I=MES

T199/4A USERS GROUP (UK) CONTACTS

CHAIRMAN: Trevor Stevens. Tel. 0623 733077
248 Southwell Rd. East, Rainwoth, Nott's. NG21 OBN
VICE CHAIRMAN & PROGRAMMING: Mark Wills.
“12-"Rosehill", Bretton St, Shrewsbury, Shropshire. SY3 7YN
GENERAL .SECRETARY: Richard Twyning. Tel 0823 27670 24 Peel
24 Peel Rd, Mansfield, Nott's. NG138 6HB
PUBLICITY OFFICER: Phillip Trotter. Tel. 0642 817356 MODULE
LIBRARY: Phillip Trotter. Tel. 0642 817356
80 Martonburn Rd, Grovehill, Middlesborough. TS4 ZTH
MEMBERSHIP SECRETARY: Alasdair. Bryce. Tel. 0388 &5903
BACK ISSUES: Alasdair Bryce. Tel. 03838 65903
51 Dumuie Ave, Silverton, Dumbarton, Scotland. G82 2JH
TREASURER: Alan Rutherford. Tel. 0625 524642
13 The Circuit, Wilmslow, Cheshire. SK9 DA
TI*MES EDITOR & DISTRUBUTION: Alan Baily. Tel. 081 5081053
14 Shelley Grove, Loughton, Essex. 1G1{ 1BY
HARDWARE & PROJECTS: Mike Goddard. Tel. 0978 843547
"Sarnia", Cemetary Rd, Rhos, Wrexham, Clwd. LL14 2BY
CASSETTE LIBRARIAN: Nicky Goddard. Tel. 0978 843547
"Sarnia", Cemetary Rd, Rhos: Wrexham, Clwd. LL14 2BY
DISK LIBRARIAN: Stephen Shaw.i(Journal Exchange)
10 Alstone Road, Stockport, Cheshire. SkK4 SAH
PUBLICATIONS: Mike Curtis. Tel. 0203219051
21 Treliske Rd, Roseland Gdns, Redruth, Cornwall. TR15 1QE

CONTENTS: —
Editorial, Copy date, Disclaimer.
1..Chairmans Chair S

¢ 5,.Drivel on 'C’ M VWills
13.News & Reviews R Twyning
17.Big Commando R Twyning
23.Termites
24.Test Results DORTIG
26.10 years ago S.J .3
27.Tips H Allston
27.Ex Basic Music E Raguse
31.Bits and Fieces E Raguse
35.Advanced Assembly M McCormick
44, Tiny Gram A Frueh
45 .Reviews Modules F Peyton
53.Wwhy TI? Sid oD
54.V.5 Text Editor C Good
59.Programming Music J Peterson

63.Tigerclub Tips Tigerclub
73.Disk Library S oS
74.Your Letters You! !
Rear Cover Map

SPRING 1993

EDITORIAL
T.Stevens

wWell another issue has arrived with you. We must apologise for
the slightly late issue this guarter. Unfortunately Alan Baily
our Editcr has been very ill in Hospital. However with lots of
rest and help and some good reading in this book he will most
likely be back with us, doing the fantastic job that he does.
It is no mean feat taking on and collating this little lot. |
should know | have just completed this issue on Alans behalf.
So from all of us Get Well Soon!!

AGM

At the rear of the book is this year map for the AGM. For full
details see my artical.

DISCLAIMER

Views expressed by the contributors to this magazine are
strictly their own, and do not necessarily represent those of
the commitee. Contrary opinions are very welcome and will be
given equal prominence if it is at all possible. Attributions
not made at all, or made in error will be corrected on ‘
request.

NEXT COPY DATE

All submissions to the editor as usual. Copies to be recieved
no later than 1st June 1993.

Please ensure the DARKEST print possible as |light copies have
to be darkened at a cost of 25p per copy so please help keep
cost down. Those submitted this issue were near perfect.

wWhen producing the copies ensure width limit of 180mm and 66
lines maximum to the A4 sheet. If you wish to send in items
hand written please ensure they are readable so the items can
be typed up quickly. Thankyou for your support.

FROM THE CHAIRMANS CHAIR
T.STEVENS 19393

Last issue | had some problems with my trusty computer. The
darn thing decided to blow up on me just before last issue, so | was
stuggling with the internals to get it working. | ended up with a
new ac/dc converter board inside and a tweek to a few of the other
components. In the process | had few formatter hic ups which for
some reason messed up the small routines in last months issue. So
here are the amendments:-—

100 CALL CLEAR :: CALL SCREE
N(13):: CALL MAGNIFY(2):: CA
LL SPRITE(#1,42,16,100,100)

110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,-Y*4 ,X*4):: DISPL

AY AT(23,4):"Yy=";Y," X=";X:
"=Y*4=";—Yx4 ,"Xx4=";X%4 :: G
0OTO 110

110 FOR N=1 TO 50 :: RANDOMI
ZE :: A=INT(RND#*255):: B=INT
(RND#*255) : : CALL LOCATE (#1,A
/2+1,B+1):: NEXT M

120 FOR N=1 TO 50 :: RANDOMI
ZE :: CALL PEEK(-31808,A,B):
: CALL LOCATE(#1,A/2+1,B+1):
: NEXT N :: GOTO 110

So now you have the correct listings, you will now be able to take
advantage of the extra power from your machine.

Now that | have got the "Bugs" out of the way, onto the A.G.M.
This will be held 10am to 4pm on Saturday 1st May 1993 at
the Princess Anne St Johns Training Centre, Trinity Street, Derby.
This is due to the fact of price and availablity. Various venues
around the country were looked at but came no where near to that of
last years amenities and access with an addition of #20.00 off last
years price. | do of course except that some members have to travel
long distances to the AGM. Some in excess of 250 miles from the
North and near on to the same distance to the South. So as far as a
half way point Derby or any venue on its parallel was ideal. In
reference to the letter from Mr R.G. Christian, | did infact look
at two venues in Crewe and nearby Sandbach which is just off the M6
but prices were to say the least over the top. However if any one
can come up with a venue in that area to beat that paid this year,
with the same or better facilities | would be glad to hear from you,
so that it can be considered next year. Any person wishing to get to
Derby across country from the Welsh or Cheshire areas, | have
traveled in recent months the A52 from Stoke on Trent, and it is now
a very good road with lots of dual carrageway bar a few small spots.
From the Stoke turn off (AS00) to Derby. with average traffic it
took me 1 hour 8mins at 60mph (Auto Route Plus) confirms.

]

] will now resume the little project of Extended Basic
programming that | started last quarter. [hope this time the "Bugs
do not appear. With some time to do some proof reading and not
soldering | hope everthing will be OK. So here goes.

Last time we looked at Joystick and Randomize routines, this
time we will look at the Coincidence of Sprites. Tl EXTENDED does
have a little routine for doing this called CALL COINC. This takes
two Sprites, allows a tolerance and then returns a variable. [f the
variable is —1 then a coincidence, O if not. You can also do Sprites
with Dot Row Dot Column positions with the same tolerance and
numeric variable. Last but not least the CALL COINC ALL with numeric
variable. Great but not very flexible is it. Now there is a formula
that is very useful to the Tl programer. Its called the 49 formula.
This little baby is expressed as (TOFROM)*.43 The TO and FROM
being numeric variables.

To demonstrate the 49 Formula here is a little program thats
puts a sprite on the screen at a random position and spots it by its
placement variables then shoots another to hit it. As can be seen
the whole program runs without CALL COINC. Try doing this with COINC
and you will find it almost impossible to detect the sprite to a
100%, this program does!!!

100 CALL CLEAR :: CALL SCREE
N(2):: CALL CHAR(46, "O000001
818"):: CALL SPRITE(#2,94, 106
,180,1,0,5) -
110 FOR N=0O TO 25 :: RANDOMI
ZE :: CALL PEEK(—31808,Y,X):
: CALL SPRITE(#3,685+N, 16,Y/2
+1,X+1):: CALL SOUND(—860, 660
, 8

120 CALL POSITION(#3,Y,X,#2,
R,C):: CALL SPRITE(#1,46, 16,
R,C,(Y-R)*.48,(XC)*.49):: C
ALL SOUND(476,-3,14)

130 CALL SOUND(120,110,86)::
CALL DELSPRITE(3!0:: CALL PA
TTERN(#3,35):: CALL SOUND(10O
0,220,8):: NEXT N :: GOTO 11
0

Very neat is'nt it. I will now go through the program with you,
however | will not explain the simple call Clears and screens etc.
100 sets up Sprite (#2) setting off a ©~ symbol across the screen at
a velocity speed of 5 from dot row 180 dot col 1. 110 then starts a
for next loop and starts the Call Peek RND routine. (described last
magazine). It then puts Sprite #3 at a random location with some
sound, and cycles through the alphabet by adding to ASCII char 65
the loop value of N. 120 then gets the position of #3 and #2. Sprite
#1 is then lauched with the Formula 49. with added sound. 130 then
with call sound statements slows the routine for correct timing then
loops to the next letter (For Next Loop remember). After the loop is
done then it starts back at 110 and does it all again.

As you can see not a CALL COINC in sight. What you have been able to
do is some very complex maths with the minimum of memory and with
speed to boot. You can also use this 49 formula in chase the sprite
type situations. Try this:

2

Magazine scanned 2022
by Stephen Shaw

100 CALL CLEAR :: CALL SCREE
N(5):: CALL MAGNIFY(2):: CAL
L SPRITE(#1,77,16,100,100,#2
,71,16,30,30)

110 RANDOMIZE :: CALL PEEK (-
31808,Y,X):: CALL SOUND(60,1
000—-Y*3,4):: CALL LOCATE(#1,
Y/2+1,X+1)

120 CALL POSITION(#2,R,C,#1,
Y,X):: CALL MOTION(#2, (Y-R)*
.49, (X—C)*.49):: CALL SOUND(
300,880-Y*3,15):: GOTO 110

As you can see the line 100 is the setup and starts Sprites #2
and #1. Line 110 does our friend the randomize adds a bit of sound
then locates Sprite #1 with the row col variables from the RND peek
with Y/2+1,X+1. Line 120 then finds the position of Sprite #2 and #1
then Formula 48 is then used in the Call Motion routine on Sprite
#2, then a little sound with the value of Y altering the frequency.
The sound call also acts as a delay. [f you want to speed things up
try the value —60 in the call sound statement in line 110. Then we
jump back to 110 and do it all again.

You ask your self, how does one get to the Formula 49 in the
first place. Well its simple when you know how. The .49 in fact is a
limit control on your sprites. The highest legal velocity for any
sprite is 125 (see your manual) You also know that sprites can go
from 1 to 256 in both dot row and column how ever after dot row 193
your sprite is off your screen so you normally use 192-193 as a
restraint. (see page 173 of Manual) So anything above that will
bloop. So the formula that places one sprite, at a given location, in
motion towards another location is (DOT ROW To, Minus DOT ROW
From)* .49, (DOT COLUMN To Minus DOT COLUMN From)#*.49, so if we look
at this you can keep your sprites in a set area on your screen. Say
you want to keep you sprites in the area dot row 17 through to say
185 and dot columns 17 through 185 then you can adjust the formula
49 to another value like this:— (185-17=168, 127/168=.7559,
therefore .75*#168=126.50 the .49 now =.75. With this simple formula
in the Call Motion statement the greater the distance the higher the
velocity will be. Try adding this new formula to the above program
to see it work.

Just to add a little fun to the program we will now put into the
routine a joystick control.

Replace the following lines with these.

110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,4*-Y,4%X):: CALL
POSITION(#2,R,C,#1,Y,X):: CA
LL MOTION(#2, (Y-R)*.49, (X—C)

*,49):: CALL COINC(ALL,A)

120 IF A THEN CALL SOUND(-10

0,-2,8):: GOTO 110 ELSE CALL

SOUND(—-150,6830R—C,15):: GO

TO 110

As you note Call Coinc has been used but in conjuction with the
Formula 49.

Just to finish off this quarters program hints and tips here is
one for you to work out without me telling you how it works. 3

100 CALL SCREEN(2):: A=1 ::
FOR N=1 TO 28 :: CALL SPRITE
(#N,42,16,N*6, ABS(N+249* (A1
)),—6,N*¥2%A) :: A=—A :: NEXT
N

110 GOTO 110

NOW HERE IS A CHALLANGE TO NONE T1 USERS

Can your [BM,AMIGA,ATARI ST, or whatever run a program and
keep it going with a none loop as above. | think you will find
Tl RULES THE DAY!!!!! The reason is that a Tl was designed for
Sprites, that once set into motion carry on doing what they are
supposed to do without any more program help. Did you know they were
designed and invented by Tl for the display of aircraft icons on
Radar Screens. Your Texas therefore inherited this brilliant
feature.

Just for Geneve owners, the Call Peeks in the above and last
issue do not seem to work when run in GPL MODE. The Geneve appears
to access a different memory location for the RND and possibly other
Peeks too. If you have any updates for the Geneve | would be glad to
hear from you.

I have spoken to our Editor Alan Baily and he is going to set
up a letters page, if he gets any. So please write in to express
your views and maybe we can make your club a better place. | do also
wish to carry on our club for as long as possible, so new ideas such
as maybe including another machine into the fold to boost members, |
don’t know whether it would be good thing or bad but, | leave it
open for | hope strong debate. Its YOUR club so lets hear some sort
of voice from out there in Tl land.

A REMINDER

THE TEXAS USER GROUP AGM

1ST MAY 1993

ST JOHNS AMBULANCE TRAINING SCHOOL
TRINITY STREET

DERBY

. At the show | will be showing off Pixpro. Not that new but I
will be pulling up pictures like Macfiles converting them to Pix
formatt, then converting to Tl Artist messing about with them in
TI-ARTIST Plus then converting them again into Page Pro. | will then
be showing off how you can convert Tl Artist Fonts to Page Pro, Plus
lots more other goodies to boot. See you there!!!!!!

L

MARK

WILLS
3

A A A S & & S A 4 AR & A Ay A A %

% A A A A A % % 7% %

% L % A A 4 A 4 A A

% LALLL LK A & A A A

% Z % A A 4 A A % A

% A 4 AN A S S 4 e

LLLL % Y A 4 A WALLYL LALLL 4L NO. =
Mark Wills waffles on about things in the TI line...

Well, I’m back. Where have yvou been I here vou ask... Well I suppose
I°'d better start at the beginning...

My absence initially was caused by four things : 1)} The company I was
working for began to get into financial trouble and thus I had to put
in rather a ridiculous amount of time intoc trying to prop the business
up as I had a vested interest in one of the products we were developing
{a 24 bit agraphics card for the Amiga using TM534020°s and four
TMS5Z40827s) but alas the business fell over and we were all out of a
job.

2} I got a PC and spent rather an inordinate amount of time learning c
which I like very much {(more of that later), and as my qirlfreind and 1
lived in a one room bedsit at the time there was only rcom for one
computer to be set up and so the poor old TI had to be put away for a
while.

3) My girlfreind (I'm very happy to say) fell preagnant and we are now
expecting our first child any day — in fact it°s now seven days over
due {(much knashing of nails and searchina for my pass port!!) so, as I
tend to write the material for this column over about a week, I may vet
be able to report on the birth of our first son or daughter so read on!

4) In november we moved from our tiny bedsit ontoc a two bedroomed house
and have spent until now decorating it in preperation for ouw new
arrival.

ANYWAaY ., the decoratings nearly finished so Ive qot my TI ocut again and
rnow have some time to write some drivel...

As I said, Ive been learning c and very nice it is too. {By the wavy.
it was nice to see a mention of c99 in Richards column last qgquarter) so
I thought i°d start a c?9 column this guarter, hopefully continuing
each issue {(depends on how much time I get tc spend on the TI what with
changing nappies etc). This issue, nothing particularly heavy. just
covering the fundamentals of the c97 language and it’s differences from
other lanquages. why bother with C, its gqood points, its not so good
points etc, and with a bit of luck it should develop into a tutorial
tvpe thing that should show beqaginners how to program in c99.

So here we gqo then!

c99 for the un—initiated!

What is c?

C is &a language developed in the sixties and seventies, its
predecessors being A and B (no really, honest!)., the whole purpose of
which was to present to the programmer a UNIVERSAL computer 1lanquage
that, instead of being interpreted, was compiled into the host machines
native machine code language for speed, whilst retaining relatively
easy toc understand program syntax etc. {as we progress you will notice
that c99 programs loock quite a lot like BASIC programs and can be read
by humans quite easily and understood).

The key point though, is this: The c language is absolutely universal.
What I mean by this is that for example a c program toc add two numbers
on one make of computer is EXACTLY the same on another. regardless of
the machines make, architecture and capability. Just to expand on this
further, I could write a program on a IBM FC in c and run it quite
happily. then send the SAME program (not modified in any way) over to
the TI and run it on the TI with no modification!

This 1is of course qood news to the programmer who (if he’s like me) is
a totally lazy waste of space and doesn™t want to have to write a
program on one machine, only to have tc start again from the becginning
on another. This is why © gquickly became popular for companies 1like
Microsoft because they could write a program in © on one make of
machine and run it on another make with often no sxtra work to do at
all!? And yvou get the extra bonus that yvour program will run at machine
code speed! '

A quick aside here... as all makes of computer are different and have
different capabilities there are sometimes extra comands in c which cne
can utilize tc take advantage of thes machines specific capabilitvy. If
you always stick to the standard commands that © offers however., and do
not use any special machine specific libraries, your program will
always run on ancthsr make of machine., often with no modification at
all.

How is this done?

The fact that any standard c program will run on more than one machine
is due to the Ffact that every machine has a compiler (or kernal)
written for it in its own mother tongue {machine code) that tells that
machine how to understand a <c program and convert it into its own
machine code. This is of course the same Ffor all machines, and
although the kernal is written in a different machine ! anquage for each
different machine, they are all grogrammed to recognize the same C
commands, thus any kernal can understand any © proaram.

*2022 note- this
assumes all versions of ¢
are identical.

The very minimum vou will nesed is this: They are not,

What do I need to run c on my TI?

a) A disk system

b} 32k HMemory expansion

cl} c%7 v2.1 or greater (preferably v4}

d) Editor assembler module + editor + assemblser

It helps if you alsoc have these:

a) Funnelweb v4.32 or greater to utilize the following:
The proaram editor Enhanced assembler
Script loader

Note: Funnelweb is a most exellent envircnment for writing c programs
in., if you are lucky like me and have double sided disk drives, you can
copy the editor, the assembler, the ¢ compiler., the scriptloader., and
all the c libraries and include files to one disk and you never have to
change disks. My "funnelweb prcgrammers disk”™ as I call it., contains
fifty three files and I can edit. compile, assemble, and run all From
DSK1 with my ¢ source. assembler source. assembler obiject and script
files on DSKZ. without ever having o remove the Extended basic
moduie. Funnelwebk i= avsilable from Stevens disk library., as is the
latest version of c9%. c?? will cost vou six guid 1if you send five
disks {(ves five!) plus a guid for postage.

Right. lets discuss a few things about c. keeping it very simple for
NowW.

Variables:

As with a lot of languages., © has two types of variables : Global and
Local. Simply put., a global variable can be accessed by any part of a
c program and local variables can onlvy be accessed by the Ffunction
{thats c’s name +or a subroutine) in which it is declared. In € vyou
have to delcare every variable that yvou use and its type before you use
it.

Variable tvpes:

In 99 there are a number of different types of variables: Integer.
Floating point {a special case on the 4a version which we won’t aqo
into)., Char {a character variable). ANSI c also supports Long., Double,
and Yoid but as they arn™t supported on the 4a we won’t Qo into those.

Frogram Structure:

Before we can loock at a © program we need to ftalk a little about how cC
programs are structured. Firstly, anvone used to basic will be
surprised by the fact that c programs do not use line numbers.
Different areas of & program are referred to by names that you give to
them. and vou can call up a different part of a c© program f(or a
function to give it its proper term) usinc that name.

There is one part of a c program that is a special case, and it is
called Main.

Every ¢ program has a function called Main. Main is the starting point
of every C program.

Lets have a look at a c proagram then. This program will put the words
"Hello there world'" on the screen. 111 describe how to tyvpe 1t in
and Fun it in a minute.

finclude dskl.stdio 2022 note: although UK writers COULD use both
£ and # in their documents, many didn't.
main{) When you see £ in these pages -in a program-
{ please replace it with a #
message{) s eg #include 7

‘.
)

message ()
puts{"HELLG THERZ WORLD"}:

S

How to type irn and rFrun

Note: ALL c FROGRAMS ARE WRITTEN IN LDWER CASE'! (The same goes for all
C programs presented in this and future articles)

Type in the program using using either the editor in the editor
assembler assembler, the procram editor in fweb or the text sdittor in
fweb.

Save it using the file name DEKx.FROG:C where x is the drive number.
Note: i+ using the text editor in fweb thes save using PF then as above
+or device name etc.

Run the c9? compiler as followsos:

Using Editor Assembler:

Select the load and run option from the main menu
Type DSE1.c29C {assuming the compiler is on DSEL)
The compiler will then run.

Using Fweb:

Select the ¢ COMFILER opition from thes menu.

In both cases:

The files c%9C c99D and cP%E contain the compiler.

When the compiler suns, vou wiil be asked for the input file name.
Type DSEx.PROG:C and when asked for the output file name, tyvpe
DSk« .FPROG: S

I+ alil is well vour disk drives should start chugging away and the
compiler will run. I+ vou get any errors whils the compiler is running
then vou have made a typing error while tvping the program in.

When then the compiler is finished. prese n to cancel a re—-run and the
load the assembler.

When asked for the SOURCE name, tvoe in DSKx.FROG:S and type
BEER .FROG:C for the obiect fiie name. The obiect +ile will contain the
actual machine code that represents the c program vou tvped in.

Assuming no errors then we need to load the obiject file and run it:

Editor Assembler:

-

Select cption =
Type in DSKEx.FROG:0

Type in DSK1.CSUFP (assuming the file CSUP is on drive 1)
FPress ENTER

8 type START and press ENTER

Select LOADERS from menu, select option 4.
Tyvoe in DSEx.FROG: O

Type in DSK1.CSUF

Fress ERASE {(fctn 3)

Presz ENTER

You will see a screen full of names.

Look for the word START and move the cursor to it using the arrow keys.
If vou cant see it. then press ernter to bring the next scresn of names
up. :

When the cursor is on the word START press FREGCEED {(fctn &) and the
proaram should start.

The file CBUP comes with the © compiler and contains variocus Ffunctions
vital tc the operation of C proorams. Every compiled and assemblsd C
roqram needs CSUF {(on the 4a that is:

2022 note: as always with UK publications,

An Expianation of the FProgram: replace the £ sign with a #. It wasn't
o : T necessary- but many writers never
finclude dskl.stdio understood their printers.....

This line tells the compiler that we are going to be using scme of the
standard commands and Ffuncticns in C {puts is an examole) so the
compiler makes sure it gets all the information needed to support thes
from the file stdioc {(which means standard i/0). Without this line, the
program would not run. stdic is called "an include file®.

mainii
This defines ths start point of owur orogram. The two brackeits indicate

that no parameters ars beinrg passed to the function frosm any other
point.

N

The open brace indicates that “all code From nmow on is part of the
function called mainii”

message () :

This line calls the functiocon called message.

]

The closed brace indicates the snd of the main{: function.

mecsage {)

Defines the start of the function called messags. Th= two brackets
mean that it won°t take anv parameters passed to it from the Function
that called it.

i

fAgain the openrning brace, like mainii, mean

n

“all code is for the 9

10

function callec messagei{’”
puts{(*HELLD. THERE WORLD!*}:

Puts on the screen the string QELLD THERE WORLD! puts means PUT String.
The semicolon indicates the end -of that statement. Semicolons are used
a lot in c and thier use will becom2 more clear to you as we proqgress.

3

This indicates the end of thes function called messagel(} Control now
returrns back to the function called main{) as maini{) was the calling
function, at the line after the line that called message. Because the
next line in main is a > which indicates the end of main{) the proagram
ends. As stated before, all programs start in maini{) and most end in

main{; as well.
Weil that wasn™t =o bad was it. lLets expand on things a little more:

Variablies:

Frograms don’t tend toc be much use without the abiiity to alter things
via the use of variables. In ¢ variables are treated differently to
variables in other languaages such as BASIC, in that, as stated before
vou have to decalre them, and tell the compiler what sort of wvariable
Yyou are using.

Here is an example program, 1711 describe it to yvou shortly.
001 finclude dskl.stdio

o002

003 fasm 2022 note: Instead of
004 REF FRINTF £ use the # symbol-
005 fendasm applies to all this

lo1e 72 article

G0O7 main()

Q08 {

Q0% 1int c3

G100 For(c=0:;c<1001;c++) {
011 printf ("I d ",c}:

o122

013 3

You will notices that i°ve included line numbers so that we can refer to
each line by rnumber. This should alsoc aid you when typing the programs
into the editor or fweb.

Line ©001: Tells the compiler neccessary information about c’= standard
functions, as before.

Line 903X: Tells the compiler that all lines ug to fendasm are to be
treated &s machine code and as such., be passed straight accross to the
source file un—modified. This is handy for writing machine code
functions in vour C programs.

Line 0Q4: Tells the assembler that tthe file FRINTF isc also going to be
loaded at run time (toc support the printf instruction in line 011). If
this 1line was ommitted the program would compile but it wouldn®t
assemble. Notice the leading space — it is important!

Line GO7z This is the entry point of our orogr
heres

i) - All © programs start

il

Line O08: "All code sfter this bracket is for main)"
Line -00%: Tells the compiler that we are declaring an INTeger variable
called c. Our machine is a 16 bit machine and therefore all inteqars

have the range O to 65535 or —32768 to +327467.

Line O1G: This is similar to BASICS FOR/MEXT command. it works like
this:

The for command needs three peices of information to set it up:

The following should clarify things:

for{xzysz:z?

{

blah...

blah...

blah...

}

#x = The initializer. We need to give some variable an intitial salue
for the start of the loop., in line GIl¢ we are giving ¢ an initial valiue
of G. If vou want to use the value of a variable that is modified
elsewhere in a program/function then miss out the initizlizer like
this:

for{ ;c<100izc++)

vy = The test. The ioop needs to exit at some point so we need o

include an expression to tell the loop when to pack its bags. In this
case, we are testing £ against all values less than 10601, Stter every
iteration of the loop, the value of ¢ will be tested against the value
of 1001. I+ c is less than 14601 then the ¥pression is said toc
evaluate to "true”, and, in c when any sxpression in a loopn test field
is true, the loop will execute.

When c = 1¢01 then the test will avaluate ta Ffalse {because
1601<15060=Ffalse}) soc the loop will terminate.

z = The control expression. After every iteration of a loop vou want
some sort of action to take place. In this case, we are incrementing c
by a wvalue of 1 each time the loop itsrates {(c++ means c=c+1 but vou
should use c++ when ever you <—an because it generates faster machine
code.)

The test and control expressions do not have to be associated wiih the
variable referenced in the initializer field. You couid have saomething
completely different in them.

tor example:

for {(c=03;c<10sputs("hellc™)i;

would put the word "hellc" cn the screen for sver. It caries on for
every because sach time the loco iterates. « is tested against the
value of 10. Because c=0 the exipression is true and so the control
field executes!]1

In order to terminate the loop vou would nead to modify the value of cC
and one way of acheving this is as follows:

for (c=03c<10zputs{"hellc"})

-
A S

CH++3

3

This leads us on nicely te another point about loops:

If there are any peices code in curly brackets associated with the locp
{(like above) then that code will execute every time the test field
equates to true. This allows entire routines to be enclosed inside a
for expression like BASIC allows. The only confusing factor is that
the formate are different. Ferkaps an analagy will help clear matters
as I suspect I have probably succesfully managed to confuse evervyone!
These loops will do exactly the same in BASIC and c :

BASIC c
10 FOR I=1 TO 100 for{i=1;1i{1013i++}
20 PRINT “HELLOG" {
30 NEXT I puts{("HELLOAN") :

¥

Note: the backslash and n (\n) int the puts command tells the computer
to move tc the start of the next line for th next print statement. if
it were absent it would print like this:

HELLCHELLOHELLOHELLG etc
the \n produces:

HELLO
HELLO
HELLO
etc

Well I think I711 leave it there Ffor now,. have Fun with c and
experiment. If vou get stuck then write tc me and send me your source
code on disk and I will try and sort vour problems out.

1’11 quit now now: Next issue : DO WHILE and extended IF’s (space
permitting!)

