NIAIL
=

] L

INTERNR

Tl=L1

Volume 4, Issue 1

Z &

June 1st., 1987

ISN'T IT ODD
HOW YOU CAN
ALWAYS SPOT A

FELLOW TI USER ?

Formerly OXON 7TI USERS

T sy
PRESS

INTERNATIONRL
Tl USER GROUP
BN RoRS. OXFORD 510822

OXFORD OX2 6JT

- —— e e o e s s s e i i o . . T > e o ———————— — — — — ——————— — T — ——t——

READ THIS FIRST leonceacnnmcucessnsnssssipnsmnmsmesnmensssss cuseme s

The renamed editorial gets off to a long-winded start

SORTING IN MACHINE CODE......... csmsesansE e EE e . CEesae s Nae e .9

An object code file designed to order

SOFT WARE SHUFFLE..ecetceacccanaannn R semeceasanssnnanses 1O

Based on a letter from NORMAN HANCOCK

LOGO, BARSIC, AND RECURSION. .t e ceacennenasennneceannccnannennnennslls

BASIC can’t do recursion, can it ?

DERBY REPORT.cceencenetacsessnannannasnaneacncannassannnsnnes aeennesl?

On TI-EXCHANGE's last meeting

THE INFINITE MONKEYS THEORY. . eseeceooeocacnanennanescnncasccannnanel®

Darwinian approach to pseudorandom text generation

XMODEM PROTOCOLS. et eeueeenesasenassasssancanssasnananansssnnsneeee?l

This month’'s major item is a discussion of XMODEM

CAPTION COMPETITION — RESULTS. .ttt eenoncananansaceseonsnennnnneaslD

SCOTT and JO ANN COPELAND present the winners, rummers—up, and
a few rib-ticklers worthy of mention

RDVERT ISEMENT . c s sonancsecanaansssnsncanssanosnnseanansnssansonensodl

4FRONT from NEW DAY COMPUTING

NOTICE BOARD. ¢ o cccoemosssansessassssanesnessssssssssannnssssssenss

“
M

Tl bits for sale

T T T o e o o o e o ot e . e e e e e e S o e e s S . e e . . S, S . S . St S e e S gy . S e s S e e e S e . e e e . S S . e e

Hello and welcome to the fourth year (and 39th issue of TI-LINES...).

Evidence is accumulating from the returned questionnaires (and partly

also from the TI-EXCHANGE meeting at Derby, of which more elsewhere),

that a sizeable number of ITUGers either didn't read the Burble at all
last year (they skipped to the “"wmore interesting parts") or only read

and inwardly digested part of it.

The editorial (lately called BALDIE’S BURBLE and now to be called RERD
THIS FIRST! to try and emphasize its role) contains information on a
wide range of subjects: wnotifications of upcoming events, errors which
have been detected in previous issues, requests for information,
requests for ARTICLES, and other information which is of importance to
[TUGers (even though they may not always realise it), but which does not
come under the heading of “article" - for example, reminders, brief
advice, and particularly important news from outside our own extremely
small sphere of interest. I would be failing in wmy responsibility if I
did not attempt to make readers aware that there is a whole Universe

-~ outside the TI-99/4A, and almost all of it concerns us; reading about

tiny bits of it in editorials may ensure that you belong to the Knows,
rather thnan to the Know—-not/Care-not brigade.

On numerous occasions I have found myself explaining elementary things
over the phone/in letters which I know I covered to the same depth in

a Burble, and when I have ventured to suggest that the enquirer might
find enlightenment in the Burble, it has often transpired that they have
rarely, if ever, read the editorials. That’'s almost criminal (but not
quite...).

I have had a few suggestions to the effect that, if space is tight (it
usually is) I should cut or drop the editorial and squeeze in articles
instead (which is fine if there is no editorial worth mentioning and if
the articles fit the space exactly - Baldie's First Law dictates that no
article fits the space exactly), but if I do drop the editorial, how am
I supposed to pass own all sorts of information ? I could, I suppose, do
away with the verbose and highly informal writing style and adopt :
something more terse and compact. It would make everything even harder
to read and understand, and newcomers, or those not used to reading such
reference-manual format material, would be virtually excluded entirely.

If you’ve had difficulty understanding TI's manuals, let me advise you
that they have been written in a form more understandable than most!

At least only a few indicated that they DIDN'T find IT's articles
generally understandable, which would have made matters even more
complex - how do you simplify that which is already simplified ?

R few ITUGers have indicated a nweed for "linking articles" to fill in
the gaps between Beginners and Boffins. As very few of either Beginners
or Boffins are at all interested in writing articles, this task falls to
me. However, in the past, when I have asked for specific details of
subjects which ITUGers want explained, there has been no useful response

)))MDRE)
3

and I have been reduced to telepathy to try and discover what causes
headaches for some.of you. (This lack of useful feedback is apparently
a universal experience: I often see despairing pleas for articles or
subjects in overseas magazines).

Much material was covered in earlier volumes of TI-LINES, and although I
apologise for the lack of detailed index (I have had no time to prepare
one, but new ITUGer PETER KILLICK is kindly going to try and provide a
very detailed issue by issue index to volumes 1 and 2), I have pointed
out to some recent subscribers that their best bet is to buy an entire
volume or two and spend a few nights burning the midnight oil. If not
TI-LINES, then buy a couple of books covering Computer Science generally
(there are thousands, too marny for me to point at one or two and say "I
heartily recommend this").

Bear in mind that those who already have volumes 1 and 2 will not take
kindly to seeing the same articles being churned out year after year.
They expect (as will you, eventually) to see fresh ground being broken
in virtually every issue.

Some respondents suggested that there was a dearth of product reviews,
and that I ought to publish in—depth User reports to help others decide
on what (and if) to buy.

Fine - when the Users write the in—-depth reports I will eagerly publish
them. The last major review, if memory serves me correctly, was of the
MYARC Disk Controller by ALLEN BURT, many months ago (volume 2 ?).

I have been PROMISED in—-depth reviews, but “promised" and given" are
worlds apart.

Others have been Justifiably critical of the fact that some series’
start off but don't continue, or articles are promised but mnever manage
to materialise (or Booklets are being outlined but are never seen).

This happewns because muggins here tries to do two things at once (both
edit and contribute), and that situation is caused by a lack of ready-
made articles (at all levels). I rely heavily on material from overseas
and although I have a backlog of articles/information, it all has to be
typed up in the standard format, proofread, altered to conform to simple
English spelling/syntax/grammar, and updated where appropriate. I also
have to research, format, write, and proofread any original work, and
sometimes a large, unexpected article come in which requires editing,
thus halting my own work.

In addition, I have all the other aspects of a User group to cope with
(and which cannot really be delegated, for a variety of reasons, most of
them relating to finance, efficiency, and editorial policy) such as
answering letters (can’t be delegated unless someone has a carbon copy
of my brain!) and enguiries f(some of that seems to be delegated because
I sometimes refer enquirers to appropriate contacts, who sometimes never
hear from the enquirer, or if they do, sometimes don’t manage to respond
to the enquirer’s needs), debugging hardware (would cost a small fortune
in postage and insurance to ship it around) or software (most of the
enguirers never send their bugged software to me if they cannot obtain
satisfaction over the phone, so I wouldn’t expect them to behave any
differently towards any other Debugger - only two people this year have
actually sent me the items we discussed over the phone!), looking for

)))MDRE)
4

information relating to software or hardware projgects (most ITUGers
don’t want to pay exhorbitant prices for commercial items, but at the
same time don't want to see articles in IT which show them how to build
it/patch it for themselves), and generally being on the lookout for all
sorts of bargains, information, contacts in a number of fields, etc.

I have had kind (and very generous) offers of “free" photocopying on
occasion, but the problems which arise are enormous: unreliable and
varying quality within an issue; unreliable availability: cost of
postage of masters and copies; risks involved in sending valuable
original materials through the post anyway: and I would be totally
unable to exercise any kind of control over production.

I have had offers to proofread articles, but generally (a) nobody else
knows exactly how I would tidy up a given article and (b) few, if any,
ITUGers follow the standardly—accepted conventions on spelling, syntax,
grammar, etc. if several different people oroofread articles you end up
with several different styles, and what the reader doesn’t need is to be
made conscious of that fact. The form and style should be consistent
throughout, wherever possible, and this includes altering “foreign"
spellings to conform to English conventions.

It’s the kind of job which RLL editors in the “real" world do every day,
but the effect is one which you don’t notice until it is absent - when
the editor has fallen down on the jab.

Occasionally I have been sent a printed, formatted article for
publication which has had to be retyped (a) because the print has been
far too faint to photocopy satisfactorily (I have problems enough with
fresh print!), (b) the format hasn’t conformed to the IT standard,

(c) the spelling, syntax, grammar, orv general semantics have been faulty
and (d) sometimes the information has been wrong or out of date.

