10, 20, 21, 30, or 100, 105, 106, 110, 120,
line numbers. How come ?

There's no great mystery. If you wanted to insert another statement in our little
program to get the screen to scroll a little first before printing 10 GREEN BOTTLES,
by adding PRINT ::::: as a first line, you'd need to rewrite the whole program,
UNLESS...you'd already written the program with big gaps between the line numbers
Just so that you could insert any extra lines as and when you needed them. On some
computers you have to do things this way, but on the 99s, as on many others, there
is a command which can help you out:

RESEQUENCE
LIST s,

Well, well, our program has changed a little. The RESEQUENCE command, RES for short,
which the computer will also respond to, has changed the first statement number into
100, the second into 110, and the third into 120. As standard, the computer starts
renumbering at 100 and goes up in steps of 10. You can even specify what the first
line number will be, and what the step or ‘increment' will be. For example:

RES 117 , 26
LIST
See what I mean ? You can now add the extra line of PRINT ::::: as say line 17,

and then FES again to smarten it all up. Experiment a little and see what you can
find out!

Any queries or contributions which members may have with respect to the BEGINNER'S
BASIC series are welcomed. Eventually the series will be compiled into a booklet
and sold, probably through the numerous small software houses which are still
supporting the TI-99/LA.

The next issue will see coverage of the keyboard functions, editing, different
versions of the 99s available, maths while PRINTing, INPUT, GOTO, and CALL CLEAR.

ERRATA

V1.2 pp 3 - 4 MODIFY YOUR MODULATOR by DAVE HEWITT

The exact location of the 47uF capacitor (or condenser - the terms are inter-
changeable) was omitted for complex reasons. It should be soldered on the one side
to the inner cable of the video lead going to the video socket, and on the other
side to the 1 kilohm resistor, taking care not to apply too much heat or the
resistor's connection to the circuit board may come away.

In addition, there are at least two different types of modulator at large, and the
article does not apply to modification of the type housed in a Plastic casing.

e I T T T e

V1.2 pp 13 - 15 ONES & TWOS COMPLEMENT by PETER BROOKS

Page 14 shows that I don't pay attention to my own notes: fourth paragraph down on
the subject of counting negative numbers - the range should be O to -127, not -128.

Page 15 shows that I can't copy my own notes either - the intention was to show
that although the range was O to +127 for the positive side, it was-actually O to
-128 for the negatives.

Also on page 15, I neglected to add that the rule of adding the signed and unsigned
numbers to total 256 only works for NEGATIVE numbers - you might have noticed that
3 + 3 has a hard time adding up to 256!

LETTERS

Even though he has his hands full at the moment, STEPHEN SHAW (see Editorial) has
responded to Gary Harding's plea for help in the Bulletin Board in V1.l. You may
remember that Gary had problems with his printer and RS232. I asked for anyone in
OTIU to come forward and help out, but no-one was able to. In the meantime I had
written to Stephen and to Gary, and had learned that Gary's printer and RS232 had
both received a clean bill of health from a BBC micro (it managed to drive the printer
without any trouble) and AKHTER INSTRUMENTS (they checked his RS232 and found nowt
wrong). Stephen wrote back with the following information, about which Gary had not
been aware - and as it happens didn't make any difference to his problems - and which
is well worth while reproducing here for the benefit of those who may eventually
find the folding stuff to expand their systems.

There should be a sticker inside the RS232 manual which tells you that the details

on how to connect up the pins are wrong. To connect the RS232 card to a printer

you need an eleven line ribbon cable. Pins 1 to 9 are connected to each other (1 to 1,
2 to 2, etc.,) BUT TT pin 10 (handshake in) connects to PRINTER pin 11 (busy).

TI pin 16 could go to PRINTER pin 16, but it is easier and neater to connect TI pin
11 (logic ground) to PRINTER pin 16 (Ov LGC GND). No other printer pins need to be
connected. .

Stephen also noted that he now has three consoles with three different keyboards,
and three different modulators!

I often receive current news from Stephen and others, and from time to time I will
run a News spot in TI-LINES - probably just half a page - to make sure that we all
keep up with things.

9

THE CONTROL AND FUNCTION KXEY

[&)

PART III

Peter Brooks

Before launching into the third (and possibly final) part of this long and rambling
episode on the Control and Function keys (mostly Control, you'll probably have
noticed) I need to clear up some unanswered questions from the last article.