Oh by the way — Amanda (my girlfreind) gave birth to a bouncing baby
boy on 7th January 1993 at 4.35am weighing 8l1b %o0z. I was there at the
birth and 1 have to say that it is THE most amazing experience and
totally changes vour life. {Cut to the faint sounds of violins plaving
and Sir Harry Seacombe saying something profound and heavy!) I'm glad
to say that the birth was pretty straight—forward and mother and baby
{Ben jamin Garry William! are both doing fine.

The date is the 14th of Feb and he is already smiling and cooing away
at five weeks old, yet the book on baby development we have states they
dunno what they’re doing until 20 weeks so he must be one really clever
dude (like father like son!'! ahem!) I wonder if he’ll appreciate the
internal archetecture of the TI-99/4a? Hmmm... Only one way to find

1 2 out....

webbblody -
NEWS anp REWEWS
ﬂ From the man wWith ﬂ T%’

IHE BLUES

I..‘p' F-p-..

o — |

~— — —
.

S

Dear Fellow supporters of the cause,
Oops! Apologies first I'm
afraid, for the errors that were in my last article!
These were caused by the exact mistake of the formatter that
were mentioned in the exact same newsletter! This is due teo
putting numbers straight after asterisks without leaving a space.

Here are the corrections. 2022 : These are identical to the code
in issue 39 except 30002 in the 16 col vn and
256 colour XB & XHI version line 200 in the ML vn where 6 becomes *256..

10 S=1.2 :: OPEN #1:"DSK1.MYART",INPUT ,DISPLAY ,FIXED 128

11 CALL LINK("MOD2S56"):: R=0 :: C=0

12 LINPUT #1:A$:: A$=SEG$(AS$,3,LEN(AS))

13 GOSUB 30000 :: COL=V :: GOSUB 30000 :: RL=V :: IF RL=0 THEN
RL=256

14 CALL LINK("LINE",R/S,C/S,R/S,(C+RL)/S,COL):: C2=C :: C=C+RL

15 IF C>255 THEN R=R+1 :: C=(RL+C2)-256 :: CALL LINK("LINE",R/S,
0,R/S,C/S,COL)

16 GOTO 13

17 CALL KEY(0,K,S):: IF S=0 THEN 17

18 CALL LINK("NORMAL"):: END

30000 IF A$="" THEN 30020

30001 V=ASC(A$):: A$=SEG$ (A$,2,LEN(AS$)):: RETURN

30020 IF EOF(1)THEN CLOSE #1 :: GOTO 17 ELSE LINPUT #1:A$:: GOTO

30001

16 colour XB & XHI version

10 S=1 :: INPUT "Enter MYART image name: ":N$:: OPEN #1:N$,INPUT
,DISPLAY FIXED 128

11 LINPUT #1:A$:: A$=SEG$(A$,3,LEN(AS))

12 FOR C=1 TO 16 :: R=ASC(A$):: G=ASC(SEGS$(AS$,2,1))::
A$=SEG$ (A$,3,LEN(A$)):: B=(R AND 7):: R=((R AND 240)/16) ::
G=(G AND 7):: CALL LINK("COLMIX",C,R,G,B):: NEXT C

111 CALL LINK("HIRES"):: R=0 :: C=0

113 GOSUB 30000 :: CALL KEY(0,K,ST):: IF K<>-1 THEN CALL
LINK ("NORMAL"):: END

114 CALL LINK("LINE",R/S,C/S,R/S,(C+RL)/S,COL):: C2=C :: C=C+RL

13

14

115 IF C>S11 THEN R=R+! :: C=(RL+C2)-512 :: CALL LINK("LINE",R/S
-~ ,0,R/S.C/S,COL)

116 GOTO 113

117 ! IMAGE LOADED

118 ACCEPT AS :: CALL LINK("NORMAL") :: END

30000 IF As="" THEN 30020

30001 COL=ASC(AS$):: RL=ASC(SEG$(A$,2,1)):: A$=SEG$(AS$,3,LEN(AS))

30002 RL=RL+((COL AND 15)* 256):: COL=((COL AND 240)/16)+1 ::
RETURN)

30020 IF EOF(1)THEN CLOSE #1 :: GOTO 117 ELSE LINPUT #1:A$:: GOTO
30001 '

Missing Link version

1 S=1 :: CALL LINK("PENHUE",2,16):: CALL SAY("ENTER+NAME"):: CALL
LINK("INPUT",7 0,20,N$):: OPEN #1:N$,INPUT ,DISPLAY ,FIXED 128
:: LINPUT #1:A$%

2 I=ASC(SEGS$(AS$,2,1)):: A$=SEG$(A$,3,LEN(A$)):: IF I=250 OR I=122
OR I=158 OR I= 255 THEN 100

12 R=0 :: C=0

13 GOSUB 30000 :: COL=V/16 :: GOSUB 30000 :: RL=V :: IF RL=0 THEN

RL=256

14 CALL LINK("LINE",R/S,C,R/S,(C+RL),COL):: C2=C :: C=C+RL

1S IF C>255 THEN R=R+! :: C=(RL+C2)-256 :: CALL LINK("LINE",R/S,

0,R/S,C,COL)

16 CALL KEY(O0,K,ST):: IF K<>-1 THEN CLOSE #! :: END ELSE 13

17 CALL KEY(0,K,S):: IF S=0 THEN (7 ELSE END

100°-A$=SEGS$ (A$,33,LEN(AS$))! Remove palette data

110 R=0 :: C=0

120 GOSUB 180 :: CALL KEY(0,K,ST):: IF K<>-1 THEN CLOSE #1 :: END

130 CALL LINK("LINE",R/S,C/2,R/S, (C+RL)/2.COL):: C2=C :: C=C+RL

140 IF C>S11 THEN R=R+1 :: C=(RL+C2)-512 :: CALL LINK("LINE",R/S,

6,R/S,C/2,COL)

150 GOTO 120

160 ! IMAGE LOADED

170 CALL KEY(0,K,S):: IF S=0 THEN 170 ELSE END

180 IF A$="" THEN 210 190 COL=ASC(AS$):: RL=ASC(SEGS$(AS$,2,1))::

A$=SEG$ (A$,3,LEN(AS))
200 RL=RL+((COL AND 15)* 256):: COL=((COL AND 240)/16)+1 :: RETURN
210 IF EOF(1)THEN CLOSE #1 :: GOTO 160 ELSE LINPUT #1:A$::

GOTO 190

30000 IF A$="" THEN 30020

30001 V=ASC(A$):: AS$S=SEG$(A$,2,LEN(AS$)):: RETURN

30020 IF EOF(1)THEN CLOSE #1 :: GOTO 17 ELSE LINPUT #1:A$

GOTO 30001
To disable the image type checking you can stick a GOTO in line 2
just before the IF statement. To force it to load the image as
a 256 colour picture, then do a GOTO 12. To force it to load a

16 colour picture, do a GOTO 100.

I'm afraid that this article will be a bit shorter than my

previous ones. I've been a bit depressed lately and have had to
get eight assignments out of the way!

There's bad news from Alexander Hulpke. He has heard only
“rumours about the PC emulator for the 4A.

I've left a message on CompuServe for Ron Walters for him
to give me any information on upgrading the address decoding on
the RAVE 99 speech adapter, and I've also requested any
information on his rumoured colour printing program that will
print MYART images on a colour printer. I'm tired of having to
use the Amiga to print out pictures I've drawn with YAPP.

I could never use Deluxe Paint to draw anything seriously.
It's only used to manipulate pictures before transferring them to
the GENEVE, or for printing YAPP pictures in full colour.

The Amiga to me is just a peripheral that's connected to
port 2 of my RS232 and allows me to rip data off from PC's and
Amiga's and get it onto my real computer.

To relieve my need to type a bit for this article, I have
decided to include a program listing. This is produced using my
28 column printing program. It's for Commando for Extended
BASIC, but this is the totally upgraded version to which I have
added two new units and a couple more guards! The units I have
added are a tank and helicopter!

COMMANDO COMMANDS

A - Move up E - Fire Up

B - Move Left F - Fire Left

C - Move Right G - Fire Right

D - Move Down H - Fire Down

I - Set Bomb K - Change last move
Helicopter ONLY Commands

M - Take off L - Land helicopter.

The indicator ALT indicates if the helicopter is currently on the
ground, or in the air. 1 for flying and 2 for landed. When the
helicopter is in the air it cannot fire or set bombs, but it also
cannot be destroyed by a bomb, or shot by a guard!

The program needs a CALL FILES(1) and NEW typing in
command mode before loading and running it.

I've -noticed that my 28 column print program has spaced some line
erroneously in a few places, but that'll add to the fun of typing
it in. You will also need to create a high score by just opening
a file of the correct type and printing a number to it. If you
run the program on a GENEVE it will display the correct time in

the top right corner of the screen! This line can be taken out
totally on a normal 4A, or just changed to read a Zeno board
clock etc. ' . a

I've had a bit of information from Gary Smith on the Texas
Instruments TMS320C40 digital signal processor. It's been out
since 1991 and chews on 2SOMIPS. The Intel 80586 PS has not 1 5

16

been released yet, but when it is, it will only do 100MIPS!
Two PS's in parallel will still only give you 190MIPS!
News from Norman (Simon Sloane, a friend of mine and

Gary's, also from Newark) is that systems based on the PS5 will

set you back TEN THOUSAND POUNDS!!!! Tsunami (TI SuperSPARC)
will start at $5000 and will hopefully totally kill it if they
attract all the new software to it. The daft idea with the PS
is that it contains a 486 chip, and a RISC chip on the same bit
of silicon which means that for any software to get any faster it
will have to be totally re-written for RISC. All existing
software will run on the 486 half of the chip.

Therefore, if the software's got to be re-written, then
they might as well buy a Tsunami and start from scratch with a
decent machine after IBM and Intel have totally wrecked
innovation over the last decade.

Hopefully, there'll be more in the next article.
I hope to see you all at the AGM. Gary will be there and we'll
hopefully have both our systems. I'll be demonstrating graphics

and sound and whatever else comes to mind.

All for now from Richard Twyning.

1 CALL INIT :: CALL CLEAR ::
PRINT "TI-Extended BASIC.":
" "."EXPANDED VERSION C
OMMANDO 4":"":"" :: CALL SAY
("COMMAND+0 FOUR"™)

4 CALL SCREEN(3):: OPEN #1:."
DSK1.COMMANDO2" , INTERNAL ::
INPUT $1:HSC :: CLOSE 1

«+ CALL SCREEN(3)

30 CALL CLEAR :: PRINT TAB(S
):"COMMANDO I V": : : :: PR
INT "GRAPHICS BEING DEFI
NED.": : :: PRINT " PLEASE
WAIT.": ¢
40 CALL CHAR(115,"0070FF78EC
FFAATCBD4A89F99F9152BD"):: C
ALL CHAR(114,"8090BF9080
000000")

110 CALL CHAR(128,"081808080
8081C",129,"1C22020408103E")
120 CALL CHAR(130,"384404180
44438",131,"FF9999FFFFETETET

)
130 CALL CHAR(136,"00101898F
£981810",137,"0030389CFFIC38
30"
140 CALL CHAR(138,"7878FCEFF
C787800",139,"FFBDDBETETDBBD
FE",125,"DBTE81FFABTETES
9"
150 CALL CHAR(117,"010001000
10001AA", 118, "FEFFFRFFEFFFEF
FE",119,"0000001818")
156 CALL COLOR(13,2,8,14,9,1
2,11,3,16,12,2,16)
190 CALL DELSPRITE(ALL):: PR
INT " IN THIS GAME YOU WILL
GIVE": :"THE ORDERS TO 5
UNITS ";CHR$(128);CHR§(129)
;CHR$(130) ;CHR§ (32) ;CHRS (116
);CHRS(115):
191 BN,R,C,GN,X,W,N,BS,T8,D,
GC,K,A,T,S,M,P=0 :: W§="" ::
PRINT "IN THEIR BAID O
AN ENENY": :"INSTALLATION."

200 PRINT "THERE ARE THREE D
TPFERENT": :"TARGETS -1 THE

FUEL DUNP": :" -1
THE TANE DEPOT ": : :: I,BS
,UN,ALT,Q,GUARDS,SC=0 :: RAN
DOMIZE :: PRINT "
-3 THE AIRPORT."
230 PRINT "1 HAS FEW GUARDS
3 HAS NMOST.": :
240 INPUT "WHICH TARGET ,1 2
OR 3 7":TN
250 IF T3 THEN 240
260 CALL SAY("FINE"):: PRINT
: " YOU CAN GIVE YOUR UNIT
§ " :"ORDERS FOR UP TO
30 MOVES": :"AHEAD.": :
270 INPUT "HOW MANY NOVES AT
ATINE? (1 T030)?":K
280 IF ¥>30 THEN 270 ELSE CA
LL SAY("0+E")
290 PRINT : :"REY:": :" ";CH
R§(136);" ";CHR$(137);" PL
ANES": : :: PRINT " ";CH
R§(138);" TANR",CHR$(139);
" FUEL DUMP": :" ";CHR$(131)
;" BUILDING",
300 PRINT CHR$(125);" GUAR
D": :" YOU SCORE BY BLOWING
UP ™: :"PLANES,TAKES AND
FUEL DUNPS™: : :: PRINT " O
R BY SHOOTING GUARDS.": :
310 PRINT " THE LOSS OF A
UNIT WILL": :" REDUCE YOUR §
CORE.": : :: PRINT " #¢
ONE MOMENT PLEASE **": : : :
: RESTORE 350
350 OPTION BASE 1
355 RANDOMIZE
360 DIM BS(18,32)
365 DIN B(70,3)
370 DIM G(150,3)
371 FOR R=1 TO 150 :: FOR C=
1703 :: G(R,C)=0 :: NEXT C
+ NEXT R :: FOR R=1 TO
70 :: FOR C=1 TO 3 :: B(R,C
)=0 :: BN=0 :: NEXT C :: NEX
TR
380 DIN U(5,2)
385 GN=0
390 DIN 0(5,30)
395 UN=5

396 DISPLAY AT(24,1):"0LD GA
NE (Y/N):" :: ACCEPT AT(24,1
6) VALIDATE ("YN")BEEP:A$

¢« IF A8="Y" THEK 7500

400 FOR R=2 TO 17 :: FOR C=2
TO 32 :: DISPLAY AT(24,1):R
" "eC oty BS(R,C)=CHRS(1
17)¢: NEXT C :: NEXT R

401 BS§(3,14) ,B5(4,13),B5(4,1
5),B§(5,14),B5(6,27) ,B§(7,26
) ,B§(7,28),B§(8,27)=CHR§
(118)

402 B§(8,8),85(9,7),B5(9,9),
B§(10,8),B%(1,22),B§(2,21) ,B
§(2,23),B%(3,22)=CHR$ (13

9)

403 B§(10,28),B5(11,27),B8(1
1,29),B§(12,28) ,B§(14,29) ,B§
(15,28),B§(15,30),BS(186,
29)=CHR§(139)

404 BS(14,6) ,BS(15,5),B5(15,
7),B§(16,6) ,B§(16,17) ,B§(15,
19),B8(16,21)=CHR§(118)

405 B§(15,18),B5(15,20),B%(1
5,13),B§(14,21) ,B§(14,22) ,B§
(14,23),B8(13,22) ,BS(13,

24) ,B§(12,23)=CHRS(139)

406 BS(12,12),B5(12,14),B8(1
3,11),B§(13,13) ,B§(13,15) ,B§
(14,12) ,B§(14,14)=CHRS(1

18)

407 B§(13,25),B8(13,26) ,BS(1
3,27),B5(14,24) ,B§(14,28) ,B§
(15,24) ,B§(16,25) ,B§(16,
16),B5(16,27)=CHR$(118)

408 B§(2,2),B§(2,4) ,B§(2,6),

B§(4,2) ,B§(4,4) ,B§(4,6) ,B§(6
,2),B5(6,4),B5(6,6)=CHRS
(139)

409 B§(2,29),B$(2,31),B5(4,2
9),B§(4,31),B5(6,29) ,B§(6,31
)=CHR$(139)

450 ON TN GOTO 460,570,680
460 FOR N=1 TO 40 :: DISPLAY
AT(24,1):N :: C=INT(RND*29)
+3 i+ R=INT(RND*16)+3 ::
B§(R,C)=CHRS(131):: NEXT N
:+ FOR R=2 TO 15 :: DISPLAY
AT(24,1):R :: BS(R,3)=CH

17

R§(139)

470 B$(R,7)=CHR$(139):: BS(R
,11)=CHER$(139) :+ B$(R,13)=CH
R§(139):: B§(R,13)=CHRS(
139):: B§(R,5)=CHR§(139):: B
§(R,9)=CHR§(139):: NEXT R ::
GOTO 780

570 FOR N=1 TO 50 :: DISPLAY
AT(24 1):3;N i R=INT(RND*1

6)+2 ¢ =IHT(RND'29)+3
-+ BS(C)=CHR$(131):: NEXT
N: FOR N=1 TO 43 : DISPLA
¥ AT(24 1) 2 e IHT(

RND*15)+2 :: C= INT(RND'29)+3
580 BS(R,C)=CBRS(138):: NEXT
N :: GOTO 780

680 FOR N=1 TO 73 :: DISPLAY
AT(24,1):1;N :: R=INT(RND*1
)+ :: C=INT(RND*30)+2

¢+ B§(R,C)=CHR§(131):: =136
-(RND).5)

690 R=INT(RND*16)+1 :: C=INT
(RND*29)+3 :: IF R+C)45 THEN
690

700 B§(R,C)=CHR$(X):: NEXT N
780 FOR R=1 TO 18 :: DISPLAY
AT(24,1):18-R :: B§(R,2)=CR
R§(118):: BS(R,1)=CHR$(3
2):: B§(R,32)=CHRS(118):: NE
XT R :: FOR C=1 TO 32 :: B§(
1,0)=CHR§(118):: B§(18,C
)=CHRS(118)

851 CALL CLE :: NEXT C :: BS$
(4,25),B§(5,24) ,B§(5,26) , B§(
6,25),B§(9,26),B5(8,9),B
$(9,24)=CHRS(139)

852 BS(8,23),B5(10,25),B8(7,
24) ,B8(7,26) ,BS(8,4)=CHRS (13
8):: B§(8,27),B§(6,23),B
§(6,27)=CHR§(131)

860 FOR N=1 TO TN*50 :: DISP

LAY AT(24,1):(TN*50)-N;" GUA

RDS" :: GUARDS=N

870 R=INT(RND*10)+2 :: C=INT
(RND*29)+3 :: IF B$(R,C)C)CH

R$(117)THEN 870

880 BS(R,C)=CHRS(125):: G(N,

1)=R :: G(N,2)=C :: G(N,3)=I

NT(RND*4)+1 :: CALL CLK

18

v NEXT N

950 C=INT(RND*8)+4 :: FOR N=
170 5 :: DISPLAY AT(24,1):"
UNIT ";N «: B§(17,C4N)=
CHR§(127+N):: U(N,1)=17 2 O
(N,2)=C+N :: NEXT N :: B§(U(
5,1),U(5,2))=CHR$(115)

960 R=INT(RND*10)42 :: C=INT
(RND*29)+3 :: IF B$(R,C))CH

R§(117)THEN 960 ELSE U(4
J)=R 1 U(4,2)=C

990 INPUT "PRESS ENTER TO ST
ART GANE ":A$

1000 CALL SCREEN(12):: IF U(
4,1)=0 OR U(4,2)=0 THEN 1010
ELSE B$(U(4,1),0(4,2))=
CHR§(116)

1010 CALL HCHAR(16,2,116,768
)e: CALL VCHAR(1,1,32,32)::
CALL HCHAR(19,1,32,6%32)

++ DISPLAY AT(24,1)BEEP:"ALT
=" ALT

1015 DISPLAY AT(19,1)BEER:"
HIGH SCORE=";HSC :: DISPLAY
AT(24,12) :GUARDS;" GUARD

S‘n

1016 IF M=1 THEN DISPLAY AT(
20,18)BEEP:N;" MOVE " ELSE D
[SPLAY AT(20,18)BEER:X;"
MOVES "

1018 DISPLAY AT(19,1)BEER:"S

C="; INT((TH*M*(TS*10)+(GN*5)
)/(6-UR));" HI.SC=";HS

¢

1025 FOR R=1 TO 18 :: CALL C
LK :: FOR C=1 TO 32 :: X=ASC
(B$(R,C)):: CALL HCHAR(R
,C,X):: NEET C :: NEXT R ::
CALL VCHAR(1,1,118,18)

1070 CALL SAY("ARE+YOU+$READ
Y TO START$"):: GOSUB 30000
:+ CALL MAGKIFY(2)

1080 @=0 ;: FOR D=1 TO 10 ::
CALL LOCATE(#D,D+8,D+@):: €
=@+14 :: CALL MOTION(%D,
8,8):: NEXT D :: CALL SOUND(
100,900,0)

1191 CALL SPRITE(%20,137,INT
(RND*9)+42,96,124, (INT(RND*10

)-INT(RND*10))+1, (INT(RN
D*10)-INT(RND*10))+1)

1200 CALL HCHAR(21,1,32,128-
32):: CALL HCHAR(24,1,32,2)
1201 W$="GAME LEVEL "&STR$((
TH-1)*64M):: R=20 :: C=3 ::
GOSUB 6000

1210 FOR T=1 TO 5

1215 IF N=1 THEN DISPLAY AT(
20,18):M;" NOVE " ELSE DISPL
AY AT(20,18):M;" NOVES "
1220 IF U(T,1)=0 THEN 1430
1230 W§="ORDERS FOR OUNIT "&S
TR$(T):: R=23 :: C=3 :: GOSOU
B 6000

1245 DISPLAY AT(19,1):"SC=";
INT((TN*N*(TS*10)+(GN*5))/(6
-0N)) ;"HI.SC=";HSC;"B=";
100-BK

1246 DISPLAY AT(24,1)SIZE(10
) :"ALT=";ALT :: DISPLAY AT(2
4,12)SIZE(11) :GUARDS; "GO0
ARDS"

1270 CALL HCHAR(2!,1,32,32):
. CALL HCHAR(21,2,1274T):: 1
F T=4 THEN CALL HCHAR(21
,2,116)

1271 IF T=5 THEN CALL HCHAR(
21,12,115)

1275 DISPLAY AT(24,2)SIZE(10
)BEER:" "

1280 FOR N=1 TO X

1290 W§="MOVE. "&STRS$(N):: B=
24 11 C=5 :: GOSUB 6000

1330 CALL SOUND(500,500,1)
1340 CALL EBEY(3,K,5):: CALL
CLE

1341 IF T=4 AND U(T,1)0 AR
D E=ASC("L")THEN CALL HCHAR(
2,24K,8) 10 O(4,0)=K-64

1 GOTO 1420

1342 TF T=4 AND U(T,1))0 AR
D E=ASC("N")THEN CALL HCHAR(
21,24K,K) :s 0(4,N)=K-64

:+ GOTO 1420

1350 IF S=0 THEN 1340

1360 TF (E<65)*(E>T)THEN 133
0

1370 0(T,N)=K-64

1380 CALL HCHAR(21,2+K,E)

1390 IF R<75 THEN 1420

1400 N=N-1-(N=1)

1410 GOTO 1290

1420 NEXT N

1430 NEXT T

1440 FOR T=1 TO §

1450 FOR P=300 TO 600 STEP 6

0

1460 CALL SOUND(40,P,1)

1470 NEXT P

1480 NEXT T

1485 FOR R=1 TO 5 :: FOR C=1

TO W :: IF O(R,C)<1 THEN O(

R,C)=10 '

1486 NEXT C :: NEXT R

1487 CALL HCHAR(23,1,32,64):
. FOR R=1 70 3 :: IF U(R,1)=
0 THEN 1489

1488 FOR C=1 TO X :: CALL HC

HAR(R+20,2,127+R):: CALL HCH
AR(R+20,C+2,0(R,C)+64)::
NEXT C

1489 NEXT R :: IF M>14 THEN
1500

1490 CALL HCEAR(21,18,116)::
CALL HCHAR(22,18,115):: FOR
R=4 T0 5 :: IF U(R,1)=0
THEN 1492

1491 FOR C=1 TO N :: CALL HC

HAR(R+17,C+18,0(R,C)+64):: ¥

EIT C

1492 NEXT R :: DISPLAY AT(23
,16) :"COMMANDO 4"

1500 FOR N=1 TO X

1505 DISPLAY AT(19,1):" MOVE
" ;" SC=" INT((TN*N*(TS*10
J+(GK*5)) /(6-UN));"B=";7
0-BN

1506 DISPLAY AT(24,1)SIZE(9)
:"ALT=";ALT :: DISPLAY AT(24
,12) STZE(11) :GUARDS; "GUA

RDS"

1510 FOR T=1 T0 5

1520 IF U(T,1)=0 THEN 1850
1555 IF O(T,N)+64=ASC("X")TH

EN 16000

1556 IF O(T,N)+64=ASC("L")TH
EN 15000

1557 IF ALTOO AND T=4 AND O
T,N)=9 THEN CALL SAY("YOU+CA
N+NOT+SET+THEL +TINE+NHEK
tA+L+T+IS40NE") :: GOTO 1850
1558 IF ALT)Q AND T=4 AND O
T,N)>4 AND O(T,N)(9 THEN CAL
L SAY("YOU+CAN+NQT+FIRE+
WHEN+A+L+T+IS+ONE") i+ GOTO 1
850
1560 ON O(T,N)GOTO 1570,1590
,1610,1630,1670,1700,1730,17
60,1790,1850
1570 IF T=4 THEN 16570 ELSE
IF BS(U(T,1),0(T,2)-1)=CHRS(
117)THEN 1571 ELSE 1640
1571 B§(U(T,1),0(T,2))=CHR$(
117) ¢ CALL HCHAR(U(T,1),0U(T
,2), 107) v U(T, 2)=0(T, 2)
1572 TF T=5 THEN B§(U(T,1),0
(T,2))=CHR§(115):: CALL HCHA
R(O(T,1),0(T,2),115)ELSE
B§(0(T,1),U(T,2))=CHR$ (127+
T):: CALL HCHAR(U(T,1),0(T,2
) 1214T)
1573 GOTO 1640
1590 TF T=4 THEN 16590 ELSE
TF BS(U(T,1),0(T,2)+1)=CHRS$(
117)THEN 1591 ELSE 1640
1591 B§(U(T,1),0(T,2))=CHR$(
117):¢ CALL HCHAR(U(T,1),U(T
22, 117) 0 (T, 2)=0(T,2)
#
1592 IF T=5 THEN B$(U(T,1),0
(T,2))=CHR§(1158):: CALL HCHA
R(U(T,1),0(T,2),115)ELSE
B§(U(T,1),0(T,2))=CHR§(127+
T):: CALL HCHAR(U(T,1),0(T,2
), 1274T)
1593 GOTO 1640
1610 IF T=4 THEN 16610 ELSE
IF B§(U(T,1)-1,0(T,2))=CHRS(
117)THEN 1611 ELSE 1640
1611 B§(U(T,1),U(T,2))=CHRS(
117):: CALL HCHAR(U(T,1),0(T
,2), 117) 0 (T, 1)=0(T,1)
1612 IF T=5 THEK B§(U(T,1),U
(T,2))=CHER§(115):: CALL HCHA

R(U(T,1),0(T,2),115)ELSE
BS(U(T,1),0(T,2))=CHRS(127+
TV:: CALL HCHAR(U(T,1),0(T,2
), 1274T)

1613 GOTO 1640

1630 IF T=4 THEN 16630 ELSE
IF BS(U(T,1)41,0(T,2))=CHRY(
117)THEN 1631 ELSE 1640

1631 B§(U(T,1),U(T,2))=CHRS(
117):: CALL HCHAR(U(T,1),U(T
0,107 e U(T,D=0(T,)

+1

1632 IF T=5 THEN B$(U(T,1),U
(T,2))=CHR$(115):: CALL HCHA
R(U(T,1),U(T,2),115)RLSE
BS(U(T,1),0(T,2))=CHRS(127+
T):: CALL HCHAR(U(T,1),U(T,2
), 1274T)

1640 IF U(4,1)=0 THEN 1850 E
LSE CALL HCHAR(U(4,1),U(4,2)
,116)

1660 GOTO 1850

1670 D=4

1680 GOSUB 3000

1690 GOTG 1850

1700 D=2

1710 GOSUB 3000

1720 GOTC 1850

1730 D=1

1740 GOSUB 3000

1750 GOTO 1850

1760 D=3

1770 GOSUB 3000

1780 GOTO 1850

1790 IF BE=70 THER 1810

1800 GOSUB 3500

1805 GOTC 1850

1810 W§=" YOU HAVE RUN OUT 0
F BOMBS" :: R=23 :: C=1 :: G

0SUB 6000

1845 CALL SAY("NO MORE LEFT"

)