I used to operate a "cut and paste, publish and be damned" policy which
led to problems over guality and consistency, and after the last set of
questionnaires (in 198€) I altered the presentation of IT to respond to
readers’ criticisms. The new look, new presentation style actually
attracted some approval, but even now some ITUGers have indicated that
presentation quality is still not good enough. At present, to achieve
the kind of guality which I would like, it would cost me at least £600
for the proportional printing, high quality reproduction, daiseywheel
that I would reguive.

I do try to respond positively to readers’ criticisms, but I am unable
to provide 220 customised issues every month, wuch as I would like to.

ARs a response to several suggestions, here is a brief summary:

I have toyed with the idea of splitting IT into twe publications, one
for Begimmers, one for Boffins. That won't work: ITUGers are Boffins

in some areas and Begimners in others, and what do those who fit neither
category do ? Who would pay £20 a year for both publications ? Who
would do all the work and provide all the articles ?

I looked at the possibility of providing “"theme" issues - each issue
devoted to a particular topic — but that would mean that only a handful
of ITUGers would be catered for each month - a recipe for disaster.

)))MDRE)
5

I tried producing Supplements - that came a cropper after the first one,
because no-one fancied being relegated (as they saw it) to a smaller
circulation publication.

I looked at dividing the magazine up into discrete sections: so many
pages for Beginners, so many for Boffins, but that collapsed because of
the imbalance in available material (lots of highly technical stuff if I
had the time to type it all in, or redraw it).

I looked at publishing a larger magazine on a bimonthly or quarterly
basis, but from past experience (six years) I know that this makes the
magazine slow to respond to changes in the market, and makes it very
inflexible. It also coesn’t provide a quick turnaround for responses
from readers. By the time many adverts appear in such magazines, the
items are either sold or the price has increased.

If you look at the “real" world, there are no bimonthly or quarterly
publications at our level: they are weekly, or fortnightly, or mostly
monthly (and some of those have a three month lead time).

I have by no means exhausted the possibilities, but I have carefully
considered all suggestions (and countless ideas of my own, most of them
rubbish). To give you some idea of how we stand, only ONE subscriber
out of over 150 said he would gladly pay £15 a year for a 40 page IT.

Some thought I could break even on ranning costs by maintaining the
subscription cost and magazine size but publishing less frequently:
would you willingly accept half the material for the same money ?

Even the special offers and “bargains" which we find don’t always find
favour with everyone. As a specific example, take the ROMOX cartridges
to which TONY BOWDEN alerted me. I will shortly have all of the stock
available - another 300 cartridges - and then that’'s it. Tony is to bhe
congratulated on having given such valuable service to ITUGers.

I thought I'd explained what the ROMOX cartridges were and the chance
they represented, but not s0, it seems. A surprisingly large number of
ITUGers, especially those with unexpanded systems (who stand to benefit
most) are either unclear as to what advantage they confer, or are not
at all interested. This is tantamount to offering a drowning man a
lifebelt, and having him angrily throw it back at you. Even the price
of SOp was apparently considered too expensive by a minority.

If some of you think that I bought them for nothing and am happily
making reams of profit, then talk to Tony. He will tell yaou how much
they really cost.

Back to IT. The questiomnaires to date indicate, once again, that
ITUGers are split in their perception of IT. Roughly half (so far) have
indicated that there is too much for the Boffins in the magazine, while
the other half reckon there is too wmuch for the Beginner. Help!'

A1 overall view, then:
I can publish lots and lots and lots of articles for Beginners and
Boffins and anyone in between. They can be simple, complex, witty,

friendly, comprehensive, summarising, devastatingly informative, BUT...

)))MORE)
6

-Only if someone writes them in the first place. Contrary to popular
belief, I am not a font of wisdom and knowledge concerning the 4R, and I
have spent the last S years (a) trying to get anyone who is, to sharve it
with the rest of us, and (b) trying to learn a little more about Just)
about everything (which is difficult when I have no time free!) so that 5
I can try to fill in the gaps.

Writing is easy; writing well is not. It takes time to get an article
right, and I have offered help to recalcitrant writers in the past, but
to no avail. I can only publish what I am sent plus whatever I manage
to find time to write (badly) wmyself. The wmore YOU write, the wmore time
I get free to pursue some of the articles I started and haven' t yet
finished.

ITUG can offer all saorts of startling bargains and special offers, but
only if someone does the footwork first, so keep your eyes and ears
peeled (Beginners as well as Boffins). Don't say “nothing’'s available
for the TI in my area" until you have personally visited every shop,
warehouse, and residence, read every magazine, local newspaper,
newsletter, and internal company bulletin, and have spoken with every
living soul in the district.

THEN you can say “there is absolutely nothing for the TI in my area
today" and be sure that you are right. But what about tomorvrow ?

TI bits and pieces do circulate, and a local trader near you might be
worth tapping on a regular basis in case something comes in,

Spread the word: if your local paper or company bulletin has a FREE
advertisement section, advertise ITUG (and yourselves) in it. i am
“trying to get out to as many non-members as possible, but it is very

difficult when I don’t know who, or where, they are!

It has been suggested to me by several ITUGers that if one direct
subscriber to a group actually represents a dozen or more others who
are interested in reaping the benefits but not in contributing either
financially or otherwise, then those who aren’t subscribing may lose
out in the long run because the group does not have their direct
support. If there are too few direct subscribers, the lower is the
incentive for others to subscribe, and the lower is the incentive for
anyone to produce hardware/software or to provide any services.

Whether this philosophy applies to ITUG I couldn’t say, largely because
I don"t know how true it is of ITUG. Certainly TI-LINES has been read
by far more people than actually buy it, to judge by some of the letters
and phone calls I have received over the years.

At Derby, I was mildly reprimanded for having an Adventure Hints column.
in the magazine when most of the “"fun" is in being frustrated and quite
depressed by an inability to solve some of the riddles.

I publish an article index in every issue, so all anyone who DOESN'T
want to be exposed to the hints does is to check which pages contain
the material he/she doesn’'t want to be exposed to, and avoid them like
the plague. Let your fingers do the walking...

Once or twice I have been advised that readers found certain articles
condescending (mainly Beginning BASIC) and insulting to the intelligence
while others said those same articles proved too complex for thewm and

)))MDRE)
7

they have put them to .one side against the day that they acquire enough
learming to understand them. Some readers say that they learned TI
BASIC years ago and cannot see the usefulness of articles covering such
an “"elementary" aspect. The majority of new subscribers over the last
year have been totally new to computing and to TI BASIC - such articles
are aimed at them, not at the old hands.

Rrticles in IT have barely begun to scratch the surface of the wmountain
of information relating to the 99/74A, and I do have a backlog of useful
but unproofed material to release upovM you. if you are patient (i.e.,
very, very patient) you will eventually see everything that has been
promised.

ARlternatively, you could try researching a few things yourself and
putting pen to paper to let us all know - it's surprising now addictive
having your name in print can become.

I will prepare a Buide To Contributors, if that will help, so that what
budding writers provide won't reguire too wmuch editorial work.

In the meantime, keep voicing your criticisms. In many cases I will
probably have an explanation as to why something is not feasible, but
from time to time someone is bound to come up with an improvement which
benefits us all. Remember that I cannot take the “like it or iumn it"
approach - one ITUGer suggested that I should ‘only publish TI-LINES if
I had sufficient UK articles to cdo so in a given month, and that it
would somehow galvanise dormant authors into action.

Unfortunately, people rarely respond to that treatment, and anyway, I
couldn’t stop myself from writing articles if I tried.

I've become addicted to seeing my name in print...

Well, I allowed myself § pages to provide some background to the kind of
problem which I (and other User groups) face, so hopefully some ITUGers
will now be able to say “Ah, I hadn't realised that..." and ther help
out on the writing front... I live in hope (and in Oxfard).

I don't know whether it is worth pointing this out, but the subjgect of

Superconduction has made an appearance on the "up to date" TV programme
Tomorrow's World. You might vaguely remember that you read about it in
IT a month ago. Well, I try to stay one step ahead...

Make a date in your diary. The next BLOXWICH WORKSHOP organised by
GORDON PITT of the WEST MIDLANDS TI USERS is planned for SEPTEMBER Sth.
More details will follow in due course. Contact Gordon on 0922 476373
if you have specific queries.

ITUG featured in PERSONAL COMPUTER WORLD recently. ARlas, almost all the
details were wrong! Can we EVER win 2

)))END
8

SORTING I N MACHTINE CODE

This object code file was published in the JANURRY 1986 issue of the
newsletter of the TI NOVA SCOTIA USER GRDUP

The file had been downloaded from TIBBS and the author was presumed to
be JOHN CLULCW

If you don’t feel like straining your eyes and typing it all in (which
is gust what I did!?}? then send me a disk with return postage and I will

record the necessary files for you.

First things first: the eye strain...