If you entered and ran the program given on page 9 of V1.2 TI-LINES and left it
running long enough, you should have observed two things (or possibly three - it
depends on how long you ran the program). When the program begins running, the
first thing that you should notice is the small shapes in the bottom left-hand
corner of the screen. The rightmost shape will be changing shape pretty rapidly,
and occasionally the whole group may flicker. The second thing which should soon
make itself known is a sudden streak of 'insects' which begins at the bottom right
hand corner of the screen and shoots across to the left. The third effect only
appears after several more seconds, when the flickering shape at the left ceases
moving for a few moments - there may also be a small 'ripple' through the line of
insects, causing them to advance towards the left. This pausing occurs every minute
or so, but the rippling effect may cease.

So what are they ? The first effect is caused by the computer *working' on your
program. Remember that I said that the User-definable Graphics (UDGs) occupied the
same area of memory as the computer used while working ? The shape-changing is due
to the UDGs acting as a window on the execution of the loop in lines 150 - 170.

In effect, the computer is counting while we watch.

The second effect, the streak of insects, is a little more difficult to explain -
mostly because of a lack of detailed information on the processes used by the 99/&A
when storing data. When a program instructs the computer to store data in a
variable (whether numeric or string doesn't really matter), the computer locates

an area in memory which is not being used and stores the data there. It keeps a
record of where it has got to as far as storage space goes, so that when the program
instructs the computer to store something else, the computer then locates the next
free area to store it in. In the program we are using, the computer is instructed
to store the same data over and over again. Once it has finished filling the Tg()
array, it has to start all over again, but being stupid (as all computers are) it
doesn't use the areas which it has finished with, it keeps on using fresh areas until
it runs out of memory.

What happens then is the third effect, called GARBAGE COLLECTION (you'll find a large
number of terms in Computing which relate to domestic activities - another is
HOUSEKEEPING). This is what occurs when the computer pauses. It is 'clearing out'
if you like, all the data which is not currently required. This probably involves
resetting the internal record of where free areas of memory are located, rather than
by actually removing the data. Considering the speed at which computers work when
not coping with programs in BASIC, the 99/L4A seems to spend rather longer doing

its household chores than one might expect.

On top of all this, (as if it wasn't enough), the 'HELLO MA' shape which you see
appearing in the UDGs is likely to be in transit - in the process of being stored
temporarily in a work area or a 'buffer' (a kind of reception area or waiting room,
if that helps you to picture it) - rather than actually being in its final position.

Right, that's got that out of the way, on with the business of the day. So far we
have limited our discussion to those tokens which are available directly from the
keyboard. However, it is possible to obtain some (if not all) tokens (and therefore
characters) using an 'indirect' method.

10

Before entering into a detailed discussion of the technique and its use as a research
tool, let us look briefly at the EDIT mode in TI BASIC. This mode is entered when
you type EDIT and a line number followed by ENTER (or FCTN X or FCIN E), or when you
type the line number followed by FCIN X or FCIN E. When you do this, the numbered
statement (if it exists) is presented on the screen in its entirety - including the
line number - and the cursor sits over the first character in the statement. (In
Extended BASIC, it is possible to place the cursor over the first digit in the line
number using a little trick with FCTN 8 - REDO - and edit the line number as well).

If you then press ENTER or FCIN X or FCIN E without having previously pressed any
other keys (or almost any other), the existing copy of the line currently held in
memory is left unaltered, but more importantly, no check is made of the line you

are 'entering'. If you do type something - even simply overtyping a single letter -
the computer reacts as if you were entering the line for the first time. Similarly,
if you change a line, then decide to leave it as it is, unless you use FCIN 4 and
BREAK out of the editing the computer will examine the line when you enter it, and
this can be a very, very slow process in a large program.

This re-examination can be demonstrated easily using tokens. Last issue I offered
a quirk for general investigation. It involved entering a REMARK consisting of a
large number of CTRL Us to obtain a very long statement. This time, produce a REM
containing only 20 CTRL Us and enter it. Call it up for editing with (say) FCIN X,
and press ENTER (or FCTN X or FCIN E - all three act like ENTER except under certain
circumstances).

Nothing devastating happens. Call it up again, and this time, with the cursor
positioned over the R in 'REM', type R again. Note that you haven't changed the
line - just retyped a single letter. Press ENTER now, and bang! LINE TOO LONG
appears. .

Now create another REM, this time containing a single CTRL /. Enter it and then
call it up for editing. Note that there seem to be far more characters than you
originally entered. (See TI-LINES V1.2, page (v)). With the cursor over the R in
'REM', type R (to con the computer into scanning the line again) and press ENTER.
Call the line up for editing yet again, and once more the statement will have
changed. Why should this be ?

