I=MES

TI99/4A USER'S GROUP (U.K.) CONTACTS

Chairman: Trevor Stevens. Tel. 0623 793077

249 Southwell Rd. East, Rainworth, Notts. NG12 OBN
Vice Chairman & Programming: Mark Wills.

12 "Rosehill", Betton St., Shrewsbury, Shropshire. SY3 7YN
General Secretary: Richard Twyning. Tel. 0623 27670

24 Peel Rd., Mansfield, Notts. NG19 6HB
Publicity Officer & Module Librarian: Philip Trotter. Tel.0642 817356

80 Martonburn Rd., Grovehill, Middlesborough. TS4 2TH
Membership Secretary & Past Issues: Alasdair Bryce. Tel. 0389 65903

51 Dumbuie Ave., Silverton, Dumbarton, Scotland. G82 2JH
Treasurer: Alan Rutherford. Tel. 0625 524642

13 The Circuit, Wilmslow, Cheshire. SK9 6DA
TI*MES Editor & Distribution: Alan Bailey. Tel. 081 508 1053

14 Shelley Grove, Loughton, Essex. IG10 1BY
Hardware & Projects: Mike Goddard. Tel. 0978 843547

"Sarnia", Cemetary Rd., Rhos, Wrexham, Clwd. LL14 2BY
Librarians:Cassette:Nicky Goddard. Tel.etc. as above.

Disk:Stephen Shaw.(Journal Exchange)
10 Alstone Rd., Stockport, Cheshire. SK4 SAH
Publications:Mike Curtis. Tel. 0209 219051
21 Treliske Rd., Roseland Gdns., Redruth, Cornwall. TR15 1QE

MAGAZINE CONTENTS

IFC Editorial, Disclaimer, Next copy date.

1 From the Chairman's Chair by Trevor Stevens.

4 Membership News by Alasdair Bryce.

5 Publications Library Report by Mike Curtis.

6 Christmas Card from Richard Twyning.

7 News and Reviews by Richard Twyning.

31 Attractive Staircases by Walter Allum.

32 Letter from Chris Christian.

34 Treasure Trail by Peter Hutchison.

35 Artile by Stephen Shaw.

36 Embedding Assembly Code into an XB Program Carrier by Col Christensen(SJS).
40 Disk Library Report by Stephen Shaw.

41 Mira Fractal by Stephen Shaw.

44 Intermediate Level Assembly Language Tutorial by Mack McCormick(SJS).
49 Programming Music the Easy Way by Jim Peterson(SJS).

53 Tips from Tigercub Nos.7,8,9,29,30,4&68 by Jim Peterson(SJS).

68 TI Writer for Novices by Stephen Shaw.

71 Pixel Graphics Using XR Only by Stephen Shaw.

72 The Art of Assembly - Part 2 by Bruce Harrison(SJS).
IBC For Sale by Mike Curtis.

ISSUE NO. 39 WINTER 1592/93

EDITORIAL
This is the second big issue of the year. I hope it will help to entertain you in the
longer dark evenings.
As you will see we have had one letter, reproduced in full, which leads to two distinct
points. The primary one is the simple one that we have no letters column as such
since letter of general interest are merely inserted in the run of other articles,
as there seems no reason to separate them. Please write at whatever length you like.
The second point raised is the writing of programs for specialist purposes. This
is best done by someone with the relevant specialist knowledge, rather than an expert
programmer. If the program becomes frequently used it may then be worth tailoring.
Mathematical manipulation, e.g.to force convergence in successive approximations
is an area where the expertise of an applied mathematician can be invaluable, but
this can be substituted by interaction between the computer and the operator.
The product of the moment does seem to be the 80-column card. There are a number
of programs available for it. It is necessary to have better resolution than
offered by a modulator and RF input, although RGB input will make many TV's adequate.
You will see that Mike Curtis has provided a list of the publications available in
the group library. If there are any other publications which you would like to borrow

write to this magazine, to see if any other reader can help.

DISCLAIMER
Views expressed by contributors to this magazine are strictly their own , and do not
necessarily represent those of the Committee. Contrary opinions are welcomed and
will be given equal prominence if at all possible. Attributions not made at all,

or made in error will be corrected on request.

NEXT COPY DATE

Copy by lst.March please! Much of the copy for this present issue has been perfect.
Some however is very light, and this costs 25p per original for darkening.before

reduction. Please help us keep costs down by printing nice and black!

FROM THE CHAIRMANS CHAIR

T.STEVENS 1892

well here we are again with another issue of TI*MES. Christmas is
again with us and the dark nights are drawing in. Just the time for
a few hours on the Computer. | set a competion two issues ago which
was to write a one line program to do anything you liked. wWell it
seems that the light nights have not been as productive as the now

dark nights as | only had a few replies. | suppose it does’'nt take
long to judge, but it would have been nice to see a few more
entries. Now the winner of the Competion.... [t is John DUNNING

from Lancashire. So John the tape full of goodies is on its way to
you. Here is John's entry.

THE ONE LINE LABEL PRINTER

1 CALL CLEAR :: FOR 1=1 TO 7
¢ ACCEPT AT((1+8),1)SIZE(2

B):AB(l):: NEXT | :: OPEN #1
:"PIO" :: FORP=1 TO 7 :: FR
INT #1:A%(P):: NEXT P :: CLO
SE #1

This program when run with extended basic and a Printer attached to
your computer via a R5232 in PIO mode will print labels with a seven
line input. ldeal for disk or cassette labels.

| will be arranging for the new year a TEXAS workshop in the
Mansfield area. At this time no date has been fixed but | expect
some time in March 1993. | have some demos and progams to show and
also will be doing data exchanges. | hope to have all three of my
computers on line for the day and also hope to have some more from
other people. so we can really do some special things. | also
intended to advertise the event so that other outsiders can attend.
So if you are in the Nottingham area you may see a few adverts in
the papers and radio.

Enough of the chit chat, now down to some real stuff. For the
following artical you will require your consol and Tl Extended
Basic. If you want to save the programs then you will need a tape
recorder. That's all vou will need.

I have been reading up on Sprites and have come across a few
rather fancy things that ‘professional programers use when writing
games. Plus some other little routines. When | started the writing
of games programs | found that my first hurdel was using the

Joystick Command. | found it a very cumbersome animal and ended up
with !ong lists of gosubs and the like, not to mention the
complicated X & Y situations that had to be tested. | will show you

now how to run three types of joystick control. The first will be a
way of moving your SPRITE only when the joystick is moved. This

program allows you to move in all eight directions. It also is very
precise. '

1) 100 CALL CLEAR :: CALL SCREE
N(13):: CALL MAGNIFY(2):: CA

LL SPRITE(#!,42,16,100,100)
110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,-Y*d ,X*4):: DISPL
- AY AT(23,4):"Y=";Y," =%sXs
Y H4A=" Y4 "X#4=";X*4 :: G

OTO 110

As you can see the routine is very small and can be adjusted to
your own games routine by altering the values. To explain what is
going on | will go through the listing. In line 100 the screen is
cleared (Call Clear) the screen is then set to dark green (Call
Screen(13). The Call Magnify(2) sets a single sprite to twice its
size. In other words it occupies 4 character positions. We then with
Call Eprite allocate number | to be the sprite number with a
character of 42 the (%), with a color of white (16) and set the
start position of the sprite at dot row 100 dot col 100. We have not
put in any movement values, so it is stationary. Line 110 is the
work horse of the routine. The routine loops on this single line. It
starts with the Call Joyst routine. This looks at Nol. Joystick and
sets the variables X and Y to be the operators. Call motion is then
used to move Sprite (1) and the variables X and Y operated. The rest
of the program is display of the X an Y variables onto the screen.
The routine when you run it is very smooth indeed. I will not go
into the maths deeply but here is the basis of the Y X conditions.
As you may or may not know when you move the joystick it returns
values in the X Y positions of 4 or -4 or O when not operated. See
your handbook for a full discussion. Y contains the row and X the
column velocities. If no movement of the stick is found then the
value is O, therefore the sprite stays still. If the stick is moved
up then X will equal O but Y will equal 4. OQur sprite needs negative
row velocities to move up and positive velocities to go down. To get
round this we change the value of the Y. We do this by placing a
minus in front of Y. This then makes Y=—-4, so up goes the sprite.
However when Y equals —4 on the stick return then with =Y it returns
a 4. However the X does not have to be changed as it. relates
directly to the Sprite +- relationship.(A bug in Texy maybe). The
sprite is sped up by the *4 operator. If you wish you can change
this figure to any positive figure, this will alter the speed to
your. need. Try 2,8,16 for example. However if you go over 31.75 it
will calculate out at 127 which will cause an error message. As you
can see this routine is in a loop but vou can place this into a
games or utility progam loop for use. To follow are two more
joystick routines. The first gives you new graphic row/column
position every time the stick is moved. The third is a progressive
speed routine. This allows you to speed the sprite up then reduce it
but moving the stick in the opposite direction. | will not discuss
these, | will let you see if you can work them out.

1O0C CALL CLEasR :: CALL COLOR
(2.7.7)1:: CALL SCREEN(11)::

CALL HACHAR(24.,1,40,64):: CA
L VCHAR(1.31.40.96):: CALL S
PRITE(#1.42.2,17,17):: R.C=3
110 CALL JOYST(1.X.Y):: X=5G
N(X):: Y=—8GN(Y)
120 CALL GCHAR(R+Y,X+C,CH)::
IF CH=40 THEN CALL SOUND (-6
0,110.9):: GOTO 110 ELSE C=C
+X :: R=R+Y :: CALL LOCATE(#
1.R¥8-7.C*8-7):: GOTO 110

100 CALL CLEAR :: CALL SCREE
N(13):: CALL MAGNIFY(2):: CA
LL SFRITE(#1.42,16.100, 100)
110 CALL JOYST(1.C,Ri:: X=(X
+C)*—(ABS(X)<124):: Y=(Y-R)*
—(ABS(Y)<124):: CALL MOTION(
#1.Y.X):: DISPLAY AT(24.1):"
Y=":Y."X=":X :: GOTO 110

MAMNAGED TO WORK ANY OF IT QUT??7

If you have probiems then write to me and 1 will glady discuss
the routines with you.

I have seen in our magazine some very good CALL PEEK values.
I discussed in my artical PEEK and POKE some time back. some of the
more useful. When you have only the consol and the Extended Basic
plugged in vou can only use PEEK. but it can be used by you. The RND
function of basic is good but slow. Have a look at this.

100 RANDOMIZE :: CALL PEEK(-
31880.A):: PRINT A::: GOTO 1
10,0)

This program has to be generated with the randomize statement
at the begining of your program to set the RND flags inside the
machine. After that Call PEEK will generate any number between O and
99. If you want higher try CALL PEEK(-31880.A+1) now we have 1 to
100, You may find this a little slow due to the print statement but
it is much faster than old RND when you run it in program. You can
Aalso access DOUBLE RANDOM NUMBER ie O to 255. by using another Call
Peelk —-31808.

LOC RAMDOMIZE :: CALL PEFK (—
31808.A.B):: PRINT A.B :: GO
T 130

Speed is the thing to go for. as we noted above. Just to
show vou the difference in the RND and PEEK routines here is a
program that will display that speed.

100 CALL CLEAR :: CALL SCREE
ME7TY:: CALL MAGNIFY(2):: CAL
L SPRITE(#1.42,16.,100.100)

1S FOR N=1 TD SO :: RANDOMI

ZE :: A=INT(RNDS):: B=INT
(PND5) : : CALL LOCATE(#1.A
/2+1.B+1):: NEXT N

120 FOR N=1 TO SC :: RANDOMI
ZE :: CALL PEEK(-31808.A.B):
: CALL LOCATE(#1.A/2+1.B+1):
: NEXT N :: GOTO 110

You do not have to put Randomize in twice but this eiample vas
done for vou to see the two programs together and compare them.

Well that all for this month. In next TI*MES | will discuss
Patterns. Key Calls and other nice little things. | hopefully will
combine all these modules into a small program. | am affraid memory
is full for this guarter. however | wish vou all a verv Merry
“hristmas and a Happy New Year. ' e

TI USERS GROUP UK MEMBERSHIP NEWS
by Alasdair Bryce | ,

The last few months have been rather quiet on the membership front. Since
issue 38 we have been joined by only one new member. A warm welcome goes
to Christopher Frampton from Southampton who owns an expanded system.

Having printed area lists in the last issue of TI*MES I would be
interested to know whether any of you have managed to get local groups
organised and if so how successful they have been. For those few group
members who live north of the border in sunny Scotland I' am extending an
open invitation for possible meetings and exchanging programs (subject to
copyright rules of course) and ideas to contact me at the address given
on the front cover of the magazine. Anyone in the north of England who is
interested in making it an international event can feel free to join in.

I still have large numbers of back issues available and would be only too
happy to pass these on to you as my loft is beginning to bow under the
strain. You can't all have a full set of TI*MES and at £1 each they a
real bargain and an ideal late Christmas present. : :

I hope you all enjoyed the festive period and I'll see.you again in the
spring. : #

Magazine scanned
2022 by Stephen Shaw

A 7 i i it P f = ‘ ',.": E b
I2 PUBLICATION [
T LiBRARY

There has been no movement with the publications iibrary for some considerable
time now. | once got to the stage that | almost forgot that it was here! The only
reminder was that my name appeared on the cover of the issue arriving through
the letterbox every quarter.

To recap with a list of the books available in the library:—

All books have a TPL prefix.

No. Title Author

-

-

o)

C<

=
- P Ny ol e B T

-
= L e *

Srmen' T N NP ey By

0O01a Software development Yincent/Gill
002a Editor Assembler manual Ti staff
003b TI user reference Guide Tl staff
004c TI user read this first Tl staff

003b Using & programming the TI
006b TI favorite programs explained

007b Your first TIS9/4a program
008b Beginners Basic

O08b Ti writer manual

O10b TI writer tips and tricks

Otlb Intro into assembly language
O012b TI technical information manual

O13b Programming basic

014b Get more from the TI
O15b Mastering the TI

O16b Getting started with the TI
O1/b Learning to use the TI
O18b Games for your Tl

O19b The orphan chronicles

O20b Smart programming guide for sprites
021a Entertainment games in basic & XBasic

(includes a cassette tape)
022¢ The Texas program book
023a The best of 9%er Vol 1

(The ONLY volume)

024b Fundamentals of Tl assembly language
025b Dynamic games for your TI99/4a

DEPOSITS a\8.00 b\ 500 c\2.00 MONTHLY HIRE 1.00/month

A happy Christmas and New Year to you all

Herbert D. Peckham

Frederick holtz
Donald S. Kreutner
Rodnay Zaks

Tl staff

Tl staff

Joyce Corker
Ralph Molesworth e
Unknown S

f»f;-,i.:'

Gary Marshall 8
Peter Brooks

Stephen Shaw

Kevin Townsend

Andrew Nelson

Ronald Albright

Craig Miller

Khoa & Quyen Ton

Vince Apps
Yarious

Morley
Scott Vincent

Mike.

; ‘§} ; '1§a?€"§ T .
: o
“ % Merr!

T TEXAS INSTRUMENTS)(MGRS
HOHE COMPUTER

O1981 TEXAS INSTRUMENTS

Merry Kimas from Rickard Twwhing,

Dear TI'ers,

Did you all manage to read my article in the Autumn
issue of TI*MES. 1 did get slightly carried away I suppose, but
due to being away from The Notts Trent University gave me the
chance to write a seriously long article which had a more useful
content than my previous one.

AsS you can see, I’'ve yet again spent some time improving

my title. I loaded the original TI-Artist images from my normal
title with Picture Transfer from MDOS, and put them side by side
as one Myart picture. The snow, snowmen, and Christmas lights

are pinched from actual game screens of Christmas Lemmings on the
Amiga (I've got a bit more to say about the Amiga later!)

My freind came round in September with his Action Replay
which is a game hacking device that fits to the side of an Amiga
S500. Trevor Stevens came round with his Amiga 500+. and when you
run some software on it, you can press an interrupt button on the
Action Replay, and your software is interrupted. You can then do
what you want with it. You can search your memory for graphics,
and then save any screens that you find as IFF files.

We did this for several games, including XENON II and XMAS
Lemmings. I converted the Lemmings screens to GIF on the Amiga
and sent them up to the CRAY 2 using RS232 at 9600bps.

After getting them on the CRAY 2, I converted them to
Myart using Picture Transfer. I loaded them in., and then
super-imposed them on to both the TI-Title Screen image, and my
article title.

By pPressing SHIFT and 1 on YAPP you get an overlay palette which
doesn’t copy black Pixels onto the destination, so you can mask

everything off. It’s an excellent facility, and works in both

256 colours, and 16 colours. The TI Title picture was done in

256 colours, and my article title was done in 16 colours.

I started back at university on the 5th of October, but
the work up to yet is still slightly sad, such as teaching C to
those who'’ve never touched it. We are using C for graphics, so
before things start hotting up, I'm hoping to get the full
version of C for MDOS. It appeared a couple of issues ago on

9640 News, and the compiler was originally written for IBM's.

A 9900/9995 compiler on an IBM? YES! It came from a
decent university in Texas (San Antonio I Think), and was used on
the IBM’s to compile C into 9900 or 9995. The object code
could then be uploaded and run directly on the TI mainframe!
Therefore, we’ll have a mainframe version of C.

I've already got C99 for the 4A, and for MDOS, but Clint
Pulley wasn’'t able to include true floating point routines.

He had a complicated selection of routines which stored a single
floating point number in several integer variables. Each time
you want to add, multiply, or anything else, you have to call a
function that would do it instead of just using an expression.
Also, the last time Gary and I tried to use C99 for MDOS, either
the compiler or linker wouldn’t work (This may be 0.97H MDOS
that's causing the problem though!).

The advantage with the new compiler will be that it’s a
totally ANSI C compatible version, with fully working floating
point. It's Beery Miller who’s doing most of the development
work on it, but Clint Pulley is helping out, and converting all
of his graphics libraries for block moves, hardware lines, and
hopefully multitasking from C99 so they will work with the new
system. I have received an early version of the compiler on
some 9640 News disks which I received from Richard Sierakowski,
but this is still only an IBM file on a TI disk, and has to be
transferred to an IBM and run on that. I am not even sure if I
used it on a PC to compile something, if the compiled program
would even work yet on the GENEVE because of our VDP routines
etc.

The latest news from Gary Smith was that Beery Miller was
sending out a working version on the next issue of 9640 news.
We’'ve not heard anything lately, so I'm going to try and contact
Beery Miller through Compuserve, which I’ve decided to subscribe
to. This will enable me to get the very latest information, on
hardware and software in the U.S.A.

I've not really noticed articles on C99 appearing in
TI*MES very often, (I think the last time one appeared was the
issue before the Cuffley workshop) so I thought I would give a
useful tip in simplifying some of the things that might go
wrong. The first time I tried playing with C99 everything went
well until I tried assembling the compiled program. If you’'ve
not used C99, it works by compiling a piece of C source code into
an assembly source file. The source file that is generated from
your C program contains REFerences to other assembly routines
that are contained in the C99 libraries. There is a slight
problem however, that some routines are used in the source code,
but their references are not included at the top of the user
program. There is a correct way around this, by including
specifiers in the main program, but as I've never sat down long
enough to read it properly, I decided that it was just as easy to
load the a ssembly source code when it’s been generated by the C
compiler, and actually insert the references for the desired
routines.

This problem will most commonly arise when you use the
commands printf and scanf which are C’s equivalents to PRINT and
INPUT. When you use the C99 compiler to generate an assembly

file from a C file that contains the commands printf or scanf,
you can just load the assembly source code into the program
editor. Then you will see a list of REF’s, into which you should
insert REF PRINTF and REF SCANF. Then try assembling the source
file. The only option that is required is C, to specify a
compressed object file. The R option is not required since C99
leaves off the R when specifying Workspace Registers.

The next step to actually run the C program, is to load
the generated object code for your program. Also, the C99
libraries will have to be loaded, and then the program can be
executed with the label START.

All of these files are option 3, so you could do what I
did first, and spend the time to type all the module names into
Editor/Assembler option 3, and then type the label START.

Then I discovered the Script Loader on the Funnelweb
loaders menu. This allows you to load and execute a script file
which is a DV80 file, and contains the filenames of the
individual option 3 modules. The script file will then specify
the starting label and the C program will begin to execute. The
script loader even displays a list of all the modules which are
being loaded, and displays a cursor at the side of each module
as it is loaded, so you can see how far it's got! It's a damn
useful utility, and as with most TI utilities, I came across it
by accident!

Here’'s an example C Script File

* Sample Script-Loader Script
¥* Up to 15 DF/80 object files may be included

AUTO Auto RUN with name after LAST
¥ Stick name of c object file on next line.

FILE "DSK3.FILES;0"

FILE "DSK3.CSUP"

FILE '""DSK3.C99PFF"

FILE "DSK3.C99PFI"

FILE '"DSK3.CFIO"

FILE "DSK3.PRINTF"

FILE "DSK3.SCANF"

LAST START Terminating directive & RUN entry

The script file shown here is for a C program which displays a
specified file to the screen. When creating my files I always
stick to a particular format.

My original C source code is ended in :C

The 9900 source produced by the C99 compiler is ended in :S

The 9900 object code file is ended in ;0

If a list file is generated is it ended in ;L

And the script file for the program is left blank.

;?eaefore, for the program FILES, you would have the following on
sk.

FILES = The Funnelweb script loader file.
FILES;C - The original C source code.
FILES;S - The assembly source code.

FILES;O The 9900 object code.

10

FILES;L - The list file generated by E/A or FunWeb assembler.

In my last article I promised a review of Batch-It.

It’s possible that there are still a few people who
haven’t heard of Batch-It at all. I only heard about it from
Trevor Stevens who found a review of Press and Batch-It in an old
back issue of TI*MES.

There were rumours about Press for ages, and what it would
do. It took advantage of whatever you had got, such as
Supercart or Superspace, hard disk, RAM Disk, or GENEVE.

With the GENEVE, however, I’'m unsure if it took advantage of
resolutions such as 512 * 212. It was claimed that it offered
full WYSIWYG which meant you didn’t just see the layout of the
text, but saw different text sizes displayed on-screen. It also
does what my program "WordSpace' will do, which is use a disk
file as memory for the editor. This has the advantage that you
never worry about power cuts because your text is already on disk.

I've made this even safer by keeping the file closed until
you enter the line you are currently editing, or you move to a
different line. I might alter this though to improve access
speed.

Oops!! Back to the subject.

Well, what will Batch-It do? Just about anything!

Imagine being in the middle of editing a piece of text and
forgetting how to do something such as how to merge a file, or
the control key sequence for changing font size or printing
colour, or even forgetting someones address!

You would have to mess about getting the TI-Writer manual,
or printer manual, and waste valuable time.

If only you could open a window in front of TI-Writer
which allowed you to select what you wanted from a menu.

As with all TI projects, it’s about as easy as getting a
standard 99/4A to play digitized sound files!!!

That’'s where Batch-It comes in. In fact, Batch-It takes
advantage of our stackless multitasking machines, and runs behind
option 5 programs without them even knowing it!

Unfortunately, what the advertising failed to explain was
that Batch-It programs need an area of memory that is 99%
guaranteed not to be overwritten by whatever option S5 program it
is monitoring. This area, is memory that regular option 5
programs would not expect to find anyway, and this means that you
will need a cartridge with additional memory.

This should ideally be an 8K Supercart, or a 32K
Superspace, but it will work with the mini-memory, although the
size of the batch routine(s) will be limited to 4K.

This makes the 8K Editor/Assembler Supercart project
submitted by Trevor Stevens in the last issue an even more
worthwhile proposition.

Gary Smith, however, has not yet been able to find the
5565 RAM chips. Given a bit of time, I'm sure we’ll be able to
possibly work out a small re-wiring job to allow 6264's to be
used, and even with a little piggy-backing, up to four, to allow
a 32K Superspace to be built.

With the decreasing number of ROMOX boards, however, it
may be worthwhile considering a totally fresh project in which we
design a totally new board and use a single 32K chip.

Back to Batch-It!!!

Batch-It comes with a compiler that generates your
Batch-It process from your DV80 file, and then there is a loader
that loads the Batch routine and handles the multitasking between
it, and the option 5 program it controls.

The actual option S program you are monitoring is loaded
by the Batch-It routine itself, which means your routine could
load a new option S program, or a new batch routine at any time.
Your possibilities are only limited by your total disk capacity.

This gets around the problem of the mini-memory not
actually having a memory-image PROGRAM loading option. There is
still the problem of the compiler though, which is still an
option S program, but you are provided with a small Batch-It
routine that will load the Batch-It compiler.

There is also a routine that will load your batch routine,

called MLOAD.

One of the advantages with mini-memory is that once your
batch loading routine has been loaded into the mini-memory, it
never has to be reloaded due to the mini-memory’s battery backup.

The disadvantage with this though is it even further
reduces the valuable memory, and only leaves you with 1700 bytes
of total batch routine memory. That works out at around a 13
sector batch program source file. However, you could break up
your task into as many batch routines you require, and load them
as modules from one main batch menu.

Well, what do you do with Batch-It once you’ve got it loaded?

It's a bit different from normal programming languages,
since it's only really intended for your Batch-It program to
enhance another program, or programs, although it doesn’'t
necessarily have to.

Batch-It does include variables, which are in the form of
strings, and can be declared anywhere in the program with the
DEFINE statement.

DEFINE VAR, 40

The statement above creates a variable called VAR, which can be
up to 40 characters long.