*see below

OOCAD ADDOODAROD7DOANBDOARNDIDORODADOANDAFOBONONDBOONO1BFFOOBCBOB7F2ADF
ARORFECOARFOBOZENCOADOBO4COBOZ01BO0OO2BO420B200CBO200B4041B30207F2D1F
ROBOEBB3I4ABLII1E6EB0ECOBI0D20B8I4AB1I04BOZ00OB1IN0OBO420BZOI4BO2027F2FBF
AOB24BOOE4BO4CIBO4GC4L4BDOEOBBI4BBOECIBIBC2BO4CIBDOEOBAI4CBOECI7F2S4F
AODBIARBR10OIB1OVABOACALBD120BBI4BBOECABOACABO4ACIBTBZOCOAF2CONN2TF270F
AOBSOBCEO4COOOLEOSEABOZBABOOOOB1E0O2BO4ENCOCSEBBOEOABC24ABOA197F2REF
ROBEEBCNA4ASBOR11BCIZICONOZBCIE1CTOONABCONCBOZ01BOOO1BO202C07D0O7F2D9F
AOB7CBDB8Z0OCOARFLCO7DOBO420B2014BCICCBCIBDBOS8EBOEOEBSICEBI3ZA7F21DF
AOBIZBCOVEBOZO1BONO1BOZO2COBDOBDBZOCOAF4COBDOBO4A20B2014B02017F2D1F
ROBRBCO7DOBO202COBDOBOEARCOCESBOZ280BOO01B13I01B1OEIBCOOFBO201 7F2BEF
AROBBEBOON1LBOZOZCOEDOBN4AZOBZO10EBOSAFBBICEB1I1CBCOOFBO201BO0O017F2BIF
AOBD4BO202COIDOEBDBZ0CORFA4COIDOBO4A20OB2014BO201CO7DOBO202C0O9D0O7F2BOF
ROBERBOEGAOCOCEBEBDZ80OBOOOZBIIC1IB1IOEIBCONEBO201BOO01BO202C09D0O7F2C3F
ACCOOBO4ZOBZ0O10B10CIBCOOFBO201BO0O01BO202CO7DOB0O420B2010BCO4D7F2FEF
AOC1E6BEOVAFBOZE1EODOZB110BBL24ABOA19BCO4FBOS81 BCO89BOR12BC3817F27BF
ROCZCCOOO2BCABBDCONCUBOSBARBCOLEREO4CBO281BO0O02B1 10BBC24ABOR1II7F27€EF
AOC4ZBCOBIYBOR1IZBCAECCOOOZBCO4EBOEO1BCA21CONO4BOSBABO4ENCOBSE7FZ2B6F
AOCSABBOGCOBCBONESI7CEOZEORBIEOBC2EOCOAFOBO4SBBO4CIBDOD I BCOOZ7F23IFF
ROCEEBI4S2B1401BDODZBOECIBOS81BOS82B94S2B1ROBB1BODBOEOIB1ISFO7F27ARF
ROCEB4BCOBOBIB12CO7DOB1RNABLIBOEBOZOORBOONIBO4SBBO200BOO01 BO4SB7F2DBF
RAOC9ABOZOOBOOOZBOASBTIFR7EF

SOAFESORY 7FDIFF

93/4 RS

0OO01
o002
0003
0004
000S
000E
0007
o008
0002
0010
0011
o012
0013
0o0tla
001S
001E
0017
0018
0O19
0020
0n21
0022
00z3

*

]

I 100 CALL CLERR :: CALL INIT :=: CALL LOAD("DSK2.SORTO"):: DIM T$(100)
I 110 FOR I=1 TO 100 :: T$(I)=RPT$(CHRS (INT (RND*2ZE+ES)), INT (RND*E4+1))
| 2T PRINT T$ (I) =: NEXT I :=: INPUT "RERDY":Z%

1120 CALL LINK("SORT",T$(),100) :: INPUT “DONE“:Z$% :: FDOR I=1 TO 100
| t: PRINT I: :T$(I) :: NEXT I

|

The command format is CALL LINK(“SORT",array name followed by (), and
highest numbered element uo to which to sort). The SORT segment will
sart from element 1 up to and including the specified element number, so
you can sort an array selectively if you wish.,

R)]

9
2022 note: Type the above into TI Writer editor. DO NOT SaveFile.
Instead, PrintFile to: F DSK1.SORTO

the F forces a Display Fixed file. Stephen Shaw

R follow-on from GENERATING PSEUDORANDOM NUMBERS UNIQUELY from MAY 1987

Based on a letter from NORMAN HANCOCK, whose routine is also presented

This is what it’s all about, as they say. It’s certainly what I like to
see: a response to an article in IT which demonstrates an alternative
approach to the solution of a problem and which is of benefit to us all.

In this particular case, I misunderstood the specific nature of Norman’s
routine and thought he’'d sent me a flawed SHUFFLING routine.

A subsequent phone conversation set me on the right path, but the idea
of shuffling is one I'd overlooked (it was on the agenda for a future
continuation of the SORTING & SEARCHING series - you DO remember that
one, don’t you ?) and so I've stuck in my four penn’orth on using a
shuffling algorithm.

If you were with us during Volume I, then you’ll remember the tortuous
article I wrote concerning the generation of unique pseudorandom numbers
(issue 12, pages 28 et seq.). The routine was designed to conserve
memory at the expense of speed. The routines presented here operate
quickly, but tend to eat memory.

Norman Hancock wrote to me with a far simpler solution to the problem of
generating unique pseudorandom numbers, a routine for which appears here
and, as you will see, is considerably more powerful than my original
approach.

It is limited by available memory, but for most purposes it will be more
than adequate.

Here is Norman’s routine:

! |
I 10 REM THIS ROUTINE CHOOSES THE NUMBERS O TO 999 RANDOMLY & UNIGUELY l
| 20 REM NBH 870518 4 |
1 100 DIM A(999) |
I 110 FOR B=0 TO 999 |
1 120 A(B)=B |
I 130 NEXT B |
I 140 FOR B=999 TO 0 STEP -1 |
1 130 N=INT (RND* (B+1)) |
I 160 A(N)=A(B) |
I 170 NEXT B |
| |

o — —— —— T T T T T T T T T e e e e e e e e e -+

The first step is to fill the array A() with the numbers to be selééted.
Rccordingly lines 110 to 130 do Just that, storing values O to 999 in
elements with respective subscripts. Thus A(0) contains 0, A1)

)))MORE)
10

contains 1, ... R(999) contains 999.

The next step is to run through the array from the largest subscript to-
the smallest, using a straightforward decrementing loop.

A pseudorandom number (PRN) is generated in line 1350 using the loop
variable to restrict the maximum value which can be generated. When B
is 999, the PRN ranges between O and 999; when B is 998, the PRN ranges
between O and 998; and so on.

Here cowes the smart bit. Let us suppose that N evaluates to 126 on the
first execution of line 150. The contents of elewent A(126) are
therefore selected as the chosen value. In this case, R(126) actually
contains 126. Somewhere between lines 150 and 1€0 therefore, you would
insert whatever process you require — e.g., printing A(126), assigning
it to an element in another array, storing it in a disk or cassette file
and so on.

As the contents of A(126) have been selected, you don’t want them to be
selected again. However, the contents of A(B) - presently AR(999) - have
not been selected, and when B is decremented they will never be selected
(N can’t evaluate to a number greater than B), so the contents of A(B)
are assigned to AN) - i.e., to A(126).

This means that if N .evaluates again to 126, the contents of A(126) will
be different (at this moment, the number 999), and no duplication will
aoccur.

After one complete pass through the loop, all the values will have been
selected pseudorandomly and uniquely, and, most iwmportant of all,
RUICKLY.

The contents of the array R(), after the loop’s execution, cannot be
used again under this algorithm.

However, using a wmodification of Norman’s technique - a SHUFFLING
ALGORITHM - the array can be used again and again. In fact, you can
shuffle away to your heart’s content; the probability that you will
shuffle the array back to its original (sorted) state is extremely tiny.
The modification and its effect is shown later.

As Norman pointed out in his letter, the array need naot contain numbers
only. VYou could use a string array and select names, alphanumeric items
(like ordering .codes), playing cards, segments of text, anything. VYou
could use two or wmore arrays in parallel, selecting corresponding
elements from each of them (a TAGGED selection). You could also fill
the array(s) from DRTR statements using RERD.

My modification to Norman’s routine turns it into a shuffling routine.
At the conclusion of a shuffle, the array RA() still possesses its
original contents, and second (and subsequent) shuffling can occur.

The major difference lies in the equivalent of line 160 in Norman's

rout ine. Instead of displacing the contents of A(N) with those of R(B),
the two elements’ contents are EXCHANGED. This requires the use of an
additional variable of .the same type (numeric or string) as temporary
storage for the contents of one of the elements.

