ISSUE NO. 41 SUMMER 93

Ti98/4a USER’S GROUP (U.K) CONTACTS

CHATRMAN:

Trevor Stevens. Tel 0823 793077

49 Southwell Road East, Rainworth, Nott's. NG21 OBN
VICE CHAIRMAN, CASSETTE LIBRARIAN, PROGRAMING:
Mark WILLS. Tel 081 8660677 after 5.30pm
207a Field End Road, Eastcote. Middx. HAS 1QZ
GENERAL SECRETARY:

Richard Twyning. Tel 0623 27670

>4 Peel Road, Mansfield, Nott's. NG19 6HB
PUBLICITY: Vacant

MEMBERSH P SECRETARY & BACK [ISSUES:

Alasdair Bryce. Tel 0389 65903
51 Dumbuie Ave, Silverton, Dumbarton, Scotland. G82 ZJH
TREASURER:

Alan Rutherford. Tel 0825 524642
13 The Circuit. Wilmsiow, Cheshire. SKS BDA
TIM*ES EDITOR & DISRIBUTION:

Gary Smith Tel 0793 878552

3 Kerry Close, Grange Park, Swindon SN5 6BH
HARDWARE :

Mike Goddard. Tel 0978 843547

"Sarnia", Cemetary Road, Rhos. Wrexham, Cwid. LLi4 2BY

DISK LIBRARIAN & JOURNAL EXCHANGE:

Stephen Shaw. Tel

10 Alstone Road., Stockport, Cheshire, SK4 5AH

PUBLICATIONS:

Mike Curtis. Tel 0208 218051

21 Treliske Road. Roseland Gdns. Redruth, Cornwall TR1S 1QE
MODULES

Francesco Lama. Tel 08685 721582
14 Granville Court, Cheney Lane. Oxford. OX3 OHJ

EDITOR COMMENTS

As you can see this issue has a slightly different format to
make it more graphically appealing. Please let us know what you
think. The next issue will be compiled by Gary SMITH so send him
your feelings about the layout etc.

DISCLAIMER

All views by contributors to this magazine are strictiy their
own, and do not represent those of the Commitee. Contrary
opinions are very welcome and will if you reguest, be made
available in print in the Consultation Zone. Any errors
produced in this magazine will be corrected upon request.

NEXT COPY DATE

All copies by the 12th September 1993. Please ensure all copies
as dark as possible please. All copies to fit on A4 paper with
the following approximate maximum dimensions on the page.

Left and right margins 15mm. Top 15mm Bottom 20mm.

Thankyou all for yourheilp

CONTENTS OF THIS ISSUE

NEWS AND REVIEWS

AUTHOR

R.TWYNING

FROM THE CHAIRMANS CHAIR T.STEVENS

DRIVEL No 4.
MEMBERSHIP NEWS

M.WILLS

A.BRYCE

MUSIC PROGRAMMING PT.4 J .PETERSON

CONSOLETATION ZONE

PRINTER INTERFACE DIY
HIGHL IGHT ING

TIGER TIPS

NUMBER PUZZLE

ART OF ASSEMBLY PT

YOU
S.SHAW *
G.SMITH
E.RAGUSE

J . PETERSON
W.ALLUM

B.HARRISON

80 COL CARD FOR THE TI DUTCH TIUG

L. HAYWARD

T.STEVENS

2022 note: The copy date for this issue
was a week after my mothers death. I

had the care of my blind insulin
dependant diabetic father. As a result
my output from now on was much

reduced- not helped by the magazine
appointing a new editor who did not wish
to edit and admitted discarding what

little I submitted without looking at it...

S Shaw.

411D Bcb"E IS

Dear CRAY1 owners everywhere,

The Bluesman is back with a big
article again. The AGM was held in Derby on the lst of May, and
wasn't as well turned out as last year, but somehow we managed to
achieve more. This was probably due to the attendance of
Mr.Vice Chairman, Mark Wills. Mark brought his amazing RAMdisk
utility program which will work on just a 4A with only
floppies!!! The reason for this is that it loads up two disk
directories ENTIRELY into memory. Mark differentiates between
the two by calling one the RAM directory, and the other the
floppy directory. You are asked to type the full path name
though, so instead of typing DSK3 for Myarc RAMdisk, you could
just enter DSKR2. and use two floppies. It's directory
organization coding is the best bit though. You can have a
marked file on both logged directories, and then view both of the
files by saying whether you want the file that is marked on the
RAM directory, or the floppy directory!

He's also got little selection windows that come up over the
top of everything else, and I thought he'd done it in machine
code, but he just said he doesn't save the data, but just
reprints the old screen again. It really appears as though he's
saving the data and then restoring it, but he says he isn't, and
it's all written in XB.

That's enough waffle for a bit. First thing's first, and
here's the minutes of the Annual General Meeting:

There were two apologies that were read by John Murphy of DORTIG
These were from Trevor Taberner and Terence J. Leach who were
unable to attend the meeting.

IT l1: Officers reports:

Mr.Chairman (Trevor Stevens): Trevor has had to take over the
job of editing TI*MES for two quarters, due to Alan
Bailey's unfortunate illness. I'm sure that the
thoughts of the entire T.I. community go out to
him.

Mr. Secretarx (Richard Twyning): I have had a couple of

enquiries about the group, but cannot confirm that
they have jolned until I obtain a copy of the full
group database.

We did have a new member at the AGM who we
would like to welcome to the group.

The 80-Column card project from the designs
obtained at last years AGM has not yet started,
but Mark Wills has said he can produce the
boards.

Mr.Vice Chairman (Mark Wi;ls) Mark has all the PCB

manufacturing materials needed to produce the
80-column cards, although we will need to
exactly work out how many we need, so anyone
who wants one, let Trevor, Gary, Mark, or
myself know about it, because Mark has got to
pay for the chemicals himself to etch the
board

What Mark can't do is have the boards
drilled, but this raised a smile between
myself and Trevor, because we spent until
1:30am building the ROMOX E/A Supercart.

As far as Mark's role of programming
officer is concerned, he has had a couple of
enquiries from users which he has been able to
answer,

Mark is heavily into C programming, and
says his articles on the subject will continue
for some. time.

Membership Secretary (Alasdair Bryce): Alasdair was unable to

attend the AGM because he is a solicitor,
but has unfortunately been made redundant.

We all wish you luck in finding a new
job Alasdair.

Alasdair's report was given by Mr.
(overworked) Chairman!!!!

There has been a decline in
membership and there were around 70
members who were due for renewal, and
Alasdair has received two thirds of
those.

Our membership is stablie at around
140 members.

Those members who have renewed their
subscriptions have been making donations
to the disk library, and this has raised
about £25 which will help in the purchase
of new software.

Mr.Treasurer (Aian Rutherford): The cost of room hire has

fallen considerably this year, and the cost of
producing TI®MES has risen only slightly, but
there has been a drop off in membership. The
groups' bank balance is sufficlient to cover this
however:

TI-09/4A User Group (UK)

Income and Expenditure Account

For the year ending lst April 1993

Inconme Expendi ture
Subscriptions £1465.80 TI*MES £1065.16
Interest £36.01 Room hire £70.00
Sales £136.60 Equipment £1560.00
Expenses 287.74

Mr.BEditor:

$1638.41 .
$£1342.90

The groups' current bank balance is $£4267.40

Due to Alan Bailey's unfortunate illness,

the editors report was given by Trevor.

There is no shortage of material for publication,
and Stephen Shaw has been able to obtain quite alot
of material because he is in contact with many
people all over the world. We have enough article
material (without repeating an item) for FORTY full
Issues!!!

This material is coming from Canada, Germany,
and Italy. This doesn't mean, however that we don't
want articles from you! Even the console only
people could get writing articles. You will see in
this newsletter, an article from Gary Smith which
describes a printer port which uses the cassette
port and just a couple of chips.

Disk Librarian (Stephen Shaw): Stephen Shaw sent his apologies

for being absent from the AGM due to a family
illness, and therefore, his report was given by
Mr.Chairman.

The disk library is still very quiet, but
has benefitted from the donations made during
the last subscription.

Cassette Librarian (Nicky Goddard): Nicky gave his final

report as Cassette Librarian before handing
over to Mark Wills. He's only had about
three orders during the past year!

Module Librarian (Phil Trotter): Phil was absent from the AGM

and has to relinquish his post as both
Publicity Officer, and Module Librarian.
Phil did send down the entire collection of

modules, however, and these were collected by
the new module librarian.

I a: tee Elections

Most of the committee positions have remained the same with the
main changes being to the respective library positions.

It was declided that Mike Goddard would no longer have a position
as Hardware Officer. This position has been removed from the
committee. He has no time to actually undertake actual hardware
projects for new devices, but will continue his valuable service
of supplying hardware such as disk drives, joysticks and power
supplies.

After the elections here's the officlal committee list:

TI*MES

KX

Your
Your
Your

Mr.Chairman -

Trevor Stevens.

Vice Chairman - Mark Wills.
General Secretary - Richard Twyning
Publicity - ?29?°222°%?
Membership Secretary - Alasdair Bryce
Treasurer - Alan Rutherford

Editor & Distribution

Librarians:

Gary Smith

Disk - Stephen Shaw

Cassette — Mark Wills (again)
Modules - Francesco L Lama

Please Note

magazine articles should now go to Gary Smith
Module orders should go to Francesco Lama
Cassette orders should go to Mark Wills

XX

You will also note that the position of publicity officer is

still open.

about it.

If you are interested,

ITEM 3: Discuss Group Future/Expansion

then contact Trevor or 1

It was thrown in as an idea in the last issue of TI*MES by Trevor
that it might be possible to include another machine in

Stevens,

the group, and have TI*MES split between the two.
thrown out during our discussion at the A.G.M.

magazine is going quite steadily by itself up to now,
decided that we should continue as we are.

no.l mach

ine.

This was
The group and
so it's
Dedicated to the

What was decided though was that we should make contact

with East Anglia Reglon 99'ers, and West Midlands T.I. Users
Mark Wills says that East Anglia

and make up a ‘Super Group'.
became very disjointed as a group when Scott and Jo Ann Copeland

went back
and Trevo

to the U.S.A.

I was a member myself until I met Gary

r. The East Anglia newsletter increasingly contained 5

pages that were produced using an IBM PC, and it became very

ropey | I then subscribed to TI*MES.

It's quite an amazing story how I became a member. I was
at West Notts College of Further Education, and was doing a two
year National Diploma in Software Engineering. About six weeks
into the course we were told that we were getting a new student
from Newark! He had to travel from Newark everyday. His name
was Simon Sloane. Because of his resemblance to Norman on the

Sun Alliance insurance T.V. advert, he was nicknamed Norman! .

1 got chatting with old Norm, and he said he'd got this
friend called Gary who'd got a Texas, and had heard of the
GENEVE! I gave Norm a map, and he gave this to Gary, and it
was arranged for Gary to come and see me one Friday night.

He was amazed at the amount of software 1'd collected over
the years, and what the GENEVE would do, and the next time he
came he said he'd got a friend from Ralnworth who would like to
see the GENEVE!!! Both Gary and Trevor turned up and Gary
brought a load of disks for me to copy. I had no spare
floppies, so I made some directories on the hard disk and copied
each floppy into a seperate directory to sort out later. I can
remember they were both amazed at the speed. This was before
Trevor had even got his expansion box. One thing I do remember
from that night was getting a true disk based version of
TI-Invaders that Gary had brought which included the famous *#%
cheat screen that wasn't available on the cartridge version!

Oops! Back to the subject! (I always get carried away in
every article!)

Mark Wills has agreed to make contact with the members of
East Anglia Region 99'ers and Gordon Pitt of the West Midland TI
Users and get their views on joining us as one big group. It
would mean we would have a greater chance of survival. All of
our funds would be combined, but East Anglia Region 99'ers or
West Midland TI Users would not lose their own identity.
They would still be able to hold their own seperate workshops or
meetings such as Bloxwich, but these would be publicized in
TI*MES, and would benefit from all of us being able to attend
after reading it in TI*MES. They would also have the benefit of
attending our shows, workshops and A.G.M. What a wonderful
world it would be! We'll have to see what sort of response Mark
has received. Let's hope that he's got something to report on
the matter in his article.

I : Discuss Me rship Fees

This discussion lasted for a considerable time with much
deliberation. It was pointed out by Derek Haywood that it
would be sensible to put up the subscription fee by a small
amount now, rather than forcing the members to pay alot extra in
the future if the subscription had to jump by a large amount.

We had a vote on the matter and it was decided to put up the
membership to £13.00. Therefore, the next time you subscribe,

0

This means that overseas subscribers will now have to pay
£15.50 and for subscriptions including Air Mail it will be £18.50.

ITHEM 8: Open Forum

This was intended to allow anyone with something to say to have
it discussed. Most of the important issues had already been
covered in items 3 & 4, so there was not alot left to say.

I think that during this time we discussed the venue for the AGM,
but we will be staying with Derby for that, although it was
mentioned that we might possibly have three shows or workshops in
a year. One for the north, one for the south, and the AGM in the
middle. If you know of any place that might be suitable near
you that charges a reasonable price, then let us know about it.

It was also mentioned that the magazine has no regular
place where you can have your letters printed. This has been
corrected in this issue with the Comsoletation Zane.

On the actual day of the AGM, we got up to some very
interesting things. Gary Smith, Mark Wills, Francesco Lama and
myself went for a traipse around Derby in search of nutrition and
beverage
During our meal we discussed many things of great importance such
as graphics cards, C99 programming, and waitresses!

At the AGM, Francesco had a copy of Micropendium in which
there was an unexpected advert for a Ron Walters SCSI Hard and
Floppy Disk Controller card. This costs $170. Yes, $170!!!
That's £109 + shipping charges + whatever our current government
wants to ripp off of us in the way of import duty and VAT!

It's still not bad. I'll try and find out more
information on this. o

The next part of my article is a sort of a review for my CAD
program. The program's not ready yet though. In fact I've not
even started it! That isn't strictly true though, because I have
got a very slow routine running in XB which allows you to select
an option from either an ICON, or command line. The full version
is only a matter of converting from the XB version and then
adding the extra bits to it.

The reason the XB routine is slow is because I've made it
multitask three things together. It allows you to type a command
straight in such as LINE, while at the same time running a cursor
routine to allow you to select drawing functions from icons.

That is just about manageable for XB though, but what slows it
down- even more is a grid routine.

You can have a grid of pixels on the screen so you can
exactly estimate where your cursor is. The trouble with the grid

1s that 1t ‘takes hours to draw the grid on the screen. I did
intend writing the CAD program in total XB, but it just isn't
fast enough.

Now that I've obtalined the full version of C99 V.4 from
Mark Wills, that's the language I'll use. FORTRAN's no good
because the 4A version won't let you have sprites and bit map at
the same time because it puts the pattern descriptor table over
the sprite table! Very sensible! 1 need a sprite to use as a
cursor. [could use pixels as a cursor by saving the necessary
pixels, displaying the cursor, and restoring the pixels
afterwards. It's a good idea, but sadly unsupported. You can
set a single pixel ON, of a certain colour, but you can't turn it
OFF. 1If you plot a black pixel to the screen, you could
overwrite {1t with a white pixel, but the pixel will still be set
in the pattern descriptor table. If you plot a black pixel to
the right of it, it will turn black again and you'll get blocking
trouble.

What he should have doné was include a pixel resetting
routine which actually cleared the pixel completely by changing
the particular 8-bit pattern of pixels in the pattern descriptor
table.

With C99 you can use sprites in bit map mode, so I can use
a sprite as a cursor, but I might not be able to delete
individual pixels, and I definltely won't be able to delete lines
or circles ete., so I'll have to put up with doing a complete
screen clear and redrawing everything. It could take a bit of
time if you've got a lot of objects on the screen.

The drawing area of the CAD program is 184 ¥ 222 pixels.
fWhy that small?" you're all saying!

Well, 1 needed a bar at the top of the screen for
displaying current cursor coordinates and image scale etc. and
I've declded to use a 6 pixel high font which leaves one blank
spacing pixel, and then the image border. That means that the
maximum number of pixels the drawing area can have vertically is
192-8 which is 184. Why does it have an horizontal resolution of
only 222 pixels though?

Well, that is due to the GENEVE. It gives the drawing
area a true aspect ratio. The 9938 in the GENEVE and 80-Column
card has a true aspect ratio display with true square pixels. To
find the value for aspect ratio you simply divide the 9938
resolution, which is 5§12 * 424 pixels.

Therefore if you do 812 / 424 you get 1.2075471.

This means that the 9938 screen is 1.2075471 times wider than it
is taller. Because monitors are wider than they are taller it
means that all the pixels are perfectly square. The standard 4A
however has 192 pixels down, which means that a true aspect ratio
screen on the 4A should be 231.84904 pixels wide. The 4A has 256
pixels horizontally though, which means that it's vertical
resolution should be 212 pixels, which is in fact the resolution

of @7 screens on the 9938 which are 212 ¥ 256 in 256 colours.
Therefore 1.2075471 % 184 = 222.18866 plxels wide.

So what use is a drawing program with only an area of 184 * 222
pixels when PICASSO has 384 * 4807

Well, if my idea works, and the program turns out as I hope, then
it should be better than Picasso..

. The program is based on units rather than pixels. If you
‘want to draw a line 6,000,000 units long, then you could select
the start point, and tell it to draw at whatever angle for
whatever length you wanted.

What you'll realise though is that you can only see a
maximum of R22 pixels of the line. But, what you can do is
select VIEW EXTENTS, and the image will redraw immediately to
display the maximum range of the picture. The 6,000,000 unit
wide line will be scaled and will fit entirely into the viewing
area. The same will go for any other object.

Therefore, if you want to start drawing something, then
you can just keep piling lines or other shapes on the screen and
not worry about how much space you've got left. With TI-Artist,
GRAPHX, and even PICASSO, you have to plan your picture very
carefully, or you'll have to move it across to fit another part
in. With a full CAD program there's no problem at all. If your
picture is already touching the right hand side of the screen and
you want too add a bit more to the right, then just set the start
point and tell it where to go.

Printing is another area where the program will improve
over TI-Artist and PICASSO etc. Because the image is stored as
objects, and not a bit map, each object can be scaled as it is
printed. 1'l]l design the program to work with 9-pin and R24-pin
-printers. In 9-pin mode you'll get a maximum of 1920 pixels
across, but with 24-pin printers you'll get 2880 pixels across.
That's 380 * 380 dots per inch. The program will look at the
maximum extents of the currently loaded picture. This will then
be divided into suitable sections that will fit onto the screen.
The program will then plot each individual section of the image
to the screen, and will dump it to the printer in sections. The
more detaliled parts of a picture that appear as a speck on the
full screen view will be drawn in fine detail on the printer.

I'm also sick of TI-Artist, and other programs, chopping
the edges off of images when they're printed. TI-Artist even
chops the left edge of the left image and the right edge of the
right image when you print two or more images across the page.

My program will avoid the non-printable areas and will
totally scale the full image onto the page. Fonts are another
problem on TI-Artist. Most PC software produces very smooth
fonts on 24-pin printers, so I'm goingtto have a set of
Super-Fonts! Each character will be drawn on a full TI screen at
256 * 192 pixels, but will be made of vectors. They will appear
smooth, even if you zoom right down on them. When you include

9

them in an image you'll be able to scale them to any size. If
you use a very large font on TI-Artist, you will soon run out of
screen area. Hopefully, my CAD program will be able to load a
text file and give you the full text in the full Super-Font.
There should be no rough edges at all when you print it out. It
should come out O.K. on a 9-pin as well as 24, Just to show that
there's no ill-feeling, it will do TI-Artist Fonts too
(Hopefully, if I've got enough memory!) If I haven't got enough
memory to support TI-Artist fonts I'll try and write a convertor
which will convert them into "Super-fonts".

The easy part of developing the program will be a loader
that works with Missing Link and will load an image produced with
the CAD program and will scale it entirely to the TI screen. You
can then save it as a TI-Artist image.

To save memory, the program will hopefully work similar to
my Wordspace idea that keeps all of its "memory" on disk. It
will use (hopefully if the file format is fully supported by C99)
an INTERNAL/FIXED Relative file. Each record will have a
starting symbol which will indicate what sort of object the
record describes. This symbol will be full ASCII, which gives
the possibility of 255 different CAD objects which will include
LINE, ARC, POINT, ELIPSE. There will be no object for a circle.
There's no point. dJust draw a 360 degree ARC!

Somewhere in the magazine you should find a simulated
screen dump of the program.

I've got some news from Trevor Stevens on the 80-Column card
project. I thought I'd better mention something about it in case
anyone else forgot.

Mark has found a RAM chip on the design which is now obsolete,
but we will probably be able to find a replacement. For the
address decoding of the circuit, he has selected some different
chips and has reduced the chip count, which will make it even
easier and cheaper to produce.

I was recently contacted by Bill Moran who has got an original
Mechatronic 80-Column card. He has experienced problems with
it though, and I have suggested that Richard Sierakowski might be
able to fix it for him. I hope he has got it all sorted out,
otherwise he can contact me again and Gary and I would be happy
to look at it.

Another note on the V9990 board that Gary and I were
designing. This project has been totally dropped, but we may be
turning our attention to something else, such as a 34020 board,
or an Hitachi GDP graphics board. I just thought it might be
interesting to print the circuit diagram. You can see the layout
of the circuit, but the text probably won't be readable since it
started out as an A3 piece of paper!

CADSA.

Richard THyning (crisn:z

400, 000g

1

1

12

Those who attended the AGM may have seen Trevor's Editor
Assembler 8K SuperCart which was made from a ROMOX cartridge.
The design instructions for the SuperCart that were printed in
Autumn 1992 TI*MES stated a 5565 RAM chip. You can now safely
ignore this. I have found that the standard 6264 can be
directly inserted in its place. 82684's are readily available
from places such as RS.

However!

There is another possibility! We are still working on a way of
decoding 32K into the cartridge port to give a full 32K
SuperSpace, as opposed to an 8K SuperCart. 1 found out that a

32K chip will fit straight into the same socket as an 8K chip!
Both chips have more or less the same pin out. The only
difference is that on the 8K chip, pin 1 has no connection, and
pin 26 is an extra chip select. You don't need this extra chip
select. The ROMOX board doesn't use 1it. On the 32K chip, pin
26 is A13 and pin 1 is Al4. This gives address bits from A0 to
Al4 which you will be able to calculate will give you an
addressable 32K. If you intend undertaking the project of
making the SuperCart, I recommend that you buy the 323K chip
instead. You must bend up pins 1 and 26 before inserting it
into the socket. These must then be grounded to a suitable
ground somewhere. A ground can be found by tracing the ground
from pin 14 of the chip. I think Trevor grounded his to a leg
of a dicde that went to ground. This has the advantage of
providing a bit of extra smoothing to the signall

The reason they must be grounded is that they will float
around otherwise, and you will have access to different areas of
the chip. The actual 8K area you are accessing could be one of
four such areas on the chip, and this will drift around as the
two additional address bits float.

