-3 -1 1 3 E_ -3 == xze I T 3t 1
—_— = == = mm == mm == =
E 13 =es 2T I XX o 2 3 == ¢ 4 == =xx
= = ELER X2 I8 ==z === == == _—
oxus ==z === === === = - 2] ==
=== E -2 == == == S NIE IR SN = 23 Lt 3
== === EITSTXNSSIEIT == 2 3 -t 2 3
=z == ITTEIES TR TR === -_

Volume 2, Issue 10 ‘ March 1st., 1986

TI-LINES is the monthly newsletter of OXON TI USERS, and the form of
presentation of any material remains the copyright of each individual
author. OXON TI USERS reserves the right to submit any material to
other newsletters for publication, with due credit to the author(s)
concerned. Submissions are accepted on this understanding.

It 1is the responsibility of each author to ensure that no copyright
infringement will occur by the publication of their articles in
TI-LINES, and OXON TI USERS cannot be held responsible for any such
infringements. Every effort is made to ensure that any information
given in TI-LINES is correct.

TI-LINES is produced and published by:

I 36 3 I I6 I I I I I I I I IEIE I I I I I I I I I I I JEIE I I I I I W I IR N

Tel: Oxford 50822

* *
* Peter G. Q. Brooks *
* *
* 96 Banbury Road *
* OXFORD ‘ *
* 0X2 6JT *
* *
* *
* *

$11 Mill Strest, Wantage, Ozon OX12 SAB. :

'

6336 I I WS I I I IE I I I I I I I I I I I I I I I I

Oxon residents are offered a subsidised subscription at £1.5% p.a.,
payable either as 12 second class postage stamps or by cheque.

THIS OFFER APPLIES UNTIL MAY 1986 ONLY

TI-LINES is available on Associate subscription to Users resident
cutside Oxfordshire, for £10 p.a. Back issues are £2 including post
and packing. New subscriptions begin with Issue 1 of the current
volume, up to and including the current issue, regardless of the
number of issues elapsed.

Contributions should be submitted either on diskette in TI-Writer
compatible files (DIS/VAR 80 or DIS/FIX 80), or in a form which is as
legible as possible. Artwork should fit within an R4 area and should
not ‘contain colour. Very high contrast line drawings are preferred
and these may be produced by arrangement with the publisher.

OXON TI USERS 1986 Sole proprietor Peter G. Q. Brooks

WARARNTING ! ERROR I N DIAGRAM FOR 3 2K RAM
EESNETTASTIEEDIS _== '—_'—=======R=E==========*—=:ﬂ====
TI-LINES vz.10 MARCH 1 986
Index t o articles

P age

EDITORIAL. e v seeveeensnnsnnsssanssuasnscasassacsunssnsaccnacsnnnsnnsnnsesh

Infinitely Apologetic. TINS Can Do It Better. Peripheral Problem.
Basically Incompatible ? Spot The Bald. Deja Vu Or Deja Entendu ?
WARNING! DIAGRAM ERROR FOR 32K RAM PROJECT! Cheaper Chips.

Hello More Folks. TSC Software Fault. The Next TI-Exchange Do.
Tl-Writer Manual Confirmed., Dull Metal Men. REC Salvage.

CONTRCTS. cevvanceensncncnss Weeemeiecenarenesscacavanevassaverssansnsssll

Three More Contacts.

JAMES STRINGFELLOW. ¢ e evveseccavssvensesanssssccssonsssvnoancuans heeanell

A Graphic Example Of What You And TI-Writer Can Get Up To

SORTING AND SEARCHING. .cvccesnvrrevecaosnveccncsosnccan [ceasaalB

Tag Along If You Want To Get Sorted Out

I
N

BULLETIN BORRD. cavecueennssencncssannnessans Chetese e a ceasres s

Don’t Forget, All Adverts Are FREE Here!

MODULES/CASSETTES/DISKS/BOOKS. fe e eedceiaccatat et ansaaanacananannald
A List Of Goodies To Whet Your Appetites

KEYBOARD SCHEMATIC. c ottt ieertnnaacnneecnsassnanssacnnaacsosnsancananss2S
Taken From The Newsletter Of The TI NOVA SCOTIA USER GROUP

CONFIBURING FORTH L. iuueoeinuuoennncaannsacsnacannonanananannnacenness26
By MIKE RICCIO Of The PHILADELPHIA AREA USER GROUP

CDNFIGURING FORTH Il..uiuicernoecneeannucaacascascoasacannnananannncensss28
Second Article By MIKE RICCIO

A LODOK AT PROGRAMS. ¢ . v tivieitneeancnenesasssacanncesnanssonasssacnnnasslt

By R. A. GREEN Of The OTTAWA TI-99/4 USERS GROUP

SMILING ENIGMA. « ot it cinnaneaensanansascanssaanesanssnnanannsscansnsennssld

From The Newsletter Of The CIN-DAY USER GROUP
Loner ? Me, Sir ? What Other Captions Can You Think Up ?

L e A =

Hello Even More Folks. Caption Competition.

0 X 0ON TI USERS NOW NUMBER 1 26

EDITORTIAL

FOR APOLOGY=1 TO INFINITYS$:PRINT “00PS, OH DEAR":IINEXT APOLOGY

The observant reader may have noticed something amiss with the February
issue of TI-LINES. No, I don’t mean the fact that it actually came out
while the month was still called February. I mean the fact that it had an
odd un—numbered sheet stapled at its centre. Without any indication of
what it should refer to, Just to add a bit of spice.

Having rushed through that issue overnight, as with the January issue, in
order to try and catch up with myself, I found after having neatly numbered
every page that I had missed ocut two R4 pages of diagrams from GRAHAM
WOLSTENHOLME’s article. I swiftly stuck them in without adding any

numbers, which wasn’t too drastic, except that I forgot to label them fully.

So now you know. You may not know why, but you know how. Lack of brain.

TOTALLY UNSOLICITED TESTIMONIAL

1 write in praise of the excellent newsletter produced by the TI NOVA SCOTIAR
group, TINS, from which I have often selected material in the past, and from
which 1 hope in the not too distant future to select the source code from
the RS523Z card (always assuming that permission to reproduce can be obtained
from the original author).

My regard for the TINS newsletter has absolutely nothing whatever to do with
the fact that my articles on Enhanced BASIC plus one or two others are being
serialised in that worthy publication. The layout looks a lot better than
it did when I published them, too.

PERIPHERAL PROBLEMS

OTIUser DAVE CARR wrote to me in January outlining a peculiar problem that
he has been experiencing with his PEB. Initial powering up is OK both with
and without the PEB.

After a period of time, probably about 30 minutes to an hour, if he changes
from EDITing to RUNning or SAVEing or something similar, everything locks
up. If he uses the reset switch everything clears, but without executing
the usual power up routine. The screen goes blank as it does with Extended
BASIC when it searches a drive for the LOAD file.

If the PEB and disk drives are shut down, then the minimal system powers up
normally.

Leaving the PEB switched off for a while seems to enable it to catch its
breath, but when it has been reconnected a while, history repeats itself.

4

Dave has dismantled his system, cleaned all sockets and connectors, and then
put it back together again. To no avail, the problem is still there, and he
is no nearer a solution.

If anyone has any bright ideas, or has been experiencing similar problems,
perhaps they would like to contact me and 1 will pass your information on as
well as publishing anything helpful in TI-LINES.

At

BASIC INCOMPATIBILITY

1 am advised that the MATCHBOX RAM EXPANSION, details of which were given in
the last issue, might not co-exist with the latest EXTENDED BASIC 11 PLUS.
Apparently both make demands on the console’'s power supply, and it may not
have the necessary extra capacity to power them both. If anyone has any
more details perhaps they would let me know so that I can advise members one
way or the other.

LAMPOONIST LAMPOONED

ANN HON, who is probably none other than the devilish ANN ONYMOUS-SCRIBBLER,
sent me a piece of verse and a cartoon, presumably dumped out on her printer
when she had plenty better to do: .
There was a young man named Pete Brooks

Who babbled about writing books

He won’t go to bed,

"Cos the hair on his head

Might rub off and spoil his good looks!

This just goes to show that Ann ought to.be registered as partially-sighted.
1 see Pete Brooks most mornings, and young is not an apt description. Not
only that, but he had sideboards (sideburns to some of our readers) last
time I saw him, although the ratic of bald to non-bald is just about right.

YOU HEARD IT HERE FIRST...

Anyone who watched the TV programme MICROLIVE recently might have had a
vague feeling of deja vu (it’s alright, I did French "R’ level and it helps
me keep my hand in) when listening to the bit about Racter and Eliza. That
is because Racter’s exploits (The Policeman’s Beard Is Half Constructed)
were reported in TI-LINES a while back. Also in the programme was the
original for one of my favourite anecdotes about Speech Recognition, with
which 1 will regale you just in case you missed the programme.