PIXINNNNNNNNNNNNNNNNNNINNNNNNNNNNNNNNNNNNNINNNNNDNDNNDNNDNDNDDNDNDDNDD YY)) MORE)
1

+
| |
| 100 DIM A(999) I
l 110 INPUT v |
| 120 FOR B=0 TO V a
| 130 A(B)=B |
| 140 NEXT B |
| 150 FOR B=V TO 1 STEP -1 |
| 160 N=INT (RND*B) '
| 170 T=A(N) |
| 180 A(N)=A(B) C% Cﬁ |
| 190 A(B)=T n
| 200 NEXT B |
| 210 FOR B=0 TO V |
| 220 PRINT A(B): |
| |
| |
1 |

230 NEXT B
240 GOTO 110

If you find it difficult to visualise the execution of this routine,
here is a worked example:

I have incorporated the use of a variable V to hold the maximum number
to be generated (up to 999) so for testing purposes you can use a 10 or
20 or whatever you're prepared to wait for.

The first section is very close to Norman’'s original: the A() array is
filled with the nuwbers O to 999 so that AR(O) contains O, A(1) contains
1, «.. A(999) contains 999.

Let us suppose that the loop in 150 has Just begun. B is therefore V

(say, 999). We will be exchanging the contents of A(B) (i.e. A(999))
with the contents of another element.

Let us further suppose that line 160 evaluates N to be 126. We will
therefore exchange A(B) with A(N) or R(999) with A(126). Lines 170 to
190 achieve this.

We then begin the loop again, decrementing B. If B was 999 last tiwe,
it will be 998 this time. We will therefore exchange the contents of
A(998) with the contents of another element.

If the Fates decide that N should evaluate to 126 again, we will
exchange A(998) with A(126€). Rewmember though that A(126) now holds what
R(9399) used to, and A(999) now holds what R(126) used to. After lines
170 to 190 have executed, A(126) will now hold what A(998) used to, and
vice versa. Confusing, isn't it ?

If, for some perverse reason, N kept on evaluating to 126, you would end
up with a "run" of sequential numbers occurring in the array. This is
unavoidable, but might be less likely to occur if several shuffles were
performed. If the RND function is not too biassed, lengthy "“runs"
should not appear.

The modifications in lines 150 and 160 of this routine take two things
into accoumnt. If N evaluates to the same number as B, then the contents
of an element will be swapped with itself (this applies also to Norman's

)))MDRE)
12

routine). Using RND#B ensures that N will always be in the range 0O to
B-~1, so N and B will never be equal.

Similarly, the loop need only decrement to 1 and not O, since if B is 1,
N will be 0 and if B is O, N will still be 0, causing the final
exchanges to be made between element O and itself. (Technically, even
going down to a value of 1 for B is unnecessary, since it is a foregone
concliusion that if B is 1, N wmust be 0!').

The final sebment of the routine prints the shuffled array for you to
examine, but of course you could replace this segmwent with whatever
process you require.

Note that with Norman’s routine your own processing MUST occur WITHIN
the group of lines executing the B loop, while with the shuffle you MUST
wait until the B loop has finished executing before beginning your own
processing.

An apparently perfect shuffle would place the original contents of each
element as far away as possible from the starting location, but the
resulting array would actually be sorted, albeit in a rather perverse
way, and therefore the sequence of numbers (or whatever) would
ultimately be predictable (not a good idea).

The use of the variable V in the shuffle routine allows you to
experiment and investigate using values wmuch smaller than 999 (say, 10y,
and therefore pursue any improvements you may propose, with the minimum
delay.

Having said that, the shuffling, or selection in Norman’s case, of 1000
values doesn’t really take that long. Only two passes through the array
are needed - ovne to fill it up, and one to select from/shuffle it.

Norman also provided a brief modification to his routine which permits a
graphic proof of the successful operation of the selection process. If

any duplication occurs, you won't krnow which values were duplicated, but
"holes" will appear in the screen image where missing values have failed
to be represented.

In Norman’s routine, change all references from 999 to S99, and add the
following lines:

S0 CALL CLERR

132 X=INT(R(N) /20)+2

134 Y=A(N)=INT (R(N)/20)*20+4
1536 CALL HCHAR(Y, X, 42)

The effect is to fill a 30 column by 20 row block with asterisks at
random (or pseudorandom). If no errors occur, the block should be
filled, with no spaces (or "holes") anywhere.

If anyone has further suuggestions to make, you are most welcowme to
submit them for possible oublicatiomn.

)))END
13

LOGO, BARSIC, AND RECURSION

The TRIADIC KOCH CURVE...

LOBO is what is known as a LIST PROCESSING language, and for those
3ASIC buffs who have never experienced LOGO, I suppose you could say
that basically LOGO concentrates on the SEG$() side of things.

That’s a gross over-simplification, but LOGO possesses "operators"
(FIRST, BUTFIRST, LAST, etc.) which can best be compared with a
combination of POS() and SEG$() and a chunk of BASIC in between.

However, LOGO is more likely to be remembered for its TURTLE GRAPHICS
(although there are now forms of BASIC which provide the same
capability), and that facility forms part of the subject of this
article.

The main subject is RECURSION, and turtle graphics will be used to give
a demonstration of its use and power.

Now, if you haven't limited your reading matter to TI BARSIC alone, you
may be aware that the pundits say that BARSIC is incapable of recursion.
In truth, "ordinary" BRSIC finds it difficult - but not impossible - to
emulate recursion: however, Extended BARSIC (and BBRC BASIC among a few
.others) CAN perform a limited form of recursion through the use of the
User-definable subprograms (or Procedures in BBC BARSIC).

What is this recursion, and what’s so great about it anyway ?

Some will tell you, wrongly, that recursion is simply "self-referencing"
and that it can easily be implemented by making a subroutine GOSUB to
itself:

100 LEVEL=LEVEL+1

110 PRINT “ENTRY TO ROUTINE AT LEVEL";LEVEL
120 GOSUB 100

130 RETURN

This is a poor example (and will it ever execute line 130 ?) and it
will run for so long before stopping with a MEMORY FULL error message.

(Although it will take quite a while before it does so!)

Many people have the feeling that recursion or self-referencing is a
totally pointless exercise, precisely because the apparent BRSIC
equivalent will run into trouble and crash, and if LOGO doesn’t, then
LOGO is cheating somewhere along the line.

The truth is that recursion - or self-referencing - is nothing like the
example above. LOGO programs too will run out of memory if they are
instructed to refer to themselves continually without an IF-THEN
somewhere to enable an exit:

IININNNNNNNNNNNNNNNNNNNNNNNDNNNNDNNNNNDNNDNDNDNDNNDNDNDNNNDNDNDNDNDNDDNDNNDNDNDNDDNDDYYMORED
14

100 LEVEL=LEVEL+1

110 PRINT "ENTERY TO ROUTINE AT LEVEL":LEVEL
120 IF LEVEL) 10 THEN 140

130 GOsSuUB 100

140 PRINT “RETURNING"

150 RETURN

Agaijn, a poor example, especially since it STILL doesn't emulate
rec&rsion. Note that the routine as referred to itself to a depth of
11 levels, and that there are 11 returns followed by a CAN'T DO THART in
150!

What really happens when a recursive procedure is called ?

Well, in the first place you shouldn’t get the idea that all LOGO
programs are recuvsive. Recursion is a special property which is not
always called upon - how many times have you had to use OPTION BARSE 1
or RANDOMIZE N in your BRSIC programs ?

When a LOGO procedure calls itself, all the variables which it has used
are preserved, and, if you like, the procedure is run again as if it
had not been run before. Rlthough the same procedure is being used, it
has a fresh set of variables - with the same names as before, but with
whatever contents were supplied when the procedure began.

The analogous situation occurs when using a User-definable subprogram
in Extended BARSIC. If you define say H$="01234S6789ABCDEF" in the main
(or “calling" routine), and then CALL your own subprogram - say, CALL
HEXDEC, - and attempt to use H$, you’ll find that it is "empty" - it is
a null string. When your subprogram finally returns control to the
main or calling program, H$ will still contain "0123456789ABCDEF".

Whenever an Extended BARSIC program enters a User-defined subprogram
(UDS for short), a fresh variable list is created — a clean page, if
you like. The only way that you can make use of a variable from the
main program is to "pass" it. For example, CALL HEXDEC (H$,V$,V) where
H$ is needed in the UDS.

This CALL passes three variables’ contents to the subprogram HEXDEC,
where H$ contains “0123456789ABCDEF" and V$ might contain a hex string
to be converted to decimal, the result being assigned to V and passed
back to the main program.

This is the true basis of recursion (and unfortunately Extended BRSIC
doesn’'t permit a UDS to call itself) where every time a routine calls
itself recursively a new variable list is created.

So, recursion IS rather like a subroutine which GOSUBs to itself, but
it is wmuch more than that. For each time that a LOGO procedure calls
itself, all the variables belonging to the previous "version" are
preserved (unless you exceed memory capacity). The only way that
standard BRSIC (or Extended BRSIC) can imitate this process is if all
variables (bar a select few) are declared as ARRAYS.