1850 IF BS=0 THEN 1900

1860 GOSUB 4000

1900 NEXT T

1910 FOR T=1 TO TH*50 :: DIS
PLAY AT(24,7)SIZE(3):150-T
1920 IF G(T,1)=0 THEN 2300
1921 CALL SOUND(-4,110,10)

19

1930 FOR Z=1 T0 5 :: CALL CL

4

1935 IF 7=4 AND ALT)O THEN 2
100 ELSE IF U(Z,1)=0 THEN 21
00

1940 IF RND).7 THEN 2100
1950 IF G(T,2)<>0(Z,2)THEN 2
020

1970 TF ABS(G(T,1)-0(Z,1)))6
THEN 2100

1980 D=1

1990 IF 6(T,1)0(Z,1)THEN 20
80

2000 D=3

2010 GOTO 2080

2020 IF 6(T,1)OU(Z,1)THEN 2
100

2040 IF ABS(G(T,2)-U(Z,2)))6
THEN 2100

2050 D=4

2060 IF G(T,2))0(Z,2) THEN 20
80

2070 D=2

2080 GOSUB 3030

2090 I=5

2100 NEXT 7

2110 B§(6(T,1),6(T,2))=CHR$(
117

2120 CALL HCHAR(G(T,1),6(T,2
),117)

2130 OF 6(T,3)60T0 2140,2170
,2200,2230

2140 TF B§(G(T,1)-1,6(T,2))¢
YCHR$(117)THEN 2270 ELSE 6(T
1)=6(T,1)-1 2 GOTO 229

0

2170 TF B§(G(T,1),6(T,2)+1)<
CER§(117)THEN 2270 ELSE G(T
,2)=6(T,2)+1 :: GOTO 229

0

2200 IF BS(G(T,1)+1,6(T,2))¢
YCER§(117) THEN 2270 ELSE G(T
1)=6(T,1)41 :: GOTO 229

0

2230 IF B$(G(T,1),6(T,2)-1)¢
JCERS(117)THEN 2270 ELSE G(T
12)=6(T,2)-1 :: GOT0 229

0

2270 6(T,3)=6(T,3)41 :: G(T,

20

3)=6(T,3)+(4*(6(T,3))4))

2290 B§(G(T,1),6(T,2))=CHRS$(

125):¢ CALL HCHAR(G(T,1),6(T
'1),125)

2300 NEXT T :: DISPLAY AT(24
,9)STZE(3):" "

2310 NEXT N :: IF UN THEN 23

40 ELSE 5000

2340 W§="Q=QUIT. G=GO ON. S=
SAVE GAME." :: R=24 :: C=1 :
: GOSUB 6000 :: CNT=0

2345 TF U(4,1)<>0 THEN CALL

HCHAR(U(4,1),0(4,2),116)
2371 CALL SAY("WHICH ONE PLE
ASE")

2380 CALL KEY(3,K,S):: CALL
SPRITE($27,114,8,137,16,428,
114,16,137, INT((3000-CNT
)/12.5)#16) :: CALL CLK

2390 IF E=81 THEN 5000

2391 TF E=ASC("N")THEN ACCEP

T AT(24,1):X :: GOTO 1200
2395 IF R=ASC("S")THEN E=0 :
. GOTO 7550

2396 CNT=CNT+1 :: DISPLAY AT
(21,11):" ";3000-CNT :: IF C
NT>3000 THEN E=1 :: GOTO
7550

2400 TF E=71 THEN 1200

2410 60TO 2380

3000 B=0(T,1)

3010 C=0(T,2)

3020 6OTO 3100

3030 R=G(T,1)

3040 C=6(T,2)

3100 FOR §=1 T0 6 :: R=R+(D=
1)-(D=3):: C=C+(D=4)-(D=2)::
IF B§(R,C)=CHR$(117) THE

¥ 3300

3140 IF (B§(R,C)=CHR§(131))+
(B§(R,C)=CHR$(118)) THEN 3350
3145 IF B§(R,C)=CHR$(115)0R

B§(R,C)=CHR$(116) THEN 3160

3150 IF (B§(R,C)<CHR§(128))+
(B§(R,C))CHR§(130)) THEN 3280

3160 FOR A=1 T0 5

3170 TF (U(A,1)=R)*(U(A,2)=C

) THER 3190

3180 GOTO 3270

3190 IF A=4 AND ALT)O THENW 3
270 ELSE U(A,1)=0

3200 FOR X=1 TO 5 :: CALL HC
HAR(R,C,127+A):: CALL SOUND(
50,200%X,1):: CALL HCHAR
(R,C,117):: CALL SOUND(50,11
0%X,1):: NEXT X :: CALL SAY(
"UHOR")

3255 B§(R,C)=CHR§(117):: UN=
UN-1

3265 IF UN=0 THEN 5000

3270 NEIT A

3280 IF B§(R,C)<)CHR§(125)TH
EN 3350

3290 GOSUB 4500

3295 GOTO 3350

3300 CALL HCHAR(R,C,119):: C
ALL SOUND(50,-1,1):: CALL SO
UND(20,-1,1):: CALL HCHA
R(R,C,117)

3340 GOTO 3400

3350 S=6

3400 NEXT §

3410 RETURN

3500 BN=BN+1 :: B(BN,1)=0(T,
1):: B(BN,2)=0(T,2)

3530 W§="CHARGE SET.TIMER ST
ARTED" :: B=23 :: C=8 :: GOS
UB 6000 :: CALL SAY("SET

AND START TINE"):: CALL SOU
ND(500,760,1)

3580 BS=BS+1

3590 RETOURN .

4000 FOR Z=1 TO 70 :: CALL C
Lk

4010 IF B(Z,1)=0 THEN 4410
4020 B(Z,3)=B(Z,3)41

4021 DISPLAY AT(24,23):"TR="
160-B(Z,3)

4030 IF B(Z,3)<60 THEN 4410
4050 FOR B=B(Z,1)-2 TO B(Z,1
)42 :: FOR C=B(Z,2)-2 T0 B(I
LY

4070 IF (RC2)+(R)17)THEN 436
0

4080 IF (C<2)+(C>31)THEN 436
0

4090 CALL GCHAR(R,C,6C):: CA
LL SCREEN(7):: CALL SOUND(30

,-1,1)+: CALL HCHAR(R,C,
118):: B(Z,3)=0 :: CALL SOUK
D(30,-5,1):: CALL SCREEN(12)
++ CALL SCREEN(T)

4100 CALL HCHAR(R,C,32):: CA

LL SOUND(30,-8,1):: CALL HCH

AR(R,C,117):: CALL SCREE
N(12)

4160 IF GC<>125 THEN 4240
4170 FOR W=1 TO TN*50 :: CAL
L CLK

4180 IF (G(N,1)=R)*(G(N,2)=C
)THEN 4200

4190 6OTO 4230

4200 G(W,1)=0

4210 GN=GN+1 :: CALL SAY("GO

T+ONE") :: GUARDS=GUARDS-1 ::
DISPLAY AT(24,12)SIZE(1

1) :GUARDS ; "GUARDS"

4220 B§(R,C)=CHR§(117)

4230 NEXT W

4240 IF (GC>135)%(GCC140)THE

N 4260

4250 GOTO 4275

4260 B§(R,C)=CHR$(117)

4270 T8=TS+1

4275 IF GC=115 OR GC=116 THE
N 42%0

4280 IF (GCC128)+(GC>130)THE

N 4350

4290 FOR W=1 TO
4300 IF (U(W,1)
)THEN 4320

4310 GOTO 4340
4320 IF W=4 AND ALT)0 THEN 4
335 ELSE U(W,1)=0 :: CALL SA
Y("UROE")

4330 UN=ON-1

4335 IF UN=0 THEN 5000

4340 NEXT W

4350 B§(R,C)=CHRS(117)

4360 NEXT C

4370 NEXT R

4390 BS=BS-1

4400 B(Z,1)=0

4410 NEXT I

4420 RETURN

4500 FOR A=1 TO TN*50

4510 IF (G(A,1)=R)*(G(A,2)=C

§
=R)*(U(W,2)=C

) THEN 4530

4520 GOTO 4620

4530 G(A,1)=0

4540 FOR X=1 TO 6 :: CALL HC
HAR(R,C,125)+: CALL SOUND(50
,-X,1):: CALL HCHAR(R,C,
117) s+ CALL SOUND(50,110%X,1
):o NEXT X

4600 GN=GN+1 :: CALL SAY("GO
T+ONE") :: GUARDS=GUARDS-1 ::
DISPLAY AT(24,12)SIZE(1

1) :GUARDS; "GUARDS"

4610 BS(R,C)=CHRS(117)

4620 NEXT A

4630 RETURN

5000 CALL SAY("THEI+GANES+FI
NISHED+NOW"):: IF UN THEN 50
40

5010 CALL SOUND(1000,220,1)
5020 CALL SOUND(1000,110,1)
5030 CALL SAY("A+4NICE TRY$.
o BUT . #I WIN$"):: GOTO 50
50

5040 CALL SOUND(2000,294,1,3
70,1,440,1)

5045 CALL HCHAR(22,1,32,96):
: IF GN=150 THEN CALL W(1000
):+ CALL SAY("$YOU WIN$"

)

5050 W§="FINAL SCCRE "&STR
§(INT((TN*M*(TS*10)+(GN*3))/
(6-UN)))&" "
R=23 :: C=2 :: GOSUB 6000 :
. PRINT

5055 SC=NAX(HSC,INT((TN*N*(T
§*10)+(GN*5))/(6-UK)))

5056 IF SCOHSC THEN GOSUB 70
00

5057 HSC=MAX(SC,HSC)

5058 CALL SOUND(100,900,0)
5081 GAME=GAME+] :: CALL EEY
(0,K,S):: IF K=5 THEN GANE=0
5082 IF GAME=5 THEN RUN "DSK
1.5T0P"

5090 W§=" ANOTHER GAME (Y/N
)? "

5100 R=23

5110 GOSUB 6000 :: PRINT ::
IF MOVES$="AUTO" THEN GOSUB

9900 :: RESTORE 1100 ::

60TO 190

5120 CALL SQUND(150,1397,1)
5130 CALL BEY(3,K,9)

5140 IF §=0 THEN 5130

5150 IF E=ASC("Y")THEN RESTO
RE 40 :: GOSUB 9600 :: GOTO
190

5150 IF K=ASC("N")THEN GOSUB
9600 :: GOTO 5180

5154 GOTO 5090

5160 IF K=78 THEN 5180

5170 GOTO 5121

5180 CALL SAY("GOODBYE+UNTIL
+NEXT+TIME™) :: END

6000 FOR Q=1 TO LEN(W$):: X=

ASC(SEGS(W$,9,1)):: CALL HCH
AR(R,Q+C,X):: NEXT Q ::
RETURN

7000 OPEN #1:"DSK1.CONMANDO2
" INTERNAL :: PRINT #1:SC ::
CLOSE #1 :: RETURN

7500 ACCEPT AT(24,3)BEEP:A$
o OPEN §1:A%,INTERNAL,VARIA

BLE 200

7501 FOR R=1 TO 18 :: FOR C=
1 70 32 :: INPUT $1:B$(R,C):
» NEXT C :: NEXT R

7502 FOR B=1 TO 70 :: FOR C=

1703 :: INPUT #1:B(R,C)::

NEXT C :: NEXT R :: FOR

R=1 TO 150 :: FOR C=1 T0 3 :
. INPUT $1:G(R,C):: NEXT C

7503 MEXT R :: INPUT $1:BN,G

N,BS,T8,6C, M, 0N

7504 INPUT $1:ALT,GUARDS ::
FOR R=1 TO 5 :: FOR C=1 TC 2
o INPOT $1:U(R,C):: NE

IT C :: NEXIT R

7505 INPUT $1:SC,TN,HSC :: C

LOSE #1 :: GOTO 990

7506 CLOSE #1 :: GOTO 396
7550 ACCEPT AT(24,2)BEEP:A$
:: OPEN $1:A$,INTERNAL,VARIA
BLE 200

7551 FOR R=1 TO 18 :: FOR C=
1 70 32 :: PRINT #1:B§(R,C):
: NEXT C :: NEXT R

7552 FOR R=1 TO 70 :: FOR C=

21

1 703 :: PRINT #1:B(R,C)::

NEXT C :: NEXT R :: FOR

R=1 TO 150 :: FOR C=1 TO 3 :

: PRINT #1:G(R,C):: NEXT C

7553 NEXT R :: PRINT §1:BN,G

¥,B§,TS,GC,M,UN

7554 PRINT #1:ALT,GUARDS ::

FOR R=1 TO 5 :: FOR C=1 T0 2
+ PRINT #1:0(R,C):: NE

ITC:: NEXTR

7555 PRINT #1:SC,TN,HSC

7556 CLOSE #1 :: IF E=0 THEN
2340 ELSE END

9600 FOR D=1 TO 28 :: CALL §

PRITE(#D,125,INT(RND*12)+42,9

6,124, INT(RND*50) -INT (RN

D*50) , INT (RND*50)-INT (RND*50

))::+ CALL MAGNIFY(1)

9601 FOR C=1 TO 20 :: NEXT C
:: CALL MAGNIEY(2):: NEXT D
++ RETURN

9900 FOR D=1 TO 100 :: PRINT
Y ";: MEXT D :: RETURN

15000 CALL SAY("DOKN"):: IF

ALT(1 THEN ALT=0 :: GOTO 185

0

15001 IF ALT=1 THEN 15002 EL

SE ALT=ALT-1 :: GOTO 1850

15002 IF B§(0(4,1),0(4,2))=C

HR$(117)THEN ALT=0 :: BS(U(4

1),0(4,2))=CHR§(116)::

GOTO 1850 ELSE 15003

15003 CALL SAY("YOU+CAN+NOT+

PUT+IT+DORN+THERE"):: CALL §

AY("THERE+IS+SONE+THING+

IR+THEL+WAY"):: GOTO 1850

16000 CALL SAY("UP"):: IF AL

T=0 THEN 16001 ELSE ALT=ALT+

1 :: GOTO 1850

16001 ALT=1 :: B§(U(4,1),0(4

,2))=CHR$(117):: GOTO 1850

16570 IF ALT=0 THEN 16571 EL

SE 16573

16571 IF BS(0(4,1),0(4,2)-1)

=CHRS(117)THEN B§(U(4,1),0(4

,2))=CHR$(117):: CALL HC

HAR(U(4,1),0(4,2),117):: U(4

,2)=0(4,2)-1 :: GOTO 16572 E

LSE 1640

16572 CALL HCHAR(U(4,1),U(4,
2),116):: B§(U(4,1),0(4,2))=
CHR§(116):: GOTO 1640

16573 U(T,2)=0(T,2)-1 2 IF
U(T,2)<2 THEN U(T,2)= 2

16574 CALL HCHAR(U(T,1),
2)41,ASC(BS(U(T,1),0(T,2)+1)
)):: GOTO 17000

16590 IF ALT=0 THEN 16591 EL
SE 16593

16591 IF B§(U(4,1),0(4,2)+1)
=CHR§(117) THEN B§(U(4,1),0(4
,2))=CER§(117):: CALL HC
HAR(U(4,1),0(4,2) ,117) 2 U(4
,2)=U(4,2)+1 :: GOTO 16392 £
LSE 1640

16592 CALL HCHAR(U(4,1),0(4,
2),116):: B§(U(4,1),U(4,2))=
CHR§(116):: GOTO 1640

16593 U(T,2)=0(T,2)41 2 IF
U(T,2)>32 THEN U(T,2)=32
16594 CALL HCEAR(U(T,1),0(T,
2)-1,ASC(BS(U(T,1),0(T,2)-1)
)):: GOTO 17000

16610 TF ALT=0 THEN 16611 EL
SE 16613

16611 IF B§(U(4,1)-1,0(4,2))
=CHR$(117) THEN B§(U(4,1),0(4
,2))=CHR§(117):: CALL HC
HAR(U(4,1),0(4,2),117):: U(4
,1)=0(4,1)-1 :: GOTO 16612 E
LSE 1640

16612 CALL HCHAR(U(4,1),0(4,
2),116):: B§(0(4,1),U(4,2))=
CHR§(116):: GOTO 1640

16613 O(T,1)=0(T,1)-1 :: IF
0(T,1)<1 THEN U(T,1)=1

16614 CALL HCHAR(U(T,1)+1,0(
T,2) ASC(B§(0(T,1)+1,0(T,2))
)):: GOTO 17000

16630 IF ALT=0 THEN 16631 EL
SE 16633

16631 IF B§(U(4,1)+1,0(4,2))
=CHR§(117) THER B§(U(4,1),0(4
,2))=CHR§(117):: CALL AC
HAR(O(4,1),0(4,2),117):: U(4
1)=0(4,1)41 :: GOTO 16632 E
LSE 1640

16632 CALL HCHAR(U(4,1),U(4,

U(T,
)t

1),116):: B§(U(4,1),0(4,2))=

CER§(116):: GOTO 1640

16633 O(T,1)=U(T,1)41 =2 IF

U(T,1))18 THEN U(T,1)=18

16634 CALL HCEAR((T,1)-1,1(

T,2) ASC(B§(U(T,1)-1,0(T,2))

)):: GOTO 17000

17000 CALL HCBAR(U(4,1),U(4,

2) ASC(BS(U(4,1),U(4,2))))

600 1640

30000 RESTORE 30500

30001 $P=0 :: FOR D=1 T0 10

t: READ W§ :: CALL SPRITE(3D

ASC(RS) , THT(BND*9) +2, P

#,133,5,0):: SP=SP415 :: NE

i)

30002 RESTORE 200

30003 RETURN

30500 DATA "C","0","N", K",

Al'llﬂ,lbﬂ'lol'ﬂ I'H4l

32000 RETURN

32700 | CONKANDO 4 UPDATE

T1-Extended BASIC.

() 1992 RICHARD TRYAING

32767 SUB CLE :: CALL PEEK(-

3750,5,8,1,] 8,):: DISPLAY

AT(1,20)SIZE(8) :STRS B+
©_*10-176)6": "GSTR (K+]*10-17

68" :"GSTRY(S+€*10-176):: U

BEND

[! Richard Twyning's little
typenriter program

1 CALL KEY(0,E,8):: IF S=0 T

HEN 2 ELSE PRINT CHR$(E);::
I¥ K=1S THEN CALL SAY("F
INISHED"):: END ELSE IF K=13
THEN OPEN #1:"PIO.LF* :: PR
INT #L:CHR$(10):: CLOSE

#1 ¢ PRINT :: CH=0 :: GOTO

L

3 OPEN #{:"PIC.LF" +: PRINT

$L:RPTS(" “,CH)&CHRS$(K):: CL

OSE #1 :: CH=CH+! :: IF

CH=79 THEN CH=0 :: OPEN #1:"

PIO" :: PRINT #1:"" :: CLOSE
i

4 GOTC 2

TUR-MITEs....

This is taken from ALGORITHM 4.1, Jan—-Mar 1993, and comes from Odd
Arild Olsen of Norway. Unlike other graphics programs I have given,
the joy of this one is not from the end result (which has its own
limited attractions) but rather from the dynamics of watching it
appear on screen. The plot is entirely deterministic, the end
result depending on only three variable elements.

Ficture if you will a tur—-mite going for a walk - not entirely in a
straight line! If he walks on a piece of ground without a
footprint, he will leave one and turn ninety degrees in one
direction. If he walks on a bit of ground with a footprint, he will
scuff it out, and turn in the other direction.

Got that? OK, now imagine TWO tur-mites going for a wander around
your tv screen and you watch as they each leave footprints or scuff
out existing ones.

The result of their behaviowr can be:

.. .both wander around a contained "nest" area.

...a path may be created and then erased continuously in a closed
cycle.

-...0ne stays in the nest while the other heads in a more or less
straight line to the edge of the screen— his footprints leave a
spiral type line.

.-.BOTH leave the nest and head off to the screen edge, often in
directions at right angles toc each other, sometimes in opposing
directions, and once in a while in the same direction.

. ..Both trace out an ever increasing shape, roughly diamond shaped,
which increases in size as they trudge around.

«...and within these general classifications there are some oddities
to be found!

The result is tied into the original direction of the second
tur-mite relative to the first (same, 90 degrees, opposing) and the
difference in the starting column and line (and -2 is NOT the same
as +2). 1f they start far apart they may never meet of course!

The algorithm first, for a single tur-mite:

DIR=original direction tw-mite is moving in

GETFIXEL(X,Y) #is screen position on or off?

IF PIXEL OFF THEN DIR=DIR+1 :: TURN PIXEL ON
ELSE DIR=DIR-1 :: TURN PIXEL OFF

IF DIR*3 THEN DIR=0

IF DIR<O THEM DIR=3X

IF DIR=0 THEN Y=Y+1

IF DIR=1 THEN X=X+1

IF DIR=2 THEN Y=Y-1

IF DIR=3 THEN X=X-1

go back to getpixel

You will notice we need to determine if & particular pixel is on or
off. In the Basic family of languages we have, I only know of Myarc
XEBE which allows this, so the program overleaf requires the Myarc XRB
(which requires a Myarc 512k ram card). The algorithm above may
help you translate it into other languages.

23

100 | TUR-MITES for Myarc XE 260 IF DIR>3 THEN DIR=0 ELSE
110 ! from Odd Arild Olsen IF DIR<O THEN DIR=3

120 CALL DCOLOR(16,1) 270 IF DIR=0O THEN Y=Y+1 ELSE
130 CALL GRAFHICS (3) IF DIR=1 THEN X=X+1 ELSE IF

140 CALL SCREEN (3) DIR=2 THEN Y=Y-1 ELSE IF DI

150 RANDOMIZE =3 THEN X=X-1

160 X=90+INT (RND*S50-~RND*50) ‘ <60 X=MIN(X,190) :1 Y=MIN(Y,
170 Y=110+INT (RND*SO-RND*5C) 190) 12 X=MAX(X,1) z: Y=MAX(
180 X2=X+INT (RND*23-RND*23) Ys1) ! STAY ON SCREEN

190 Y2=Y+INT (RND*23-RND*23) 270 CALL BCHAR(X2,Y2,82)

200 IF RND<.1 THEN X2=X :: Y
300 IF S2=0 THEN DIR2=DIR2+1

2=Y ! BOTH START IN SAME PLA
CE ONE TENTH OF THE TIME _ELSE DIR2=DIR2-1

210 DIR=INT(RND*4) :: DIR2=I S SZEIRT=0) -1

NT(RND*4) :: IF RND>.3 THEN - oo
DIR2=DIR 320 CALL POINT(S2,X2,Y2)

220 CALL GCHAR(X,Y,S) .. e :
230 IF S=0 THEN DIR=DIR+1 EL 590 IF DIRZ:3 THEN DIRZed EL.
240 S=(S=0)%-1 ' IF PIXEL OF 530 1IF DIR2Z=0 THEN Y2=y24+1 E

F THEN S=—1%-1=1 AND NEXT PI LSE IF DIR2=1 THEN X2=X2+1 E

XEL WILL BE FLOTTED ON- ELSE LSE IF DIRZ=2 THEN Y2=Y2-1 E
OFF . LSE IF DIR2=3 THEN X2=X2-1
250 CALL POINT(S,X,Y) ! S=1 350 X2=MIN(X2,190) :: Y2=MIN
TURNS PIXEL ON, S5=0 TURNS IT (Y2,190) :: X2=MAX(XZ,1) ::

OFF. Y2=MAX {¥2,1)

360 CALL KEY(S5,T,I) :: IF T=
32 THEN CALL LINK("DUMP",0,1
7)

370 GOTO 220

ALGORITHM is US$24 for 4 issues from:
F 0O Box 29237, Westmount Fostal Outlet,
785, Wonderland Road, LONDON, Ontario, CANADA, N6&K 1M&

The CALL LINK in line 360 uses a machine code utility for the
Myarc XB which is available from the disk library.

| r—————————————————————eee——————————————————————————————————————— e R,
e ——————————————
%\
—_—_————eeee—eeee,ee—e—e—e—e—e—e—e—,—,—,—,—,—,e—,—,—,—e—e————

TEST TI#MES 155:38 P.31 . J.Murphy for DOR-TIG

Only one submission to produce a solution to the above test
(thanks!) - can you solve it faster? Send in your code!

100 CALL CLEAR :: CALL SCREEN(S):: FOR C=1 TO 12 :: CALL COLOR(C,16,1):: NEXT C
110 INPUT " REQUIRE INFORMATION? Y/N":IN$
120 IF IN$="Y" OR IN$="y" THEN 130 ELSE 190

130 PRINT : : :"1/ THE NUMBERS YOU INPUT WILL BE THE BOTTOM RIGHT HAND
SIDE AND LEFT HAND SIDE STEPS.®

140 PRINT :"2/ ON SELECTING PRINTER THEN EVERY TIME A REPEAT NUMBER IS
FOUND THIS WILL BE PRINTED BY PRINTER, ELSE PRINTED ON SCREEN."

130 PRINT :"3/ HOLDING DOWN ‘C’ WILL PRINT,TO PRINTER, A LIST, OF HIGHES
T NUMBER OF STEPS FOUND UNTILL NO HIGHER NUMBER OCCURS.*

160 PRINT :"4/ TO STOP PROGRAM,HOLD DOWN KEY "@°.": :" PRESS ANY KEY TO CONTI
NUE"

170 CALL KEY(0,K,S):: IF K<1 THEN 170

180 !

190 !SHAW TEST TI*MES I5S5:38 P.31 . Saved as 'NUMSTEPS'. J.Murphy for DOR-TIG
200 DIM A$(100),B$(100) ,NS(20) ,NA$(20) ,NB$(20) ,NF1(20) ,NF2(20)

24 >

210 CALL CLEAR
220 INPUT "PRINT RESULTS? Y/N ":PR$

230 IF PR$="Y" OR PR$="y" THEN PL=1 :: OPEN #PL:"PID" :: GOTO 250

240 PL=0

250 INPUT "LHS 1st NUMBER ":LHS :: INPUT "RHS 1st NUMBER ":RHS

260 F1=LHS :: F2=RHS :: F3=F1

270 X=0 :: T=1

280 FOR I=1 TO 20

290 IF I=1 THEN 300 ELSE 310

300 A$(I)=STR$(F1):: B$(I)=STR$(F2):: GOTO 340

310 A$(1)=SEG$ (STR$ (VAL (A$(I-1))*VAL(B$(I-1))) ,LEN(STR$ (VAL (A$(I-1))*VAL(B$(I-1)
1)), 1)

320 B$(1)=SEG$(STR$ (VAL (B$(I-1))+VAL(A$(I))) ,LEN(STR$ (VAL (B$(I-1))+VAL(A$(1)))),
1)

330 FOR CK=I-1 TO 1 STEP -1

340 IF A$(CK)=A$(1)AND B$(CK)=B$(I)THEN 380

350 NEXT CK

360 NEXT I

370 GOTO 440

380 PRINT #PL:" REPEAT FOUND NUMBER OF STEPS= ";I-1:" REPEAT NUMBERS ARE "j
A$(CK) ;" & ";B$(CK)

390 NS(T)=I-1

300 IF NS(T)>=NS(T-1)THEN 410 ELSE 420

810 NS(T)=I-1 :: NA$(T)=A$(CK):: NB$(T)=B$(CK):: NF1(T)=F1 z: NF2(T)=F2 :: T=T+1
420 CALL KEY(0,K,S)

430 IF K=47 THEN GOSUB 540 ELSE IF K=81 THEN 60TO 520

440 PRINT #PL:* START NUMBERS WERE";F1;" & ";F2: :

450 IF PL=1 THEN 470

450 FOR D=1 TD 500 :: NEXT D

470 CALL CLEAR :: X=X+1 :: F2=F2+1 :: PRINT #PL:* NUMBER OF CHECKS= ";X

480 F3=F3+1

490 IF F3=F1+11 THEN 500 ELSE 510

500 Fi=F1+1 3: F3=F1 :: F2=RHS

510 GOTD 280

520 IF PL=1 THEN CLOSE #1

530 END

540 OPEN #2:°PIO®

550 IF Z>0 THEN 580

S60 PRINT #2:TAB(4);"NUMBER";TAB(15); "REPEAT"; TAB(28); "LHS START";TAB(38);"RHS
TART®

570 PRINT #2:TAB(4);“0OF STEPS*;TAB(15);"NUMBERS";TAB(30); "NUMBER"; TAB(39); *"NUMBE
R* :: SN=1 ’

580 FOR R=SN T0 T-1

590 PRINT #2:TAB(&);NS(R)3TAB(16) ;NAS (R); TAB(19) ;NB$ (R); TAB(32) ;NF1(R); TAB(40) ;N
F2(R)

600 NEXT R

610 CLOSE #2 :: SN=R :: I=1 :: RETURN

N S N T T N S T T T T T T T T N S T T S T N T T T S S T s T T I s e e

Tur Mite Tracks- see previous page

WHAT HAPPENED TEN YEARS AGO.....