The number of the 32K chip is pPD43256C-10L. The 10L bit
means it's a 100 nano second chip, although 70 nano second chips

are available that have faster access time. 1 suppose the p
sign means that 1t's a micro 32K because it fits into the same
area as the 8K device. The 32K chip costs around &7 from RS.

While we're at it, for those who haven't got it, or have
lost it, here's the pin outs of the Cray 1 GROM port:

Pin Description Pin Description
1 RESET 2 GND (SYSTEM GROUND)
3 D7 4 CRUCLK
5 D6 6 CRUIN
7 D8 8 A15/CRU OUT
9 D4 10 Al3

11 D3 12 Al2

13 DR 14 All

18 D1 16 AlO

17 DO 18 A9

19 +85V 20 A8

2l GS (GROM SELECT) 22 A7

23 MO/Al4 24 A3

25 M1 (DBIN) 26 AB

27 GROM CLOCK 28 A8

29 -8V 30 A4
31 GR (GROM READY) 32 WE

33 GND (GROM GROUND) 34 ROM G
35 GND (SYSTEM GROUND) 36 GND (SYSTEM GROUND)

Next is an item requested by John Murphy at the AGM. He wanted
to know how to include a word that was created using my speech
editor program as part of an Extended BASIC program.

The program creates a file called WORDFILE on DSK!.
When you create a new word and wish to save it, it is appended
onto the end of WORDFILE. When you want to use a word in your
own program you must have it loaded. This can be a word that you
have previously created and have loaded from WORDFILE, or it can
be a word that you have just constructed from several words.

If you select the DATA STATMNTS option you can view the data
statements that you require to use the word in your own program.
You can have the data displayed to the screen, or the
printer. If you display it to the screen, you can copy it onto a

bit of paper and type it into your program later.
To use the word in your program you will need the following code.

A$=""::FOR LOOP=1 TO however many data items there are
READ A::A$=A$&CHR$ (A) : :NEXT LOOP

When you want to have the word spoken you can just use:
CALL SAY(,AS)

And that's all there is to it! And here's a challenge to
console only people. The Speech Editor program will fit into
console memory, so if you've got XB and cassette I want to see
the code for a cassette based version. I must confess that
cassette file handling is a bit of a mystery to me, so if anyone
can write a few lines that convert it to cassetie storage and
send it to me, I can type it out if it's hand written and have it
submitted to TI*MES.

You can find a copy of my Speech Editor to type in,
somewhere at the end of my article.

During the Easter holiday I decided to upgrade my GENEVE's V9938
VDP RAM from 128K to 192K. In Alexander Hulpke's documents that
come with YAPP he says that you should think twice about doing it
if your RAM is not socketed!

Mine wasn't!

Something in my mind snapped, and I began one of my most

dangerous projects! My entire set of GENEVE RAM's where 150

nano second access time devices, both CPU RAM, and VDP RAM!

I removed it all! HAL 9998 was down for about five days until

the replacement RAM arrived. I socketed the entire board and 13

14

have replaced it with 80 nano second RAM. There is still some
noise in the system on my buffer chips, and this still prevents
1t working correctly in GPL mode at 16MHz, which was the only
reason 1 decided to upgrade. I'm 98% back to normal, as I've
noticed a slight glitch in an area of memory that screws up a few
sectors of my GENEVE MDOS RAMDISK. Having 192K of VDP RAM is
amazing though. In YAPP you can do a full zoom on a 512 ¥ 424
image, and there's also a colour clip art feature. One of the
most amazing things though is the GIF loader that requires the
extra RAM. You can load a GIF image directly into YAPP, and 1t
even allows you to scale the picture horizontaly to allow it all
to fit on the screen! Louigl played it cheap when he designed
the GENEVE, and he omitted the extra bank of 64K video RAM.

On the 80-Column card for the 4A though, this RAM is
standard. On the 4A though, to use the built-in hardcopy
program you will need an 8K SuperCart, or a 3K SuperSpace.

I bet Mark thought I was going to forget to include something
about CRU addressing! Well, I've just had to do an assignment
on networking and operating systems. We've had to consider some
sort of company and recommend a computer system and networking
standard. Guess what I recommended? Yep! A Texas Instruments
DX10 Mini Computer. We had to describe various parts of the
operating system and I/0. Naturally, the 1/0 of a DX10 Mini
Computer, is quite unique and very advanced. It is of course
called Communication Register Unit addressing! I wrote a bit
about this off of the top of my head, and it's the most
simplified version of the theory I've ever written, so I thought
I would just include it here!

INPUT/OUTPUT

The selected computer system, and operating system will also
support a very advanced feature of 1/0 control known as a Device
Independant Operating System. This is a feature of non-memory
mapped devices which are addressed on a separate bus called the
Communications Register Unit.

This is maintained by almost a complete sub-processor,
called the Programmable Systems Interface. This processor
receives I/0 instructions from the CPU which already has the CRU
Address of the individual device that has been selected for
access placed in Rl18 of its currently operational workspace.

The I/0 devices are actually addressed by the Programmable
Systems Interface.

The PSI gets the required address from the CPU and sets
up the CRU address bits to point to the selected device. The
first bit of the particular CRU address space is used as an
enable signal for a Device Control ROM.

This ROM contalns software called a Device Service
Routine, which is actually a8 collection of small,

Assembly-level routines which control the actual hardware
operation of the particular selected device. This ROM is
physically mapped into the CPU's address space, but all ROMs are
mapped to the same space. Therefore, only one such area of RAM

the possibility of 255 different CAD objects which will include LINE, ARC,
POINT, ELIPSE. There will be no object for a circle. There’s no point.
Pust draw a 360 degree ARC!

L

A A ik
I’ve got same news from Trevor Stevens on the B0-Column card project. l-_" iz
[{ thought 1’d better mention something about it in case anyone elss forgot
i —_ we
Nark has found same chips on the design that are now obsolete, which [ise il
jpounds bad, but 1s 1n fact very good. He has selected some different chi
pnd has reduced the chip count, which wil) make it even easier and cheaper
to produce. The chips handle the address decoding of the board. iLLid See
I wish I was a GENEVE! >
New mail on node NEWVAX from CLUSTR::HBO1IMWO1 "LADY OF THE LIGHT" eiok L
I wish I was a GENEVE! >
PNow mai) on node NEWVAX fram CLUSTR::HBOLIMYO1 “LADY OF THE LIGHT™ i Y WY S 1Y A
[wish I was a GENEVE! > SE i
Pew mail on node NEWYAX from CLUSTR::HBO1iM¥01 “LADY OF THE LIGHT®
Il wish 1 was a GENEVE! X] [N

re

H CLUSTR: :HB011Mv01 ferrs s
Subj: RE: Good morning?
Enter your message below. Pracs CTRL/Z when complete, or CTRL/C to quit:
Life, the universe, and the number 42!

Have you seen Erica over the weekend?sEXIT®

Press RETURN to continue reading your mai)

MAIL>

New mail on node NEWVAX from CLUSTR::HBO1iMv01 “LADY OF THE LIGHT"

MAIL> read/new
#1 24-MAY-1993 08:14:46.79 NEYMAIL

Fram: CLUSTR::HB011My0D1 “LADY OF THE LIGHT"

To: CLUSTR: :CCO22RT01

cc:
Subj: RE: Good morning!

Nope sorry, I‘'d have thought you’d have seen her before I did

PF"’G”‘”" |
mwu/‘mﬂ«zsufmbw‘pmwfbdwnpm@ SUN
Stﬁl’/f\ I hawe o l/.tjoffo SUN M,oo(,wi) JCFCTV\:A PC wr'fl
fu{e /rﬂfn#tr ﬂ_g_ ﬁjw/&ﬂ o[Mm P§ o*n)ko il{ﬂg W L\o\,ﬁ) JA%
’H’Ler\ 1 LW*W m’d‘pﬂw F C Pd u:-ofrJ< ASS ,n‘ﬂ% ol,rurt’ri
tmaw%ww MamJﬂ/\&n pR!NTﬂ«\LvaP
g e Lol

15

e o

ITDH2: "ComnstteeElactions
Boat of the committes positions hevo remained
being to the respoctive 1ibrary positions.

Rftar the slectione here’s the official comittes tist:

] M Chalrmen - Travo Stavers,

Trssmre - Alan
TIWES Editor & iatribution - Gary Safth

Librartane: Disk = Stophen Shaw
Cassetta - Mok Hills Cosein)
Moduls - Francesco L Lam

the 3ame with the aain changes

IAudioTool!

The next part of my article 19 @ sert of a review for ay CR program,
]

CUSTR::
Good
netsage
1 think!

vorking...

. AN =

6]

Select

Scale

Rotats

Transform

Spray

Scratch

Spotiight

s

Strobe

Drag

Darksn

| Brighten
| Twist

]

JURASSIC.PIC TI-89 TI-PED TN

O

aithmt arithmi- deadlotter dumpps ea2mi
A I Iy Y ™

P whieh includes many foatur os $o make your work dasier.

Halp Viewsr

(oroviows page) (L Eer)

Introducing Your Sun Desktop

Bveryshing oo your sercen is part of your Sun Deskiop,

This introduction presenss the baric ekills you nesd to sart

using your Desksop

As you begin this introdushon, rest the mouse ca its silvery
| blue pad, with the pad hocisontal and the mouse card

painting away from you

RasterRap

pad. Notiow how each movement is
row-shaped pombar an the soreen

youll use the Lk mouse butten,
[hen. themouse o turn this page:
[the Next Page button above and dick
SELECT buttan ance

1o 45

o 3\

Open windaws >ng sd

need be allocated for Device Routines, because each ROM is mapped
Into this area individually, depending upon which base CRU
address is selected. Each Programmable Systems Interface can
have 4096 such addresses, and Control ROM Selectors.

Therefore, the computer system can have up to 4096 devices
connected at the same timel

You'll be glad to hear that my article 1s now coming to a close.
I just thought I'd mention that the section about my CAD progranm
was typed using a Sun SPARC Workstation! When I had
spare moments at university I thought, I could be typing my
article now! The software I actually used to type it was a VAX
editor using the Universities VAX! You can connect to the VAX
through the SUN's, so I used the SUN as a VAX terminal. You can
have as many VAX windows open as you like, so I have one at the
top of the screen for VAX editor, and one at the bottom for VAX
MAIL

When I'd finished my text, I accessed the VAX from home
using TELCO, and opened a log to disk. 1 did a TYPE TIMES.TXT
and the entire file was logged to my disk as a DVBO file which I
merged into the rest of my article using Funnelweb editor!
Why don't PC owners ever think of doing anything like that?!?!2!9

There might be another hardware product coming soon.
A 32K card! The console only people have immediately turned to
the next item now that I've mentioned new hardware, and a card.
Let's wake 'em up shall we!

Console Only

YES! A 32K card for the console that plugs i

side, before you plug your speech synthesizer in. The reason it
must be plugged in before the speech, is that the speech synth
puts too much resistance on the data lines. The reason that the
box isn't affected by this i1s because the box has an interface
card that contains data buffers that amplify the signal after its
strength has been reduced by the speech synth.

It must be very expensive. Console only people need some excuse
for not buying one. Well, I'm afraid it will be very expensive.
You will not have much change left out of £12.00.

YHS £12.00! |

The advantage of it will be that if you've got XB and 32K you can
use CALL LOAD's, which means you can use driver software fop
Gary Smith's very expensive console-only printer port!

I've also had an idea for a 256K Editor/Assembler Mega
Cartridge! By having a single byte decoded has a memory mapping
byte, you can poke the mapping byte using machine code, or
CALL LOAD from TI-BASIC. This will switch in different 8K
blocks as required. This would be useful for all sorts of 17

18

things such as multiple menu systems. You can write title
screen routines that reside at >6000 and appear as option 3 on
the TI Master Title screen. Imagine if you'd got 32 different
sets of these all in memory! You could even chain the menu's
together and have the previous menu alter the mappling byte to
load another menu in. Do that on an IBM!

As I said, it's just an idea yet! I'l1l have to consult
on the matter with Gary and see what he thinks.

Coming Soon
Auto Route 4A! YES! On the Amiga is a program called GB
Route Plus. This includes two data files which will both fit
onto one TI disk. With the package are routines that load the
data and produce routes from it. It should be possible to work
out what this is doing and convert it into TI-Extended BASIC, or
C99. 1 can then upload the map data from the Amiga onto a TI
disk, and we'll have a route planning program of our own!

I've also not forgot about Lemmings 4A. I've just not had
time to do anything with it lately.

Well, that's all I can think of for this article.
I hope you like my JURASSIC PARK picture. The dinosaur was
actually drawn with Trevor's console using GRAPHX and Trevors
joystick. Imagine how good it might have turned out if I'd
actually used a TI Joystick!

I've dragged on for long enough!

That's it!!!

PS. Nt guite!! Lite news from Mack!
H&Jsfmquijn%W Wﬂ% &’@(an W‘J
H;wl.,uuxbmsér\@'lz 256k RAM chip! T&W
reviurin. wv%qopr@w&’ I'm also sworn & on

SPEECH EDITOR by Richard Twyning

t FOR D=0 T0 14.:: CALL COLO
R(D,2,8):: NEXT D :: CALL SC
REEN(2):: PRINT **:°":"*

2 60SUB 19000 :: ON WARNIN
6 NEXT
2 DIM WORD$(9,1),5C(24,32)
3 CALL CHAR(124,RPT$("18",8)
,126,"000000FFFF", 95, “000000
FFO00000*):: ON ERROR 11
000
4 CALL CHAR(40,"000000030F0C
1818",41,"000000C0F0301818"
123,"18180C0F03000000",1
25,"181830F0C0000000*):: CAL
L TITLE
5 CALL OUTPUT(t,1,""*")
< CALL OUTPUT(2,1,"6ET |}
: CALL OUTPUT(3,1,"NEW |
1)z CALL OUTPUT(4,1,"NORD
1) CALL QUTPUT(5,1,"""")
]
6 CALL OUTPUT(6,1,*"""")1%):
 CALL OUTPUT(T,1,"SAVE}}"):
: CALL OUTPUT(8,1,"MAIN]
1)1 CALL OUTPUT(S,1,"WORD}
1"):: CALL OUTPUT(10,1,""""
1Y
7 CALL QUTPUT(11,1,""""")
:: CALL QUTPUT(12,1,"SAY
):: CALL OUTPUT(13,1,"NA
INJI®) < CALL OUTPUT(14,1,"W
ORD: ")
& CALL OUTPUT(15,1,"""" "}
:: CALL QUTPUT(16,1,77"7)
):: CALL QUTPUT(17,1,"TA
KELL")
§ CALL OUTPUT(18,1,"NORD!
o CALL OUTPUT(19,1,"0FF |
):: CALL OUTPUT(20,1,"""
::2{
10 CALL OUTPUT(21,1,*"""") ("
........ YT)
+ CALL OUTPUT(22,1,"SEE
11TRUNCATE |1DATA }ISEE |
")
T CALL OUTPUT(23,1,"NRDS}}C
OMPONENT} | STATRNTS!) TI 1"):
: CALL OUTPUT(24,1,"" """
e e JLLEH

)
0

)

»
+
i
"

T)

)

“
|
1

12 CALL SPRITE(#1,140,2,10,1
0,%2,132,7,10,10):: CALL MAG
NIFY(3)

13 CALL CHAR(140,"0000000106
0C081120214080804324180E3146
982040C0ACB2C40830C00000
0e")

14 CALL OUTPUT(14,31,"("")::
CALL OUTPUT(15,31,"1Q"):: C
ALL OUTPUT(16,31,"14")::
CALL OUTPUT(17,31,"11"):: C

ALL OUTPUT(18,31,"17"):: CAL
L OUTPUT(19,31,"("")

15 CALL CLS :: 60SUB 15000
16 CALL CHAR(132,"0000000001
03070E1F1E3F7F7F3C1800000£38
60C68000404C38F0C0000000
QOFFB18181818181FF")

25 CALL SAY("ENTER+YOUR+COMM
AND®):: GOSUB 16000 :: IF CC
>40 THEN 30

26 ON INT(CR/40)+1 60TO 1000
,2000,3000,4000,5000

30 IF CR>36 AND CR<144 AND C

C>240 THEN CALL SAY("FINISHE
D. G00DBYE™):: CALL CLEA

R :: END

31 IF CR>152 AND CC>208 THEN
6070 8000

32 IF CR>152 AND CC>128 THEN
6070 7000

33 IF CR>152 THEN GOTO 6000
34 IF WORDS(INT(CR/16),1)0>"
" THEN CALL SAY(,WORD$(INT(C
R/16),1))

35 6070 25

1006 CALL SAY("GET+MORD")::
CALL CLS :: DISPLAY AT(3,6):
"PRESS" :: DISPLAY AT(S,
6):"1. FOR TI RESIDENT WORD"
1001 DISPLAY AT(6,6):"2. FOR
WORD FROM FILE™ :: CALL SAY
(“ENTER+YOUR+CHOICE™)

1002 CALL KEY(D,K,S):: [F S=
0 THEN 1002

1003 IF k=49 THEN 1006

1004 IF K=50 THEN 1500

1005 60T0 1002

1006 CALL CLS :: CALL SAY("E
NTER+NORD")

1607 ACCEPT AT(6,6)VALIDATE(

UALPHA,DIGIT,"8"):A$:: CALL
SAY(A$):: CALL SPGET(A$
.8%)

1008 60TO 1600

1500 CALL CLS :: DISPLAY AT(
1,6):"GET WORD FROM FILE " :
: CALL SAY("ENTER+WORD")
1501 ACCEPT AT(6,6)VALIDATE(

UALPHA,DIGIT) :A$

1502 OPEN #1:*DSK1.WORDFILE"
,DISPLAY ,VARIABLE 254

1503 LINPUT #1:18 -2 LINPUT

$1:128 o0 IF A$=SE6$(18,1,LE

N(AS$))THEN B$=12% :: CAL

L SAY(,B$):: CLOSE #t :: 60T

0 1600

1504 TF EOF (1) THEN CLOSE %1
2 DISPLAY AT(16,6): "NARNING
: WORD NOT FOUND™ :: CAL

L SAY(,WARNS):: CALL SAY(,WA

RN$):: CALL SAY(,WARNS):: CA

LL SAY(,WARNS):: 60TO 15

00

1505 60TO 1503

1600 60SUB 15000 :: CALL SAY
("INSNHICH+POSTTION+DO+YOU +M

ANT+THE1+KORD"™)

1601 60SUB 14000 -: WORDS(LO

C,0)=A$:: WORDS$(LOC,1)=8%

: GOSUS 15000 :: 6OTO 25
2000 CALL SAY("SAVE+WORD")::
60SUB 17000

2001 CALL CLS :: DISPLAY AT(

2,5):" PRESS " :: DISPLAY AT
(4,5):" 1. 7O VIEN NORDS
2002 DISPLAY AT(5,5):" 2. T0
APPEND WORD" :: CALL SAY("E

NTER+YOUR+CHOICE")

2003 CALL KEY(0,K,5):: IF §=
0 THEN 2003

2004 IF K=49 THEN 60SUB 1200
0 :: 60TO 2001

2005 IF X=50 THEN 2010

2006 CALL SAY(,WARNS):: 60T0
2003

2010 OPEN #1:"DSK1.NORDFILE"
,OISPLAY ,APPEND,VARIABLE 25
4

2500 CALL CLS :: DISPLAY AT(

RequiresSpeech Synthesiser, Extended Basic, Disk system

19

2,6):"HON SHALL I IDENTIFY*
:: DISPLAY AT(4,6):"THIS
NORD ON DISK?" :: CALL SAY(
"ENTER+HORD+NAME")

2501 ACCEPT AT(7,6)SIZE(15):

N$:: 60SUB 17000 :: PRINT &
1:8% :: PRINT #1:COMPS :

: CLOSE #1 :: 6OSUB 15000 :
60T0 25

3000 CALL SAY{("SAY+NORD")::

GOSUB 17000 :: CALL SAY(,COM

P$):: 60T0 25

4000 CALL -SAY("TAKE+WORD+OFF
")

4001 CALL SAY("WHICH+NORD"):
: 60SUB 14000 :: WORD$(LOC,O
), WORD$(LOC,1)="" -:: 60S

UB 15000 :: 60TO 25

5000 CALL SAY("SEE+WORDS")::
60SUB 12000 :: 60SUB 15000
:: 60T0 25

6000 CALL SAY{"MAKE+MWORD+SHO
RTER")

6001 CALL SAY{"POINT+TO+WORD
“):: GOSUB 14000

6002 A$=SEGS (WORDS(LOC,1),4,
300):: L=LEN(A§):: CALL CLS
s DISPLAY AT(16,5):"TRU
NCATE HOW MANY BYTES?"

6003 ACCEPT AT(18,5)SIZ2E(2)V
ALIDATE(DISIT) :BYTE :: L=L-B
YTE :: WORDS(LOC,1)=CHR$
(96)4CHRS (0)&CHRS (L) 4SEGS (A$
,1,L):: 6GOSUB 15000 :: 6OTO
25

7000 CALL SAY("QUT+PUT DATA"
):: 60SUB 17000

7001 CALL CLS :: DISPLAY AT(
1,7):"Display to Screen” ::
DISPLAY AT(2,7):"or prin

ter " :: DISPLAY AT(4,9):"1.
Screen” :: DISPLAY AT(5,9):
“2. Printer”

7002 CALL SAY{"PRESS+ONE+FOR

+SCREEN+OR+THO+FOR4PRINTER")

7003 CALL KEY(0,K,5):: IF K¢

49 OR K>50 THEN 7003

7004 IF K=50 TREN OPEN #1.°P
10" ELSE 60SUB 24000

7005 EL=0 :: PRINT #K-49:"DA

TA ";:: FOR D=1 TO LEN(CONP$

20

)

7006 PRINT 8K-49:ASC(SEG$(CO

WP$,0,1));",";:: EL=ELe1 o

IF EL=8 THEN 60SUB 24020
:: PRINT #K-49:"":"DATA ";:
s fL=0

7007 NEXT D :: PRINT #K-49:"

7500 IF K=49 THEN G0SUB 2401

0 ELSE CLOSE &1

7501 60SUB 15000 :: 60TO 25

8000 CALL SAY("SEE+STEXAS IN

STRUMENTS#+WORDS"):: RESTORE
20000 :: ROW=1

8001 CALL SAY("PRESS+ANY+KEY

+T0+STOP™)