Thus H$ would become H$(n), and V$() and V() similarly. Each time that
the BRSIC routine called itself, a general counter of the depth to
which it had referred to itself - say, LEVEL - would need to be

R N (e]:)
15

incremented (have 1 added to it) and it would be used to refer to all
arrays: H$(LEVEL) instead of just H$, and V$(LEVEL) and V(LEVEL)
similarly. .

When an exit is made from the recursive routine (i.e., a return to the
previous level), the variable LEVEL would need to be decremented (i.e.,
have 1 subtracted from it).

Passing of values from one "level" to another would be by simple
transfer of the contents of one element in an array to the next. For
example, if a routine calls itself and passes values for H$ (), Vs (),
and V(), the process would be:

H$ (LEVEL+1) =H$ (LEVEL)
Vs (LEVEL+1) =V$ (LEVEL)
V(LEVEL+1) =V (LEVEL)
LEVEL=LEVEL+1

GOSUB routine starting line number «

Similarly, immediately before exit, passing variables back would
involve this process:

H$ (LEVEL-1) =H$ (LEVEL)

He (LEVEL) ="

V$ (LEVEL-1) =V$ (LEVEL)

Vs (LEVEL)=""

V(LEVEL-1) =V (LEVEL)

V(LEVEL) =0 g
LEVEL=LEVEL-1

RETURN

Horrendous, isn’t it ? Once an exit is made from one level back to a
previous one, all the variables associated with that level are lost -
hence the assignment of null strings and zero above.

ARs you can see, recursion can be implemented in BASIC, but it requires
a great deal of thought, and if you know beforehand that a routine is
likely to call itself recursively say 20 times, you will need to DIM
all arrays (bar LEVEL) to 20 elements.

If you were wondering how arrays themselves are handled, they simply
need another dimension, and that dimension is used with the LEVEL
variable. For example, Z$(a) would become Z$(LEVEL, a), and B$(a,b)
would become B$ (LEVEL, a, b).

This will upset the use of any three-dimensional variables in TI BRASIC,
or seven dimensional variables (!) in Extended BASIC. Also, the
variable LEVEL must not be altered for any purpose other than its use
prior to calls to, and returns from, the recursive routine.

Technically it shouldn’'t even be used in other equations/expressions
either, as it is functioning as a SYSTEM VARIABLE.

LOGO requires none of this forethought and preparation, and only enough
memory to allow it to operate. ’
))))))))))))))>)>)))))))))))))))>))>)))))))))))))))))))))TD BE CONTINUED

16

e

..._—_——_—.._—____.__..._.____..____.-._—-..__.__.__._.___—.__—_._—__—.____.———-—-_——._.__.....___.-_

——-———-————.—.——__.._.___.__—___._._—__._._—__—____.____.____.__.._——_—__.-—_.—_...—_._—___

On TI-EXCHANGE's Derby meeting held to decide its future

The "day" began late on Friday, when RICHARD SIERAKOWSKI travelled from
Marlborough to Oxford, picked wme up, and ferried us both up to GORDON
PITT's Halfway House For Itinerant 99ers in Bloxwich. The ihree of us
-then discussed Life, The Universe, and Everything TI, prepared paperwork
for Saturday, and swapped ideas until about 4.20 in the morning when we
staggered to bed.

Three hours later we were up again (some of us with more alacrity than
others) and when TREVOR DAVIES arrived we piled into his car and
rocketed up to Derby. We arrived later than we nad intended, but
luckily the meeting had not been convened.

There were fewer people than I had expected, and I had been given to
understand that the morning was to be given over to the meeting to
decide the future of TI-EXCHANGE (where T might be calied on to reply
to any questions), while the afternoon was to have hacd "“dealer support"
and an auction. I had conciuded that we were unlikely to see dealers
travelling all the way to Derby if visitors were likely to hold off
buying until after the auction, but in the event PARCO ELECTRICS ¢t radecd
continuously throughout the day and the auction was held towards the
end (I missed it entirely - I never heard it armounced).

The gathering of parties intervested in cetermining the future of the
group began and eventually called for wme to respond to guestions from
the floor, which ! hope I managed to answer acdequately. There seemed to
be considerable misunderstanding of both the nature of ITUS and of the
nature of my invitation to TI-EXCHANGErs should they decide to wind up
the group - some appeared to think I was attempting a take—-over, while
others thought I was proposing a merger. A few seemed to think that I
was about to go bankrupt - I don't know where that one came from, but it
now appears to have caused disquiet. For the record, bankruptcy is not
a consideration. If a goblin grandmother (as opposed to a fairy one)
waved its wand and zapped all the world’'s TIs I would STILL not be
ceclared bankrupt, bSut my tax relief MIGHT come a cropper. I tope that
ends the rumour.

I did find that I was asked basically the same question several times,
and after a somewhat shaky start, with more discussion between members
on the floor than between the Chair and the floor, finally a decision
was taken to continue TI-EXCHANGE in some form of club. By the time
that point was reached however, more than half of those gathered had
walked away, so the vote was 29 to S in favour of continuing as a club,
which was what I had expected to haopen. Group members may wnot all be
active participants, but if someone offers them the choice of closing
down or changing course, the former is not a viable option!

Subsequently a break was taken for lunch, and afterwards those cancerned
reconvened to decide on committee structure and other details. In the

)))))))))))))))))))))))))>>)>)>))>)))))))))))))))))))))))))))))))))MORE)
17

meantime I got on with a backlog of items which had accumulated during
my spell under the spotlight (first time I have ever had to use a wmike
in public, so it was a sart of baptism by five...).

I spent a tiring but enjoyable afternoon trying to multiplex my chatter
between several ITUGers and others who fancied a chinwag, and the time,
as usual, fled by until it was close to our moment to leave. At one
point I even managed to buy a large wicker basket for £2 from Parco,
much to the amusement of all present - except that they didn't know that
in Oxford such things cost £4 and cannot easily be carried by a bald
individual on a motorcycle...

I had not been aware that some of our party had another engagement to
get back for or I would have made alternative arrangements, because in
the end I missed the one thing I would really have liked to see - a link
up between America, Canada, and the UK via modew.

I understand that the cost of this would have been exhorbitant had it
been fully paid for at the UK end, so part of the cost (if not all - I
don't have full details) was borne by the Canadians.

Rlas, problems with the designated telephone meant that NEVILLE BOSWORTH
had no success in even getting out of the building, electronically
speaking, and eventually those interested had to move into the wmanager’'s
office in order to try and overcome at least one of the hurdles.

I stayed long enough to see the initial success at logging into part of
the network (it appears to have been a tortuous task for Neville to
negotiate the different links between the world’'s networks, what with
all the passwords and User IDs, etc., and he deserves full credit for
all the work he put into the task), but then finally had to leave before
contact was fully established.

I learned afterwards that ultimately success had eluded those present,
and the planned link-up unfortunately did not take place. Perhaps we’'ll
have better luck another time.

Finally, as an aside, the guestionnaires being returned to date show a
total lack of interest by almost all ITUBers in communication by modemw,
not so much now because of the cost of the modems (which are slowly
becoming more realistic in their pricivg) but overwhelmingly because of
the cost of using the telephone.

I'don’t know about you, the reader, but when I see adverts placed by BT
which extol the virtues of the UK network and its supposed low cost, I
wonder Just who is telling the truth. According to my local BT office,
for example, Amwericans visiting this country do not know the true cost
of making a call, which is why they complain bitterly when they receive
their bills (this is a direct quote from a manager). However, logically
IF overseas phone networks ARE so much wore expensive than ours, then
it follows that visitors to this country would be expected to be
overjoyed at the low bills they receive. Instead, many of them send
money to their friends and relatives back home to cover the bill
incurred by REVERSING THE CHRRGES from the UK. I am assured by family
and friends alike that this is cheaper than using BT.

I suspect that modem communication will never take off in this country
until someone manages to reduce the obstacle presented by BT's charges.

))5)))>))))>)))))))))))>)END
18

THE INFINITE MONKEYS THEORY

Peter Brooks May 1987

From time to time you may have heard or read odd quotes involving the .
obscure "Infinite Monkey" theorem. 1In fact, if the DIS/VAR WARS series
had received support for its continuation, the theory would have been
detailed in all its glory.

However, after being prompted by a HORIZON TV programme some months back .
I spent a little time following up the "Darwinian Evolution® approach to
the Infinite Monkey theory.

Now, whether you accept Darwinian Evolutionary theory when applied to
biological species or not, the principle of aperation holds good for a
wide range of activities, particularly in engineering. It can also have
application in Philosaophy, where it has some similarity to "Occam’s
Razor" (not the language used to program the parallel-processing Inmos
Transputer!), and hence also in computer programming. ‘

This is beginning to get a little too deep, and I have yet to discuss
the principle of the Infinite Monkey theory...