The demonstration covered a flight information system operating in an
American airport. You ring up the airline and its computer does the work,

5

listening to your replies to simple questions and analysing what you say.
The demonstration on the phone went something like this:

Computer: From which city do you wish to fly ?
Customer: Los Angeles.

Computer: Los Angeles. To which city do you wish to fly ?

Customer: Newark.

Computer: Newark. Flights from Los Angeles to Newark. On which day of the
week do you wish to fly ?

At this point the “"customer" coughed into the phone (Hitchiker’s fans will
know that this is dangerous!)?

Computer: (Pause...) Saturday.
Everyaone fell about laughing.

Other things cropped up in Microlive’s programme (not program, notice), one
of which was of particular interest to me since it provided supporting
evidence for one of My Pet Theories. This Pet Theory is that folks in the
future will spend more and more of their time pursuing what we would call
Further Education. The Rge ARhead will probably be based less on the need
to work, and more on the urge to discover, to learn.

In France, there is something called the University of the Third Rge. Such
Universities are catching on, and there is now at least one in the UK. What
is the Third Rge ? 1t’s the age you reach when you retire... AR sort of
Open University for the elderly, it provides not only a focus of social
interaction, but also what is now recognised as necessary: a way of keeping
the mind active. The general view, for example, of the physical state of
the group of people known as Chelsea Pensioners, is that the group has a
very low incidence of senile dementia because they keep themselves very
active intellectually. Many people believe that you cannot teach an old dog
new tricks, but the truth is that extremely mature students are better able
to cope with the requirements of study than are the young. This probably
has more to do with attitudes instilled at a young age (people retiring now
learned their school habits in the Thirties, when self discipline had a much
greater priority than it has now), but either way, the French have shown
that education is something to be pursued even in your eighties.

~asas ~

32K RAM EXPANSION: WARNING

BRIAN ABRAMS and DAVE HEWITT have notified me that there may be a serious
flaw in the diagram published in the last issue of TI-LINES. Figure 1 on
the INSERT shows the chips used and their links; it is probable that the
links between pins 14 and 15 on each chip should not be there at all, and
damage to the computer could result. 1 have notified CLIVE SCALLY of
TI-EXCHANGE, who tells me that he has given out 100 copies of the details
provided by GRAHAM WOLSTENHOLME without any complaint, and many people have
successfully completed the project.

6

I have contacted Graham for clarification, and he is looking at the material
published in TI-LINES and will report to me shortly (probably too late to
get in this issue unless I delay it).

In the meantime, if you intend building the 32K expansion, hold your horses
for the present until I have the situation clarified.

32K RAM EXPANSION: MORE SUPPLIERS

ERIAN AEBRAMS (see above) also notified me of two further suppliers of the
chip used in the 32K project originated by PHIL WEST and BERNIE ELSNER of
Australia. The first is STC, on 0279 26777, who charge £3.27 per chip, with
an overall past/packing charge of £3.15. You have to allow two weeks for
delivery.

WATFORD ELECTRONICS on the other hand, charge £3.50 per chip, or £6.70 for a
pair, with only £1 post/packing. These are available ex-stock. Contact
Watford Electronics on either 0923 40588 or 0923 37774. Thanks, Brian.

THE ONGOING HELLO SITURTION...

OTIU is still growing in fits and starts (hope I got that spelled the right
way round!) and this month sees us welcoming DENNIS TRICKER, PETER STIMPSON,
GERALD COLLINS, R. F. JRCKSON, PETER HILDEBRAND, PETER BERRY, COLIN GAUNT,
RICHARD IRELAND, W. REED, and Mrs J. PATTISON. Some of our most recent
subscribers have asked for attention to be paid to the use of MODEMs, and

if you are looking for a modem why not give GORDON PITT a ring on 0922
476373 and try to help boost the numbers which he needs to secure a special
price for a bulk order ?

DELIVER THE (HALF-BAKED) CAKE ?

OTIUser DARYL DAFFIN contacted me recently over a program from the new TSC
Catalogue — DELIVER THE CRKE, code GAOOO3 — which has some erring lines. It
looks as though the program was edited at some time, and a few lines were
removed. I suspect that these may have been CALL SOUND() statements, but I
cannot be sure. The result is a GOSUB to a line which does not exist, but
because of the way the program has been modified, does not seem to cause any
" immediate problem (e.g., such as a crash) although it does cause some vital
pieces of information to be omitted (lines 3520 onwards). The missing lines
are 3550 to 3570, and there may also have been some editing of lines 3730
and 3740 (because they also appear to be missing.)., If anyone can shed some
light on the matter, feel free to shed away.

NOTES FOR YOUR DIARY

The next TWO TI-EXCHANGE meetings have been confirmed by CLIVE SCALLY. The
first is to take place in LEEDS (venue not yet known but give me time) on
SATURDAY MAY 3rd., while the second is scheduled for SEPTEMBER 25th in
BOURNEMOUTH.

~

Clive and Audrey will also ba manning part of the ‘ACC stand at the PERSONAL
COMPUTER WORLD SHOW in September, and Clive would welcome volunteers to keep
the presence going during the exhibition.

Further details will be available on 0273 503968 after 7 pm., and I'plan to
be at all three venues unless something pretty drastic stops me!

v VA A

TI-WRITER MANUAL CONFIRMATION

OTIUser BILL MORAN has kindly provided hard evidence that Tl are definitely
gelling their TI-Writer manual for £3.50 — complete with folder - in the
form of the packing note from his recently—-bought manual. If anyone tries
to enquire from TI about the availability of this manual, and is told that
no such sale is possible (as has happened to at least one member!) tell them
(politely of course) that they’re wrong! The signature on this particular
packing note is G or J BAPTISTE, if you want a name to bandy about.

MODERN OBSOLESCENCE

I recently watched two imported American TV programmes, both of which made
use of robots or computerised speech. In both cases the voices were totally
devoid of expression, consisting of a monotone without inflexion, rather
like the early Fifties films which used such techniques to indicate to the
audience exactly who was the alien/robot and who wasn’t. The trouble is,
both of the TV programmes were modern, so they didn’t have any excuse. 1
wonder when the film/TV producers are going to wake up to the fact that
dull, lifeless, mechanised speech went out with the Ark ? Maybe someone
ought to send the studios a tape of the TI singing or something, just to put
them in the picture, if you’ll forgive the pun.

RECOURSE TO REC CLAUSE

While reading the NORTHWEST OHIO 99°ER NEWS, the newsletter of the OH-MI-TI
and NEW HORIZONS Users Groups, I picked up on several items which will be of
interest to some OTIUsers, and one thing in particular which caught my eye

. was a brief presentation by STEVE PATTERSON of the New Horizons group,
entitled ADVENTURES IN BASIC - #2.

In it, Steve provided a console BASIC program to delete all the files from a
given disk ("sweeping" the disk, as it is known). If you have an expanded
system, the excellent DM1000 will do this for you in a trice, but for those
with a system which is a step up from the minimal system (console and
cassette leads), Steve’s program is a useful alternative to the tedious
process of having to either initialise the disk again, or manually delete
all the files from either the Immediate mode or using Disk Manager.

However, Steve noted that his program seemed to need at least four passes in

order to do the job fully, although he was not sure why it did not do a full
sweep in just one pass.

g

1 wondevred too, so 1 spent some time working on the problem, and I believe I
may have the solution. I began by writing a short program to create a
number of "empty" files on a disk so that I had something to delete (i.e.,
not the files for this issue of TI-LINES!). It goes like this:

100 CALL CLEAR

110 FOR I=1 TO 30

120 A$="DSK1."&SEG$(STR$(1/1E3)&"00",2,3)
130 PRINT As

140 OPEN #1:A$, OUTPUT, DISPLAY, VARIABLE 80
150 CLOSE #1

160 NEXT I

Line 120 simply creates a file name which is a number between 1 and 30, but
which contains leading and trailing zeros so that everything appears in
numerical order in the directory.

Now, if you have decided to try this out and have entered and run the above
routine using a blank, initialised disk, if you use Disk Manager to look at
the catalogue you should see 30 files beginning "001" and going through to

"030".

Go back into console BRSIC and key in this routine:

100 OPEN #1:"DSK1.", INPUT, INTERNAL, RELATIVE
110 INPUT #1:AQ%

120 IF A$="" THEN 160

130 PRINT A%

140 DELETE "DSK1l."&A$

150 GOTO 110

160 CLOSE #1

What you are doing here is to open a file to the Directory, reading in the
file names one by one, and deleting them. Or not, as the case may be.