8002 READ A$:: IF A$="*" TH

EN 60SUB 15000 :: 60TO 25

8003 DISPLAY AT(ROW,5):A$::
CALL SAY(A$):: ROM=ROW+1 ::
IF RON=20 THEN ROM=1

8004 CALL KEY[O,X,S):: IF S=

0 THEN 8002 ELSE GOSUB 15000
12 6070 25

11600 ON ERROR 11000 :: CLOS
E 81 :: CALL SAY("ERROR™)::

6079 25

12000 CALL SAY("PRESS+ANY+KE

Y+TO+STOP"):: ROW=1

12001 OPEN #1:"DSK1.NORDFILE
", DISPLAY ,VARIABLE 254
12002 LINPUT #1:1% :: LINPUT
$1:12¢ :: DISPLAY AT(ROW,5)

SIZE(24):18 :: CALL SAY(
,128)

12003 IF EOF(1)THEN CLOSE 1
:: CALL KEYPRESS :: RETURN
12004 RON=ROW+1 :: If RON=20

THEN ROMW=1
12005 CALL KEY(0,K,8):: IF S
=0 THEN 12002 ELSE CLOSE 1
22 RETURN
14000 60SUB 16000 :: LOC=INT
(CR/16):: IF LOC>9 THEN CALL
SAY("$THAT IS INCORRECT
#"):: GOTO 14000
14001 RETURN
15000 CALL CLS :: FOR D=0 TO
9 :: DISPLAY AT((0*2)+1,5):
WORD$(D,0):: DISPLAY AT(
(D%2)+1,25)S12E(4) :LEN(WORDS

(D,1)):: NEXT D

15001 FOR D=2 TO 18 STEP 2 :
: DISPLAY AT(D,5):"

"o NEXT

D :: RETURN

16000 CALL KEY(0,K,S):: IF S
=0 THEN CALL MOTION(31,0,0,%
2,0,8):: 60TO 16000

16081 IF K=ASC("E") THEN CALL
MOTION(#1,-10,0,82,-10,0)::
6070 16000

16002 IF K=ASC("X")THEN CALL
MOTION(#1,10,0,82,10,0):: 6

070 16000

16003 IF K=ASC("S")THEN CALL
NOTION(#1,0,-10,42,0,-10)::
60T0 16000

16004 IF K=ASC("D")THEN CALL
MOTION(#1,0,10,82,0,10):: 6

0T0 16000

16005 IF K=ASC("A")THEN CALL
NOTION(#1,0,-20,82,0,-20)::
6070 16000

16006 IF K=ASC{"F")THEN CALL
MOTION(#1,0,20,82,0,20):: 6
070 16000

16007 IF K=ASC("3")OR K=ASC(
“4")THEN CALL NOTION(%1,-20,
0,%2,-20,0):: 60T0 16000
16008 IF K=32 THEN CALL NOTI

ON(#1,20,0,%2,20,0):: 60TO 1
6000

16009 IF K=ASC("Q")THEN CALL
POSITION(¥1,CR,CC):: CALL L
OCATE(#2,CR,CC):: CR=CR+

1 :: CC=CC+15 :: RETURN
17000 COMP$=HORD$(0,1)

17001 IF WORD$(1,1)="" THEN
17002 ELSE COMP$=CONP$ANORDS
(nn

17002 IF WORD$(2,1)="" THEN
17003 ELSE COMP$=COMP$&WORDS
2,0

17003 IF WORD$(3,1)="" THEN
17004 ELSE COMP$=COMP$&NORD$
(3,1

17004 IF WORD$(4,1)="" THEN
17005 ELSE COMP$=COMP$&NORDS
(4,1)

17005 IF WORD$(5,1)="" THEN
17006 ELSE COMP$=COMP$&NORDS

(5.1)

17006 IF WORD$(6,1)="" THEN
17007 ELSE COMP$=COMP$&WORDS
(8,1)

17007 IF WORD$(7,1)="" THEN
17008 ELSE COMP$=CONP$&WORDS
(.1

17008 IF WORD$(8,1)="" THEN
17009 ELSE COMP$=COMP$&NORDS
(8,1)

17009 IF WORD$(9,1)="" THEN
RETURN ELSE CONP$=COMP$&WORD
$(9,1):: RETURN

19600 RESTORE 19004 ! [or s

tarting Tine
of

prograns }

19001 READ A,8,C :: A$=CHR$(
A)ECHRS (B)&CHRS(C)

19002 FOR I=1 T0 C :: READ Z
o1 A$=ASECHRS(Z):: NEXT [

19003 WARN$=A$:: RETURN
19004 DATA 96,0,100

19005 DATA 73,227,179,67,229
,226

19006 DATA 22,85,142,118,225
157

15007 DATA 59,84,189,58,4,59
19008 DATA 222,80,236,244,84
.89

19009 DATA 187,75,241,221,34
120

19010 DATA 172,44,37,84,241,

M2

19011 DATA 178,211,84,111,37
,189

19012 DATA 204,138,211,120,2

00,81

19013 DATA 30,155,65,215,60,
167

19014 DATA 212,149,36,195,10

1,203

19015 DATA 44,71,146,204, 164
44

19016 DATA 43,12,73,48,163,1

50

19017 DATA 44,87,180,206,202
134

19018 DATA 170,76,184,24,203
,51

19019 DATA 207,20,85,172,109

,109

19020 DATA 107,75,154,0,0,0
19021 DATA 0,0,240,0

20000 DATA "0","1","2","3" "
47,5 06T, et et

20001 DATA A,A1,ABOUT,AFTER,
AGAIN,ALL, AM, AN, AND, ANSHER, A
NY,ARE,AS,ASSUNE,AT,B,BA
CK,BASE

20002 DATA BE,BETWEEN,BLACK,
BLUE,BOTH,BOTTOM,BUT,BUY,BY
BYE,C,CAN, CASSETTE

20003 DATA CENTER,CHECK,CHOI
CE,CLEAR,COLOR, COME, COMES, CO
MHA,COMMAND, CONPLETE

20004 DATA COMPLETED,COMPUTE
R, CONNECTED, CONSOLE , CORRECT,
COURSE,CYAN,D,DATA

20005 DATA DECIDE,DEVICE,DID
LDIFFERENT,DISKETTE,DO,DOES,
DOING,DONE, 00UBLE ,DOWN D
RAW,DRANING, £, EACH

20006 DATA EIGHT,EIGHTY,ELEV
EN,ELSE,END,ENDS, ENTER, ERROR
LJEXACTLY, EYE,F FIFTEEN,F
IFTY,FIGURE, FIND, FINE

20007 DATA FINISH,FINISHED,F
IRST,FIT,FIVE,FOR, FORTY, FOUR
,FOURTEEN, FOURTH , FROM, FR
ONT,6

20008 DATA GAMES,6ET,GETTING
,6IVE,6IVES,60,60€S,60ING, 60
00,"#600D WORK%",GOODBYE
,60T,GRAY, GREEN, 6UESS

20009 DATA H,HAD,HAND, "EHAND
HELD UNIT#",HAS,HAVE,HEAD,HE
AR, HELLO,HELP HERE HIGHE
R,HIT,HOME, HOW

20010 DATA HUNDRED,HURRY,I,"
A1 WINE"IF, IN, INCH, INCHES,
NSTRUCTION, INSTRUCTIONS
I§,1T,J,J0YSTICK, JuST

20011 DATA K,KEY,KEYBOARD KN
ON,L,LARGE,LARGER, LARGEST, LA
ST,LEARN,LEFT,LESS,LET,L

IKE

20012 DATA LIKES,LINE,LOAD,L
ONG,LOOK,LOOKS ,LONER , M, MADE,
HAGENTA, MAKE ,ME, NEAN, MEM
ORY, MESSAGE , MESSAGES

20013 DATA MIDOLE,MIGHT,MODU

LE, MORE, NOST, HOVE , MUST N, NAN
E,NEAR, NEED,NEGATIVE NEX
T,"4NICE TRYK" NINE,NINETY
20014 DATA NO,NOT,NOW,NUMBER
,0,0F,0FF,OH, 0N, ONE, ONLY, OR,
ORDER,OTHER, OUT, OVER,P,P
ART,PARTNER,PARTS

20015 DATA PERIOD,PLAY,PLAYS
,PLEASE,POINT,POSITION,POSIT
IVE,PRESS, PRINT, PRINTER,
PROBLEN, PROBLEMS , PROGRAN, PUT
20016 DATA PUTTING,Q,R,RANDO
MLY,READ,READ1, “$REABY TO ST
ARTH" RECORDER,RED,REFER
,REMEMBER

20017 DATA RETURN,REWIND,RIG
HT,ROUND, S, SAID, SAVE, SAY, SAY
§,SCREEN, SECOND, SEE, SEES
,SET, SEVEN, SEVENTY, SHAPE
20018 DATA SHAPES,SHIFT,SHOR
T,SHORTER, SHOULD, SIDE, SIDES,
SIX,SIXTY,SMALL, SHALLER,
SMALLEST, S0, SOME, SORRY, SPACE
,SPACES

20019 DATA SPELL,SQUARE,STAR
T,STEP,STOP, SUM, SUPPOSED, "4S
UPPOSED TOX",SURE,T, TAKE
,TEEN, TELL, TEN, "#TEXAS [NSTR
UMENTSS"

20020 DATA THAN, THAT, "$THAT
1S INCORRECTH",“¥THAT IS RIG
HT#", THE, THE1, THEIR, THEN

, THERE, THESE, THEY, THING, THIN
6$

20021 DATA THINK, THIRD, THIRY
EEN, THIRTY, THIS, THREE, THREW,
THROUGH , TIME, TO, TOGETHER
,TONE, 700, TOP, TRY, "#TRY AGAI
LI

20022 DATA TURN, TWELVE, TWENT
Y, THO, TYPE, U, UKOH , UNDER, UNDE
RSTAND,UNTIL,UP ,UPPER,US
E,V,VARY, VERY W, WAIT, WANT WA
NTS, WAY, WE

20023 DATA WEIGH,NEIGHT,WELL
JWERE, WHAT, “$WHAT WAS THAT$"
,WHEN, WHERE, WHICH , WHITE
WHO, WHY , WILL , WITH,WON, WORD N
ORDS, WORK , WORKING

20024 DATA WRITE,X,Y,YELLOW,
YES,YET,YOU, "#YOU WINE",YOUR

21

,1,1ER0
20025 DATA "END OF DATA",®
24000 CALL SAY("PLEASE+MAIT"
):: FOR R=1T0 24 :: FOR C=!
T0 32 :: CALL GCHAR(R,C
,SC(R,C)):c NEXT € :: NEXT R
2 RETURN
24010 FOR R=1T0 24 :: FOR C
=1 70 32 :: CALL HCHAR(R,C,S
C(R,C)):: NEXT C :: NEXT

R :: RETURN
24020 IF K=50 THEN RETURN
24021 CALL KEY(0,J,F):: IF F
=0 THEN 24021
24022 RETURN
31000 SUB TITLE :: CALL CHAR
(132,RPT$("F",16))
31001 PRINT * ("

31002 PRINT *)
)
31003 PRINT * 0

{
31004 PRINT " 8]

31005|ERINT - H
31006lP§lHT) (}
300 fEINT) 1
31008 égINT " H
31008 %EINT b H
31010 é?lNT * '
31011 58]“1 * 0

31012 PRINT * '
.

1]
31013 PRINT * 0
31014 PRINT * 0
31015 PRINT *)
y
31616 PRINT * I

D THYNING ELECTRO
NICS®:""
31017 CALL HCHAR(8,13,132,5)

22

o CALL VCHAR(9,15,132,6)::
CALL HCHAR(10,17,132,4):

: CALL HCHAR(13,17,132,3)
31018 CALL HCHAR(16,17,132,4
):: CALL YCHAR(10,17,132,7)
31020 PRINT * SPEECH
EDITOR*:"" :: FOR D=1 TO 200
[}

31021 NEXT D :: SUBEND

32000 SUB KEYPRESS :: CALL §
AY("PRESS+ANY+KEY")

32001 CALL KEY(0,K,S):: IF §
=0 THEN 32001 ELSE SUBEXIT
32002 SUBEND

32765 SUB CLS :: FOR D=1 TO
19 :: DISPLAY AT(D,5):" * ..
NEXT D :: CALL VCHAR(1,
31,32,13):: CALL VCHAR(1,32,
32,13):: SUBEND

32166 SUB OUTPUT(R,C,P$):: F
OR D=1 TO LEN(P§):: CALL HCH
AR(R,C+D~1,30):: CALL HC
HAR(R,C+D-1,ASC(SEGS{PS,D,1)
J):: NEXT D :: SUBEND

Fram a minge it South AmErics cam

1]
(L

Fiece OfF amber, Coontaining tee
fOo2zilized ramains of & prahisioric
mosguito, Cre of marnd that khad fad

LPott the bBlood of dinosaurs,

From tThe HA of that bilood,

e Wiz sbia

1Y}
]
(=]
0

ud
"]
) .
o T

Qi

i=s, And, for tkhe {first time

Man and difndsaur shared ke Earib,

23

SEE PAGE 1O

74LS04
140IP300

DBIN

CRUCLK-4.OM i3
14

V&C _Y, .}

e AVBD
= 104
r,___gw—};rgﬁ A<

24

BNGALUNK

NeO

<
3

avanan
et £ 43 144

CBNARLNNLO

DIBDDIDDDD
0o 4o 4o b b

LL LT Y

SN0NEENNN0NS!
AR TR

hHd
N

B
=

§3588

a%
i
N
4|

KEDUcED T /
o 2%/
OF OoRIGINAL <12 é

Vagao
BSARD gataco 22

RrR7
RESISTOR

RCoS [¢ cn\'srﬂ. ’ J2

sy

PHONEJACK
JACK400

ii.ﬂ i

Arneca

S
- ¢
2
-
—
A L
— %
—
3
- P———
d r VRAM BLOCKL]
Qenzd A
1 (y
H sc H sc
$0e0 soes3 |22 H H s0e0 soes |22 o}
SDei Soez H sDai spez .
TR/OE SE 3 d TR/0x Tiwe
N 299 a3 44] 0e% 832 sreen N
AR T -3 osr [22 [t B
cas Ve o cAs gnl_-o--q
RAS wc 4D ¢l RAS NC v
L as AC 3 0) as AG (42
ne AL 3 f HH g ae as ot
as a2 e IH .
Ae a3 1 - ae A3
a7 a?
THS43C250
SDIP 600 ? 260IP600
Mi8C0..83
N $040 spez H
i B BEHEH
a0 oe3
g2 24 B
os¥ -
cas
ras NC
)
as aL
as a2
ase a3
a7
Y
2801P€00 J
M XIA8L0 Al
2818023
Saraco..z)

Sary Smi
or

Tuwnine
Clectronics
Roed

See Page 10

26

FROM THE CHAIRMANS CHAIR

T.Stevens c 1993

Hello there again. Well spring has sprung and summer races
towards us. Just a thought, it’s only 30 odd weeks till
Christmas.. However | suspect that some of you will be reading
this from some sunny place on this planet watching the world go
by as you lounge on a pleasant shore. Inside this bumper issue
are some real treats. So if you are out there on your holiidays
you will most likely look forward to trying out some of the
routines on your return.

I have again been busy‘arranging things. You will see that I
have again produced this issue as our Editor, Alan BAILEY has now
had to give up the job through ill health. I on behalf of all the
committee and members thankyou for what you have done for the
club in the past years. It is very much appriciated. We now have
a new Editor for the next issue. He is Gary SMITH. So if you look
at the committee list you will see his details. Can you now send
all your submissions to him.

There has also been other changes in the committee, so if you
see the report on the AGM you will see who's who, and what'’s
what.

There will also be some great news for all you out there in
Tl land, World Wide, next issue. This news if it gets aoff the
blocks will send a few people in the computer world back to the
drawing board. | will say no more than that, other than Watch this

Now onto the continued saga of Sprites. Up till now we have
discussed quite a few new programming tricks. Here are a few more
for you to get your computer round.

You have all heard of multi tasking. This is .where the
computer is able to carry on with two programs at once. If you
remember last issue we looked at how once a sprite is set into
motion it goes off on its own without further program control.
This means with sprites you can infact Multi Task by getting the
computer to do more than one thing without loss of any speed. The
following program shows how you can put a moving pattern on the
screen with sprites and alsc display print statements. You can if
you like use 'display at’, instead of 'print’, Try and experiment
with the routine and see what else you can do with it. Try
putting music to the sprites, change the sprite cociours or what
ever. If you make up something really spectacular send it into
me.

50 RANDOMIZE :: CALL CLEAR
100 FOR N=1 TO 28 :: CALL SPRITE(#N,42,2,N%6,N%2,0,N*4):: NEXT N
110 PRINT "HELLO"

120 CALL DELAY (1000)

130 CALL CLEAR

140 PRINT "HELLO THERE!"
150 CALL DELAY(1000)

1860 CALL CLEAR :: GOTO 110
170 SUB DELAY (D)

180 FOR A=1 TO D

190 NEXT A

200 SUBEND

You will see from the example above how good your computer
really is. It is infact running, or multitasking 28 sprites and a
display program all at once, with no loss of sprite positions
which is important in this program for the etfect.

We now move onto the problem of the Pacman syndrome. Have you
ever tried to program a sprite to pick up something and put it
down? What we are going to do is bring together some of the
programing tips that we have discussed into pratice to show you
what can be done. We will look at two bits of code. The first
this issue is a simple version, the second which will be in next
issue is a bit more complicated. So lets walk before we run.

In the first example your sprite will be set into motion
according to an input from joystick 1. The program will check its
position and place a block underneath it.
you can if you wish put call key statements into the routine to
replace that of the joysticks.

100 CALL CLEAR :: CALL SCREE
N(5):: CALL CHAR(35, "FOFOFOF
0"):: CALL SPRITE(#1,3S,2,89
,1217:: CALL COLOR(1,1,11,2,
7,7)
110 CALL JOYST(1,X,Y):: CALL
MOTION(#1,-Y*2,X*2):: CALL
POSITION(#1,R,X):: IF R>188
THEN R=1-(Y>0)%187 :: CALL L
OCATE(#1,R, X)
120 CALL GCHARCINT((R+7)/8),
INT((X+7)/8),Y):: IF Y=32 TH
EN CALL SOUND(-90,660,9):: C
ALL HCHARCINT((R+7)/8), INT((
X+7)/8), 40)
130 CALL KEY(1,X,Y):: IF Y T
HEN CALL CLEAR :: GOTO 110 E
LSE 110

NB If you have a Version 100 Extended Basic Cartridge change
line 110 to CALL MOTION(#1,-Y,X)

To find your version of cartridge Type NEW then CALL
VERSION(V):: PRINT V

If we go through the program. Line 100 clears the screen and
then sets it to screen colour dark blue (5). The character 35 is
then defined as a small block. Then the sprite #1 is defined as
character 35 with the colour black. It will be placed on the
screen at dot row 89, dot column 121. The color command then
turns sets 1 and 2 so that set 1 is transparent on darkyellow and
set 2 dark red foreground and the same on the background. You
will note that the space character is ascii 32. So when the set 1
is changed the space color turns dark yellow. So we have a yellow
screen with a dark blue boarder. After the set up in 100 we now
go to 110. This commences a loop through 110 120 and 130. The
line 110 sets the joystick routine in motion. (See previous
artical for joysticks). Then the call position is called. This
places in the variable R(Row) and X(col). We can reuse the
variable X but we must retain Y. The if statement works like this
If R 1S GREATER THAN 188 THEN IF Y 1S GREATER THAN 0 (or stick
pushed up), THEN R=188. (The call locate relocates your sprite at
the variables R and X, which now will be at the bottom of the 27

screen.) ELSE IF Y IS NOT GREATER THAN O (or stick pushed down),
THEN R=1. (The Relocate puts the sprite at the top of the
screen). ELSE IF R IS NOT GREATER THAN 188 THEN LEAVE R ALONE.
(Then do not relocate the sprite.

That is this issues programs. Next time we will start the
harder and more complex code, which will allow you to move items
set on the screen and place them into boxes. This you will see
lead onto greater things.

I hope you enjoy.these articals. If you have any query at all
drop me a line with a SAE inside so I can return you query as
soon as possible.

SILLY SOUNDS FROM YOUR TI (T.S)

Some time back I put into one of my articals some short sound
programs. These will run on any consol. | had some comments from
a few members on how they liked them. So here are a few more.
Also for those who have the TE2 cartridge some silly sounds for
them.

BASIC PROGRAMS

100 REM RADIO 100 REM TELEPRINTER
110 N=t 110 N=1 .
120 F=RND#15000+110 120 CALL SOUND(22,2975,0)
130 A=RND#*30 130 FOR D=1 TO 5
140 CALL SOUND(-99,111,30,) 140 S=850*INT(RND#*2)
111,30,F,A,-8,30,-A) 150 CALL SOUND(22,2125+S,0)
150 N=N+i 160 NEXT D
160 IF N=100 THEN 170 ELSE 120 170 CALL SOUND(31,2125,0)
170 END 180 N=N+1
190 IF N=30 THEN 210 ELSE
120
200 END
TE11 PROGRAMS
50 REM SNAKE 50 REM HELICOPTER
100 OPEN #1:"SPEECH", OUTPUT 100 OPEN #1:"SPEECH",OUTPUT
120 PRINT #1:"//0 O" 110 PRINT #1:"//0 O"
130 PRINT #1:"GHGHGHGHGHGHGHG 120 PRINT #1:"MNMNMNMNMNMNMNMNM
GHGHGHGHGHGHGHGHGHGHGHGHG NMNMNMNMNMNMNMNMNMNMNMNMNMN
GHGHHGHGHGHGHGHGHGHGHGHGH MNMNMNMNMNMNMNMNMNMNMNMNMNM

In data section at 130 try PKPKPK,ZKZKZK,JJJJJJ,1A1A1A1A, GNGNGN.
There are many more to find so get to it. The line 110 alters the
pitch rate. To talk properly you can reset with /743 128,

28

MARK WILLS

AXAXX XXAX XAXAX X

%

%

xX%%
%

X % %
%% AXAAX XXAXX X NO. 4

%
%
xX%%

NRRRRR

MR R RN

RRRRRR
WRRRRRR
MRRRR
R RARR

N R R RR
WRRRR

%
%
%%% %
Mark Wills waffles on about things in the TI line...