Your Batch-It program can load an option S program with
the LOAD statement such as L0OAD "DSK1.PROGRAM', or LOAD VAR,
where VAR is a variable that contains the path and filename for
the option S program being loaded.

1

12

When you’ve loaded your option 5 program, it won’t start
executing until you give a RUN statement. This allows programs
that aren’t compatible with Batch-It to be modified before they
are run.

One such program is TELCO, which only requires one patch
to memory to make it usable with Batch-It. This is done with the
PATCH statement. The PATCH statement allows an hexadecimal
address to be poked directly with an hexadecimal value.

If you're writing a Batch-It program that waits in the
background for a certain keypress, then this is achieved with the
ONKEY statement.

ONKEY 32, BEGIN causes the control of the Batch-It routine, to
pass to the label BEGIN when the space bar is pressed. Other
ASCII values can be used in place of 32 to allow control
characters to be waited for.

The ONKEY statement doesn’t cause the program to pause, so
you’ll have to include a GOTO such as:

LABEL
ONKEY 32,BEGIN
GOTO LABEL
BEGIN

You could even include several ONKEY'’'s to check for more than one
keypress.

There are three ways to send keypresses to your option S
program. You can use KEY which sends more one or more characters
to the program as a string, such as: KEY " " where the string of
keypresses are enclosed in quotes, or KEY VAR, where the string
is contained in the variable VAR.

The ENTER statement works exactly the same as KEY, except
after the string is sent to the program, Enter (ASCII 13) is also
sent.

The final statement for sending a keypress to the option 5
program is probably the most useful. This is CHAR. The CHAR
statement allows control key values to be sent to the option 5
program. This allows Function key values etc. to be entered.

eg. To send an F9 to the option 5 program, you would use CHAR 15

Besides sending data to the option 5 program you will also
need to get information from the option 5 program into your
Batch-It routine. This is done with the GET statement which
reads a string from the screen display of the current program
into the specified string.

GET 20,0,VAR would read the characters at row 20, column O
into the variable VAR. The number of characters transferred are
equal to the length that the variable has been defined to.

As well as reading data into your batch program from your
option 5 program, you may also want to read data directly into
your batch program. This is done with the INPUT statement, which
is similar to ACCEPT AT.

INPUT 10,2,VAR would accept a variable at the specified
row and column. This variable can then be used for whatever

purpose you want in your batch program.

One of the best uses for this is for writing your own
option 5 loader:

¥ Sample Batch-It option 5
* | opader

DEFINE NAME, 40

PRINT 23,0,"Enter Opt.5 Filename"
INPUT 24,0,NAME

LOAD NAME

RUN

Summary Of Batch-It Commands

Assignment Statements

DEFINE name,size[,"..."] - This command defines a variable with
the name ''name' of a size ''size', and
optionally assigns the characters in
quotes to it.

GET row,column,name - This reads in characters from the screen
starting at the character row, column into
the variable with the name 'name'. The
number of characters read will be the size
of the variable specified when it was
DEFINED.

MOVE namel,name2 - Moves the string stored in '"'namel' into
"name2". If the string in namel is longer
than name2, then it is chopped to the size of
name?2.)

VPAGE value - This command is used when Batch-It programs are run
on the GENEVE to assign the VDP page. This is only
required for using Batch-It programs with programs
like TELCO which use more than one VDP page.

VBASE value - This is the base address for the screen display.
This is used for programs that do not use the
standard VDP memory map. You should only use this
option if a batch program doesn’t correctly accept
input from the screen. If this occurs, the option
S program in the foreground has moved the location
of the screen table. The screen table can be
placed at even increments of 1024 bytes throughout
the VDP memory. This command will also allow you
to access any part of the VUDP memory (color tables,
DSR information etc!)

Control Statements

GOTO label - This command transfers control to the line in the

13

14

program that begins with the label '"label'.
GOSUB 1abel - GOSUB to the label '"label"

RETURN - Must be placed at the end of a subroutine called with
GOSUB. This will return you to the statement after the
GOSUB which called the routine.

ONERROR label - This command checks the status of the internal
ERROR flag. If an error has occurred (ERROR Flag
value 'is -1), execution will be transferred to
the line beginning with '"label".

ONKEY key-value,label - Checks to see if the key specified by
"key-value'" (ASCII value representing
that key) has been pressed.

If it has, control is transferred to the
line beginning with '"label', and the
internal MATCH flag is set to zero.

ONMATCH label - This checks the status of the internal MATCH
flag. If the MATCH flag equals zero, then the
execution of the program is passed to the line of
the program beginning with '"label'. This command
is used after SEARCH, ONKEY, COMPARE, WAIT, and
LOOK commands.

BATCH name - This loads and executes a previously compiled batch
program - similar to chaining programs. Note: this
erases the current batch program. This process is
completely invisible to any option 5 application
that may be running in the foreground when this
statement is called.

PAUSE number-seconds - This pauses the batch program for the
desired number of seconds.

END - The last statement in your batch program. This terminates
the batch program and returns control to the program or
cartridge used to run it. Compilation of a batch program
also terminates at this point regardless of what it after
it.

Input/Output Statements

CLEAR [row,column,size] - Places ''size' number of spaces on the
screen starting at the location
specified by the row and column. If no
options are specified the entire screen
is cleared.

PRINT row,col,name - Prints the string '"name'" at the specified
row and column.

INP'JT row,col,name - Inputs data from the keyboard into "name' at
the specified row and column.

ENTER name - Sends the characters contained in '"‘name' to the
foreground option 5 program, followed by Carriage
Return (ASCII 13).

KEY name - Same as ENTER, but no carriage return is sent at the
end of the string.

LOOK row,col,name - Will compare the characters on the screen
starting at the row and column specified to
the characters in the variable "name". 1If
the characters match, the internal MATCH flag
will be set to zero.

WAIT row,col,name - This is similar to LOOK, except execution of
the batch program pauses until the characters
on the screen at the location specified match
those in the string "name'". This does not
effect the MATCH flag.

LOAD program-name - The option 5 program specified in
program-name will be loaded into standard
memory, but will not start running, until
your Batch-It routine issues a RUN command.
The ERROR flag will be set if the option 5
program could not be located on the device
and under the name specified.

PATCH hex-address,hex-value - Puts the word (2 byte) value
"hex-value'" at the even address
"hex-address' in a program
previously loaded.

CHAR value - This sends the ASCII equivalent of 'value" to the
running option S5 application.

COMPARE stringl,string2 - Compares stringl to string2, provided
that both strings are the same size.
If they are equal the MATCH flag will
be set to zero.

SEARCH substring,mainstring[,pos] - Searches for the string
"substring" in the string
"mainstring" starting at
either the beginning of the
string, or at the character
specified in the optional
argument ''pos''. If a match
is found, the internal MATCH
flag will be set to zero. If
the search cannot be
performed, the ERROR flag
will be set to -1.

KEYMODE value - Sets the TI key-scan mode to the value specified
in "value". This must be set in the situation
where the option 5 program running with your
batch program uses some other key-scan mode.

BEEP - This produces a beep.

16

Batch-It Flags

In addition to variables that you define in your batch programs,
Batch-It has two variables that indicate the current state of the
batch program. These variables are called ''flags'.

ERROR - This flag is set to -1 if the LOAD command is unable to
load the application filename given, or if the SEARCH
command cannot perform properly. This flag may be tested
with the ONERROR command. If an error has occurred (it
is set to -1) then control of the program will branch to
the line with the label specified. If no error has
occurred ERROR will be zero.

MATCH - This flag is set to zero if two strings or variables are
equivalent. If not, then it will be set to -1. This
flag may be tested with the ONMATCH command.

I’ve started writing a batch routine that will run behind
Funnelweb. The first thing that the program does is to load
Funnelweb with the option 5 name "DSK1.FW". It then issues the
correct sequence of commands which takes the system straight into
the text editor. Then it will wait until it is needed by using
a loop which contains the ONKEY statement.

* LOAD and RUN Funnelweb
LOAD '"'DSK1.FW"
RUN
* Switch to TI-Writer menu
KEY "32"
* Enter Text Edit
KEY '""1"
b 3
* Wait for batch file startup key
LABEL1
ONKEY 128,FORMAT
ONKEY 157,MENU
GOTO LABEL1

The small routine above will get you into the text editor
and will wait for either of two keypresses. As the requirement
to FORMAT a particular document is required quite often, I’'ve
decided to give it its own special key. The other option will
give you the standard menu that will let you achieve your change
of font, printing colour etc.

The values for the "hot-keys' weren’t arrived at very
scientifically! I loaded Funnelweb and just pressed all the keys
I could think of. A few keys appeared to stop the cursor, but
they didn’t cause Funnelweb to do anything, so I made a note of
them and then ran an Extended BASIC program to get the ASCII
values of the keys.

The keys that I found are listed below:

CTRL + = 157
CTRL < = 128
CTRL ? = 187
FCTN = 189

These keys are of course on the GENEVE keyboard, so you will have
to try them on the 4A to see if they work, or find an alternate
set of keypresses.

When the FORMAT option is selected, you are given an option of
printing the text continuously, or with a pause at the end of
each page:

FORMAT
DEFINE @,1
PRINT 20,1," "
PRINT 21,1," Page Pause (Y/N)? "
PRINT 22,1," "
INPUT 21,20,Q
COMPARE @,"Y"
ONMATCH PAGE_P

»*

Format current file continuously

* Save current file
CHAR 15
ENTER "SF"
CHAR 13

¥ Exit Text Editor
CHAR 15
ENTER "Q"
ENTER "E"

* Enter Formatter and enter all defaults
KEY "2"
CHAR 13
CHAR 13
CHAR 13
CHAR 13
CHAR 13
KEY '"N"
CHAR 13

* Return to text edit
KEY '"1"

¥ Load previous file
ENTER "LF"
CHAR 13

¥ Jump to end of text
CHAR 15
ENTER "S"
ENTER "E"
GOTO WAIT

b 4

* Format with pause between pages.

b 3

PAGE_P
CHAR 15
ENTER "SF"
CHAR 13
CHAR 15
ENTER "Q"
ENTER "E"
KEY "2"
CHAR 13
CHAR 13

17

18

CHAR 13

CHAR 13

CHAR 13

KEY "Y"

CHAR 13
* The user must get back to Text editor manually
* Go and wait for hot keys again

GOTO WAIT

Batch-It has also been updated to include the possibility
of adding device drivers for mice etc. This lets you have mouse
driven pull down menu’s!!!

The additions to Batch-It in version two are as follows:

RESERVE size - Reserves '"size' bytes of memory from the data area
to use for driver programs. Note the data area
starts at >7FFF and grows backwards to >6000. The
reserve statement should always be the first
statement in your batch file, this way you know
where to put your driver programs.

EXECADR name - Returns a two byte address that points to the
execution address of the previously LOADED driver
program.

EXEC namel,name2,name3,named - Executes the driver program at the
address in name (use EXECADR to
get each address), passing four
required parameters namel to
named. Namel's address will be in
RO, name2’'s address will be in R1,
named’s address will be in R2, and
named’'s address will be in R3.

Namel to Named are stored using the following method:

Bytel max size of name
Byte2 to Byte2 plus max size - data
Byte2+maxsize+l - null byte terminator

Note that all strings in DEFINE are null terminated to the length
of the actual data. For example, DEFINE NAME,4,"X" will look
like:

>04X>00>00>00>00

Registers R11,R14 and R15 should not be altered by the user or
Batch-It will become corrupt. RI11 (RT) will contain the return
address to return from your driver back to Batch-It.

Well I hope you found that interesting. It’s definitely
one of the most useful pieces of software we’ve got available.

The last time I knew of the price of Batch-It it was
$14.95. This was in their excellently produced 1992 catalog.
If you would like a catalog, their address is:

Asgard Software
P.0. Box 10306
Rockville, U.S.A.
MD 20849

Here are some other products:

High Gravity - An educational and entertaining simulation of
gravity in space. Shoot objects through conflicting gravity
fields and watch the effects. Newtonian physics has never been
better explained. Highly rated by MICROpendium. $4.95.

Infocom Adventures - Infocom has now gone out of business!
Asgard have the complete rights to all these Infocom adventures
at $14.95 each: Plundered Hearts Suspect*
Hollywood Hijinx StationFall
The Lurking Horror* Leather Godesses of Phobos*

* Requires 8K Supercart

The EXCELLENT Asgard mouse - Works with both the 99/4A and the
GENEVE and compatible with all configurations of both computers.
The Asgard mouse has a lifetime warranty and is compatible with
TI-Artist, YAPP, Batch-It, Page Pro, Poster Maker, TI Pei,
Classic Checkers etc.

The mouse costs $39.95 and the package includes driver scftware
for various programs such as TI-Artist, YAPP etc. It requires an
RS232 Card.

Picasso 2.0 - Picasso is an excellent drawing program that lets
you create huge screens up to 480 * 342 in size - over twice the
size of TI-Artist! The latest version includes definable icons,
a proper fill, fill patterns, and an excellent zoom.

Picasso costs $14.95.

YAPP - Yet Another Painting Program by Alexander Hulpke!

The most advanced drawing system for the TI-99/4A and the Myarc
GENEVE 9640. Combining all the popular features of other drawing
programs, along with the spectacular graphics capabilities
provided by the new generation of graphics hardware.

YAPP is the first program to take advantage of the 9938/9958
video processors on both machines.

Supports four different drawing modes: 256 * 212 in 256 colours,
256 * 424 in 256 colours,
S12 * 212 in 16 colours,
512 * 424 in 16 colours.

Extensive drawing commands including an airbrush, different sized
drawing brushes, lines, boxes, frames, (FAST!!)filling,
circles/ellipses, cross-hairs, an "undo" function,
TEN! different palette types, providing masking operations, and
logical colour mixing.

Ability to use colour clip-art, and compatible with
TI-Artist Fonts and Instances!

1S

Also, a FAST zoom mode that requires 192K VDP RAM for
zooming on interlaced pictures. Also loads GIF pictures directly!
HARDCOPY has also been incorporated directly into the program!

For an example of the output produced by YAPP, just look at my
Merry Christmas message, and my Christmas title!

YAPP is priced at $29.95, and an essential first purchase for
anyone with a newly completed 80-column card!

Pix Pro - The '"Super-Convertor'" will convert MacPaint, GRAPHX,
Picasso, TI-Artist, Instance, RLE, Page Pro, to other formats.
Any conversion you could want! GRAPHX to Instance, and back!

Pix Pro will even let you save a full-page MacPaint
picture as a full page Page Pro!! Full colour support is
included.

Spell It - A spelling checker in several versions for DS/DD disk
drives, SS/SD disk drives, and hard disks. The SS/SD and DS/DD
versions have over 25000 words, and the hard disk version has
over 250000 words.

SS/SD version: $24.95

DS/DD version: $19.95

HFDCC version: $34.95

This is only a fraction of the range offered by Asgard!!!

In the last article I said that I needed to modify the address
decoding of my Corcomp RS232, Horizon RAM disk etc.

As soon as I received the MEMEX 512 card, the higher banks
of RAM were already turned off with the DIP switches. This
prevents the more serious address clashes being incurred.

When I put the card in and began using it I noticed that
when I set up the GENEVE RAM disk as DSKS, it became corrupt in
certain places, and I narrowed this down to clashing addresses.

I did the address decoding on my Horizon RAM disk first,
which gave me the problem of saving the data on it before
powering it down. The actual programs aren’t the problem, since
they can be saved to a floppy, but on the GENEVE, the real
problem comes when saving the actual DSR chip.

The loader for the RAM Operating System that I’'ve been
using won’t run on the GENEVE at all, because it’'s incompatible
with MDOS. This left me wondering how to reload the DSR after
modifying the card, without sticking the 4A back in.

Then I remembered about a couple of programs by John
Johnson. These are DSRSAVE and DSRLOAD.

Both of these will only run on the GENEVE from MDOS and
need a parameter, which is the CRU address to save or load.

If you're at the A: prompt, which is DSK1, and type
DSRSAVE 1100 then you would get a file on DSK1 called 1100 which
holds the exact contents of your DSR which is located at CRU

20

address 1100, which would usually be your TI Disk Controller.

I was unsure if the Horizon was located at 1400 or 1600,
so I saved all the CRU addresses I could think of, including
1000, which is the hard disk controller.

After saving everything to disk, I felt safe to power down
the system and carry out the upgrade.

The modifications for the addresses decoding of each card
came with the MEMEX card.

HORIZON RAMDISK AMA, AMB & AMC DECODE MODIFICATION

This modification allows full use of the MEMEX card when properly
applied. All CorComp Cards need a similar modification.

REQUIRES
Two 75LS244's and one 74LS138 and 18 inches of fine wire wrapping
wire.

DIRECTIONS:
On the 74LS138 bend out pins 2, 4, 5, 6, 7, 16 for attaching
wires. Cut off pins 9, 10, 11, 12, 13, 14, 15.

On one 7405138 bend out pins 7, 13, 15, 17 for attaching wires.
Cut off pins 2, 4, 6, 8, 9, 11, 12, 14, 16, 18.
Trim lower end off of pins 3 and 5.

NEXT: Place the (cut) 244 on top of the uncut 74LS244.
Solder pins 1, 10, 19, 20, of the top chip to the bottom chip.

Add the 74LS138 on top of the 244°'s so pin 8 of the 138 can be
soldered directly to pin 10 of the 244. Pin 1 and 3 of the 138
should be soldered to pin 3 and 5 of the 244 respectively.

Connect pin 5 of the 138 to pin 10 of the two 244’s.

Connect pin 5 of the top 244 to pin 2 of the 138.

Connect pin 6 of the 138 to pin 16 of the 138 and pin 20 of the
244’ s,

Connect pin 4 of the 138 to U20 socket pin 4 (on the back of the
card)

Connect pin 7 of the 138 to U20A Pin 4 (bent out to clear socket)
Connect pin 13 of top 244 to #48 on edge connector.

Connect pin 15 of top 244 to #45 on edge connector (on back)
Connect pin 17 of top 244 to #46 on edge connector.

CORCOMP CARD... AMA, AMB & AMC DECODE MODIFICATION

REQUIRES
One 75LS244 and one 74LS138 and 18 inches of wire wrapping wire.

DIRECTIONS

On the 74LS244 bend out pins 2, 4, 5, 6, 7, 16 for attaching
wires.

Cut off pins 9, 10, 11, 12, 13, 14, 15.

On the 75LS244 bend out pins, 1, 7, 10, 13, 15, 17, 19, 20 for
attaching wires.

21

Cut off pins 2, 4, 6, 8, 9, 11, 12, 14, 16, 18.
Trim lower end off of pins 3 and 5.

NEXT: Place the 74LS138 on top of the 244 so pin 8 of the 138 can
be soldered directly to pin 10 of the 244. Pin 1 and 3 of the
138 should be soldered to pin 3 and 5 of the 244 respectively.

Connect pin S of the 138 to pin 10 of the 244.

Connect pin 5 of the 244 to pin 2 of the 138.

Connect pin 6 of the 138 to pin 16 of the 138 and pin 20 of the
244, ‘

Secure the 244 to the card with double sided tape or glue. Pick
a location to allow the following connections.

Connect pins 1, 10, and 19 of the 244 to any available ground on
the CorComp card.

Connect pin 20 of the 244 to the Svolt (top right pin of an
available chip).

Connect pin 7 of the 138 to the trace leading from #56 of the
edge connector about 1/2 inch above the connector. Then cut the
trace below the new connection.

Connect pin 4 of 138 to #56 on the edge connector.

Connect pin 13 of 244 to #48 on edge connector.

Connect pin 15 of 244 to #45 on edge connector.

Connect pin 17 of 244 to #46 on edge connector.

After doing all this, you can replace the cards. After modifying
the Horizon I used DSRLOAD to reload the RAM Operating System,
and then copied the files back. It worked first time, and I was
extremely relieved. The RS232 card also worked, and I tested the
card in the box. The glitching I was getting before had gone,
and I decided to also activate the higher banks of the MEMEX card.

I activated the extra RAM and tried again. This time the
glitching had returned. I’ve narrowed this down to the RAVE 99
speech adapter, for which there are noc instructions for
modification in the MEMEX manual.

Now I've subscribed to Compuserve I can contact Ron
Walters personally, and ask him about the RAVE adapter, which
also causes my MDOS MEMTEST program to lock up.

The TI-Forum on Compuserve is amazing, and they have a
conference on Monday nights! I will possibly include some
information from the TI-Forum in my next article.

In my last article, besides promising a Batch-It review, I
also promised a MYART image loader. I had already produced a
MYART loader for XB and XHI which would handle 256 colour
pictures. This may seem the more difficult version to start
with, but it isn’t.

In G7 you need a byte for each pixel, so you need a byte
when you save a picture. Each block of data is saved as a word,
so in G7 pictures, the first byte contains the colour, which
means the second byte contains the number of pixels that the
colour runs for. In G7 a value of O for pixels means 256 pixels.

22

The problems start for G6 pictures because you've only got
16 colours. You can specify the colour in only L-bits, so the
rest of the word will specify the run-length for that colour.
This means you need to seperate the colour value from the other
half of the first byte, and this needs a bit of an equation which
does slow down the loading process a bit more. However, I
suppose this is slightly compensated for because you’ve got more
bits to specify the run-length, so you can draw large areas of
pixels without having to load an extra word of data.

To mask off the bits you will need to use an AND operator.
If you AND the byte with 11110000 then you will be left with the
four bits that describe the colour. This still needs to be
divided by its least significant bit, whose value in this case is
16. What you’'re left with should be the correct colour value.

The other four bits that are joined to the four bits of
colour data should also be masked, and added to the rest of the
run-length data. The value of these bits start at 1, so they
must be multiplied by the lowest bit value they will occupy when
joined to the other byte. The highest value in the other byte is
128, so the four bits must be multiplied by 256.

The final routine you are left with for extracting the
data from the file and calculating the true values is as
follows:

30000 IF A$="" THEN 30020 ! If current string is exhausted, then
get another

30001 COL=ASC(A$)::RL=ASC(SEG$(A$,2,1))::A$=SEG$(A$,3,LEN(A$))
30002 RL=RL+((COL AND 15)6)::COL=((COL AND 240)/16) : :RETURN
30020 IF EOF (1) THEN CLOSE #1::GOTO (done) ELSE LINPUT #1:A$
GOTO 30001

Whenever you GOSUB to 30000, when it returns your new colour
value will be stored in COL, and your new Run-length value will
be stored in RL.

I have jumped ahead of myself slightly, because I’ve not
mentioned what's at the very start of each file. The first word
is an identifier to state what sort of picture you are loading
(16/256 colours). This is one of the only crazy areas in TI
computing that I know about! (Also some Macpaint picture formats!)

There doesn’t seem to be much agreement as to what is
contained in these two bytes! A bug in MYART caused the header
to be written out wrongly which started the problems, and then
some people use the first byte as a background colour value.

There are also differences between the header generated by
XHI, and that Generated by YAPP. I think though that for the
purpose of this program and future programs that may be for
FORTRAN 99/9640, I’11 make it recognize the headers for XHI and
YAPP.

If you want, you can disable the checking, and force it to
load as either a G6 or G7.

For G6 you’'ll also need to load the palette data for all
your colours. I also had a few problems with this, because
Alexander said he used the palette data from the XHI patch area

23

when saving the palette values to the file. In the patch area,
the data is organized as follows:

]

]
| {(--=—-1byte———-> | {-——-1byte-——->|
+—t—F—F—F—t—t—F—F—t—F—F—F—F—F—+—+
1 | I | 1 1 1 | 1 I I] 1]]]]
B |] I] I]]]]]]]]]]]
S S s o S
! S5-bits | 5-bits |0 5-bits |

Red Blue Green

Whereas, on disk it’s saved as follows (I discovered by a bit of
experimenting, after getting it wrong the first time!):

1
[}
| {(==--1byte----> | {(----1byte-——-->|
+—t—t—t—t—F—t—t—t—F—F—F—+—t—t—+—+
| |] 1] 1 1 I I 1 | I [} L} 1 } I
] [} }] 1]] |] | |} I I]]]]
+=—t—F—t—F—F—t—F ==t ===t —F—+—+—+
| U4bits | 4bits }0;0,0;0; 4bits
Red Blue Green
Why should Missing Link users have all the fun! If you’ve got a

GENEVE, or an 80-column card, and would like to know how MYARTs
are saved, then first, here are the XB & XHI loaders for MYART
images:

This is the 256 colour version with no checking

10 S=1.2 :: OPEN #1:"DSK1.MYART",INPUT ,DISPLAY ,FIXED 128

11 CALL LINK('"'MOD256"):: R=0 :: C=0

12 LINPUT #1:A% :: A$=SEG$(A$,3,LEN(AS%))

13 GOSUB 30000 :: COL=V :: GOSUB 30000 :: RL=V :: IF RL=0 THEN
RL=256

.14 cALL LINK('"LINE",R/S,C/S,R/S,(C+RL)/S,C0OL):: C2=C :: C=C+RL

15 IF C>255 THEN R=R+1 :: C=(RL+C2)-256 :: CALL LINK("LINE",R/S,
o,R/S,C/S,C0L)

16 GOTO 13

17 CALL KEY(0,K,S):: IF S=0 THEN 17

18 CALL LINK(''NORMAL'):: END

30000 IF As$=""" THEN 30020

30001 VU=ASC(A%$):: A$=SEG$(A$,2,LEN(AS$)):: RETURN

30020 IF EOF(1)THEN CLOSE #1 :: GOTO 17 ELSE LINPUT #1:A$:: GOTO

30001

This is the 16 colour version with no checking

10 S=1 :: INPUT "Enter MYART image name: ":N$:: OPEN #1:N$,INPUT
,DISPLAY FIXED 128

11 LINPUT #1:A% :: A$=SEG$(A$,3,LEN(AS%))

12 FOR C=1 TO 16 :: R=ASC(A%$):: G=ASC(SEG$(A%,2,1))::
A$=SEG$ (A%$,3,LEN(AS$)):: B=(R AND 7):: R=((R AND 240)/16)::
G=(G AND 7):: CALL LINK("COLMIX",C,R,G,B):: NEXT C

111 CALL LINK("HIRES"):: R=0 :: C=0

113 GOSUB 30000 :: CALL KEY(0,K,ST):: IF K<>-1 THEN CALL
LINK(""NORMAL'"):: END

114 CALL LINK("LINE",R/S,C/S,R/S,(C+RL)/S,COL):: C2=C :: C=C+RL

115 IF C>S511 THEN R=R+1 :: C=(RL+C2)-512 :: CALL LINK("LINE",R/S

,0,R/S,C/S,CO0OL)

24

116 GOTO 113

117 ! IMAGE LOADED

118 ACCEPT A$:: CALL LINK(''NORMAL'") :: END

30000 IF A$="" THEN 30020

30001 COL=ASC(AS$):: RL=ASC(SEG$(A$,2,1)):: A$=SEG$(A$,3,LEN(AS))

30002 RL=RL+((COL AND 15)6):: COL=((COL AND 240)/16)+1 ::
RETURN

30020 IF EOF(1)THEN CLOSE #1 :: GOTO 117 ELSE LINPUT #1:A$:: GOTO
30001

Both programs can be MERGEd with the Systex loading version of
XHI, or you can stick in CALL INIT::CALL LOAD("DSK1.XHI'') at the

beginning.