NOVEMBER 1982

-UK magazine Electronics Today Inter- national publish d-i-y comsputer
project using 9995 CPU, 9929 VDP and Tl Power Basic. Computer known as
CORTEX. '

99er Hall of Fame includes Cheryl Regena Whitelaw, Munchman 178,950 and
Stephen Shaw Pinball (Video Games 1) 10,028,010,

-99er Magazine goes monthly

DECEMBER 1982

-Microsoft Multiplan for the 99/4A becomes a reality when the final
bugs in the 4A version of the program are worked out. First actual
showings of the program don't begin until March 1983 though.

JANUARY 1983

—— e o mn = = o e =
=S=S==SS=S=S=S==ss=====

TI produces a little known 220 page catalog listing virtually every
piece of software available for the 99/4A to that date, from both TI
and other sources. The publication, which is authored by a teaa of
seven TI employees, gives detailed descriptions of each programs and the
required hardware. The very same catalog was the source of information
for the much valued and excellently presented Unisource
Encyclopedia/Catalog. Verbatim descriptions from the Tl catalog can be
seen throughout the Unisource publication.

-T1 announces the CC-40 (compact coaputer 40) on January &, 1983.

COMPUTE' magazine begins coverage of the TI-99/4A with a single article
that is written by C. Regena. It covers the hardware, software and
miscellaneous resources of our computer.

TIHOME (UK User group) mesbership 700.

TI UK announce UK release of Parsec now, and UK release of TI99/2 in
July 1983,

Rumours of TI modules from Thorn-ENI.

No TI99/4As on sale as TI fail to meet UK market demand.

FEBRUARY 1983

P
=S=S==SsS=S==D=S=sS==s=s===

The T1-99/2 coeputer is introduced to the world. Photographs of it and
it's peripherals can be found in the February and March issues of 9%er
Home Computer Magazine.

-Ad in Compute' magazine lists TI-99/4A as a computer that will have
IAXXON for it by April.

DataSoft advertises for Tl programmers in Compute! magazine to write
games for the 99/4A line.

-C. Regena’s "Prograsmer’'s Reference Guide..." book released by the
Coapute! Books Company.

-Thorn EMI announce proposed release of Tl Modules Submarine Cosmander
and River Rescue in Spring 1983.

-PC World announce that in 1982 TI sold 20,000 TI99/4As in UK.

-99er Mag become 99er Home Computer Mag

-TI reports 50 US User Groups

MARCH 1983

Microsoft Multiplan is released for the 99/4A.

26

Harry Allston
10Z00 Kings River Road #57
Reedley, CA 936545622

November 09, 1990

The disks now added to your user group disk library hold the redef-
inition of alpha A-Z. I took the TIFS definition and traced to waxed
paper then redefined them with TI-ARTIST FLUS! .

I got tired of the ‘stepstair’ ASC banners. The procedures to use the
redefined characters are a little cumbersome and do require constant
attention to the printer, BUT, they sure do make a nice looking
banner. (an unbiased opinion)

1. OPEN TI-ARTIST to FRINT.
. Make Printer ready.
A. Insert disk that includes the FIRST letter of the banner.
4, In FRINT mode, press 1.
ENTER ‘DSE(rn) .ALFHA~(Nn) .
Fress R (rotate),
Press V (full width),
Fress P (print).
The R and V need not be changed in the course of printing the
banner.
5. I find it takes 12 passes of the printer prior to printing.
4., When the last print pass takes place, press FCTN 4 (CLEAR). This
astops the program and printer.
7. Roll the printer to the space desired between letters.
DISENGAGE the friction feed!!!
TURN OFF FRINTER.
TURN ON PRINTER.
If you do not initialize the printer you will print a
‘do-hickey.
8. PRESS 1| and enter new filename for next character. Make sure the
proper disk is in the drive. Press P to print.
9. Place finger on top of printer to prevent false forward motion of
paper. Continue to hold paper until you receive the FIRST PRINT PASS.
QUICKLY release the friction enable lever. You are now on your second
character.
I know this sounds like a lot of bother but you will like the results.

I hope if a use is found for the program(s) that any improvements on
the graphice will be passed on to me.
Enjoy.

mom tomum sosse smame sasus sasme S0 e Seece e bess Toom Sesm: PO ST WeN Sosst Sese Sess) Feew POa Sees Seew Seaw Syt Seass
mmmmSmEOSEEmEEmImmmImmEEmmEmEmmE s

FPLAYING AMERICA IN XEASIC
By Earl Raguse

The following little XBASIC music program plays AMERICA. It
illustrates one way that you can just copy the note frequencies you
need from the TI XB Manual , and incorporate them into the program then
forget them. Thereafter you just use the musical note names.

I First listed AMERICA in 28 column format, and there was so much
wasted space, because so0 many lines exceed 28 columns by only 1 or 2
characters, I redid it!

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
495
500
310
520
330
540
350
560
370
580
390
600
610
620
630
640
630
660
470
680

28

! SAVE DSK1.AMERICA

'By Earl Raguse 5/12/88
DISPLAY AT(6,11)ERASE ALL:"AMERICA"
XyY,2=30000 :: L=340 :: D=1 1

XV, YV,2V=0

ME=330 :: MF=349 :: MG=392 :: MA=440 :: MBF=466 :: HC=523 :: HD=587

DISPLAY AT(B,0):"My Coun-try,"
X=MF :: D=2 :: GOSUEB 1000

X=MF :: GOSUB 1000

X=MG :: GOSUB 1000

DISPLAY AT(8,13):""'tis of thee,"
X=ME :: D=3 :: GOSUB 1000

X=MF :: D={ :: GOSUB 1000

X=MG :: D=2 :: GOSUB 1000
DISPLAY AT(10,0):"Sweet Land of"
X=MA :: GOSUB 1000

X=MA :: GOSUB 1000

X=MBF :: GOSUB 1000

DISPLAY AT(10,15):"Lib-er-ty"
X=MA :: D=3 :: GOSUB 1000

X=MG6 :: D=1 :: GOSUB 1000

X=MF :: D=2 :: BOSUB 1000
DISPLAY AT(12,0):"0f thee I"
X=MG6 :: GOSUB 1000

X=MF :: GOSUB 1000

X=ME :: GOSUB 1000

DISPLAY AT(12,11):"Sing."

X=MF :: D=é :: BOSUB 1000
DISPLAY AT(14,0):"Land where my"
X=HD :: D=2 :: GOSUB 1000

X=HD :: GOSUB 1000

X=HD :: GOSUB 1000

DISPLAY AT(14,15):"fa-thers died,"
X=HD :: D=3 :: BOSUB 1000

X=MBF :: D=1 :: GOSUB 1000

X=MA :: D=2 :: GOSUB 1000
DISPLAY AT(146,0):"Land of the"
X=MBF :: GOSUB 1000

X=MBF :: GOSUB 1000

X=MBF :: GOSUB 1000

DISPLAY AT(16,13):"Pil-grim’s pride"
X=MBF :: D=3 :: BOSUB 1000

X=MA :: D=1 :: GOSUB 1000

X=MB :: D=2 :: GOSUB 1000
DISPLAY AT(18,0):"From ev-'ry"
X=MA :: GOSUB 1000

X=MBF :: D=1 :: GOSUB 1000

X=MA :: GOSUB 1000

X=MG :: GOSUB 1000

X=MF :: GOSUB 1000

DISPLAY AT(18,13):"Moun-tain side, "
X=MA :: D=3 :: GOSUB 1000

X=MBF :: D=1 :: GOSUB 1000

X=HC :: D=2 :: GOSUB 1000
DISPLAY AT(20,0):"Let--Free-dom"
X=HD :: D=1 :: GOSUB 1000

X=HC :: D=,5 :: GOSUB 1000

X=MBF :: GOSUB 1000

X=MA :: D=2 :: GOSUB 1000

X=MG :: GOSUB 1000

DISPLAY AT(20,15):"ring."
! continued--->

UK Mains - IS it 240V AC from the socket?

I have had some problems recently
with console lock ups, which did not
seem to go away when cleaning module
or side connector contacts.
Then I found a text advising that
the console was very prone to lock
up if the mains supply varied by
more than about Si.
That was my problem! Too low a
voltage- keeps the bills down but
not too good for computers. The
solution was to remove all high
wattage devices from the console
mains ring when using the computer-
the resulting small increase in
supply voltage did the trick.
Over at my parents house we measured
a supply voltage more than 5% OVER
the standard 240v, and this was
confirmed by the electricity
supplier who put in a recording
meter- high voltages put up bills
and burn things out. Their supply
voltage has now been adjusted to
240v,
So, any problems with electrical
things, check your mains voltage-
our privatised suppliers do not seem
too worried about the voltage they
feed to us these days'

stephen.

620 X=MF :: D=é& 1: GOSUR 1000

P90 END

1000 !'*%PLAY IT FUZZY**

1010 Y=X%,99 :1: Z=X%¥1.01 32 YV,ZV=XV+8
1020 CALL SOUNDA(L*D, X, XV,Y,YV,Z,ZV)
1030 RETURN

im0 22048 seaes rrees esee sesen wiss rusns sevee ages sues) eies Saass v bessy bevss
I T T I T I N I s

Lets take a look at what goes on here. In line 1320, several defaults
are set; they don’'t really matter much in this program, but its good
practice to make sure that you don't have loose ends.

Line 140: Here we equate the frequency values from the XB manual to
the note names A,R,....F,B. We designate the octave starting with
middle C by prefix M, and the octave above that by prefix H. In
monthe to come we will designate am octave one lower or higher by
adding prefixes L or H, then LL and HH for two octaves up or down.
Flat notes are postfixed with F and sharp notes with 8.

Most books make the octaves from C to C° rather thanm A to A’ as TI
did. The actual names given the octaves by musicians are strange
words, and since we don’'t need them, I will never mention them except
for the middle C octave which is called One Line and abbreviated C°’.
I will always use MC, less ambiguous.

In Line 150, I have DISFLAYed the lyrics just prior to coding and
playing the measuwre associated with it. This makes it easy for the
beginners, like me, to find a note sequence, if any corrections need
to be made. I read text much better than music notation. I like to
code a measure at a time, that way I can count measures on the staff
and the program to find out where I am.

Displaying the lyrics this way has definite disadvantages however; as
in this case, verse two frequently has exactly the same notes, but of
course different words. If the words and music are kept separate,
they can be reused as subroutines.

When I do that, I print out one verse of the lyrics, then play the
music which I write as a subroutine. Then I print the next verse
followed by the music subroutine, etc etc. Always carefully examine
a piece of music for repeating sequences of notes. There is almost
always some in a longer piece. Write these only once as subroutines
and call them at the appropriate times.

Lines 160-180 demonstrate the technique used in this program. This
is the way most experts do it, it is very versatile, and needs only
one CALL SOUND subroutine (ie 1000). Take a look at it now, and note
what the variables are.

In this case I need to initiate only one frequency variable X, as the
other two variables (Y and Z) are mathematically related and taken
care of in the FLAY IT FUZZY subroutine (1000)., The other variable
which must be specified, if changed, before calling the subroutine is
D, the duration variable which is used to multiply the length L (1/8
note length).

One could also specify the volume variables XV,YV and ZV to get
special effects. Later, I will show you a technique using READ and
DATA statments, but this is only efficient with certain kinds of

music. 729
——

Looking at the subroutine 1000, "FLAY IT FUZZY", note line 1010, this
line sets up freguency variables Y and 7 & little lower and a little
higher in frequency than the main frequency and their Fespecti ve
volume variables (attenuation) YV and 2V somewhat Migher (ie lower
veal)y, all as a function of X and XV.

This saves a lot of code in the above line statements. The result
here is to make the music frequercy a little less pure, in other
words Fuzay. I youw are a purist, and think you don't like this
effect, just use a (!) to inactivate line 1010,

Now for the lesson of the day, with AMERICA typed, loaded and tried,
including inactivation of 1010, type and MERGE the short Program
called QUAVERY. It too has a statement 1030 which you should try
inactivating with ¢ !),

1 ! SAVE DSEL. QUAVERY , MERGE

1000 '*%xFLAY IT QUAVERY**

1010 ! By E Raguse , 5/12/88

1020 !'TRY COMMENTING QUT 1030

1OZ0 YeX%,99/2 11 Z=X*1.01/2 33YV=XV+9 11 ZV=20 1040 FOR W=1 TO 2%D
1050 CALL SOUND (~L.*D,X,XV,Y,YV,Z,ZV)

1060 CALL SOUND (~L*¥D,X/1.01 ,XV+2,Y,YV+4 ,7,72V+4)

1070 NEXT W

1080 CALL SOUND (~1,X/2,X\V)

1090 RETURN

KERERR R ERRR RN R R LR RRR R ERR R R®

*¥ ¥ ¥
#+ CONSOLE ROM RANDOM NUMBER ##
LE GENERATOR ROUTINE *#
L34 AT >027A IN ROM k#
#% PLACE MODULO VALUE IN R13 ##
*# PLACE SEED AT >B3CO ¥
* ¥ BY MACK MCCORMICK * %

FERRRRERRRREERERERERERERRRERRRER R

RANDOM LI R4,>4FES CONSTANT
MPY @>83CO,R4 >B3CO IS5 RND NUMBER SEED
Al RS,>7AB9
MOV R5,@>83C0 MOVE IT BACK OUT TO SEED

MOVB #R13,Réb LOAD MODULD VALUE

SRL Ré,8 SHIFT TO LOW ORDER

INC Ré6

CLR R4 SET UP R4,RS FOR DIV

SWPB RS SWAP BYTES

DIV Ré6,R4 PERFORM DIVISION

MOVB @WS+11,@>8378 MOVE RSLB TO »>8378 RANDOM NUMBER
RT

E 3

YOU CAN ALWAYS SINGLE STEP THRU IT IN CONSOLE ROM TO SEE

* EXACTLY HOW IT WORKS. BY MACK MCCORMICK 74206,1522

* ANOTHER MEANS IS TO TAKE BYTES FROM ROM IN SEQUENCE. THEY CLOSELY
* APPROXIMATE A RANDOM NUMBER.,

30

PLAYING CHARGE IN XEASIC
By Earl Raguse

I have chosen the attached program called CHARGE, it plays the
bugle call of the same name. Notice, that it uses the standard
CALL SOUND statement for each note using the frequency
expressed as a number. This method is rather tedious for a
larger program, but for this one it is relatively efficient.

I have used a variable L for the note length, because it is
used many times. Notice that I used a delay loop to do a rest
in line 180. Rests can also be done using CALL SOUND(R,
30000,30) where R is the rest period. As an aside, a CALL
SOUND statement can be used instead of a delay loop, in
non—sound programs, provided the delay is not greater than
about 4.25 seconds.

100 ! SAVE DSK1.CHARGE

110 ! By Earl Raguse 5/12/88
120 DISPLAY AT(12,11)ERASE ALL: "CHARGE"
130 L=125

140 CALL SOUND(L ,1047,0)

150 CALL SOUND(L,1175,0)

160 CALL SOUND{L,1319,0)

170 CALL SOUND(L,1568,0)

180 FOR T=1 TO 125 3: NEXT T
190 CALL SOUND(L*2.5,1319,0)
200 CALL SOUND(L*6,1568,0)
210 END

Does anyone in the UK have a MIDI-MASTER interface? Dolores of
Harrison Software has started a Midi user group and newsletter.
The Casio 700 is not considered usable as it only allows one
single channel for Midi.

33 e o

== _=======

RITS and PIECES

by Col Christensen
Brisbane User Group
Australia

SFRITELY SFRITES

Just a few little items in Extended Basic first. This one is a
good old favourite called 3D Sprites we used to show to those
poor souls with inferior computers to make their mouths gape.
Just one program line and great things happen. If you don't
know the routine, try it and see.

100 CALL CLEAR :: CALL SCREE
N(2):: CALL MAGNIFY(2):: FOR
X=1 TO 26 :: CALL SPRITE (#X
S X+64 , INT(X/2)+3,10,40,30,10
4-X*8):: NEXT X :: INPUT AS$

31

Here is a little demo program 1 made many years back to
demonstrate the priority of sprites and illustrates the effect
of a sprite of higher priority masking out any of lower order
when they coincide on the screen.

100 CALL CLEAR :: CALL SCREE

N(2):: CALL MAGNIFY(2):: C=3
:: RANDOMIZE

110 CALL CHAR (42, "FFFFFFFFFF

FFFFFF")

120 CALL CHAR(36,"00001F1131

F1FF42")

130 FOR X=1 TO 27 STEF 2

210 C=C+3 :: IF C»16 THEN C=

C-14

140 CALL SFRITE (#X,42,C,180-
X%4 ,220-X%6)

150 NEXT X

160 C=4

170 FOR X=2 TO 28 STEF 2

180 SP=INT (RND%*12+5)

190 C=C+3 :: IF C>16 THEN C=

C-14

200 CALL SPRITE (#X,36,C,180-
X*4 ,220-X%6,0,-SP)

210 NEXT X

220 GOTO 220

Remember those messages picked out with monster LEDs that move
across a display (the message not the LEDs). This is another
demo routine used way back in the early 1980s simply by using
the DISPLAY AT statement and was incorporated in an XBasic LOAD
program .

100 CALL CLEAR
110 Af="

THE TI-99/4A IS A C
OMFUTER MILES ABOVE ITS CLAS
S AND CAN RUN RINGS ROUND IT
S POOR COMFETITORS."
120 DISFPLAY AT(22,1)SIZE(28)
HYAY:
130 AF=SEGF(A$,2,LEN(A$)-1)%
SEG#(A%,1,1)
140 60OTO 120

CONCATENATION IN BASIC AND TI-BRASE

TI BASIC AND TI-BASE command files allow the printing or
display to the screen of character and numeric variables and
literals. How you type in these instructions varies though. A
basic program line is stored in memory as one long string of
code but appears on the screen wrapped around on up to 4 screen
lines.

€.g. An XBasic program line might apear on the screen as:

160 RANDOMIZE :: FOR I=1 TO

32 2 X=INT(RND*100)+1) :: N
BR(I)=X :: NEXT I :: CALL CL
EAR :: CALL MAGNIFY(2)

32

TI-BASE is different in that it stores its command files on
disk as D/V 80 records and each record in that file is taken
from just one screen line which is 40 characters in length. So
it appears that this situation places a limit on the length of
TIR's printing and display capabilities.

TIE (here short for TI Base'!) overcomes this limitation by
providing for, like Basic, a form of concatenation. This is a
horrendous word but simply it means the construction of a
larger string from a number of smaller components. Basic
provides the % symbol for this purpose. e.g.

100 A$="THE ANSWER IS"&NUME

ER%"SQUARE"&UNIT#

110 PRINT A#
TIE interprets concatenation if a | (FCTN/A) is placed between
the bits to be joined. If a splillover from one screen line to
the next occurs then it is necessary to place a semicolon (3)
at the end of each but the last line to indicate that more
concatenation is to follow. The following line needs to begin
with a |{. See TI-BASE Manual pages 1-2, 3-13 and 5-9/5-10

LOCAL STRING C 80

LOCAL NUMBER N 4 ©

LOCAL UNITS C 8

REFLACE STRING WITH "THE ANSWER IS";
iNUMBER ! " SGUARE "I1UNITS

DISPLAY STRING

In operation, both of the above could give a readout of
THE ANSWER IS 156 SQUARE METRES

TIE can also handle long quotes in a REFLACE WITH command using
any number of screen lines. Note the (3) at the end of each
line and the (i) at the beginning of the next.

REFPLACE STRING WITH "Release the alpha";
! "lock key and use the joystick con';
i "trollers"

DISFLAY STRING

I had problems when I tried to send a long concatenated string
to the printer with the TIER PRINT statement though. The
concatenation shown above only worked following a REFLACE WITH
and a FRINT (or DISFLAY) the variable as shown above. I wanted
simply to imitate the basic pending print separator (3)
function that can be used in a program line such as ;

FRINT "THE ANSWER IS";NUMR
ER; "SQUARE "3;UNIT#.

It was a nuisance and a waste of good memory space to have to
use the REFLACE WITH statement in a TIE command file before
each PRINT.

(%

W)

The TIEB Manual makes no mention of possible ways make a print
statement extend beyond the one screen line. But finally and
recently, I accidently discovered how it is done and so simple
too. How could I ever have been so stupid. All one has to do is
to use the semicolon symbol (3;) at the end of each line on the
screen. So a piece of TIR command file to send a long string to
the printer could look like:

FRINT "Release the alphalock key "j
"and use the E, §, D, and X keys";
" or Joystick 1."

Notice that there is no (!) needed at the beginning of each
subsidiary line like in the concatenation following a REPLACE
WITH statement. But if quoted text and variables are to be
mixed in the one print statement, at least one space must
separate each.

PRINT "THE ANSWER IS" NUMEER H
"SEQUARE" UNITS "WHICH IS »;
"THE AREA OF THE SQUARE"

FEB FOWER SUFFLY 1

Garry gave me a call one day to say that his system had shut
down on him. There were no card lights lit up and the PEE
seemed to be dead. His tests with a multimeter indicated that
for the +1&6v rail less than a volt was showing, and on the
negative supply he measured around -50v. Weird. Some slow
thinking (I'm not prone to quick thinking) gave me the
impression that the DC earth connection was open circuit or
even the transformer centre tap was not at earth potential.
Without an earth connection, I reasoned, the "earth" would
float somewhere between the positive supply and the negative
supply.

Its position would be governed by the amount of current drawn
in each half of the supply. As heavy current is used in the +Sv
in the cards and only relatively low current in the negative
supply, the earth point should float at a point very near to
the positive supply leaving about double the normal voltage
below the earth point. This was what the symptoms pointed to.
When he had time, Garry opened the FEER and sure enough, the
earth connection on the card that the connector plugs into had
overheated and cooked. He soldered the wire directly to the
board, powered up and all worked again.

FER POWER SUFPLY 2

Another instance of FER failure occurred in one of Chas’ boxes
after a card whose connector was a slightly sloppy fit in the
FEE backplane socket was inserted. The nominal +16v and the
—16v supplies {actually they come out at around 23v each) are
on adjacent connectors and a misaligned card could short the
two together.

This seemed to have been the cause because voltages in the PEE
were as dead as doornails. Fortunately, all the cards still
worked perfectly in another expansion box so no damage had been
done to them. Continuity tests on the transformer primary
windings showed an open circuit. Once before (Bugbytes, April
1987) I reported that the manufacturer of the transformer saw
fit to put a fuse INSIDE the tranny and cover it all over with
tape and a nylon cover under which no one would know it lurked.
I soon uncovered the fuse only to find that it already had a

-,

jumper wire connected from one end to the other. e B

34

There had to be a break somewhere else in the winding. My plan
now was to unwind the primary winding down till I came to the
open circuit, repair it then rewind the wire back on. I
stripped the iron core from the windings, no easy task, and
proceeded to remove the rest of the tape from the primary
winding.

Lo and behold, there was A SECOND FUSE, blown of course.
Bridging it with a wire brought back continuity into the
primary winding so I removed both fuses, connected together the
wiring ends that were joined to the fuses and insulated them.
The next thing to do was to replace the hefty 1.5A slow-blow
mains fuse at the back of the PEE with a standard .5A one
though I would have preferred to try a .25A slow blow type to
give better protection but I didn't have one at the time. If a
fuse goes now, it can be easily replaced.

e e D e e D D ——
B

ASSEMELY FROGRAMMING- ADVANCED LEVEL ACCESSING THE DISK
ACCESSING THE DISEKE DRIVE DIRECTLY DRIVE WITH ASSEMBLY
LANGUAGE

Written by Mack McCormick.

The subject is disk DSR routines at the disk ROM and direct
access to the controller chip level. In reviewing the
information I have on the subject I find that the entire scope
is covered in five books for a total of about 2,000 pages.
Obviously, I must limit my discussion.

The disk D5R is developed on thiree levels:

Level 1 - Basic disk functions. Sector Read/Write, head
control, drive selections, track formatting and buffer
allocation

Level 2 - The "file" concept. Each file is assessible by
its name and an offset of a 256-byte block relative to the
beginning of the file.

Level % - Extension to the user level. Fixed or variable
length records or files.

One other level which you won’'t find documented is direct
access to the controller chip in the controller card.

I intend to confine my discussion to level 1 and chip
level routines. Due to length, this tutorial will discuss
sector I1/0.

There are three different controller chips contained in
the thiree different controller cards on the market (TI,
CorComp, MYARC). The chips are all made by Western Digital.
They are the WD 1771, WD 2793, and the WD 1770 respectively.
Once again I will limit this tutorial to the TI controller card
and its chip.

Everything in this tutorial will pertain to all three
cards except direct access to the controller chip and its
associated commands. 3 5

First lets review the TI controller card features and ROM.
As you know it can control up to 3 DS/SD drives. There are 40
tracks per drive and 9 sectors per track. Each sector is 256
bytes in length. Track O is closest to the outside and track 39
nearest the center of the disk.

There is a built in DSR ROM which contains é& level one
routines which may be executed by branching to them. These
will accomplish almost all we need to do except things like
track 1/0, Volume Information Block update and others. To get
at these routines you must access the Floppy Disk Controller
(FDC) chip directly. To accomplish this we need to know how the
FDC chip accesses the drive and build from there.

These are some of the features of th WD 1771 chip: Automatic
track seek with verification, in the read/write mode
single/multiple sector read/write with automatic sector seek.
Writes entire track for formatting. FProgrammable track to
track step times.

Six registers:

Data shift register - Assembles serial data from the disk
read and transfers during write.

Data Register — 8 bit holding register during read/write
operations. During a seek command it contains the desired
track position.

Track Register — 8 bit register that contains the track
number of the current read/write head position. Incremented by
one as the head steps in toward track 39 and decremented by one
towards track 00. Contents are compared with the disk track
number in the ID field during read, write and verify.

Sector Register — 8 bit register for holding the desired
sector position. Contents compared with the disk sector ID
field during read and write operations.

Command Register — 8 bit register for the command to be
executed.

Status Register — 8 bit register to hold drive status.

There are eleven commands available:

Bits
Type Command 7 65 4 3 2 1 Q
I Restore 0000 h vV ri ro
I Seek 00 1nh V riro
I Step OO0 1 uh V ri1 ro
I Step In 01 0uh V rl r0
I Step Out O1 1 uh V r1 ro
11 Read Command 1 O 0Omb E 0O 0
11 Write Command 1 O1mb E al a2
IIT Read Address 11000 E 0O 0
'III1 Read Track 11100 1 0 s
ITI Write Track 11110 i 0O 0
v Force Interrupt 1 1 O 1 I3 I2 11 I4
e e 2 T+ 3 -+ 3 ¢ 3 3 3 % 3 T3

Flug in the appropriate values by type command:
(see next page)

36

Type 1 :

h = Head load flag. 1-beginning. 2-not beginning.
V = Verify. l-verify on last track. O0O-no verify.
rir9o = Stepping motor rate. 0 0 - 6ms. 1 0 - 10Oms. 1 1 - 20ms.

u = Update flag. l1-update track register. 0O—-no update.

Note: Head step times are based on the 1 MHz clock contained in
the controller card.

Type 11
m = multiple record. O-single. 1-multiple.

b = Block length flag. 1-IBM format (256 BRyte). Other flags
only if need to know.

ala0 = Data Address Mark 00->*FE(Data Mark)

Type III
s = Synchronize Flag. 0-8ingle density.

Type IV {interrupt condition flags)

IO = 1, not ready to transisition.

I1 = 1, Ready to not ready transisition
12 = 1, Index PFulse

3 =1, Immediate Interrupt

E = Enable head load and 10 msec delay
i-delay. 0O-head already loaded no delay.

This all seems confusing now but before its all over you
should have a better understanding.

Head loading means the read/write heads are placed in contact
with the disk (the click you hear when the drive activates) and
data may be transfered. The head stays loaded until a command
is received to unload or until timeout occurs (2 disk
revolutions).

I suppose this is the best place to cover the disk format.

Have you ever wondered what’'s in between the data fields (256
bytes), well here it is. (ON NEXT PAGE!)