If you run the program once, using the previously-created files as your
cannon—-fodder, you may notice that the deleting process seems to skip every
other file, and once one pass has been completed, if you examine the disk
directory using Disk Manager, ..er.. there are still at least half of the
files left on the directory.

Soc what has gone wrong ?

It is a little abscure, but the culprit is the file format. The directory
is a RELATIVE file, which means that when reading or writing items to that
type of file, the computer keeps an internal vnote of exactly where it has
got to (rather like the internal record kept when READing DATA).

What appears to happen is thist the first entry is read in using INPUT 4.
That first entry is actually the disk name itself, which cannot be DELETEd.
The computer moves on to the next entry, which is the first "real" entry in
the directory. Accordingly the computer deletes that file, and as a result
what was previously the SECOND entry in the file now becomes the FIRST entry
(as the original first entry has just been deleted). However, because the
computer is using a RELATIVE file, it has just updated its internal pointer
to show itself where it is, and this pointer now indicates that it should be
looking at the second entry in the file. Are you with me ? What is now the

7

second entry was, before the first deletion, the THIRD entry. Because of
this internal updating, the previous second entry, now the FIRST, slips
through the net, so to speak.

This "escape" fraom the deletion process continues for every other eptry in
the file, until the above program encounters a null entry which signals the
end of the directory.

Thus after the first pass, only half the directory has been deleted, and if
you were to run the program again, the same effect would occur, deleting
only half of the entries again. This is why Steve’s program needs more than
one pass to do its pob.

Salvation lies in the REC clause. If you include REC() in the INPUT #
statement, the computer is commanded to change its internal pointer to what
ever value REC specifies.

Now, as the deletion of an entry from the directory causes each remaining
entry to "move up one", as it where, we need to use the REC clause to keep
changing the internal pointer each time so that it ALWAYS points to the
FIRST entry in the directory.

REC(0) is the disk name, so we don’t want to get stuck trying to delete
something which cannot be deleted! The solution is REC(1), and the correct
statement in line 110 is:

110 INPUT #1, REC(1):R%
That's all it takes. Use REC(1) and ALL the existing entries will be

deleted in turn.

I have to say though that it can be such a slow business, you might be
better off using Disk Manager to re-initialise the entire disk...

There is another way in which the program can delete all the files and NOT
need the REC() clause. Can anyone see how ? Yes, I know, I just want to
see if YOU know...

CONTACTS

GERALD COLLINS NEWLANDS, & NEWLANDS ROAD, BOSCOMBE EARST, BOURNEMOUTH,
DORSET BH7 6NX
PHONE: 0202 433704

PETER BERRY 31 CLAY BUTTS, GRIMESCAR VALLEY, HUDDERSFIELD, W. YORKS
HD2 2FuW
NICHOLAS FROST 7 ST. MARYS ROAD, FAVERSHAM, KENT, ME13 BEU

PHONE: 0795 533223

|0

ENIG RSN RSNEPIG RS m&mmmmlr&mm
PAAREAIRSEAI REAAREAIGRAARRERE I R A
—
" " C v | ['w ol [v o] v o] [o]} ‘v v “%'v
v v v | le el (o'
v \ v v IRCA AR IR .
&l 2 3 A A‘ Ll ‘S “ 4 ‘7 3 A “’ A le
2 H .
A . L | [] Poeowd Peo] oo foaf P “3:-*4-
- do, | |t] [
4- . & O R L AW ENC N o e
. Ao e oy) (e [) | |
: : . 8 s o] [o o ' e o] s ¢ ”0’0
. REERINEX
‘ , + offeteldasel oo, .
\ A1 el e ol Lo ol e +) d 10 o et
“ ol e Al faa) e s s alfaalfsa %4
? A A | {a,a] 4%

A A & [|a af]a%a] [a%a] 1%a
Ve e
vl v el (v el v el v ol v el v ov) |37

PP EPEEF ISP IISH LA IIIILLLLIS I AAAFAPAESA PEPPAASELSEISY
BY JAMES STRINGFELL.OW

THESE GRAPHICS WERE PRINTED DIRECTLY FROM THE KEYBOARD

USING TI WRITER AND EPSON MX80 PRINTER

12

Graphics can be included in your letters printed by TI Writer, directly
from the keyboard. This can be useful to personalize your letterheads.
The printer manual explains how to do graphics.

A Basic program to print this wm would be as follows:

10 OPEN #1:"RS232.BA=4800"20 PRINT #1:CHR$(27) ;CHR$(73) ; CHR%$ (&) ; CHR%$ (0)
3 CHR$ (63) 3 CHR$ (63) ; CHR$ (63) 3 (63) 5 CHR® (63) ; CHR$ (63) 3CHR$(63) :: CLOSE #1

A dot matrix printer prints 7 dots vertically each time it receives a
ASCII code from your program. See ASCII character code chart.

With TI Writer, it is only for numbers 0 to 31 that you will use CTRL U.
1 have enclosed a chart giving the equivalent numbers for each character
that you will see on the screen; also a grid that will help you design
your graphics.

To print this m you would see on the screen ‘'wKep???7777
broken down as follows for a better understanding:
WKso

This is CHR$(27) followed by K to turn on graphic mode.

wKeo
?'This position indicates the amount of graphic lines following,
up to 127, in this case "six".
'wKeo
This position can be from O to 4, each unit equals 256 vertical -
dot lines i.e 1=256, 2=512, 3=768, 4=1024. In this case "zero".

277777 are the number of vertical dots to turn on, six times 63.

Resumes:
- The 'K turns on graphic mode.
— The small s indicates there will be 6 data following.
-~ The small » in the position of bigger graphic data.

Dot 7 = 64

Dot 6 = 32 Examples:

Dot 5 = 16

bot 3 = 8 Dots &4+1 = 65 or "A" would print
Dot 3 = 4 Dots 64+8+1 = 73 or "I" would print
Dot &t = 2 Dots 1+2+48+16 = 27 or "4 would print
Dot 1 = 1

Total 127 giving you this graphic |

In order to print a data, add the value of the dot positions together.

127 can be used by FCTN & V but you will see nothing on the screen.

To draw a straight line like this

type in the following lines using CTRL U to see this on the screen

wK This turns on graphic mode.
»1 These two numbers give the amount of graphic dot lines to print.
The first number can be from 1 to 127.
WK%
4+ The ™~ here indicates 126 vertical dot lines.

‘wKo

4 The 41 here indicates 256 vertical dot lines.
This number can be multiplied by 256, i.e. 1 in this position = 256.
When using more than 80 graphic lines you must add a carriage return
to your printer, i.e. "RS232BA=4800.CR".

To print a @ this is what you would see on the screen.
4K350HD " 4 " DHO

To print a & this is what you would see on the screen.
WKooh'c87578 A 'sKhb&'cB‘?S‘?B 5:%

The letter K turns on double graphic printing.

The small 5 is the amount of graphics to print.

The » is not used because the amount of lines is under 128.
The nine following codes are the vertical graphic dot lines.

1 hope that these examples will enable you to make your own graphics
with TI Writer.
I will be happy to answer any questions that you may have.

James Stringfellow
23 rue Pasteur
78700 CONFLANS

FRANCE

0 o» Shift @ 32 64 @ 96 .
1 T ©Shift A 33 85 A 97 a
2 3 Shift B 33 6 B 98 b
3 3 shiftcC 35 @ &7 ¢ 99 ¢
A % Shift D 3% s &8 D 100 d
S 3 Shift E 37 % 69 E 101 e
& 3 Shift F 38 & 70 F 102 ¥
7 5 Shift 6 39 - 71 & 103 g
8 Y Shift H 40 (4 72 H 104

9 5 Shift I a1) 73 1 105 i
10 % Shift J 42 % 78 3 104 ;
11+ Shift K 43+ 75 K 107 4
12 B Shift L a3, 76 L 108 1
13 < Shift M a5 L 57 W 169 m
12 & Shift N a5 . 78 N 110 n
15 + Shift O a7 7 79 o 111 o
16 ' Shift P 48 0 80 P 112 p
17 % Shift @ 49 i 81 @ 115 q
18 w Shift R 560 2 82 R 1123 ¢
19 & Shift S 51 3 835 s 11s s
20 4 Shift T 52 1 8s T 116 €
51 w Shift U 55 5 85 U 117 u
32 ¢ Shift V 52 6 8 v 118 v
23 5 Shift W 55 7 87 W 119w
24 ¢ Shift X 55 & 88 X 120 x
25 o Shift Y 57 9 89 Y 121y
26 = Shift z 58 = 90 z 122 2
27 % FCIN R 59 91 i 1535 ¢
38 +© FCIN 2 50 ¢ 92 124 !
59 9 FCIN T 61 = 95 1 155 3
%0 ' shift & &2 > 95 A 156 ~
31§ FCIN U &3 3 95 _ 127 DEL
64

32

16

8

5

2

1

SORTING AND SEARCHTING

Peter Brooks March

PREAMBLE

First, a few notes about the simple sorting routine published in V2.6. A
couple of readers rang me to ask how to expand it - they’d encountered the
lack of "dynamic” allocation of space for arrays. This jargon simply means
that if you intend having more than 11 entries in your list to be sorted
(elements O to 10 inclusive), you have to tell the computer to reserve more
space first. The DIM command (shart for DIMENSION) allows you to set the
maximum size for the list you are going to use. To create space for 100
entries, use DIM variable(99) if you intend counting from zero, or DIM
variable(100) if counting from one. You can of course count from anywhere
you like — from 17 if you wish - as long as you DIM enough space!