At this time I must report that I’'ve had problems with the

Missing Link version of the Myart loader. This is the effect of
the colour mixing of standard 9918/9929 bit map mode. The program
draws an initial pixel, but when it draws the next pixel the
pixels it’'s drawn previously get changed to the new value!
Unfortunately, at the present time I’'ve got seven assignments, so
I'm unable to write a serious version. Could someone have an
experiment with the Missing Link version of the program.

Here's the missing link version:

1 S=1 :: CALL LINK("PENHUE'",2,16):: CALL SAY("ENTER+NAME"):: CALL
LINK("INPUT",7 O,20,N$):: OPEN #1:N$, INPUT ,DISPLAY ,FIXED 128
it LINPUT #1:A%

2 I1=ASC(SEG$(A%$,2,1)):: A$=SEG$(A$,3,LEN(A%)):: IF I=250 OR I=122
OR I=158 OR I= 255 THEN 100

12 R=0 :: C=0

13 GOSUB 30000 :: COL=V/16 :: GOSUB 30000 :: RL=V :: IF RL=0 THEN

RL=256

14 CALL LINK('"LINE",R/S,C,R/S, (C+RL),COL):: C2=C :: C=C+RL

15 IF C>255 THEN R=R+1 :: C=(RL+C2)-256 :: CALL LINK("LINE",R/S,

0,R/S,C,C0OL)

16 CALL KEY(0,K,ST):: IF K<>-1 THEN CLOSE #1 :: END ELSE 13

17 CALL KEY(0,K,S):: IF S=0 THEN 17 ELSE END

100 A$=SEG$ (A$,33,LEN(A%$))! Remove palette data 110 R=0 :: C=0

120 GOSUB 180 :: CALL KEY(0,K,ST):: IF K<>-1 THEN CLOSE #1 :: END

130 CALL LINK("LINE",R/S,C/2,R/S, (C+RL)/2,C0OL):: C2=C :: C=C+RL

140 IF C>511 THEN R=R+1 :: C=(RL+C2)-512 :: CALL LINK('"LINE",R/S,

o,R/S,C/2,C0L)

150 GOTO 120

160 ! IMAGE LOADED

170 CALL KEY(0,K,S):: IF S=0 THEN 170 ELSE END

180 IF A$="" THEN 210 190 COL=ASC(A$):: RL=ASC(SEG$(A%$,2,1))::

A$=SEGS$ (A$,3,LEN(AS))
200 RL=RL+((COL AND 15)6):: COL=((COL AND 240)/16)+1 :: RETURN
210 IF EOF(1)THEN CLOSE #1 :: GOTO 160 ELSE LINPUT #1:A% ::
GOTO 190

30000 IF A$="" THEN 30020

30001 V=ASC(A$):: A$=SEG$(A$,2,LEN(AS$)):: RETURN

30020 IF EOF(1)THEN CLOSE #1 :: GOTO 17 ELSE LINPUT #1:A% ::

GOTO 30001

To disable the image type checking you can stick a GOTO in line 2

just before the IF statement. To force it to load the image as
a 256 colour picture, then do a GOTO 12. To force it to load a

25

16 colour picture, do a GOTO 100.

In the last issue was Stephen Shaws abbreviated TI-Writer
information. I hope everyone read this. If you haven’t, get it
out again and read it now! After reading it I learned that if
you type either @@ or && you will get @ or & when you run the
file through the text formatter! I didn’'t know this.

TI-Writer manual is too big to sit down and read right
through, but you can reach the end of a short article in a few
minutes. The formatter I'm currently using is sector edited so
I can use control characters for double print and underline.

After reading the article, I can convert the program back
to normal so I can use 1000 Words with it again!

I also made an order from the disk library of the Disney
disks. I can confirm that Peter Pan is an Option 5 file, but
needs at least the 8K supercart. I suppose the game is not up
to much, but it’s more than worth it for the speech.

The speech is also excellent on Plant Genetics.
Unfortunately, the rest of the disks are all GRAM files, so to
run these requires a GENEVE or a GRAM KRACKER. Every bit of
Plant Genetics uses speech, and it even says the full chemical
name of DNA out loud!! The quality is a million times better
than the Swedish-sounding Amiga.

To update the Amiga situation, you may remember that in

the last article I said I had been through a few Amiga’s, and
~after having one with a disk problem, I had got one that appeared
to be working!

At this point I decided to connect my EPSON RX80 printer
to the Amiga. Nothing happened! I was trying it for ages.

I rewired the cable a few times (using a wiring diagram for an
Amiga 500 printer port!). They don’t give you any pin outs for
any of the Amiga ports!

Still nothing happened, so I phoned Commodore. They
wouldn’t let me talk to an engineer. They said I’'d got to
contact my dealer, and my dealer could talk to the engineer! SAD!
I phoned Dixons, and they said they would phone Crapadore, and

then phone me back. After phoning me back, they gave me some
crap about doing a copy command in Workbench shell to copy a text
file to the printer. It didn’t work. I said I needed a pin

out of the printer port. The Ape on the phone at Dixons was
slightly out of his depth when you mentioned ports! He said he
would phone Crapadore and get them to phone me back.

He phoned back and said Crapadore refused to phone me!
Very helpful for the sad company that dominates the profit crazed
home computer industry! The dood at Dixons said I should go out
and buy a printer cable. I did! Still nothing happened.

I phoned Dixons again, and he said phone the Commodore
help line so they can send Wang computers to your house to fix it!

A week later, the bloke turned up and repaired it with a
board that had a completely working printer port. It’s a pity
the keyboard didn’t work! He said he would get a new board as
soon as possible!

Over a week later, Trevor Stevens, and a friend with an

26

Amiga from University came round for a play. My friend from
University had an Amiga magazine with him that said Commodore had
reduced the price of the Amiga by 100 quid! I was instantly
sadenned, and phoned Dixons to tell them I was fed up, and wanted
to take it back. I phoned Crapadore and cancelled the service
engineer. The next day I took the Amiga back, and was refunded
439.99. The Amiga cost 369.99, and the three year warranty cost
70.00.

That afternoon I went to Pheonix in Leeds and bought a 20
Meg hard disk version of the A600 with 2 Megs of RAM for 497 quid
including joystick.

I got it home, and IT DIDN’T WORK!!! 1111111
It had an intermittent fault on the video chip, and would totally
lock out, and would even cause games to skip levels!!!1111
SAD!!!!

I phoned Pheonix, and they more or less told me to get
lost. They said, '"well, that’'s what the help line’'s for!'" SAD!
After phoning the help line, over a week later a bloke from Wang
(should that be spelt with a K?) came and put a new board in it!

I can now report that Amiga number 5 is still working.
We really have progressed a long way; Even with 2 Megs of RAM it
won’t load GIF images over about 60K!!! Very SAD!

I must also report that Oliver Timm in Germany has
contacted me about the modifications to the Hard Disk Controller.
Unfortunately he had to phone me from Germany, because he had
prepared a letter, but his system was shorted out during an
electrical storm. I have however, got the information that
unlocks the universe:

On chip U9, cut pin 5 and pin 12 from the board and bend them
upwards.

On chip U17 cut pin 5 from the board and bend it up!

Then connect some wire wrapping wire (left over from address
decode modification!) between Pin S on U17 to pin 12 on U9.

After the modification, the hard disk controller will then run
drives with up to 15 heads.

When talking on the phone recently Gary Smith and I calculated
the maximum storage capacity of the controller chip in the Myarc
Hard Disk controller.

If you had a drive with 15 heads, 1024 cylinders, and 32
sectors per track, you would have 15 * 1024 * 32 sectors.
This gives 491520 sectors. Using our standard of 256 bytes per
sector would give you 125829120 bytes per drive.

However, the chip will handle 64K (65536 bytes) per sector,
which means you could have 32212254720 bytes per drive.

If you divide this by 1024, then you have 31457280K per
drive. If you divide this by 1024 again, you have 30720Megabytes
per drive!!!!! That's THIRTY GIGA BYTES per drive.

The chip is limited to only allowing the control of four
drives. I'm sorry, but that's only ONE HUNDRED AND TWENTY GIGA
BYTES.

27

If you find four drives that have 2048 cylinders, then
your 1978 TI Home Computer is limited to only SIXTY GIGA BYTES
PER DRIVE. With four drives you can only have up to:

TWO HUNDRED AND FORTY GIGA BYTES!!!1111

I must thank Colin Hinson at Texas Instruments for most
graciously sending me of one of his only two TMS99000 data
manuals. .

What a chip! How does an instruction such as MPILCK sound.
Multi-Processor Interlock! If you connect a totally different
microprocessor to the TMS99000, you can send the instructions for
this co-processor straight to the TMS99000. The 99000 says to
itself, "This isn’'t one of my opcodes! I wonder if it’'s an
instruction that the user has written in on-chip Macrocode!"

If it is, then it is executed in the Macrocode deceder as if it
was one of the 99000°'s own instructions. If it isn’'t found, then
the 99000 says to itself, "I can’t find this instruction in my
Macrocode RAM. 1It’s probably an instruction that’'s recognized by
the current co-processor.”

Then the instruction will be sent to the connected
microprocessor. This is the most efficient system for supporting
Co-processors, as both chips share one area of memory that is
managed by the TMS99000. I am unsure if the 99000 is still
available though! There is also a floating point version with
floating point instructions, which was out a few years before SAD
intel chips had floating pointi '

I think that the Texas Instruments TMS34020 24-bit colour
card project may be back on also. We were considering a colour
palette chip that allowed 256 colours per pixel line selected
from a palette of 16.7 million. Gary says there’'s a palette
chip now that allows 512 colours per pixel line.

I’ve got to write to TI for more information on this.

Trevor Stevens has also given me the address for Alexander
Hulpke, and I am going to write to him for any information he can
give me about the 4A and GENEVE PC emulator card. If I find
anything out I will report on it in the next article.

I have recently had a letter printed in an Amiga magazine
called CU Amiga. It is edited by a sad dancer who: recently let
an history of computing slip through which didn’t mention TI.

We only got a mention in the 1983 price list which said you could
buy the 4A for 189.99,

I wrote a very long letter pointing out the truth, which
was printed, but he ommited a few things. I said that TI
invented efficient speech synthesis using Linear Predictive
coding that didn’t sound Swedish, but the bit about sounding
Swedish was omitted! He obviously didn’t like it because he
knew it was true. All the bits about our stackless RISC
architecture that describes Workspace switches was included which
I was pleased about, and he even left the bit where I said "Chew
on that Motorola'" because TI invented the first transistor radio
in 1954, and Motorola are supposedly known in the USA for
supplying radio equipment to Police, Ambulance and Fire services!

28

I also said that TI invented a system of fast moving
graphics which he may have been familiar with called sprites!

He tried to put the letter down with his sad comments, but
that’s what you expect from a sad little dancer with no culture.
He couldn’t think of anything useful to say when dealing with a
Bluesman!

I even made a quote from Amiga Format magazine which had
an article about the new Amiga 4000°s. A normal Amiga 24-bit
animation rendering program would take five hours. It takes the
Amiga 4000 less than a second. Do you think it could be because
it contains a Texas Instruments TMS34020 producing 10MIPS.

I don't buy the aforementioned magazine, and only bought
the copy that had my letter in it. I only knew it had been
printed because I received a phone call from someone who had read
the letter. He must have used directory enquiries to get
through to me because they didn’t print my number.

I mentioned our group, so he phoned to tell me that
someone had given him some boards from a Texas Instruments PC
which he wanted to go to a good home rather than throwing them
away.

He gave me his address so I could publish it in case
anyone wanted to contact him about the boards.

Don Cox
S Cornfield Road
Middlesborough

Phone: 0642 815914

The boards are for a PC compatible, but they are made by TI and
should have some good chips on them.

I've done a bit of work to the After Hours bulletin board, and at
Christmas I may be able to get it up and running. When we get
it sorted out it will be run from 3pm on Sunday afternoon, which
as you may have seen is now charged as a local call, so no matter
where you are in the country it will only cost a quid an hour.

Here's another 28 column printing program I’ve recently done. It
needs a temporary file to work with.

1 OPEN #1:"PIO.LF" :: PRINT #1:CHR$(27);"G";CHR$(15):: CLOSE #1

2 PRINT "'yt mettemt 0 INPUT "Enter program list name:":PRG_FILES
:: PRINT "otrrgme

3 INPUT "Enter temporary work file: ":COL137$%

100 OPEN #1:PRG_FILE$,DISPLAY ,VARIABLE 80 :: OPEN #2:COL1378,
DISPLAY ,VARIABLE 28

110 LINPUT #1:A$:: PRINT A$:: PRINT #2:4% :: IF EOF (1) THEN
CLOSE #1 :: CLOSE 2 ELSE 110

120 OPEN #1:COL137%,DISPLAY ,VARIABLE 28 :: OPEN #2:"PI0",DISPLAY

+VARIABLE 137 :: DIM SC$(67):: R=0

130 LINPUT #1:A$:: SC$(R)=AS&RPTS(" ",US5-LEN(A$)):: R=R+1 :: IF
R=67 THEN 139 ELSE IF EOF(1)THEN GOTO 170 ELSE 130

139 R=0

29

140

149
150

160
170

And
prim

And
Stat

STRA
GPLW
MYWS
ST_R
ST_R

30

LINPUT #1:A$:: SC$(R)=SC$(R)&AS&RPTS (" ",45-LEN(A$)):: R=R+1
:: IF R=67 THEN 149 ELSE IF EOF(1)THEN GOTO 170 ELSE 140

R=0 :

LINPUT #1:A$ SC$(R)=SC$(R)&A$:: R=R+1

‘ - IF R=67 THEN 160
ELSE IF EOF(1) THEN GOTO 170 ELSE 150

FOR R=0 TO 66 :: PRINT SC$(R):: PRINT #2:SC$(R):: NEXT R ::
PRINT #2:CHR$(12):: R=0 :: GOTO 130
FOR R=0 TO 66 :: PRINT SC$(R):: PRINT #2:SC$(R):: NEXT R ::
CLOSE #1 :: CLOSE #2 :: CALL SAY("FINISHED")
finally, here’s a bit of 9900 that calculates the first 20000
e numbers in 8 seconds.
0100: LWPI >DO
0102:
0104: LI RO, 3
0106:
0108: LI R1,>300
010A:
010C: - MOV RO, *R1
O10E: LI R2,>300
0110:
0112: MOV *R2,R3
0114: MPY R3,R3
0116: C R4,RO
0118: JH >126
011A: MOV RO,R4
011C: CLR R3
O11E: DIV *R2+,R3
0120: MOV R4,R4
0122: JEQ@ >12E
0124: JMP >112
0126: MOV RO, *R1+
0128: MOV RO,RS
012A: BL @>200
012C: :
012E: INCT RO
0130: CI RO, 20000 * Maximum value to be checked
0132:
- 0134: JL >10E
0136: XOP 0,0
0200: A R4 ,R2
0202: JNC >206
0204: INC R1
0206: A R3,R1
0208: RT

definitely finally, here’s a bit of code that will pass the

us Register to an XB program.

DEF STTS A
SG EQU >??7?? I can never remember the addresses for equates
S EQU >7??27?7? '

BSS 32 Create my own set of registers!

BYTE 2 Length of status register value (2 bytes)
EG DATA O Actual contents of status register

SV_REG DATA O Used to save contents of GPL WS Reg. 8
STTS MOV R8,@SV_REG ! save a register !

STST R8 store Status Register in RS8

MOV R8,E@ST_REG

MOV @SV_REG,R8 restore R8 to previous value

LWPI MYWS Load my own Workspace
LI RO, O Standard variable
LI R1,1 First parameter
LI R2,ST_R Location of Status Register value
BLWP @STRASG Assign Status Reg value to XB variable
LWPI GPLWS Reload GPL's Workspace’
B *R11 Return to XB
Well that’'s if for now!!!!! Have fun!!!

MERRY CHRISTMAS from Richard T.

ATTRACTIVE STAIRCASES.

Walter Allum

No, not something out of the Architectural Journal!

You recall that Stephen Shaw brought us a puzzle about numbers, cast in the
form of a staircase (TI*MES 38,p.31). As, no doubt, he is inundated with your
answers, I shall not bother giving mine. My purpose here is just to observe that
the problem gains dimension, and the coding greater scope, if you work in other
arithmetics and/or make simple extensions to the defining relationships.

This is, of course, a study in "attractors"; how many there are, of what kind
and how distantly their influence is felt. With the original specification, we soon
discover that, regardless of the radix (base) of the number system:

a) There are always point attractors——once reached, never left. Some are
isolated, i.e. they cannot be reached from any other starter, and so
define a one-tread staircase. This appears to happen only for numbers
O,n where n has no factor in common with the radix R.

b) There are sometimes "limit cycles" which, when entered, eventually
repeat the entry value and thus terminate the staircase.

c) Some numbers can feature only as starting treads.

So far as my skimpy evidence goes, you get limit cycles only when R is a power of
a prime. The diagram below illustrates the case for R=8 (octal).

25 others in
equal/smaller
sequences @
@
OYIGI@)
€= =~ - - - P01nt attractors - - - --) ¢-Isolated ..
attractors
(2527
&b GO G0
€ - -- - Limit cycles - - - - - -)

31

Whether there are limit cycles with linear sequences feeding into them I do
not know. Nor do I know whether the longest staircases for a particular radix are
ever associated with such cycles or only with linear sequences.

It appears that, with a prime radix, p, all staircases end on 0,0 except for
the trivial one-treads arising from the isolated attractors 0,1 to 0,p-1. The
maximal sequence is also longer than for any other radix of similar size, e.g.

Radix: 6 7 8 9 10 11 12 13 14 15
Max.seqn, 512 4 6 13 32 6 44 12 13

You can also consider modifying the: calculation as, for instance

A(I+1) = units part of (Kl * AC(I) * B(I))

B(I+1) = units part of (K2 * B(I) + K3 * A(I+1)

Working in arithmetic radix R, there is clearly no point in making any K
equal 0{ excged R. Negative values might cause problems and I'll leave them to you!
Stephen's original specification corresponds, of course, to all K=1 and R=10.

Hunting for laws in this business seems very much a matter of "now you see
them, now you don't".

: RN

- =
e ==
- e
[—

-~

\ L

MEng, CEng,MIEE, MSAE

Chartered Engineer Chartered Electrical Engineer
Chartered Electronic and Radio Engineer

27 Howey Rise, Frodsham, Cheshire, WAé 6DN
Tel: Frodsham 33723
Amateur Radio G3GKS RSGB G-QRP RAOTA BVWS

Alan Bailey 12th October 1992
]

TI*MES Editor,

14 Shelley Grove,

Loughton,

Essex,1G10 1BY.

Dear Alan,

Most magazines have a page or more devoted to readers letters which allows
the readers to raise matters of interest or concern but TI¥MES seems to have
no such facility. This lack of a forum is my first complaint. It could be
argued that the AGM is the place where members can air their views which
brings me to my second complaint which is the choice of Derby as a venue.

As I had no wish to travel some seventy miles of single carriageway road both
ways I spent several hours with the full BR timetable looking at several
routes from Frodsham to Derby. The latter may claim to be a railway town but
none of the options would endorse that view as each route would have occupied
a full day. That is why I was absent and the same goes for the Wrexham
workshop to some extent. Would it not be possible to choose more sujitable
locations such as Crewe (THE railway tnwn),Manchester,Stockport,Liverpool.
Chester or any station on the Manchester to Holyhead North Wales line ?

32

My third complaint is the apparent lack of publicity for the group although
I am sure Philip Trotter is doing his best. Richard Twyning has not seen any
mention of TIUGUK in Personal Computer World recently as they have not run
group lists since July 1991 after which time PCW was completly revamped.

May I suggest that since most radio and electronic enthusiasts are usually
computer owners that the appropriate magazines are targeted ? For example,
Maplin Electronics magazine runs a free Club Corner every month where we
could have a permanent notice. Other possible magazines include Television,
Practical Wireless,Radio Communication,Short Wave Radio,Ham Radio Today,and
ETI.

In order to emphasise the question of publicity I should like to quote my own
case. I bought my TI99/4A in 1982 and, because of the high cost of expansion
proceeded to expand very slowly as cash became available. By the time I got
around to a disk system TI had opted out and in spite of numerous telephone
calls to various dealers I was left to struggle on with only tape storage.
Also there were the two TI user groups which being commercial enterprises
both failed and a module exchange service which was of no interest as such.
One day a faulty Acorn Electron console only came into possession which was
repaired and expanded to operate my printer and with disk storage. The TI9?9
was dumped in my loft and would be there today had I not seen mention of the
group in PCW early in 1989 so I joined the group and retreived my TI®9 from
the loft. A mention of TEX-COMP in TIXMES enabled me to obtain a COR-COMP

disk controller from the USA as well as TI-WRITER and EDITOR/ASSEMBLER so
enabling me to make use of the group disk library. Thus I am grateful to both
PCW and TIUGUK. All I need now is an 80 column card which is why this letter
is being processed on a PC !

My final grouse concerns the programs which appear in TI¥MES which represent
computing as an art form for its own sake rather like the pure mathematics
practised by pure mathematicians which has no practical use. My main interest
is in writing number crunching programs which produce a usable end product.
These programs are mainly for the analysis,design and optimisation of radio,
electronic,and electrical devices and systems mostly in connection with my
hobby of amateur radio etc. although before my retirement I have used them to
set examination questions for polytechnic degree students. (Richard Twyning
can thank his lucky stars he didn’t cross my path !') I+ any members are at
all interested in my programs I would be happy to print them in TI¥MES or
submit them to the disk library.

Yours sincerely,

R (oot o (Chred)

R.G. {(Chris)Christian.

33

Treasure Trail
by Peter Hutchison

Right! Treasure trail is back again. What a time 1I’ve had with
Scott’s adventure’s particularly Ghost Town. You’ll all be glad that I
managed to complete it after a WHOLE year being stuck, trying to find
that last treasure — there is NO CLUE what-so—ever in the game to get
to it, it is part of the tips below. Many, many thanks to Barrie Clark
who gave me some really vital information that 1lead to the solution.
Thanks Barrie!!

PYRAMID OF DOOM

How do I get into the pyramid? dnuora gniggid emos od ot deen uoY
How do I open the locked door? ti tih dna tsif ruoy revoC

How do get rid of snake? cisum yalP

What do I do with the skeleton? ydob eht etelpmoC

How do I get up from ledge? epor worhT

What is the Heart of Iron? der gnihtemos yortseD

How do I survive the poison? dnah ruoy revoC

Where is the last treasure? erutinruf ehT

You’ll need 13 treasure, most are revealed after some examining
especially the objects there and doing things to them. Carry the
pistol at all times!

GHOST TOWN

What do I do if it gets dark? deb a deen uoY

How do I get rid of the ghost? sdnah esU

What does the map point to? aera suoniatnuom eht yrT
How do I open the jail door? citengam gnihtemos esU
How do I open the other door? efas dna eciffo hpargelet rht yrT
Why doesn’t “ole Paint move? mih eohs> mih rupS

How do I get back to the town from teepee? 'yltcaxE
How do I destroy safe? slacimehc eerht deen uoY

What do I use to cause explosion? yek a esU

The mirror is giving me 7 years bad luck? ti roveC
Where do I find the Cup? noolas ni krad eht ni ecnabD

That last one is a nasty one, how the hell was I supposed to know
that! :
Barrie’s adventure editor helped me, he’s using a disk version, does
anyone have a Mini—memory copy at all? I would like a copy.

I am now working on Savage Island part 1. yes, I know a really
difficult one. Has anyone completed that?

Hope you”ll find the above tips useful. See you later.