37

Number of Bytes Whats There

12 Index Gap. *FF
6 Sync *00
Sector begins here. Repeat 9 times *
1 ID Single density *FE
i Track Address >00->27 I
1 Side >00 l
1 Sector Address >00-:08
1 Sector Len >01 u
2 Cycle Redundancy Check
*F7
11 Data Separator >FF
1) Sync *00
1 Data Address Mark *FR
256 File Data
2 CRC »*F7
Sector ends here *
36 Data Separator >FF
240 End of track fill >FF

From this you can see there are 3177 bytes per track but only
2304 are actual data bytes.

There are three ways to perform a sector 1/0. You may use
the DSRLNEK, access the disk ROM without DSRLNEK, or access the
controller chip directly.

Lets examine the first two methods.
Sector 1/0 is commonly refered to as subprogram 010. All
arguments for the I1/0 are passed thru the FAC block in CPU RAM
(*834A). Here’'s how it maps out:
*834A—-4R {Address of actual sector

accessed when complete.’

*834C Disk drive 1,2, or 3.

*834D Read/Write O=write. <:>0O=read

—

+*834E-4F VDFP Buffer Address (256 byte
sire).

+8330-51 Sector Number B

Error codes returned at »8350 after operation. O=no error.
l=error.

)
08)

P I I K I I I I I I I K I A K I 6 W I I K K I K I K

SECTOR I1/0 ROUTINE DEMO USING
DSRLNE
ACCOMPANIES SECTOR I/0 TUTORIAL
BY MACK MCCORMICK 74206,1522

* %k %k k %k ¥
* %k %k ¥k %k %k

3 36 I3 St I I H 3 33 M A I I I W I I I K I I I I I N

DEF SECTOR
REF VMEW,VMEBER, DSRLNK

PARI DATA »>0110 SUBRFROGRAM 010
CPUBUF BSS 256 CFU BUFFER
SECTOR LI RO, >FBO ADDRESS OF FAR

LI R1,FPARI PAR

LI R2,2 TWO RYTES

BLWF @VMBW WRITE PAR TO VDP

LI R1,:0101

MOV R1,@3>834C /DISK DRIVE 1, <3>0=READ

LI Ri,>1000

MOV R1,@>834E /VDF BUFFER START ADDRESS

/ AT LEAST 256K

CLR R1

MOV R1,@:8350 /LO0K AT SECTOR O

LI R1,:F80

MOV Ri,@:8356 FOINT TO THE PAE AT >B356

BLWF @DSRLNE ACCESS THE DISK

DATA A USE DISK DSR SUBROUTINES
%* NORMALLY YOU WOULD CHECK FOR ERRORS AT »8350 HERE
* YOU COULD ALSO CHECK >834A FOR ACTUAL SECTOR READ

e e e e e e e *

* PUT IT UF ON THE SCREEN *

P e e e e e e e e e *
LI RO, >1000 VDF BUFFER ADDRESS
LI R1,CPUBUF CPU BUFFER ADDRESS
LI RZ,256 MOVE 256 BYTES DOWN

BLWF @VMER
*THIS WOULD BE THE FLACE TO MANIPULATE DATA BEFORE WRITING

IT BACK UP

CLR RO SIT FPOSITION O

BLWF @VMEW WRITE UFP TO SCREEN IMAGE TABLE
B e s e e e e *
* WRITE BACEKE OUT TO DISEK *
B i A e g S e S *

LI R1,>0100 /DISK 1, WRITE/

MOV R1,@:834C

BLWF @DSRLNE WRITE 1T BACEK OUT

DATA >A

JMF % YOU WOULD EXIT THE FROGRAM HERE

END

¥ YOU CAN SEE HOW EASY IT IS TO WRITE A SECTOR COFIER JUST FROM
* THIS SHORT CODE ADD A FEW WHISTLES AND EBELLS AND YOU HAVE A
* FIRST CLASS FRODUCT

R e R
2D EXAMPLE
SECTOR I/0 ROUTINE DEMO USING
DIRECT ROM ACCESS
ACCOMFANIES SECTOR I/0 TUTORIAL
BY MACEK MCCORMICK 74206,1522
233636 363 I 36 3696 3 336 I 3636 306 36 66 96 36 36 36 36 36 06 3 3696 39 36 36 56
DEF SECTOR
REF VMBW,VMER,GPLWS

* k ok ok Kk *k
* K ok Kk Kk *k

SUBR DATA >0110 SUBPROGRAM 010
CPURUF BSS 256 CPU BUFFER
MYREG BSS >20 MY WORKSFACE

SECTOR LWFI GPLWS

LI Ri,>0101

MOV Ri,@:834C /DISK DRIVE 1, <>0=READ

LI R1,3>1000

MOV R1,@>B34E /VDF BUFFER START ADDRESS/
/AT LEAST 256K

CLR R1

MOV R1,@:>8350 /LO0K AT SECTOR ©

LI R12,>1100 SET CRU REGISTER TO BASE ADDRESS OF
>1100 DSK DSR ROM

5B0 O FAGE IN THE DISK DSR ROM TO »>4000

Of course you could eliminate the next five instructions and

*
* manually scan the DSR ROM for the word which immediately
* proceeds >0110 and loaded R? with that value which is >56DC
* in the case of the CorComp card and BL directly to it. I
* scanned the link table so this program could be used with
* other DSR subroutines and with all controller cards.
LI R?, *4000 BEGINNING OF DISK DSR ROM
NEXT c #*R9+,@SUBR SEARCH LINK TABLE FOR ENTRY POINT
JIJNE NEXT
Al R?,-4 SURTRACT 4 FOR ENTRY POINT
MOV *R9,R9 GET THE ENTRY POINT ADDRESS
BL *R9 BRANCH TO THE ROUTINE

* NORMALLY YOU WOULD CHECEK FOR ERRORS AT »8350 HERE
* YOU COULD ALSO CHECK »834A FOR ACTUAL SECTOR READ

T . *
* PUT IT UP ON THE SCREEN *
T — *
NOF NOFP IS REGQUIRED HERE BECAUSE THE DSR
ROUTINE INCT's THE
* RT ADDRESS
LI RO, »1000 VDF BUFFER ADDRESS
LI R1,CPUBUF CFU BUFFER ADDRESS
LI R2,256 MOVE 256 BYTES DOWN

BLWF @VMER
*THIS WOULD BE THE FLACE TO MANIPULATE DATA BEFORE WRITING
IT BACK UP

40

CLR RO SIT FPOSITION ©

BLWFP @VMBW WRITE UP TO SCREEN IMAGE TARLE
T *
¥ WRITE BACK 0OUT TO DISK *
P e e e e e e e *
LI R1,>0100 /DISK 1, WRITE/
MOV R1,@>834C
BL *R9
SBZ O PAGE OUT DISK DSR
JMP % YOU WOULD EXIT THE PROGRAM HERE
END

'l‘llllllllllli]lll!lllllll'IllI’lllIlllllllllilll‘lllllllil
{2] {200 A I T U I D O O U I D D N IR N D DN IR N RN B R DN AN] L2 T I T T N I D AN O D BN BN R LN I I B I DN I A

36 3 3 3 I I 3 6 W I I I I I W I I I I I I KWK I KW

o, * ¥
#%% This program does a sector read ¥* %
*%% at the FDC level FD1771. This * 3
*## tutorial is part of the continuing #***
*##% series for advanced programmers. * 3%
#%% Will only work with TI card as * %%

*%% written. Must INV commands to work *##*
#%% with CorComp. TI card is on an INV ##*

%% data bus. CorComp is not. %%
* %% Mack %
* % 3%
¥* 3% EE X

2336369 36 30 363036 6 33 36 3636 369 36 366 369996 3 636969 36 36696 96 3636 9096 9
DEF SECTOR

WS EQU >83EO LETS USE SOME HIGH SPEED RAM FOR OUR WS
A3 I 363 I I 3336 636 I 36 3 I I 69 36 623 I I I I I I I I

* FD1771 DEFINITIONS *

B 3636 36 36 36 3 6 96 36 36 36 363 36 I 36 36 6 96 36 96 3 33 36369606 3 36 3 B

FDS EQU >5FFO READ STATUS

FDRT EQU >SFF2 READ TRACK REGISTER
FDRD EQU >SFF6 READ DATA REGISTER

FDC EQU >SFF8 COMMAND REGISTER

FDWT EQU >SFFA WRITE TRACK REGISTER
FDWS EQU >5FFC WRITE SECTOR REGISTER
FDWD EQU *SFFE WRITE DATA REGISTER

P36 36 36 36 3 36 3696 36 36 36 330 36 36 90 36 36 9 90 63606 363699036 96 606 3036 4

* REGISTER DEFINITIONS *

363 36 36 36 36 36 3696 3 36 3696 36 36 3 69 36 96969636969 6909669036 363

VALUE EQU O GENERAL

VALUEL EQU 1 GENERAL

RAMPNT EQU 2 VDF RAM POINTER

COUNT EQU 6 GENERAL FURPOSE COUNTER
TEMF EQU 7 USED TO STORE RT ADDR
TEMFL EQU 8 USED TO STORE RT ADDR
CRUERAS EQU 12 CONTAINS CRU ADDRESS
VDP EQU 15 CONTAINS ADDR OF VDFWA

****************i***&-*******************

* CRU DEFINITIONS *
93636 36 96 3636936 36 3669 36360 363 I 33BN

MOTBIT EQU 1 MOTOR ON BIT OFFSET

WAIRIT EQU 2 WAIT LOGIC ENAEBLE

HLTRIT EQU 3 HEAD LOAD TIMING BIT

DS1RIT EQU 4 FIRST DRIVE SELECT BIT OFFSET

L1

36 36 36 3 3 3 3 3 I I 3 I I W HH I W W I I I I H I I NI IR

* VDF DEFINITIONS *
3626 3 3 36 33636 36 36 36 3 9606 3600 0 I IE I IE I
- VDFWA EQU >8COZ VDF WRITE ADDRESS

VRD EQU >8800-VDPWA READ DATA
VWD EQU >BCOO-VDFWA WRITE DATA
VRS EQU >8802-VDFWA STATUS

36 36 36 36 3 36 36 I 6 3 6 H 3 3 I I I K IR W I I I I I I I I I NN

* MISC DEFINITIONS ' *

AP 32 I3 36 69 3636 6 36 I 3636 3636 I 36 3636 I 36 39696 36 96 369696 3606 3 e 6

T75M EQU 75%40 75 MILLISECONDS
T1000M EQU 40000 ONE SECOND

NSEC EQU 9 % SECTORS PER TRACK
SECLEN EQU 256 # BYTES PER SECTOR
MEMSTA EQU O VDF LOCATION FOR DATA

(SCREEN IMAGE TABLE HERE)
#-— PROGRAM STARTS HERE -——#%

SECTOR
LWFPI WS
LI CRUBAS, 1100 CRU BASE ADDRESS
LI VDF ,VDPWA VDP WRITE ADDRESS IN R15
SBO O PAGE IN THE ROM SO WE CAN
GET AT THE FDC

306 36 36 30 36 36 36 6 96 36 36363606 36 36636 36 3 3636 0 30 3 3 0 936 3636
* SELECT THE DRIVE *
36 36 3 6 33636 3633 36 3636 36 3 I 36 6 I 36369 I 6 I0 I 36693662 0 36
L1 RAMPNT, >0100 DRIVE 1, >02 DRV #2, >04 DRV #3.
Al CRUBAS ,2#DS1BIT SET UP THE CRU ADDRESS FOR THE
PROPER LINE
LDCR RAMPNT,3 SELECT THE DRIVE
(RYTE ADDR SOURCE OPERAND)
Al CRUBAS,-2#DS1BIT BACK OUT THE OFFSET
LI VALUE , T75M WAIT 75 ms
DRIVE SRC TEMP,4 OK TO ROLL TEMP
SRC TEMF,4 JUST WASTING THE PROPER TIME
DEC VALUE
JNE DRIVE

3363 396 630 36 96 96 6 36 363096 6 3 6 96 336 36 3696 96 96 36 36 36 96 36 9636 3 3696 96 36 36 3¢
* SEEK SECTOR *
This routine calculates the track and#%
* sector numbers from the logical *
* sector number and seeks the proper #
track. Drive is restored to track O.#
33696 396 36 36 2696 36 3 3 369 36 36 36 236 36 36 96 36 3 36 3 3696 3696 36 36 96 6 3663 363

*-— RESTORE THE DRIVE ——#%

BL @LCMD ISSUE A RESTORE CMD

DATA >FS00

BL @RUSY1 WAIT FOR RESTORE TO COMPLETE
SETO VALUE INVERT O BYTE

MOVE VALUE,@FDWT OUTPUT THE CURRENT TRACK NUMBER (TRK 0)

#—— COMFUTE

LI

CLR
LI
DIV
SWFE
INV
MOVE
SWFER
INV
MOVE
CRE
JE@
BL
DATA
BL

* NOTE HERE
* VDF RAM HOW MUCH TIME TI COULD HAVE SAVED RY GIVING US A CFU

* *x

THE CORRECT TRACK NUMBER FROM THE LOGICAL SECTOR --—%

VALUE1,0 THE NUMEBER HERE IS THE SECTOR YOU
WANT TO READ

VALUE DIVIDEND HIGH

TEMP ,NSEC PUT NUMBER OF SECTORS IN TEMPF

TEMP , VALUE

VALUE QUOTIENT IS TRACK #

VALUE INV IT FOR FDC CHIF

VALUE ,@FDWD LOAD FD1771 DATA REGISTER

VALUE1 REMAINDER IS SECTOR #

VALUE1 FDC CHIF LIKES INV VALUES

VALUE1,@FDWS LOAD FD1771 SECTOR REGISTER

VALUE ,@FDRT SAME TRACK AS LAST TIME?

SEEK YUF...G0 ON AND DO IT

@LCMD SEEK. AND VERIFY THE SECTOR ADDRESS

>EL100

@RUSY 1 WAIT FOR COMMAND TO FINISH

THAT SINCE THE DATA MUST BE MOVED FROM CPU RAM TO

WRITE OFTION LIKE MYARC DID. INSTEAD IF WE WANT TO USE IT IN
CFU WE MUST MOVE IT BACK DOWN WHEN USING THE DISK ROM.

*¥—— READ THE SECTOR ——#%

SEEK

RSECT

LI
BL

BL
DATA
SEO
LI
MOVE
INV
MOVE
MOVE

INV
MOVE
DECT
JNE
BL

SBzZ
LIMI
JMF

RAMPNT ,MEMSTA MEMSTA IS VDF RAM LOCATION TO WRITE TO

@VDFLAW PREPARE FOR VDF WRITE

@®_CMD FINALLY WE CAN READ THE SECTOR
7300 REMEMBER THIS IS INV

WAIRIT ENABLE WAIT LOGIC

COUNT ,SECLEN BYTES FER SECTOR

@FDRD,VALUE GET THE RBRYTE

VALUE IT WAS INVERTED S0 REINVERT IT.
VALUE ,@VWD(VDP) FUT IT IN VDP

@FDRD,VALUE THESE INST ARE REFEATED BECAUSE
SFEED 1S CRITICAL

VALUE

VALUE , @VWD (VDF)

COUNT WE ‘VE WRITTEN TWO RYTES

RSECT FINISHED?

@Busy DISABLE WAIT LOGIC AND WAIT FOR
MOTOR TIME OUT

O PAGE OUT THE ROM

2 ENABLE INTERRUFTS

¥ THATS IT FOLKS. FCTN QUIT TO EXIT.

W I B3 H A6 66 I I I FETE I IEIEIEIE I I IR
*SUBROUTINE-TURN MOTOR ON & ISSUE CMD %

*
*

INPUT:
NOTE:

CMD IN MSB OF DATA *
ALL COMMANDS MUST BE INV *

L2 2 22T TSI ST SRS LSS SIS ST L 2T

LCHMD

MOTOR

MOV
SHEZ
SEO
LI

SRC
SRC
DEC
JNE

*R11+,VALUE FICK UP COMMAND EBYTE

MOTEIT TOGGLE "MOTOR ON CLOCE
MOTBIT

COUNT ,T1000M ONE SEC TIME OUT
TEMP,4 WASTE TIME

TEMP , 4 " "

COUNT

MOTOR L' 3

MOVE VALUE,@FDC LOAD THE COMMAND

SBO HLTBIT SET HLT

SRC TEMF,8 WASTE MORE TIME (MOTORS ARE SLOW-
SRC TEMF,8 COMPUTERS ARE FAST <grinX)

RT

R Y I eI I T T IR
* BUSY ROUTINE *
#*# Waits for the current command to be *
*# completed. No error on motor time out#®
Y S T

BUSY SBRZ WAIRIT DISABLE WAIT LOGIC

BUSY1
MOVER @FDS,VALUE GET THE STATUS OF THE DRIVE
INV VALUE INVERT FOR DATABRUS LOGIC

* JLT NODISK THIS IS WHERE YOU CHECK FOR NO DISK
SRC VALUE,? CONTINUE WAIT LOOP?
JOC ERUSY1 YUF...BEEN A CARRY
RT

L R Y I I T T T Y Y

* VDF READ/WRITE SET UP ROUTINE *

* Address in vdp is RAMPNT *

E2 2222 e R
VDFLAW ORI RAMPNT, *4000 SET WRITE BRIT
ANDI RAMPNT, *7FFF STRIFP MSE
JMFP VDFLAL

VDFLAR ANDI RAMPNT, >3FFF STRIF OFF 2 MSH
VDFLA1 SWFE RAMFNT ALWAYS WRITE LSB FIRST
MOVE RAMFPNT ,*VDF LOAD TO VDP
SWFPE RAMFNT
MOVE RAMPNT,*VDF NOW WRITE THE MSE
ANDI RAMPNT, *3FFF GET RID OF WRITE BIT
RT
NINE DATA 2
END
R

[3] L)
LI []

.m.
o
-+

02/19/92 20:53
Extended BASIC AVERAGE - A Tinygram

By: Andy Frueh, Lima UG

I don‘t know how many teachers or bowlers we have out
there. Face it, sooner or later, everyone has to average out
SOMETHING. FPrices, scores, grades, whatever. This program is
simple. You can do the same thing very easily on a calculator.
But it does show beginners how the TI can keep track of how
many INPUTs were made, and compute answers based not only on
WHAT was input, but how many items were input. It also shows
how you can take a string from INFUT and twn it into a
numerical value to be computed.

Enter E to calculate average of the values entered.

100 I=0::DISPLAY AT(13,1)ERASE ALL:"Input value"

200 I=I+1::DISPLAY AT(23,1):1::ACCEPT AT(23,3)VALIDATE(DIGIT,"E"):1$
300 IF I$="E" THEN 400 ELSE V=VAL(I$)::T=T+V::60T0 200

400 PRINT "Average Value is: “";T/I:"of"3;I;"items.”

(E i 3ttt i+ttt 2 2t + F 2ttt F - F t -t + E t -ttt F 2 E 2 &% 2

REVIEWS OF TI EDUCATION MODULES
by Phillis Peyton, grade 5 classroom teacher
reprinted from IUG NEWSLETTER September 15, 1982

READING ROUNDUP

The Reading Roundup module provides instruction and practice in
three reading skills: figures of speech, work meanings, and idioms.

While the stories are written simply enough to be read by a student in
third grade, the skills are sophisticated enocugh to challenge a sixth
grade student. The module could be used to provide remedial help for a
student in junior High School without making him feel that he must read
juvenile material.

[BBXF EDITOR'S NOTE: The next two paragraphs provide a good
description of the general structure of most of the READING modules,
including the 1983 "rare" cartridges.]

Two activities are provided for each skill. The “Study it"
activity provides instruction through examples presented in a
colorfully illustrated story. The student’'s rate of reading will not
be a factor contributing to his success or failure at learning the
skill. He is allowed to pace himself, pressing "enter" when he has had
ample time to finish reading the material on the screen. In the “Study
It" activities for each skill, the student is given opportunities to
respond, but scores are not tallied.

A correct response causes an appropriate signal such as "Right" to
flash on the screen. The signal is accompanied by a catchy melody.
Incorrect responses result in an opportunity to make a second choice
or, by pressing "Aid"; to reread the material and then try again. a
second incorrect response causes the correct answer to be shown to the
student. The student is allowed to learn to improve his reading skills
without fear of failure when he makes a mistake or is learning by trial
and error.

The "Try It Out” activity for each skill contains paragraph length
stories and allows the student to type in a character’'s name, thus
personalizing the stories for him. The name will appear in each of the
stories in the activity. At the conclusion of the activity, a score is
showr.

The figure of speech taught in Activities 1 and 2 are similes and
metaphores. Both are used to show comparisons and are common literary
techniques used to cause the reader to form a mental picture. Similies
use the word LIKE or AS. Examples of similies are:

1. He is as gentle as a newborn deer.

2. The kite soared like an eagle.

Metaphores form the comparison without the words LIKE or AS. An
example of a metaphore is: What a railroad engine of an ox

The student is expected to learn to tell what two things are being
compared and how they are similar. The words "simile"” and "metaphor”
are not used in the module.

In activities 3 and 4 the student is shown how to use context
clues to determine the meanings of words that are unknown or have
multiple meanings. It is not always possible or even desirable to stop
and use a dictionary every time we encounter an unfamiliar word or a
familiar word used in a new and different way. The ability to use
context clues is an invaluable aid to reading with comprehension.

Activities S and 6 give the student an opportunity to learn the
Mmeanings of some common idioms that our English language is so full of.
"Sitting on pins and needles" is an example of an idiom used to
indicate nervousness. Many adults do not realize the difficulty a
child can have in understanding the figurative language that he hears
and reads. L' 5

The young child’'s language is completely literal — He means what
he says, and he says what he means. Since our language makes use of so
many idioms, the knowledge of their meanings can result in higher
comprehension scores for the student.

All three skills are combined in activity 7 as a culminating
activity.

The four lengthy stories all follow a "Western" theme accompanied
by appropriate music in keeping with the title of the module —— Reading
Roundup. I highly recommend its use for improving reading skills,
particularly by the student in the intermediate grades (4-6).

Lavailable from the disk library to load with MYARC XB or any
module which has the Ed/As grom plus ram at >6000 eqg Super Spacel

DIVISION 1

Division 1 command- module created by Scott Foresman and Company
for Texas Instruments will be an invaluable aid in the classroom as
well as in the home. Because it is a complete text on division facts,
its use will cover a wide range of ages and levels of ability.

Division is commonly introduced in grade three, and the facts are
reviewed through grade six. Grades three through six, then, are the
levels at which this module will be used most extensively. It will

also be useful to challenge a younger gifted student and as a remedial
tool for those students above sixth grade who have not achieved mastery
of division facts.

The nine activities available for selection are:

1. Meaning of Division

2. Divisors of 1, 2, and 3

3. Divisors of 4, 5, and &6

4. Divide using I!—— (the division sign)

3. Practice and Paint

6. Divisors of 7, 8, and 9

7. How many boxes?

8. Divide With a Remainder

9. Make a Picture

The activities proceed in sequence from the least difficult to
most difficult. Each activity may be worked independently of all
others. However, the ability to work successfully at each activity
depends upon the mastery of skills that have been introduced in the
preceding activities.

By working through Activity 1 the student will receive an
excellent explanation of what actually happens during the division
process. This writer has known students who had memorized division
facts and still lacked an understanding of the concept of division.

The explanation on the module is made without using the words “divide"
or "division"; and without using either of the signs normsally used to
work division problems.

In Activities 2 and 3 the use of the sign / (the "division sign™
and the number sentence form are introduced. When the working form is
introduced in Activity 4, using the vertical format and the sign i——,
the transition is make simple by showing both forms and actually moving
each number from the number sentence to its proper position in the new
format.

The relationship between multiplication and division is stressed
in Activity 6 by showing a "check"” in which the divisor and the
quotient are multiplied. an incorrect answer causes the complete
multiplication table for that divisor to be displayed on the screen.

The concept of remainders is illustrated in Activity 7 by evenly
grouping and having "leftovers". The word "remainder” is used in
Activity 8 and the working form is shown. The student learns to give
the quotient and the remainder.

L 6

At the onset of each activity the student may choose to see one or
more excellent teaching examples. Exceptions to this are Activities S
and 9 because they were designed to be checkup activities.

The illustrations on the computer screen are more effective than
even very attractive textbook illustrations. The book’s pictures are
stationary, while items on the screen may actually be repositioned to
show the grouping process.

The learner receives a simulation of using manipulatives, a
concrete approach required by many children efore they can proceed to
more abstract learning. Through the use of the voice synthesizer the
student hears the equation as he sees what is taking place. The result
is that he is receiving information in three modes: visual, auditory,
and kinesthetic. By involving all of these senses in the learning
process, retention chances are much greater. DIVISION 1 is sure to be
a popular and enjoyable aid to learning.

[Anyone got this on disk for XB load??7?7?]

READING FUN

Reading Fun is Scott Foresman’'s reading skills module for the
younger child in the primary grades. The module contains four
illustrated stories accompanied by musical background. At the onset of
each story three words that are possibly new ones for the student are
shown on the screen. The child may, by pressing the number next to any
of the words, hear it pronounced and see it used in a sentence. When
the word appears later in the story, he may receive the same help by
pressing "Aid".

The first three stories provide instruction in one skill each.
After the child has had several opportunities to respond to questions
in a non threatening way, he is invited to try out what he has learned.
he is then given a series of ten questions over some short passages of
reading. At the conclusion of the activity,; the child's score is
shown. If he responded correctly on the second try, he is given credit
for a correct answer. He has the opportunity to look at the text of
the story again befare he attempts to correct his answer.

The first story deals with problems and how people solve them.
The child learns to identify the problem from a list of three
possibilities. He also selects the solution that was used in the
story.

The second skill is labeled "Why things happen.” Educators usually
refer to it as the ability to distinguish cause and effect.

Thirdly, the child learns to watch for clues that tell how
characters feel. He must know the meanings of some common words that
describe people’s feelings, moods, and emotions. Some of the words
used are: tired, happy, angry, and upset. The answers to some
questions are stated directly in the story. Other questions such as,
"How did Ann probably feel?" require that the child draw some
conclusions or use some inference skills.

The fourth story allows the child to use what he has learned about
all three skills. Questions asked are:

What is the problem?

What caused the problem?

At this point the child is asked to pick one of the three main
characters to solve the problem. He is given a choice of three
different actions that character might take in attempting to solve the
problem. After his choices have been made, he is told, "Now let's see
what happens next.” the text of the story continues according to the
child’'s choices and he can then see for himself whether or not he has
chosen wisely. He may try as many of the nine possible solutions as he
desires. By choosing possible solutions to these problems, a child can
begin to learn to predict the outcomes when certain courses of action
are taken, and to think about the possible consequences for actions
that people take. L 7

These and the other skills dealt with in the module are feferred
to as reading skills. having mastered them, a child will almost
certainly become a better reader. They might be more appropriately
named, however, as thinking and living skills.

[Available from the disk library to load with Myarc XB or with any
module which has the Ed/As grom plus ram at >6000, eg Super Spacel

NEVER RELEASED OFFICIAL TI MODULES
described by Charles -Good
Lima Ohio User Group

The Lima User Group has obtained some module software that we

have never seen actually offered for sale. This software was

developed in house by Texas Instruments or was created by third

parties under an official TI license. Most of this software has a

Texas Instrument copyright statement on the title screen. In some

cases these modules were released to very limited circulation. Most

of the modules were never released at all, mainly because of TI's
withdrawal from the home computer market. This time I will talk about
utility and application software.

DISK MANAGER 3

The title screen says "copyright Texas Instruments" but gives no
date. This apparently was the disk manager that was to accompany the
TI double sided double density disk controller. Two of these
controllers, formatting to 1280 sectors DSDD, were sold by one of the
dealers at the 1989 Chicago faire. DM3 looks very auch like the well
known DM2. However DM3I offers you the choice of drives 1-4, whereas
DMZ only lets you use 1-3. Also, with DM3 the defaults on the screen
for "initialize disk" are "double sided” and “"double density.” In all
other respects DM3I appears identical to DM2. 1 successfully
initialized disks with DM3 and my CorComp controller S5SD and DSSD. I
was not able to make DM3I successfully initialize in DSDD format,
probably because I think DM3 tries to make 1280 sector (8 sectors per
track) disks in double density. I have no trouble initializing 1440
sector DSDD disks on my CorComp controller using the DM2.

Copyright 1981 by Scott Foresman and Company. This is one part
of the "School Management Applications" series developed by Scott
Foresman, a large publisher of school text books as well as some
better known TI educational software. An entire school system could
be managed with this software. Packages for inventory control,
payroll, salary planning and analysis, student scheduling, and
analysis of student grades within a class and throughout the entire
school system were supposed to be included in this series.