Greetings once again. As a writer for the magazine, | am always
surprised at how fast three months comes around and it is time for me
to submit my material for the mag. There 1 was sitting in front of the
telly watching the Eurovision Song Contest (well someone has to watch
it) when it suddenly struck me that the editors deadline was fast
approaching and | hadn’t even begun to write any material for Drivel.

So whats new? Quite a lot actually. The AGM has been and gone, and
very interesting it was too. | believe my mate Richard is reporting on
it so I won’t duplicate any efforts here, except to say that I thought
it was very succesful, with a good turnout.

Unfortunately, owing to the intense pressures of being a teenager (and
a lot of us have fond memories of that i'm sure!) Nicky Goddard is no
longer able to continue in his role of cassette librarian, so | have
taken over. If any person(s) wish to order from the cassette library
then please forward your orders to me. At the time of writing I have
not had the chance to go through them (theres forty disks full of
software) but | hope to get the time to develop a database using
T1-BASE which will catalog every program in the library including a
short review, so I should be able to give more details of what is
actually available for the next issue (head on the block here!).
Potential users of the library should note that having the library
contents on a database such as TI-BASE will give the potential user
more flexibility when ordering software. All titles will be filed
under their respective category in the database and will contain
details about the hardware neccessary to run the programs etc. This
will allow a potential user to place an order for a software title
without knowing its name or code number. For example "1 am looking for
a word processor type program for my Ti. 1 have Extended basic and 32k
plus a tape player. Can you suggest anything?". Using TI-BASE it will
be a simple matter to interrogate the database and pull up the most
appropriate peice of software in no time. Again, 1 hope to be able to
offer this service from the next issue. (Gulp!)

Al]l members should now be aware that ! have moved house again (not
permanantly - just while I'm working here!) and have moved to London.

My new address is : 207a Field End Road, Eastcote, Middx. HAS 1QZ.

My phone number is 081 :--~ ~“Z77, but please do not phone between the
hours of 9.00am to 5.30pm as it is also my works number during office
hours, but is a private number after those hours.

1 would be interested in hearing from any Ti’ers in the London area
with a view to meeting up and talking about Ti’s. John Stocks, what

are you doing these days?

29

Any road, this issue sees more on c99 as promised last issue. This
issue we will look at actually controlling program flow/decision
making etc.

c99 for the slightly more initiated!

------------------------------------ c99

Users of BASIC will be aware of the IF command which allows the
computer to make a decision and execute a series of instructions
according to the result of the decision. (Always either true or
false). In basic, the IF command takes the form :

IF expression THEN instruction(s)
ie
IF A=4 THEN P=0

As you can see, P will equal zero when the expression evaluates to
true. ie when A=4

c is very similar but its syntax is different:
if (expression) intruction;
or

if(expression) {
multiple instructions;
}

So taking the first c example above and replacing it with some actual
c code:

if(a==4) p=0;

is the equivalent ¢ way of saying the same as the BASIC statement
above.

The second c example is as follows:

if(ta==4) {
p=0;
t=44;
z=(p+2)*t;
etc...
ete...
etc...
}

The above example is called a "block if" because there is a "block" of
code (the code between the curly brackets - or braces to give them
their proper name) which is executed every time the condition inside
the brackets evaluates to true.

30

There are a few rules and regulations we need to make clear when using
if’s relating to thier syntax, just to clear up any confusion:

A single if:

The expression to test must be enclosed inside brackets.

The statement to execute in the event of the expression evaluating to
true must terminate with a semicolon. (;)

Block if’s:

Again, the expression to test must be enclosed within brackets.

The beginning of the code block must be indicated with an open brace
C £). The end of the clode block must be indicated with a closed
brace (}). All statements inside the code block must be terminated
with a semicolon (;) - as indeed all ¢ statements must do.

Relational operators:

This is probably a good time to discuss the difference between c’s
relational operators and BASIC’s, as they are different. A simple list
will clarify the differences better than I can so...

Operator | Description ¢+ BASIC version !
--------- e D itk L RN POy
== i« Is equal to ? H =
t= i Is mot equal to ? H <> H
> i Is greater than ? H > H
< i Is less than ? H <
>= ¢ Is greater than or equal! >= '
<= i+ Is less than or equal to! <= H
1D i Is not greater than ? ' <x#*
< i Is not less than ? H Dxx i
&& i Comparative AND i Not supported !
v ' ' N

Comparative OR Not supported

%*Ils not greater than, and is not less than is not really directly
supported in TI-BASIC, so in order to express an equivalent expression
in TI-BASIC you would say "is LESS than x" or "is GREATER than x"
where x is the value you are testing, respectively.

Comparative AND and OR, which again is not DIRECTLY supported, allows
you to mix multiple expressions in the same test. Example:

if(a==4 && b==2) p=41;

p will be set to 41 when a==4 AND b==
if(a==21 ! z==1) x=2;

x will be set to 2 when a==21 OR z==1.

I guess thats if’s more or, less covered, except to say that you can
call another part of your program (a function) with an if like this:

if (a==4) game_over();

31

Will call the game_over routine when a==4.
This of course can be done with code blocks:

if(a==4) {
score=score+1000;
game_over();

3}

I1f’s and if code blocks can also be nested:

ifta=2) {
if(b=2) game_over();
}

Also, you can use the ELSE clause, like in basic:

IF A=1 THEN Z=2 ELSE 2Z=3 | if(a=1) z=2; else z=3;

Note also, as stated in the first tutorial, ¢ is case SENSITIVE. So a
in this program:

main()
{
int a;
int A;

a=a+1;
A=A+1;
)

a and A are treated, unlike BASIC, as completely seperate variables in
thier own right.

A quick aside here, the lines a=at+i1 and A=A+1 can be re-written as:

at++;
A+t

This in c says increment by one, and generates smaller code (and
faster) than doing it the long way. You can also decrement by one:

Will decrement the two SEPERATE varaibles a and A by one each. Those
of you who know machine code will spot that the compiler can use the
INC and DEC instructions rather than A and S instructions which
require operands and thus is larger and slower. Whenever you need to
add or subtract one, you should use this method.

The while Loop:

the while loop. It looks like this:

32

while(expression) do something;
or

while(expression) {
do loads of things...;
}

In the while loop, a command or block of code can be executed for as
long as a particular condition is true. Or, put another way, code can
be made to execute WHILE the test expression is true - lets look at an
examplie:

#include dski.conio

#asm
REF PRINTF
#endasm

main()

{

int a;

a=0;

while(a<100) printf(™a is %d",a++);
}

Lets go through this program line by line and work out what the
program does.

#inciude dskl.conio

This line, tells the compiler to include the file conio when
compiling. It contains certain defined variables that you may refer to
in your programs - we’re not using any here but its good practice to
get into the habit of including it all the time.

#asm

This line tells the compiler that all lines up until #endasm are "raw
machine code"™ and not to alter them in any way, just to pass them
straight on to the source file for assembling. In this case all we are
passing is a REF to the assembler because we will be loading the
PRINTF file at runtime because we are using the PRINTF command to
display the contents of our variable a.

REF PRINTF
As just mentioned, this line is passed un-modified through to the
assembler source file in. Note that there is a space before the REF.
It is IMPORTANT!

#endasm

Tells the compiler that we have finished passing machine code through
to the assembler source file.

main()

33

This indicates the beginning of the function called main. Remeber that
all ¢ programs start and end in main().

{

The open brace means that all code is intended for the function called
main.

int aj;

This line tells the compiler to reserve space for an integer variable
called a.

é=0;
Sets the variable a to zero.
while(a<100) printf(™a is %d",a++);

This line looks at the value of a. If a is less than 100 (ie the
expression is true) then the value of a is printed on the screen, and
then increased by one for the next time round (the ++), The %d in the
printf command means that the operand folloowing the comma is to be
treated as an integer, which we defined before (int aj;)

Eventually, a wiill become 100 and the expression in the brackets
(a<100) will evaluate to false. At this point, control is passed to
the next line of the code, which, in our case, is the end of the
main() function, so the program simply stops.

}

Tells the compiler that we have finished our code for the main
function, and, in this case, finished altogether!

The other technique worth a mention, and the final one for this issue
is the do/while loop:

The do/while Loop:
Another very powerful way of controlling program flow/iteration, it
looks like this:

do {
various things;
} while(expression);

You may wonder what the difference is, well, the difference is that
the code inside the curly braces will ALWAYS be executed at least
once, because the expression is tested at the END of the code block.
This is a very handy method for implementing things like menus, where
you put a number of options to select from, one of them being quit. If
the user presses quit, the program filow will fall out of the bottom of
the do/while loop because the test expression is testing for the quit
key being pressed. Handy and efficient.

1 will leave it here for this month, next month we’ll actually start

34

doing things like putting things on the screen, reading the keyboard
etc. It is at this point that you will see just how much faster c is
than BASIC.

To give you an idea of how fast it is, | present a program here for
you to type in and try. It is called a bubble sort and its function is
to sort an array of numbers into the correct order. The array is
filled backwards in this program, which happens to be the worst case
as far as a bubble sort routine is concerned, so it has to work very
hard. | also present an Extended BASIC version that does exactly the
same for you to try for speed comparison purposes.

Have fun with your TI.

P.S Does anyone know how the Quick Sort sorting algorithm works, and
if so, would you kindly publish the details, or write to me direct.
Thanks.

Mark Wills.

Vice Chairman.
Programming Official.
Cassette Librarian.
(Busy!)

The programs...

Note: Type in the c99 version using editor assembier. Save as SORT;C
run ¢ compiler:

Choose option 5 from ed/as menu, give DSKx.C99C as the filename -
where x is the drive number.

When asked for the input filename type DSKx.SORT;C as before.
Specify the output filename as DSKx.SORT;S as before.

Press n when asked for a re-run.

(if you get any errors, you’ve made a typing mistake!)

Assemble using the Tl assembler:
Load the assembler. Type DSKx.SORT;S for the source filename.
Type DSKx.SORT;0 for the object name.

When finished, select option 3 from the menu and load the following
programs.

SORT; 0

PRINTF

csup

PRINTF and CSUP are on the c98 disks.

When you have done this, press FCTN 3 then enter.
Type START for the start name, the program will then run.

You should find that the c99 version run approx. 8.18 times faster
than the XB version! 35

/¢ Bubble sort 1.0 (c) Mark Vilis
Written May 1993 in c99. Compiler by Clint Pulley (clever dude!)
Total sort time : 27.00 seconds for 50 eiements

&/

tinclude dski.conio
tdefine EL 50 /# change this number for more/less elements %/

fasa
REF PRINTF
tendasa

main()

{

int arraylEL}; /% reserve space for our pre-sorted list ¥/
int i,a,s,p; /# integer variables that we'll be using #/

putchar(FF); /# clear screen %/
puts(*Filling the array... \n");

a = H;

for(i=0; i<EL; i++) {
arrayli) = a--;

}

i=0; s=1; p=0;
puts("Sorting array...");
vhile(s!=0) {

s =0;

for(i=0; iC(EL-1); i#+) {
if(arraylil > arrayli+1]l) { /# if array(i+1)) array(i) #/

= arrayliti]; /% then svap them over %/

arrayli+i] = arraylil; /% in this 3/
arraylil = a; /% "if* code block L7
st} /% another svap done so add 1 to swap variables/
locate(4,1);
printf("Svaps this pass = %d *,s);
}

}

locate(5,1);

printf("Passes so far = %d\n",++p);

}

putchar (FF);

puts(®Array sorted:");

for(i=0; iCEL; i++) printf("%d *,arraylil);

36

1 ! Bubble sort 1.0 IB version (c) M.Wills.

2 ! Total sort time : 3 Mins 42 seconds for 50 elements
10 OPTION BASE 0

20 EL=50 ! change this for more or less elesents, and change the number in brack
ets in line 30 to the same value

30 DIN ARRAY(50)

40 CALL CLEAR

S0 DISPLAY AT(1,1):"Filling array..."

60 A=EL

70 FOR 1=0 TO EL

80 ARRAY(1)=A :: A=A-1

90 NEXT 1

100 DISPLAY AT(2,1):*Sorting array..."

110 S=0

120 FOR 1=0 TO EL-1

130 IF ARRAY(1))ARRAY(1+1)THEN A=ARRAY([+1):: ARRAY(I+1)=ARRAY(1):: ARRAY(D)=A :
:+ 5=5+1 :: DISPLAY AT(4,1):"svaps this pass =";5;* *
140 NEXT |

150 P=P+1

160 DISPLAY AT(5,1):"Passes so far =*;P

170 IF SO0 THEN GOTO 110

180 DISPLAY AT(7,1):"Print array sorted:®

190 FOR 1=1 TO EL

200 PRINT ARRAY(D);

210 NEXT |

TI—99/74A USERS GROUP (UK)
MEMBERSHIP NEWS
by Alasdair Bryce

There are several new recruits to announce since issue 40. A warm welcome
goes to David Jenkins, John McCartney and Scott Whitley as well as a
welcome back to Brian Wickham who has rejoined after a short absence.

After the mass renewal following the last issue and the A.G.M. things
should be a little quieter on the membership front this.month but. there
are still a fair number of you due to renew with this issue. I very much
hope that as many of you as possible will sign up again for at least
another 12 months. With your input TI*MES continues to go from strength
to strength and the group offers access to some of the best software and
advice available for the TI. If anyone is thinking about moving on to
bigger and arguably better things then why not keep the TI running? There
are a good number of PC users out there who wouldn't be without their old
TI.

Lastly for now, I read Walter Allum's letter in issue 40 and as a result
I spent some time checking the comments which members had made on their
subscription renewal forms. Unfortunately I can't really give any
helpful answers to Walter's query as very few of you seem to use the
comments section of the form. Of the few who do most simply offer welcome
encouragement and praise for TI*MES although comments on the print
quality of TI*MES were duly noted and a couple of others made known their
displeasure at Stephen Shaw's '"Rambles" being muzzled. If any of you do
have comments that you want to make about TI*MES or the group generally
then why not jot it down on the back of the form? — I do read them you
know. 3 7

PROGRAMMING MUSIC THE EASY WAY
PART 4

by Jim Peterson

The first three parts of this series were written and published some
time ago, so | had better review.
In Part 1, | showed you this one-line routine to set up a musical scale.

100 DIM N(36):: F=110 :: FOR
J=1 TO 36 :: N(J)=INT(F%1.0
59463094"(J-1)+.5):: NEXT J
:: N(O)=40000 ::GOTO 110

101 D,T,A,B,C,V1,V2,V3,J,X,V
102 CALL SOUND

103 1@P-

That sets up. a scale of three octaves beginning with A. [f you decide
to change the music to a higher key, just change the 110 to 117, 123,
131, 139, 147,156,165, 175, 185, 196, 208 or 220. in fact, for some
music you will have to change it, if the program crashes with a BAD
VALUE -error message.

If you have programmed the music with high notes, you can lower the
key by changing 110 to 104, 98, 92, 87, 82, 78, 73, 69 or 65. Again,
if you try to go too low you will get that BAD VALUE message.

I have given N(0) a value of 40000, which creates a tone too high to
be heard. This can be used to silence a note, but it can also cause a
crash when used with some of the following routines. It you are
programming three voices and want to play a single note, the easiest
way is to give all three notes the same number, such as A,B,C=10. 1f
you need a silent rest, play all the notes at an inaudible volume by
V1,V2,V3=30 and then, after the GOSUB, restore their original volume
by Vi= (whatever is in line 110) and the same for VZ and V3.

Lines 101-103 are a pre-scan routine to start the music playing
sooner. There will still be a few seconds delay while that array is
set up in line 100. You can perhaps shorten that delay slightly by
changing the 36 to the highest note number you have used in
programming your piece.

However, Bruce Harrison wrote for me an assembly link which eliminates
any delay; this also makes it possible to change key while the music

is playing. I won’t list the source code here, because everyone is
afraid to key in source code anyway, but it is available on my TI-PD
disk #1143 and will also be on a tutorial disk on this type of music

programming.

Part 2 of this series contained a listing of a program to easily give
you the numbers you would need in order to key in a particular piece
of sheet music. If you don't have that, you can just take a piece a
paper and list the scale A Bf B C C# D Ef etc., on through as many as
you will need, and then number them consecutively. For the length of
the notes, give the shortest note a value of 1 uniess it also appears
as a dotted note, in which case it must be 2, and then number the

others according to their relative length - for example, 2 for a
quarter note, 3 for a dotted quarter, 4 for a half note, 8 for a whole
note.

38

Part 2 showed you how to key in single-note music, and Part 3 showed
how to do 3-part harmony. To recap briefly -

First, save yourself a lot of work by identifying any groups of notes
in the sheet music that are repeated two or more times. Mark them off
wherever they appear. Key them in first, starting with line number
500; at the end, put RETURN. If you find another such series, label
it 600 and do the same; you may find several such series. Just stay
below line number 1000, which is reserved for mergeable routines.
Then, while you are programming the music and come to such a series of
notes, just put in GOSUB 500 or whatever.

Start keying in your music in line 120; line 110 is reserved for a
line to be merged in. To key in the music, just give T the number for
the length of the first note, and give A, B and C the numbers for the
melody and first and second part harmony. Then GOSUB 1000. For inst-
ance, T=1 :: A=23 :: B=18 :: C=12 :: GOSUB 1000 .

And for each succeeding note, give a new value to whatevét changes; if
T is still 1 and B and C are still the same, all you need is, for
instance, A=19 :: GOSUB 1000.

Merge in one of the following routines, put in a line 999 STOP, and
after every several notes enter RUN and listen to what you have done
so far, to catch any errors while it is still easier to find them.

You can merge in any of the following routines to create many
different musical effects. The D in line 110 controls the tempo of the
music; change it as you wish. Vi, V2 and V3 are the volume (loudness)
of the three voices; adjust them as you like.

Key this in and save it by SAVE DSK1.PLAY1,MERGE

110 D=500 :: Vi=1 :: V2=5 :: V3=7
1000 CALL SOUND(D*T,N(A),V,N(B),V,N(C),V):: RETURN

That plays simple 3-part music, all at the same volume, which may
sound rather harsh to your years. Try changing the second V to V2 and
the 3rd one to V3. Save that as PLAY2.

For a bass accompaniment in the 3rd voice, change that to
CALL SOUND(D*T,N(A),V1i,N(B),
V2,N(C)%3.75,40,-4,V3)

For a bass melody with accompaniment, change the A to C, V1 to v3, C
to A and V3 to V1.

For the melody in two voices two octaves apart, change the C back to A
and the V3 back to Vi. Are you beginning to see how many different
effects can be created by making changes in just this one line? Save
any ones you like in merge format with a different name for each.

Perhaps those bass notes sound too deep. Try changing the 3.75 in any
of those routines to 7.5 . Better yet, change it to X and add ::
X=3.75 to line 110. Then you can switch back and forth in your music
by simply X=7.5 or X=3.75. Getting interesting, no?

Music played in that way has a strong throbbing beat, so try this

method - 3 9

L0

110 D=4 :: Vi=1 :: V2=5 :: V
3=7)

1000 FOR J=1 TO T*D :: CALL
SOUND(+4250,N(A),V1,N(B),V2,
N(C),V3):: NEXT J :: RETURN

1’11 be referring back to this one as the negative duration method.
Again, you can change the tempo by changing the value of D, but
sometimes not as exactly as | would like. With this method, you will
find that a series of the same note runs together into a single long
note. To avoid this, use different harmony notes each time, or
different volumes for V2 and V3.

There’s no law that says the harmony has to be lower than the melody,
so try changing N(B) to N(B)*2 or even N(B)#*4 or do the same with
N(C), or both. Or, use ¥X, add X=1 to line 110, and then in the middle
of your music program you can switch by X=2 or X=4 (don’t try 3!)

For a vibrato effect, we alternate a note with the same note
multiplied by 1.01 -

1000 FOR J=1 TO T#*D :: CALL

SOUND«(-4250,N(A),V1,N(B),VZ,

N(C),V3):: CALL SOUND(-4250,

N(A)*1,01,V1,N(B),V2,N(C),V3
:: NEXT J :: RETURN

For vibrato in the harmony rather than the melody, multiply N(C) or
N(B), or both, by 1.01 instead - or multiply all three.

For a stronger vibrato, change the 1.01 to 1.02 or even 1.03. Of
course, you can also multiply the harmony notes in both CALL SOUNDs by
2 or 4, as above. Or for a "chop" effect, multiply them in one CALL
SOUND but not the other. The possibilities are almost endliess!

For a tremolo, we alternate the volume rather than the frequency. Add
X=3 to line 110 and use this routine -

1000 FOR J=1 TO T*D :: CALL
SOUND (-4250,N(A),V1,N(B), V2,
N(C)>,V3>:: CALL SOUND(-4250,
N(A),V1+X,N(B),V2,N(C),V3)z:
NEXT J :: RETURN

You can vary the value of X as much as you want (V3+X can’t total more
than 30) for any amount of tremolo from a flutter to a wobble or a
stutter, and you can put the +X after V1 or V2 or all three. You can
even change it in the middle of your music, by X= whatever you want.

And you can multiply any or all by 1.01 for different combinations of
vibrato and tremolo.

To enhance a note, play it twice in the CALL SOUND but muitiply one of
its voices by 1.01 -

110 D=4 :: V1=1 :: V2=5 :: V
3=7
1000 FOR J=1 TO Tx*D :: CALL
SOUND(-4250,N(A),Vi,N(A)*1.0
1,VI,N(B)>,V2):: NEXT J :: RE
TURN

0Of course, with this trick you can only have 2-part harmony, but you
can choose to enhance the harmony rather than the melody.

I
Now, try combining the enhanced note with the vibrato and/or tremolo,
for many more effects. For enriched vibrato, use N(A),V1,N(A)%1.01,V!t
in the first CALL SOUND and N(A)%1.01,V1,N(AI*1.02, V1 in the second.

The bass notes do not go we!l with this method because interrupting
them through a loop introduces a rattle, but the baritone works well
and gives a unique reedy sound. To do this, place the note you want in
the 3rd position, multiply it by 7.5, give it a volume of 30, and add
the -4 noise at whatever volume you want. You can alsoc combine this
with other effects, for instance with vibrato

1000 FOR J=1 TO Tx*D :: CALL

SOUND(-4250,N(A),VL1,N(B),V2,

N(C)»7.5,30,-4,V3)

1010 CALL SOUND(-4250,N(A)#%1

.01,V1,N(B),V2,N(C)*7.5, 30, -

4,V3):: NEXT J :: RETURN

Now for the real fun - the "piano" effects that we get by decreasing
the volume gradually. This is the basic routine -

1000 FOR J=1 TO T*D :: CALL
SOUND(-4250,N(A),J+V1i,N(B),J
+V2,N(C),J+V3):: NEXT J :: R
ETURN

Of course, with al! of these you must also have that line 110 to
define the duration and volume.