Peter Hutchison
6 Moorlands View
Free School Lane
Hal i fax

W Yorks

HX1 ZX0&3

3L

ARTICLE by Stephen Shaw

In the last issue’s Disk Library report you may have noticed that the
PLATO interpreter is now available on disk— it requires an Editor
Assembler grom and ram at >6000 in the module (Super Space, Super Carte
or home built as described in Issue #38).
There are 500 disks of Plato data out there!™ Library funds are alas
now non—existant, as the last pennies were used to obtain a sampling of
S0 Plato disks.
I must admit to a certain appreciation for any serious computer program
which puts up on screen, as a menu selection:

PRACTICE: HUMAN REPRODUCTION.
FPLATO was not commercially sold here, and barely advertised in the
States, so you may not have heard of it. It is a VERY old educational
‘tool produced by Control Data Corporation for use in schools (on those
large pre—-home computer computers!). PLATO is in the form of an
interpreter which uses data on subject disks to go through tutorials
and drills. There is little in the way of graphics, and no sound - the
TI implementation pushes TI's modules pretty far in terms of memory
size and there was no room for any extra stuff.
Except that very late on they managed to squeeze some speech onto THREE
disks!
FLATO material covers ages S5 upwards — anyone fancy a course on Nuclear
Fhysics?
My experiences of using a SMALL computer came in handy at work-—
required: a sorted output from 400 data items from a program that could
only handle 220 items. The data was well and truly random! Solution:
Split the raw data into two chunks about the middle mark. Sort each of
the two chunks.
From each chunk extract data to form half of the total when added to a
similar amount from the other chunk- in this case, we ended up with two
files one for A-J and one for K-Z. Each of these was of a size that
could be sorted and then the two files (which now did not need sorting)
could be appended to form a fully sorted file for A-Z. No-one else
could think of how to do it!
I notice several of our members are shy about using their postcodes. I
recently made a phone call to a national body to ask for some
literature. Insetad of giving my full address, subject to mis—spelling
etc, I was asked for only the house number and the post code, and
IMMEDIATELY my full address was read to me for checking. Think of the
computer and the program to handle that! Post codes have their uses.
FUNNY DISKS
If you ever find a disk which youf disk manager programmeg tells you has
a single file upon it called $%1, occupying only 7 or so sectors, and
at the same time tells you that 360 sectors have been used (or in some
cases 358 when the first two are ignored by some managers), you
probably have a PLATO disk, which has the all important data USUALLY
found in Sector 1 actually all the way out at Sector 167. This means
you cannot catalog the files very well the usual way.
O0f course you could copy Sector 167 to Sector 1 to catalog the disk,
but the information still would not be very useful, being made up of
very odd names.
What you need is a special PLATO cataloguer, and we do indeed have one,
which will read the disk and display data as shown over the page...

35

sample "catalog" of Plato disk:

S5246.3

CURRICULUM: BRasic Skills Reading

SUBJECT: Judging What You Read

FROGRAM PACKAGE: Author’'s Purpose and Your Conclusion
Working with Facts and Opinions Tutorial

Working with Facts and Opinions Drill

The Author and Your Conclusions: Review

Review Drill

Available from the disk library!

EMBEDDING ASSEMBLY CODE
INTO AN EXTENDED BASIC
PROGRAM CARRIER

by Col Christensen
Brisbane User Group
Australia

We all know how slow the Extended Basic loader for object code is, so
the benefits in speed of loading with the code embedded in an Extended
Basic program carrier are tremendous. There's many a good assembly progranm
gathering dust because it is sooo slloooww in loading.

A discussion on the procedure could probably be covered in something
like a dozen easy lessons. I would like to take, in this issue, the case
of those who have produced some Assembly Code of their own, in which
instance, the discussion can be covered in just one easy lesson. 1It's all
really easy, but what I mean to say is, that trying to explain the
procedure to make it easy, is not as easy as anticipated. Now that that's
as clear as a summer day, we can go on.

First I shall set out the ten (holding up all the fingers of the left
hand and three on the right) easy steps to embedding your own assembly
code inte a basic program then explain each of the steps individually,

1. DEFine the start address of your code. Who doesn't?

2. Make sure the assembled code WILL run in the Extended Basic
environment. Another normality.

3. Next assemble into relocatable code in compressed form. Not normal
for Extended Basic code. Needed for 4 and 5.

4. Assess the size, in bytes, of the object code.

5. Find the address of the entry point.

6. Make the source code absolute so that the assembled code ends at
>FFEO, and again assemble this time as TAGGED OBJECT code, not
compressed.

7. Go to Extended Basic.

8. In the command mode:- CALL INIT :: CALL LOAD("DSKi.filename")

9. In the command mode:- CALL LOAD(-31952,a,b,a,b). More on the
values for "a" and "b" later.

10. Type in a small S5-line program,

.11, Edit line 110 in the program.

12. Type SAVE DSKi.LOAD

All very simple, wasn't it?

Well, almost! Last things first then. Here's the program that you need
to type for STEP 10.(next page)

36

100 CALL INIT

110 CALL LOAD(16376,67,67,32
132,32,32,x,Y)

120 CALL LOAD(8196,63,248)
130 CALL LINK("CC")

140 ! DO NOT RESEQUENCE

Now back to the beginning for the explanations.
STEPS 1, 2 and 3. No comments necessary.

STEP 4. Use a sector editor, such as my favourite DISK-AID, and read
the first sector of the assembled code.
e.g.

Drvl ASSEMBLY Sze>2D0 Sec>22
Addr 01 23 45 67
89 AB CD EF
00 OILE COS3 4235 4720 ...SBUG
08 4949 2041 0000 4204 II A..B.

Ignore the very first byte. Take the next two bytes, e.g. 1E and CO.
these indicate the size of the file, >IECO. Keep this value for later
use.

STEP 5. Still with the sector editor, find the last sector or so of
the file, Look for the label you DEFined, e.g. XBENTR,
e.Q.

Drvi ASSEMBLY Sze>2D0 Sec)6F
Addr 01 23 435 &7
89 AB CD EF

40 2020 2020 2020 2020

48 2020 2020 2020 2020

30 3500 6ESB 4245 4ES4 5..XBENT
98 5220 2020 2020 2020 R

60 2020 2020 2020 2020

Three bytes in front of the text, "XBENTR", you.should see a "S".
Between them both are two bytes indicating the actual entry point address
relative to the start of the code. In the above, the address is >00&4E.
Keep this value for use later.

STEP 6. Place an absolute origin directive at the beginning of your
source code. In the example, the size of the assembled code as found in
step 4 is >1ECO and it needs to end at >FFEO. By calculation in hex, >FFEQ
- >1ECO + >E120. 1Insert at the beginning of your source codei

ADRG >E120
Assemble the source code with the output as TAGGED OBJECT code.

STEP 7. No need to éomment

STEP 8. "filename" is the assembled tagged object code with an
absolute origin.

STEP 9. The values for "a" and "b" when placed in the CALL LOAD
statement, ensure that the program lines typed (or merged) in, will be
placed in memory, just below the asseably code loaded in Step 8. We must
subtract 2 from the absolute origin (>E120) previously found.

37

So subtracting 2 leaves >E11E. Convert each byte to decimal. >E1 =

14%16+1 = 225 the value for "a". The second byte is the value for "b". >1E
= 1%¥16+14 = 30. We have the values for "a" and "b" so type:—
CALL"~LOAD(-31952,225,30,225,30)

for the example above. This sets the Extended Basic memory space pointers
to just below the Assembly cade.

10. Typing in, or merging, the sample program places it just below the
Assembly Code. The bigger the Extended Basic program, the further down in
memory it will exter_ld.

11. Line 110 sets up the REF/DEF table at >3FF8 to show a dummy label
for the entry point and also its address in memory so that CALL LINK can
find it. The entry offset address, >006E, found in Step 5 must be added to
the absolute load address in Step 4 above.” >E120 + >006E = >EI18E, the
actual entry point. Use its two bytes for the values of "x" and "y". >E1
= 14%16+1 = 225. >8BE = 8%1&6 +14 = 142,

12. Saving the Extended Rasic program in the usual way results in all
the memory space from the bottom of the XB program to almost the top of
memory being saved. You might notice that the size of the XB program you
just saved to disk uses many more sectors than the little Extended Rasic
porgram carrier would have used. Run the program now and see the wonders
of your efforts.

BITS AND PIECES
by Col Christensen Brisbane User Group Australia

Printing errors sometimes occur in Basic programs published in
magazines. A few have come to light lately, being the result of the
original program being listed to disk in text format then processed
through the TI-Writer formatter. There are some symbols that are used in
Basic but to the formatter are flags for specific action. The @&, *
and "~ characters come to mind. The formatter will ignore each of these as
a print character and set out to follow a set course of action relative to
the particular character flag. But when the #* is encountered, it and the
next two characters are removed from the text. So a program line
that should read

20 N=L*256+M would show
as

420 N=L&+M

Print errors such as these are a pain to the novice or even the not so
novice programmer and make it difficult to get a program typed in up and
running. So if you come across something that looks unusual when running a
typed program, try to see if the @, &, ¥ or ™ might have been deleted
accidently.

[Art Greens version of Tl Writer allows EASY amendment to Formatter
control characters, to avoid this problem— sjs]

I had been playing around with an XB routine to scramble some numbers
or letters from a string. After trying a few ways that randomly
manipulated the string, I found the routine too slow. Then the following
evolved which kept track of which char was already used by means of a
parallel array. It had difficulty though in finding the last few unused
chars by randomly stabbing here and. there in lines 160 and 170 until one
was found.

38

100 REM SCRAMBLER/UNSORTER1
110 RANDOMIZE

120 N=20 :: DIM X(20)

130 REM HAVE AN ORDERED STRI
NG TO START WITH

140 FOR I=1 TO N :: Z$=Z$%CH
RE(I)zs NEXT I

150 FOR I=1 TO N

160 R=INT (RND#*N)+1

170 IF X(R)=1 THEN 160

180 REM

190 X(R)=1

200 Y$=Y$LSEG$ (Z$,R,1)

210 NEXT I

220 REM SHOW THE RESULT

230 FOR I=1 TO N :1: PRINT AS
C(SEG$(Y$,1,1))3:: NEXT I

By using the lines below to replace 160-180 that problem is
overcome. If it randomly selects a char that has been already used,
it just steps through until it comes to the next unused one and
selects it. See lines 160-180.

160 R=INT (RND%*N)+1

170 IF X(R)=0 THEN 190

180 R=R+1 :: IF R>N THEN R=i
1 GOTO 170 ELSE 170

Had an inquiry on how to chain BOOT/MENU programs so that one would
be able to run the next and so on. With the advent of 1 Mbyte ramdisks
and harddrives, the 24 menu options can soon get filled up. The idea
is to use two copies of the BOOT prodgram but with different filenames
for the second copy.

The snag with using the two copies was that when you tried to
configure the second copy then save the configuration back to ramdisk,
the alterations would be done to the original BOOT program. To
overcome this it was necessary to go into the second copy with a
sector editor, find the filename BOOT and change it to its new name.
All would hopefully work perfectly then.

BOOT has a utility to save all the menu options and other
configurations such as screen colours and filename defaults to itself
on disk. Type in the defaults for the key presses 1, 2, 3, P, T, and D
but escape out after typing each by pressing FCTN/9. Press the F and B
keys to get your favourite foreground and background colours. Then
save everything and the only way to save your configuration is to
press FCTN/S as if to edit menu names then escape (FCTN/9) to reach
the save option. All your current filename options and screen colours
will reappear next time you load EOOT.

Another great addition in Version 10/146/89 (press V at the menu
screem to see your version) is the ability to save the menu options
list to a disk file. Pressing FCTN/T (1) produces a prompt saying
"Put DSK..." for you to state the pathname to save the option list to.
If you press FCTN/R ([) you get "Get DSK..." and you can load a
previously saved list to the screen. If this list is what you want
permanently for your menu, then save to EBOOT after pressing FCTN/S and
FCTN/9. These CFG lists are saved in D/VBO format and can be edited
with TI-Writer but you must save as FrintFile (to DSKetc) so that the

Tab lists don’'t get saved too.

A SIMFLE way to get more than 24 menu options is to use only one EOOT
program and have multiple configure files. You could save, through the
"Fut DBK..." facility, a number of sets of menu option files onto the
ramdisk under different xxxx-CFG filenames. (WARNING - Do not save through
the FCTN/S, FCTN/9 Save method as BOOT itself will be re-configured on the
disk. It needs to remain configured to your first menu.) Later, by
loading the required file through "Get DSK..." you have whichever set of
menu options you like. I like that idea and shall try it shortly.

[BOOT is available through the Group disk library- sjsl

e e T T Uy P S——
DISK LIBRARY ADDITIONS...
NEW DISKS since SEPTEMBER 1992

PLATO... now that we have the PLATO module on disk, the disk library
has added some 50 data disks, covering various subject. PLease refer
to file PLATO on main library disks for details. Full library list
available on four disks- just send four disks and return postage!
There are MANY more Flato data disks available, your disk library
merely lacks the funds to obtain them all.

JVIDEO-~ TI DEMO VIDEO~ This video opens with the only known video
designed for use with the rare peripheral PHP 2300- Video Controller.
The controller used the index pulses on the videotape to allow
‘keyboard interaction with the video recorder and this tape was
designed for use in stores to allow shoppers to see demo’'s of their
own selection. Also on the tape are tv adverts, other point of sale
videos, and appearances by the TI on tv shows, including Tenille
singing along with Music Maker. The tape concludes with a TI tutorial
video for TI salesmen - how many statements would get them into
trouble with our Trade Descriptions Act?

Five pounds per week rental, fifteen pounds deposit. FAL STANDARD
VHS.

SELUES 1A. A number of TI artist pictures (_P) of legendary blues
singers with some textual detail in dvB0 files.

*BLUES 1B. A very very large Sound FX file of Midnight Blues, 353
sectors. You will need additional memory to hear all of it - adding
Buper Space’'s Bk only allows about two thirds of it to play. Refer to
docs with the required commercial program Sound f/x.

*MYART & YAFF A. Four pictures: Alien-My, Bigclck-My, Calc-My,
Office~Yap. I have not been able to produce what I consider
satisfactory pictures on my TI. Requires SmartCopy or a Geneve plus

yapp.

*MYART & YAFF R. As above, three pictures, PAL-YAFF, WINDOW-MY and
WINDOWZ-MY.

*MYARC DMS V 1.3 ~UPDATE ONLY for Myarc Disk Manager S. DOUEBLE SIDED
DISK. (Counts as two).

+BIFS A. Two pictures-Guitar and JLH-GIF to be used with commercial
pragram gif-mania or a Geneve. Also a Geneve program GIF2-EXE.

»BIFS B. One gif picture file, TI-99.
*GIFS C. One large gif picture file TI-AD.

§b1fs A,B and C also available on one double sided disk, counts as two
Aiabea) .

*8TOR MOR a commercial program from Harrison Software, duly licensed.
FLEASE DO NOT FASS AROUND. Price including disk and postage FOUR
FOUNDS. This program allows you to use very large string arrays in
your Extended Basic programs by a few simple CALL LINK commands, which
place a single dimensioned array in either high or low memory (your
choice).

I have identified some of the cartoon characters on the RLE disks
(MinMay, Joylef, Jpnmat, Robotek etc) and located a source for the
genuine videos they came from — not commercially available in the UK.
If you are interested in renting Japanese animation videos, let me
know. Two pounds per week, fifteen pounds deposit for those I get (3
or 4 hour tapes), or I can put you in contact with a UK source. These
are NOT the sort of cartoons the BBC would show. WHEN they become
commercially available (if?) expect to see high prices- typically
US#35 per hour in America. SOME of them are profoundly explicit. Watch
out for some on Channel 4 over Christmas (4Mations series). ROBOTECH
is often available for 1.99 or 2.99 from budget stores.

The disk library is operated by Stephen Shaw (address on front cover) ,
and the copying cost is just one ‘pound per disk side plus a handling
fee of one pound per order. If you do not wish to send blank disks,
please also add one pound per disk. Donations of funds and programs
are always welcome.

The complete disk library catalog is available only on disk in DVBO

text files, please send four disks and return postage.
:.-.:==:=:==z::===.—_===..-.:====================================

Feather or Mira Fractal....

This is a very little program with a great deal to offer, and many of
the finest graphics workers have been associated with it. My first
contact was in the American magazine ALGORITHM (#3.3) (edited by famed
mathematician A K Dewdney) in an artical by equally famed computerist
Clifford A Pickover. It is this form of the program printed below.

While I was still exploring this very rich world of images, along came
the UK magazine FRACTAL REFORT (#23) with an artical by Faul
Gailiunas, quoting from a book by Hans Lauwerier, of a mapping by
Bumowski and Mira. The listing given there differed minutely from this
one.

The shape is defined by variables AA and E, which are best located
between the values of -1 and +1. AA seems to control the shape— the
number of "legs" — while B seems to control the level of intricacy.

Some combinations of variables will result in the plot quickly
becoming inescapably entwined with one or more attracting fixed
points. No need exploring those too much. Many combinations result in
a feathery form appearing.

I found better results keeping AA negative.

There seems to be a special case when B is +1, when a different family
of patterns can be found. Reducing the scalar multiplier in line 140
is often necessary when you do this.

Variables X and Y are the start locations. With feather plots they
seem to have little effect on the result, but when B=1 they can make a
difference.

Here is the original program....

100 AA=-0.48 :: B=0.93 :: C=2-2%AA :: X=3 :: Y=0

110 W=AAXX+CrX®X/ (1+X%X)

120 !

130 FOR N=1 TO 1E12

140 CALL LINK("PIXEL",X*8+95,Y*8+120)

150 Z=X :1: X=BxY+W :: U=sX#X :: W=AA*X+C*U/(1+U):: Y=W-2Z
160 NEXT N

2]

The program is written for Extended ERasic+ The Missing Link (which
requires 32k + disk system). ANY program that allows you to plot on
screen is suitable, and there are several such.

The variables X and Y are multiplied by a scalar which determines the
size of the image on the screen, and an offset is then added (or could
be subtracted) which determines the position of the image on the
screen (up & bit, down a bit etc).

This program is plotting a chaotic attractor.

The loop is VERY large, and you must determine vyourself when a pattern
has ceased meaningful development. For some plots I saw continued
meaningful plotting even at N=28,000 - while for others as few as S000
points sufficed. The Missing Link allows you to dump to printer at
any time, and you can break the program without losing the image- say
to save as a TI Artist file. Other graphics languages may require you
to add a CALL KEY routine to sense when you have had enough, although-
this would slow things down a little.

This is the -same prrogram slightly modified....

This time I have presented the program in one "random image" format,
and you will find some images lacking development- just break and run
again. :

This listing is adapted from Fractal Report (#22) and was presented

there by Ian Entwistle.

(for the Missing Link):

100 ! ENTWISTLE GENERATOR 91

110 ! FROM GUMOWSKI % MIRA
[
[}

120 ~1<ACL «7<B<1.001
130 IF B<1 THEN CY<40

140 RANDOMIZE :: CALL LINK("EBOX",1,1,192,240)
150 A=RND#%*.8 :: IF RND<.3 THEN A=A-RND%*.5 ::
160 B=1 :: IF RND<.15 THEN E=B-RND#*.12

170 IF B=1 THEN CY=99 ELSE CY=30

180 8C=2 :: IF RND<.2 THEN SC=3 :: IF RND<.1 THEN SC=4
190 FOR T=1 TO CY

200 IT=994 ! better with MORE points

210 C=2-2%A :: X=4 11 Y=0 ! try random x & y too!
220 W=A%X+ChX®X/ (1+X*X)

230 FOR N=0O TO IT

240 CALL LINK("PIXEL",X*8SC+85,Y*SC+123)

250 ¢

260 Z=X 13 X=B*Y+W 31: U=X*X

270 W=A*X+Cx*U/ (1+U) 12 Y=W-Z

280 NEXT N :: 8C=8C+1 :: CALL LINK("FRINT",180,200,STR$(SC)):: NEXT T
290 GOTO 290

L2

IF RND<.1 THEN A=-A

In the above variation as an added bit it has been mac: into TWO
loops, the outer loop controlling the scalar multiplier. We then plot
a SMALL number of points, then do it all again with a different
multiplier. The result is quite interesting!

FRACTAL REFORT is ten pounds per year (approx bimonthly) from
Reeves Telecommunications Labs Ltd; West Towan House, Porthtowan,
TRURO, Cornwall, TR4 BAX (subs for UK).

ALGORITHM is a quarterly from Canada, a years sub to the UK is US$24
froms ’
ALGORITHM, P O Box 29237, Westmount Postal Outlet,

785 Wonderland Road, London, Ontario, CANADA, N&K 1Mé6.

T T T s T o i 0 T S O O O I e S S e S S N S T EI ST ssrm mae

The next little listing takes absolutely ages to fill the screen,iai’
I will give some details to justify it. As usual the commercial disk
program THE MISSING LINK is used, but any language allowing you to
plot single pixels will suffice.

The program plot is based upon: X(T+1)=R*X(T)*(1-X(T))

Normally this would be used to plot X(T) on the X-R plane, which
yields a bifurcation plot, which we covered a while back, but this
program instead plots X(T) on the X(0)-R plane which gives a different
result.

Source: L D Magguilli writing in ALGORITHM (see above) Oct-Dec 1992,
Volume I Number 4. He €ites M Szyszkowicz.

100 SW=240
110 SH=190 ?
120 RS=3.5 ::1 RE=4

130 DR=(RE-RS) /5H }

140 X8=0 :: XE=0.5 -

150 DX=(XE~XS) /SW é P
160 I1T=3

170 SC=20

180 FOR J=1 TO SH

190 R=RE-J*DR

200 FOR I=1 TO SW

210 X=XS+I*DX

220 Y=X

230 FOR E=0 TO IT i‘
I

240 X=R¥X% (1-X)
250 | X=3#X#*(1-X) l
260 NEXT K

270 K=INT (SC*AES (X-Y))
280 IF K/2=INT(K/2)THEN CALL LINK("PIXEL",J,I)
290 NEXT I

300 REM

310 NEXT J

320 GOTO 320

For a different but slower plot remove the ' in line 250 above, or
change 270 to: K=INT(SCALE#*X).

This program may take several hours to fill the screen!

If you have 80 column capability, try plotting different colours for

different values of K in line 280.
===’-====B===S====B=========B=====H

L3

INTERMEDIATE LEVEL ASSEMBLY LANGUAGE TUTORIAL
by Mack McCormick

Direct Access to the TMS59902
Universal Asynchronous Receiver Transceiver (UART)

Introduction

The purpose of this tutorial is to describe the operation and programming
of the UART directly at the chip level by-passing the R5232 ROM. These
procedures will allow you to customize your RS232 input/output routines
as well as better understand the operation of the system. As a practical
example I recently found the need to transmit a code to my "Smart" modenm
but due to critical timing problems the standard RS232 ROM code would not
handle the operation. A few lines of assembly language direct to the chip
and I was in business.

This tutorial assumes you have the following minimum hardware; console,
monitor, 32K, RS232, one disk drive,Aand the Editor/Assembler package.

The following references will provide additional insight to the operation
of the RS232 and are all non-proprietary; Editor/Assembler manual,
TMS9902A Asychronous Communications Controller data manual (TI),
Microprocessors/Microcomputers/System Design (TI), and How to Build Your
Own Working 16-bit Microcomputer (TAB books). The only proprietary.
information used was the RS232 ROM source code which is not necessary to
understanding the operation of the 9902.

Chip Architecture and Overview

The purpose of the chip is to provide interface between a microprocessor
and an asynchronous communications channel. Let's review for a moment
here what we mean by this term. The data is transmitted to the chip one
bit at a time using the Communications Register Unit (CRU) over the hex
bus (fire hose).

The chip takes the bits and transmits them out the RS5232 port one bit at
a time like Indians in a row. The data stream is asynchronous (not
constantly synchronized with the other system) so a start bit is required
at the beginning of the stream to tell the other system to prepare to
receive data and one or more stop bits are required at the end to tell it
we're finished.

The chip has several key features which enhance it‘s versatility. It can
send/receive characters from 5 to 8 bits long, be programmed for 1, 1
1/2, or 2 stop bits, even, odd, or no parity, fully programmable baud
(bits per second) data rates, and a highly accurate interval timer with
resolution from 64 to 16,320 microseconds (good for clock applications).
These features enable the computer to be programmed to interface with any
system using standard R5232 protocols.

The chip is interfaced via the Communications Register Unit (CRU). It is
assumed the reader is somewhat familiar with the operation of the CRU.

If not, it is recommended you stop here and read the accompanying novice
tutorial on the CRU before proceeding . The 9902 occupies 32 bits of CRU
space which are used to control/interface with the microprocessor.

The 9902 interfaces over the RB232 port (outside world) using five lines;

request to send (RTS), data set ready (DSR), clear to send (CTS), data
out (XOUT), and data in (RIN).

L4

The RTS line goes low whenever you activate the transmitter but data will
not be sent until the CTS line is active. The DSR line does not affect
the receiver transmitter but your application software may check this
line before sending/receiving data.

Output CRU Bit Assignments

0f the available 32 CRU bits onl

less. Bit 31 and 0-21 are used.

ADDRESS

31
21
20
19 .
18
17
16
13
14
13
12
11
10-0

NANE
RESET
DSCENB
TIMENB
XBIENB
RIENB
BRKON
RTSON
TSTMD
LDCTRL
LDIR
LRDR
LXDR

DESCRIPTION
Resets the chip

Yy 23 are used and we will be using even

Data Set status change interrupt enable

Timer Interrupt Enable

Transaitter Interrupt enable
Receiver Interrupt enable

Break On ;

Request to Send on

Test mode

Load control register

Load Interval register

Load receiver data rate register
Load Transmit data rate register
Control, Interval, Receive data rate
rate, and transmit buffer registers.