This complete School Management Applications series is described
in the booklet "Texas Instruments Home Computer Program Library"
(copyright TI 1982, numbers "CLS81C" and "1043605-001" on the back
cover) that was packaged in the box with my first 99/4A. CLASS DATA
RECORDER is given the Scott Foresman identification number 30406 in
this booklet. The "School Management Application" series is also
described in a 1982 article by Dr. Tom Hansen published in vol i, #5
of 99er magazine. Of the 15 separate parts of this series, only CLASS
DATA RECORDER and SCHOOL MAILER are available to me.

L8

CLASS DATA RECORDER is for use by teachers to keep track of and
analyze classroom student grades. The module is a hybrid of GPL and
TI BASIC code, resembling in this respect the Personal Record Keeping
module. When using CLASS DATA RECORDER with a Gram device it is
necessary to have TI BASIC (6roms 1| and 2) on line.

It is necessary to have a newly initialized 555D disk, or a disk
which has previously been used with CLASS DATA RECORDER in drive 1
when you select the software from the main title screen. If there are
any files on the disk that CLASS DATA RECORDER does not recognize, you
will get an error message. There is alot of disk activity when using
CLASS DATA RECORDER. Apparently the program stores most of its data
on disk rather than in memory, allowing the classroom teacher to
manipulate large amounts of data.

You are first asked for the date.

On first use with a clean disk you are then asked:
Course Title

Period of the day

Term of the school year

Teacher name

Will assignments be weighted?

You then get to enter the names of all the students in the class.
Then you enter the assignments, each with the following information:

Name (of the assignment, such as "@Guiz ")

Is it pass/fail?

Weight {only used if assignaents are weighted)

Total Points (the point value of this assignsent)

Later, when you again boot this data disk you are again asked for
the date, and then given the choice:

1. Enter/Edit data

2. Print Reports.

Selecting #1 gives you a chance to enter grades or manipulate
data. You are, from #1 above, given this msenu:

1. New assigneent and scores.

2. Assign gradelines

3. Edit records

4. Add a student.

5. Assign final grades.

6. Add a new course.

If you choose to PRINT REPDRTS, you are given the following
choices:
1. Class list
2. Individual Student Summary
3. Cusulative Class Averages
4. Class Averages/assignment
3. Rank List
7. Histogram.
Printing is done to R5232. If you have a 6ram device, you can
change this to PIO.

As an experiment I have recently used CLASS DATA RECORDER to keep
track of student data in one of the classes I teach. It is very user
friendly. Although I don’'t have access to the original documentation
[have had no problems figuring out how to use CLASS DATA RECORDER
except for the initial first time startup procedure (555D disk with no
files on it in DSK!.). This can be a useful piece of software to any
teacher IF a way can be found to direct output to a printer. L. g

SCHOOL MAILER

Copyright 1981 by Scott Foresman and Company. This is also part
of the "School Managment Applications" series. The module is a
combination of GPL code and TI BASIC and regquires two drives. First
time use requires a blank 555D in both DSKi. and DSK2.

This software is used to generate address labels for the students
in a single school or an entire school system. Printing output is to
RS232. Labels can be printed based on grade, teacher, building, zip
code, etc. The program serves as a data base for student and parent
names addresses and phone numbers.

On first use you are asked the following information about each
student in the data base:

Name

Grade

Room

Sex;

Parent or guardian name

Street Address

City

State

Zip code (up to 9 digits)

Option field 0-9 (I havn't figured out the meaning of this yet.)

Upon subsequent booting of a data disk you are given this menu:
Enter information (as above)
Edit/Display information
Print Reports
Upgrade all students (indicate that they have been promsoted
to the next grade).

5. Delete a grade

DISK DUPLICATOR -release 1.0

There is no date or copyright notice. The powerup amenu has these
choices:
1. Duplicate Pascal Disks
Duplicate Basic disks
Compare Disks
Diskette Buality Test
Catalog Disk.

B by

N 3= L pa
.- a = @

In reverse order to save the most interesting for last, #5 is
identical to disk catalogs of the DM2 and DM3 modules.

#4 offers you the choice of "Destructive test (YN)".

The Compare Disks routine (#3) will terminate the first time a
difference is found in a sector by sector comparison. However the
exact nature of the difference and the sector location of the
difference are not given.

1 was not able to check out PASCAL disk duplication (#1).
Duplicating BASIC disks (#2) is the most interesting feature of this
module. Duplication only works with a SSSD master. VYou can make two
copies of the master disk onto two copy disks with only one keypress.
You put the master disk in DSK1. and the backup disks into DSK2. and
DSK3Z.

50

First the copy disks are initialized, one at a time. Next,
sector by sector information is read into memory from the master disk
and then output to the first copy disk and then to the the second copy
disk. Since this is sector by sector copying (something DM2 and DM3
don’'t do) copying is rather slow compared to what is possible with a
track copier. I suspect that track copiers were unknown when DISK
DUPLICATOR was created.

DIAGNOSTIC TESTS

Copyright 1979 by Texas Instruments. This is designated is
PHM3000, the lowest numbered module in TI's official module number
systes.

Available for XB load on disk from the Group disk library.

It was designed to test the 99/4 (no A) console. No equivalent
for the 99/4A was ever produced. This module, like the dealer
demonstration module PHM3001, was not sold widely, if at all, to the
general public. The DIAGNOSTIC TESTS module is mentioned in the
documentation "ADDENDUM® that was packaged in the box with the first
99/8A4 1 purchased in 1982. A console diagnostic module is a good
idea. Diagnostic tests on disk, such as those released by Tl to user
groups a few years ago, require a more or less working console as well
as a functioning disk controller and drive. Some module probleas
would prevent testing fros disk.

The title screen and main menu of DIABNOSTIC TESTS use the large
console character set, the character set used from the powerup "Press
1 for T1 BASIC”" etc menu. This is somewhat unusual. The main menu
gives these choices:

1. Automatic test

2. Keyboard test

3. RAM test

4. Video display

5. Sound test

6. Calculation test

7. Cassette test

8. Handset test

9. HMaintenance test

Choices #1 and #3 put various sulticolored patterns on the
screen. I don’'t know what these patterns mean.

The keyboard test (choice 2) lets you press any key and have its
character displayed on the screen. This includes the arrows, which
are displayed as arrows. Lower case characters, as well as non arrow
FCTN characters give meaningless displays.

Video Display (choice 4) lets you view a bit map mode display
{called pattern mode by the module) that includes sprites and an
interrupt driven count down clock. VYou can also view 40 coluan "text
mode” and "multicolor mode®. The latter is rarely used in TI
software, and includes squares composed of 4 pixels with the color of
each square independent of any other. The "amulticolor mode® test
display is interesting.

Choice 5, sound test, automatically tests all azopects of the
sound chip. Some of the generated test sounds are quite pleasing.
This is not a speech test. TI speech was not around in 1979.

51

The calculaticn test, choice 6, automatically checks addition,
subtraction, multiplication, division, log functions, trig functions,
and "miscellaneous” functions. You don’'t see much on the screen.

Choice 7 exercises C51 and C52. You have to verify that the
cassettes are doing what the computer says they are supposed to be
doing.

The biggest surprise in this module is the handset (joystick)
test. The screen display indicates that FOUR JOYSTICKS can be tested.
Tests include all 8 joystick positions plus the fire button. Does
anyone know if the 99/4 had provisions for four joysticks? [stephen
here... no it did not, but hand held units were originally designed.
This test picks up TWO joystick positions for each direction, testing
for values of 4 or 7. stephenl.

The maintenance test (choice 9) brings up a display that says

"for repair technician only." You can check groms 0,1, and 2. You
also test sound, VDP RAM, and XML. I don't know what "XML" is [check
your editor assembler manual-stephenl. The screen display for most
of these tests simply says "test in progress." You do hear soaething
in the sound test, and a ghosty immage flashes across the screen in
the VDP RAM test.

Released or Not? A Review of "Shanghai”

By: Andy Frueh, Lima U6

With the recent coverage of "lost” Tl items, I thought it would be
a good time to review this "Concept Education Game." It was produced
by Funware. I have seen about five of their products advertised.
These include St. Nick, Ambulance, Pipes, Driving Demon, and Rabbit
Trail. I have seen a few more that were never advertised, and I have
never seen the advertised "Pipes."” There are supposedly several msore
programs out there by Funware.

"Shanghai" starts out with the typical Funware title screen. The
name of the programs is in hugh blocky letters, and a graphic having to
do with the game is in the aiddle. This is not impressive, but it is
the actual game that counts., It teaches basic principals of having a
business: making money and staying in business.

The action is somewhat slow, but is sufficient to keep people busy
for a while without wanting to quit. The concepts involved are basic,
but very young children may have difficulty. Be sure they know or you
explain the idea of selling at higher cost than production costs to
make a profit.

Pressing any key starts the game. This is the scenario: You are a
merchant sailing down a river. You have to buy and sell items as
quickly as you can, before your expenses exceed your revenue. An
overhead view showing your ship and other ships, and the coastline is
on the left of the screen.

You have a total of three boats. You only loose one if you crash
into one of the large ships that occasionally cruise by. You are
faster than they are, and getting out of their way is easy. Crash
three times and your game ends. VYour game can also end as soon as
your expenses are greater than the money your making (in other words,
once your profit is $0).

52

On the right side of the screen is an information display. It
shows your revenues and expenses. Profit is shown by subtracting the
later from the revenues. Below this is your current cargo with a
maximym of 5 items, and how many ships are left.

At the bottom of this display is the direction of the wind, which
influences your control of the boat. Also is a box for the high
score. In the middle of this side of the screen is a list of the six
different commodities or items that can be bought and sold, along with
current buy and sell prices. The whole idea is to buy things with a
higher re-sell value.

Itemas are scattered on the coastline. To buy an item, move the
ship so the nose is touching the item and press fire. If an item is
blinking, then that marks a point where you can sell all of that
particular item. For example, if the item looking like a duck was
blinking, you can sell any "ducks" you have there, but no other items
can be sold.

Buying and selling instantly affects your profit. Of course, you
loose all your current cargo if you crash. That means if you spent 15
"dollars" buying an item and crash before you can sell these, you have
lost that money. Occasionaly, there are black pirate boats that try
to take all of your cargo. The same thing applies here as with
crashing. These ships are very difficult to shake off.

1 a prices suddenly is in a red box, that means that the price is
going to change. It seeas like they usually just drop, but they msay
also rise. This also keeps you on your toes.

It does a very good job of teaching its concepts, and is fun for an
educational game.

Shanghai is available on disk for XB+32k from the disk library.

WHY TI?
(THE HISTORY OF TEXAS INSTRUMENTS)

[BB&P editor’'s note: The original source of this article is unknown.
It was found by Bill Gaskill among his piles of TI stuff.]

1930-- Commercialized its invention, the Reflection seismograph, and
revolutionized petroleum exploration. corporate name was "Geophysical
Service", abbreviated as 6SI.

1944-- Diversified by adding electronic systems manufacturing.

1952-- Entered the transistor business with a new corporate name:
"Texas Instruments Incorporated”.

1954-- Became the first company to mass produce germanium radio
stansistors; DEVELOPED THE FIRST COMMERCIAL TRANSISTOR RADIO;
Introduced the first commercial silicon transistor - the type required
in space and military systems.

1958-- Announced TI INVENTION OF INTEGRATED CIRCUIT, which provides
the basis for virtually all modern developments in electronics.

1961-- Invented the semiconductor thermal printer.

1967-- Introduced Tl invention: the world’'s first electronic
handheld calculator.

1969-- Announced first data terminal to use thermal printing, The
Silent 700.

1970-- Invented the "Single-Chip-Microprocessor” which today is the
"brain® of a wide range of products. 53

1971-- Commercially introduced the microcomputer, or "Miracle Chip",
a Tl invention that includes all the elements of a complete computer,
including memory, in one integrated circuit.

1972-- Entered consumer end-user market with the DATAMATH handheld
calculator, initially priced at $149.95

1973-- Introduced a "4K-Bit Random Access Memory" (RAM), setting new
industry standard.

1975-- Introduced first 16-bit mocroprocessor family to use
memory-to-memory architecture, increasing performance. Introduced
"3D" seismic data gathering and processing.

1976-- Developed "Solid State Software” plug in modules for pocket
calculators.

1977-- Received patents for "Closed-Loop” solar energy system for
converting sunlight to electricity.

1978-- Introduced revolutionary SPEAK&SPELL learning aid using
synthetic speech chip. [BB&P editor ‘s note: In Sept 1992 you can still
buy this product at my local Toys-R-Us.]

1979-- Introduced first "64K Erasable Programmable Random Access
memory" (EPROM); It was preceded by Tl introduction of first 16K EPROM
in 1977 and first 32K EPROM in 1976. Introduced a Home Computer.

1980-- Produced first commercial single-chip, 16 bit microcomputer,
the TM59%940.

1981-- Introduced "TI LOGO", the first microcoaputer language
enabling children to use computer to solve problems. Introduced the
TMS 7000 family of 8-bit single-chip mocrocomputer circuits [BB&P
editor’'s note: These chips are used as CPUs in the CC40 and TI741.
Achieved volume production of leadership 64K bit dynamic RAMs.

This takes us into 99/4 history, more to follow...

- —— - —————— —— - ——— - —— - - -

THE NEW FUNNELMWEB v5 TEXT EDITOR- 80 coluans only so far...
described by Charles Good
Lima Ohio User Group

Tony McGovern has released a "completely rewritten fros source code”
Funnelweb version 5 80 column editor dated Dec 15, 1992. A similar 40 coluamn
version will follow . These vO editors are designed to run from the Funnelweb
v4.4 environment. So far, the only "version 5" parts of Funnelweb are the text
editors. They are fully multi-lingual and compare favorably with Asgard’'s new
FIRST DRAFT word processor. New features, added or revised since the v4.4
editor are summarized below.

HOW TO OBTAIN THIS SOFTWARE:

The 80 column v5 editor files are available from your User Group disk
libraran, two disks for the Editor and another two disks for a compatible
formatter and other bits.

HELP SCREENS AND MULTIPLE FILES IN MEMORY:

FIRST text in memory - the edit buffer:

SECOND text in memory - the help screens:

When the 80 column editor first boots it loads into memory up to four help
screens. These can be viewed from the coammand line by pressing H{elp). Each
screen is 26 lines by 80 columns and they pop up on screen imsediately because
they are already in VDP memory. The Program Editor loads one set of help
screens relating to assembly language coding. The Word Processing editor loads
another set of screens more appropriate for help with text editing and
formatting.

54

You can move back and forth from one help screen to another by
pressing the @ and A keys. FCTN/9 returns you back to the edit buffer. Sets
of useful help screens are provided, and the user can also create personalized
help screens. A utility is provided to convert the first 26 lines of any DVB0
file into an 80 coluan help screen. {The 40 column editor will have 28 line by
40 coluan help screens. An unlimited number of these screens can be loaded
into memory one at a time from disk by pressing H(elp) from the 40 coluen
comsmand line.}

THIRD text in memory - screen viewing:

As in the v4.4 text editor, one can do a Sthow) Df{irectory), move the
cursor next to a DVB0 file name, press a key, and display a screen of that
f§ile. Subsequent presses of the same key window down through the entire file.
There is no limit to the size of the file that can be viewed one screen at a
time in this manner. This file isn't really stored in memory, just displayed
on screen.

FOURTH text in memory - the V(iew) buffer:

From S(how) D{irectory) you can put the cursor next to the name of a DVBO
file, press CTRL/V and load the whole file (or any part of it) into a 64K
semory buffer for instant recall any time during the editing process. Once
loaded into the V(iew) buffer the file can be scrolled one line at a time or
windowed up and down very rapidly. Pressing <{enter)> from within S(how)
D(irectory) or V from the editor command line pops this text into view. This
Viiew) buffer can hold very large text files. It is in fact the same semory
area as Funnelweb’'s Disk Review "V" text buffer. You can load some text into
the 80 column editor’'s V(iew) buffer, exit the editor to a central menu, and
from there go to Disk Review. After performing some disk managesent functions
from Disk Review, you can go back to the 80 colusn text editor and the V(iew)
buffer text will still be there' You can also load ANY KIND OF FILE into Disk
Review’'s Vi{iew) buffer. Then if you exit Disk Review and go to the 80 coluan
v5 text editor this text will be waiting for you in the editor’'s view buffer.
Just press "V" fros the editor’s command line to see the text you loaded into
Disk Review' {Because 40 colusn systess have only a limited amsount of VDP
semory, this V{iew) buffer feature is not available from the 40 colusn v3
editor.}

FIFTH text in memory - the ST(ore) buffer:

From the editor command line you can press ST{(ore) and mave the contents of
the edit buffer into temporary storage in VDP RAM. You can then load another
file into the edit buffer, edit the second file and save it back to disk, then
press RE fros the cosmsand line to RE(call) the ST(ore)d text back into the edit
buffer. The ST(ore) buffer acts as a temporary ramdisk, but is much faster.
Text files are saved and loaded to horizon ramdisks one record (line of text)
at a time. This is fast but definately not instantaneous. Large files take
10s of seconds to load and save with a horizon. The ST{ore) buffer response
time is immediate! It is too bad you can’'t exchange text between the edit and
store buffers. Tony says this trick would eat up lots of memory and that’'s why
such a featurehas not been included. (ST and RC to and from VDP RAM is not
available from the 40 column vS editor. There isn't enough mesory.}

NEW FILE SAVING AND PRINTING OPTIONS:

These are available in both the 40 and 80 column editors and are accessed
via the P(rint)F{(ile) command. VYou can configure the editor with printer
codes. Then every time you insert a "P® in front of the printer name (such as
PF <entery, P PI0) the editor will send these preconfigured codes to the
printer before any text. I have my v5 editor set up to send the "print all the
following in emphasized print" comeand. If I also use a "@" with PF the
editor will send a printer reset code to the printer after all text has been
printed (PF <enter>, P @ PID). 55

You can append the contents of the text buffer to the end of an existing
disk file by specifying the disk file as the printer device preceeed by an "A"
(PF <enter>, A DSKx.FILENAME). DVB0O files of unlimited size can be created
this way. I build multiple choice exams for my students this way, one question
at a time taken from question lists I have stored as DVB0 files.

You can also use FF to create DF128 text files readable directly by M5-DOS
and Unix software.

NEW POWERUP OPTIONS:

Normally the v5 editor boots in either Word Processing or Program Editing
mode depending upon which of Funnelweb’'s central menus is used to select the
editor. However, if you hold the space bar down as the editor loads you get a
list of choces. The editor can be pre-configured to always give you this list
of choices without pressing the space bar or to automatically boot as any one
of the choices uness you press the space bar.

1. Word Processing

2. Program Editor

Then you get these choices:

1. Default 7-bit

2. National 7-bit

3. Tl Euro Writer

4. All Chars.

If you want the resulting disk file of your document to be readable by
someone else on another computer using anything except Funnelweb v5 (such as an
earlier version of Funnelweb, or Tl Writer) then select items | or 2 from this
menu. Items 3 and 4 from the above menu do some fancy stuff (more about this
later), but produce disk files that can only be read and displayed on screen
properly with Funnelweb v3.

After you chose one of these options, you are given the following choice of
languages, comparable to what is suggested by the TI Writer module:

1. Australia---My 40 column beta test editor lists this as "default". This
is the one USA English users would choose. It uses character sets C! or C2,

_ the same character sets used by the rest of Funnelweb. This is the only option
that does not load in additional character and command sets from disk.

2. British---Choosing this loads in a separate character set that redefines
SHIFT/3 as the British pound sterling symbol. In all other respects "2.
British" is the same as "1. Australia”.

. France
Deutschland
Italia

. Sverge

. Nederland
Espania

0~ O N &y
. . =

Choosing a non English language loads in foreign language character sets
that redefine little used keyboard characters such as FCTN/A, FCTN/F, FCTN/N,
etc as appropriate foreign characters. Most of these foreign characters are
vouls with accent symbols over them such as umlaut, grave, acute, or
circumflex. These character sets and their ASCII values correspond to some of
the international character sets 1-9 found on most modern printers. This means
that if you send the a control code to set your printer for the appropriate
foreign character set then the foreign characters you see on screen will be
printed properly. From the editor the epson compatible printer key sequence
with no spaces between keypresses is CTRL/U FCTN/R CTRL/U R CTRL/U SHIFT/A thru
I CTRL/U where A-1 specify the particular character set (1-9) desired. For
Genimi 10X and 5610 printers substitute 7 for R in the above key sequence.

56

Non-English languages also load appropriate foreign text into the command
1ine and change the command abbreviations to reflect the foreign language. For
example, in French "Imprimer Fichier"” means Print File, and you use the coamand
1F, not PF, to print stuff. The Swedish version has "Lagra Filer" for Save
File. The command LF in the Swedish text editor will save (not load) a file.
This can be disasterous for English speakers who don’'t know Swedish.

Not all the foreign coammands and command line text are finished. English,
German, and Swedish are complete. French and Dutch are almost complete.
Spanish hasn’'t been started. Sample source code and a utility that creates
foreign commands and command line text are included for those interested in
expanding Funnelweb v5's multilingual capabilities.

EURO-WRITER:

For Europe, TI prepared a multilinual version of TI Writer (TIW v2) with
some special features. By selecting EURD-WRITER from the powerup menus, the
Funnelweb v5 editor provides all the features of the TI Writer v2 editor;
specifically an intuitive way of adding accent marks to vouls.

When in Funnelweb's EuroWriter mode you have access to the foreign
character set of the language you select from the powerup menus, and these
character sets include some, but not all, accented vouls. But there is another
intuitive way to create accented vouls that lets you put ANY ACCENT over ANY
youL. Type a voul, either upper or lower case. Then backspace to put the
cursor back over the voul, type any of four FCTN/key or CTRL/key combinations,
and an umlaut grave acute or circumflex mark will appear on screen over the
voul! The only problem is that these voul/backspace/accent screen displays are
coded with high ASCII numbers above 127 and don't normally print properly. You
need to print text files with these accented vouls using the European formatter
{also multingual), the formatter that TI included with TI Writer v2. You need
to use special transliteration files that rededine ASCII codes greater than 127
as accented vouls. This formatter with its auxiliary lanquage and
transliteration files is not part of the Funnelweb v5 editer package, but the
files can be obtained by anyone from the Lima user group. Unfortunately, the
European formatter REQUIRES use of the TI Writer module. It hasn’t yet been
modified to run easily out of the Funnelweb environment using something other
than the TIW module to boot Funnelweb. Also, transliterations to print somse of
the accented vouls are less than ideal. Accentd vouls you see clearly on
screen with Funnelweb’'s Eurowriter mode may look strange when printed.

ALL CHARS MODE:

Our 99/4As normally can directly type ASCII 0-127 with ASCII characters
below 32 accessed from CTRL/U "special character mode”. But our 8 bit computer
is capable of generating codes 0-255. When high ASCII codes <127 are sent to a
printer during text printing the printer will print graphic symbols. A common
standard for these high ASCII graphics is the IBM character set #2 found on
most printers. High ASCII codes sent to a printer with IBM graphics #2 enabled
print line shapes somewhat comparable to the "lines" font of Page Pro that
prints those neat borders and page dividing lines. Check your printer’'s manual
to see what these graphics look like.

[SPECIAL NOTE FOR STAR S610 PRINTER OWNERS: There is an undocumented
software method of switching from STAR mode to the IBM character set #2. You
don‘t need to use a dip switch. The code with no spaces between keypresses is
CTRL/U FCTN/R CTRL/U w CTRL/U SHIFT/A CTRL/U. To switch from IBM set #2 back
to STAR mode use this code: CTRL/U FCTN/R CTRL/U w CTRL/U SHIFT/2 CTRL/U. The
W in these codes is lower case.] 5 7

Selecting All Chars mode with the Funnelweb v5 editor allows you to
directly type on screen and print to the printer ASCII 0-254 of the IBM
character set #2. This includes all the normal upper and lower case letters
numbers and keyboard symbols, plus the graphic symbols coded by high ASCII
numbers. To type the graphic symbols type CTRL/, {control and comma
simultaneously) and then each keypress will produce a graphic symbol. To
return to the keyboard normal letters type CTRL/, again. Normal letters and
graphic symbols remain on screen as you use CTRL/, to toggle the keyboard back
and forth beteen graphics and normal. Graphics and text print normally using
PF (PrintFile). VYou don’'t need a formatter to print these graphic symbols.

SOME OF THE OTHER NEW FEATURES:

--You can move text up and down from within the command line. This is very
handy for M{ove lines)), D(elete lines), and C{opy lines) operations. You
don't have to remember line numbers. 6o to the command line and type M, D, or
C. Then use the arrow or up/down screen keys to display the first line number
and last line number so that you will enter the proper numbers to M, D, or C.

--From the various fixed modes with an open box cursor {(Program editor or
WP with word wrap off) you can break lines at the cursor, insert text, then
rejoin with the next text line. This means you can insert text into the middle
of a paragraph from a fixed mode without losing existing test off the end of
the right margin, something no other version of TI Writer will allow.

--Typing a number in a blank command line followed by {enter> will put that
line at the top of the screen and return to edit mode (5 before line number not
necessary). <Enter> from a blank command line returns to edit mode (E prior to
¢{enter’ not necessary).

--You can freeze the display beginning with the line below the cursor while
continuing to scroll, window, and edit from the cursor line to the top of the
screen. This means you can simultaneously display two parts of the edit buffer
with full editing capabilities for one of these displayed parts.

--You can put a bookmark (mark the text) at any line nuasber froes ‘either
command mode or edit mode. Later you can put the cursor on this text with
FCTN/= even if the text has been edited since marking.

--You can display the contents of any hard drive path from the command line
similar to doing a SD. Enter "HD" from the command line, then type a path name
and press enter. The resulting display of that directory’'s file names
resembles the 5D display, and you can mark DVB0 files for loading into the
editor. This should be great for hard drive users who have trouble cataloging
their hard drives with existing software.

--From 5D or HD two diffent files can be marked, the regular and
"temporary"” file. These can be loaded into the editor with LF (regular) and LT
{loads the "temporary" file).

--fA user definable wild card character can be used the string searches with
FS and RS.

--The SD display shows the number of bytes remaining in the edit buffer.

--When you load, print, or save files an incrementing number in the upper
right of the screen shows the current line being loaded into or out of mesmory.

CONFIGURING THE EDITOR --

WHICH v5 EDITOR FILES ARE REQUIRED?

Just the 80 column editor, without other parts of Funnelweb, comes on an
almost full unarchived 2 S5S5D disk set. There are lots of files, mostly
foreign char sets and command line text.

If you want only word processing in English then put ED, EE, and HELP0O 10
20 and 30 on your Funnelweb v4.4 working disk or directory. If you want to
play around with All Chars graphics add file CHARE! to this list.

58

You should use INSTALL/ED and a modified CONFIG/ED to configure the Print
File "P" and "@" printer codes into your ED file, but these two files don’'t
have to be kept on the Funnelweb work disk. Funnelweb’s v3 editor can be
configured with CONFIG/ED to immediately boot to any of the available
languages, or to boot to the powerup menu selections. No matter how the editor
is configured, if you hold down the space bar as the editor boots you will get
the powerup menu selections.

1f you want use the full multilingual capabilities of the v5 editor then
you need all the CHARxx and FB8TXxx files on your Funnelweb work disk.

The various utilities for configuring the editor, making your own help
screens, making your own character sets, etc have an undocumented feature.
They respond to FCTN/7 (AID) by invoking the @uick Directory if files @D and @F
from Funnelweb v4.4 are on the Funnelweb work disk.
P L rE RS e AR R R R R R R R R R R

PROGRAMMING MUSIC THE EASY WAY PROGRAMMING MUSC
THE EASY WAY
Part 3 PART 3

BY JIM PETERSON

hy Jim Peterson

In Part | of this series, I showed you the simple routine to set up a
musical scale, and showed you how easy it was to merge in various
routines to create different effects in single-note music. In Part 2 I
showed you how to key in single-note melodies from sheet music. Now, we
will get into 3-part harmony.

But first, there are a few more things I should have told you about
reading music. You will often see curved lines arching over two or more
notes. If the notes are not all the same, ignore those lines - they call
for phrasing which you cannot really accomplish. But, if the line curves
over two or three of the same note, you will get a better effect if you
add all their duration values together and program them as a single note.
For instance, if your chart gives a whole note a value of 8 and a
half-note a value of 4, and the music has a curved line over a whole note
followed by a half-note, just program one note with a duration of 12.