If you examine the tables in V1.2, pages (i) to (v), you'll notice that certain
key codes have 'UNUSED' written next to them. These are codes for which there is
no token assigned. The computer, however, still attempts to find a token, and as
the token words (LET, PRINT, etc.) are probably related to the token codes (141,
156) and their location in memory, it finds 'garbage' and prints that. Page (v)
shows the codes of the garbage for those unused codes which are accessible directly
from the keyboard. CTRL / gives a sequence of characters whose codes are 197, 62,
181, ... 126. This is what you saw at the first editing. When you typed R, you
caused the computer to scan this sequence, and subsequently when you called the
'new' line up for editing, the computer replaced those tokens (codes greater than
ASCII 127) with, in some cases words or symbols, in others, further garbage.

Lo;king(at the sequence for CTRL / on page (v) and the lists of tokens on pages
(1) to (ii):

197+ A 621 % 181 : s 251 : PERMANENT
182 :) 55 7 253 : 3 254 & Unused
183 ¢ (255 :+ Unused 87 : W 223 1 Unused
135 :+ GOSUB 121 :+ y 255 + Unused 245 : INTERNAL
7 : O 126 + ~~

A small number of the characters here are not obtainable directly from the keyboard:
223, 245, 251, 253, 254, and they in turn will produce sequences, possibly also
containing codes not directly obtainable from the keyboard. I have yet to tabulate

11

these secondary (and tertiary, quaternmary, etc....) codes - perhaps readers might
like to compile their own tables and submit them to me, and any important differences
will be published in a later TI-LINES.

At this point you might be saying to yourselves - So what ? None of these characters
can be redefined by us using TI BASIC, so why bother ?

There are two reasons. The first is universal: because it can be done. Experiment
for all you are worth and you'll always end up knowing more than when you started.
The second is because you now have a valuable research tool. You can place

special codes in listings, which TI never intended you to do, and this has two
consequences. Firstly, you can ‘embed', or hide, special characters in your program
listings which can be of immense help if you ever have a dispute over illicit
copying (piracy). This involves ASCII code 0, and the technique for using it is
discussed later. Secondly, you can now begin looking for undocumented subprograms
(an article later this year will begin to look at this intriguing area of research).

For example, the PERSONAL RECORD KEEPING and STATISTICS modules possess CALLs A, D,
G, H, L, P, and S. There is nothing too remarkable about that - the CALLs are well
documented now, if not widely known. (They form the basis of Enhanced BASIC, on which
subject there will be a series of articles starting soon). However, RICHARD BLANDEN
of Wokingham has informed me that, using machine code access through other equipment,
he has uncovered more subprograms on those two modules. Using this new research

tool in TI BASIC without the need for additional equipment, we can begin to invest-
igate matters for ourselves.

How, though, can we isolate the characters we want from a REM statement ? Page
(iv), TI-LINES V1.2 shows one way of doing it. You can either edit a REM statement
to fit your purpose:

Enter: 100 REM CTRL /

Call it up for editing and change REM to A$=" and then run the cursor as
far right as it will go and then add a trailing " to give:

100 A¥ = " see the list on the previous page
or you can make the REM contain everything you'll need:
Enter: 100 REM A = "CTRL /"
You edit line 100 and delete the letters R-E-M and then enter the new line.

If you type in the program an page (iv) of issue V1.2 you can then place any single
CTRL character between the quotation marks in line 100, edit the line, deleting the
REM, then enter it and then RUN. You'll get a printout of the ASCII codes of the
characters which make up the garbage.

When however you need to isolate a single character, you must carefully delete those
characters which lie either side of the one you want until you are left with just
that character within the quotes.

Try and obtain character code 254 on its own from the sequence produced by CTRL /.
You need to edit to get the garbage between the quotes. Then delete the 'REM'
letters, skip over the first quotation mark and carefully delete 7 characters. Move
the cursor one position to the right using FCTN D and continue deleting up until the
right hand quotation mark. Press ENTER and then RUN the program. If you don't get
254 printed on screen, you've slipped up somewhere. You will not be able to re-edit
the line, because whatever is now within the quotes may be replaced by tokens when
you try to LIST or EDIT. You will have to set up the line afresh and go through the
process all over again.

We come finally to CHHﬁ(O) and its special properties. As far as the INTERPRETER
12

is concerned, CHRZ(0) is what it uses to signify the end of text in a REM statement
(an end of text marker). The Interpreter is the built-in program which runs your
BASIC programs.