Just in case there is any misunderstanding, where I have used the word
"variable" in "DIM variable()" you would of course use whatever variable
name you choose.

In order to sort 100 items, counting the list from O to 99 entries, use DIM
variable(99). O0Other changes need to be made. All loops have to be adjusted
to take account of the increased list size, so the input, sort, and output
loops all need to be changed.

Referring to the listing in V2.6, lines 120, 160, and 250 need to have the
9 changed to 99. (Don’t forget to also insert a DIM line at the beginning
of the listing — say at line 105 - or you’ll wonder why nothing works!).

There is one problem which you will no doubt encounter: the larger the list
of data to be entered, the longer it takes to do so and the more likely you
are to make mistakes. If you have large amounts of data it might be better
to look at alternative "input" techniques.

The simplest is to place all your data in DATA statements and use READ
instead of INPUT in line 130. This is not practical for any really large
list, but can be helpful when testing different sorting techniques for
efficiency for example.

Another alternative is to place the data on an "external storage medium" -
record it on tape or disk (or MiniMem, or Expmem). As far as tape is
concerned, you are rather limited, both by the small range of formats and
by the poor reliability. Disk storage is a different matter, and it can be
very useful to set up a file using a data format equivalent to DISPLAY
VARIABLE 80, the format usable by TI-Writer and the Editor of the Editor/
Assembler. Don’t forget that these days you don’t HAVE to have the
TI-Writer module, not if you’ve got Extended BARSIC and an expanded systenm,
as the Enhancements (99% of TI-Writer) are Public Domain and there are some
excellent machine code loaders about (e.g. FunlWriter).

Anyway, enough of that (unless YOU want more). Back to the main theme.

This issue looks at turning our Bubble sort into a Tag sort. We took a
preliminary look at the principle of Tag sorting back in issue V2.3, where

(S

two lists were used. One contained forenames, the other cantained
corresponding surnames. There can be a number of such "linked" lists, all
needing to be sorted in parallel with the "key" (see V2.3 to refresh your
memory).

An example might be a list of members of a groupt their titles and forenames
or initials, their surnames, their addresses (arranged in individual lists,
containing the street number, name, local town, postal town, county, and
post code, so that sorting could be perfarmed using any one of the address
items), the subscriptions they pay, their status (associate, honorary, ete.)
and s0 on. You can probably think of better examples so I won’t labour the
point.

THIS ARTICLE REALLY BEGINS HERE...

For the example to be used in this article, 1 will use three lists:

1) Surname
2) Postal town

3) Membership status
To keep things simple I will use three string arrays:

S$() for Surname

T$() for Postal town

M$() for Membership status
This is perhaps too simple — there are all sorts of pitfalls which could
crop up — but suspend your gueries about what happens if ten people with the
same surname live in the same postal town, have the same membership status,
but are not related.
We'll have 20 surnames in our first list, S$(), with 20 corresponding postal
towns — T$() - and status’® — M$(). A surname in list S$() at position 'n’
will have its corresponding postal town in position n' in the T$() list,
and the membership status in position 'n’ in the M$(O) list.
Note that we could have used ONE array for the lists - a TWO DIMENSIONAL
array — i.e.d

DIM L$(2,19)

Remember that the elements are numbered O to 19, giving 20 elements, by 0 to
2, giving 3 elements.
Thus, L$(0,0 to 19) would hold the surname list

L$(1,0 to 19) would hold the postal town list

L$(2,0 to 19) would hold the membership status list

16

S S - T

In terms of programming, the Tag sort swap routine would benefit from such a
format, as you will hopefully see, since a simple FOR-NEXT loop could take
care of the whole swap procedure.
Back to the 3 array/list example.
You might have wondered about possible methods of filling these arrays with
the information which we will be using. There are several approaches:

a) Manual entry at the keyboard

b) Embedding in the program listing as DATA statements

c) Embedding in the program listing as a series of LET assignments

d) Transfer from cassette, disk, or other file (e.g. MiniMemory)

e) Pseudo-random generation from basic components by a routine

within the program

Generally, sorting procedures are usually applied to data obtained by method
(d).
In this example, to allow us to rerun the example programs (and subsequent
programs later in the series), we will embed the information in DATA
statements. If you never quite managed to fully grasp the function of RERD,

RESTORE, and DATA, read on.

Here are the lists we will be using:

Position S%() T$ Q) Ms ()
[¢] BROOKS OXFORD P
1 BROOME LINCOLN A
2 FIELD READING A
3 COOPER OXFORD]
4 BRUGGE RHEIMS 0]
S HERRESTHAL HAMBURG o]
6 PAULI CAPETOWN 0]
7 CRUMB NOTTINGHAM A
8 FUTTOCK CREDITON A
9 MANTLE MORDEN A

10 JAMIESON WINDSOR A
11 ROLANDS BIRMINGHAM A
12 BURNETT LIVERPOOL A
13 MASSIF PARIS s}
14 MARCHAM DONCASTER A
15 LEWIS HULL A
16 GARDNER MILWAUKEE v}
17 MATHIS LAS VEGAS o]
18 TRINDER CANBERRA 0
19 SALMON MONTRERL 0

The membership status list has R for Associate, O for Overseas, and P for
Pillock...no, Perpetual.

17

The postal towns may not be accurate, but then this is not meant to be a
geography lesson.

Continuing in the make—life-easy vein, all entries will be in upper case
(capitals). This should prevent awkward situations where "LIVERPOOL" and
"Liverpool" would be seen by the computer as totally different locations (as
would "LiVeRpOoL"“!').

Now for the program, and the use of DATR statements.

To make it relatively easy to locate a particular entry, each DATA statement
will contain one entry from each list. This has the added advantage of
allowing a single READ instruction to assign an entire entry to each list.

In addition, the DATA statements will be assigned line numbers which are
related to their initial position in the lists: entry O (BROOKS) will be in
the DATA statement at line 1000, while entry 19 (SALMON) will be at 1019.

This is really to help you debug the program listing should you experience
difficulty (due, hopefully, to your bad typing and not mine!). There is a
series coming up on Debugging: How She Is Spoke, so I won’t go into great
detail - if you have problems and you can’t solve them, then drop me a line.
We will use a structure for the program similar to that used for the listing
given in V2.6, so you should be able to follow it. The program will consist
of three main processing sections and one DATA section. The three are:

(a) Data assignment (equivalent to INPUT)

(b) Sort routine

(c) Output of sorted lists
When we look at the sorting routines you will begin to appreciate why the

use of a single two-dimensional array is preferable instead to the three
one-dimensional arrays.

DATA ASSIGNMENT

This is reasonably straightforward. This section consists of a leoop from O
to 19 within which there is a READ. If you’ve never quite grasped READ
before, here’s your chance.

READ is used in conjunction with two other BRASIC words: RESTORE and DATA.
You may have seen program listings in which there were lines beginning with
the word DATA and followed by a list of things separated by commas.

The comma, as is often the case in TI BASIC, acts as a "separator", helping
the computer to distinguish in a list between the end of one item and the
beginning of another. DATA statements are a little like REMs -~ the computer
doesn’t try to execute the contents of DATR statements either.

The difference arises when READ is used. The first time that the computer
encounters a READ while rumning a program, it starts looking from the
beginning of the listing for a DATR line. When it finds one, it notes the
location and stores the information internally. The READ instruction is
always followed by one or more variables; RERD A or RERD C,Z%$,Y(N) and so

8

an. Having found the first occurrence of a DATA statement, the computer
proceeds to copy the items in the data list into the variables in the RERD
instruction. If there is one variable, the computer copies one item. If
there are five variables, the computer copies five itews. Naturally the
items and the variables must match - you couldn’t assign a string like "DOG"
to a numeric variable, for example, although, confusingly, you can assign a
number to a string variable!