Bit 31 (RESET)- Writing a one to this bit resets the device.

Bit 15 (TSTMD)- Writing a one to this bit causes RTS to connect
XOUT to connect to RIN, and DSR to be held low. This bit allows
test our programs without another computer connected.

Bits 14-11 - These four bits control which of t

loaded with the data in bits 10-0.
1XXX - Control register

01XX
001X
00X1

Interval register
Receive data rate register
Transmit data rate register

0000 - Transmit buffer register
0011 - Loads receive and XMIT registers
X - indicates don't care.

Bits 10-0 - The data.

’ transgit data

to CTS,
us to

he five registers are

The control register is used to select the character length, clock
operation, parity, and the number of stop bits for the transmitter.

Bits 7 and & - Stop bit selection. 00=1 1/2, 01=2, 10=1, and 11=1

Bits 5 and 4 - Parity selection.

Bit 3=1 always

Bits 1| and 0 - Character length., 00=

11=8 bits,

00=None, Ol=None, 10=even, and {1{=pdd

5 bits, 01=6 bits, 10=7 bits, and

The receive data rate register is used to select the receive baud rate
using the following formula. The frequency is 1 Mhz, Take half this value

and divide b
1200 baud th

e formula is 500,000/1200
value becomes 417 or >1Al.

y the desired baud rate. For example to obtain the value for
=416.66 . Using normal rounding the

The transmit data rate register is programmed in the same manner but is
Usually programmed with the same value simultaneously,

The transmit buffer register is used to hold the next character to be
transmitted., You must always send B bits.

Input CRU Bit Assignments

The same 32 bits of CRU space are also used for CRU input. They are
defined as follows:

ADDRESS NAME DESCRIPTION

31 INT . INTERRUPT
30 FLAG REGISTER LOAD CONTROL FLAG SET
29 DSCH DATA SET STATUS CHANGE
28 CT1s CLEAR TO SEND
27 DSR DATA SET READY
26 RTS REQUEST TO SEND
25 TIMELP TIMER ELAPSED
24 TIMERR TIMER ERROR
23 XSRE TRANSMIT SHIFT REGISTER EMPTY
22 XBRE TRANSMIT BUFFER REGISTER EMPTY
21 RERL RECEIVE BUFFER REGISTER LOADED
20 DSCINT DATA SET STATUS CHANGE INTERRUPT
19 TIMINT TIMER INTERRUPT
18 N/A ALWAYS 0

17 XBINT TRANSMITTER INTERRUPT
16 RBINT RECEIVER INTERRUPT

15 RIN RECEIVE INPUT
14 RSBD RECEIVE START BIT DETECT

13 RFBD RECEIVE FULL BIT CETECT

12 RFER RECEIVE FRAMING ERROR

11 ROVER RECEIVE OVERRUN ERROR

10 RPER RECEIVE PARITY ERROR

9 RCVERR RECEIVE ERROR

8 N/A ALWAYS O
7-0 RBR7-0 RECEIVED DATA

Bit 22 (XBRE) - Transmit Buffer register empty. The transmit buffer does
not have the next character to be transmitted.

Bit 21 (RBRL) - Receive Buffer register loaded. Bit is true when a
complete character has been received. This bit is reset by an output to
bit 18 (RIENB, receiver interrupt enable).

Bits 7-0 - Receive Buffer Register. Contains the most recently received
character., If fewer than B bits then right justified.

Transmitter Operation

The transmitter is initialized by the RESET bit being set. RTS and XOUT
are set placing the transmitter in it's idle state. When the CPU sets
RTSON then RTS is active (LOW) and data is sent when (CTS) input goes
LOW. Let’'s examine what an asynchronous character looks like. \

Start Parity Stop
Bit Character Bit Bits

iLSBILSB+1! {MSB

0]] ———]
i 54647, or 8 Oor 1t 1,1 8/2, 2
B

L6

The start bit is always a logic 0. The character is sent/received LSB
first. The parity bit is set if enabled to make the number of 1's in the
character even, odd, or don't care (none). Finally 1, 1 1/2, ar 2 stop
bits are sent as required by the receiving system. Thus we see that each
8 bit character may require up to 12 bits to transfer.

Summary

There are obviously many aspects of this chip we have not covered. The
reader is encouraged to consult the non-proprietary information available
to learn more. The principle reference is the 9902 data manual. If you
would like to see more tutorials of this nature please give the editor
your comments and suggestions. We have included an accompanying A/L
tutorial which demonstrates the key features of .the chip. Happy
programming. Mack

FRRERE R R R R RRRRERRR RN RRE R RN ERRRRRREREERE

DIRECT ACCESS TO THE TMS9902 UART
BY MACK MCCORMICK
74206 ,1522

RO-SCREEN LOCATION, R1-CHARACTER

R12-CRU SOFTWARE ADDR, R15-VDPWA
FCTN QUIT TO EXIT

R RN RN RN R RN R R RN R R R R RN R RN

W o W e W ok W
W oage W ok ke K sk

IDT 'R8232° IN CASE YOU'VE NEVER USED THIS PUT RS232 IN OBJECT CODE
TITL ‘DIRECT ACCESS TO THE TMS9902 UART® PRINTS THIS AT TOP OF EACH PAGE
DEF RS232 ENTRY POINT TO PROGRAM '

REF KSCAN,VSBMW
* USE E/A LOAD AND RUN. CALL THIS FILE ANYTHING YOU LIKE

+ 1 DID NOT AUTO-START THE PROGRAM SO YOU COULD USE DEBUG ON IT
¥ THIS PROGRAM ACCEPTS A CHARACTER FROM THE SCREEN AND

SEND IT OUT THE RS232/1 PORT AND BACK IN (TEST MODE).

%-- SYSTEM EQUATES --#

LED EQU 7->40 CRU BIT FOR PRETTY LIGHT ON CARD
RESET EQU 3I RESET BIT
LDIR EQU 13 LOAD INTERVAL REGISTER
RBRL EQU 21 (INPUT) RECEIVE DATA REGISTER LOADED
RIENB EQU 18 RECEIVER INTERRUPT ENABLE
RTSON EQU 16 REQUEST TO SEND ON)
XBRE EQU 22 TRANSMIT BUFFER REGISTER EMPTY
GPLWS EQU >B3EO THE GPL WORK SPACE LOCATION
MYREG EQU >8300 USE SOME HIGH SPEED RAM
KEYVAL EQU >B8375 BYTE LOCATION FOR KEYVALUE RETURN
STATUS EQU >837C GPL STATUS BYTE
ROLB EQU MYREG+! LEAST SIGNIFICANT BYTE OF RO
BAUD DATA >1At VALUE FOR THE RECEIVE AND XMIT REGISTERS
CNTRL BYTE »>8B2 VALUE FOR THE CONTROL REGISTER
EVEN

*¥-- PROGRAM STARTS HERE --#
RS232 LWPI MYREG

LI R12,>1340 CRU BASE RS5232/1t, >1380 FOR RS232/2
* >1540 FOR RS232/3, >1580 FOR RS232/4
¥ ----)>continued

L7

LR R A R R R R R R I R s

#* *
* INITIALIZE RS232/1 TO 7 BITS, NO PARITY, 1 STOP BIT &
* *

R R R R R R R R R R R RN RN R RN R RN RN RN R RN R RN N RRR

SBO LED TURNS ON THE LIGHT ON THE CARD. NOTE WE USED A MINUS
* OFFSET TO GET BACK TO >1307 FROM R12‘'S >1340,
* NOTE THE MYARC RS232 LED IS NOT MAPPED HERE

SBO RESET RESET 9902
NOTE HERE THAT RESET SETS LDCTRL, LDIR, LRDR, AND LXDR SO IF WE LOAD THE
REGISTERS IN ORDER CONTROL, INTERVAL, RECEIVE, XMIT AS EACH IS LOADED
IT RESETS THE CORRESPONDING BIT AND WE DON'T HAVE TO FOOL WITH THEM.
LOAD CONTROL REGISTER
76543210
BITS 7,6 => 10 : 1 STOP BITS
BITS 5,4 =) 00 : NO PARITY
BIT 3 =>0 : 9902 CLK=1MHZ
BIT 2 =>0 : NOT USED
BITS 1,0 => 10 : 7 DATA BITS
THIS IS >82
LDCR @CNTRL,B LOAD IT. SEND THE MOST SIGNIFICANT 8 BITS OR >B2
SBZ LDIR DISABLE INTERVAL REGISTER
LOAD THE XMIT AND RCV DATA REGS

1200 BAUD = >1A1 = 1199.04 BPS

dd ko X

LDCR @BAUD,12 LOAD THEM BOTH 12 BITS

SBO 15 PLACE THE 9902 IN THE TEST MODE. TAKE OUT TO USE WITH
¥ ANOTHER RS232 DEVICE

Ry Y I T 2L
* *
* TRANSMIT A CHARACTER FROM KEYBOARD #
% ¥
AR L Y T]

XMIT LI RO,160 SCREEN POSITION OR'D WITH >4000 FOR WRITE
XMIT1 BLWP @KSCAN SCAN THE KEYBOARD

MOVB @STATUS,@STATUS HAS A KEY BEEN PRESSED?

JE@ XMITI

MOVB @KEYVAL,R! GET THE VALUE OF THE KEY PRESSED
CI R1,>0500 QUIT PRESSED?

JE@ EOJ@

BL @5ND232 TRANSMIT THE CHARACTER

BL @RCV232 RECEIVE THE CHARACTER

BLWP @VSBW WRITE THE CHARACTER TO THE SCREEN
INC RO COUNTER FODR SCREEN LOCATION

ClI RO,224 ALLOW TWO LINES OF TEXT

JE@ XMIT START BACK AT THE FIRST SCREEN POSITION

[;{3—---) continued

JMP XMITH STAY IN THE LOOP

EOJR SBZ LED TURN OFF PRETTY LIGHT

LWPI GPLWS QUIT THE PROGRAM
SB @>»837C,e>837C CLEAR THE STATUS
B €>0070 BRANCH TO THE GPL INTERPRETER
R R R R R R R R R R R R R R RN RN R R R R R R RR
¥ *
* RECEIVE FROM RS232 (RCV232) *
* *

FRE R R R R R R RN R R RN RN R RN
RCV232 TB RBRL CHAR READY?

JNE RCV232 FORCES THE PROGRAM TO WAIT FOR THE CHARACTER

CLR Rt JUST SO YOU KNOW IT REALLY WORKS CLR THE OLD R! VALUE
STCR R1,8 GET THE CHARACTER :

SBZ RIENB RESET RBRL

RT 60 HOME RCV232

R L Y Y Y T2 1121

*

SEND OUT RS232 (SND232)

*

AR R T S Y YT Tt L

SND232 SBO RTSON MAY WE SEND?

SNDO TB XBRE IS THE TRANSMIT BUFFER EMPTY?

JNE SNDO NO, TRY AGAIN

LDCR R1,8 TRANSMIT MSB OF R1

SBZ RTSON INTERRUPT OFF

RT G0 HOME SND232

END

(@S

S======ss==s======zs==s==ppfsS========z====z=======z==
PROGRAMMING MUSIC THE EASY WAY

PART 2 MUSIC

by Jim Peterson

In Part 1 I showed you how to set up a musical scale to create notes, and
how to merge in various little routines to create a variety of musical
effects, but I didn't tell you how to figure out what numbers to put in
between those GOSUBs. So, here is the little program that makes it all
easy.

100 CALL CHAR (127, "000FO80FO
868FB70000F08080868FB7000080
BOBOBLBFB700008080B08689870"

)11 CALL CHAR(131,"000000000
0609070")

110 CALL CHAR(132,"0000120C4
B83020400000221C0810200000201
0201030200000003CFF") 11 CALL

CHAR (136, "O0000OFF3C")

20 CALL CLEAR :: S$="GFEDCE
A" 1: CALL CHAR(45,"00000000
FF")1: A$=RPT$(S$,3):: FOR R
=2 TO 22 STEF 2 :: IF R=12 T
HEN 130 :: DISFLAY AT(R,1):R
FTE (=", 28)

130 NEXT R :: CALL CHAR(98,"
0020202834242830")

140 FOR R=1 TO 21 :: DISPLAY
TAT(R,l):SEG$(A$,R,1);:: NEX

R

150 DATA 127,127,128,128,129
2 129,130,130,131,131

160 DATA 1/16,1/8,1/4,1/2,1/
1

170 FOR R=1 TO 20 STEP 2 ::

READ N :: DISPLAY AT(R,15):C
HR#F(N)3:: NEXT R :: FOR R=3

TO 19 STEP 4 :: DISPLAY AT(R
y16):"."3:: NEXT R

180 C=132 :: FOR R=1 TO 17 S
TEP 4 :: DISFLAY AT(R,17):CH
RE#(C);:: C=C+1 :: NEXT R

P pa ®

fl v 2a 2s

190 FOR R=1 TO 17 STEP 4 ::

READ M$:: DISFLAY AT(R,20)1
M$3:: NEXT R

200 DATA 35,33,32,30,2
5,23,21,20,18,16,15,13

8,6,4,3,1

49

210 FOR R=1 TO 21 :: READ N

11 NFE=NEXCHR¥(N):: DISPLAY A
T(R,6):8TRE(N) 31 NEXT R

220 G$="b" 11 ZI=-1 :: GOSUR

220 :: IF F=0 THEN 230 ELSE

GOSUR 330 :1: GOTO 240

230 GF="#" :1: Z=1 :: GOSUR 3J
20 :: IF F<»0 THEN GOSUR 330
240 DISPLAY AT(24,1):"Shorte
st note? 1/" :: ACCEFT AT(24

s 18)VALIDATE (" 12468")SIZE(2)

BEEP:L 2: TH="1/"%STRF(L)z:

RESTORE 160 :: FOR J=1 TO 5
1: READ L# 3: IF L#¥=T$ THEN

260

280 NEXT J :: GOTO 240

260 DISFLAY AT(24,1):"Is it

dotted? Y/N" :: ACCEFT AT(24
y 1) VALIDATE ("YN")SIZE (1) : D%
2 D=1-(DF=1y")

270 T==3+J%4

280 FOR R=T TO 19 STEP 4 ::

DISFLAY AT(R,11):STRE(D);::

DISFLAY AT(R+2,11):STR#(D#*1.

S)gr: D=D¥2 :: NEXT R

310 GOTO 310
320 DISPLAY AT(24,1):"How ma
ny "&G#%" on upper scale?" :
: ACCEPT AT (24,28)VALIDATE("
01234567")SIZE(1)BEEFP:F :: R
ETURN
330 Y$="" :: FOR J=1 TO B
DISFLAY AT(24,1):"0n which
letter?"
340 ACCEPT AT(24,18)VALIDATE
(S$)SIZE(1)BEEF:L¥ :: IF FOS
(Y¥£,L$,1)<>0 THEN 340 ELSE VY
$=Y$%UL ¥
350 6=1 :: FOR K=1 TO 3 :: P
=FOS (A%,L#$,5):: DISPLAY AT(P
y2):16#;:: DISPLAY AT(P,6):8T
R¥ (ASC(SEG# (N$,P,1))+Z);:: &
=F+1 :: NEXT K 313 NEXT J ::
RETURN
360 OFPEN #1:"PIO" :: FOR R=1
TO 22 :: FOR C=3 TO 30 :: C
ALL GCHAR(R,C,BG):: CALL HCHA

290 BGOTO 360

300 FOR R=1 TO 20 STEF 2
READ N :: DISFLAY AT(R,1
HRE(N) 32 NEXT N

RIR,C,30)1: RE=REXCHRE(G) 22
H NEXT C :: PRINT #1:R$% :: R#%$=
:C "" or: NEXT R :: STOP

)

Get yourself a piece of sheet music and compare it to the screen display
from that program. You will see that music is written on two sets of 5
lines. The upper set is marked at the left end with something like a
fancy script capital S; it is used to write the higher notes, including
the melody, which & pianist plays with the right hand. The lower set,
marked with a sort of a backward C, contains the low notes played with
the left hand. Your sheet music probably has a wide space between the
sets, to make room for the lyrics, but there are really only three notes

between them. :

The screen display shows letters at the left, which are not on the sheet
music. Those are the names of the notes, which we will have to refer to a
couple of times to get startedy observe that the notes are named A
through G and then repeated.

The numbers along the left side are the numbers you will key in to play
those notes. However, the screen display is set up in the key of C, which
is played entirely on the piano white keys. The sheet music you want to
program from may be in a different key, so -

The computer is asking you how mary there are of something that looks
like a squashed lower case b - I guess that’'s why they call it a flat? It
means that the note will be played a bit lower, on the black key just
left of the white key - and we will program it one number lower. So, look
next to that capital 8 and see how many flats there are. If none, type O.
Otherwise, the computer will ask which letters they are next to. Type
them in, one at a time, and presto - the computer will put them on the
F.?jf and adjust the numbers accordingly.

I'f there were no flats, the computer will want to know if there are any

sharps —~ those are what you get by typing a shift 3 on the keyboard, and
they mean that the note is played on the black key above the white key,

and is programmed one number higher.

Now, the computer needs some information in order to help you set up
the length of your notes - how long they are soundad. The various
notes are depicted at the right. A 1/16 note is a little black egg
with a stem (it may go up or down, makes no difference) and two flags
on the stem. A 1/8 has only one flag and a 1/4 note has none. A 1/2
note is a hollow egg with a stem and a whole note has no stem.

Those little doodads to the right of the notes are rests, used to
indicate a silent pause of the same length as that note - more on
that later.

Look through your sheet music and find the shortest note. Tell the
computer. It will want to know if any of those shortest notes are
dotted ~ have a little dot to their right, as the screen display
shows. A dotted note is played half again as long as normal. Presto
again, the computer will show you the duration number to key in for
each note. Then, if you have a printer attached, it will print out an
XBasic screen dump of that screen - you will have to squash your own
b‘s and sketch in the notes and rests.

If your software library contains an assembly screen dump, delete
that last program line and put in a CALL INIT, CALL LOAD and CALL
LINK to get a better printout - or ask me for it. If you don’‘t have a
printer, why not copy those numbers right onto the corresponding
lines and spaces on your sheet music, and number some of the notes.

Now we 're ready to make music! Let’‘'s keep it simple at first, just a
single note melody — and I hope you picked a simple piece of music.
Clear the TI's brain with NEW, then merge in that line 100 scale from
part 1 by MERGE DSK1.SCALE . In the same way, merge in one of those
line 1000 CALL SOUND routines. Put in a temporary stopper line 999
8TOF, and a line 110 D=200 to set the duration.

The melody is almost always on the upper set of & lines. If a note
has 2 or I eggs on its stem, as they usually do, the upper one is the
melody note — we will get into harmony later.

Start with line 110. Check your chart to see what number denotes the
length of the first note - maybe 2, if so key in T=2 :: Then check to
see what number applies to the position of the upper egg of that
note. Maybe 22, so key in A=22 :: GOSUR 1000 Enter RUN, and if you’'ve
done everything correctly, you will hear the note. You might decide
already that you want to change that 200 in line 110,

Now for the second note. If it is of the same length as the first,
you don’'t have to type anything - that’'s what makes this shorthand
method so quick and easy. If the note position is also the same, you
don‘t key that in either - just another GOSUB 1000.

If you have EZ-KEYS or another "hot keys" program, you can program a
control key to put in the GOSUR 1000 with just one keypress - wish I
had thought of that when I was programming music by the diskfull!

So keep plugging along, keying in durations and notes. After every
half¥ dozen notes or so, type RUN to see if everything sounds OK so
far - it‘'s easier to catch errors before they are too far back in the
music,

51

You can get up to S screen lines on one line number , but you might
better stick to 3 lines. You will note that the sets of notes are
divided by vertical bars. You might program the notes between bars on
a separate line, then add a ! followed by the words of the song that
go with those notes - I find that a very good way to track down sour
notes. :

Regarding those bars — it might help you sometime to know this. At
the beginning of the music, right after the big script S and the
flats and sharps, you will see something like a 3 over a 4, or a 4
over a 4, or whatever - but often a symbol such as a barred C is used
instead.

A 3 over a 4, for instance, means that the notes between two of those
bars will add up to 3/4 - might be three quarter notes, or two eighth
notes and two quarter notes, or whatever, but they will add up to
I/4. Sometimes the very first notes will add up short, but in that
case the very last ones will make up the difference.

The notes between those two bars make up a bar of music, and the
emphasis is on the first note - for instance, that 3/4 is the 1-2-3,
1-2~3% beat of waltz time.

While you are keying in that music, you might come to one of those
rests. You can just key in its T= value and then A=0 for a silent
note. However, computer notes stop so abruptly that somehow a rest
just doesn’t sound right, so I often just use the previous note
instead.

You may come across one of those flat or sharp symbols next to a note
in the music. Give the note a number 1 lower if a flat, one higher if
a sharp, and the same for any subsequent occurrences of that note,
until you find next to it a symbol that looks like the sharp sign
with half its legs knocked off; that means to go back to normal. You:
might also come across that symbol to tell you to play a normally
flat or sharp note as if it was not.

I think that covers all that you absolutely have to know for now, and
I have horrified all serious students of music just about enough.
There are all kinds of other squiggles on the sheet music but usually
they are not essential in programming music.

There is one other time-saving shortcut that I should tell you about
right now. Most music consists at least partly of musical phrases, of
a series of notes, which are repeated two or more times within a
melody. So, the first thing you should do before you start
programming & song is to search through the music for such phrases.

If you find one, of more than a few notes, that is repeated elsewhere
~ and make sure it is repeated exactly the same - mark it off each
place it occurs and label it 500. If you find a second repeating
phrase, label it 600, and so on.

Then, when you start programming, start with line 500, key in that
series of notes first, and end it with RETURN. If you have another
phrase, put it in lines starting with 600, again ending with RETURN.

Now, start programming from the beginning of the song in line 120,
but when you come to one of those phrases, just put in GOSUE 500 -
the program will jump to that line number, play those notes, and come
right back to where it was.

In Part 5, we will get into programming in 3-part harmony, bass
notes, auto-chording, and all kinds of things.

52

TIPS FROM THE TIGERCUB

NO #7

Tigercub Software

156 Collingwood Ave.

Columbus, OH 43213
(614)235-3545

Here‘'s a challenge for you
amateur hackers. In Extended
Basic you can write IF X={ T
HEN Y=7 ELSE IF X=2 THEN Y=3
3 ELSE IF X=3 THEN Y=19 ELSE
IF X=4 THEN Y=21. In Basic
that would take several
lines of programming - or
would it? Can you do it in
one line?

Some of the deepest sec-
rets of the TI are being
discovered and published by
Craig Miller in "The Smart
Programmer". They are al-
ready appearing on bulletin
" boards and elsewhere without
credit to Craig. Perhaps the
most valuable of them is:
CALL INIT ::

CALL LOAD(-31806,164)

Type that in before you
begin programming, and you
will never again lose a
program to that infernal
FCTN = key! Also, put it in
as one of the first progranm
lines and your program will
be kidproofed against the
open-palm press-all key
board technique.

Another extremely useful
one is:

CALL PEEK(-28672,A) If the
Speech Synthesizer is
attached, A will equal 94,
otherwise it will equal 0.
If you are putting optional
speech in an Extended Basic
program, you can avoid those
silent pauses by putting
that CALL PEEK at the begin-
ning of the program, and
then a line with IF A=0 THEN
before each CALL SAY to skip
over it if the synthesizer
is not on.

I have also found good use
for Craig‘s routine CALL
INIT :: CALL LOAD(-31888,
63,255)

This shuts down all of the
Disk Drive files and makes

it possible to load programs
over 12K long from tape, and
then copy them back to tape,
without having to physically
disconnect the Disk Drives.

I'm now receiving about 40
of the User’'s Group news-
letters, and some of them
contain invaluable tips that
deserve wider circulation.
Here‘'s one from Doug German
in the Central Iowa 99/4A UG
"4A Forum" -

100 PRINT "Press Fire Button
to continue”

110 CALL KEY(1,K1,S)

120 CALL KEY(2,K2,5)

130 IF K1+K2<2<>17 THEN 110
140 JS=INT(K1/18+K2/9+1)

Now, when you program CALL
JOYST(J5,K,S) the program
will respond to whichever of
the two joysticks you were
helding when you pressed the
fire button!

In previous Tips, I re-
ported that if you absent-
mindedly typed OLD CS! in-
stead of SAVE CS!, and
pressed Enter, you can save
your program by typing
Shift €, Enter, get an I/0
error and start over. It
turns out that this will
work in Basic but will not
work in either version of
Extended Basic unless you
have the Memory Expansion.

I am now the proud owner
of a P-Box, disk drive, and
Memory Expansion, so let nme
pass on a few things I’'ve
already learned the hard way

If you have keyed in a
program with the disk drive

turned off, DO NOT try to

turn it on and save your
program - you will lock up
the system, will have to
shut down and lose the
program. You must save the
program to tape, then turn
on the drive, reload the
program from tape and save
it to the disk.

. If you are trying to load
a program from tape and you
get the ERROR FOUND IN DATA
message at the very begin-
ning, it means that your
program is too long - the
disk drive has stolen more

53

2000 bytes of your memory.

If you just want to get the
program into the computer,
you can disconnect the disk
drive (It doesn’'t help to
just turn it off), or use
Craig Miller's routine
described on the preceding
page. If you want to get the
program onto a disk, you
might be able to do so by
first typing CALL FILES(1) -
but you probably won't be
able to get it back from
disk to tape.