If you want a little more percussion in your piano, try this -

1000 FOR J=1 TO T#D :: CALL
SOUND (-4250,N(A),J*1.5,N(B),
J*#1.5,N(C),J*1.5):: NEXT J :
: CALL SOUND(-4250,N(A),15,N
(B),15,N(C),15):: RETURN

And, of course, all those tricks we learned above - vibrato, tremolo,
baritone, enhanced, high harmony, chop - can also be used with piano.
This will give you the vibrato -

1000 FOR J=1 TO T#*D :: CALL
SOUND(-4250,N(A),J+Vi,N(B),J
+V2,N(C),J+V3):: CALL SOUND(
-4250,N(A)%1.01,J+V1,N(B),J+
V2,N(C),J+V3):: NEXT J :: RE
TURN

And an increasing tremolo -

1000 FOR J=1 TO T#D :: V=J#2

:: CALL SOUND(-4250,N(A),J,
N(B),J,N(C),J):: CALL SOUND(
-4250,N(A),V,N(B),V,N(C),V):
+ NEXT J :: RETURN

And just one more, the "reverse piano™ with an increasing volume -

1000 FOR J=T*D TO 1 STEP -1

t: CALL SOUND(-4250,N(A),J+V

1,N(B),J+V2,N(C),J+V3):: CAL

L SOUND(-4250,N(A),J+V1,N(B) 1
»yJ+V2,N(C),J+V3):: NEXT J :: L
RETURN

By the time you get through exploring all the possible combinations of
those, you should have a hundred ways of making music. Save each one

you like, complete with line 110, in merge format, so you can try them
all with .each piece of music you create.

I had intended this to be the last part of this series, but | still
haven’'t told you about autochording, so there will have to be one
more. :

CONSOLETATION ZONE

This is the letters and help page. Lets hear from you. We want to
hear what you say. So please write to your editor.

L2

wam .

ARTICLE by Stephen Shaw

Hi everyone. Not much written by me this issue due to family illnes§:
but a brief bit for you...

We will start with another graphics program, this time a RECURSIVE
one. Our versions of Basic do not support recursion, but as long as
there is enough memory we can stack up our subroutines, which is how
this program operates.

Every time you GOSUB, the computer remembers where you left from
UNTIL it returns, so lots of GOSUBS without any returns can end up
with a MEMORY FULL error, but with a small program like this, we can
stack up the GOSUBS far enough to produce a perfectly adequate
recursive program:

! KOCH CURVE

! recursive pattern

! written for TI ExBas plus The Missing Link

! by stephen shaw march 1993

! from "fractals for the classroom™ by peitgen, jurgens, and saupe.
pringer-Verlag.

1]
! after Helge von Koch, Arkiv for Matematik, 1904
1]

100 CALL LINK("CLEAR"):: RANDOMIZE

110 ! CALL LINK("PRINT",41,12,"Input peak offset
(suggest 0.29)"):: CALL LINK("INPUT",7%,81,R)

120 R=RND#*.52 ! O<R<1 -rem out if using line 110.

130 CALL LINK("CLEAR"):: R$="R="&STR$(R):: CALL LINK("P
RINT", 140, 100,R$)

140 L=5 :: XL(L)>=10 :: XR(L)>=220+10 :: YL(L),YR(L)=120
150 GOSUB 190

160 CALL LINK("PRINT",170,20,"DONE-press a key™)

170 CALL KEY(5,A,B):: IF B<1 THEN 170

180 END

190 IF L>1 THEN 220

200 CALL LINK("LINE",YL(1),XL(1),YR(1),XR(1))

210 GOTO 380

220 L=L-1

230 XL(L)=XL(L+1):: YL(L)=YL(L+1)

240 XR(L)>=.333%XR(L+1)+.667%XL(L+1)

250 YR(L)=,333#YR(L+1)+.667*YL(L+1)

260 GOSUB 190

270 XL(L)>=XR(L)>:: YL(L)=YR(L)

280 XR(L)=.5%XR(L+1)+,5#%XL(L+1)-R*(YL(L+1)-YR(L+1))

290 YR(L)=.5%YR(L+1)+.5%YL(L+1)+R*(XL(L+1)-XR(L+1))

300 GOSUB 190

310 XL(L)>=XR(L)>:: YL(L)=YR(L):: XR(L)=.667%XR(L+1)+,.333*%XL(L+1)
320 YR(L)=.667%YR(L+1)+,333%YL(L+1)

330 GOSUB 190

340 REM RIGHT BRANCH

350 XL(L)=XR(L):: YL(L)=YR(L)>:: XR(L)=XR(L+1):: YR(L)=YR(L+1)
360 GOSUB 190

370 L=L+1

380 RETURN

390 RETURN ’

400 RETURN ! do we need all these? check and delete if required!

PROGRAMMING BASIC...

DN APDWON -

Way back in TI*MES Issue 34, Autumn 1991, 1 gave a program that would
add fractions, but not reduce the result (Listing One, below), and
asked if you could better it. L3

* My mother was in her final weeks of cancer, it hit me quite hard.ss

"\

I also, in the same issue, gave a more complex program that would
reduce the result (Listing Number Two, below).

These entries created the usual lack of response from the UK, but
have stirred up quite a response from our overseas friends.

In MICROpendium March 1993 i§sue, Dean S Mah of Red Deer, Alberta
gave some modifications to listing one- see listing three below, to
be read in conjunction with list one.

Meanwhile one of our leading programmers has been attacking the
problem from several angles- see listings four onwards.

Consider the problem. eg to add 11/13 to 17-32 etc and display the
result as a fraction (some fractions cannot be displayed too well as
a decimal!).

Try to solve the problem.

Look at the various attempts below. Which program is the easiest to
follow? Which program uses the least memory? And which program gives
the fastest result? Which of these three options would you prefer?

Now for the listings, in 80 column format to reduce space...

LISTING ONE- THE ORIGINAL:

1 ! ADDING FRACTIONS

2 ! result is not reduced eg 12/16 would usually
be shown as 3/4

100 CALL CLEAR

110 DISPLAY AT(10,5):"--~ 4 -=-- = ——omn

120 ACCEPT AT(9,5)SIZE(3)VALIDATE(DIGIT):A
130 ACCEPT AT(11,5)VALIDATE(DIGIT)SIZE(3):B
140 ACCEPT AT(9,11)SIZE(3)VALIDATE(DIGIT):C
150 ACCEPT AT(11,11)SI1ZE(3)VALIDATE(DIGIT):D
160 GOSUB 230

161 ! PRINTER CHECK: WHEN YOU SEE ###% USE SHIFT 3
170 DISPLAY AT(9,16):USING "###4":N

180 DISPLAY AT(11,16):USING "###%":L

190 DISPLAY AT(14,1):"ENTER KEY FOR ANOTHER"
200 DISPLAY AT(1,1):"NORMAL RESULT=";A/B+C/D
210 ACCEPT AT(24,12):A$:: GOTO 100

220 STOP

230 FOR X=2 TO Bx*D

240 IF INT(X/B)<X/B THEN 260

250 IF INT(X/D)=X/D THEN 270

260 NEXT X

270 L=X

280 N=INT(L/B)*A+[NT(L/D)*C

290 RETURN

LISTING TWO- reduces answer...

100 ! FRACTIONAL + AND -

110 ! R CALDWELL JAN 91

120 ! FOR TI99/4A BY

130 ! S SHAW APR 9%

140 DIM Q(102)

150 DISPLAY AT(1,1)ERASE ALL:"FRACTIONAL + & -*
160 DISPLAY AT(7,1):"~-=g4m-un

170 DE, X=1

180 ACCEPT AT(6,2)VALIDATE(DIGIT,"+-")SIZE(4):N(X)
190 IF N(X)>=0 THEN 310

200 ACCEPT AT(8,2)VALIDATE(DIGIT)SIZE(4):D(X)

210 IF D(X)=0 THEN 310

220 DP(X)=N(X):: DE=DE*D(X)

230 CALL HCHAR(6,1,32,12)

240 CALL HCHAR(8,1,32,12)

250 DISPLAY AT(S,1):"PLUS:"

260 DISPLAY AT(3,1):"ENTER O TO TOTAL"

1270 X=X+1 :: DISPLAY AT(7,1S):"™ITEM";X :: DISPLAY AT(8,15):"-MAX 10-"

280 IF X=11 THEN 310

290 GOTO 180

300 REM

310 F,X=X-1

320 FOR S=1 TO F :: FOR J=1 TO F

330 Z=P+1 :: K=S5+J-1

340 P(S5,J)=K-F*INT(K/F):: IF P(S,J)=0 THEN P(S,J)=F

350 Q(Z)=P(S,J):: NEXT J :: NEXT S

360 FOR X=1 TO F :: Y=F#X-F+f :: FOR C=1 TO F-1

370 Y=Y+1 :: DP(X)=DP(X)*D(Q(Y)):: NEXT C

380 NU=NU+DP(X):: NEXT X :: DD=2

390 DISPLAY AT(10,1)>:"SUM 1S:"™ :: DISPLAY AT(11,5):NU;"/";DE
400 1F NU/DD=INT(NU/DD)AND DE/DD=INT(DE/DD)THEN NU=NU/DD ::
DE=DE/DD :: GOTO 400

410 DD=DD+2+(DD=2)

420 IF ABS(NU)>DE THEN A=ABS(NU)ELSE A=DE

430 IF DD<=SQR(A)THEN 400

440 IF NU/DE=INT(NU/DE)THEN 540

450 IF NU>0 THEN WN=INT(NU/DE):: NU=NU-WN*DE :: PN=1

460 IF NU<O THEN WN=INT(NU/DE)+1 :: NU=ABS(NU-WN*DE):: PN=2 ::
IF WN=0 THEN NU=-NU

470 REM CHAR #####% IS SHIFT 3

480 DISPLAY AT(13,5):USING "####888" :NU

490 IF PN=1 THEN DISPLAY AT(14,1):WN :
S00 IF PN=2 THEN DISPLAY AT(14,1):WN :
510 PN=0O

520 DISPLAY AT(14,5):"-=-==--- "

530 DISPLAY AT(15,5):USING "####8%¥4":DE
540 DISPLAY AT(18,4):NU/DE

550 DISPLAY AT(24,4):"ANY KEY FOR ANOTHER"
560 CALL KEY(1,G,H):: IF H<1 THEN 560

570 RUN

NU=NU+WN#*DE
IF WN<QO THEN NU=WNx*DE-NU

LISTING THREE- modifications to LIST ONE,

from Micropendium March 1993:

165 CALL REDUCE(N,L)

300 SUB REDUCE(A,B)

310 X=A :: Y=B :: IF X<Y THEN TEMP=X :: X=Y :: Y=TEMP
320 CALL MOD(X,Y,REMAIN)

330 IF REMAIN>O THEN X=Y :: Y=REMAIN :: GOTO 320
340 A=A/Y :: B=B/Y :: SUBEND

350 SUB MOD(A,B,REMAIN)

360 REMAIN=A-INT(A/B)*B :: SUBEND

370 END

LIST FOUR- WITH MACHINE CODE LINK (machine code source at end):

90 CALL INIT :: CALL LOAD("DSK1.FRED/O™)
100" CALL CLEAR

110 DISPLAY AT(10,5):"-~-- + --= = ---n

120 ACCEPT AT(9,5)SI1ZE(3)VALIDATE(DIGIT):A

LS

L6

130 ACCEPT AT(11,5)S1ZE(3)VALIDATE(DIGIT):B
140 ACCEPT AT(9,11)SIZE(3)VALIDATE(DIGIT):C
150 ACCEPT AT(11,11)SIZE(3)VALIDATE(DIGIT):D

160 GOSUB 230 :: CALL LINK("FRED",N,L)
170 DISPLAY AT(9,16):USING
180 DISPLAY AT(11,16):USING "###4":L

THHHE" N

#

IS SHIFT 3

190 DISPLAY AT(14,1):"ENTER KEY FOR ANOTHER"
200 DISPLAY AT(1,1):"NORMAL RESULT=";A/B+C/D

210 ACCEPT AT(24,12):A% ::

220 STO

P

230 FOR X=2 TO B#*D
240 IF INT(X/B)<X/B THEN 260
250 IF INT(X/D)=X/D THEN 270

260 NEX
270 L=X

280 N=INT(L/B)*A+INT(L/D)x*C

290 RET

T X

URN

----machine code source:

FRED/

S

*
* TO REDUCE FRACTIONS
* CODE BY B. HARRISON
* PUBLIC DOMAIN

*

DEF
NUMASG
NUMREF
XMLLNK
CF1
CIF

IMPROP
PROPER

RPT

TRIAL

FRED
EQU
EQU
EQU
EQU
EQU
CLR
L1
BLWP
BLWP
DATA
MOV
MOV
INC
BLWP
BLWP
DATA
MOV
MOV
C
JLT
MOV
JMP
MOV

INCT
C
JGT
MOV
CLR
MOV
CLR
DIV
MOV
JNE
DIV

>2008

>200C

>2018

>12B8

>20

RO

Ri,1

@NUMREF
@XMLLNK

CF1

@>834A, @NUMER
@>834A, @TNUM
R1

@NUMREF
@XMLLNK

CF1

@>834A, @DENOM
@>834A, @TDEN
©@DENOM, @NUMER
IMPROP
@NUMER, @LIMIT
PROPER
@DENOM, @LIMIT

RO
RO,@LIMIT
ANSWER
©NUMER, R3
R2
@DENOM, RS
R4

RO, R2
R3,R3

NXT

RO, R4

GOTO 100

MOV RS,RS5
JNE NXT

MOV R2,@TNUM
MOV R4, @TDEN

NXT INC RO
JMP RPT
ANSWER
CLR RO
LI Ri, 1

MOV @TNUM, @>834A
BLWP @XMLLNK
DATA CIF
BLWP @NUMASG
INC R
MOV @TDEN, @>834A
BLWP @XMLLNK
DATA CIF
BLWP @NUMASG
LWPI >83E0
B . @6A
s BSS 32

LIST FIVE- moving back to pure XB-

amend the basic portion of list 4 as below:

1 ! ADD FRACTI!ONS WITH REDUCTION

2 ! LINE 290 REMOVED & NEW LINES 300-360 ADDED BY B. HARRISON
3 ! ORIGINAL PROGRAM BY S. SHAW -
290 REM

300 LIM=MIN(N,L>:: TN=N :: TL=L

310 FOR Y=2 TO LIM

320 IF N/Y<>INT(N/Y)THEN 350

330 IF L/Y<>INT(L/Y)THEN 350

340 TN=N/Y :: TL=L/Y

LISTING SiX- modifications to listing 4:
90 ON WARNING NEXT

290 REM

300 TN=N :: TL=L

310 FOR Y=2 TO MIN(N,L)

320 IF N/Y>INT(N/Y)THEN 350

330 IF L/Y=INTtL/Y)THEN TN=N/Y :: TL=L/Y
350 NEXT Y :: RETURN

LISTING - modifications to listing 4&:
90 ON WARNING NEXT

290 REM

300 REM

310 FOR Y=2 TO MIN(N,L)
320 IF N/Y>INT(N/Y)THEN 350
continued....

47

L8

430 IF L/Y=INT(L/Y)THEN N=N/Y :: L=L/Y :: GOTO 310
350 NEXT Y :: RETURN

LISTING NINE- complete listing:

2 ! MODIFIED FOR REDUCTION AND SPEED ENHANCEMENT BY BRUCE HARRISON
4 ! VERSION ADFR6 OF 1 APRIL 93

90 ON WARNING NEXT

100 DISPLAY AT(10,5)ERASE ALL:"-=- 4 -== = ——-n

110 ACCEPT AT(9,5)SIZE(3)VALIDATE(DIGIT):A

120 ACCEPT AT(11,5)SIZE(3)VALIDATE(DIGIT):B :: IF B=0 THEN 120
130 ACCEPT AT(9,11)SIZE(3)VALIDATE(DIGIT):C

140 ACCEPT AT(11,11)SIZE(3)VALIDATE(DIGIT):D :: IF D=0 THEN 140
150 FOR L=MAX(B,D)TO B*D STEP MAX(B,D)

160 IF INT(L/B)<L/B THEN 180

170 IF INT(L/D)=L/D THEN 190

180 NEXT L

190 N=L/B*A+L/D*C

200 FOR Y=2 TO MIN(N,L)

210 IF N/Y>INT(N/Y)THEN 230

220 IF L/Y=INT(L/Y)THEN N=N/Y :: L=L/Y :: GOTO 200

230 NEXT Y

240 DI1SPLAY AT(9,16):USING "####":N

250 DISPLAY AT(11,16):USING "####":L

260 DISPLAY AT(14,3):"PRESS ENTER FOR ANOTHER"

270 DISPLAY AT(1,1):"NORMAL RESULT=";A/B+C/D

280 CALL KEY(0,K,S):: IF S<>1 THEN 280 ELSE IF K=13 THEN 100

There you have it. There are almost always MANY ways to tackle ANY
programming problem. Some will be better than others because they are
easier to follow OR use up less memory OR work faster. The programmer
must decide his priorities and program accordingly.

So called programmers using macroassemblers with vast routine
libraries already written tend to end up with programs which are hard
to follow, hard to modify, are slow, and use up lots of memory, which
is why PC users now tend to go for machines with 4MB of memory
running at 32Mhz or more! You don’t need all that if you know how to
program.

And you can avoid using up 29k just to do a PRINT "HI"!

PRINTER INTERFACE FOR CONSOLE ONLY ?

BY GARY SMITH.

Where did the idea come from?

It all stems from the AGM in Derby. People were a little
thin on the ground but there was quite an amount of new and
interesting items. When the meeting had started it opened my
eyes to a few things. Many good points were brought out and 1|
found out that over 52% of people in the group were unexpanded
which came as a shock.

I put some thought into this on the train on the way home
and remembered when | had to pay out for the expansion box. It
is quite expensive but never the less worth while and 1 have
never looked back since. The other option is to build your own
expansion box which | believe that Dave Hewitt did quite
sucessfully. The problem here is that if you’ve never tried
anything like this before it couid be a bit tricky.

The title of this article may be a bit missleading. To get
this interface working you will need either Tl Extended Basic
with 32K or Mini Memory (how many times have you heard that!)
it has to be said either or both of these are a great plus for
the console, it opens it up for so much more like machine code,
larger programs and printer interfaces! There is no excuse at
the moment as | believe that there are copies of both TI
Extended Basic and Mini Memory in the module library!

For those of you without the 32K there are a few things you
can do. | can recommend the Matchbox expansion done by Phil West
and Bernie Elsner which works perfectly with every thing that |
have tried. Since technology has moved on this expansion can be
done with just one chip! The other option is to buy one which
fits in the side expansion slot on the console. Mike Goddard may
have one or two of these. If not, let me know as ! am quite
willing to do the matchbox expansion or build the add on card
for you.

Down to the real business!

How many people are sitting there with a tape machine and a
word processor thinking a printer would be very handy but there
is no way I'm going to spend $$%% ? How many people have a
printer or could beg/borrow one? | imagine this would be quite a
high number.

You’re probably thinking 'not more vapourware’ or
'this sounds like its going to cost a packet!’. You would be
wrong on both accounts. | expect this to cost about

1.50 for connectors

0.72 for the chips

0.80 about for transistors

?.?72 for wire/solder/etc
Total --- 5-6 pounds!!!tt!

49

—

C
| ans Cbo&k do {_ELJF___“D‘
%R‘T dD
q
(¢

50

No one can tell me that this will break the bank! This
interface will be connected to the tape port on the console and
will use the two motor controls to provide a desta/clock serial
interface. This {s then changed to centronics standard and sent
out. This means that any printer which can connect to the 16 way
connector on the RS-232 card will connect to this!

Due to an inactive limb keepimg me from work | have been
able to design this and partly build i1t. It will need some
drivers to be written which will be mostly basic apart from the
code which operates the motors.

. This motor control code will come from an article by Mike
Goddard back in 1988 where he controls a robot by the tape port.
The rest of the program will be splitting the word processed

" file into separate characters and converting each character to

ASCI1 code and shifting this out the port with a few hand
shaking bits in front to strobe the data into the printer.

1 would also think it should be possable to print out
programs this way and aiso graphics but these would need a more
complex driver which is a 1ittle over my head but maybe Mark or
Richard could get their minds around this one.

Here’s a quick run'down as to how it works:

It uses two D-Type flip-tlops (74LS174 type) as serial to
centronic convertors. These two chips give 12 bit resolution in
total. Eight of these are the character data. One bit i{s used as
a stobe to send the data to the printer and another bit is used
to reset the interface ready to send another character to the
printer. The code sent would look something like :

10 01000001 -- 10 is handshake -- 01000001 is "A°’.

1 would be interested in any comments you may have aboui
this, good or bad! Heres the preliminary circuit it anyone

fancies trying it out,.
A4 A Sops] 5T Do (riwruer Sipar .

. (a Cowretions

BATA »——Ds

HIGHL IGHTING
By Earl Raguse

| saw a demonstration that allowed one to switch the foreground colors
of certain characters to make them stand out from others like 0 vs O,
and 1 vs |, or for trouble shooting of bad typing, something | do real
well. Aha, you say, ! can do that with CALL COLOR. True, but its not
permanent. 1 don’t like having to embed trouble shooting routines in my
programs if there is an easier way.

The following program called HIGHLIGHT makes permanent
foreground/background color changes and can be controlled ON and OFF at
will. Once executed, the program can be deleted with NEW before you start
entering a new program. | sometimes put this in my LOAD program, its easy
to turn off if you don't want it. 1 found the basic program idea in the
Tacoma 99ers Newsletter of December 1987, the article was by Joe Nolan,
who credits Harry Wilhelm of the Twin Tlers UG with the original idea.

1 don’t have any idea how much evolution has gone on, but | added my two
cents also.

Lines 130 and 140 do all the work, and if you wish to transfer this effect
to one of your own programs, that’s all you need. The following tells you
how you can change these lines to suit your needs. If you study it a bit,
you can see the potential for other purposes.

In line 130,

=E=s==s======

(1) Change the eighth number, from the address, 17, to the number of the
first character set you want to change PLUS 15, The current program is
15+2=17 for character set 2.

(2) Change the eighth number after that, 3, to the number of character
sets to change. The current program is 3 for character sets 2, 3 and 4.