The computer keeps track internally of how far into the DATA list it has
got — if it reaches the end of one DATA statement it will look for the next
in the listing, and if it has only got partway through a DATA statement it
will “"remember” exactly where it is, ready for any further READ instruction.

Sometimes it may be necessary for a list of DATA to be read more than once
(perhaps when setting up a game board for a fresh game) and this is where
RESTORE comes in. On its own, RESTORE causes the computer to change its
internal recovrd of where it is in the maze of DATA items. The computer goes
back tu the first DATA statement in the listing, ready to begin again.

1f RESTORE is used with a line number, e.g. RESTORE 5020, the computer will
reset its internal marker so that it is ready to continue READRing from the
DATA statement in the specified line number (in the example, line S020).

All clear ? GBood. Be quiet at the back.

In the case of the three lists to be used for sorting here, the DATA is
organised so that each statement consists of three items - surname, postal
town, and status. The READ will therefore read all three into their
respective arrays at one go: READ S$(), T$(), M$O. The value within the
brackets in each case will be given by the variable used to control the
FOR-NEXT loop:

FOR P = 0 TO 19
READ S$(P),T$(P), M&(P)
NEXT P

To save space you can of course cram as many items into a DATA statement as
possible; I have (hopefully) designed the DATA layout so that errors will be
easier to spot and correct.

THE SORTING ROUTINE

Basically the procedure here is the same as in VZ.6. There are a couple of
differences. The most obvious is the fact that we are dealing not with one
array, but with three. This entails an expanded swap routine, catering for
all three. Less obvious is the fact that because we have three arrays or
lists, there are three different possible "keys". 1 have chosen to use the
surname (S$()) as the key here, which wmeans that the S$() array will be
sorted and the T$() and M$() arrays will receive the same manipulation as is
applied to S$(), except that only S$() will tested in the IF..THEN section.
If you want to sort using another key, either T$() or M$(), you simply need
to change both occurrences of S% in the IF...THEN test to T$ or M$ - it is
as simple as that. The actual swap sequence can stay the same.

The use of a single, but two-dimensional, array removes the need for a large

complex swap routine; however, the discussion of the programming involved
will turn this into an article on programming techniques rather than on

|9

Sorting, so I won’t go into further detail here (1’11 cover it next time
instead!).

The test section involving S$() is basically the same as that in line 170 in
V2.6, although the destination line number is different because the swap
routine is that much larger.

THE SWAP ROUTINE

To save using more variables than is absolutely necessary for clarity, I
have used G%$ to temporarily store any item which is being swapped.

For S$()1t
G = SH(P)
S$(P) = S%(P-1)
S$(P-1) = G$
For T$():
G = T$(P)
T$(P) = T$(P-1)
T$(P-1) = G%
For M$():

Gs = M$(P)
M$(P) = M&(P-1)
M$(P—-1) = G

The swap flag is set as before: F = 1, and don’t forget that the loop will
now be FOR P = 19 TO 1 STEP -1.

THE CUTPUT ROUTINE

Almost identical to that in V2.6, here not only is the loop run from O to 193
(in place of 0 to 9), but the PRINT statement has been altered to take into
account the increased information. There are four items to be printed: the
current value of the loop control variable (P); the surname; the postal
town; and the status. To tidy up the printout I have used TAB() to create a
"formatted" output. That is to say that each of the four items will be
printed starting at a specific column on the screen. The subject of print
formatting is intended to be covered in a future article, so I won’t go into
detail here.

The new PRINT statement is:

PRINT STR$(P) ;TAB(4) ;S$(P) ; TAB(1S) ; T$(P) ; TAB(28) ;M$(P)

20

Here is the full program listing (take care over the DATA swction from line
1000 onwards):

100 CALL CLEAR

110 CALL SCREEN(8)

120 DIM S$(19),T$(19),M$(19)
130 FOR P=0 TO 19

140 READ S$(P), T (P), M (P)
150 NEXT P

160 F=0

170 FOR P=19 TO 1 STEP -1
180 IF 5% (P))=5% (P—1)THEN 290
190 G$=S$ (P)

200 5%(P)=8%(P-1)

210 S%(P-1)=G$

220 B$=T$(P)

230 TH(P)=T$(P-1)

240 T$(P-1)=0%

250 G$=M$ (P)

260 M$ (P)=M$ (P-1)

270 M$(P-1)=G$

280 F=1

290 NEXT P

300 IF F=1 THEN 160

310 CALL CLEAR

320 FOR P=0 TO 19

330 PRINT STR$(P);TAB(4) ;8% (P) ;TAB(15) ;T$(P) ;TAB(28) jM$(P)
340 NEXT P

350 END

1000 DATA BROODKS, OXFORD, P
1001 DATA BROOME, LINCOLN, A
1002 DATA FIELD, READING, A
1003 DATA CODPER, OXFORD, A
1004 DATA BRUBBE, RHEIMS,O
1005 DATA HERRESTHAL, HAMBURG, 0
1006 DATA PAULI, CRAPETOWN, O
1007 DATA CRUMB, NOTTINGHAM, A
1008 DATA FUTTOCK,CREDITON, A
1009 DATA MANTLE, MORDEN, A
1010 DATA JAMIESON, WINDSOR, A
1011 DATA ROLANDS, BIRMINGHAM, A
1012 DATA BURNETT, LIVERPOOL, A
1013 DATA MASSIF, PARIS,O

1014 DATA MARCHAM, DONCASTER, A
1015 DATA LEWIS, HULL,A

1016 DATA GARDNER, MILWAUKEE, O
1017 DATA MATHIS, LAS VEGAS, 0
1018 DATA TRINDER, CANBERRA, O
1019 DATA SALMON, MONTREAL, O

Don’t think that TAG SORTING is confined to Bubble sorts - it is a variation
which can be applied to all sorting techniques.

There is one thought, though. In the example here, the original sequence or
arrangement of the lists is lost when the sort takes place (forgetting for
the moment that the lists are held in DARTA statements!). Other sorts which
we will examine later use a separate array to hold the sorted results, but
it would be possible to store the ariginal location of any key with the

key itself. I wonder if anyone can see how ? (I wonder if anyone cares!).

~aeA

2.\

BULLETTIN BOARD

SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE FOR SALE
00

OTIUser PETER CALCRAFT is putting his MYARC 128K card up for sale. It is
only a few months old, and Peter’s reason for selling is that it is
incompatible with his Pascal system. It cost £230 and he is asking £180

(he will cover postage costs if you cannot collect it yourself). There was
a review of the card in TI-LINES V2.2 by HOWARD GREENBERG if you want some
background, or you can get all the details from Peter direct, either by
phone: 0305 67658, or at 13 Royal Mews, Princes Street, DORCHESTER, Dorset,
DT1 1RL. I have used one of these cards before, and they can make life very
easy when using things like TI-Writer, for example.

00

DAVE HEWITT is still producing his home-grown PIO0 interface. It is available
boxed for £355, unboxed for £45, or as the pcb alone at £10, and the EPRDM at
also £10 (circuit diagrams provided) if you wish to build it yourself. If
you drop Dave a stamped, self-addressed envelope he will send you a sheet

of information describing the PIO in more detail. If you purchase a unit
from him, he will also throw in a free capy of his own WordWriter word
processing program.

You can contact Dave on OXFORD (0B65) 863565 or by writing to him:

DAVE HEWITT

SA Lower Whitley Road
Farmoor

O0XFQORD

0X2 9NU

(see CLOSEFILE for an offer you might not want to refuse!)
00

Over the page you will find a list of the modules/disks/cassettes which can
be provided through me. The availability may change, and if you crder an
item which has been sold we will still attempt to obtain it for you; if we
have to admit failure, you will of course be reimbursed. Post and packing
are included, and I understand that all orders will be despatched using the
Compensation Fee Parcel service so that any losses can be recovered.

Contact me if you are interested, orders will be filled on a first-come,
first served basis. In a few cases there is only one of each item, in most
of the others there are several. R few books are available too, although 1
am unsure as to exactly how many there are. The best advice is to put your
order in as quickly as possible!