[f the program is still
too long, you can still get
it onto a disk if you have
Extended Basic and the
memory expansion. The
method recommended by Texas
Instruments involves re-
typing them. My method is
slow, but it eliminates the
retyping.

Proceed as follows:

Shut down or disconnect
all disk drives,

Load the program fronm
tape (in Extended Basic
if possible because you can
delete lines so much
faster).
Delete the first 50 lines.
Save the shortened progranm
to another tape.
Turn on the disk drive, and
memory expansion.
Load the shortened program
in Extended Basic.

Save it to a disk with the
merge option,

Shut down the drives
again.

Load the original program
from tape.

Delete the last 50 lines.
Save it to a tape.

Turn on the disk drive and
memory expansion.

Load it in in Extended
Basic.

Use the MERGE command to
merge the previous
shortened program into this
one.

Save the merged program to

54

a disk.

It will show wup on the
catalog as a file but it
will load and run as a
program. Don‘t give it to
anyone who does not have
Extended Basic and Memory
Expansion!

According to Duane Fischer
in the 99/4 Users of America
newsletter, there are two
models of the new white-
plastic TI-00/4A.

They can only be identified
by the copyright notice on
the bottom ridge edge aof
the title screen.

It will read either (c)
Texas Instruments 1981 or
(c) Texas Instruments V2.2
- and if it is the latter,
it is one of those which
were gimmicked so they
would not run the command
modules produced by
Funware, Romox, Atari or
Parker Bros.

If you are having trouble
determining locations on the
screen during programming,
put on a temporary grid with
1 CALL CHAR(32,"FFB8080808080
gos*)

If it won't interfere with
your graphics, you can even
number the grid:

2 FOR J=1 TO 32

S C=C+1-ABS(C=9)#10

4 CALL HCHAR(24,J,48+C)
9 IF J>24 THEN 7

6 CALL VCHAR(J,14,48+C)
7 NEXT J

TIPS FROM THE TIGERCUB
NO #8

Last challenge was to
to write the Extended Basic
statement IF X=1 THEN Y=7 EL
SE IF X=2 THEN Y=33 ELSE IF
X=3 THEN Y=19 ELSE IF X=4 TH
EN Y/21, in just one line of
Basic.

That didn‘t seem to

stir up much interest but

anyway, here’'s my solution-
Y/VAL(SEG$("07331921" ,X%2-1,
2)) You can even put that in
a DEF and then use Y repeat-
edly without further defin-
ing it. Don’t be putting TI
Basic down - It’'s powerful
stuff.

So here's the challenge
for this month. Can you
write a program in two
lines of Basic, or one line
of Extended Basic, to com-
pose and play random music
in 2-part harmony in the key
of C?

I'm not talking about
just any old random freq-
uencies, I want random music
composed of pairs of notes
that belong together in
chords of the key of C! If
you figure it out, write me
or give me a call.

Above we passed on
Duane Fischer’'s tip that
TI-99/4A consoles which dis-
play V2.2 instead of 1981 on
the title screen will not
run 3rd party command mod-
ules., It is now reported
that the white modules with
1983 on the title screen
will give the same problen.

[f you have set up your
equipment, tried to load a
program, and the screen
prints out "21D cSi" or
something else goofy, don't
panic - just unplug the
cassette interface cable
from the joystick port and
plug it in where it belongs!

Did you ever absentmind-
edly type SAVE CS!1 instead
of OLD CS!1, push RECORD, and
not realize it until you had
erased a program from your
cassette? Did you know that
the cassette has two tabs on
the back edge that can be
removed to keep that from
happening?

Just slip the tip of
a knife blade under thenm,
and pry up to snap them off.
Each side of the cassette is
pProtected by the tab on its
back left edge; when the tab

is removed, the recorder’s

RECORD button can‘t ‘be push-
ed down., Later on, if you do
want to record over that
side, just put a bit of
scotch tape over the hole.

According to Michael A.
Covinton in Compute! of Dec
*82, if you are using a
black and white TV for a
monitor you can get a sharp-
er screen by starting your
program with a line 1 CALL
SCREEN(15).

100 REM DOLLARS AND CENTS P
RINTER DEVELOPED FROM A MICR
0SOFT ONE-LINER BY CHUCK EME
RSON-HENRY IN COMPUTE! 2/84
110 REM TO GENERATE PRICES T
0 DEMONSTRATE
120 A+INT(10%RND) +.1%INT(5%R
ND)

130 REM ONE-LINER TO PRINT
140 PRINT "$"%SEGS$(STR$(A+.0
01),1,LEN(STR$ (A+,001))-1)
150 GOTO 120

100 'Where did this come fro
m?

110 FOR CH=24 TO 30 :: CALL
HCHAR(1,1,CH,768):: CALL COL
OR(0,5,11)s: NEXT CH :: G6OTO
110

ASCII codes | through 3i
can be placed on the screen
by CALL HCHAR or CALL VCHAR.
ASCII 30 is the cursor which
prints out as that black
square. The others do not
represent a character, can-
not be redefined, and are
mostly blank, but ASCII
codes 24 through 27 often
contain odd bits of graphics
ASCII codes 1 through 23 are
always transparent.

Codes 24 through 31 are in
character set 0 which is
normally transparent, but
if you are in Extended
Basic it can be colored.

Some of the books of TI
programs are full of stuff
that is not worth keying in,
but there is at least one
good one, called Terrific
Games for the TI-99/4A by
Hal Renko and Sam Edwards-

55

programmed in the Nether-
lands, published in Great
Britain and printed in
Finland!

The publisher is
Addison-Wesley, 1983.

If you are making a back
up disk and you accidently
initialize the Master in-
stead of the copy disk, you.
will lose the data on the
Master. If you key in a
program, try to save it to
a disk, and find that not
enough sectors are avail-
able, you had better have
another initialized disk or
a cassette recorder avail-
able,

The solution to both
programs - when you buy a
package of disks, initialize
them all right away! And
watch to make sure that they
don’'t have any bad sectors.

Here is a handy debugging
routine. Right after the
first CALL CLEAR, put in
these temporary lines:

100 FOR €=1 70 4

102 CALL COLOR(@,16,1)
103 NEXT @

104 GOTO 104

Then type LIST, as soon as
the first lines have scroll-
ed to the top of the screen,
stop the list with FCTN 4.

Type RUN.

All of the numbers and
punctuation will turn
white. '

Check for 1’'s instead of
1's and o's instead of 0's
and vice versa, equal
numbers of opening and
ctlosing parentheses,
misplaced commas, etc.

Then break with FCTN 4,
LIST (The last line on the
screen) and hyphen, ENTER,
stop it again etc.

Yes, TI Basic will let you
use € in a variable name. I
never use it in a program,
but I do try to remember to

56

use it in temporary debug-
ging lines, in utility
routines which I will save
to merge or build programs
around, ir modifying other
people’s programs, etc. That
way, I don’'t breed new bugs
by duplicating a variable
name that is already in the
progranm,

STOP THE PRESS!! I have
just received a review copy
of a new book called: .

THE TI-99/4A IN BITS & BYTES
by Remo A. Loreto

This one is worth the
money! It is a thick book of
142 big pages. The first 20
pages are filled with ex-
planations of programming
statements and methods, with
examples.

The rest of the book
contains 50 programs for
you to key in, and at an
average of well over 2
pages per program these are
definitely not merely short
routines. There is a wide
variety of games, education
and utility programs, all
original, written by Mr.
Loreto’'s associates.

I have not had time yet to
key any of them in, but
have previously seen a
few of them run, and they
were good! The programs are
reproduced from listings,
for accuracy, and listed in
large print in 28- coluamn
format for easy copying -
Don‘t you wish everyone

did that?

TIPS FROM THE TIGERCUB
NO #9

The above challenge was
to write a program in two
lines of Basic, or one line
of Extended Basic, to comp-
ose and play random music in
2-part harmony in the key of
C. I did't hear from anyone
else, so here's my solution-
100 REM - TIGERCUB 1-LINE MU
SIC COMPOSER

110 CALL SOUND(-999,VAL (SEG$
("26226229433034939244049452
3587659698784" , INT (12%RND+1)
$3-2,3)),0,VAL(SEG$ ("1311751
96", INT(3%RND+1) #3-2,3)) ,5)
120 60TO 100

Just another challenge -
can you write a one-line
program in Extended Basic
which will take only 70
seconds to scramble the num-
bers from 1 to 255 into a
completely random sequence
without duplication?

Who needs line numbers,
anyway? Try keying this in-
(in Extended Basic)

DIM S(36):: F=262 :: FOR N=i
TO 36 33 S(N)=F#1,059463094

“N :: NEXT N (Enter)

FOR J={ TO 1000 :: CALL SOUN

D(-99,S(INT(35%RND+1)),0)::
NEXT J (Enter)

Here's another one - key
this in to your friend’s
computer while he is getting
you a beer-
M$="0018243CA425R6H7E" (Enter)
FOR C=128 TO 143 :: FOR L=\
TO 6 :: C$=C$LSEGS(MS$,INT(B#
RND+1)#2-1,2)ss NEXT L :: CA
LL CHAR(C,"0C"&C$):: Cs=""
t NEXT C :: CALL CLEAR

Now, when he gets back
with the beer, rest ycur
left pinkie on the CTRL key
while you type in any of the
letters A through 0, and
show him that his computer
has a built-in Mongolian
alphabet!

One More-
FCR CH=65 TO 79 :: CALL CHAR
PAT(CH,CH$):: FOR J=1 TO 16
STEP 2 :: X$=SEG$(CH$,J,2)&X
$:: NEXT J :: CALL CHAR(CH+
64,X$2: X$="" 3: NEXT CH
Enter)
CALL CLEAR {Enter)

fgain, hold down the CTRL
key while you type ietters
between A and 0. You can
also change that tc read FOR

CH=33 70 90 and CALL CHAR(C
H,X$), omit the CALL CLEAR,

and watch the fun on the
Mrnon.

If you are programming for
speed, don’'t use DEF'! Put a
stopwatch on this routine
and see why -

100 DIM N(100)

110 FOR J=1 TOD 100
120 N(J)=RND#10
130 NEXT J

140 INPUT DUMMY$
150 DEF RD=RND#10
160 FOR J=1 70 100
170 N(J)=RD

180 NEXT J

Here’'s a one-line GOSUB
for your business programs,
to give you the number of
days (D) in any month (M) of
the year (Y) including the
extra day in February of
Leap Year -

100 D=VAL (SEG$("312B31303130
313130313031 ,M*2-1,2))+(ABS
(M=2) *ABS(Y/4=INT(Y/4)))

If you accidently hit a
letter key in response to an
INPUT N request for a num-
eric variable value, you get
a nasty burp and a severe
reprimand -

WARNING INPUT ERROR IN......

This is annoying to a user
disconcerting to a non-user,
and even frightening to a
child.

If you program INPUT N$,

- the computer will accept any

thing as the value of a
string variable, and the VAL
function will change a
string of numeric value -
but if the string contains
anything non-numeric, the
program will crash- which is
even more annoying. discon-
certing, and/or frightening!
The solution? Tigercub
presents-

100 REM - THE TIGERCUB POLIT
E COMPUTER

110 INPUT "TYPE A NUMBER, PL
EASE":N$

120 FOR J=1 TO LEN(NS$)

130 IF POS("1234567B890",5EG$
(N$,J,1),1)<(>0 THEN 160

140 PRINT "THAT IS NOT A NUM
BER"

150 GOTO 110

160 NEXT J

37

170 N=VAL(N%$)

If you want to accept dec-
imals and negative numbers,
change the string in line
130 to "12345467890.-"

Do you like to work those
letter substitution puzzies
in the newspapers and puzzle
books? Why not let your com-
puter make them for you?
Just get anyone to type a

‘message to be encoded.

58

100 REM - TIGERCUB CRYPTOCOD

ER by Jim Peterson

110 CALL CLEAR

120 T#="THIS PROGRAM WILL CR

EATE A CRYPTOGRAM BY SUBSTI
TUTING ONE LETTER FOR ANOTH

ER."

{30 GOSUB 450

140 DIM A$(26,2)

150 M$="ABCDEFGHIJKLMNOP@RS

uvexyz» -
160 FOR T=26 TO { STEP -1
170 A$(T,1)=CHR$(T+64)

180 RANDOMIZE

190 X=INT(T#RND+1)

200 A$(T,2)=8EG$(M$,X,1)

210 IF A$(1,2)="A" THEN 150
220 IF A$(T,2)=A%(T,1)THEN 1

90

230 M$=SEG${M$,1,X-1)XSEGH (M

$,X+1,LEN(MS))

240 NEXT T

250 FOR J=1 TO LEN(TS$)

260 D=ASC(SEG$(T$,J,1))-b4

270 IF (D<1)+(D>24)THEN 300
280 C#$=C$%&A$(D,2)

290 GOTO 310

300 C$=C$&SEG$(T$,d,1)

310 NEXT J

320 T#$=C#$

330 C$=NULS$

340 GOSUB 450

350 IF FL=0 THEN 370

360 GOTO 340

370 FL=1

380 FOR D=1 TO 500

390 NEXT D

400 CALL CLEAR

410 PRINT "TYPE YOUR MESSAGE
OF NOT":"MORE THAN 4 LINES.
USE EXTRA":"SPACES TO AVOID
BREAKING A":"WORD AT THE EN
D OF A LINE.":" THEN ENTER"
420 INPUT "

":T#

430 CALL CLEAR

440 GOTO 150

450 R=5

460 C=3

470 FOR J=1 TO LEN(T$)

480 CALL HCHAR(R,C,ASC(SEGS$!(
T$,0,1)))

490 C=C+1

500 IF C<31 THEN 530

510 C=3

520 R=R+{ -

530 NEXT J

540 RETURN

ALMOST OUT OF MEMORY, so

HAPPY HACKIN'
Jim Peterson

TIPS FROM THE TIGERCUB
#29
Copyright 1985

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Re TI#MES #38:

I goofed again. In the I/0
ERROR routine in Tips #28B,
the ON ERROR STOP will do no
good in the place where 1
put it., It should be placed
after the file is opened 1in
line 100 so that it will
become the current error
trap if the file is opened
correctly.

"And the CALL KEY example in

Tips #28 will look better if
R=14, A couple of very
knowledgeable programmers
have written to tell me that
I was wrong, and the manual
is right, about CALL KEY
status -1. They say that -1i
simply means that the sanme
key is being pressed as was
pressed during the last
keyscan, and that it could
have been released and
repressed in the interim,

This may be, but try this
routine and see if you can
release and repress a key
without getting a status
code 0 (no key pressed) and
status code | (different key
pressed) before another
status code -1.

100 CALL KEY(0,K,§):: PRINT
K,5 :: GOTO 100

George Steffen has responded

to the challenge in the last
Tips, by publishing in the
LA 99ers Toplcs a remarkably
compact routine to translate
the internal format string
representation of numeric
data back into numbers. The
following lines will update
the Menu Loader accordingly.

100 'by A. Kludge/M. Gordon/
T. Boisseau/J. Peterson/G. §
teffen/etc.Version #8, 11/85
140 €,8@,A,A$,B,C,D$,E,F,FLA
Gy1,d,K,KD,KK,M,M$ N$,NN,P,P
$,PG$() ,PP,PP$,08$,5,5T,T$0),
TT VT, V() Wé, X, X$,Y,K2,52
810 F=1 :: E=ASC(SEGS$(M$,1,1
)):: M=ASC(SEG$(M$,2,1))s: 1
F E=0 AND M=0 THEN 60TD 817
ELSE IF E>128 AND M>128 THEN
F=-1 :: E=255-E :: M=254-M
815 FOR I=1 TO t: M=M+(ASC
(SEGS(M$,1+42,1)))/10071 3
EXT I 3: M=M*F%100~(E-64)
817 PRINT #PP:M
870 FOR P=1 TO NN-1 :: PRINT
#2:PG$(P);TAB(15);V(P,3);TA
B(20); T$(ARS(V(P,1)));TAB(25
)§V(P,2)3TAB(31);CHRS (B9*ABS
(V(P,1)<0))z:: NEXT P :: CLOS
E #2

The change in the last line
is my own, because it was
pointed out to me that the
catalog output to the
printer did not indicate
protected files.

That last line is a good
example of the power of
relational expressions to
accomplish compact program-
ming.

The variable V(P,1) picks
up its value from the var-
iable A which is read from
the disk directory in line
350, This is a number from 1
to 5, indicating the type of
file, and if the file is
Wwrite-protected the number
is negative.

A true expression has a
relational value of -1. If
the file is protected,
V(P,1)<0 is true, and its
value is -1, converted by
ABS to +! and multiplied by
89 to give ASCII 89, con-

verted by CHR$ to "Y".

If not protected,
V(P,1) is a positive number,
V(P,1)¢0 1is false and has a
relational value of 0j 89
times 0 is still 0, and
CHR$(0) prints nothing.

George also mentioned in a
letter:

that my remarks on the
UPDATE mode applied only to
VARIABLE files;

that RESTORE without a
number,to return the record
pointer to the beginning of
a file, works only with
VARIABLE files;

that RESTORE with a number
works only with RELATIVE
files;

and that therefore the only
way to RESTORE a SEQUENTIAL
FIXED file is to close it &
reopen it.

On trying this out, I find

that you can write to a
FIXED SEQUENTIAL file and
still be able to read the
following records - but you
can’'t simply "read a record,
change it in some way, and
then write the altered
record back out on the
file", as the Reference

Guide indicates, because you-

will change the record
FOLLOWING the one you read!

It is possible to UPDATE a
FIXED SEQUENTIAL file
without reading it all into
an array and writing it back
out, but vyou must read
sequentially to the record
you want, close the file,
reopen the file, read back
to the record Jjust befoic
the one you want to update,
then write in the wupdated
record.

1 have received several
other suggestions regarding
the Menu Loader, too many to
describe here. You can all
modify it to your own tastes

53

and needs. Remember to turn
off the pre-scan and ON
ERROR while you're working
on it, then add any new
variable names or CALLs to
the pre-scan. And remember,
that last 1line MUST be the
LAST line of the oprogranm!
You can resequence it
higher, and change the GO0TO

accordingly, but don‘t put

anything after it!

I did change my version to
slash the zero, since this
will carry over into a
program that is loaded. 1If
you do this, be sure to add
@ CALL CHAR to the list in
line 150!

190 CALL CLEAR :: FOR S={ TO
14 :: CALL COLOR(S,7,16)::
NEXT § :: CALL COLOR(0,2,16)
11 CALL CHAR(48,"003A444C544

444B8")

When you just want to load a
program, waiting for it to
be read from the disk
directory can be a drag.
And, you may have trouble
recognizing the filenanme.
So, here is the Tigercub
Quickloader which I have
placed on all my Collection
Disks.
First you will need
Catwriter, another progranm
that writes a program. This
one will read the disk
directory, ignore everything
other than programs, ask you
for a complete program name
for each filename, and write
all that into a MERGE format
program called CATMERGE.
(a much improved version of
this program was published
in Tips #47. - Ed.)
100 !CATWRITER by Jim Peters
on
110 OPEN #1:"DSK!{.",INPUT ,R
ELATIVE,INTERNAL :: INPUT #1
iN$,A,J,K :: OPEN #2:"DSKI1.C
ATMERGE" ,VARIABLE 163 :: LN=
1000 :: FN=1100
120 X=X+1 :: INPUT #1:P$,A,J
4B 1t 'IF LEN(P$)=0 THEN 160
:t IF ABS(A)=5 OR ABS(A)=4 A
ND B=254 THEN 130 ELSE X=X-1
t: GOTO 120

130 DISPLAY AT(12,1)ERASE AL
L:P$;" PROGRAM NAME?" ::
ACCEPT AT(14,1)SIZE(25):F$
140 PRINT #2:CHR$(INT(FN/256b
)) &CHR$ (FN-256#INT(FN/256)) %
CHR$(147)%CHR$(200) &CHR$ (LEN
(F$))XF$&CHR$(0)3s: FN=FN+{
150 M$=M$&CHR$(200) & CHR$ (LEN
(P$))&PSLCHR$(179):: IF X<11
THEN 120
160 IF M$="" THEN 180
170 PRINT #2:CHR$(INT(LN/256
))&CHR$ (LN-256%INT(LN/256)) &
CHR$(147) &SEG$(M$,1 ,LEN(MS$) -
1)%CHR$(0):: LN=LN+1 :: M$="
"33 X=0 33 IF LEN(P$)<>0 TH
EN 120
180 PRINT #2:CHR$(INT(LN/256
))& CHR$ (LN-256%INT(LN/258))%&
CHR$(147) &CHR$(200) &CHR$ (3) &
"END"&CHR$(0)
190 PRINT #2:CHR$(255) &CHR$ (
255):: CLOSE #1 :: CLOSE #2

Next, key in the
Quickloader, Do not change
the line numbers, do not
RESequence, because CATMERGE
will be merged into the
middle of it and that last
line must be the last.
Then, enter MERGE
DSK1.CATMERGE and then SAVE
DSK1.LOAD ., '

100 CALL CLEAR :: DIM M$(48)
:: CALL CHAR(94,"3C4299A1A19
9423C"):: CALL SCREEN(2)::
OR SET=! TD 14 :: CALL COLOR
(SET,15,1):: NEXT SET :: DIS
PLAY AT(1,4):"TIGERCUB QUICK
LOADER"
110 X=X+1 :: READ M$(X):: IF
M$(X)<>"END" THEN 110
{115 CALL PEEK(B198,A):: IF A
<{>170 THEN CALL INIT
120 R=3 :: FOR J=1 TO X-1 ::
READ X$:: DISPLAY AT(R,1):
STR$(J);TAB(4);X$:: R=R+1 :
¢ IF RC(23 THEN 150
130 DISPLAY AT(24,1):"CHOICE
? OR 0 TO CONTINUE 0" :: ACC
EPT AT(24,26)VALIDATE(DIGIT)
SIZE(-2):N
140 IF NC(>0 THEN 140 :: R=3
150 NEXT J :: DISPLAY AT(24,
1):"CHOICE?" :: ACCEPT AT(24
s9)VALIDATE(DIGIT):N
160 IF SEG$(M$(N),LEN(M$(N))
y1)="%" THEN DISPLAY AT(12,1
JERASE ALL:"Return to BASIC"
t :"Type OLD DSK1."&M$(N)::

STOP

{70 CALL CHARSET :: CALL CLE
AR :: CALL SCREEN(B):: CALL

PEEK(-31952,A,B):: CALL PEEK
(A%256+B-65534,A,B)1: C=A%25
6£+B-65534 :: A$="DSK1."&M$(N
y:: CALL LOAD(C,LEN(A$))

180 FOR J=1 TO LEN(A$):: CAL
L LOAD(C+J,ASC(SEG$(A$,J,1))
)s: NEXT J :: CALL LOAD(C+J,
0):: GOTO 30000

30000 RUN "DSK1.1234567890"

If you don't want to give
your Basic-only programs a
filename ending in an
asterisk, you can leave out
that warning routine, or you
can modify it to warn of E/A
or MiniMemory programs. If
Catwriter has picked up any
unloadable program-format
files, etc., just delete
them from the DATA lines.

Gene Burchfield asked if I
had a program to print
banners vertically. I had
never heard of such a thing,
so I wrote one.

100 DISPLAY AT(12,1)ERASE AL
L:"TIGERCUB STREAMER PRINTER
" 'by Jim Peterson
110 DATA 0000,0001,0010,0011
,y0100,0101,0110,0111,1000,10
01,1010,1011,1100,1101,1110,
111t
120 RESTORE 110 :: DIM B$(16
)iz FOR J=1 TO 16 :: READ B#$
(J):: NEXT J :: P$(0)=" " 33
P$(1)=CHR$(230)
130 INPUT “TEXT TO BE PRINTE
D? ":T$:: PRINT :: INPUT "P
RINTER DESIGNATION? ":PD$::
OPEN #1:PD$
140 PRINT :: INPUT "SIZE? (I
=10) ":Z :: IF I<1 OR I>10 T
HEN 140
130 FOR J=1 TO LEN(T$):: A=A
SC(SEG$(T$,J,1)):s IF A=32 T
HEN 6OTO 200
160 CALL CHARPAT(A,H$)s: FOR
W=1 TO 15 STEP 2 :: K$=SEGS$
(H$,W,2):: FOR L=1 TO 2 :: L
$=SEG$ (K$,L,1):: B=POS("0123
456789ABCDEF",L$,1)
170 M$=B$(B):: FOR M=1 TO 4
't N=VAL (SEG$(M$,M,1)):: N$=
NSYRPTS (P$(N),Z)2: NEXT M
180 NEXT L :: FOR @=1 TO /2
*.3 11 PRINT #1:TAB((B81-7#8)

/2+.5)3N$:: NEXT @ :: N$=""
tt NEXT W :3 FOR R=1 TO 1/2
+.5 11 PRINT #1:"" :: NEXT R
190 NEXT J s: STOP

200 FOR T=1 TO Z%#4 3131 PRINT

#1:"* 33 NEXT T 3: GOTO 190
210 CALL KEY(0,K,S):: IF S§=0
THEN 210 ELSE RETURN

I1f your printer doesn’'t have
the special characters of
the Gemini, substitute 88
instead of 230 in line 120,
to print X°'s, or whatever
else you want. If you do
have the special characters,
try some others, such as
239, for this and other
graphics printing progranms.

This routine will print a
handy reference chart of
them.