In line 140,

(1) Load a number, (in this case 244) for each character set to be
changed. That number is computed as (16%(FG-1)) + (BG-1) where FG and BG
are the Foreground and Background color numbers as defined in the XBASIC
manual. Each character set could have a different combinaton of colors.
The program as written is for all characters white on blue, ie (16%#(16-1))
+ (5-1) = 244,

(2) The effect is turned ON by CALL LOAD(-31804,63) and OFF by CALL LOAD
(-31804,0). This can be done either in a program or from the keyboard. 1|
added the lines 150 and 160 for easy control of the effect on or off.
These can be deleted if not wanted.

100 ! SAVE DSK1.HIGHLIGHT

110 !By Joe Nolan, Tacoma 99 ers UG Newsletter Dec 87, Original idea by
Harry Wilhelm of Twin TlersUG

120 !Modified by E Raguse UGOC 1/87
130 CALL INIT :: CALL LOAD

(16128, 2,224,38,0,2,0,8,17,2

.1 ,63,36,2,2,0,3,4,32,32,
36,2,224,131,192,3,128)

140 CALL LOAD(16164, 244,244,

244 ::CALL LOAD(-31804,63)

150 PRINT "TURN IT OFF? PRES

S SPACE, ELSE ANY"

160 CALL KEY(0,K,S):: IF S=0

THEN 160 ELSE IF K<>32 THEN

END ELSE CALL LOAD(-318

04,0) 51

52

TIGERCUB TIPS #12

Copyright 1984 Tigercub
Software

156 Collingwood Ave.,
Columbus Ohio 43213

If you have taken a course
in computer programming,
one of your homework
assignments was probably to
write a program that would
find al! the possibie
combinations of letters in
a S5-letter word.

The following version can
handle words of 3 to 6
letters, lists the combina-
tions alphabetically,
eliminates duplicates (when
the word has two of the
same letter), does not
require a DIM statement,
and is fast. It also works
with numbers. If you work
those scrambled-word
puzzles in the newspapers,
you’ll find it handy.

100 CALL CLEAR :: PRINT TAB(
5);"TIGERCUB ANAGRAMMER": :!
by Jim Peterson

110 INPUT "TYPE A 3-,4-,5~- 0

R 6-LETTER WORD "™:A$:: W=L

EN(A$):: IF (W<3)+(W>6)THEN

110 '

120 PRINT :: FOR J=1 TO W ::
B$(J)=SEG$(A$,J,1):: NEXT J
:: FOR J=2 TO W :: IF Bs(J)

>=B$(J-1)THEN 160

130 T$=B$(J):: FOR L=J-1 TO

1 STEP -1 :: B$(L+1)=B$(L)

140 IF Bs(L-1)>=T$ THEN 150

:: B$(L)=T$:: GOTO 160

150 NEXT L

160 NEXT J

170 FOR A=1 TO W :: FOR B=1

TO W :: IF B=A THEN 340

180 FOR C=1 TO W :: IF (C=A)

+(C=B)THEN 330

190 IF W=3 THEN 250

200 FOR D=1 TO W :: IF (D=A)

+(D=B)+(D=C)THEN 320

210 IF W=4 THEN 260

220 FOR E=1 TO W :: IF (E=A)

+(E=B)+(E=C)+(E=D)THEN 310

230 IF W=5 THEN 270

240 FOR F=1 TO W :: IF (F=A)

+(F=B)+(F=C)+(F=D)+(F=E)THEN
300 ELSE 280
250 W$=BS$(A)&BS(B)&BS$(C):: |
F We$<=V$ THEN 330 ELSE 290
260 Ws=B$(A)&B$(B)&BS$(C)&B%$(
D):: IF Ws$<=Vs$ THEN 320 ELSE
290
270 W$=B$(A)&B$(B)&BS$(C)&B$(
D)&B$(E):: JF Ws$<{=V$ THEN 31
0 ELSE 290
280 W$=B3$(A)&B3$(B)&BS$(C)&B$ (
D)UBS(E)&BS$(F):: IF W$<{=Vs T
HEN 310
280 PRINT Ws&" ";:: G=G+1 ::
Ve=Ws :: ON W-2 GOTO 330,32
0,310,300
300 NEXT
310 NEXT
320 NEXT
330 NEXT
340 NEXT
350 NEXT
360 PRINT : :" ";G;
OMBINATIONS."™: : ::
$="" :: GOTO 110

>WQOMT

And still another automatic
music-maker. This one
doodles around the keyboard
in the key of A, with
autmatic bass accompani-
ment.

100 RANDOMIZE
110 DIM N(30)

120 F=220

130 FOR J=0 TO 36

140 X=X+1+(X=12)%12

150 IF (X=2)+(X=5)+(X=7)+(X=
10)+(X=12)THEN 180

160 Y=Y+1

170 N(Y)=INT(Fx*1.059463094~]
)

180 NEXT J

180 K=8

200 K=K-INT(5#RND+1)+INT(5*R
ND+1)+(K>21)%2- (K<1) %2

210 IF (K<1)+(K>21)THEN 200
220 CALL SOUND(-989,N(K),0,N
(K)*2,0,N(K)*3.75,30,-4,5)
230 GOTO 200

100 CALL CLEAR

110 REM - programmed by Jim

Peterson May 20, 1984

120 PRINT "TIGERCUB MAGIC sSQ
UARE MAKER": :" A magic squa
re is a conse-":"cutive sgeri

. es of numbers":"arranged in

a square in such™
130 PRINT "a way that each h
orizontal":"row, vertical ro
w, and long":"diagonal row w
i11 add up to":"the same tot
al.™m:
140 PRINT " This little prog
~ram will":"create an odd-ord
er magic":"square of any des
ired size,":%"starting with a
any desired”:"number.": :
150 PRINT " Squares of 3,5,7
or 9 size":"will be printed
on the":"screen. The progra
m can be":"modified to outpu
t larger”
160 PRINT "sizes to a printe
r.":
170 INPUT "SIZE OF SQUARE? (o
dd number) ":S
180 IF (S<3)+(S/2=INT(S/2))T
HEN 170
190 INPUT "STARTING NUMBER?
":SN
200 N=SN-1
210 CALL CLEAR
220 DIM G(31,31)
230 R=1
240 C=INT(S/2)+1
250 N=N+1
260 IF N=S~2+SN THEN 450
270 G(R,C)=N
280 IF (R-1=0)+(C+1>S)THEN 3
50
290 IF G(R-1,C+1)<>0 THEN 33
(4]
300 R=R-1
310 C=C+1
320 GOTO 250 ! % is shift 3
330 R=R+1
340 GOTO 250
350 IF (R=1)%(C=S)THEN 400
360 IF (R>1)%#(C=S)THEN 420
370 R=S
380 C=C+1
390 GOTO 250
400 R=2
410 GOTO 250
420 R=R-1
430 C=1
440 GOTO 250
450 IF (LEN(STR$(SN+S"2))+1)
%*S5>28 THEN 530
460 FOR R=1 TO S
470 FOR C=1 TO S
480 PRINT STR$(G(R,C));"™ ";
490 NEXT C
500 PRINT : :
510 NEXT R
520 GOTO 550

530 PRINT "TOO LARGE FOR SCR
EEN. "

540 REM - ADD PRINTER ROUTIN
E HERE - # is shift 3

550 PRINT : :"PRESS ANY KEY
TO CHECK"

560 CALL KEY(0,K,ST)

570 IF ST=0 THEN 560

580 FOR R=1 TO S

590 FOR C=1 TO S

600 X=X+G(R,C)

610 NEXT C

620 PRINT "ROW #";STR$(R);"

630 X=0

640 NEXT R

650 FOR C=1 TO S

660 FOR R=1 TO S

670 X=X+G(R,C)

680 NEXT R

690 PRINT "COLUMN #":STR$(C)
;n =";X

700 X=0

710 NEXT C

720 R=1

730 C=1

740 FOR J=1 TO S

750 X=X+G(R,C)

760 R=R+1

770 C=C+1

780 NEXT J

790 PRINT "RIGHT DIAGONAL=";
X

800 X=0

810 R=1

820 C=S

830 FOR J=1 TO S

840 X=X+G(R,C)

850 R=R+1

860 C=C-1

870 NEXT J

880 PRINT "LEFT DIAGONAL=";X
890 END

TIGERCUB TIPS #13

Copyright 1984, Tigercub
Software, 156 Collingwood
Ave., Columbus Ohio 43213.
May be reprinted by non-
profit users’ groups, with
credit to Tigercub
Software.

1’m told that someone
actually found a practical
use for my number-
scrambling rutine, so here
is an expanded version.

53

54

It will scramble any
sequence beginning with 1
and ending with any number
less than 256 or any number
greater than 256 which is
evenly divisible by any
number less than 256 and
greater than 1, within the
limits of computer memory.

In Extended Basic with
Memory Expannsion, the
limit is about 10,700; if
you reformat it to Basic
and run it bare bones, you
might get close to 13,000.

100 CALL CLEAR

10", QUTPUT

110 INPUT "HIGHEST NUMBER? "

sHN :: IF HN<256 THEN TN=HN

t: XX=1 :: GOTO 150

120 FOR TN=255 TO Z STEP -1
IF HN/TN=INT(HN/TN)THEN 1

OPEN #1:"P

40

130 NEXT TN :: PRINT HN;"IS

NOT DIVISIBLE BY":"ANYTHING

LESS THAN 256 - ":"CANNOT U

SE" :: GOTO 110

140 XX=HN/TN

150 DIM M$(50)

160 CALL CLEAR :: FOR J=1 TO
TN :: M$(1)=M$(1)& CHRS$(J)::
NEXT J :: FOR J=1 TO XX ::

M$(J)=M$(1):: NEXT J :: FOR

J=1 TO HN TT=1+INT((J-1)/

255)

170 RANDOMIZE :: X=INT(XX*RN

D+1):: IF LEN(M$(X))=0 THEN

170 :: ! % is shift 3

180 Y=INT(LEN(M$ (X)) *RND+1)

180 PRINT #1:ASC(SEG$(M$(X),

Y, 1)) +TN*(X-1);

200 M$(X)=SEG$(M$(X),1,Y-1)&

SEG$(M$(X),Y+1,LEN(M$(X)))::
NEXT J

Here’s a little routine you
can use to jazz up your
title screen or text.

100 CALL CLEAR

110 DATA "THIS IS A DEMONSTR
ATION","OF THE","TIGERCUB SO
FTWARE"™, "TWO-WAY PRINT ROUT!
NE"

112 FOR T=1 TO 4

113 READ M$

120 IF LEN(M$)/2=INT(LEN(M$)
/2)THEN 135

130 Ms=Msa" "

131 GOTO 140

135 Ms$=Mga" ¢

140 L=LEN(M$)

150 C=16-L/2

160 FOR J=L/2 TO { STEP -1
170 CALL HCHAR(10+T#*2,C+J,AS
C(SEG$(M$,J,1)))

180 CALL HCHAR(10+Tx2,16+L/2
-J,ASC(SEG$(M$,L-J,1)))

190 NEXT J

200 NEXT T

Did you ever go through
your checkbook 5 times in
order to add up your gas

bill, then your electric
bill, etc.? With this
little handy- dandy, you
can do it all in one pass.

100 CALL CLEAR

110 REM - ADDER-UPPER by Ji
m Peterson

120 A¢="ABCDEFGHIJKLMNOPQRST
Uvuwxyz»

130 DIM C$(26),T(26)

140 PRINT * ADDER-UPP
ER": : :

150 PRINT "WITH THIS PROGRAM
YOU CAN GO THROUGH YOUR CHE
CKBOOK, OR ANYTHING ELSE, AN
D ADD UP AMOUNTS IN SEVERA
L CATE-"

160 PRINT "GORIES ALL AT ONE
TIME.": :

170 PRINT " FIRST, LIST THE
CATEGORIES":"YOU WANT TO ADD
UP.™:™ TYPE °“END’ WHEN FINI
SHED.": :

180 PRINT " NEXT, ENTER THE

CATEGORY": "CODE AND AMOUNT F

OR EACH":"BILL."

180 PRINT : :"WHEN YOU HAVE
ENTERED ALL"™:"THE BILLS, TYP
E =": :

200 N=N+t

210 PRINT "CATEGORY #";N

220 INPUT " ":C$(N
)

230 IF C$(N)="END"™ THEN 340

240 W$=SEG$(C$(N),1,1)

250 IF POS(A$,Ws,1)<>0 THEN

290

260 PRINT :"CODE LETTER ";Ws$
3" ALREADY VUSED - PICK A CO

DE LETTER."

270 INPUT Ws

280 GOTO 250

200 X=POS(AS,Ws, 1)
300 A$=SEG$(AS,1,X-1)4SEG$(A
$,X+1,LEN(A$))

310 X$=X$&W$

320 PRINT :"CODE LETTER FOR
nsC$(N);" WILL BE ";Ws: :
330 GOTO 200

340 C$(N)=""

350 N=N-1

360 X$=X$&"="

370 IF FLAG=1 THEN 420

380 FLAG=1

390 PRINT : :"READY TO START

- "ot

400 PRINT "WHEN FINISHED, TY
PE =": :

410 INPUT "DO YOU WANT TO VE
RIFY EACH INPUT? ":V$

420 PRINT :"CODE (";Xs;™)"
430 INPUT Qs

440 1F Q$="=" THEN 600

450 1F P0OS(X$,Q%,1)<>0 THEN
510

460 PRINT "THAT 1S NOT ONE O

F THE CODES": :

470 INPUT "1S IT A NEW CATEG
ORY?(Y/N) ":Qs$

480 1F SEG$(Q$,1,1)<>"Y" THE

N 420

490 X$=SEG$(X$,1,LEN(Xs$)-1)
500 GOTO 200

510 Y=POS(X$,Qs,1)

520 INPUT "AMOUNT ?":A

530 IF SEGS$(V$,1,1)="N" THEN
580

540 PRINT :C$(Y);A: :

550 INPUT "CORRECT? (Y/N)":L
$

560 IF SEG$(L%$,1,1)="Y" THEN
580

570 IF SEG$(L$,1,1)="N" THEN
420 ELSE 550

580 T(Y)=T(Y)+A

590 GOTO 420

600 FOR J=1 TO N

610 PRINT :C$(J);T(J)

620 TT=TT+T(J)

630 NEXT J

640 PRINT :"GRAND TOTAL OF A

LL IS";TT

650 END

And, did you ever wish that
You could make numbers
smaller, so that you could
Squeeze more of them onto a
Qhart or graph? The problem
is that resolution is so
Poor, at least on my TV
screen, but maybe you'll

find a use for this.

100 REM - NUMBER SCRUNCHER -
programmed by Jim Peterson
110 CALL SCREEN(5)

120 FOR S=2 TO 14

130 CALL COLOR(S, 15,1)

140 NEXT S

150 CALL CLEAR

160 RANDOMIZE

170 DATA 75557,22222,25127,6
1216,55571,74616,74757,71222
, 75257,75711

180 FOR J=0 TO 9

190 READ Cs

200 CH$(J)="00"&C$

210 NEXT J

220 CH=91

230 INPUT "NUMBER? ":RX

240 N$=STRS$ (RX)

250 1F LEN(N$)/2=INT(LEN(N$)
/2)THEN 270

260 N$="O"&NS$

270 FOR J=1 TO LEN(NS$)STEP 2

280 P1=VAL(SEGS$(N$,J,1))

290 P2=VAL(SEGS$(N$,J+1,1))

300 FOR T=1 TO 7

310 Z$=284SEG$(CHS$ (P1), T, 1)&

SEG$(CH$(P2),T, 1)

320 NEXT T

330 CALL CHAR(CH,Z$)

340 Zs=""

350 P$=P$&CHRS (CH)

360 CH=CH+1

370 NEXT J

380 PRINT Ns$;" ";Ps$

390 Ps=""

400 Ns=""

410 GOTO 230

Almost OUT OF MEMORY.
Jim Peterson

TIPS FROM THE TIGERCUB
#33
Copyright 1986

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Did you ever wonder how a
computer sort actually
worked? This program will
let you actually see it in
action. It will also show
you the value being held in
the temporary variable TS,
and the total number of

55

56

swaps and comparisons made.

Then you can change any of
the wvariables and resort.
Try AAA in the last position
or ZZZ in the first. You
will find that some of the
fastest sorts are not so
fast when a list is already
aimost in sequence.

100 CALL CLEAR :: CALL SCREE
N(16):: FOR SET=2 TO 9 :: CA

LL COLOR(SET,5,16):: NEXT SE
T :: ON WARNING NEXT :: RAND
OMIZE

110 DISPLAY AT(21,1)ERASE AL
L:">>>TIGERCUB SORT WATCHER<K
<<": :"Wait, please - genera
ting":"random array...." ::
DIM A$(101),B$(101),ST(25,2)
120 FOR J=1 TO 100 :: FOR L=
1 TO 3 :: B$(J)=B$(JIXCHRS$ (I
NT(26*RND+65)):: NEXT L :: X
=J :: A$(X)=B$(X):: GOSUB 10
20 :: NEXT J
130 DISPLAY AT(3,1)ERASE ALL
:"{1) BUBBLE SORT": :"(2) SH
AKER SORT": :"(3) SWAP SORT"
i :"(4) SHUTTLE SORT": :"(5)
EASY SORT"
140 DISPLAY AT(13,1):"(6) QU
ICK SORT™: :"(7) RESORT SORT
": :™(8) SHELL SORT": :"(9)
RESERVED": :"Type number of
choice™
150 ACCEPT AT(21,23)VALIDATE
(DIGIT)SIZE(2)BEEP:K :: IF K
<1 OR K>10 THEN 150
160 DISPLAY AT(24,1):"Size o
f array? (10-100)" :: ACCEPT
AT(24,25)VALIDATE(DIGIT)SIZ
E(3):G :: IF G<1 OR G>100 TH
EN 160
170 ON K GOSUB 230, 300,430,5
00,550,650,850,910, 25000 ::
DISPLAY AT(22,1):W;"SWAPS™:C
3 "COMPARISONS" :: C,W=0
180 DISPLAY AT(24,1):"Choose
(1)Menu or (2)Resort®™ :: AC
CEPT AT(24,7)VALIDATE("12™)S
IZE(1)>:Q :: IF Q=1 THEN 130
190 DISPLAY AT(24,1):"Change
which position? O" :: ACCEP
T AT(24,24)VALIDATE(DIGIT)SI
ZE(-3):P :: IF P=0 THEN 210
ELSE IF P<i OR P>G THEN 190
200 DISPLAY AT(24,1):"Change
to?" :: ACCEPT AT(24,12)S1Z
E(3):A$(P):: X=P :: GOSUB 10
20 :: GOTO 190

210 DISPLAY AT(22,1):" ngn n
:: GOSUB 1010 :: N=G :: ON
K GOSUB 240,310,440,510,560,
660,860,930,25010 :: DISPLAY
AT(22,1):W;"SWAPS":C; "COMPA
RISONS"™ :: C,W=0 :: GOTO 180
220 REM *BUBBLESORT#*

230 CALL CLEAR :: GOSUB 980
240 FOR J=2 TO N :: C=C+1 ::
IF A$(J)>=A$(J~1)THEN 260
250 T$=A$(J):: GOSUB 1050 ::

A$(J)=A$(J-1):: X=J :: GOSU
B 1020 :: A$(J-1)=T$:: X=J-
1 :: GOSUB 1020 :: W=W+1 ::
F=1

260 NEXT J :: C=C+1 :: IF Fs=
O THEN 280

270 W=W+1 :: F=0 3:: W=W+1 ::
N=N-1 :: GOTO 240

280 RETURN

290 REM *SHAKERSORT#*

300 CALL CLEAR :: GOSUB 980
310 W=W+1 :: L=1 :: W=W+1 ::

R=N
320 W=W+1 :: F=0 :: FOR J=L
TO R-1 :: C=C+1 :: IF A$(J)<

=A$(J+1)THEN 340
330 T$=A$(J):: GOSUB 1050 ::

A$(J)=AS(J+1):: X=J :: GOSU
B 1020 :: A$(J+1)=T$:: X=J+
1 :: GOSUB 1020 :: W=W+1 ::
F=1
340 NEXT J :: C=C+1 :: IF F=
O THEN 410
350 W=W+1 :: R=R-1 :: C=C+1i
:: IF R=L THEN 410
360 W=W+t :: F=0 :: FOR J=R

TO L+1 STEP -1 :: C=C+1 :: 1

F A$(J)>=A$(J-1)THEN 380

370 T$=A$(J):: GOSUB 1050 ::
A$(J)=A$(J-1):: X=J :: GOSU
B 1020 :: A$(J-1)=T$:: X=J-

1 :: GOSUB 1020 :: W=W+1 ::
F=1

380 NEXT J :: C=C+1 :: IF F=
O THEN 410

390 W=W+1 :: L=L+i :: C=C+1

:: IF L=R THEN 410

400 GOTO 320

410 RETURN

420 REM *SWAPSORT#*

430 CALL CLEAR :: GOSUB 980

440 FOR J=1 TO N-1 :: W=W+i

¢t R=J :: FOR JJ=J+1 TO N ::
C=C+1 :: IF A$(R)<=A$(JJ)TH
EN 460

450 W=W+1 :: R=JJ

460 NEXT JJ :: C=C+1 :: IF R
=J THEN 480

470 T$=A$(J):: GOSUB 1050 ::

A$(J)=A$(R>:: X=J :: GOSUB
1020 :: A$(R)=T$:: X=R :: G
O0SUB 1020

480 NEXT J :: RETURN

490 REM #%%SHUTTLE SORT%%*xx

500 CALL CLEAR :: GOSUB 880

510 FOR J=1 TO N-1 :: FOR JJ

=J TO 1 STEP -1 :: C=C+1 ::

1F A$(JJ)<=A%$(JJ+1)THEN 530

s T$=A$(JJ):: GOSUB 1050 ::
A$(JJ)I=A$(JI+1):: X=JJ :: G

OSUB 1020

520 A$(JJ+1)=T$:: X=JJ+1 ::
GOSUB 1020 :: NEXT JJ

530 NEXT J :: RETURN

540 REM *x%#EASY SORT#%%xx*

550 CALL CLEAR :: GOSUB 980

560 W=W+1 : D=1

570 W=W+1 :: D=2%D ::

:: IF D<=N THEN 570

580 W=W+1 :: D=INT(D/2):: C=

C+1 :: IF D=0 THEN 630

590 FOR J=1 TO N-D :: W=W+1

1 Y=J

600 W=W+1 :: Z=Y+D :: C=C+1

st IF AS(Y)<=A$(Z)THEN 620 :
T$=A$(Y):: GOSUB 1050 :: A

$(Y)=A$(Z):: X=Y :: GOSUB 10

20 :: AS$(Z)=TS$:: X=Z :: GOS

UB 1020

610 W=W+1 :: Y=Y-D :: C=C+1

:: IF Y>O THEN 600

620 NEXT J :: GOTO 580

630 RETURN

640 REM *QUICKSORT#*

650 CALL CLEAR :: GOSUB 980

660 W=W+1 :: L=1 :: W=W+1 ::
R=N :: W=W+1 :: T=0

670 T$=A$(INT((L+R)/2)):: GO

SUB 1050 :: W=W+1 :: J=L ::