22

AaBM CONTROL/CAVERN HUNT
AaBM CONTROL/FROGLET
aDD & SUBTRACT 1
ADD & SUBTRACT 2
ADVENTURE (PIRATE)
ALIEN ADDITION
ALLIGATOR MIX
ALPINER

ASCOT STAKES
BATTLESTRAR ATTACK
BEGINNING GRAMMAR
BIGFOOT

BLLACKJACK & POKER
BLASTEROIDS

BLASTO

BOMBS AWAY

BOUNCER

BURGERTIME
CHARARCTER GENERATOR
CHISHOLM TRAIL
CONNECT FOUR
DEFENDER

DEMOLITION DIVISION
DIGDUG

DIYAD

EARLY LEARNING FUN
EARLY READING
ESPIAL

FACEMAKER

FUN-PARC

HANGMAN

HOME FINANCE DECISION
HOP-IT

HOPPER

8. 00
12.00
6.00
13. 00
2.50
5. 00
S5.00
10.00
12.00
2.50
10. 00
10.00
2.30
10.00

HOUSEHOLD BUDGET MANAGEMENT 6.00

HUNT THE WUMPUS
INDOOR SOCCER
INVADERS

INVENTORY MANAGEMENT
INVOICE MANAGEMENT
JAWBREAKER 11
M.A.8.H.

MAILING LIST

METEOR MULTIPLICATION
MIND CHALLENGERS
MINI-MEMORY

MINUS MISSION
MISSILE ALERT

MOON MINE

MOON PATROL
MULTIPLICATION 1
MUNCHMAN

MUNCHMOBILE

NUMBER MAGIC
NUMERATION 2

OLDIES BUT GOODIES 1
OLDIES BUT GOODIES Z

5. 00
8.00
5.00
12.00
12.00
8.00
12.00
12.00
6.00
6. 00
45. 00
6.00
2.350
10.00
10.00
9. 00
S.00
8.00
5. 00
€. 00
3. 00
3. 00

FORMAT

CASSETTE
CRSSETTE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CASSETTE
CASSETTE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CASSETTE
CARTRIDGE
CASSETTE
CASSETTE
CARTRIDGE
CASSETTE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CASSETTE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CASSETTE
CARTRIDGE
CARTRIDGE
CASSETTE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
DISK

DISK
CARTRIDGE
CARTRIDGE
DISK
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CASSETTE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CARTRIDGE
CASSETTE
CRSSETTE

23

TITLE ££. pp FORMAT
OPERATION MOON 2.50 CASSETTE
OTHELLO 8.00 CARTRIDGE
OTHELLO 2.50 CASSETTE
PARSEC 6.00 CARTRIDGE
PEARL DIVER 2.50 CASSETTE
PERSONAL FINANCIAL AIDS 4.00 CASSETTE
PERSONAL REPORT GENERATOR 6.00 CARTRIDGE
PICNIC PARANOIA 6.00 CARTRIDGE
PROGRAMMING AIDS 1 6.00 CRSSETTE
PROGRAMMING AIDS 2 10.00 DISK
PROGRAMMING ARIDS 3 10. 00 DISK
PROTECTOR II 8. 00 CARTRIDGE
RETURN TO PIRATE ISLE 12. 00 CARTRIDGE
ROBOPODS 2.50 CARSSETTE
SAMURAI 4.00 CASSETTE (INCLUDES COMPUTER DUST COVER)
SLYMOIDS 12.00 CARTRIDGE
SNEGGIT 8. 00 CARTRIDGE
SPEECH EDITOR 12.00 CARTRIDGE
8PELL WRITER 12. 00 DISK
STATISTICS 12.00 CARTRIDGE
SUPERFLY 12.00 CARTRIDGE
TEACH YOURSELF BASIC 3. 00 CASSETTE
TEACH YOURSELF EX-BRASIC 3.00 CASSETTE
THE ATTACK 3.00 CARTRIDGE
TOARD GRAPHICS 3.00 CASSETTE
TOMBSTONE CITY 3.00 CARTRIDGE
TROLL KING 2.50 CASSETTE
VIDEO CHESS 12,00 CARTRIDGE
YAHTZEE 6.00 CARTRIDGE
ZEROD ZAP 6.00 CARTRIDGE
COMPUTE! BOOKS
TI SOUND AND GRAPHICS 9.95 BOOK
PROGRAMMERS REFERENCE

GUIDE 9.95 BOOK
GUIDE TO EXTENDED BASIC

HOME APPLICATIONS 9.95 BOOK
BEGINNERS GUIDE TO

ASSEMBELY LANGUAGE 9..95 BOOK
33 PROGRAMS FOR THE TI 7.95 BOOK
CREATING ARCADE GAMES 7.95 BOOK
SPECIAL OFFER
STARTER PACK 1 3.00 BOOK/CASSETTE
STARTER PACK 2 3.00 BOOK/CASSETTE
BAMES WRITER PACK 1 3.00 BOOK/CASSETTE
GAMES WRITER PACK 2 3. 00 BOOK/CASSETTE

20

KEYBOARD
CONNECTOR
BROCHE 1 PINS

PIN1 r’;;’

§NT6

333

PINIS _

335333

i

£

For these of you who have schematics for every
section of the TI99/4R couputer except the keyboard
itself, here it is.

_Now you can deterwine which key relates to which
pin at the connector. This wuay be very helpful in
naking a “lag-keyboard® for use with those. gares
that call for alphanuzeric inputs, Kake an extra
long ribbon-cable lead, add a 13 pin connector and
sit back coafortably to play.

The enterprising might want to add a fixed
conrector receatacle on the joyport side of the
console, Just behind the joyport itself. If you
do, don't forget to draw it up for the rest of us.
[Warning: These modifications negate warrantee

rightsl

KEYBOARD SCHEMATIC

°d

23

BROCHE 15 BROCHE
)

S
DU CONNECTEUR
DE CLAVIER

CONFIGURING TI FORTH TO YOUR SYSTEM (Part 1)

By MIKE RICCIO
Taken from the January 1985 newsletter of the PHILADELPHIA AREA USER GROUP

T1 FORTH, a powerful language for your Tl computer, was released to the
Users®’ Broups by Texas Instruments as PUBLIC DOMAIN. Since then, almost
all the pecple in our group who can run FORTH have obtained a copy.

T1 FORTH requires the following equipment:

CONSOLE AND MONITQOR (OR TV)
DISK CONTROLLER

AT LEAST ONE DISK DRIVE
32K MEMORY EXPANSION
EDITOR/ASSEMBLER MODULE

{There is an Extended BASIC loader for FORTH in the Public Domain, and I
understand that a MiniMemory version may also be available. I have copies
of FORTH, with manual and disk, for £10. Contact me if you would like a
copy, or for further information. PBY

The TI FORTH disk is set up for certain parameters, which assume that you
have the following:?

One single sided, single density disk drive
An RS232 compatible serial printer

This article will show you how to modify these requirements to suit your
own configuration, and also set up FORTH so that it loads your most-used
options very rapidly.

It’s probably too late, but BEFORE YOU DO ANYTHING WITH YOUR TI FORTH
DISK, MAKE A BACK—-UP COPY OF 1T FIRST! VYour FORTH disk has some valuable
information on it, and many FORTH commands could damage this, so PLEASE
make a back-up copy! Use your Disk Manager module to make a back—up copy
of FORTH, but ONLY copy it on to a SINGLE SIDED/SINGLE DENSITY format disk
otherwise it will not be compatible with FORTH.

{You can use a double-sided drive provided that you tell Disk Manager that
there is only one side to the disk! PB}

The first step is to enter FORTH. Do this by powering up your system.
Insert the Editor/Assembler module. Turn on the console. Press any key,
then press 2 for Editor-Assembler. Now press 3 for Load and Run. Place
the FORTH disk in drive 1 and type in: DSK1.FORTH and press ENTER. You
have Just loaded FORTH!

After you load FORTH, the first thing you see is 3 columns of words with
dashes in front of them. These are known as the loading options. Below
them you see the words TI FORTH and a flashing cursor. Whenever you see
the flashing cursor, it means FORTH is waiting for you to tell it what to
do. ARs with BASIC, you press the ENTER key when you are done typing.

2.0

The remainder of this article will deal with configuring FORTH, so if this
js the first time you have used FORTH, please, open the manual and read
the first three chapters. If you’ve done this, then read on...

FAST LOADING FORTH

The loading options give you more commands of many varieties, but as you
know it takes a LONG time to load. We're going to change all of that.
Right now you must decide which options you are going to use the most;
load these by typing their names as they appear on the list (don’t forget
the dash!) and press ENTER. You can load more than one at a time by
separating them with a space. You must also decide which editor you like
better, the 40 column or the 64 column, because you can only load one.
After loading the options, type in the following line:s

-BSAVE ' TASK 51 BSAVE

(° is the apostrophe — FCTN 0)
That was the hard part! Now all you have to do is to edit SCREEN 3, the

"Boot" screen. Type in the following lines, pressing ENTER after each:

3 CLEAR
FLUSH
3 EDIT

You are now in FORTH’s editor. Now enter what you see below:

[¢] (WELCOME SCREEN) BASE-YR HEX 10 SYSTEM
1 O 0 GOTOXY ."™ LOADING TI FORTH... " CR 10 83C2 C!
2 DECIMAL S1 BLOAD 16 SYSTEM MENU

3

4 1 VDPMDE !