You may find a heavy black bar at the beginning of a measure, with a
colon to its right, and somewhere later in the susic will be a heavy bar
with a colon at its left. This means that the notes between those bars
are to be played through twice - and naturally you will want to save time
by programming them in a GO0SUB as I showed you in Part 2. It can get
more complicated than that, but generally you can follow the lyrics to
decipher what to do. :

Rather rarely, you may find three notes, usually joined together, with a
3 above them. These are called a triplet, and all three of them are to be
played, with the same duration for each, in the length of time it would
normally take to play one of them. These can create a problem under any
method of music programming. The best method is to divide the duration of
the note by three and write individual CALL SOUNDs in your susic, rather
than a GOSUR to a routine, to handle those notes.

Now, let‘s get on to 3-part harmony. It is just the same as keying in
single note music, except that you must also give frequency values to B

and C - and, as before, you have to give those values only when they

thange.

So, load the SCALE routine from the first lesson, and key in this bit of
music to experiment with. Notice that I found three repeating phrases and
put them in subroutines in 500, 600 and 700 to make this shorter. 5 S

110 GOSUE 500 :: T=4 :: A=15
GOSUB 100
GUSUB 10

: 605U
3 11 B=i
000 3: 6

: B=11 3:: C=9 ::
O :: T=8 :: A 18 ::
00 :: T=2 :: A,B,C
B 1000 :: T=2 PR
8 :: C=15 :: GOSUB
DSUR 600

2
i

120 T7=2 :: A=21 :: B=18 :: C

=15 :: GOSUB 1000 :: A=23 ::
GOSUR 1000 :: T=12 :: A= 20

:: B=16 :: C=11 :: GOSUB 100

Q
130 T=2 :: A,B,C=0 :: GOSUB
1000 :: GOSUB 500 :: T=4 ::

A=21 :: B=16 :: C=13 :: GOSU
B 1000 :: T=10 :: A=25 :: GO

SUB 1000

140 T=2 :: A=28 :: G605SUB 100

0 :: GOSUB 600

150 T=2 :: A=27 :: B=23 :: C

=18 :: GOSUB 1000 :: A=30 :
GOSUB 1000 :: T=10 :: A=28

:: B=23 :: C=20 :: GOSUE 100

0

160 7=2 :: A,B,C=0 :: GOSUB
1000 :: T=3 :: A=28 :: B=23
:: C=20 :: GOSUB 1000 :: T=

1
:: A=27 :: GOSUB 1000 :: GO

SUB 700

170 T=4 :: A=25 :3 B=21 :: C
=9 :: GOSUB 100 3 T=2 :: A
=23 :: B=18 :: C=15 :: GOSUB

1000
180 T=10 :: A=20 :: B=15 ::
C=11 :: GOSUB 1000 :: T=2 ::
A,B,C=0 :: GOSUR 1000

190 T=3 :: A=28 :: B=23 :: C

=20 :: GOSUB 1000 :: T=1 ::
A=27 :: GOSUB 1000 :: GOSUB
700

Save that under the filename ROSES, clear the memory with NEW, and key

this in -

1000 CALL SOUND(D*T,N{A),VI1,

200 T=4 :: A=25 :: B=2
=16 :: GOSUB 1000 :: A
B=18 :: C=15 :: GOSUB
210 T=14 :: A=20 :: B=1
C=11 :: GOSUEB 1000 :: T=2 ::
A,B,C=0 :: GOSUEB 1000 :: ST
orF
500 T=2 :: A=23 :: B=20 :: C
=16 :: GOSUB 1000 :: A=28 ::
GOSUE 1000 :: A=27 :: GOSUB
1000 :: A=28 :: GOSUB 1000
13 A=27 :: GOSUB 1000
310 A=28 :: GOSUB 1000 :: A=
23 :: B=20 :: C=16 :: GOSUB
1000 :: A=20 :: B=146 :: C=11
:: GOSUB 1000 :: A=16 :: B=
11 :: C=8B :: 60SUB 1000 ::
ETURN
600 T=2 :: A=27 :: B= 23 ts C
=18 :: GOSUB 1000 :: A=23 ::
B=18 :: C=13 :: BOSUB 1000
:: A=21 :: GOSUB 1000 :: A=2
3 :: 60OSUB 1000
610 A=27 :: GOSUB 1000 :: A=
23 :: GOSUB 1000 :: RETURN

1 :: C
=21 ::
1000

&

700 T=4 :: A=27 :: B=21 :: C
=16 :: GOSUB 1000 :: T=8 ::
A=25 :: GOSUB 1000 :: T=3 ::
A=27 3: B=23 :: C=18 :: 6OS
Ue 1000
710 T=1 :: A=21 :: GOSUB 100
0 32 T=4 :: A=25 :: B=21 ::
C=16 :: GOSUR 1000 :: T7=8 ::
A=23 :: B=20 :: C=1é :: GOS
UB 1000
720 T=3 3: A=25 :: B=21 :: C
=16 :: GOSUB 1000 :: T=1 ::
A=23 :: GOSUB 1000 :: T=2 ::
A=23 :: B=18 :: C=15 :: GOS

up 1000

730 A=21 :: GOSUB 1000 ::
20 :: GOSUB 1000 :: A=21 ::
60SUB 1000 :: RETURN

N(B),V2,N(C),¥3):: RETURN

Save that by SAVE DSKI1.PLAIN3,MERGE .

Load ROSES again and merge it in by MERGE DSK1.PLAIN3 .

Add a line -
105 D=200 and RUN it.

Sounds rather raw and harsh,
105 D=200 :: V2=5 :: V3=8

60

doesn’'t it? Try changing that line 103 to -

Try it again. Sound better? The first time, all 3 voices were being
played at the loudest volume. Usually computer music will sound better if
the harmony notes are given a lower volume. Experiment and find the
volumes you like best. Is the music too slow for you? Just change the
value of D. Is it not in your singing key? Just change the value of F in
line 100, as I showed you before.

But, does the music still have too strong a beat for your taste? Clear
the memory again and key this in -

1000 CALL SOUND(-4250,N(A+Z)

JVI,N(B+Z) ,V2,N(C+Z),V3)::

0SUB 1010 :: RETURN

1010 FOR W=1 TO T#D :: NEXT

W :: RETURN

Save that as NEG3,MERGE because it uses negative duration for 3 voices.
Then load ROSES again and merge it in. This time, try line 1035 with D=30
and with VY2 and VY3 as you wish. Sound smoother?

In lines 110, 130, 160, 180 and 210 of ROSES, you will find A,B,C=0 .
That makes all three voices silent, because in line 100 N(0) is given a
frequency of 40000 which is above the range of human hearing. This is how
I prograamsed those silent pauses, the "rests” which were written in the
music.

On a pianc or guitar, the strings continue to vibrate during a rest, so
that the sound gradually fades out. However, the electronically
generated tones of a computer stop very suddenly. That is why I often
add the duration of the rest to the duration of the preceding note, and
play it right on through. Some people think that doesn’t sound right, so
here is another solution. Clear memory again and key this in -

2000 FOR W=2 TO 8 STEP 8 ::
CALL SOUND{-999,N(A+Z) ,Vi+H,
N(B+Z) ,V2+W,N(C+Z) VI+W):: B
OSUB 2010 :: NEXT W :: RETUR
N

2010 FOR Y=1 TO T#D/4 :: NEX
T Y :: RETURN

Save that as REST,MERGE. Load ROSES again, merge in SCALE and NEGE3 (this
will not work well with PLAIN3) and merge in REST. Now go to lines 110,
130, 160, 180 and 210, delete the A,B,C=0 :: and change the GOSUB 1000
after it to 60SUB 2000. Add line 105, run it and see if you like that
better.

Anyway, keep it for now because we will use it again.

You will probably want to have the music play through more than once.
Just add :: FOR J=1 TO 4 to the end of line 105 (if you want it to play 4
times) and change the end of line 210 to read NEXT J :: STOP .

I said that you could change the key of the music just by changing the
value of F in line 100. There is also a way to change it while the music
is playing. After the FOR J=1 TO 4 in 105 put ::

I=7-(J=2)#3-(J=3) #1+(J=4) %4

That is somewhat complicated but it just means to play the second tise
three whole keys higher, the third time one key higher still (I know the
¥1 is unnecessary') and drop back 4 keys for the 4th time, so you can
take it from there and modify it as you wish. If you want to use that
routine with silent rests, change the GOSUB after each rest to 3000
instead of 1000, and add this line -

3000 CALL SOUND(-4250,N(A),V

1,N(B),V2,N(C),V3):: GOSUB !

010 :: RETURN

This tune happens to end in a rest, which is unusual. If you key in
anaother tune and it seems to end too abruptly, just after that NEXT J and
before the STOP, put in a long duration such as T=12 and a GOSUB 2000 to
that REST routine to fade out more slowly.

Now, when you are keying in your own tunes, the notes on your sheet music
will usually have two or three of those little eggs on the steam. It is
best to use the upper one for A, the next one for B, and the lower one
for C; the computer could care less, but you will find it easier to keep
track of what you are doirg. .

If there are less than three, just go directly below to the bass clef and
find a note there. If you still don’'t have enough, you can always use 0
to make that voice silent. Or, you can usually just let the previous note
continue. If your sheet music has guitar chords - those little square
grids with dots on theam - above the staff, they will give you some help -
if there is no guitar chord above the note you are working on, the chord
has not changed and it is safe to use the previous harmony notes.

There are many other CALL SOUND routines you can use for different
effects. This is similar to the one that Bill Knecht used for his hyens -
I call it VIBRA.

105 D=1 3: Vi=1 s: V2=5 s: V

3=11

1000 FOR J=1 7O T#D :: CALL

SOUND(-99,N(A) ,VI ,N{B) ,V2,N{

€),V3):: CALL SOUND{(-99,N(R)

#1.01,VI,N{(B),V2,N(C),V3)::

NEXT J :: RETURN

This one I call WUBBA, for no good reason -
105 D=1 :: V1=1 :: V2=5 :: V

3=11

1000 FOR J=1 7O T#D :: CALL

SOUND (-99 ,N{A) ,VI,N{B) ,V2,N{

C),V3)s: CALL SOUND(-99,N{(A)
#1.,01,VI,N(B),V3,N(C),V2)::

NEXT J :: RETURN

And this one I call TREMW -
105 D=1 :: Vi=1 3: V2=5 3: V
3=11

1000 FOR J=1 TO T#D :: CALL
SOUND(-999,N(A) ,V2,N(B) ,V2,N
(C)#1.01,V3):e CALL SOUND(-9
99 ,N(A) 1,01 ,V1I,N(B),V2,N(C)
4V3)z: NEXT J :: RETURN

1 included line 105 in those, to merge in the duration and voluses along
with the sound routine. Change the value of D to suit yourself, even in
decimal increments such as D=1.3 .

It is easy to play a song repeatedly but with a different effect each
time. Merge in VIBRA and change its line number to 1010. You can do this
by typing 1000 and FCTN X, Enter, FCTN B to bring it back, type over the
line number, and Enter. Merge in WUBBA and change it to line 1020 in the
same way, then TREM and change it to line 1030.

Add :: FOR R=1 TO 3 to the end of line 105. Put in a new line 1000 -
1000 ON R GOSUB 1010,1020,1030 :: RETURN

And change the end of line 210 to
NEXT s: STOP.
Next tise - more different effects, and autochording.
S S R R e R

TIPS FROM THE TIGERCUB
NO #10

Tigercub Software

156 Collingwood Ave.

Columbus, OH 43213
(614)235-3545

TIPS #9°'s challenge
was to write a one-line
progras in Extended Basic
which would take only 70
seconds to scraasble the
numbers from 1 to 255 into
a completely randoa seq-
uence without duplication.
Well, you do have to shove
it, but:

100 FOR J=1 TO 255 :: M$=M$&
CHR$(J):: NEXT J :: DIM N(25
S5):: RANDOMIZE :: FOR J=255
TO 1 STEP -1 :: X=INT(J#RND+
f}:: N{J)=ASC{(SEG$(M$,X,1)):
: M$=SEG$(M$,1,X-1)45ECS (NS,
X+1 ,LEN(M$)):: NEXT J

The challenge this timse -
can you unfurl the U.S5. flag
(49 stars), fros the mast
out, in 2 lines of Extended
Basic?

A tip for you disk drivers
flip and back up! Disk
sectors don't go bad very
often, but it does happen,
and the program or file
that you lose is usually
the one that you can’'t
replace.

So it pays to make a
backup, but then you need
twice as many disks, and
disks do cost Some folks
say that a flipped disk is
more likely to go bad,
others don’'t think so, but
anyway it doesn’'t happen
very often.

So if you back up your
program on the flip side of
another disk, the chances
of both going bad are
almost nil, and it hasn’'t
cost you a penny.

And don’'t spend $20 for
one of those "Disk Flip-

ping kits". They consist of
a template and a paper punch
You can make a teaplate for
nothing from the cover of an
old disk that's gone bad.And
the paper punch you can buy
in an office supply store
for about a dollar - try to
find one that has a plastic
protector on the lower jaw
to catch the punchings and
to protect the disk. A
square write-protect notch
is not necessary, a half
round one works just as well
A bottle of typist’'s "white-
out" is handy for making the
spots to be punched.

Do you want that "arcade
effect” in your musical
tones or single-note music?
Instead of:

CALL SOUND(D,N,V) write
CALL SOUND{(D,N,V,N#1.01,V)

Soabdy actually wraote me a
letter and said that they
liked the Cryptocoder in the
last Tips. So, since Word-
search puzzles are so pop-
ular as space-fillers in the
newsletters...

100 CALL CLEAR

110 REM - praogramsmsed by Jie

Peterson of Tigercub Softwar
e, 156 Collingwood Ave., Col

umbus, Ohio 43213

120 PRINT ® TIGERCUB WORDSEA
RCH MAKER": : :"Make your ow
n wordsearch®:"puzzles, Use
the arrow keys"

130 PRINT "and W,R,Z, and C
keys to move":"the asterisk
around. Hold":"down the CTRL
key when you"

140 PRINT "want to type a le
tter. When":"you have finish
ed putting in":"words, press
ENTER and the"

150 PRINT “"computer will fin
ish the":"puzzle. Then if yo
u want to":"save it on tape
or disk,":"press P.": : : 3
160 PRINT : :"Press any key
to start.”

170 CALL KEY{(0,K,ST)

180 IF ST=0 THEN 170

190 CALL CLEAR

200 DINM L$(24) 63

2022 note: Now we are trying to access the old TI disks it is apparent-
the flippies have gone bad- on both sides- far more often....

64

210 R=12

220 C=16

230 CALL HCHAR(R,C,42)

240 FOR J=5 T0 12

250 CALL HCHAR{(J,J,ASC(SEGS$(
“TIGERCUB",J-4,1)))

260 NEXT J

270 CALL KEY({5,K,ST)

280 IF ST<1 THEN 270

290 ON POS("WERSDZIXC"&CHR$ (1
3),CHR$(K),1)+1 60TOD 430,300
,340,330,310,370,390,400,360
, 460

300 R=R-1-(R=1)

310 C=C-1-(C=3)

320 GOTO 410

330 C=C+1+(C=30)

340 R=R-1-(R=1)

350 6070 410

360 R=R+1+(R=24)

370 C=C+1+(C=30)

380 60TO 410

390 C=C-1-(C=3)

400 R=R+1+{(R=24)

410 CALL HCHAR(R,C,42)

420 60TO 270

430 IF K<129 THEN 270

440 CALL HCHAR(R,C,K-56%)

450 60T0 270

460 FOR R=1 TO 24

470 FOR C=3 70 30

480 CALL GCHAR(R,C,B)

490 IF (B6{>82)%(6<{>32)THEN 5
50

500 RANDOMIZE

510 CH=INT(246%RND+45)

520 L$(R)=L${(R)&CHR$(CH)

530 CALL HCHAR(R,C,CH)

540 6070 560

550 L${R)=L$(R)&4CHR$(B)

560 NEXT C

570 NEXT R

580 CALL KEY(3,K,8T)

590 IF (ST=1)+{(K{>»80)THEN 58
0

600 PRINT “"SAVE TO:":"{(C) CA
SETTE?":"(D) DISK?",

610 INPUT @%

620 IF @${>"D" THEN 660

630 INPUT "NAME OF FILE? ":8
F$

640 F$="DSK1."%0OF$

450 G0OTO 480

660 IF Q$<{>"C"™ THEN 410

670 F$="CS1"

680 OPEN #1:F$, INTERNAL,OUTP
UT,FIXED 192

690 FOR J=1 TO 24

700 IF INT(J/6)%4=J THEN 730
710 PRINT #1:L$(J),

720 GOTO 740
730 PRINT #1i:L$¢J)
740 NEXT J
750 CLOSE #1

0f course, if you're one
of those lucky folks with a
printer......

Here's another musicmaker
for you....
100 REM TIGERCUR COMPOSER
110 RANDOMIZE
120 DEF A=VAL(SEGS$(T$,INT(3*
RND+1) #3-2,3))
130 FOR P=1 TO 4
140 ON P GOSUB 200,220,240,2
00
150 FOR J=1 TO 4
160 CALL SOUND(-999,R,5,A*2,
0,A%4,10)
170 NEXT J
{80 NEXT P
190 G6OTO 130
200 T$="131165195"
210 RETURN
220 T$="123147196"
230 RETURN
240 T$="110131175"
250 RETURN

TIPS FROM THE TIGERCUB
NO 811

The above challenge was
to unfurl the U.S5.flag (with
49 stars), from the mast out
in 2 lines of Extended Basic

100 CALL CLEAR :: CALL COLOR
{(2,16,5,3,16,16,4,7,7):: AS$({
1)="#x%%%%%080808" :: A$(2)=
RPT$("80",7):: CALL CHAR(33,
RPT$¢("01",8)):: CALL VCHAR(4
.4,33,20)

110 FOR C=5 70 22 :: X=1+ABS
{(C>11):: FOR T=1 T0O 13 :: CA
LL VYCHAR(5+T,C,ASC(SEGS$(A$(X
),T41)))s: NEXT T :: NEXT C

:: 6OTO 110

One of the previous
challenges was to write the
Extended Basic statement IF
X=1 THEN Y=7 ELSE IF X=2 TH
EN Y=33 ELSE IF X=3 THEN Y=
19 ELSE IF X=4 THEN Y=21.My
solutin was Y=VAL(SEG$("07
331921 ,X#2-1,2).

Jim John- ston in the K-3

User ‘s Group newsletter
came up with a method which
is better because it does
not require that the values
of X be in sequence:

Y=ABS{(7#{X=1))+{33#{X=2))+(
19#(X=3))+(21%(X=4)))

Proving once again that
there is more than one way
to skin the cat, and often a
better way - although the
cat might not agree.

Advice to disk-drivers -
keep and eye on those little
tabs of silver tape that you
use to cover the write-
protect notch on your disks.
They tend to become dog-
eared from bumping against
the slot of the drive. I re-
cently heard a horror story
about one of those tabs that
came loose and got into the
drive!

The following Menu-loader
or Auto-booter was origin-
ally published by A. Kludge
in the 99'er Vol. 1 #4.
Marshall Gordon and Thosas
Boisseau greatly isproved it
and published it in the
Atlantic 99/4 UG newsletter
Vol. 2 #1.

I have no idea how it
works, but have managed to
modify it so that it will
catalog up to 99 prograss
on a disk, stopping for
input after each 19 are
listed, or stopping
whenever any key is
pressed; I also added a
delete option, requiring

a repeated input to prevent
error.

It takes up only 8 sectors.
If you have Extended Basic
and Disk Drive, load this
progras under the file naae
LOAD. It will then
automatically run whenever
you select Extended Basic,
will list all the prograas
on the disk, and will run
whichever program you

select.

{(This program was success-
ively updated in Tips #15,
i8, 20, 22, 23, 24, 27, 28,
29, 30 and 32. - Ed.)

100 OPTION BASE 1 :: DIM PGS$
(99),T$(5):: CALL CLEAR

110 T$(1)="DIS/FIX® 5: T$(2)

="DIS/VAR" 1: T$(3)="INT/FIX
" r: T$(4)="INT/VAR" :: T$(5
="PROGRAM"

120 IMAGE ##

130 DISPLAY AT(1,9)ERASE ALL
:"DISKETTE MENU"

140 ' IF YOU HAVE MORE THAN

ONE DISK DRIVE, DELETE THE !

IN LINE 150

150 ' DISPLAY AT(12,6):"DISK

? (1-3):" :: ACCEPT AT(12,19
}SIZE(-1)VALIDATE("123"):D$

:: D$="DSK"&D$&"."

160 D$="DSK1." :: OPEN #1:D$
,INPUT ,RELATIVE,INTERNAL ::
INPUT #1:N$,A,J,K :: DISPLA

Y AT(1,1)ERASE ALL:SEG$(DS$,1
,4)%" - DISKNAME= "&NS$:

170 DISPLAY AT{(2,1):"AVAILAB

LE=";K; "USED="3J-K: "PROG FI

LENAME SIZE TYPE®:"

1=0
180 FOR X=1 7O B0 :: IF X/20
¢>INT(X/20) THEN 210
190 DISPLAY AT(24,1):"TYPE C
HOICE OR 99 FOR MORE® :: ACC
EPT AT(24,27)VALIDATE (DIGIT)
:K :: IF K=99 THEN 200 :: IF
K>0 AND K<X+1 THEN 360 ELSE
190
200 X=X+1 1: CALL VCHAR(1,2,
32,48)
210 I=I+1 :: IF 1>127 THEN K
=X :: GOTO 300
220 INPUT #1:P$,A,J,B
230 IF LEN(P$)=0 THEN 270
240 DISPLAY AT(X+4,2):USING
120:X :3 DISPLAY AT(X+4,6):P
$:: PE$(X)=P$ 3: DISPLAY AT
{X+4,18) :USING 120:J :: DISP
LAY AT(X+4,22):T$(ABS(A))
250 CALL KEY(0,KK,ST):: IF §
T=0 THEN 260 :: FLAB=1 1: B0
T0 280
260 NEXT X
270 DISPLAY AT(X+4,1):" * ::
DISPLAY AT(X+4,2):USING 120
:X :: DISPLAY AT(X+4,6):"TER
MINATE® :: DISPLAY AT(X+5,2)

65

66

:STR$(X+1)&" DELETE?"
280 DISPLAY AT(X+é6,1):" C
HOICE®
290 ACCEPT AT(X+b,16)SIZE(2)
VALIDATE(DIGIT):K :: IF K{>X
AND K<>X+1 OR FLAG=1 THEN 3
50
300 IF K=X THEN CALL CLEAR :
: CLOSE #1 :: END)
310 DISPLAY AT(X+5,11)SIZE(1
8):" #?7" :: ACCEPT AT(X+5,15
)SIZE(2)VALIDATE(DIGIT) :KD :
: IF KD<! OR KD>X-1 THEN 310
320 DISPLAY AT(X+b6,1)SIZE(28
)BEEP: "VERIFY - REPEAT DELET
E #" :: ACCEPT AT(X+6,27)511
E{(2)VALIDATE(DIGIT):KD2 s: I
F KD2<{>KD THEN 340
330 DELETE "DSK1."&PB$(KD)
340 CLOSE #1 :: BOTO 130
350 IF K<1 OR K>99 OR LEN(PB
$(K))=0 THEN 270
360 CLOSE #1
370 CALL INIT :: CALL PEEK(-
31952,A,B):: CALL PEEK(A#*256
+B-65534,A,B):: C=A#256+B-45
534 :: A$=D$&PGE$(K):: CALL L
DAD(C,LEN(A$))
380 FOR I=1 TO LEN(A$):: CAL
L LOAD(C+1,ASC(SEG$(AS$,1,1))
):: NEXT I :: CALL LOAD(C+1,
0)
390 RUN "DSKX.1234547890"

Come to think of it, if
you have more than one disk
drive you will also have to
delete the first stateament
in line 160, and modify
line 330.

Here’'s a memory-saver for
you - put your data in
strings instead of data
statements. My "Hangman
Plus" progras was only 7764
bytes long but it contained
a vocabulary of 315 words in
data statements. After read-
ing these into an array, it
had too little working meam-
ory left, and paused too
often for garbage collection

After changing all the DATA
statements to strings, it
runs without stalling even
though the number of words
was increased and an array
of 50 is still dimensioned

for user input of words.

When I loaded the original
version in Extended Basic
with the Memory Expansion
and asked for SIZE after
the DATA had been read in,
I found that I had 14756
bytes of program and 7449
bytes of stack free.

In the version with DATA in
strings, at the same stage
in the program I had 14874
bytes of program and 11310
bytes of stack free P a
saving of 3730 bytes!

And another advant-
age is that there is no de-
lay waiting for all those
words to be read into the
array. However, pulling
DATA out of a string is un-
doubtedly a bit slower, so0
this method should not be
used when speed is of prias-
ary importance.

In the "Hangman Plus”pro-
gram, I used lower case
letters as dividers between
the upper case words. To
pull words at random, I
randomly selected a string
and a position within the
string, using the POS of the
lower case letter to find
the word. The following is a
mauch abbreviated example:

100 M$(1)="aJOHNbJOEcCHARLIE
dMIKEeLARRY¢f"

110 M$(2)="aGEORGEbPETECCHRI
SdDONeRALPHE"

120 X=INT{(2%RND+1)

130 Y=INT{(5*RND+97)

140 X$=S5EG$)IM$(X) ,POS(MS$(X),
CHR$(Y) ,1)+1,POS(M$(X) ,CHRS$(
Y+1),1)-POS{M${X) ,CHR$(Y),1)
-1)

It is of course essential
that all the strings contain
the same number of elements
of DATA. If lower case
letters are needed, the
separators can be ASCII
codes 129 thru 154, obtain-
ed by holding down the CTRL
key while typing the alpha-

bet -

It's a bit hard to keep
track of those, because
they're invisible! Numeric
DATA can be also be stored,
using the VAL function to
convert it to numeric atfter
it is pulled from the
string.