When you put a CHR§(0) in a REM statement, the interpreter thinks that it has found
one of its own end of text markers, so any text which appears after the CHRZ(0) will
not be listed. It will still exist in memory, though, and will be saved to disk,
cassette, or other storage medium - for example, the MiniMemory module. You can
therefore place copyright notices and other data in a REM which cannot be seen but
which can be recovered through the use of PEEKVing with MiniMemory or through

PEEK and Extended BASIG, or even through Editor/Assembler. It won't appear in any
listings either.

There is one drawback (or possibly two). Firstly, if a copy of your program is
made using either direct tape-to-tape copying, or by loading and then saving to a
copy tape, your hidden ("embedded") copyright notice will be transferred. However,
if the pirate makes a listing of your work and then enters that at his own keyboard ,
obviously no copyright information pertaining to you is going to be added.

The second possibility is that your program might be edited before being copied.
Bearing in mind the technique that we have been investigating, where we make use of
the fact that editing a line causes it to be re-scanned, you can see that all an
illicit copier has to do to inactivate any copyright information which may have been
hidden is to edit every REM line in the program. All that has to be done is for
any REM 1line to be called up for editing and 'R’ to be pressed in order to bypass
any embedded text.

The program listing below has had two pieces of text embedded in it. TIts purpose
is simply to 'look at itself' and print out what it finds on the thermal printer.
Due to the tokenisation process, much of the printout is nonsense, hut you can see
quite plainly what the embedded raterial is.

It has been rumoured that at least one UK software firm has had its programs pirated;
perhaps the use of CHRZ(0) in future might make life a little less difficult for
those trying to protect their property from thieves.

100 OPEN #1:"TP.U.E".OUTFUT
110 REM EXAMFLE FROGRAM

120 REM COPYRIGHT PSRB 1934 :I :P F2T 07 Iyl ot TR 9
(#7a ¥7a N7 DTN L releDen~rTe

140 REM 15323 £ EMEED OBTAINED THROUS
150 REM PRINTOUT OF PROGRAM TO HFCTH O = EMBEDIED COFYRIG
THERMAL PRINTER HT NOTICE NOT YISIELE IM LISTIHG

130 REM l i
i

160 REM S | 1 BT T L S S
170 EEM E T TePEEKY.L.E | = FRINTD
160 FOR L=1£080 TO 16332 PUT OF PROGRAM TO THERMAL FRINTER
130 CALL PEEEVYC(L,B> '[COFYRIGHT PGOE 1934 |
200 PRINT #1:CHRECE): ' EXAMPLE FROGRAM | FoITLRTR. L.
210 NEXT L Eaa |
220 CLOSE #1 |
230 REM |
240 REM !

The CHRZ(0) was obtained using the editing technique we have been examining, through
FCTN O (zero) - see page (v), V1.2 TI-LINES - where the unwanted characters were
deleted to leave CHRE(O) and then the text was added following that character.
Alternatively, FCTN ; could have been used - it too provides CHRZ(0) on editing.

In the next issue I will follow up CHR$(201) - the LINE NUMBER token for anyone who
is interested.

13

BOOK REVIEW

N.E.C. 30 HOUR BASIC by Clive Prigmore 256 pages £5.95 National Extension College

(First published in Tidings V3.2 May 1983)

The National Extension College (NEC) has produced a course in BASIC for around £5.95
claiming to teach you BASIC with or without access to a micro, in 30 hours. The book
is written by CLIVE PRIGMORE, and the copy I have is the fourth printing for 1982.
There are at least two versions available, so make sure that You get the right one;
the other is written specifically for the 2X81.

This version is intended for all others (except the ZX80, probably because that micro
doesn’t have 'floating point' maths and other goodies, although there are probably
still primitive micros around which suffer equally from a lack of facilities), but as
it uses primarily the BBC Micro and is intended for use with the late BBC Computer
Programme (note spelling), you might guess that it is not ideal for the 99/4A.

First impressions are quite favourable. It is a hefty book, well-designed with an
over-large plastic ring binding which enables you to open the thing and lay it flat
by your micro. It is a little larger in area than TI-LINES, and about lcm thick.

It contains 256 pages (what a coincidence) of very small type, some of which has been
highlighted in a penetrating Kermit green.