) O DISK_LO !

6

7 ¢ SIZE SP@ HERE ~ . ." BYTES FREE" ;

8 ¢ PAGE 0 0 GOTOXY CLS ;

9 ¢ BYE MON 3

10

11 R—) BRASE

12

13

14

15

Now press BACK (FCTN 39) and enter the following lines:

FLUSH
TEXT
CoLp

L7

FORTH should re—boot as if you had just loaded it. If not, re—enter FORTH
using the back-up disk, load the editor, and check your typing on SCREEN 3.
By the way, we’ve also added 3 new commands to FDRTH:

SIZE tells you how much memory is left
PAGE acts like CALL CLEAR in BASIC
BYE exits TI FORTH

Next time, we’ll learn how to modify FORTH for more than one disk drive,
for a parallel printer, and correct an error made by TI.

~a A

CONFIGURING TI FORTH TO YOUR SYSTEM (Part 2)

By MIKE RICCID

Taken from the February 1985 newsletter of the PHILADELPHIA AREAR USER GROUP

DRIVE SETUP

Last month I left the fourth line aon screen 3 blank for a reason, and this
is it. Type the following lines pressing enter after each:

FLUSH
3 EDIT

Refer to the following table for what to put on the fourth line.

TYPE THIS: IF YOU HAVE THIS:
90 DISK_HI ! 90 DISK_SIZE ! One SS/SD disk drive
180 DISK_HI ! 90 DISK_SIZE ! Two 88/8D disk drives
360 DISK_HI ! 90 DISK_SIZE ! Three S5/SD disk drives
180 DISK_HI ! 180 DISK_SIZE ! One DS/SD disk drive
360 DISK_HI ! 180 DISK_SIZE ! Two DS/SD disk drives
5S40 DISK_HI ! 180 DISK_SIZE ! Three DS/SD disk drives

Please notet FORTH is not set up for double density drives.

Now press BRCK (FCTN 9) and type FLUSH and press ENTER.

FORTH ERRORS

The Tl FORTH disk contains 2 resident errars. The first is on screen 72.
Type:

28

72 EDIT

(From now on, when I say to edit a screen, type its number, then EDIT and
press ENTER. Also, line numbering on screen starts at 0 and goes to 15).

Look at line S. It may currently read:
PAB_ADDR @ VSBW 1 PRE-ADDR @ § + etc.....

Change it to:
PAB-ADDR @ VSBW 1 PAB-ADDR @ S + etcia...

The second is on screen 58. If you did not do the fast loading FORTH last
month, then you can correct the error by editing screen 38, and changing
line 10 froms:

VDPMDE @ 4 (IF SMTN 80 O VFILL 300 ! SATR ! ENDIF

VDPMDE @ 4 (IF SMTN 80 O VFILL 300 ' SRTR ! ENDIF
Otherwise, if you did modify your disk, edit screen 89 to look like this:

(CORRECT WORKING SSDT ROUTINE 19JANBS MR)

HEX

: 88SDT2 DUP " SPDTRE ! 800 / 6 VWTR SATR
20 O DO DUP »R DOOQO SPE R) 2 VMBW
DROP 4 + LOOP DROP VDPMDE @ 4 (IF
SMTN 80 O VFILL 300 ' SATR ! ENDIF ;

DECIMAL

’ BRANCH CFA * SSDT * 8SDTZ

OVER - 2— OVER 2+ ! !

And edit screen 3 so that line 6 reads:

89 LDAD

Finally, press BACK, type FLUSH and press ENTER.

29

PARALLEL PRINTER

FORTH is currently set up for a printer configuration of: RS23Z.BR=9600.
But if you have a parallel printer (PID), do this to make it compatible
with FORTH.

Edit screen 72. Change line 4 from?
SET~-PAB OUTPT F-D" RS232. BA=9600" OPN 3
Tot >
SET-PAB OUTPT F-D" PIO" OPN 3

Press BACK, type FLUSH and press ENTER.
JUST FOR PN

Type this line and press ENTER:

1 SCRN_WIDTH !

Now try typing things. 1Is anything strange happening ?

By the way, if you’re using the 64 column editor, after editing a screen
type TEXT and press ENTER to return to normal 40 columns.

Well, that’s all for this time. Some of the information presented here
may be too technical for you, but don’t worry, next time we’ll start a
tutorial on how to become well versed in FORTH. Till then, live long and
program! :

30

A LOOK AT PROGRAMS

By R. A. GREEN
Taken from the November 1985 newsletter of the OTTAWA TI-99/4 USERS GROUP

There are seven different ways to store programs in the TI-99/4AR. In this
article we will have a look at each of these seven forms and at how they
are used.

Everyone is familiar with the form used by TI BASIC to store programs on
cassette or disk. It’s identified as "PROGRAM" in the disk catalogue. It
is created or stored by the BRSIC SAVE command and locaded by the BASIC OLD
command. This is the only way that TI BASIC uses to store your programs.

Extended BRASIC can, and usually does, use the same form as TI BASIC to
store programs. In fact, Extended BASIC can use Tl BASIC programs. There
are, however, two other forms that XB uses. Both these forms can only be
used to store programs on disk. .

If you have the 32K Memory Expansion, you can write an XB program which is
too large to store in the usual format. XB will store these large programs
in an "INTERNAL VARIABLE 254" file. The usual "SAVE" and "OLD" commands
are used to store and load these programs.

The third form used by XB is the "merge format" stored in a "DISPLAY
VARIABLE 163" file. This form is created when the "MERGE" option is
specified in the "SAVE" command, and is loaded by the XB "MERGE" command.
The beauty of merge format is that when it is loaded it does not
necessarily overwrite the program in memory. The MERBE command does just
that —~ it merges the new program (or program segment) with the program in
mnemory according to the line numbers.

Now, we get to the good stuff, Assembler language programs. There are
three forms for an assembler program: tagged object, compressed tagged
obyject and memory image.

Tagged object is stored in a DISPLAY FIXED 80 file on disk only. A1l
program data is in hexadecimal so that it can be edited by the E/A editor.
Tagged object can be loaded via CALL LOAD in XB, option 3 on the E/R menu,
option 1 on the MM menu or by CALL LOAD in TI BASIC when either the E/A or
MM module is used. The program can be "absolute" or "relocatable". An
absolute program must always be loaded at the same place in memory. A
tagged object program may have references to other programs or subroutines.
The loader will resolve these external references, except for the XB
loader.

Compressed tagged object is very nearly the same as tagged object except
that the program data is stored as bytes rather than as hexadecimal digits.
Compressed tagged object loads faster than regular tagged object as you
would expect. The XB loader cannot load compressed object.

Tagged object, in either form, is produced by the Assembler when it
assembles a source program.

3\

The "memory image” form of assembler programs is the most compact and the
fastest loading. It can be stored on cassette or disk. It is identified
as PROGRAM in the disk catalogue (Just like a BASIC program). Memory image
programs can be loaded by option 5 on the E/A menu or option 3 on the TI
Writer menu (and I assume, by Multiplan, although I have never tried since
I don’t have Multiplan). 1t should be noted that there is one slight but
important difference between how the E/A calls a memory image program and
how TI Writer does. TI Writer blanks the screen just before calling the
program and the E/A does not. This means the pragram must turn the screen
back on or nothing will show. Memory image programs are created by a
Utility program (one is provided on the E/A disk).

A PROGRAM file, containing an Assembler memory image or a BASIC program,
can be read or written to any input—output device with a single 1/0
operation. This is one of the reasons they load so quickly.

There is a restriction on the size of an Assembler memory image program of

) 2400 bytes (9216 decimal). However, the E/R and TI Writer modules will
load multiple memory image files to make a program of any size. They use
the convention that the file name of the second and following files is
obtained by incrementing the last digit or letter of the previous file name.

For example, the TI Writer editor consists of two memory image filest EDITR1
and EDITAZ.

As a matter of interest, the ADVENTURE, Tunnels of Doom, Personal Record
Keeping, Statistics and Personal Report Generator modules use a memory
image or PROGRAM file for their data bases. The fact that memory images
can be saved or loaded with a single 1/0 operation makes them attractive
for such uses.

A lot of the Assembler language games that are circulating around are in
the memory image format so let’s look closer at them. Assembler memory
image files have a three word header followed by the data to be placed in
memory. The three header words aret

1. This word is a "flag". If it is not zero (i.e.)FFFF) then this file is
not the last in the multi-file program. For example, the flag word for
EDITA1 is YFFFF indicating that there is another file called EDITAZ; the
flag word in the EDITAZ file is >0000 indicating it is the last file and
there is no EDITAS3.