The theory goes something like this: if you were to take an infinite
number of monkeys, and sit each one down in front of a typewriter and
leave him/her to their own devices (typing, naturally...) then within a
finite period of time the full works of Shakespeare would be produced by
at least one of them (or maybe they’d collaborate and produce a play or
sonnet apiece!).

You can emulate this particular non-event by using a simple program on
your TI, creating at random (or pseudorandom) letters of the alphabet
and punctuation marks and stringing them together to form “words" and
ultimately, sentences. :

In fact, if you cast your eyes back to Volume 3, Issue 9, pages 13 to 17
and the article on pseudorandom prose generation, you will perceive the
initial requirements of such a program.

You will also see that just creating a simple sentence at pseudorandom
is an enormous task, requiring a tremendous amount of processing time,
and with no guarantee of success. The “brute force" approach would be
to cycle through all the possible combinations of letters and
punctuation marks, and even assuming that you restrict your letters to
26 upper case characters and your punctuation to a single space, even a
simple sentence like "FRIENDS ROMANS COUNTRYMEN LEND ME YOUR EARS" which
has 43 letters/spaces, requires J.S54E61 iterations (using TI's notation)
or 27 raised to the power 43!

The Darwinian approach is to define the target sentence which is to be
generated, and instead of simply creating random selections of letters,
4 comparison is made between the target letter, the letter most recently
selected, and the letter which has just been produced. The difference
between the previous attempt and the target, and the current attempt and

Y3200 000000000000 0000000000093 0900333333933 3))))))))MORE)
19

the target, are compared, and if the current attempt lies closer to the
target than before, it replaces the previous attempt.

This is reflected in the evolutionary approach to selection (in any
closed system) where any new characteristic is only retained (but may
not always be utilised) if it confers some improvement over the previous
characteristic. This “improvement" may not always appear to be so; it
will depend upon whether it carries "survival value". The “survival of
the fittest" tenet behind such evolution is often (and deliberately)
misunderstood - the word "fittest" here does not mean "fit" as in st rong
and healthy, but "fit" as in “"most suitable" - e.g. “fit and proper",

In this particular instance, the "most fit" characteristic is that
letter/punctuation mark which is identical to the target letter/etc.

A brief Extended BASIC program will serve to demonstrate the process.
(It can readily be converted into TI BASIC, which task I leave to the
interested reader.)

DARWINIAN APPROACH TO PSEUDORANDOM TEXT GENERATION

100 CALL CLERR

110 COUNT=0

120 ACCEPT AT (12, 1)VALIDATE (URLPHA) :S$
130 A$=RPTS(" ", LEN(SS$))

140 DISPLAY AT (10,10) :“COUNT=";COUNT+1
150 DISPLAY AT(14,1) :A%

160 FOR LOOP=1 TO LEN(S$)

170 C=6S+INT (RND#*26)

180 V=ASC (SEGS (A%, L0O0OP, 1))

190 W=ARSC (SEG$ (S$, LOOP, 1))

200 IF W=V THEN 260

210 IF C=V THEN 260

220 D1=ABS (W-V)

230 D2=ABS (W-C)

240 IF D1<(=D2 THEN 2€0

250 A$=SEG$ (A%, 1,L00P—-1)&CHRS (C) &SEGS (A%, LOOP+1, 255)
260 NEXT LOOP

270 COUNT=COUNT+1

280 IF AR$()S% THEN 140

290 DISPLAY-AT(14,1):R$

300 DISPLAY AT (16, 1) :“MATCHED AFTER" ;COUNT :"ATTEMPTS"
310 DISPLAY AT (18, 1) :“AGARIN (Y/N) 2*
320 ACCEPT AT (18, 16)VALIDATE("YN") :R$
I30 IF Re="Y" THEN 100

340 CALL CLEAR

e e S e S R e S o T e T o T e " e ™ e E en e one e e == e
_— T e T e e e e e T e T e = o e e o o e e o —— o =

If line 120 is modified (delete the AT(12,1) then longer text strings
may be entered.

Rs a point of interest, the FRIENDS ROMANS ... etc., string can be
generated after only about 122 iterations — far fewer than JI.S4EE61!

2200000000000 0000000000000)30 3))3)))))»)END
20

XMODEM PROTOCOLS

{This article seems to have been subjected to the usual Formatter
gremlins - that is, there are incongruous statements and arithmetic
expressions which appear to have lost certain symbols. I can only
guess as to the nature of those symbols at present, and I cannot
guarantee that my guess would be any better than that of the informed
reader. PB)}

[2022: Article proofread and corrections made, see note at bottom of page 26.]

Published in the JULY 1985 newsletter of the TI NOVA SCOTIA USER GROUP
Originally written by WARD CHRISTENSEN (around 1977 - before the TI)

Submitted by TERRY ATKINSON (who kindly allowed me to publish his RS232
and PIO DSR disassembly along with that of our own COLIN HINSON in the
first (and only) International Supplement)

Since an XMODEM emulator is now available for the TI-99/4A, 1 think it
is only fair that this article, written by the author of the protocol,
{also callied Christensen or CP/M modem protocols. PB) WARD CHRISTENSEN,
be put in the TINS newsletter. Perhaps one of the Forth nuts out there
would care to make a Farth Emulator using these protocols. TA

Rev: 08/09/82 WARD, C. Change ACK to OEH

Rev: (preliminary 1/13/8S) JOHN BYRNS

At the request of Rick Mallinak on behalf of the guys at Standard 0il
with IBM PCs, as well as several previous requests, I finally decided to
put my modem protocol into writing. It had previously been formally
published only in the AMRAD newsletter.

Table Of Contents

Definitions (Ward)

Added definitions (John)

Transmission medium level protocol (Ward)
Message block level protocol (Ward)

File level protocol (Ward)

Data flow example including error recovery (Ward)
Programming tips (Ward)

Overview of CRC option (Johw)

Message block level protocol, CRC wmode (John)
CRC calculation (John)

. File level protocol compatibility " (John)

Data flow examples with CRC option (John)

...En.

-
CLBNDUP M=

—
—

)))MDRE)'
21

1. DEFINITIONS

—— . — ———— ——————

(SOH) O1H
(EOT) O4H
(RCK) 0OEH
(NAK) 1SH
(CAND 18H

1B. ADDITIONAL DEFINITION)
(C) 43H

Asynchronous, 8 data bits, wno parity, one stop bit.

The protocol iwposes no restrictions on the contents of the data being
transmitted. No control characters are looked for in the 128 byte data
messages. Absolutely any kind of data may be sent - binary, ASCII, etc.
The protocol has not been formally adopted to a 7 bit environment for
the transmission of ASCII-only (or unpacked hex) data, although it could
be simply by having bath ends agree to AND the protocol-dependent data
with 7F hex before validating it. I am referring specifically to the
cnecksum, and the block numbers and their ones—complement.

Those wishing to maintain compatibility with the CP/M file st ructure,
i.e., to allow modemming of RSCII files to or from CP/M systems, should
follow this data format:

* ASCII tabs used (O3H); tabs set every 8
* Lines terminated by CR LF (hex OD hex OA)

* End of file indicated by CTRL Z = *Z = (hex 1A) = (CHR$(26)

{It is at this point that an omission is evident. It is likely that a
caret (7) symbol, indicating "CONTROL", should precede the Z: ~Z. This
problem occurs frequently, so I have inserted ~ where appropriate. PBY

* Data is variable length, i.e., should be considered a cont inuous
stream of data bytes, broken into 128 byte chunks purely for the
purpose of transmission.

* A CP/M peculiarity: if the data ends exactly on a 128 byte
boundary, i.e., byte 127 is a CR, and byte 128 is an LF, a
subsequent sector containing the ~Z EOF characters is optional,
but is preferred. Some utilities or User programs still do not
handle EOF with ~Zs.

* The last block sent is no different from others, i.e., there is
no "short" block.

2322000000000 0000000033300 3333333333303))3)))))))MORE)
22

3. MESSAGE BLOCK LEVEL PROTOCOL

Each block of the transfer looks like this:

(SOH) (BLK #) (255-BLK #) (--128 data bytes——) (CKSUM)

in which:

(SOH) = 01 hex.

(BLK #) = Binary number, starts at O1
OFFH to OOH (not to 0O1).

» increments by 1, and wraps

(255-BLK #)

BLK # after execution of an 8080 “CMA“ instruction; i.e.,
each bit in the 8 bit block number is complemented.

Formally, this is the "ones complement".

(CKSUM) The sum of the data bytes only. Toss any carry.

4. FILE LEVEL PROTOCOL

. > —— —— ————— ————

4A. Common to both sender and receiver:

All errors are retried 10 times. For versions running with an operator,
(i.e., NOT with XMODEM), a message is typed after 10 erraors asking the
operator whether to "“retry or quit".