You probably already know
this, but you don’'t have to
type in the blank spaces
before and after the :: in
multiple statements in
Extended Basic. Just run
every thing together 100
CALL CLEAR::RANDOMIZE::FOR
D=1 TO 100::NEXT D and the
computer will separate it
for you, shoving statements
into additional lines if
necessary.

out OF MEMORY

HAPPY HACKIN’
Jim Peterson
TIPS FROM THE TIGERCUB
$31
Copyright 1986

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

A few people have asked for
a program that they could
use to encode personal mess-
ages-here is a coder/decoder
to create code that should
be quite difficult to crack.
First we need another of
those programs that write a
programs -

100 'CODEPRINT by Jim Peters
on - creates a random code i
n a MERGE format prograam COD
ESTRING to be MERGEd into CO
DEMAKER

110 FOR J=1 TO 254 :: N$=N$&
CHR$(J):: NEXT J

120 FOR J=1 TO 254 :: RANDOHM
IZE :: X=INT(RND*LEN(N$)+1):
: CH=CHS4SEGS(N$,X,1):: N$=5E
ES(N$,1,X-1)XSEG$ (NS, X+1 ,LEN

{(N$)):: NEXT J
130 OPEN #1:"DSK1.CODESTRING
",VARIABLE 163,0UTPUT :: PRI

NT #1:CHR$(O)LCHR$(1)&"C$"&C
HR$ (190) &CHR$ (199) &CHR$(127)
YSEG$(C$,1,127)&CHRS$(0)

140 PRINT #1:CHR$(0)&CHR$(2)
"C2$"%CHR$ (190) &CHR$ (199) &C
HR$(127)&SEG$(C$,128,127)&CH
R$1{9)

150 PRINT #1:CHR$(0)&CHR$(3)
& “C$"4CHR$(190)4"C$"&CHR$ (18
4)%"C2$"4CHR$(0):: PRINT #1:
CHR$(255) &CHR$(255):: CLOSE

#1 :: END

And now the coder/decoder -
100 'TIGERCUB CODEMAKER writ

ten by Jim Peterson

110 !'The MERGE format progra

s CODESTRING created by the
program CODEPRINT must be ME

RGEd into lines 1-3 of this

progras

120 DIM A$(254):: DISPLAY AT
{3,6)ERASE ALL:"TIBERCUB COD

EMAKER" :: DISPLAY AT(12,1):
*Do you want to": :"(1)Encad
e":"(2)Decode”

130 CALL KEY{0,K,ST):: IF K=
49 THEN 140 ELSE IF K=50 THE

N 290 ELSE 130

140 OPEN #1:"DSK1.CODE" ,VARI

ABLE 254,0UTPUT

150 DISPLAY AT(5,6)ERASE ALL
:"Type message in segaents o
f":"not more than 254 charac

ters":"and Enter. When done,
type"

160 DISPLAY AT(9,1):"END and
Enter. Type slowly":"to avo
id skipped characters.":"Bac
kspace with FCTN 5§ to":"corr

ect.": :"Press any key"

170 CALL KEY{0,K,S5T):: IF ST

=0 THEN 170

180 CALL CLEAR :: CALL LONGA

CCEPT(O,M$):: IF M$="END" TH
EN 280

190 DISPLAY AT{20,1):"WAIT,
PLEASE - ENCODING"

200 FOR J=1 TO LEN(MS$)

210 A$(ASC(SEG$(CS$,J,1)))=5E

6$(M$,J,1)

220 NEXT J

230 FOR J=1 TO 254 :: RANDOM
11E

240 IF A$(J)="" THEN A${J)=C

HR$ (INT (26 #RND+65))

250 CODE$=CODES&AS$(J)

260 NEXT J :: PRINT CODES$

270 PRINT #1:CODE$:: CODEs=
“* +: FOR J=1 TO 254 :: A$(J

67

68

y="" :3 NEXT J :: GOTO 180

280 CLOSE #1 :: END

290 OPEN #1:"DSK1.CODE",VARI

ABLE 254,INPUT :: CALL CLEAR
:: DISPLAY AT(12,10):"DECOD
ING"

300 LINPUT #1:CODE$:: FOR J

=1 TO 254 :: M$=M$&SEG$(CODE

$,ASC(SEGS$(C$,J,1)),1):: NEX
T J :: PRINT M$3:: M$=""

310 IF EOF(1)<>1 THEN 300 ::
CLOSE #1 :: END

320 SUB LONGACCEPT(L ,M$):: X

=0 :: IF L<{>0 THEN R=L ELSE

R=R+1

330 M$="" 33 C=3 :: CH=140 :
: CALL CHAR(140,RPT$("0",14)

&"FF")

340 CALL HCHAR(R,C,CH):: CH=

CH+5+{CH=160)#25 :: CALL KEY
{(0,K,8T):: IF S5T<1 THEN 340

350 IF K<(>B THEN 370 :: X=X-
1 23 C=C-1 :: IF C=2 THEN C=

30 :: R=R-1

360 M$=SEGS(M$,1,LEN(MS$)-1):
: 60OTO 330

370 IF K=13 THEN 410

380 X=X+1 :: M$=MS$&XCHR$(K)::
CALL HCHAR(R,C,K):: IF X=25

4 THEN 410

390 C=C+1 :: IF C=31 THEN C=

3 :: R=R+1 :: IF R=25 THEN C

ALL CLEAR :: R=tl

400 GOTO 340

410 R=0 :: SUBEND

Here is a simple little game
I call Cover-up. Use the #!
joystick, try to cover the
white square with the black
square. Press the fire
button to speed up, release
it to slow down.
100 CALL CLEAR :: CALL CHAR(
96,RPT${("F",64)):: CALL SPRI
TE(#1,96,5,92,124):: CALL MA
GNIFY(4):: CALL SPRITE(#2,96
+16,100,100)
110 X=INT(20#RND)-INT (20%RND
Y:s Y=INT(20%RND)-INT(20%RND
):: CALL MOTION(®2,X,Y):: T=
T+1 :: IF T=250 THEN 300
120 CALL JOYSPEED(1,1):: CAL
L COINC(#1,#2,8,A):: IF A=-1
THEN 130 ELSE 110
130 Z=1+1 :: DISPLAY AT(1,1)
:Z :: CALL SDUND(-50,500,5):
: GOTO 120
300 CALL DELSPRITE(ALL):: DI
SPLAY AT(12,5):"YOUR SCORE I

S "&STR$(Z):: DISPLAY AT(20,
1):"PRESS ENTER TO PLAY AGAI
Nll

310 CALL KEY{(0,K,S)
OR K<>13 THEN 310
1 60TO 100

21110 SUB JOYSPEED(N,A):: CA
LL JOYST{(N,X,Y):: CALL KEY(N
4KyST):: 5=5+4K/9-1 :: S5=5#%#AB
5(5>0):: IF S>30 THEN S5=30
21111 CALL MOTION(®A,-(Y%5),
X#5):: SUBEND

For a one-handed BREARK, if
you can’'t reach FCTN and 4,
try FCTN with J and the
space bar together.

Probably useless info -
holding down FCTN and CTRL
together and typing 1, 2, 3
and 5 will give ASCII codes
145, 151, 133 and 148, which
are the codes obtained from
CTRL @, W, E and T, the keys
diagonally below the 1, 2, 3
and S.

IF 8=0
T,1=0

=E=sSss=S===

Occasionally someone sends
me a program they have keyed
in from ay newsletter, and
asks why it won't run, so I
wrote this routine to help
find the errors. It is also
useful to check whether two
copies of a program are
identical, but only if they
have not been resequenced.

(the two programs sust first
be LISTED to one disk by
LIST DSKi.(filename, using a
different filename for each
- Ed.)

100 'CHECKER by Jim Peterson
- to compare two programs a
nd list all differing lines
to the printer
110 DISPLAY AT(12,1)ERASE AL
L:"1st program DSK/filename?
":"DSK" :: ACCEPT AT(13,4):F
1%
120 DISPLAY AT(12,1)ERASE AL
L:"2nd program DSK/filename?
*:"DSK" s:: ACCEPT AT(13,4):F
2%
130 OPEN #1:"DSK"&F1$,INPUT
:: DIM M$(500) ,CH{(500):: OPE
N #2:"PI0" ,VARIABLE 255 :: P

RINT #2:CHR$(15)

140 X=X+1 :: LINPUT #1:M$(X)
i ME(X)=M$(X)&" " :: IF EOF
(1)<>1 THEN 140 :: CLOSE #1
:: OPEN #1:"DSK"&F2$,INPUT
150 IF EOF(1)=1 THEN 230 ::

LINPUT #1:X$% 2: X$=X$&" °
160 FOR Y=1 TO X

170 IF X$=M$(Y)THEN CH(Y)=1
:: 6070 150

180 NEXT Y

190 P2=P0OS(X$," ",1):: P2%$=§

EG$(X$,1,P2-1)

200 FOR Y=2 70O X :: P1=POS(M
$(Y)," ",1):: P1$=SEGS(MS$(Y)
,1,P1-1)

210 IF P2¢=P1$ THEN PRINT #2
:"1st program = ";M$(Y):"2nd
progras = ";X$:: CH(Y)=1 :
: 6070 150

220 NEXT Y :: PRINT #2:"2nd

program = ";X$:: GOTO 150
230 FOR J=1 TO X :: IF CH{J)

=0 THEN PRINT #2:"1st progra

a = ";N${J)

240 NEXT J

250 CLOSE #1 :: CLOSE %2

Here's a poor idea that

was printed and reprinted in
several newsletters -

At the beginning of a

progras that will run only

in Basic, add the lines -

1 IF PI=0 then (first line

of progras)

2 PRINT "YOU ARE IN EXTENDED

BASIC":"THIS PROGRAM RUNS

ONLY IN BASIC"

3 sTOP

The idea is that Pl is a
function in XBasic with the
value of pi, but is just a
variable name in Basic with
an undefined value of 0.

The trouble is, it doesn’t
work! If PI is keyed in froa
Basic and saved, it is saved
in token format as a vari-
able name, and when loaded
back into XBasic 1is still
just a variable name. And
if PI is saved from XBasic,
it is tokenized as a func-
tion, loads back into Basic
as an unrecognized function
and crashes! Can anyone come
up with a way around that?

Here is a handy PEEK that

hasn’'t been published as
widely as most of theam -
100 CALL INIT
110 CALL PEEK{8192,X)!Thanks
to Dale Loftis in the Orange
County UG newsletter!
120 PRINT X !'If X=32 you are
in Extended Basicy if X=145
you are in Basic with the
Editor Asseabler or
MiniMemory module inserted.
========3
And another 3-D sprite demo,
just to make all the Apple
polishers jealous. See if
you can figure out how it
works,
100 CALL CLEAR :: CALL SCREE
N{S):: CALL CHAR{100,RPTS$("F
",64)):: CALL MAGNIFY(4):: F
OR 5=5 TO 9 :: CALL COLOR({(S,
16,1):: NEXT §
110 DISPLAY AT(3,3):"TIGERCU
B SPRITE SHUFFLE" 'by Jim Pe
terson
120 DATA 70,116,2,75,121,7,6
9,124,11,78,113,16
130 FOR J=5 T0 8 :: READ P(J
1) ,PCJ,2),L(J)2: CALL SPRIT
E(#J,100,L(J),P(J,1),P(J,2))
1 NEXT J :: W=435
140 DATA 5,6,7,8,8,5,6,7,7,8
$9346,6,7,8,5
150 RESTORE 140 :: FOR ¥Y=3 T
0 8 :: READ A,B,C,D
160 FOR J=1 TO W :: CALL LOC
ATE(®A,P{A,1)-3,P(A,2) ,8B,P{
B,1),P(B,2)-J,8C,P(C,1)+J,P{
C,2),%D,P(D,1),P{D,2)¢+J):: W
=90 :: NEXT J :: GOSUB 180
170 NEXT Y :: 6070 130
180 FOR J=35 T0 7 :: CALL POS
ITION(8J,P(J+1,1),P(J+1,2)):
: NEXT J :: CALL POSITION(#8
+P{5,1),P(5,2)) .
190 T=L(8):: L(B)=L(7):: L(7
)=L¢b)s: L{b)=L(3):: L(D)=T
200 FOR J=5 70 8 :: CALL SPR
ITE(#J-4,100,L¢J),P(J,1),P{J
+2)):: NEXT J
210 FOR J=5 70 8 :: CALL SPR
ITE(#3,100,L(J),P(J,1),P(J,2
))s: NEXT J :: CALL DELSPRIT
E(#1,82,83,44):: RETURN
Do you need some really REAL
BIG letters on the screen?
Just type your letter at the
beep.
100 DIM X$(96):: CALL CLEAR

63

70

:: FOR CH=33 TO B9 STEP 8 ::
FOR A=0 TO 7 'REAL BIG LETT
ERS by Jim Peterson

110 CALL CHARPAT(CH+A,X${(CH+
A-32)):: CALL CHAR(CH+A,"0")
i: L$=LSURPT$(CHR$(CH+A),3):
: NEXT A

120 FOR T=1 70 3 :: R=R+i ::

DISPLAY AT(R,4):L$ =2 NEXT °

T :: L$="" :: NEXT CH

130 CH${1)=RPT$("0",16):: CH
$(2)=RPT$("F",16)

140 CALL SOUND(100,500,0)
150 CALL KEY{0,CH,S):: IF S=
0 OR CH>96 THEN 150

160 CALL HEX_BIN(X$(CH-32),B
$):: FOR J=9 TO 64 :: CALL C
HAR(J+32,CH$ (VAL (SEG$(B$,Jd,1
))+1))]

170 NEXT J :: GOTO 140

180 SUB HEX_BIN{(H$,B$):: HX$
="0123456789ABCDEF" :: BN$="
0000X0001X0010X0011X0100X010
1X0110X0111X1000X1001X1010X1
011X1100X1101X1110X1222"

190 FOR J=LEN(H$)TD 1 STEP -
1 :: X$=SEG$(H$,J,1)

200 X=POS(HX$,X$,1)-1 =2: T$=
SEG$ (BN$, X#5+1,4)&T$:: NEXT
J :: B$=T$:: T$="" :: SUBE
ND

Thought for the day. The
excuses for piracy are
exactly the same as the
excuses for shoplifting, but
you probably won't have to
tell them to the judge - in
this world, at least.

TIPS FROM THE TIGERCUB
#32
Copyright 1986

I've found a bug in the
Tigercub Menuloader V.45
which won't let you print a
disk catalog if the disk
contains the maximum 127
files. This should fix it.
340 I=I+1 :: IF I>127 THEN K
=X 3: 60TO 430
520 DISPLAY AT(X+5,12)SIZE(!
2):" #77 :: ACCEPT AT(X+3,15
)JSIZE(3)VALIDATE(DIGIT):KD :
: IF KD<1 OR KD>NN THEN 520

I think that all program
listings should be printed
in 28-column format, exactly

as they appear on the screen

- it makes it so much easier

to key them in without

errors. 1 combined parts of
two of my programs to make
the following. It is written
for the Gemini 10X but the
lines of printer control
codes are annotated to help

others make adjustaents. .

100 DIM K$(240):: LN=100 ::

DISPLAY AT(3,4)ERASE ALL:"TI

GERCUB PROGLISTER": :" Will

convert a program":"listing

to 28-column format,”

110 DISPLAY AT(7,1):"exactly
as it appears on the":"scre

en, and print it in 4":"colu

mns. "

120 DISPLAY AT(11,1):" Progr

am must be RESequenced":"and
LISTed to.disk by":"RES (en

ter)":"LIST DSK1.{(filename)

{Enter)"”

130 DISPLAY AT(18,1):"Filena

me? DSK" :: ACCEPT AT(18,14)

BEEP:F$

140 OPEN #1:"DSK"&F$,DISPLAY
,VARIABLE 80, INPUT

150 IF EOF(1)=1 THEN 260 ::

LINPUT #1:A$;

160 IF LEN(A$)<80 THEN LN=LN

+10 :: 60TO 210

170 LINPUT #1:B$:: IF POS(B

$,STR$(LN),1)=1 THEN FLAG=1

:: LN=LN+10 :: 6OTO 210

180 A$=A$%B$:: IF LEN(AS$)(1

60 THEN LN=LN+10 :: 6070 210

190 LINPUT #1:B$:: IF POS(B

$,STR$(LN),1)=1 THEN FLAG=1

:: LN=LN+10 :: GOTO 210

200 A$=A$%B$:: LN=LN+10

210 S=1

220 L$=SEG$(A$,5,28)

230 IF L$(>"" THEN 240 :: IF
FLAG=1 THEN FLAG=0 :: A$=BS$
:: 60TO 160 :: ELSE 60TO0 15

0

240 X=X+1 :: K$(X)=L$:: S5=§

+28 :: IF X=240 THEN 250 ::

GOTO 220

250 X=0 :: CALL PRINTER(K$ ()
:: 60TD 220

260 CLOSE #1 :: FOR J=X+1 TO
240 :: K$(J)="" :: NEXT J :

: CALL PRINTER(K$()):: PRINT
$2:CHR$(12):: END

270 SUB PRINTER(B${)):: IF F

=1 THEN 340 :: F=i

280 OPEN #2:"PIO.LF",VARIABL

E 132 :: PRINT #2:CHR$(15);C
HR$(27);"N";CHR$(4); ‘condens
ed print and perforation ski
p

290 PRINT #2:CHR$(¢(27);"G";'!
- double-struck printing, op
tional

300 PRINT #2:CHR$(27);CHR$(4
2);CHR$(0); 'download normal
tharacters - required if lin
es 310-330 are used

310 PRINT #2:CHR$(27);CHR$(4
2);CHR$ (1) ;CHR$(48) ;CHR$(0);
CHR$(b64) ;CHR$(30) ;CHR$(96);C
HR$(17) ;CHR$(72) ;CHR$(5) ;CHR
$(66);CHR$(61) ;CHR$(0);'slas
h the zero - optional

320 PRINT #2:CHR$(27);CHR$(4
2);CHR$ (1) ;CHR$(42);CHR$(0);
CHR$(8) ;CHR$(34) ; CHR$(8) ;CHR
$(0);CHR$(62) ;CHRS$(0) ;CHR$ (B
) ;CHR$(34) ;CHR$(8); 'broaden
the asterisk - optional

330 PRINT #2:CHR$(27);CHR$(3
6);CHR$(1);'activate redefin
ed characters - required if
lines 310-320 are used

340 FOR C=1 TO 60 :: IF Bs$(C
y="" THEN 340 :: PRINT #2:7TA
B{10);B$(C);TAB{(41);B${(C+40)
sTAB(72);B$(C+120);TAB(103);
B${C+180) ;CHR$(10)

350 NEXT C

360 SUBEND

I had trouble in debugging
that program because print-
ing the control codes gave
pe unwanted line feeds, and
using semicolons to prevent
line feeds will interfere
with tabs in the first line
of text. An article by Art
Byers in the Central West-
chester U6 newsletter gave
me the solution - suppress
all the line feeds by open-
ing the printer with PIO.LF,
and put them back 1in where
you need them with CHR$(10)!

We haven't had a random
music player in a long time.
This one is called ECHO but
I don‘'t know where it came
from.

100 RANDOMIZE :: DEF X=INT(R
ND#7):: FOR B=0 TO & :: A(B)
=VAL{SEG$("24726229433034939
244Q" ,(B+1)#3-2,3)):: NEXT B

:: B,C,D=X

110 CALL SOUND(-900,A(B),
(C),9,A(D),19):: D=C :: C
:: B=X :: BGOTO 110

========

Sound effects - thanks to
6reg Healy in the Edmonton
User Group newsletter -

100 CALL INIT

110 FOR J=2000 TO 2300 STEP
10 :: CALL LOAD(-31568,J)::
NEXT J

To go directly from XBasic
to console Basic - thanks to
6reg Healy in the Edmonton
User Group newsletter -

CALL INIT :: CALL LOAD(-3196

2,8787)

Enter. Ignore the error

message. Type NEW and Enter.

> TI BASIC READY
SES=SsS==E=ss==z====

This routine will read a
file of 2B-character records
and scroll thems up the lower
half of the screen without
disturbing the upper half.
[the file is DV8BO formatl

0,A

’
B

100 DISPLAY AT(12,1)ERASE AL
L:"FILENAME? DSK" :: ACCEPT
AT(12,14)BEEP:F$:: CALL CLE
AR

111 OPEN #1:"DSK"&F$,INPUT
112 DIN M$(480)

113 X=X+1 :: LINPUT B1:M$(X)
120 DISPLAY AT(24,1):H$(X)
125 R=24

130 FOR T=X-1 TO t STEP -1 :
: IF R>13 THEN R=R-1 :: DISP
LAY AT{(R,1):M$(T)

140 NEXT T :: IF EOF(1)(>1 T
HEN 113 ELSE CLOSE #1

=S=s======

A number always prints out
with a blank space before
and after it (except that a
negative number is preceded
by -). This 1is not always
desirable when formatting a
screen or printout. The
solution is to change the
number to a string by using
STR$ -

100 CALL CLEAR

110 PRINT " MULTIPLICATION
TABLES": :

120 FOR J=1 T0 9
130 FOR K=1 T0 9

71

772

140 PRINT TAB(K#3-2);S5TR${J#
K)s

150 NEXT K

160 PRINT : :

170 NEXT J

Regarding the CHECKER
progranm in Tips #31, 1
should have mentioned that
the two programs to be com-
pared must first be LISTed
to one disk by -

LIST "DSKil.(filename)
- using a different file-
name for each.

Re TI#MES issue 37-
In Tips #26 1 listed three
algorithms to alternate be-
tween the two joysticks.
Rick Humburg sent me another
which 1is the simplest and
fastest of all -
100 7=2
110 7=3-7 :: CALL JOYST(Z,X,
Y).e.....and back to 110!

e e o - e = =y = = = =
3+t 2 2 2+ 3+ & 2 & 3 & &+

Here are some wmore dark
secrets Texas Instruments
didn't tell us. The User’s
Reference Guide claims that
the computer can produce
frequencies up to 44733 Hz,
"well above humsan hearing
limits", but then adsits
"the actual frequency pro-
duced may vary from 0 to 10
percent depending on the
frequency." According to Jims
Hindley, the highest
frequency actually produced
is 37287 {which is certainly
not above the hearing range
of some humans, but neither
is 44733'), and the wmaximus
error rate far exceeds 10 %
because any frequency you
call for from 31953 to 43733
ends up as exactly 37287!
Not to worry, the frequen-
cies in the normal range
of music are accurate enough
and your TV speaker probab-
ly can’t reproduce frequen-
cies above 20000 anyway.

And did vyou know that TI
really gave us only 15 vol-
umes, not 30? Listen and
count them -

100 FOR V=0 TO 29 STEP 2

110 CALL SOUND(1000,500,V)
120 CALL SOUND(1000,500,V+1
1)

130 FOR D=1 TO 500

140 NEXT D

150 NEXT V

And the duration values
are just as inaccurate.
Experimenting with a series
of 8 CALL SOUNDs in a loop
repeated 100 times, I found
that execution time was 40
seconds for any duration
between 1 and 49, or a
negative duration; 94
seconds for any duration
between 50 and bb3 67
seconds between 67 and 83;
80 seconds between 84 and
99; 94 between 100-116; 106
between 117-133....!

I guess I°'ve been neglect-
ing those who don’'t have the
Extended Basic module, so -
100 CALL SCREEN{14)

110 CALL CLEAR
120 PRINT TAB(8);"GREENSLEEV

ES"s &2 2 & 5 & &2 5 8 2 ¢ & 3

:"programmed by Jim Peterso
n" '
130 DIM S¢15)
140 FOR N=1 TO 12

150 READ S(N}
160 NEXT N
170 M$="421800995ABDC3I24E7DB
AS51864699182400425A00DBCISALS
AS243C7EB1994200AS7EH6BD3ICAS
423C187E423CBDSABI0099FFC3"
180 RANDOMIZE
190 FOR R=1 70 12
200 CALL COLOR{(R+1,1,1)
210 CALL CHAR(32+R#8,CH$&CHS
)
220 FOR T=R 70 25-R
230 CALL HCHAR(T,R,32+R#8,34
-2#R)
240 NEXT T
250 NEXT R
260 CALL SCREEN({(2)
270 FOR R=1 7O 12
280 CALL COLOR{(R+1,R+2,1)
290 CH$=SEG$(M$,INT (47%RND+1
)#2-1,8)
300 CALL CHAR(32+R#8,CHS$&CHS
)
310 NEXT R
320 DATA 247,277,294,311,330
,370,392,440,494,523,554,587

330 DATA 2,5,5,4,7,5,2,8,5,3
5955!11101112s9531458131216!
3,3,3,1,1,5,3

340 DATA 2,6,1,4,7,5,3,5,2,1
s 2250258y by 2y By Byl
350 DATA 2,5,1,4,7,5,2,8,5,3
,9,5,1,10,5,2,9,5

360 DATA 4,8,3,2,6,3,3,3,3,1
J5,3,2,6,3,3,7,5,1,6,2,2,5,1
370 DATA 3,4,1,1,2,2,2,4,1,4
,5,1,2,1,5,6,5,1

380 DATA 2,12,9,2,12,7,2,12,
3,3,12,12,1,11,9,2,9,7

390 DATA 4,8,6,2,6,3,3,3,3,1
,5,5,2,6,3,4,7,5,2,5,3

400 DATA 3,5,5,1,4,4,2,5,5,4
,b,1,2,4,1,6,1,1

410 DATA 6,12,9,3,9,12,1,11,
8,2,9,7,4,8,6,2,6,3,3,3,3
420 DATA 1,5,3,2,6,2,3,7,5,1
,6,642,5,5,3,4,1,1,2,2,2,4,4
,6,5,1,1,1,5,7,5,1

430 FOR J=1 TD 223 STEP 3
440 READ T,A,B

450 GOSUB 530

850 FOR TT=1 TO T

470 CALL SOUND(-999,5(A),0,5
{B),7)

480 NEXT TT

490 NEXT J

491 FOR V=0 TO 20

492 CALL SOUND(-999,S(A),V,S
(B) ,V+7)

493 NEXT V

500 CALL SCREEN(INT(14%RND+2
))

510 RESTORE 330

520 60TO 270

530 CALL COLOR(A+1,INT(14%RN
D+2),1)

540 CALL COLDR(B+1,INT{14%RN
D+2),1)

550 RETURN

{ 'from 9 T 9 UG newsl. Aug
85

100 PRINT """Hello"" said TI
110 PRINT "Press ""ENTER"" t
o continue"

If you bite the hand that
feeds you, vyou’'ll go hungry
tomorrow. Don’'t be a pirate!
MEMORY FULL TO BUSTIN’

Jim Peterson

DISK LIBRARY REPORT.
NEW DISKS JANUARY 1993

Jim Peterson’'s TIPS was printed using PRINTALL16 on disk UTIL-31.

THE DRAWING MASTER is now updated to version 1.3.

1 have a new version of Danny Michaels DUMP program modified by
Bruce Harrison.

The library collection of PLATO data disks is now up to around 80
disks.
I wonder if anyone is writing programs these days? If you know of
anything not in the disk library, why not let me know, and if you
have it- donate a copy!

To reflect the lower cost of new disks, if you wish the library to
supply a disk the cost is now just 50p per disk- so if you wish to
order 8 disks, all supplied by the library, the cost is:

8 555D sides copied at 1.00 each....8.00

8 disks supplied by library @ 50p....4.00
Handling charge (post % packing)......
total
The full disk library details are available on disk (DVBO text
tfiles)- just send 4 disks with return postage.
Disk Librarian:
Stephen Shaw, 10 Alstone Road, STOCKFPORT, Cheshire, Sk4 SAH

Copy for this issue was printed using a very old ribbon on single
strike non-emphasised, the ribbon having been "refreshed” with
WD-40,

73

Dear Editor,
I have some comments prompted by the letter from
"Chris" Christian in issue 39. My concern is mainly with his final
grouse.

Chris dislikes programs that he thinks have no usable end product. A
little thought about what we consider "Usable" for the Group in general
does not seem out of place. After all, I suppose the TI*MES is almost the
whole material benifit that most members receive. |If Chris’s views were
widely echoed, this could account for some of the decline in our
membership. We all have the opportunity, on the sub renewal form, of
saying what we think, but this of course would reflect the opinions only
of those not yet so fed up as to resign. Still, Its a start and maybe
Alasdire Bryce will tell us what the indications are.

My view on this topic is that members still at work are unlikely to be
looking hard at their TI’s for support or to TI*MES as a prime source of
technical information. No, they and the rest of us are doing what we do
for intellectual stimulation, free from pressures of deadlines. Almost
inevitably, I think, this drives us away from specialist programs unless
they are presented in a way that highlights the universal features in
them. To illustrate, | recently had occasion to inspect a program from

Chris’s area, although not up to his level. It was to design a filter for
a phase-locked loop. Interest value for me, Zero. | soon went onto
something else Only later did | reflect that it probably performed an

optimization, under stated restraints, of several quantities, one at
least of which could have been a complex number. If Chris had been around
to outline the logic, | might have been using it now. So, | suggest that
authors of specialist programs should send them to the library but let us
see the trickiest bits and some commentary in TI*MES.

Another point about presentation. Members without XB are a minority but

they pay their subs. While writing in XB makes better use of page space,
authors might try to avoid contructiens that are difficult to replace by
plain basic.

Finally, about support for TI*MES. I have been through the two years of
issues since | joined. Leaving aside routine announcements, [found
contributions from 14 people of whom 6 were current or recent past
officers, ie each year, about 6% of private members sent in something.
That's on a head count; on volume contributed, we all know the answer.
Through you, Editor, | would just say: Come on now Tom, Dick, and Harriet
out there. Tell us about things you’re rather pleased to have done, write
of your difficulties. Don’t stand in awe of the multicomputered polyglots
who seem to breath a differnt air. 0OK., you may not have disks or
printers or even a typewriter, but, | am sure that one or our leading
brains could publish a simple program for you to write to tape in a way
that our Editor could transmit to a printer via his expansion. Elaborate
editing facilities unnecessary.

Yours

74 Vhte, U,

This page has no content

TI*MES No 40 Magazine scanned 2022 by Stephen Shaw

75

This page has no content

TI*MES No 40 Magazine scanned 2022 by Stephen Shaw 76

This page has no content

TI*MES No 40 Magazine scanned 2022 by Stephen Shaw

17

nme s mEE NG Derey.
PARKING ¥\ T —h it

Y &
@ TOI\LETS uv,\, e British Reil Freight
* Torminal

A\
&

|
\/_
\

=g
.w‘v// M’p . \J o\
/&/ l _r..m ety \3 A
’ / uh._- m:na:‘. \Wt..._ vt \// M /
o skt g \Q
Z -
s\

» g w%-..»./
,_MI w//r.s.-...-imh.‘\.\ \//
i

h?:.zw‘

Pastia

Riverside *

== "College of Arfl

‘ &Maetgo Cinens

Fareste __ Stred 3 -
s A

Gardens . ™M O.ﬂ0h£>v\
0] ~=
3 J
.w“w ..MW_n ‘
Mnh!.?«; &
S Comtre] 3
?.m s A@-@
3, i : NEAR To
Princess Annz Y u“ ol RAILWA)
(StTTohn Awbulanca) |- u_\.@n\ P STATI0

TRWATY $T =4[|

w%p]déw FW

— et