W=W+1 :: JJ=R

680 C=C+1 :: IF A$(J)>=T$ TH

EN 710

C=C+1

690 W=W+1 :: J=J+1

700 GOTO 680

710 C=C+1 :: IF A$(JJ)<=T$ T
HEN 730

720 W=W+1 :: JJ=JJ-1 :: GOTO
710

730 C=C+1 :: IF AS(JI<>AS$WJJ
JTHEN 760

740 C=C+1 :: IF J>=JJ THEN 7
60
750 W=W+1 :: J=J+i :: GOTO 7
30

760 C=C+1 :: IF J>=JJ THEN 7

770 W=W+1 :: H$=A$(J):: A$(J
Y=A$(JJ):: X=J :: GOSUB 1020
12 A$(JJ)=H$:: X=JJ :: GOS

UB 1020 :: GOTO 680
780 W=W+1 :: J=J+1 :: W=W+1

2 JJ=JJ-1 :: C=C+1 :: IF J>
=R THEN 800

790 W=W+1 :: T=T+1 :: W=W+1

:: ST(T,O0)=J :: W=W+1l :: ST
T,1)=R

800 W=W+1 :: R=JJ :: C=C+1 :

¢ IF L<R THEN 670
810 C=C+1 :: IF T=0 THEN 830
820 W=W+1 :: L=ST(T,0):: W=W

+1 t: R=ST(T,1):: W=W+1 :: T
=T-1 :: GOTO 670
830 RETURN

840 REM x***RESORT SORTx#*x%xx
850 CALL CLEAR :: GOSUB 980
860 FOR J=2 TO N :: C=C+1 ::
IF A$(J)>=A3$(J-1)THEN 800
870 T$=A$(J):: GOSUB 1050 ::

FOR L=J-1 TO 1 STEP -1 :: A
$(L+1)=A$(L):: X=L+1 :: GOSU
B 1020
880 C=C+1 :: IF A$S(L-1)>=T$
THEN 890 :: A$(L)=T$:: X=L
:: GOSUB 1020 GOTO S00
890 NEXT L

900 NEXT J :: RETURN

910 REM *SHELLSORT#*

920 CALL CLEAR :: GOSUB 980
930 W=W+1 :: M=N

940 W=W+1 :: M=INT(M/3)+1
950 FOR J=1 TO N-M :: FOR JJ
=J TO 1 STEP -M :: C=C+1 ::
IF A$(JJ)<=A$(JJ+M)THEN 970
t: T$=A$(JJ):: GOSUB 1050
960 AS(JJ)=AS(JI+M):: X=JJ :

: GOSUB 1020 :: A$(JJ+M)=Ts
s X=JJ+M :: GOSUB 1020 :: N
EXT JJ

970 NEXT J :: C=C+1 :: IF M>
1 THEN 940 :: RETURN
980 REM #*RENEW ARRAY#*
990 FOR J=t TO G :: A$(J)=Bs$
(J):: X=J :: M$=A$(J):: GOSU

B 1020

1000 NEXT J :: N=G

1010 DISPLAY AT(24,1):"A to
abort P to pause"™ :: RETUR
N

1020 RR=X

1030 IF RR>20 THEN RR=RR~20
:: GOTO 1030

1040 CC=1-(X>20)%5~-(X>40) %5~
(X>60)%5-(X>80)%5 :: DISPLAY
AT(RR,CC):A$(X);:: W=W+1 ::
GOSUB 1060 :: RETURN

1050 DISPLAY AT(22,14):"Ts$="
TS ¢ W=W+1 :: GOSUB 1060 :
: RETURN

1060 CALL KEY(3,K1,88):: IF

57

58

SS=0 THEN 1080

1070 IF K1=65 THEN 130

1080 CALL KEY(3,K2,58S5):: IF
SS<1 THEN 1080

1090 RETURN

Don’t try timing these
sorts, because the screen
display distorts the speed.
Option 9 has been left open
so that you can add your own
favorite sort routine, in
the same format, starting in
line 25000.

These routines may not be
the most efficient forms,
and their names may not be
correct. If you know better
ones, let me know!

100 !BASKET WEAVING by Jim P
eterson
110 CALL CLEAR :: W=11 :: T=
2 :: CH$="AS5A5A5A5AS5A5A5ASFF
OOFFOOOOQOFFOOFF" :: CALL CHAR
(142,CH$):: CALL COLOR(14,2,
W,13,2,W):: CALL SCREEN(W)
120 CALL HCHAR(1,1,143,768):
¢ CALL CHAR(134,CH$):: CH=14
2
130 FOR C=1 TO 31 STEP T ::
FOR R=1 TO 23 STEP T :: CALL
HCHAR(R,C,CH):: NEXT R :: F

OR R=24 TO 2 STEP -T :: CALL

HCHAR(R,C+1,CH):: NEXT R ::
NEXT C

140 CH=ABS((CH=142)%135+(
134)%143):: RANDOMIZE ::
NT (3%RND+2)

150 FOR R=1 TO 23 STEP T ::
FOR C=2 TO 32 STEP T :: CALL
HCHAR(R,C,CH):: NEXT C

160 FOR C=31 TO L STEP -T ::
CALL HCHAR(R+1,C,CH):: NEXT
C :: NEXT R :: CH=CH-1 :: W
=INT(14%RND+3):: T=INT(3%*RND
+2)

170 IF CH=134 THEN CALL COLO
R(13,2,W):: GOTO 130 ELSE CA
LL COLOR(14,2,W):: GOTO 130

CH=
T=1

The following routine will
create a D/VB0O file named
GRAPHPAGE, to be loaded into
Ti-Writer as a 77x57 grid
numbered along the left and
bottom. Arrow keys can then
be wused to create a line
graph of asterisks or what-
ever, annotated with text as

desired.! % is shift 3

100 OPEN #1:"DSK1.GRAPHPAGE"
,OUTPUT :: PRINT #1:TAB(4);R

PT$("_",75):: FOR J=57 TO 1

STEP -1 :: J$=STR$(J)

105 IF J<10 THEN Js$=" "&Js$
110 PRINT #1:JS&RPT$("g_", 38
J&"e" :: NEXT J

120 FOR T=1 TO 2 :: PRINT #1
:" ";3:: FOR J=1 TO 77 :: Js
=STR$(J)H&™ " :: PRINT #1:SEG
$(Js$,T,1);:: NEXT J :: PRINT
#1 :: NEXT T :: CLOSE #1

1 !TO PRINT A HANDY REFERENC
E CHART OF ASCII1 TO HEX CODE
- MODIFIED FROM READING-BERK
S AUG 85 - # is shift 3

90 OPEN #1:"PIO™ :: PRINT #1
:CHR$(27) ;CHRS$ (77) ;CHR$(5)
100 FOR X=32 TO 63 :: FOR Y=
X TO X+64 STEP 32 :: CALL CH
ARPAT(Y,Y$):: PRINT #1:Y;"
sCHRS$(Y) ;" ";Y$;:: NEXT Y ::
PRINT #1:7"" :: NEXT X

100 CALL CLEAR :: CALL MAGNI
FY(2):: RANDOMIZE :: DISPLAY
AT(3,2):"TIGERCUB SPEED TYP
ING TEST": :TAB(12);"SPEED"

1 T=10

110 DISPLAY AT(5,18):100-T :
: X=INT(26*RND+65):: CALL SP
RITE(#%#1,X,2,96,120):: FOR D=
1 TOT :: CALL KEY(3,K,ST)::
ON (K=X)+2 GOTO 120,130

120 T=T-1 :: GOTO 110

130 NEXT D :: T=T+1 :: GOTO

110

TIPS FROM THE TIGERCUB
#34
Copyright 1986

Steven Shouse of TIRUG
sent this improvement to the
GRAPHPAGE in Tips #33 -

100 OPEN #1:"DSK1.GRAPHPAGE"
,OUTPUT :: PRINT #1:TAB(4);R
PT$("_",75):: FOR J=57 TO 1
STEP -1 :: J$=STR$J)

100 CALL CLEAR

110 REM - SONG OF SAMARKAND
programmed by Jim Peterson -
Version 3

120 RANDOMIZE

130 CALL CHAR(94,"00"™)

140 CALL CHAR(S5,"00™)

150 CALL SCREEN(11)

160 PRINT "From the Third Mo
vement of":"":" THE NEVER
~ENDING SONG™:"":" b
y Emir Abdul Aziz":"":".....

"

ces s s s s ecsse sty

1470 PRINT : : ¢ : : ¢t & 1 3

. s 2 3 =
HEEE I A

180 FOR J=1 TO 23

190 CALL HCHAR(12,5+J,ASC(SE
G$ ("~THE~SONG"OF “SAMARKAND"~ "
LI, 1000

200 NEXT J

210 CALL HCHAR(11,6,94,23)
220 CALL HCHAR(13,6,94,23)
230 M$="187EFF42668124C3DB66
5A18423C5AA542817E995A001800
24BDBD3C667E66668100243C0042
187ESAAS3CC3427E3C81817ESAE7
669924187E429924008181DBC3"
240 DIM N(30),5(21)

250 F=220

260 FOR J=0 TO 36

270 X=X+1+(X=12)#12

280 IF (X=2)+(X=5)+(X=7)+(X=
10)+(X=12)THEN 310

290 Y=Y+1

300 N(Y)=INT(Fx*i.059463094"J
)

310 NEXT J

320 CALL HCHAR(1,1,32,320)
330 CALL VCHAR(1,31,95,96)
340 CALL HCHAR(24,1,95,64)
350 CvV=2

360 K=8

370 K=K-INT(5#RND+1)+INT(5%R
ND+1)+(K>21)#2-(K<1) %2

380 IF (K<1)+(K>21)THEN 370
390 CALL SOUND(-999,N(K),0,N
(K)*CV,0,N(K)*3.75,30,-4,5)
400 X=1NT(40%RND)

410 'IF X>12 THEN 370

420 ON X+1 GOTO 430,490,540,
580, 660, 730, 770, 850,870,970,
990, 1040, 1060

430 IF INT(4%RND)<3 THEN 390
440 FOR T=K TO 20

450 CALL SOUND(-999,N(T),0)
460 NEXT T

480 GOTO 390

490 FOR T=K TO 1 STEP -1

500 CALL SOUND(-998,N(T),0)
510 NEXT T

820 K=T+1

530 GOTO 390

540 FOR T=K TD 1 STEP -1i

550 CALL SOUND(-998, 30000, 30
» 30000, 30,N(T) *3.75,30, -4,0)

560 NEXT T

570 GOTO 370

580 FOR TT=K TO K-INT(S5*RND+
1)STEP -1

590 IF TT<2 THEN 370

600 FOR T=1 TO INT(7#*RND+3)

610 CALL. SOUND(-999,N(TT),0,

N(TT)*2,0)

620 CALL SOUND(-998,N(TT)x1.

03,0,N(TT)*%2.06,0)

630 NEXT T

640 NEXT TT

650 GOTO 370

660 FOR T=K TO K-INT(3%*RND+3
)STEP -1

670 IF T<2 THEN 370

680 FOR D=0 TO 15 STEP 2

690 CALL SOUND(-999,N(T)*2,D
L,N(T)*3,D,N(T)*3.75,30, -4, 0)

700 NEXT D

710 NEXT T

720 GOTO 370

730 FOR X=1 TO 15

740 CALL SOUND(-999,N(X),0,N
(16-X>,0,N(1),30,~4,5)

750 NEXT X

760 GOTO 370

770 FOR T=K TO K-INT(4%RND+1
)STEP -1

780 IF T<2 THEN 370

790 CALL SOUND(100,N(T),0,N(

T)*2,0,N(T)*3.75,30,-4,5)

800 FOR TT=N(T)TO N(T-1)STEP
-10

810 CALL SOUND(-999,TT,0,TT*

2,0, TT*3.75,30,-4,5)

820 NEXT TT

830 NEXT T

840 GOTO 370

850 CALL CHAR(32,SEGS$(M$, INT
(57%RND+1)%2-1,16))

860 GOTO 370

870 IF INT(4%RND)><3 THEN 390

880 CALL SOUND(-3000,N(K),0,

N(K)*2,0,N(K)*3.75,30,-4,0)

890 FOR J=1 TO INT(5*RND+5)

900 S(J)=INT(21*RND+1)

910 NEXT J

920 CALL SOUND(-1, 30000, 30)

930 FOR T=1 TO J-1

940 CALL SOUND(-999,N(S(T)),

O,N(S(T))/1.68,0,N(S(T))*3,7

5,30,-4,0)

950 NEXT T

960 GOTO 370

970 CALL CHAR(95,SEGS$(M$, INT
(57%RND+1)%2-1,16))

980 GOTO 370

990 IF INT(4*RND)<3 THEN 390
1000 FOR J=220 TO 660 STEP 2

59

60

(o]

1010 CALL SOUND(-999,J,0,880
-J,0,N(12)%3.75,30,-4,0)
1020 NEXT J

1030 GOTO 370

1040 CALL CHAR(32,"0"™)

1050 GOTO 390

1060 CV=CV+(CV=2)/2-(CV=1.5)
*.5

1070 GOTO 370

For those of us who are

still struggling along with
one disk drive, this routine
will transfer any number of
D/Vv80 files, totalling up to
about 42 sectors, from one
disk to another in one pass,
and will optionally save

under changed names.

100 DIM M$(2000),F$(25),Cs$(2

5):: CALL CLEAR T$=CHR$ (1
)

110 DISPLAY AT(8,6):"TIGERCU
B FILEMOVER" DISPLAY AT(1

5,1):"PRESS ENTER WHEN FINIS
HED"

120 F=F+1 :: 1F F>25 THEN 13

O :: DISPLAY AT(12,1):"FILEN

AME? DSK"&T$:: ACCEPT AT(12
,14)SI1ZE(-12)BEEP:F$(F):: IF
F$(F)<>T$ THEN 120

130 F=F-1 :: FOR J=1 TO F ::
ON ERROR 260 :: OPEN #1:"DS
K"&F$(J), INPUT :: DISPLAY AT
(12, 1) :"READING "&SEG$(F$(J)
y3,255)

140 X=X+1 :: LINPUT #1:M$(X)
st C=C+LEN(M$(X))

150 IF C>10000 THEN DISPLAY
AT (20, 1) :"INSUFFICIENT MEMOR
Y FOR "&SEG$(F$(J),3,255)::

GOTO 190

160 1IF EOF(1)<>1 THEN 140
170 X=X+1 :: M$(X)=T$:: CLO
SE #1

180 W=W+1 :: NEXT J

190 X=0 DISPLAY AT(15,1):
"® :: DISPLAY AT(12,1):"INSE

RT COPY DISK AND PRESS":"ENT
ER"
200 CALL KEY(0,K,ST):: IF ST

=0 THEN 200 DISPLAY AT(13
yly:m»
210 FOR J=1 TO W :: IF F$(J)

=CHR$(2)THEN 230

220 DISPLAY AT(12,1):"FILENA
ME? DSK"&F%(J)>:: ACCEPT AT(1
2,14)S1ZE(-12)BEEP:C$(J)230
NEXT J :: FOR J=1 TO W :: IF

F$(J)=CHR$(2)THEN 250 :: OP
EN #1:"DSK"&C$(J),0QUTPUT ::
DISPLAY AT(12,1):"SAVING "&S
EG$(C$(J), 3, 255)

240 X=X+1 :: IF M$(X)<>T$ TH
EN PRINT #1:M$(X):: GOTO 240

ELSE CLOSE #1
250 NEXT J :: END
260 ON ERROR STOP :: DISPLAY

AT(22,1):"CANNOT OPEN "&SEG
$(F$(J),3,255):: F$(J)=CHR$(
2):: RETURN 180

Here is a very ingenious
idea published in the Corpus
Christi UG newsletter by H.
Macdonald. He could not find
the author/newsletter which
gave him the idea, so if you
know, tell me and 1’11 print
due credit.

1 have modified it a bit.
This short routine will load
guickly and enable you to
bypass loading and running
the Menu Loader program on a
disk when you already know
the filename of the program
you want to run.

Save the Menu Loader under
the filename MENULOADER and
save this routine under the
filename LOAD - be sure to
save it before you try it,
because it erases itself!
100 CALL INIT CALL LOAD(-
31806,16):: DISPLAY AT(12,1)
ERASE ALL:"RUN MENULOADER? (
Y/N)™
110 CALL KEY(3,K,S):: IF S=0

THEN 110 ELSE IF K=78 THEN
130 ELSE DISPLAY AT(12,1)ERA
SE ALL:"LOADING MENULOADER"
:: RUN "DSK1.MENULOADER"™
130 CALL CLEAR :: CALL LOAD(
-31952,55,215,55,215):: END

Here is one with a bit of
a surprise at the end. Key
the v,A in line 190 as FCTN
V, CTRL comma, CTRL A.
100 CALL CLEAR CALL SCREE
N(16)
110 DATA 80C0A09088445269, 00
00000000007EB1, 0103050911224
A86, 0000000101010100,21409C2
A492A1CC0,9998336600001824
120 DATA 8482395482543903,00
00000000808080, EOBOSBB0OE7702
010, 18244281423C0000,0F18030

7E1020408, 000000FF80808080
130 DATA O0Q0F13E620221D00, 0C
FB34670A22DC00, B14224FF, 30DF
2CC641443B00, OOFOC86F0447B87
F, 000000FFO1F901F9

140 DATA BOFF808686808686, 00
FF006666006666, OOFFOO3F3F3F3
F3F,01FFO1FOF9FOF9F9, 8086868
086868093, 00666600666600FF
150 DATA 00666600666600E6, 3F
3F3F3F3F3F3F3F, FOF9F9F9F9FOF
9FS, 00000000EO1C3AE2, 9380FF,
FFOOFF, E6O0OFF00070B0807

160 DATA 3FOOFFOOFF1988FF,Fg
O1FFOOFF8744FF, 1FOS090FF3198
AFC

170 FOR CH=86 TO 129 :: READ
CHs$:: CALL CHAR(CH,CH$)::
NEXT CH

180 DISPLAY AT(1,14)ERASE AL

L:"*ab™ :: DISPLAY AT(2,13):
"cdefg" :: DISPLAY AT(3,14):
"hij" :: DISPLAY AT(4,12):"k
Imnopg"”

190 DISPLAY AT(5,12):"rsssst
u" :: DISPLAY AT(6,12):"vwww
xyza™ :: DISPLAY AT(7,12):"g
434°v,A" :: DISPLAY AT(9,12)
:"TIGERCUB"

200 DISPLAY AT(11,12):"SOFTW
ARE" :: DISPLAY AT(13,7):"15
6 COLLINGWOOD AVE." :: DISPL
AY AT(15,7):" COLUMBUS GOH 43
213" :: CALL HIGHCHAR

210 GOTO 210

220 SUB HIGHCHAR :: FOR CH=3
2 TO 129 :: CALL CHARPAT(CH,
CH$):: X$=SEG$(CHS$, 3, 12)&SEG
$(CH$,13,4):: CALL CHAR(CH,X
$):: NEXT CH :: SUBEND

Thanks to Ramon Martinez
in the Orange County UG news
letter - a double NEXT is
accepted if the pre-scan is
turned off.

100 J=1

110 !@P-

120 FOR J=1 TO 100 :: IF J/1
O<>INT(J/10)THEN NEXT J ELSE
PRINT J :: NEXT J

A computer without a pro-
gram is like a car without
gas. If everyone who filled
up at a self-service pump
drove away without paying,
how soon would all the gas
stations be closed?

MEMORY FULL!

Jim Peterson
TIPS FROM THE TIGERCUB

No. 69

Tigercub Software

156 Collingwood Ave.

Columbus, OH 43213
HRNNMNNNN

My three Nuts & Bolts
disks, each containing 100
or more subprograms, have
been reduced to $5.00 each.
[am out of printed documen-
tation so it will ©be sup-
plied on disk.

My TI-PD library now has
almost 600 disks of fair-
ware (by author’s permission
only) and public domain, all
arranged by category and as
full as possible, provided
with loaders by full program
name rather than filename,
Basic programs converted to
XBasic, etc. The price is
just $1.50 per disk(!), post
paid if at least eight are
ordered. TI-PD catalog #5
and the latest supplement is
available for $1 which is
deductible from the first
order.

In Tips #68 | published my
solution to Dr. Ecker’s
chal lenge to alternately
assign X the value of A and
B without using IF...THEN or
any outside heip. Computer
Monthly has arrived again
and his solution is better
than mine. Try it with any
two numbers -

100 A=2.765 :: B=-10
110 X=A+B-X :: PRINT X :: GO
TO 110

There has been controversy
for years as to whether the
TI's psuedorandon number
generator 1is truly random.
Dr. Ecker’s "Computer Fun &
Learning™ column in Computer
Monthly had a question - if
you randomly generate num-

bers between O and 9, how 61

62

often will you get the same
number twice in succession?
Three times in succession?
And etc. Since there are 10
numbers to choose from, it
seems to me you would get 2
in a row 10% of the time, 3
in a row 1% of the time, 4
in a row .1%...etc. | wrote
this to prove it -

100 RANDOMIZE

110 C=C+1 :: X=INT(RND*10)::
PRINT X;:: IF X=F THEN FL=F
L+1 :: CL(FL)=CL(FL)>+1 :: PR

INT "":FL;"=";CL(FL):"C=";C:
"%=";CL(FL)/C :: GOTO 110 EL
SE FL=0 :: F=X :: GOTO 110

After 10,000 tries, 1 had
2 in a row 8.75% of the time
and 3 in. a row .83% and 4 in
a row .07% . Does that prove
anything? | don’t know.

(Dr. Ecker points out that
those percentages could not
ever quite add up to 100%!)