Some versions of the protocol use (CAN), ASCII ~X, to cancel

t ransmission. This was never adopted as a standard, as having a single
"abort" character makes the transmission susceptible to false
termination due to (ACK), (NAK), or (SOH) being corrupted into a (CAN)
and cancelling transmission.

The protocol may be considered “receiver driven"; that is, the sender
need not automatically retransmit, although it does in the current
implementations.

4B. Receive program considerations:

The receiver has a 10 second timeout. It sends a (NAK) every time it
times out. The receiver’'s first timeout, which sends a (NAK), signals
the transmitter to start. Optionally, the receiver could send a (NAK)
imvediately, in case the sender was ready. This would save the initial
10 second timeout. However, the receiver MUST continue to timeout every
10 seconds in case the sender wasn't ready.

Once into a receiving block, the receiver goes into a one second timeout
for each character and the checksum. If the receiver wishes to (NAK) a
block for any reason (invalid header, timeout receiving data), it must
wait for the line to clear. See "PROGRAMMING TIPS" for ideas.

)))MORE)
23

Synchronising: if a valid block number is received, it will be (1) the
expected one, in which case everything is fine, or (2) a repeat of the
previously received block. This should be considered 0K, and only
indicates that the receiver’s (RCK) got glitched, and the sender

ret ransmitted; (3) any other block number indicates a fatal loss of
syncirony, such as the rare case of the sender getting a line glitch
that looks like an (ACK). Abort the transmission, sending a (CAN).,

4C. Sending program considerations:

While waiting for transmission to begin, the sender has only a single
very long timeout - say, one minute. In the current protocol, the
sender has a 10 second timeout before retrying. I suggest NOT doing
this, and letting the protocol be completely receiver driven. This
will be compatible with existing programs.

When the sender has no more data, it sends an (EOT) and awaits an (ACK),
resending the (EDT) if it doesn’'t get one. Again, the protocol could be
receiver driven, with the sender anly having the high—-level 1 wminute
timeout to abort.

S. DATR FLOW EXAMPLE INCLUDING ERROR RECOVERY

Here is a sawmple of data flow, sending a I block wessage. It includes
the two most common line hits - a garbaged block, and an (RCK) reply
getting garbaged. (XX) represents the checksum byte.

SENDER ‘ RECEIVER

times out after 10 secs

(=== (NRK)
(SOH) 01 FE —-data— (XX) =)
(e (ACK)
(SOH) 02 FD —data- (XX) ———) (data gets line hit)
{——— (NRK)
(SOH) 02 FD -data- (XX) ———)
(== (ACK)
(SOH) OZ FC -data- (XX) ——=)

((ACK) gets garbaged) (-——- (ACK)
(SOH) O FC ~data- (XX) — e} (ACK)
(EQT))

(= (ACK)

€. PROGRAMMING TIPS

* The character-receive subroutine should be called with a parameter
specifying the number of seconds to wait. The receiver should first
call it with a time of 10, then (NRK) and try again, 10 times.

After receiving the (SOH), the receiver should call the character
receive subroutine with a 1 second timeout, for the remainder of the
mesage and the (CKSUM). Since they are sent as a continuous st ream,

)))MORE)
24

timing out of this implies a serious line glitch that caused, say, 127
characters to be seen instead of 128.

* When the receiver wishes to (NAK) , it should call a "PURGE"

subroutine to wait for the line to clear. Recall that the sender
tosses any characters in its UART buffer immediately upon completing
sending a block, to ensure no glitches were misinterpreted.

The most common technique is for "PURGE" to call the character receive
subroutine, specifying a 1 secownd timeout, and looping back to PURGE
untl a timeout occurs. The (NAK) is then sent, ensuring the other end
will see it.

* You may wish to add code recommended by JOHN MAHR to your character
receive routine - to set an error flag if the UART shows framing error,
or aoverrun. This will help catch a few more glitches - the most common
of which is a hit in the high bits of the byte in two consecutive bytes.
The (CKSUM) comes out OK since counting in 1 byte produces the same
result of adding 80H + 80H as with adding OOH + OOH.

7. OVERVIEW OF CRC OPTION

The CRC used in the Modem Protocol is an alternate form of block check
which provides more robust error detection than the original checksum.
ANDREW S. TANENBAUM says in his book COMPUTER NETWORKS that the CRC -
CCITT used by the Modem Protocol will detect all single and double bit
errors, all errors with an odd number of bits, all burst errors of
length 1€ or less, 99.997% of 17 bit error bursts, and 99.998% of 18 bit
and longer bursts.

The changes to the Modem Protocol to replace the checksum with CRC are
straight forward. If that were all that we did we would not be able to
communicate betwen a program using the old checksum protocol and one
using the new CRC protocol. An intitial handshake was added to solve
this problem. The handshake allows a receiving program with CRC
capability to determine whether the sending program supports the CRC
option, and to switch it to CRC wmode if it does. This handshake is
designed so that it will work properly with programs which implement
only the original protocol. A description of this handshake is
presented in section 10.

8. MESSAGE BLOCK LEVEL PROTOCOL, CRC MODE

Each block of the transfer in CRC wmode loaoks like thig:

(S0H) (BLK #) (25S5-BLK #) (--128 data bytes—-) (CRC HI) (CRC LO)

in which:

(50H) D1 hex.

(BLK #)

Binary number, starts at 01, increments by 1,'and wraps
OFFH to OOH (not to 0O1).

)))MDRE)
25

(255-BLK #) Ones complement of BLK #

(CRC HI) = Byte containing the 8 high order coefficients of the CRC
(CRC LOY = Byte containing the 8 low order coefficients of the CRC
See the next section for CRC calculation.
2022: This sectiondeals with the
9. CRC CALCULATION XMODEM CRC method, technically

"""""""""""""" known as CRC_16_CCIT. There are
other CRC 16 methods.
9A. Formal definition of the CRC calculation:

To calculate the 16 bit CRC, the message bits are considered to be the
coefficients of a polynomial. This message polynomial is first
multiplied by X*16 and then divided by the generator polynomial (X~1€ +
X~12 + X5 + 1) using modulo two arithmetic. The remainder after the
division is the desired CRC. Since a wessage block in the Modem
Protocol is 128 bytes or 1024 bits, the wessage polynomial will be of
the order X~1023. The high order bit of the first byte of the message
block is the caoefficient of X*1023 in the message polynomial. The low
order bit of the last byte of the message block is the coefficient of
X™0 in the message polynomial.

9B. Example of CRC calculation written in C

*/

This function calculates the CRC used by the "“Modem Protocol%. The
First'argument is a pointer to the message block. The second argument
is the number of bytes in the mwessage block. The message block used by
the Modem Protocol contains 128 bytes. The function return value is an
integer which contains the CRC. The low order 1€ bits of this integer
are the coefficients of the CRC. The low order bit is the low order
coefficient of the CRC.

*®/

int calcrc(ptr,count) char *ptr: int count; <
int cre, i '

cre = 0; .
while (——count)= 0) 2022 correct}ons:
‘erec = cre™(int)*#ptr++ ((8; Replace :0 with o: '
for (i =03 i (8; ++i) Replace two *'s with &'s
+1f (crc & 0x8000) and reformat.
crce = crc ((170x1021;
else
cre = crc ((1
}
return (crc & OxFFFF)
}

In this article Peter used a source produced with TI Writer Formatter, which had removed some
characters- never use TI Writer Formatter unless you really HAVE to. Formatter will remove
any & (ampersand) in your text and underline the next word, and remove any Q sym?ol. and print
the next character in bold; in general it makes a mess of a document with #"@&. Listings become

nonsense. (2022 note)

)))MDRE)

26 2022 note Peter replaced odd blank spaces with a * - pure guesswork, This text has
been checked and where necessary errant * symbols have been replaced with a & symbol.
(To print & in formatter you have to type && in editor...).

10. FILE LEVEL PROTOCOL, CHANGES FOR COMPATIBILITY

10A. Common to both sender and receiver:

The only change to the File Level Protocol for the CRC option is the
initial handshake which is used to determine if both the sending and the
receiving programs support the CRC mode. All Modem Programs should
support the checksum mode for compatibility with older versions.

A receiving program which wishes to receive in CRC mode implements the
mode setting handshake by sending a (C) in place of the initial (NAK).
If the sending program supports CRC mode it will recognise the (C) and
will set itself into CRC mode, and respond by sending the first block as
if a (NAK) had been received. If the sending program does not support
CRC mode it will not respond to the (C) at all. After the receiver has
sent the (C) it will wait for up to I seconds for the (SOH) that starts
the first block. If it receives an (SOH) within 3 seconds it will
assume that the sender supports CRC mode and will proceed with the file
exchange in CRC mode.