100 IMAGE ##% &% #3% & &8
08 BB 8 8% 8 AR

110 P$=RPT$(CHR$(251) &CHR$(2
53),21):: X=0

120 OPEN #1:"PIO" :1 PRINT #
1:CHR$(27);"E"

130 PRINT #1:P$:" ASCII COD
ES FOR GEMINI SPECIAL CHARAC
TERS":P$

140 FOR J=160 T0 175 :: K=J-
X

150 PRINT #1,USING 100:K,CHR
$(J) ,K+16,CHR$(J+16) ,K+32,CH
R$(J+32) ,K+48 ,CHR$(J+48) ,K+b
4 ,CHR$ (J+464) ;K+B0,CHR$(J+80)
t: NEXT J

160 IF FLAG=1 THEN STOP ELSE

FLAG=1 :: PRINT #i:""“1"":P$"

:"TI-WRITER CODES FOR GEMINI
SPECIAL CHARACTERS":P$::
=128 :: GOTO 140

Another one that just looks
pretty -

100 'KALEIDOSPRITES by Jim P
eterson

110 CALL CLEAR :: FOR CH=100
TO 128 STEP 4 :: FOR L=1 TO
4 3: RANDOMIZE :: X$=SEGS$("
001B8243C425A667EBL199ASBDCIDB
E7FF",INT(14%RND+1)#2-1,2)
120 B$=B$&X$:: C$=X$&C$::

NEXT L :: CALL CHAR(CH,RPTS$(
B$%C$,4)):: B$,C$="" :: NEXT
CH :: Z=2 :: CALL SCREEN(3)
130 CALL MAGNIFY(Z):: K=1 ::
FOR J=1 TO 7 :: S=96+4%J ::
R=16%J :: C=100%#RND+20

140 IF J>5 AND Z=4 THEN T=5

61

11 GOTO 160

150 T=INT(15%RND+2):: IF T=5
THEN 150

160 CALL SPRITE(#K,S,T,R

K+1,8,T,177-R,C,#K+2,5,T

41-C,¥K+3,5,T,177-R, 241~
K=K+4 :: NEXT J

170 Z=INT(2#RND+1)#%2 :: GOTO
130

S=EZ=SsS========s===
100 !DISK MATCHER by Jim Pet

erson

110 DISPLAY AT(B,9)ERASE ALL

:"DISK MATCHER": : : :" To ¢

ompare a backup disk":"with

a master and list any":"file

s found on one but not"

120 DISPLAY AT(15,1):"on the
other.": : 1 " Press
any key"

130 CALL KEY(0,K,S8):: IF S=0
THEN 130

140 DISPLAY AT(12,1)ERASE AL

L:"INSERT MASTER - PRESS ENT

ER" :: CALL KEY(0,K,S):: IF

S=0 THEN 140

150 OPEN #1:"DSK1.",INPUT ,R

ELATIVE,INTERNAL :: INPUT #t

:D1$,A,J,K =2 DIM F1$(127)
160 X=X+1 :: INPUT #1:F1$(X)

yA 0B 1 IF LEN(FI$(X))<>0

THEN 160 ELSE CLOSE #t

170 DISPLAY AT(12,1)ERASE AL

L:"INSERT BACKUP DISK": :"PR

ESS ENTER" :: CALL KEY(0,K,S
)¢ IF 5=0 THEN 170

180 OPEN #1:"DSK1.",INPUT ,R

ELATIVE,INTERNAL :: INPUT #1

:D2$,A,J,K :: DIM F2$(127)
190 Y=Y+1 33 INPUT #1:F2$(Y)

yAyJ B 53 IF LEN(F2$(Y))<>0

THEN 190 ELSE CLOSE #1

200 DIM F(127)s: FOR J=1 TO

X t: FOR L=1 TO Y :: IF F28(

L)=sF1$(J) THEN F(L)=1 :: GOTO
220

210 NEXT L :: PRINT Fi$(J);"
NOT ON BACKUP"

220 NEXT J

230 FOR M=1 TO Y :: IF F(M)=

0 THEN PRINT F2$(M);" NOT ON
MASTER"

240 NEXT M :: END

A very wuseful tip from Jinm
Swedlow, in the Orange
County ROM newsletter -
INPUT respects any trailing
print - separator an a
preceding PRINT command. Try
it -

100 PRINT TAB(20);:: INPUT B

ot
3Ry 2
C):

62

TIPS FROM THE TIGERCUB
#30
Copyright 19864

Here's another Tigercub
Challenge - can you run this
and get these results?

JLIST
100 PRINT PI
110 PRINT MAX
120 PRINT PI
130 PRINT MAX
>RUN

0

0

3.141592454

.%# SYNTAX ERROR IN 130

Some of you sharp-eyed
newsletter editors may have
noticed that this text is
being hyphenated to avoid
some of those gaping blanks
that occur when only a few
long words will ¢fit on a
right-justified line. The
only way that I have +found
to accomplish this is to set
the Tl-Writer right tab - for
the actual column width to
be printed and then,
whenever a word is hyphen-
ated, backspace and replace
the blanks on that line with
carets, adding enough extra
carets to justify the line -
like this -

whenever*a®word**is**hyphen-

It helps to go into fixed
mode with CTRL 0 when you
are inserting extra carets.

When using this method, it
is also necessary to set the
paragraph indentation with
IN 0 on the command linej if
indentations are desired,
they can be filled with
caret signs, like this:
““When wusing this method,

I am told that my old 3D
Sprite Routine made it to
the Golden Ruickies section
of CompuServe, so here is an
updated version. I have
found that sprites can be

controlled much more easily
talthough not moved as
rapidly) with CALL LOCATE,
rather than turning them
loose with CALL MOTION and
then trying to catch up with
them!

100 CALL CLEAR :: CALL SCREE
N(5):: FOR SET=2 70 8 :: CAL
L COLOR(SET,B,5):: NEXT SET
1: DISPLAY AT(3,12):"3-D SPR
ITE DEMO"
110 DISPLAY AT(22,1):"BY TIG
ERCUB" :: CALL CHAR(40,"FF81
8181818181FFB81818181818181FF
FFO10101010101FF010101010101
01FF")
120 CALL CHAR(3&6,RPT$("F",b44
)):: CALL MAGNIFY(4):: FOR X
=2 TO 22 STEP 2 :: CALL SPRI
TE(HX,36,X/2+41=(X>7)=(X>13),
J2+4X%b6,40+X%b6) s NEXT X
130 8=1 :: CALL SPRITE(#S,40
,16,46,7):: FOR C=6 TO 42 ST
EP 2 :: CALL LOCATE(#5,46,C)
+ NEXT C :: FC=44 :: FR=44
: Y=0
40 FOR C=FC TO FC+44 STEP 2
:: CALL LOCATE(#S,FR,C):: N
EXT C :: FC=FC+44 :: CALL SP
RITE(#S5+2,40,16,FR,FC):: CAL
L DELSPRITE(#S):: TC=FC-32
130 FOR C=FC TO TC STEP -2 :
: CALL LOCATE(#S5+2,FR,C):: N
EXT C :: TR=FR+34 :: FOR R=F
R TO TR STEP 2 :: CALL LOCAT
E(#5+2,R,TC):: NEXT R
160 CALL SPRITE(#5,40,16,TR,
TC):: CALL DELSPRITE(#5+2)::
FR=TR :: TR=FR-72 :: FOR R=
FR TO TR STEP -2 :: CALL LOC
ATE(#S,R,TC):: NEXT R
170 CALL SPRITE(#5+2,40,16,T
Ry,TC):: CALL DELSPRITE(#S)::
FR=TR :: TR=FR+50 :: FOR R=
FR TO TR STEP 2 :: CALL LOCA
TE(#S+2,R,TC):: NEXT R
180 Y=Y+1 :: IF Y=11 THEN CA
LL DELSPRITE(#5+2):: GOTO 13
0 ELSE S=8+2 :: FC=TC :: FR=
TR :: GOTO 140

1

Ian Swales in Belgium can
yrite some of the most
}ptricate routines, and pull
chem into the tightest knot.

had searched everywhere
for a sorting routine for
2-dimensional arrays, and
iInvented some ridiculous
Ones, before Ilan sent me

this jewel.

100 'DEMO of two-dimensional
sorting routine

110 !'Set up array to be sort

ed

120 CALL CLEAR :: DIM AS$(20,

4):: RANDOMIZE :: DEF X#$=CHR

$(26%RND+63)

130 FOR J=1 TO 20 :: A$(J,1)

=X$&X$&X$:1: A$(J,2)=STR$(IN

T(100%#RND+1):: A$(J,3)=X$&ST

R$(INT(1O#RND)):: A$(J,4)=IN

T(10#RND))&X$:: NEXT J

140 INPUT "SORT BY?(1-4)":K

150 J=20 !2-dimensional arra

y sorting routine by Ian Swa

les

160 DIM @(20):: FOR X={ TO 2

0 :: @(X)=X s3 NEXT X

170 M=0

180 FOR X=1 TO J-1 :: IF AS$(

@eX),K)<=A$(R(X+1) ,K)THEN 21

0

190 M=-1

200 T=Q(X):: Q(X)=Q(X+1)::
(X+1)=T

210 NEXT X

220 IF M THEN 170

230 FOR X=1 TO 20 :: FOR L=1
TO 4 :: PRINT A$(Q(X),L);"

s NEXT L :: PRINT :: NEXT

:: GOTO 140

3
X

Did you ever need a routine
that would accept either a
string or a numeric value?
Try this -

100 N=0 :: ON ERROR 110 :: A
CCEPT M$:: N=VAL(M$):: .GOTO
120

110 ON ERROR STOP :: RETURN
120

120 ON (N=0)+2 GOTO 130,140
130 PRINT M$:: GOTO 100
140 PRINT N :: GOTO 100

A useful tip from Stephen
Shaw in England - if you
have a long program which
will run only in Basic, and
which will load from disk
with CALL FILES(1) but runs
out of wmemory when you try
to run it; and if you have
the MiniMemory module -

Insert MiniMemory module,
select Basic, enter CALL
FILES(1), Enter NEW, enter
OLD DSKil.(filename). When
loaded, enter SAVE EXPMEM2.

63

When SAVEd, enter CALL
LOAD(-318B8,43,255), enter
NEW, enter OLD EXPMEM2, and
enter RUN. That is still a
lot faster than loading a
long program from tape!

Another reason for never
using the default mode of
so-called UPDATE when open-
ing a file (without specify-
ying INPUT or OUTPUT) is
that you will get an 1I/0
ERROR 01 if the file is
write-protected.

To make a note to yourself
while programming, just type
1! and whatever you want to
make note of, then LIST
“PIO":1, and then type 1 and
enter to delete the line.

One of the very best tips
for this month comes from
Paul A, Meadows, in the
September 85 newsletter of
T.I.N.S. (Nova Scotia,
Canada) -

How to print up to 132
characters in a line
(condensed print, of course)

out of TI-Writer! Just

prepare your file as usual
but in line 0001 put
formatter commands such as
LM 103RM 1325 IN +5;FI;AD .
The Fill and Adjust are
necessary, the Indent is up
to you, as are the left and
right margins - but notice
that right margin set way
over at 1327

Now, instead of saving the
file with 6SF, type PF and
then C DSKi.(filename) to
print to the disk. This not
only strips out the control
C characters, it also erases
the TI-Writer tab line that
was applied to the last line
of the file.

So now, with your oprinter
opened and initialized for
condensed print, go into the
TI-Writer formatter mode and
print your file!

[have made the follawing
changes to my working copy
of the Tigercub Menuloader.
This sets up my Bemini

64

printer to skip over the
perforations and print full
page width in elite print
with a wide left margin for
ring-binder punching. Other
printers may need changes in
these codes.
620 DISPLAY AT(12,1)ERASE AL
L:"PRINTER? PIO" :: ACCEPT A
T(12,10)SIZE(-1B8):P$:: GOSU
B B95 :: PP=3
B840 DISPLAY AT(24,1):"PRINTE
R NAME? PIO" :: ACCEPT AT(24
4 15)SI12E(-14):PP$:: GOSUB 8
95 :: PRINT #2:SEGS$(D$,1,4)&
" - Diskname= "&N$
895 OPEN #3:P$,VARIABLE 132
: PRINT #3:CHR$(27);"B";CHR
$(2) ;CHR$(27);"M";CHR$(10);C
HR$(27);"N";CHR$(6):: RETURN

I always keep a backup of
everything, on the flipped
side of another disk, and I
often want to verify that
the backup has everything
that is on the master, and
vice versa.,

100 DISPLAY AT(3,6)ERASE ALL
:"TIGERCUB DOUBLECAT": :" To
compare the contents of":
"a disk with a backup." 'by
Jim Peterson
110 DISPLAY AT{(12,1):"INSERT
MASTER DISK": :"PRESS ENTER
120 CALL KEY(0,K,S8):: IF S=0
THEN 120
130 DATA DF,DV,IF,IV,P
140 RESTORE :: FOR I={ TO S
t: READ T$(I)s: NEXT I
{50 DIM F$(127):: OPEN #1:"D
SK1.",INPUT ,RELATIVE,INTERN
AL :: INPUT #1:A$,J,J,K 3 F
$(0)=A$%" "&STR$(K)
160 X=X+1 :: INPUT #1:F$(X),
I,d,K t: IF F$(X)="" THEN 17
0 :: FS(X)=F$(X)&" "&T$(ABS(
I)):: GOTO 140
170 X=X-1 :: CLOSE #1 3 DIS
PLAY AT(12,1)ERASE ALL:"REMO
VE MASTER DISK": :“INSERT BA
CKUP DISK": :"PRESS ENTER"
180 CALL KEY(0,K,S):: IF S=0
THEN 180
190 OPEN #1:"DSKi.",INPUT ,R
ELATIVE,INTERNAL :: INPUT #1
tA$,J,J,K :: DISPLAY AT(1,1)
ERASE ALL:F$(0);:: DISPLAY A
T(1,15):A$%" "&STR$(K);
200 Y=Y+1 :: R=R+1 :: GOSUB
290 :: INPUT #1:A$,I,J,K 1:

IF A$="" THEN 260 :: K$=A$k"
"&T$(ABS(I1))

210 IF K$=F$(Y)THEN DISPLAY

AT(R+1,1):F$(Y);:: DISPLAY A
T(R+1,15):K$;:1 GOTO 250

220 IF K$<F$(Y)THEN DISPLAY

AT(R+1,15):K$;:: Y=Y-1 :: GO

T0 250

230 DISPLAY AT(R+1,1):F$(Y);

:: R=R+i 3: GOSUB 290 :: Y=Y

+1

240 IF K$=F$(Y)THEN 210 ELSE
IF K$<F$(Y)THEN 220 ELSE IF
Y¢X THEN 230 ELSE DISPLAY A

T(R,15) :K$;

250 GOTO 200

260 IF Y>X THEN 280

270 R=R+1 :: GOSUB 290 :: FO

R J=Y TO X :: DISPLAY AT(R,1

):F$(J):: R=R+1 :: BOSUB 290
t: NEXT J

280 DISPLAY AT(24,1):" P

RESS ANY KEY" :: CALL KEY(O,

K,S):: IF §=0 THEN 280 ELSE

CLOSE #1 11 END

290 IF R<23 THEN RETURN

300 DISPLAY AT(24,1):"PRESS

ANY KEY" :: DISPLAY AT(24,1)
:" " 33 CALL KEY(0,K,S):: IF
§=0 THEN 300

310 CALL CLEAR :: R=1! :: RET

URN

And that is just about
MEMORY FULL!

Jim Peterson

TIPS FROM THE TIGERCUB
No. 68

Tigercub Software

156 Collingwood Ave.

Columbus, OH 43213
EERERERER

My three Nuts & Bolts
disks, each containing 100
or more subprograms, have
been reduced to $5.00 each.
[am out of printed documen-
tation so it will be sup-
plied on disk.

My TI-PD library now has
almost 400 disks of fair-
ware (by author's permission
only) and public domain, all
arranged by category and as
full "as possible, provided
With loaders by full progranm

name rather than filename,
Basic programs converted to
XBasic, etc. The oprice is
just $1.50 per disk(!), post
paid if at least eight are
ordered. TI-PD catalog #3
and the latest supplement is
available for #$1 which is
deductible from the first
order.

When I have finished read-
ing Barry Traver's column in
Computer Monthly, I like to
take a look at whatever Dr.
Michael Ecker 1is up to in
his "Recreational Computing"
column, although much of his
math is beyond me and I
can‘t always translate his
GW Basic into Tl Basic.

In the February issue, he
had a routine to play Fibo-
nacci modular music. This is
the TI version; it is not
very musical, but the notes
are in the chromatic scale.

100 A=0 :: B=1 :: M=351

110 C=A+B :: C=C-M*INT(C/M):
:+ CALL SOUND(-100,110%#2~(C/1
2),5):: A=B :: B=C :: GOTO 1

10

Dr. Ecker also had a chal-
lenge to swap two numbers
without wusing a third vari-
able or the SWAP command -
which TI Basic doesn’'t have
anyway. The practical way,
of course, is to use the 3rd
variable, T=A :: A=B :: B=T,
but just for the fun of it,
if we are dealing with one-
digit numbers -

100 A=1 :: B=2 :: A=A+B/10 :
: B=INT(A):: A=(A-INT(A))#*10
:: PRINT A;B

But suppose we are dealing
with numbers of any length -
we can still do it with a
one-liner, or a two-liner if
we want to input the numbers
from the keyboard -

100 INPUT A :: INPUT B

110 B=B/10~(LEN(STR$(B)))::
A=A+B :: B=INT(A):: A=A-INT(
A):: A=A*10~(LEN(STR$(A))~1)

65

ts PRINT Aj;B :: GOTOD 110

So you got smart and tried
a negative number or a deci-
mal? OK, how about this -

100 INPUT A$:: INPUT B$

110 A$=A$L" "&B$:: B$=5EG$(
A$,1,POS(AS$," ",1)-1)2: A$=S
EG$(A$,POS(A$," ",1)+1,255):
: PRINT A$;" “";B$:: GOTO 11
0

And another challenge was
to alternately assign X the
value of A and B, without
using IF...THEN or any out-
side help. That seems to re-
quire a two-liner -

100 Ay X=77 3: B=132
110 X=ABS(X=A) #B+ABS(X=B) #A
¢: PRINT X :: GOTO 110

Thanks to Bruce Harrison,
here is a neat subprogram to
sort strings into sequence
as they are entered -

100 CALL CLEAR :: DIM W$(100
)
110 FOR J=1 TO N :: W$(J)=""
t: NEXT J 2 INPUT "N=? ":N
120 INPUT I$:: IF I$="" THE
N 130 ELSE CALL INSORT(W$(),
I$,N):: GOTO 120
130 FOR J=1 TO N :: PRINT W$
(J):: NEXT J :: GOTO 10
30020 SUB INSORT(W$(),I$,N):
: FOR T=1 TO N :: IF I$>W$(T
)THEN 30030 ELSE 30040
30030 NEXT T :: GOTO 30050
30040 FOR J=N TO T STEP -1 :
t WE(J+1)=W$(J)s: NEXT J
30050 W$(T)=1$:: N=N+! :: §
UBEND

In the test routine in
lines 100-130, give N the
value of 0, input some words
and then just press enter.

To start a new array, use
FOR J=1 TO N :: W$(J)="" 33
NEXT J, then reset N to 0.
If you want to sort in re-
verse sequence, change the >
te <. If vyou need to sort
numbers, delete all the §$,
change the "" in line 120 to
0, and input a 0 when you

are when finished inputting.
AEESSSESSEEnaSESERTIRAE

66

Someone sent me a program
to figure days between dates
but it would not count leap
dates, so I decided to write
one that would.

100 DISPLAY AT(2,5)ERASE ALL

-+"DAYS BETWEEN DATES":"":"

including leap year days" ::
M$(1)="From" 3:: M$(2)="To

" 21 R=13

110 DATA 31,28,31,30,31,30,3
1,31,30,31,30,31 :

120 DIM L(12):s FOR J=1 TO 1

2 :: READ L(J)s: NEXT J

130 FOR J=1 TO 2 :: DISPLAY

AT(R-1,1):M$(J):"year m
onth day " :: ACCEPT AT(

Ry6)VALIDATE(DIGIT)SIZE(4):Y
(J)

140 ACCEPT AT(R,17)VALIDATE(

DIGIT)SIZE(2):M(J):: IF M(J)
<1 OR M(J)>12 THEN 140

150 ACCEPT AT(R,24)VALIDATE(
DIGIT)SIZE(2):D(J):: IF D(J)

<1 OR D(J)>31 THEN 150

160 CALL LEAP(Y(J),X)z: L(2)

=L(2)-X 232 IF D(J)>L(M(J))TH
EN 150

170 L(2)=28 :: R=R+3 :: NEXT

$¢ R=13 3 IF Y(1))>Y(2)TH

EN T=Y(1)s: Y(1)=Y{(2):: Y(2)

=T : M{1)z: M(1)=M(2):: M
(2)= T=D(L):: D(1)=D(2):
¢ D(
180 1)=Y(2)AND M(1)>M(2
JTHEN T 1)ee M{1)=M(2):: M
(2)=T 3 T=D(1):: D(1)=D(2):
: D(2)=T

190 L(2)=28 s: IF Y(2)>Y(T

HEN 220

200 IF M(1)=M(2)THEN B=ABS(D
(2)-D(1)):: BOTO 240

210 CALL LEAP(Y(1),X):: FOR

J=M(1)+1 TO M(2)-1 :: B=B+L(
J)+X#(M(1)=2):3 NEXT J :: B=

B+L(M(1))+X*%(M(1)=2)-D(1)+D(
2):: GOTO 260

220 CALL LEAP(Y(1),X)ss B=L(
M{1))-D(L)+X#(M(1)=2)

230 FOR J=M(1)+1 T0O 12 :: B=
B+L(J) +X#(J=2):: NEXT J

240 FOR J=Y(1)+1 TO Y(2)-1
¢ CALL LEAP(J,X):: B=B+345-X
¢t NEXT J

250 FOR J=1 TO M(2)-1 :: CAL

L LEAP(Y(2),X)ss B=B+L(J)+X#%
(J=2):: NEXT J :: B=B+D(2)

260 DISPLAY AT(20,1):B;"days
between” :: B=0 :: GOTD 130

270 SUB LEAP(Y,X):: X=(Y/400
=INT(Y/400))11 IF X=-{ THEN

N e —f
B < =l o N »-e

X ~

T
2

mn -
—~

BUBEXIT ELSE X=(Y/4=INT(Y/4)
)t3 IF X=0 THEN SUBEXIT ELSE
X=(Y/100<>INT(Y/100))

280 SUBEND :

A leap year is a year that
is evenly divisible by 4 un-
less it is evenly divisible
by 100 but not evenly divi-
sible by 400, The subprogranm
in lines 270-280 will give X
a value of -1 if Y is a leap

Gene Hitz of Arcade Action
Software reports another un-
documented feature of TI Ex-
tended Basic., The manual
says that you can only enter
a subprogram by a CALL and
only leave it by a SUBEXIT
or SUBEND, but the manual is
wrong. You can GOSUB to a
subroutine within a subpro-
gram, providing it does not
contain a SUBEXIT, and re-
turn; and you can GOSUB from
within a subprogram to a
subroutine in the main pro-
gram, and return. In this
way, you can transfer varia-
bles in and out of a subpro-
gram without putting them in
a parameter list. GSee for
yourself -

100 CALL CLEAR
110 INPUT M$:: CALL SUB(M$)
¢: PRINT M$:: GOSUB 140 ::
PRINT "M$ IS";X;"CHARACTERS
LONG" :: GOTOD 110
120 M$="SEE WHAT I TOLD YOU?
" 33 RETURN
130 SUB SUB(M$):: GOSUB 120
13 GOSUB 140 :: SUBEXIT
140 X=LEN(M$):: RETURN
150 SUBEND

Another wuser asked me if
there was anyway to key in
the ASCII above 127 into TI-
Writer's Editor. Many of
those ASCII <can be entered
from the keyboard by using
the CTRL and FCTN keys - try
this -
100 INPUT N$:: PRINT ASC(NS$
):: GOTO 100

- but the Editor has been
programmed to refuse thenm
because so many of those
FCTN and CTRL combinations

are used as edit commands.

I had a bright idea - I
thought. I wrote a little
program to create 127 files,
named 128 through 233, each
containing just the ASCII of
the same number. Now, I
thought, when I want to put
in such an ASCII I will just
LF that file into the next
line and CTR 2 to pop it in-
to place. But the Editor re-
fused to even load a file
that began with an ASCII
above 127!

I1'11 fool you, I thought.
I created those files again,
but with an asterisk before
the high ASCII. Now they
loaded alright - but each
ASCII above 127 became an
ASCII 128 numbers lower! It
is too bad that the Editor
does not have a command to
add 127 to an ASCII, just as
CTRL U subtracts 64, but if
you want those graphics
characters in your text you
will just have to translit-
erate them and print through
the Formatter.