2. This ward is the length of the memory image in bytes, including the six
byte header.

3. This word is the CPU memory address where the memory image is to be
loaded.

Execution of a memory image program always begins at the first byte of the
first segment loaded.

Finally, the seventh form for programs. This form is created and loaded by
EASY BUG of the Mini Memory Module. It can be written only to cassette and
is a memory image, but is slightly different from the E/A memory image
file. The EASY BUG memory image program can consist of only one segment.
The header on the EASY BUG format is two words, as follows:

RYyA

1. This word is the CPU wmemory address at which the memory image is to be
loaded.

2. This word is the length of the memory data, wnot including the four
header bytes.

If this whole thing is too complicated - maybe a table showing all the
options will help.

FILE TYPE CONTENTS MODULE DSK Ccs

PROGRAM - BRSIC Program - Console - YES - YES
PROGRAM - BRSIC Program - XB - YES - YES
INT/VAR 254 ~ BRSIC Program - XB - YES - NO
DIS/VAR 163 - MERGE Program - XB - YES - NO
DIS/FIX 80 - Tagged Object - XB - YES8 - NO
DIS/FIX 80 - Tagged Object - E/A - YES - NO
DIS/FIX 80 - Tagged Obyect - MM - YES - NO
DIS/FIX 80 - Compressed Object - E/R - YES - NO
DIS/FIX 80 - Compressed Object -~ MM - YES - NQ
PROGRAM - E/R Memory Image - E/A - YES - VYES
PROGRAM -~ E/R Memory Image - TIW - YES - VYES
PROGRAM - MM Memory Image - MM - NO - YES

33

LINIS IR Y

34

Printed by a TI99/4a

. {1492-1519)7

CLOSE FTILE

MORE HELLOS

Since writing the Editorial, NICHOLAS FROST and BRIAN BENNETT have joined
our ranks, and the technically-minded among you can look forward to at least
one article from Brian, which will probably appear in the April issue. I
say "probably", because April may have more than its fair share of eye-
opening material, which will leave little room for further revelations.

BRIAN ABRAMS rang me to tell me that he had successfully completed the 32K
RAM project presented in the last issue, (at the time of writing I have not
yet received the updated diagram from GRAHAM WOLSTENHOLME, although I did
delay publication as long as I dared).

DAVE HEWITYT (see also the BULLETIN) is offering another service to OTIUsers:
he will assist in the production of the 32K RAM unit as described last issue
either by building and installing the 32K to a negotiated price (less than
£50 1 would guess)provided that he is absolved from any financial cbligation
should any fault occur, or by using materials which you provide (assuming
that you can obtain the necessary chips etc. more cheaply than he can!).

Dave also notified me of a small bug in one of the programs which were sent
in by JAMES STRINGFELLOW (published in V2.8): on page 17, statement 148

has a 136 in its DATR statement (about the fourth number along). This ought
te be 144 — it enables the full range of ASCII characters to be defined, up
to and including ARSCII 143 that is.

That reminds me: I can make available on disk the programs which James sent
in, and where practical also on tape. Feast your peepers on James’s latest
offering in this issue — I am begimning to lust after hi-res graphics on ay
printer!!

DAVE CARR’s peripheral expansion problem resclved itself spontaneously, but

obviously if anyone can suggest any explanations I am still happy to receive
and possibly publish them.

WAITING FOR BRUDOT (with apologies to Becket...)

On a page somewhere in this issue you will find a clever portrayal of a
reasonably well—known lady, distributed by ED YORK of the CIN-DAY USER GROUP
in his newsletter. This month’'s flashy competition is to find a suitable
(and printable) caption for what you think might be going through the young
lady’s mind. The challenge is thrown open to any OTIUser or member of the
family of an OTIUser. My problem is trying to think of a suitable prize!

It will probably be software/literature, with a choice for the luck(less)
winner.

Finally, does anyone have any useful information on how to make a Tandy DMP
105 printer compatible with the hi-res graphics output of GRAPHX ? Let me
know and I will publish/pass on the information.

It is now 4.22 am and sleep beckons. VYawn...

35

32K RAM Project

|

Shown below is the correct wiring sequence for the GND wire.
Please note the additional break in the copper strip between GND in and PIN 15

There was unfortunately an error in part of the veroboard circuit for the

32K RAM.

_%

! DR
VERD BoARD CIRCDIT WIRES TAKEN To ‘6" Pin_DIN_PLUG
g . v . (see Fig 3) | N
£ . S A3 - —
. ALy pe——]
Py . ., “H A5 ~
g o8 ! r. A6 ™~
. 8 ot r L ™~
@3 il =l i [0 I~
m @ e, ~, &\ . " A2 Ny
2E - - g My N
¥ " o T V. 7ot AT ~
ae 71 7 —p “ Y -
Q9 o O luF F OluE ¥ O uF O luF '
g & e
W ¥, Il-—ll Al
en 1 o I & o N
i 7
25 < B > F e i s T Tfeses] +5v ™~
g . LG Do LG e Boe 1 3 S Y L
a4 e A A R D)) Poedtflas +ov[w)
g)] 3] () \
83 e L @ o] a e} a) —e<T} Dot filas A7 [3
5= = - oo |7 e} ! N
s g .1 —e} <2} G e} Boatl i Asfm—e<T
S
o (e e P LG @ Tz SERi
53 . “ .~. 2 e m “ el 17) N Nl s ash & - 22uF
o 8 . LG - esuf Dse L] - csa 7 .. cs2 Pt Gl cst resif—"
55— o o m G] e g
— o 0) G D
%o b o T .‘ £ @ > sf —
£ : = : TS Zotn
S55 g . F nv& ; S W7 5 Z(8; R S ND
2B T Hee B A i M ey L} ; = |
© 'z £ | — by | A~ M. I M — e e
[= M , 52, I~
LR hS cs3
58 > [~ s
83 . N ~ =3
Lol . . ~ =
558 = N .. S, %
> wd N .
=R} M. M
S8 Y)
2e3 ™~ [,
288 e S~
NOTE - @ =_INDICATES BREAk IN CoPPEL STR.P
= INDICATES connecrion & WiIRE R

= AL ADTACENT PINS, ExcEPr s 28,

/e 2627, 3420, HAVE BrRear BrTwWEEN

THEM _in _COPPER STRIP. THIS

/1S nor

SHoWN on _ARWVE LAYoUT.

(see FiG2)
IN 1SSUE J

26

ot

*ApoqAue aoj swaTqoad asned
jJou pPIp STyY3z 2doy I “°STOT3JIY UBITBJIFSNY 89Uyl YjTm 3TnOoJTO ayz Jutaedwoo
usym ‘JOJJs ayj padT3ou saey TTIMm 309foad ayz pezdwsije oym Apoqhue A1ingadoy

*GT NId pue ur gNo usamizaq dtazs aaddoo ayz url ¥eadq TBUOIZIPPE 8Yj3 930U 9sea[d
*9JdTM (ND 9Yy3 JOJ aousnbas JuTaTM 308JJ00 9Y3 ST MOTSq UMOUS WYY M2E
9U3 JOJ 3TINOJID pJIROqOJdA 3Yz Jo juaed ur Joaas ue L[s3eUunjJojun Sem aJayl

309(0oad Wvd Me€

[[111]]]]]]] / / \ \ <
T) ;
3| 2lz22lzlelals|zlel 23 3 2329|399 [8|a 2812|885 | gy S
1 i i i JIAIR 2 &
K4 NAAA 7 48 e €
D- ‘///. ‘\.\.\.\ M
2 A "
a u Jisiginligisisisigliaisiainlas Y
wa w.._. [Fw3ciifegrisin N .W, d
Rls A §2992:923%9%5 %% \ 3 R
3 UEUEHEEE B EEEE 33
28 N AR \ BRE
“ ¢ ¢ ¢ on EF
W //// W W%

w|] M ﬁwuw
- N AANAN
- g d s & 7T |]
3 | NAAA
¥
< u ..Mr.
El a 3
Ve et < “M nﬂﬂ.,
Y @ asm
3 EINER
DM 9 Y ¢ ...,.._ < ¢ \ 'S W oz WMK_
S N MMANMNAAAAAAAAA NN ALY § | Wz
W Aaddhe 2
> "N \\ J\ \\\\x y m”Mw
N \ DAY
. A. b q M d P@/w
|| | AfARAAREmMOnEEET q 8 SR
= 3 RS
e S 45
NN AR A A2 ; T.,_r 144 ® ~, 3uft

L

Fl

IN 1SSUE, q

- SHowWN onN ARWE LAVoUT.