If no (SOH) is received within I seconds the receiver will switch to
checksum mode, send a (NAK), and proceed in checksum mode. If the
receiver wishes to use checksum mode it should send an initial (NAK) and
‘the sending proaram should respond to the (NAK) as defined in the
original Modem Protocol. After the mode has been set by the initial (C)
or (NAK) the protocol follows the original Modem Protocol and is
identical whether the checksum or CRC is being used.

10B. Receive program considerations:

There are at least 4 things that can go wrong with the mode setting
handshake:

i. The initial (C) can be garbled or lost

2. The initial (SOH) can be garbled

3. The initial (C) can be changed to a (NAK)

4. The initial (NAK) from a receiver which wants to receive in
checksum can be changed to a (C)

The first problem can be solved if the receiver sends a second (C) after
it times out the first time. This process can be repeated several
times. It must not be repeated too many times before sending a (NAK)
and switching to checksum mode or a sending program without CRC support
may time out and abort. Repeating the (C) will also fix the second
problem if the sending program co-operates by responding as if a (NAK)
were received instead of ignoring the extra (C).

It is possible the fix problems I and 4 but probably not worth the
trouble since they will occur very infrequently. They could be fixed by
switching modes in either the sending or the receiving program after a
large number of successive (NAK)s. This solution would risk other
problems, however.

)))Y)))))))))))))))))MDRE)
27

10C. Sending program considerations:

The sending program should start in the checksum mode. This will ensure
compatibility with checksum only receving programs. Any time a (C) is
received before the first (NAK) or (ACK), the sending program should set
itself into CRC mode and respond as if a (NAK) were received. The
sender should respond to additional (C)s as if they were (NAK)s until
the first (ACK) is received. This will assist the receiving program in
determining the correct mode when (SOH) is lost or garbled. ARAfter the
first (ACK) is received the sending program should ignore (C)s.

11. DATA FLOW EXAMPLES WITH CRC OPTION

11R. Receiver has CRC option, sender doesn’'t

. Here is a data flow example for the case where the receiver requests

transmission in the CRC mode but the sender does not support the CRC
option. This example also includes various transmission errors.

(XX) represents the checksum byte.

SENDER RECEIVER

times out after I secs

. (=== (NAK)
(SOH) 01 FE —-data- (XX) —-——)
(—— (ACK)
(SOH) 02 FD —-data—- (XX) -_—) (data gets line hit)
(=== (NAK)
(SOH) 02 FD —-data- (XX) —-——)
(——— (ACK)
(SOH) 03 FC —data- (XX) -——)
((RCK) gets garbaged) (——-— (ACK)
tiwes out after 10 seconds
(=== (NAK)
(SOH) 03 FC —data- (XX) ——)
(=== (ACK)
(EOQT) -—)
(== (ACK)

11B. Receiver and sender both have CRC option

Here is a data flow example for the case where the receiver requests
transmission in the CRC mode and sender supports the CRC option. This
examwple also various transmission errors. (XXXX) represents the 2 CRC
bytes.

(See over page)

IIIIRNNDNDNDNDNDNDIDDDYY Y) MORE)D
28

SENDER RECEIVER

{==— (C)

(SOH) 01 FE —-data- (XXXX) ——=)
(——— (ARCK)

(SOH) 02 FD —-data- (XXXX) ———) (data gets line hit)
{——= (NAK)

(SOH) 02 FD —-data— (XXXX) ——=)
(= (ACK)

(SOH) 03I FC -data- (XXXX) -

((ACK) gets garbaged) {(——— (ACK)
times out after 10 seconds

(—=—— (NAK)

(SOH) 0OI FC —-data- (XXXX) -
{——~ (ACK)

(EOT) -
{(——-— (ACK)

T T T o o e e e o o o e e o s . o o e s s e e s . s G . e e e . St . . . e . . St S, e, G 0 e S, . S . . i, S . s, S S . S S e o o

{This has been a fairly lengthy piece but XMODEM and CRC protocols have

often been mentioned with regard to terminal emulation software. I very
much doubt if this article has managed to clear the muddy waters at all,
but at least it might act as a stimulus to further research.

On the other hand, you may now be in the throws of early hibernation...

PB}

R R R R R R R R R R R R R R NN NN NN N N N N N X1s)

Hello from
FLORIDA?

29

CAPTION COMPETITIONS:= RESUL. TS

By SCOTT and JO ANN COPELAND (ERST ANGLIA REGION TI USERS)

We are very pleased to anounce the winning entries for the Caption
Competition. A very big THRNK YOU to everyone who entered!

It was extremely difficult choosing a particular entry as everyone had
original captions. After many arguments between Scott and I, we called
in an Independent Rjudicator who helped us out. I only wish that we
could -have given RIRLINE to everyone who took part.

Thanks again for your participation!

WINNTING ENTRTIES

-—— - ———— s > —— — t— —— —— — — ——

®*“What do you mean, TI BARSIC is slow 2"

DEREK ALLEN, St Columb Major, Cornwall

“And all because he didn’t know the password!'"

DAVID ARMER, Brewood, Stafford

HONOURARBLE MENTION:

“Admit it Peter, you’re NEVER going to meet next month’'s deadline!"

J. S. DUNNING, 0Oldham, Lancashire

"Hey old Timer, pull yourself together else it's bye—-byes or end up a
nobody"

HUGH TORMEY, Dublin, Ireland

Other captions to tickle your innards:

"l told you RAirline was addictive!"

"Are you the guy with the suspected short circuit ?°

“I told you to ask Jo Ann for help with your Adventure!"

"Man, that is the WORST case of keyboard cramp I have EVER seen!'"
"You really should have called Scott if you were that stuck on Zork!'"
“"Sorry I'm a bit late... the traffic is murder out there!"

YINNDNNDNNDNDNDDNNDNDNDDYNDYYIEND
30

Jerrard Close, Honiton, Devon. EX14 BEF (0404)41856

31

- — —— — — T T T e o e

MAURICE RYMILL (021 458 4970) has scwe items for sale:

MUNCHMAN & 3 VYRHTZEE £ 4
INVADERS £€ 3 INDOOR SOCCER £ S
PARSEC £ 4 MUSIC MAKER £15
PERSONAL RECORD KEEPING £ 5 HOUSEHKOLD BUDGET MANAGEMENT £ 8
TI LOGO, MANUAL, SAMPLER DISK 235 SUPER SKETCH (UNUSED) £25
MINIMEMORY \ £253 TI ARTIST (USE WITH MINIMEMORY) &£ 9

ISSUES 1 TDO 4 OF TIHCUC MAGAZINE £ 4
ISSUES 2 TO 16 OF TI*MES MAGAZINE £ 5

GETTING STARTED WITH THE TEXAS TI-93/4A BY STEPHEN SHAW £2.50

GERRY AUSTIN (0384 637156) also has some itews for sale:

TEII PROTOCOL MANUAL AND PILOT 99 MANUALS, PRINTED CUT
- GUIDE TO XB HOME APPLICATIONS (COMPUTE!)

TI COLLECTION VOLUME 1 (COMPUTE!')

GET MORE FROM THE TI-99/4R (MARSHALL)

DYNAMIC GAMES FOR YOUR TI-99/4A (VINCENT)

101 PROGRAMMING TIPS & TRICKS FOR THE TI-99/4R (TURNER)
TEXAS PROGRAM BOOK (APPS)

VIRGINS GAMES FOR THE TI-99/4A (NELSON)

. TANTALIZING GAMES FOR YOUR TI-99/4A (RENCO/EDWARDS)

TI WRITER MANUAL

EDITOR/ASSEMBLER MANUAL

TI FORTH MANUAL (PRINTOUT IN RING BINDER)

FULL SET OF TI*MES MAGAZINES (UP TO MAY 1987, MINT CONDITION)

)
O

o
o

w
O

8O 2t PO PU 202U PO BU PO 24 Bb Py B
ChN'Ht«I*‘H:-‘MHMLﬂP'M
(€)]

o]

u
o

TI-99/4AR HOME COMPUTER, BOXED AS NEW, WITH JOYSTICKS £35S
HOME FINANCIAL DECISIONS, PARRSEC, YRHTZEE, INVADERS, CONNECT FOUR, AND
EARLY LEARNING FUN. ALL BOXED, VERY GOOD CONDITION. THE LOT FOR £ 7.350

(PROVISO: THE MODULES WILL ONLY BE SOLD SEPARATELY FROM THE CONSOLE IF
THE CONSOLE HAS ALREADY BEEN SOLD)

OLDIES BUT GOODIES GAMES 1, BEGINNERS EASIC TUTOR £ 1.50
GAME WRITERS PACK 2 & BOOK 2 1.50

40 DISKS FULL OF ASSORTED PROGRAMS INCLUDING 4FRONT. THE LOT FOR £20
PHONE FOR DETAILS

10 NEW BLANK FLIPPIES

&u
&}

OR: SELL THE LOT FOR £100 PLUS POST, PACKING, AND INSURANCE

)))END
32