Folks take it for granted
that my Nuts & Bolts disks
are only useful for program-
mers, but they contain many
routines so simple to use
that anyone can use them to
dress up their favorite pro-
gram. For instance -

20083 SUB TITLE(S,T$):: CALL
SCREEN(S):: L=LEN(T$):: CAL

L MAGNIFY(2)

20084 FOR J=1 TO L :: CALL §

PRITE (4J,ASC(SEG$(T$,J,1)),J
#1-(J+1=8) +(J+1=5+13) +(J)14)

#13,J%(170/L) ,10+J%(200/L))3
: NEXT J

20085 SUBEND

Key that in and save it by
SAVE DSK1.TITLE,MERGE . voad
your favorite program. Enter
MERGE DSK!{.TITLE . Make sure
your program does not have a
line 1 or 2 - if so, RES it.
Type in -

{ CALL CLEAR :: CALL TITLE(S
s"MY PROGRAM")
2 FOR D=1 TO 1000 :: NEXT D

67

t: CALL DELSPRITE(ALL) legible, use -
2 DISPLAY AT(24,1):"PRESS AN

And try it. Instead of "MY Y KEY" :: DISPLAY AT(24,{):"
PROGRAM", put the name of press any key" :: CALL KEY(0
your program. Instead of §, yKyS)i: IF S=0 THEN 2 ELSE C
put the number of whatever . ALL DELSPRITE(ALL)
screen color you would like,
from 2 to 16 - check your You might also need a CALL
Basic manual. Change 1000 to SCREEN(B) to restore normal
whatever delay you want - if screen color.,
you have selected a screen Oops! Memory full! - Jim P

color that will leave text

TI WRITER FOR NOVICES

In the last issue of TI*MES we carried a summary of TI Writer
commands. This article carries on from there. There will be a short
break and then from Issue 41 we shall carry on with more info on TI
Writer — and of course its clones such as Funlweb.

This article is for you if you have TI WRITER and no manual...

The menu choice varies depending upon which version you have but is
usually 1. EDITOR and 2,FORMATTER. Other options should be covered
in text files on the disks. (These are DV30 or DIS/VAR 80 eto).

First, EDITOR. This creates a full screen editor, on which you
create your text. The screen "paper" is 80 columns wide, and is
shown toc you 40 columns at a time.

You do not have a full single character horizontal scroll — the
screen is split into three columns of 40 characters: the leftmost
screen display is the first 40 columns (columns 1 to 34 of your text
if you have the line numbers displayed). Then if you move the cursor
to the right, you will trigger a switch to display columns 21 to 60,
and finally 41 to 80.

When you select EDITOR you will note the cursor appears at the top of
the screen, on what is called the COMMAND LINE. The use of this line
is described in the section below on TEXT EDITOR COMMANDS.

First, lets create some words!

See at the top of the screen some words, with some letters in
CAFITALS? For instance Edit... the capital E means that if you ENTER
an E on this line you go into EDIT mode... so ENTER a letter E.

Did you hold shift down or have ALPHA LOCK on? No need to when in
this area: even with ALFHA LOCK off, capital letters will be entered.
Entering E causes the COMMAND line
to leave the screen and you are presented with the start of your
paper, on which you can type your letter.

To return to COMMAND line, you press the keys FCTN and 9 ("BACK").
First though, lets look at all the instructions you can give to the
computer while staying in the Edit mode....

SHIFT and ALFHA LOCK have their usual uses! And you have an
auto-repeat on the keys. If you need to auto repeat a character
using the SHIFT key, you can release the SHIFT key when auto repeat
has started and just hold the main key down — SHIFT will be assumed
te continue until you release the key.

ENTER will place an odd character on the screen, which looks like
a small C over a small R — this is the Carriage Return symbol, and is
NOT printed.

It is important when REFORMATTING — more later!

68

When you come to the end of a line and keep typing, WORD WRAP will
move you to a new line automatically, and also ensure that you do not
have a word cut in half in the process.

Unfortunately, word wrap takes a finite time, and many even
moderate typists will find that it pays to check the first word at
the start of the wrapped line for missing letters - our console lacks
a keyboard buffer, and any keys pressed while word wrap is in
progress are ignored.

To end a paragraph, press ENTER and you will move to a new line,
and a CR will be inserted at the end of the previous text.

Before we move on... TI WRITER is key—-compatible with Wordstar,
should you use that program on another computer! However, in this
article I shall not deal with the Wordstar keys, but rather with the
more convenient use of the TI Function keys. Funlweb has some extra
function keys also.

As space is limited, each Edit mode command can only be described
briefly here, but the following should help you make progress:

The Arrow keys: FCTN E S D and X move the cursor one space in the
appropriate direction.

CTRL L moves the cursor to the top Left of the screen, but keeps the
screen display the same.

CTRL 6 moves the cursor to the first word in the paragraph it is in
the middle of, AND moves it to the top left of the screen - therefore
moving the text on screen, usually upwards!

PARAGRAFHS are collections of words between CR symbols. That is,
each CR marks the end of a paragraph.

CTRL 8 is New Paragraph- it has the same effect as ENTER, it adds a CR to the
end of the current line and moves the cursor to the next line.

CTRL V moves the cursor to the start of its current line.

CTRL 9 is New Fage— it inserts not only a CR but also a PA; which is
also not printed- the FA symbol will cause your printer to move to a
New Fage.

CTRL 4 is a tricky one— NEXT PARAGRAFH. When you type CTRL and 4,
the text moves up off the screen and the cursor moves to top left.
However,; the line of text that your cursor was on does NOT have a CR
added to it!

FCTN S is Next Window and enables you to quickly flick through the

three columns of page. It is cyclic — from far right you go back to
far left.
FCTN 4 is Roll Down — the cursor moves down 24 lines (having the

appearance of moving the text up 24 lines— the cursor keeps its
position on screen!). If there are not 24 lines below the cursor, it
moves to the end. FCTN 6 is Roll Up and moves the cursor up 24
lines.

FCTN 7 is TAB (more later) and moves the cursor to the next tab
setting on the right, while

CTRL T moves the cursor to the next tab position to the LEFT.
CTRL 7 is interesting - it is the Word Tab. If there is no text
after the cursor, the cursor will move one space right, otherwise it
will move to the start of the next word.

All those commands move the cursor around — and for speed, remember
that you have an auto-repeat function on the keys!
Other keys you may use in Edit mode are:
FCTN 9 (or FCTN +) to go back to the COMMAND LINE.
CTRL 1 is your OO0OPS key... in the commands below, if you press the
keys in error you can recover by immediately pressing CTRL 1. NOTE
that word IMMEDIATELY — I dont mean quickly! but rather that pressing
any key between the commands listed below and Oops, will stop Oops

working!
69

FCTN 1 - deletes character cursor is sat on

CTRL K - deletes all text to the right of the cursor

FCTN 3 - Not only deletes text but deletes the actual line!

CTRL S - really useful this one, it duplicates the line above! -
HOWEVER it will also delete the line the cursor is on, so dont use it
if the cursor is sitting on text you wish to keep!

Thats the end of the commands Oops

can reverse. Now for some more...

FCTN 0 is a toggle which enables you to display or not display the
line numbers on the left side of the page - they are not printed
anyway.

FCTN 2 is INSERT CHARACTER. Under normal circumstances, it opens up
a line for text to be typed in. When done, remembering to end with a
space! if one is needed- press CTRL 2, which is REFORMAT.

FCTN 8 is INSERT LINE, and works by moving the line the cursor is on
DOWN, leaving the cursor on a blank line.

CTRL 3 changes the screen colour combinations - not very many
choices but better than none! _

With WORD WRAF off (toggled with CONTROL 0)y we are in FIXED MODE
and the following key commands alter:

INSERT CHAR (Fctn 2) will merely push the text to the right as you
enter the inserted material - very like using INS when entering a
Basic program. And when the text is pushed to the right hand side of
the screen, it starts getting deleted, so careful!

REFORMAT (Ctrl 2) is used to terminate insert mode, also terminated
by use of the other cursor movement keys.

New Faragraph, Last Faragraph, and

Next Paragraph do not function in fixed mode.

Those are the directly active keys.

You can also insert commands to your printer into the text, using
CONTROL MODE.
CONTROL MODE makes available from the keyboard, ASCII characters O to
31 , so that you can send those codes to the printer : they are NOT
printed, unless that is a part of your printer instruction set : see
your printer manual for details.
You enter control mode by pressing CTRL U, which causes the cursor to
become an UNDERLINE (Notice the cursor shape always tells you which
mode you are in: Word Wrap, Fixed, or Control).

With the UNDERLINE cursor, you have access to the lower ASCII codes
by pressing the following key combinations: ASCII 1 to ASCII 26 are
simple SHIFTED A to Z - thats easy to remember!

ASCII O (zero) is a SHIFTED ZERO - thats easy to remember!

Then you’ll need to write these down: '

ASCII 27 is FCTN R

ASCII 28 is FCTN 2

ASCII 29 is FCTN T

ASCII 30 is SHIFT &

ASCII 31 is FCTN U

As you enter these low codes, odd characters will appear on the
screen — they will not be printed' - you will get used to their
appearance in time. They are based on the HEXADECIMAL equivalent of
the codes. Remember to switch OUT of control code to use ordinary
keys— toggle with CTRL U.

70

Your printer may for instance require a character 15 to switch to
condensed print mode. To insert a character 15 in your text; you
need to key: CTRL U then SHIFT 0 then CTRL U again.

ESC is short for ESCAPE and is the

ASCII value 27, or FCTN R

Consult your printer manual for details of the codes your printer
needs.

Note that TI Writer and your printer may have similar codes: it is
easy to be confused with the TAR settings on TI Writer and those of
your printer: but they are different things' It is usually easier to
use TI Writer TABs but for some difficult jobs it may be better to
ignore TIW TABS and set and use TAES on your printer - see your
printer manual'

One example of compatible but different commands is the UNDERLINE:
the keyboard has an underline as FCTN U — but my printer has an
underline function availaboo by using ESC - 1 and ESC — 0. If I use
both, the printer prints a continuous underline, with a broken
underline one pixel above it!

FAGE START: When you switch your printer on, wherever the platten
is — and the paper held by it — is marked in printer memory as the
start of the page. The printer then keeps count of the number of
lines printed. If your printer has a default page length of &6
lines, and after 40 lines to send a PA symbol, or the standard page
feed chgracter, ASCII 12, then the printer will move the paper up
66—40=26 lines.

If you manually move the paper up or down, the printer does NOT
count that movement! So if you are using either Form Feed command,
take care to avoid all manual paper adjustments!

To print out your text, go back to

the command line, enter FF (Frint File) and then the printer name (eg
FIO) and off it goes. To save text to disk, enter SF (Save File) and
then DSKI.FILENAME or whatever. To load text you use LF (LoadFile)
then DSKI1.FILE.

There is much more to TI Writer— we have barely covered the Editor
portion (the manual is VERY thick!) so until Issue 4l...

I use an expensive IBM word processor at work— and there are some

things which are fast and simple on TI Writer that the IBM program

either finds VERY hard, or sometimes cannot do at all. Of course it

can do a couple of things TI Writer cannot do, but TI Writer is not

to be sneezed at— I wrote a book with it, and all these items in

TI*MES have been produced with it! 2022 note: IBM program was Displaywrite 4-
S S S S S S E S S EESE S SES which I still have... stephen

FIKEL GRAFHICS USING XB ONLY

TI*MES #38 p31

TI*MES #27 p27

I had an enquiry from a user with Console and XB only, having problems applying
the XB pixel plotting routine from issue 27. As others may have similar
difficulty, here is my response...

When you replace:

CALL LINE("FIXEL",XO+SC#*X,24+SC*Y)

with:

CALL FLOT(R,C,S)

there is a very important step which I think you have omitted:

you must set the variables R and C to the row and column numbers you wish to
turn the pixel on at. ‘

eg:

R=XO+5C#*X

C=94+5C*Y ———rmore

71

There are two further points to consider:

SCALE: The Missing Link allows you to plot to a screen composed of 190#255
pixels. Using the Extended Basic plotter you are limited to redefining the
characters available in XB (32 to 143= {11 chars). These can be anywhere on the
screen of course.

In a very dense plot you would be limited to an area only 1! x 10 characters
of 8xB pixels, that is R from { to 80 and C from 1 to 88, so the SCale factor
needs to be reduced by about a third. (SC=SC/3).

[f- as often happens- the plot is not completely dense, with character places
in the middle of the plot with no used pixels, you can often get away with
using.a slightly larger area of the screen.

A good starting point would be to try amending the scaling factor,
immediately after it has been set in the printed program: S5C=SC/2.5

When the XB routine runs out of characters to redefine it just goes into a
closed loop.,

SCREEN SIZE:

The Missing Link is also entirely happy plotting OFF screen, something the XB
routine cannot handle, so you will need to add delimiters after R and C have
been set:

IF R<! THEN R=1 :: IF R>190 THEN R=2w¢ (R0

IF C<1 THEN C=1 :: IF C>250 THEN C=250

The variable 8 is set at the start (as shown in #27) to the starting character
code and is then used to keep track of which character is being redefined.

P S T o T o i o o o o T T T Nt s T =t e s e vm o rm S e e e e e m e
e NS S SN ESECSESSESSE=TESo==Z====S==S====

The Art of Assembly - Part 2

ASSEMBLY Starting at the Bottom

By Bruce Harrison
CODE Copyright 1991, Harrison Software

In Part one, we discussed the two approaches to progranm structure, Top
Down and Bottom Up. In this article we'll provide some "primitive" source
code sections to provide services. Please note that, in Assembly, there are
about as many ways to do any given thing as there are programmers trying to
do it. We'll try to provide the rationale for the way we approach things as
we go along. In general, our approach is to minimize memory consumption and
maximize speed of execution. Those two don‘t always go together, but in many
cases the most memory-efficient code also executes fastest.

Bear in mind that, for the time being, we're working in the environment
of an Option 3 (Load and Run) E/A program. Let‘s start with the matter of
providing Workspace Registers. Many programs contain a source statement
like:

Ws BSS 32

That's fine, but doing this uses 32 bytes of the avilable program memory
for your registers. There is an area in low memory designated for User
Workspace, at address »>20BA. To use that, you can make an equate in the
beginning of your source code like this:

WS EBU >20BA

Now at your program’'s start point, you can simply LWPI WS, and your
registers will be at >20BA, not taking up 32 bytes of progranm space. (Please
note this should not be done when linking from Extended Basic, unless your
program never returns to XB until it‘s finished.)

Let’'s quickly move on to another subject, that of a subroutine to clear

the screen for you, We've used many different techniques for this, so let's
explore a couple of alternatives.

72

One can do it like this:

CLS CLR RO Point RO at screen origin

LI R2,SCRWID#24 Load R2 with total

LI R1,>2000 make left byte of R1 the space
LOOP BLWP @VSBW Write one space

INC RO Increment screen location

DEC R2 Decrement counter

JNE LOOP If not zero, repeat operation
RT Return to calling program

Here you'll see one of our little tricks. Sometimes when starting a
program, we don‘'t know for sure whether we want to operate in Graphics mode
or in Text mode. Thus in many places in the program we‘'ll use the mnemonic
SCRWID, then at the beginning of the program we’ll put a value in for SCRWID
through an equate like SCRWID EQU 32 or SCRWID EQU 40, This was really a
two-barreled trick, because it also lets the assembler do some math for us.
In this case, the assembler will multiply 24, the number of raws on the
screen, by the number of characters per row (SCRWID) and thus will load R2
with the correct number of spaces to fill the screen. The above method will
work, but won’'t be as fast as a method using VMBW to write whole screen lines
to the screen. We can gain some speed by setting aside a block of 32 or 40
characters’ space, writing a space into each of those, then writing 24 such
lines to the screen. There would need to be a block of bytes reserved, like
this:

SCRLI BSS SCRWID

There's our friend SCRWID again, this time telling the assembler how many
bytes to reserve for a screen line full of characters. Now the code to clear
the screen gets more complicated and takes more memory, but executes faster:

CLSs LI R2,SCRWID Sets R2 to characters in screen line
LI R5,>2000 Sets left byte RS to space
LI R3,SCRLI Point R3 at SCRLI

MOV R3,RI Point R1 at SCRLI also
LOOP!1 MOVB RS, *R3+ Move one byte and increment R3
DEC R2 Decrement R2
JNE LOOP! [f not zero, repeat
CLR RO Point RO to screen origin
LI R2,5CRWID Set R2 again
LI R4,24 24 rows to clear
LOOP2 BLWP @VMBW Write SCRWID bytes to screen
A R2,R0O add that many bytes to RO
DEC R4 Decrement R4
JNE LOOP2 If not zero, repeat
RT Return to calling program

That block of memory which we set aside as SCRLI can be used for other
purposes, as you'll see when we get to some other subroutines. We can, for
example, use it to stash strings.

Before we go further with subroutines, we ought to discuss how to
properly "nest" them in Assembly. If you're used to programming in Basic or
XB, you know that subroutines may include GOSUBs to other subroutines, and
that so long as each ends with RETURN, all will be well.

In Assembly, the calling of a subroutine by BL @SUBNAM will work
properly only if the subroutine does not call others. To get around this
problem, we establish a "stack" to keep track of our subroutine return
addresses. To do this, set up a data area somewhere (perhaps at the very end
of your program) which will contain the return addresses for nested
subroutines.

73

A simple entry such as:

SUBSTK BSS 24

This 24 bytes will suffice to hold 12 levels of nesting. The other
requirement is to have a pointer to keep track of position in that stack. We
simply dedicate R15 to that purpose. Somewhere in the beginning of the
program, we insert LI R15,SUBSTK, so that before we call any subroutines,
R15 points to the beginning of that stack.

Now in any subroutine that calls others before it returns, which we
define as a High level subroutine, we place this instruction at the beginning
of the subroutine:

MOV R11,#R15+

That puts the R1! return address in the location pointed to by R15, and
makes R15 point to the next word in the stack area. At the end of one High
level subroutine, we place the following code:

SUBRET DECT R{5 Point back to previous stack word
MOV *R15,R11 Move that word to Rif
RT Return,

Other high level subroutines can return by a simple B @SUBRET. Note
that simple subroutines that do not in turn call others, which we'll call Low
level subroutines, need only the RT at their ends to return properly. The
stack area can be placed anywhere. We recommended putting it at the very end
of a program so it's open-ended, as long as the program doesn’'t fill all of
the computer ‘s memory. Placing it elsewhere is okay so long as you're sure
about how many levels of nesting are required. If you underestimate,
something important could get overwritten by your stacking.

Let's say that you are writing a High level subroutine which needs to
have the screen cleared before it can proceed. The subroutine would look
something like this:

BIGSUB MOV R11,*#R15+ Stash RI! on SUBSTK

BL @CcLS Clear the screen
(rest of subroutine)
B @SUBRET Go to the high level return

This assumes there is already another High level subroutine which ends
with the code shown above at label SUBRET. By this method, subroutines may
be stacked to any number of levels without losing track of the return address
of any subroutine. :

Now we'll move on to a few more handy subroutines, and introduce the idea
of multiple entry points., Let's say you'll need an ability to move strings
around in memory, and you'll also need the ability to move groups of bytes
that are not organized into strings. (For our purposes, a string is merely a
group of bytes where the first byte is the length, and the rest of that many
bytes is the string. For example, we might have a string initialized in our
data section like this:

CPYWRT BYTE 14 Length of text
TEXT ‘Copyright 1991°

The first byte is 14, which is the length of the string that follows.
Now let’'s suppose that we want to move that string to another location which
we'll call TEMSTR for Temporary String. Assume that at least fifteen bytes
of memory have been reserved at that place. We'll be using R9 to point to
the origin of the string and R10 to point to the destination address. We
can preload registers with the addresses to move from and to, like this:

LI R9,CPYWRT Put address of CPYWRT in R9
LI R10,TEMSTR Put address of TEMSTR in R10

7L

Now that pointers have been set, we can proceed with a BL €MOVSTR, where
the subroutine looks like this:

MOVSTR MOVB #R9+,R4 Get length byte in R4
MOVB R4,#R10+ Place that byte at R10 location

SRL R4,8 Right-justify length in R4
MOVBTS MOVB #R9+,#R10+ Move one byte, inc pointers

DEC R4 Decrement length count

JNE MOVBTS If not zero, repeat

RT Else return

This subroutine uses R4 as a counter for the loop at MOVBTS. We here at
Harrison conventionally use R4 and RS for loop counters or other temporary
numbers. But just for a moment let's assume you have a need to move a group
of bytes from one place to another but they're not organized as a string, in
that there‘s no length byte at the beginning. Let's say you have 75 bytes to
move from location XYZ to location ZXY. Here you can use the label MOVBTS as
a second entry point to the subroutine. You'd do it like this:

LI R9,XYZ Place source address in R9
LI R10,ZXY Place destination in R10
LI R4,735 Number of bytes in R4

BL €MOVBTS Call subroutine MOVBTS

This technique has been used many times in our programs, and we've found
it very useful, in that it's more efficient in use of memory than having two
separate subroutines with such similar functions.

Next, let‘'s look at a very small subroutine which has an important lesson
to teach us. Assume that you've got many places in the program that require
a single-keystroke entry, such as the answer to a Y/N question. To prepare
for such a subroutine, we'll put the equates STATUS EQU >837C, KEYADR EQU
>8374 and KEYVAL EQU >8375. Then near the start of our program we'll insure
that our key-unit is zero by writing this one line of source code CLR
@KEYADR. We'll also need somewhere a byte initialized to the value 220, such
as ANYKEY BYTE >20. We can then use the short subroutine like this:

KEYLOO CLR @STATUS Clear the GPL Status byte
BLWP @KSCAN Use utility to scan keyboard
CB @ANYKEY,@STATUS Has a key been struck?
JNE KEYLOO I1f not, try again
MOV @KEYADR,RB Else put key struck in R8
RT Then Return

You'll notice that there’s an extra instruction in there which moves the
word at >8374 intd R8. The left byte of that word will be zero, and the
right byte will be the value of the key struck. Thus the register ‘s value
will equal the ASCII code for the keystroke. We do this on purpose because,
in most cases after we return from this subroutine, we have to do a series of
comparisons to the key struck. Having the key's value already in a register
makes that process easier, and moving the key value into a register before
exiting the subroutine uses less memory than doing it after return. Suppose
we had asked a Yes/No question, and want the default answer to be No. Upon
return from the above subroutine, we could have:

Cl R8,89 Is answer upper case Y?
JER YES If so, Jump
CI RB8,121 Is answer lower case y?
JNE NO If not, answer is No
YES (perform action for Yes)
NO (perform action for No)

75

The activity at label YES may be a simple branching to some other part of
the program, and label NO may be a simple continuation of some process, but
that ‘s not important to our point. By moving KEYADR into RB in the
subroutine, we‘'ll save many bytes of memory if this kind of comparison needs
to be done each time we've used the subroutine. The point is that the
content of a subroutine should be considered very carefully, A small added
function like we've shown in the above example can add up to significant
savings of bytes by incorporating it into the subroutine instead of having to
repeatedly perform the operation outside the subroutine.

In this article, we've just scratched the surface of the subject of
subroutines. In the next article, we'll go back to the subject of structure
for a bit, and discuss some of the minimum required things to get a program
started and ended gracefully. In later articles of this series we'll move
into more advanced subroutines, some of which will depend on things we
presented here.

76

FOR SALE

32k stand alone ram expansion,
complete with leads. 15.00
ono

Speech synthesizer. 15.00

Extended Basic
new in box

2500

special !
TRITON EXTENDED BASIC
(Has Draw’N’Plot built in)

TO
CLEAR

All modules listed below are
priced at 3.00 each including
postage. If I loose out on this,
too bad.

TI INVADERS

HOUSEHOLD BUDGET MANAGEMENT
MUNCHMAN

PERSONAL RECORD KEEPING

SPEECH EDITOR

AT 500 EACH ARE THE FOLLOWING.
ADVENTURE modules with adventure

programs on tape.
TUNNELS OF DOOM modute with data files

on tape. 8000

If you are interested in more than one
module, please ring for special prices™

Magazine scanned 2022 by Stephen Shaw

PICNIC PARANOIA

THE ATTACK
AMATZING

MIND CHALLENGERS
HANGMAN

MUSIC MAKER
FATHOM

NUMBER MAGIC
MICROSURGEON
BEGINNING GRAMMAR
VIDEO CHESS

PARSEC

VIDEO GAMES 1
TERMINAL EMULATOR 2
DEFENDER

PROTECTOR 2

RETURN TO PIRATES ISLE
TOUCH TYPING TUTOR
FIVE A SIDE SOCCER
EARLY LEARNING FUN
OTHELLO
BURGERTIME

MS PACMAN
TOMBSTONE CITY

CONTACT..

Mike Curtis

21 Treliske Road,
Roseland Gardens,
Redruth,
Cornwall

TRI15 1QE

22 s e R R e R R R R R R e R R R RS SRR AR e R R R R S

* *
* *
* *
* *
* *
* X
* ¥
¥ ¥
* *
* %
* MIKE GODDARD COMPUTER SUPPORT *
* *
* *
* NEW AND USED COMPUTER EQUIPMENT BOUGHT AND SOLD %
* *
* *
R s sseeeeese® S *
* T1-99/4A SPECIALIST #
S Y *
* *
% SPARES »
* K1TS *
* REFAIRS %
* COMPONENTS *
* BOOKS #
* *
» PRINTER CABLES *
* *
* ¥
» RES1STORS BATTERIES *
* DISK DRIVES *
* *
% POWER SUPPLIES #*
* POWER CABLES ¥
* »
* FRINTERS *
* *
* *
* MONITORS CAPACITORS *
* *
* »*
* DISK DRIVE CABLES ¥
»* RIBBON CABLE %
» »
% *
* L3
* FOR LATEST LIST CONTACT: »*
* M.G.C.S.°SARNIA®, CEMETERY ROAD, RHOS, WREXHAM »
* CLWYD, LL14 2BY ¥
* Tel: (9978)842354T, MBX:@2221252% I3
* ¥
R e N F SN SR P e S R RSS2SR S22 SRS RS2SR iR R Rl R