The blurb on the back cover as usual is filled with half-truths and downright cobblers
(my own book is no exception). For example: 'Microcomputers are the tool of the 80s.
BASIC is the language that all of them use. So the sooner you learn BASIC, the sooner
you will understand the microcomputer revolution.' ALL of them ? The Jupiter ACE,
defunct though it appears to be fand not for lack of popularity but lack of additional
hardware, especially from third party suppliers - a familiar story), obviously does
not exist, then - it doesn't use BASIC, but a much faster language called Forth.

And since when does learning a language have a direct bearing on your understanding

of a hardware revolution ?

Eventually they do come clean inside, and you learn that the book can't actually
teach you all about BASIC - there is Part 2 yet to come - but what it does teach, it
teaches well. The approach to arrays is novel (in my experience) treating them as
lists initially, although you may think otherwise.

It is a good book if you are used to the self-imposed discipline of isolated study;

I would recommend that you use the book in a group otherwise, or better, with someone
who has a smattering of any computer language and a simple understanding of the idea
of 'programming'. %if You possess a degree you'll find this book a doddle!)

There are differences between the versions of BASIC catered for in the book's text,
and the supposed standard BASIC which the TI computers use, so if you are an abject
beginner you may have some problems here, notably with POS, VAL, RND, and so on,as
they are interpreted differently (POS doesn't figure at all).

The book is divided into eleven sections: a 'How To Use This Course', 9 course units,
and an index. The text begins poorly - hands up anyone who knew what Microsoft BASIC
was before they started programming. Er...hands up anyone who knows what it is even
now ? Still, it does improve, and the highlighting helps in many cases, although

the use of the green bits isn't consistent - sometimes on the first use of a word

or phrase, sometimes not.

There are lots of short routines to be keyed in and experimented with, and the early
part of the book appears to run parallel with my own BEGINNER'S BASIC, so it can't
be ALL bad!

4

I don't think that I could recommend this book for anyone under, say, 16 who didn't
really have more than a smattering of Computer Science urder their belts, but it is
a very good reference book on BASIC and programming, especially on the so-called
structured approach to programming. If you have some grey areas which the TI BASIC
book hasn't fully reached, well, this isn't exactly Heineken but it'1l do.

There are also a few introductory routines and explanations on Sorting and Searching,
which to my mind are essential tools for any kind of serious programming - not that
I'm suggesting that there is a kind of frivolous programming.

One point I did note which irritated me a 1little is that the text recognises RET and
RETURN as keys for entering information, but CR or ENTER don't figure at all.
Presumably the ZX81 version does at least mention NEWLINE.

A final hint: if you do buy the book, don't flick through it, work through it in a
methodical manner, or you'll be put off by the apparent complexity towards the end.

I have a feeling that trying to absorb a little of everything at a glance is precisely
the thing which puts many budding programmers off; it's like flicking through a
detailed car maintenance manual and expecting to understand the operation of a
carburettor system as a result.

Editor's note: I would like to run at least one review of a book or books every
two months or so. If any member would like to put pen to paper and give their
considered opinion of any books which they have, TI-related or not, I would be happy
to receive them.

CLOSE FILE

The other evening as I was about to leave work I received a call from Wendie Pearson,
Listings Editor at Personal Computer News - one of the weekly magazines - asking for
details of Oxon TI Users. I found that she knew nothing of the TI-99/4A or its
peripherals - she thought that the Speech Synthesiser was a cassette tape - and I
hope that I provided her with the correct information and that she made a note of it.
(She had assumed that as I catered for the blind/partially—sighted user, they would
be able to buy the Terminal Emulator II/Speech Synthesiser combination from me; it's
a nice idea but unworkable at present).

The most interesting point came when she asked me if I had any further information

on the company who had started making 99/U4As again. I know of one machine which is
compatible with TI BASIC - the CORTEX, which is an electronics construction project
published by Electronics Today International - and I did hear rumours, unsubstantiated,
that TI were going to re-enter the market later in 1984 with an up-graded, up-market
bug-free version of the 99/4A, but this is the first that I have heard of another
company producing them. Watch this space.

The Speech Recognition system which I mentioned last issue can be ordered from HOWARD
GREENBERG of ARCADE HARDWARE - tel: 061 225 2248 - I don't know what the price will
be or the availability, but I know Howard and he will be honest with you about any
likely delays. He also markets a wide range of 'firmware' - modules - and hardware,
and he considers himself a Us2r first and a businessman second, which may be btad for
business but it's good for customer satisfaction.

One final piece of news: after July 1984 PARCO ELECTRICS will be marketing a UK-made
Extended BASIC module. Price not known at the time of publication.

Enjoy your programming,
Lol g