Here is another of my
XBasic programs to write
assembly source code -

100 DISPLAY AT(2,1)ERASE ALL
:"ASSEMBLY HELP SCREEN WRITE
R":"":" This program will wr
ite the":"source code for an
assembly":"routine which ca
n be linked"
110 DISPLAY AT(7,1):"from Ex
tended Basic to dis-":"play
any one of several help":"sc
reens at any designated”:™ke
y press or input at any":"po
int in a program.”
120 DISPLAY AT(12,1):" The o
riginal source code,":"autho
r unknown, was improved":"by
Kar! Romstedt and further™:
"modified by Bruce Harrison.
"
130 DISPLAY AT(20,1):"How ma
ny help screens?™ :: ACCEPT
AT(20,24)S1ZE(1)VALIDATE(DIG
IT)BEEP:N

140 FOR J=1 TO N :: H$=HS$&"H
ELP"&STR$(J)&"," :: NEXT J :
: Hs=" DEF "&SEGS (HS$,

1,LEN(H$)-1)

150 DATA VMBW EQU >2024,V

MBR EQU >202C,KSCAN EQU
>201C, STATUS EQU >837C

160 OPEN #1:"DSK1.HELP/S",0U
TPUT :: PRINT #1:H$:: FOR J
=1 TO 4 :: READ M$:: PRINT
#1:M$:: NEXT J
170 FOR J=1 TO N :: H$="HELP
"&STR$(J):: PRINT #1:Hs$&" L
WPI WS":" L1 R13, HEL
PS"&STR$ (J)
180 IF J<KN THEN PRINT #1:"
JMP SAVSCR"
190 NEXT J :: H$=RPT$(" ",7)
200 PRINT #1:"SAVSCR CLR RO
":Hs$&"L1 R1,SAVIT" :H$&"LI
R2, 768" : H$&"BLWP @VMBR":H$
&"L1 R9,NEWSCR":H$&"MOV R
9,R1™:H$&"MOV R2,R4"
210 PRINT #1:Hs$&"LI R3, >60
00" :"ADDOFF MOVE *R13+,%RO"™:
H$&"AB R3, #*R9+":H$&"DEC R
4" :H$&"JIJNE ,ADDOFF":H$&"BLWP
@VMBW"
220 PRINT #1:"KEYLGO BLWP @K
SCAN" : H$&"BLWP ©@KSCAN":H$&"C
B @ANYKEY, @STATUS™ :H$&"JNE
KEYLOO"
230 PRINT #1:"REPL L1 R1
,SAVIT" :H$&"BLWP @VMBW":"RET

N LWPlI >B3EO"™:Hs&"B e>6
A"
240 PRINT #1:"WS BSs 32

":"SAVIT BSS 768":"NEWSCR
BSS 768" :"ANYKEY BYTE >20":
H$&"EVEN" -
250 DISPLAY AT(3,1)ERASE ALL
:" Enter data just as you":"
want it to appear, in 24":"1
ines. Press Enter for blank"
t"lines."
260 FOR J=1 TO N :: DISPLAY
AT(12,1):"Ready for screen #
"4STR$(J):"":"Press any key"
270 CALL KEY(0,K,S):: IF S=0
THEN 270 ELSE CALL CLEAR
280 ACCEPT AT(1,0):M$:: PRI
NT #1:"HELPS"&STR$(J)&" TEXT
* "LM$&RPTS (" ",30~LEN(MS))
an ' n
290 FOR K=2 TO 24 :: ACCEPT
AT(K,0):M$:: PRINT #1:HS$&"T
EXT ’> "&MS$&RPT$(" ",30-LEN(M
$)H&" "
300 NEXT K :: NEXT J :: PRIN
T #1:HS&"END"
310 DISPLAY AT(3,1)ERASE ALL
:" Source code has been writ
-":"ten to DSK1 as HELP/S. T
o":"assemble, insert Editor/
?:"Assembler module.”
320 DISPLAY AT(7,1):"Insert
Assembler disk in drive 1

.n:"Seject 2 ASSEMBLER":"Loa
d Assembler? Y":"Source file
name DSK2.HELP/S"

330 DISPLAY AT(12,1):"0Object
file name? DSK2.HELP/0":"Li
st file name? Press Enter™:"
options? R"

340 DISPLAY AT(15,1):"Load t
he resulting object":"file i
nto your program by":"CALL 1
NIT ::":"CALL LOAD(""DSKi.HE

LP/O"") or,"

350 DISPLAY AT(19,1):"much b

etter, imbed it with":"ALSAV

E or SYSTEX."

360 DISPLAY AT(21,1):"Access
the screens in your progra

m by":" CALL LINK(""HELPi"™")
":"CALL LINK(""HELP2""), etc
”n

370 CALL KEY(0,K,S):: IF S=0
THEN 370 ELSE CALL CLEAR

For instance, at any point
in a program where keyboard
input is required and user
may not know what to do -
ACCEPT AT(24,1):M$:: IF Ms$=
"HELP"™ THEN CALL LINK("HELP1
") and the first help screen
will pop up to give instruc-
tions. Press any key and the
previous screen reappears.

This time | am borrowing
heavily from the TI*MES news
letter of England, which has
also borrowed from the REC
newsletter.

This one 1is useless, but
is a remarkable example of
compact complex programming.
It shows that there is an
algorithm for everything.
See if you can figure out
how it works -

100 CALL CLEAR :: FOR A=1 TO
2 :: FOR B=1 TO 4 :: X=2-AB
S(SGN(B-3)):: FOR C=1 TO X :
PRINT CHR$(B4-7%A+5%B-8%X)
$t NEXT C :: NEXT B :: PRIN

T CHR$(A+31):: NEXT A

Another wuseless one that
is easier to figure out -

190 DISPLAY AT(1,1)ERASE ALL
:"NUMBER OF HDNTH(i 12"
110 ACCEPT AT(2,12)SI1ZE(2)VA

LIDATE(DIGIT):A :: IF A<1 OR
A>12 THEN 110

120 DISPLAY AT(3,1):A;"x 4="

sA%4 :: A=A%4

130 DISPLAY AT(4,1):A;"+13="

sA+13 :: A=A+13

140 DISPLAY AT(5,1):A;"x 25=

";A%25 :: A=Ax%25

150 DISPLAY AT(6,1):A;"-200=
sA-200 :: A=A-200

180 DISPLAY AT(8,1):"Input d

ate (1-31):" :: ACCEPT AT(8,

19)SIZE(2)VALIDATE(DIGIT):B

:: IF B<1 OR B>31 THEN 160

170 DISPLAY AT(10,1):A;"+";B

s"=";A+B :: A=A+B

180 DISPLAY AT(141,1):A;"x 2=

"sAR2 1 A=Ax2

190 DISPLAY AT(12,1):A;"-40=

"sA-40 :: A=A-40

200 DISPLAY AT(13,1):A;"x 50

=";A%50 :: A=A*50

210 DISPLAY AT(15,1):"Input

last two digits of year e

g 91:"

220 ACCEPT AT(16,16)S1ZE(2)V

ALIDATE(DIGIT):B

230 DISPLAY AT(18,1):A;"+";B

;"="3A+B :: A=A+B-

240 DISPLAY AT(19,1):A;"-105

00=";A-10500 :: A=A-10500

250 DISPLAY AT(24,1):"ANY KE

Y FOR ANOTHER"

260 CALL KEY(5,A,B)

270 IF B<i THEN 260

280 RUN

290 END

One for the little ones -
change the string to any-
thing you want.

1 REM SILLY PROG BY S SHAW
MARCH 1991
2 ! did you see COMPUTER WAR
S-the film? 1t is said that
the star, who was required t
o type fast into a computer
3 ! could not type, so a pro
gram just like this one was
used to give a good effect!
4 ! now adjust it how you wi
sh and show your friends how
fast you can type
5 ! at end of text string pr
ogram will just stop with th
is listing but can be modifi
ed to do anything you wish!
6 !
100 A$="This is how a non-ty

63

A

pist canproduce information

on screen quickly,witho

ut "

110 A$=As$&"having to look at
what keys are being bashed!
Just bash keys and watch ho

w perfect text appears nom

atter what you press."

120 CALL CLEAR :: PRINT AsS:

s s s s e
LI

130 CALL KEY(5,A,B):: IF B<1
THEN 130

140 C=C+1 :: PRINT SEGS$(AS,C
»1)3:: IF C=LEN(A$)THEN 160
150 'GOTO 130

160 GOTO 160

And a very fast routine to
find prime numbers -

100 ! FIRST 100 PRIMES
-QUICKLY~

110 ! Dr H B Phillps

from THE REC NEWSLETTER
March 1988 Vol 3 #2
120 DIM P(300),X(12)
130 A=0 :: B=1 :: D=0.5 :: E
=180 .
140 M=100 :: L=3 :: F=0
150 ! increase M for more- a
lso increase DIMs.
160 PRINT 2;:: C=B :: IF M=B
THEN END

170 L=INT((M/C)*L+F):: N=L+L

+B

180 FOR 1=B TO INT((SQR(N)-B
y%D):: PP=P(1)

190 IF PP=B THEN 230

200 IF PP=A THEN PP=1+I1+B ::
PRINT PP::: P(I)=PP :: C=C+
B :: IF C=M THEN END

210 IF X(1)=A THEN X(1)=(PPx

PP-B)*D

220 FOR J=X(I)TO L STEP PP :
: P(J)=B :: NEXT J :: X(l1)=J
230 NEXT. 1 :: IF F=0 THEN S=
1

240 FOR 1=S TO L

250 IF P(I)=A THEN PP=1+1+B
::2 PRINT PP;:: P(])=PP :: C=

C+B :: IF C=M THEN END

260 NEXT I :: F=(M-C)*L/E ::
S=L+B

270 GOTO 170

And a demonstration of how
the INTERRUPT routine works
independently of whatever
else the computer is doing -

100 REM interrupt demo

110 REM

120 REM MACHINE LANGUAGE

130 REM ROUTINE LOADED AT
140 REM >2600 XB OR E/A WITH
32K

150 REM >7200 MINI MEM NO 32
K

160 REM

170 CALL INIT

180 XM=9728

190 MM=29184

200 LAD=XM

210 REM TEST XB OR MM?

220 CALL LOAD(XM, 170)

230 CALL PEEK(XM,X)

240 IF X=170 THEN 270

250 REM NO 32K MUST BE MM
260 LAD=MM

270 A=LAD

280 REM LOAD M/C

290 CALL CLEAR

300 FOR D=540 TO 630 STEP 10
310 CHECK=0

320 FOR N=1 TO 10

330 READ X

340 CALL LOAD(A,X)

350 CHECK=CHECK+X

360 A=A+1

370 NEXT N

380 READ X

390 IF CHECK<>X THEN 480

400 NEXT D

410 REM POKE INTERRUPT

420 REM ROUTINE ADDRESS

430 REM INTO »83C4

440 CALL LOAD(-31804,LAD/256
)

450 REM JUST IDLE AWAY TIME
460 FOR N=1 TO 9940

470 NEXT N

480 STOP

490 PRINT "ERROR IN DATA STA
TEMENT ";D

500 STOP

510 REM EACH DATA STATEMENT
520 REM HAS 10 DATA BYTES
530 REM PLUS A CHECK SUM

540 DATA 192,236, 000,082,004
,194,005,131,002,131,987

5§50 DATA 000,060,026, 003,004
, 195,006, 236, 000, 094,624

560 DATA 203,003, 000,092,060
,172,000, 090, 006, 002,628

570 DATA 017,015,019,010,006
,002,019, 004,002, 000,94

580 DATA 002,039,010,083,016
, 002, 002, 000, 002, 086, 242

590 DATA 096, 003,016,007, 002
, 000, 000, 119,010, 083, 336

600 DATA 016, 002,002,000, 000
,072.160,003,002,096.353

610 DATA 064,000,006,192,215
,192,006,192,215,192, 1274
620 DATA 016,000,216, 044,000
, 084, 140,000,004, 091, 605

630 DATA 000,015,000,000,138
, 128, 000, 000, 000, 000, 281

640 END

Run that, then press FCTN
4. Enter LIST. Enter NEW. To
stop it, enter BYE.

This is an oldie, but well
worth repeating. You can use
it to turn your cassette re-
corder on and off, to add
speech or music from tape to
a running program. With the
proper hardware, you could
write a program to control
almost anything from the
cassette port. If it doesn't
work, reverse the polarity
of the remote. Ed Hall wrote
this -

100 CALL INIT

110 CALL LOAD(16368,79,70,70
,32,32,32,36,252)

120 CALL LOAD(16376,79,78,32

,32,32,32,36,244)

130 CALL LOAD(8194,37,4,63,2
40)

140 CALL LOAD(9460,2,12,0,45
,29,0,4,91,2,12,0,45,30,0,4,
91,203, 78)

150 PRINT “PRESS":" P Play":
"5 Stop"

160 CALL KEY(3,A,B)

170 IF B<1 THEN 160

180 ON POS("PS",CHR$(A),1)+1
GOTO 180,180,200

190 CALL LINK("ON"):: GOTO 1
60

200 CALL LINK("OFF"):: GOTO
160

And that is just about -
MEMORY FULL!

Jim Peterson
sjs- tips 69 repeats
material from earlier TIx*MES
but is unedited to benefit
readers who are new to us or
who missed this items first
time round. Other readers-
please bear with us! Ta. sjs

it B R e —————

———————————————

AN OLD NUMBER PUZZLE.

Older members may recall the following number puzzle bobbing
up at intervals, from the late fifties for about twenty years, in
magazines and coffee-break chat. The solution was actually printed
in 1969 but where most of us were unlikely to see it. I worked at
the puzzle, on and off, for fifteen years and learned a lot of

mathematics in the process.

If I had owned a micro at the time, no

doubt my programming skills would have received a boost as well.

In the hope of similarly benefitting others to whom the

puzzle will be new, I give it here:

1 3 8 120

Observe that the product of any pair of these numbers is one
less than a perfect square. Can you find a number (or numbers) to
continue the sequence and maintain the same property? I warn you:

the problem is difficult.

If the Editor agrees, I will report the solution in the next

TI*MES and add some related material.

Walter Allum

65

ASSEMBLY - BRUCE HARRISON - PART 3

The Art of Assembly - Part 3
Starting at the Top

By Bruce Harrison
Copyright 1991, Harrison Software

In Part 2 of this series, we discussed and showed some small "primitive®
subroutines and the methods for nesting thea. In this article, we are going
back to the "Top Down® part of writing Assesbly programs. MNe will use for
our example the Harrison Golf Score Analyzer, since its developaent went
pretty much along the lines we're trying to encourage.

One of the first decisions you should make is how the user will interact
with your progras. In many games, for exasple, the principal means of
interaction is the joystick. In a progras like a Golf Score Analyzer,
however, that would be a very poor interface for user input. Our preference
is for simple menu interaction at the top level, so each main function of the
program is readily apparent to the user, and selection of a function is just
one keystroke away. In today's world of *Graphical User Interface* (GUI),
where functions are represented by pictures, not words, this makes us very
old-fashioned, but we do have a reason for being that way. 6UIs normally
require a souse to select options, and one can’t count on every custoser
having a mouse. Further, a mouse can’'t be used to input names, numbers, and
other data, so with or without a mouse one still needs the keyboard. Our
choice has been to require only the keyboard, and that makes *plain English”
senus the natural choice for selecting functions.

Given that, we must make a decision as to what functions belong on the
main senu. In the Golf Score Analyzer, we settled on eight functions for the
Main Menu, and made each require only a single keystroke to select. The
eight look like this:

ADD ROUNDS

LOAD FILE

DELETE DATA
ANALYZE DATA
SAVE FILE
ADD/EDIT COURSES
REVIEW COURSES
EXIT PROGRAM

BN U DUAN-

It's important to always include an exit selection, so the user can
easily get out of your progras when he wants to. It’'s equally important to
sake it difficult or impossible to get out of the progras by accident. 1In
this program, selecting item B from the Main Menu is the only way to get out.
We made Funtion-Quit inactive in this program. As an aside, when users are
looking at subsidiary senus, Function-9 (BACK) will get back to the previous
menu, but that will not get them out of the program.

In this particular program, we had a special reason for making one and
only one exit point. Mhen the user selects -ites 8, we perfora a check to see
whether the user has mcdified the file currently in memory. [f he’'s not made
any changes to the file, or if he's saved it since making changes, we siaply
return him to either XB or E/A, depending on how he entered the program. If
changes have been made, we produce a prompt asking whether he'd like to save
the changed file before exiting. Any answer other than N or n is taken as
Yes, and he's placed in the SAVE FILE function. We take these precautions as
part of our concept of “User Friendliness".

66

Perhaps we could illustrate the concept of User Friendliness by an
example drawn from experience. In many instances on the TI, one will
encounter an error in execution of sose progras. Let’'s say we're working in
XB or E/A, and try to get a nonexistent file to open for INPUT. What the TI
folks will give you is a nusbered "ERROR CODE™, which you'll have to look up
in a book. When we write our own programs, we like to provide a sore
definitive error indication, like "THAT FILE DOES NOT EXIST ON DRIVE x" or
THERE IS NO DISK IN DRIVE x. This way the user has a very definite idea of
what‘'s wrong. Doing this of course eats sesory, since those error sessages
have to be stored somewhere in the computer and printed to the screen, but we
think that's a worthwhile use of semory.

But we digress. Once one has decided upon a menu, the top part of the
flow chart is readily apparent. There will need to be an opening section of
code that sets up such things as screen mode, color scheme, and such, then
displays our copyright notice. MNext is a delay loop so the user can read the
copyright notice, and then we clear the screen and produce the main menu.
Here we had to sake a decision. Since we knew there would be more than one
menu, we could have each menu produced by a separate section of code, or we
could provide a "Menu Driver" section of code that would produce all the
required menus simply by using different data with the same code. We chose
the latter, and believe that was a wise decision, because we used less meaory
to do it this way. Our Mord Processor, which we use to prepare these
articles, also has a central menu driver, but the one in the Golf Score
Analyzer is better, taking lessons learned from the WP program into account.

Each menu we use has a section of data associated with it, which includes
the title for the top of that menu, the selections, and a “branching” lookup
table, which indicates where the progras will go to when it exits that menu.
The legend *SELECT BY NUMBER" goes at the bottom of each aenu, so the aenu
driver itself places that legend on each senu it displays. In our Golf Score
Analyzer, by the way, we separated the code from the data into sections of
memory. That is, all the executable instructions are together in a block of
memory, then all the data, including text for messages and menus, is in its
own block of memory. This makes a somewhat neater arrangement for the
prograaser, in that separate source files contain the data, and it becomes a
bit easier to keep track of what one is doing while developing the prograa.
It also makes it easier when one comes back six months later to change
something in the progras.

Actually, there's no reason you can’'t scatter data all over the place,
between sections of the executable code, but our thinking on the subject has
been colored by the fact that we also progras in PC Asseably language, where
different memory segments are {and must be) allocated for code and data.
This becomes a habit that carries over to the TI.

There we are digressing again. Just for the heck of it, let’'s look at
some of the source code. In the sidebar is the annotated source code
associated with the menu driver for the Golf Score Analyzer. The first two
executable lines are the required setup before branching to the driver.

These lines set R9 to point to the data for:the menu itself, and Ri3 to point
to the lookup table for branching out of the Main Menu.

In the Driver itself (MENDRV), the first order of business is to clear
the screen. The CLS subroutine is similar to the one shown in our last
article, except that, since BSA was written to operate froa Extended Basic,
it adds an offset of >60 tc the spaces it writes into SCRLI. As an ironic
sidelight, we later added a loader so that 6SA could be run fros E/A, and in
that loader we had to, among other things, re-arrange the tables in VDP so it
would need the character offset.

67

Before delving further into the code, let's look at the structure of the
data for the menu, at label MENDAT. It starts with a byte giving the length
of the title for the menu. Next is the text of the title, then two bytes.
The first of these is the number of items in this menu (8), and the second is
the length of the first item description (13). After this is the text for
the first item, followed by the strings for the rest of the items (a length
byte, then text content). By organizing the data this way, we can make a
loop in the menu driver that minimizes the memory used for the driver’s code.

The business of getting the menu on-screen now proceeds by taking the
length of the title line and manipulating that to position RO so the title
appears centered on Row 2 of the screen.. The subroutine DISLI could also be
called DISSTR, since what it does is take a string pointed to by RY and
display it at the screen location pointed to by RO. Another irony here is
that, had we done this in E/A only, we could have used Rl as the pointer to
the string, then DISLI would reduce to:

DISLI MOVE *Ri+,R2 Get length byte intoc R2

SRL R2,8 Right justify R2

BLWF @VMBW Write characters to screen
A R2,R1 Advance R1 beyond text

RT Return

But we didn't do that, because we wanted 6SA to be available to those who
don‘t have the E/A module, but only the XB module. Thus we're stuck with
that offset; even when the user enters the programs from E/A. Live and Learn!’

Another small note before we examine the rest of the source code. There
is no such thing as a perfect progras. As your author looks at his own
sidebar, he can see several places where it could be improved. For example,
the line just before label LOP! in the CLS subroutine could be eliminated if
the line at LOP1 said MOVB @SPACE,*Ré+. Our good friend Jim Peterson
(TIGERCUB), calls this kind of thinking Elegant Programsing, where the
programmer not only wants it to work, but wants it to be fully optimized in
all respects. Maybe our next program will be better, but we‘'re not going to
re-assemble 65A just for that one small possible change.

Dkay, so after the title is on the screen, we have a section of code that
picks up the byte just after the title text, transfers that to R8, right
justifies it, then stashes it at NDITEM. As it happens, the main menu has
eight items, which is the aost of any msenu used in the program. The next
section of code does some math with RO and RB to position the bulk of the
menu vertically centered between the top and bottom of the screen. At label
MEN1, we enter a loop which prints all the selections on the menu. Each call
to DISLI leaves R? pointed at the length byte for the next item, so the loop
can proceed very quickly and efficiently.

Once all the items have been displayed (after JNE MEN!) there’s another
of our little tricks. We want the legend to appear at row 23, colusn 9. To
do that, we let the assembler do the math for us. The assembler sultiplies
22 by the width of the screen (this would place us at row 23, colusn 1), then
adds eight to that number. The result is an immediate value placed in RO
which puts RO just where we wanted it. This trick can be used in many ways,
but here we've used it for positioning on the screen. One takes the number
of the desired row, subtracts one, then tells the asseabler to multiply by
SCRWID, and then to add one less than the desired column. In addition to
saving us some math, this also saves some time in progras execution, because
the math is performed during the assembly, and all the computer has to do at
running time is load that one value into RO.

68

Now, once the legend is on the screen, all we need do is wait for the
user to press a key. KEYLOO is the subroutine that does this for us, (see
Part 2 for that subroutine) and in addition places the ASCII value of the
struck key in R8. 6Given a keystroke, the menu driver checks it against the
value 13. Fifteen happens to be the ASCII value for Function-9. In any of
the menus in this program, striking Function-9 makes a branching to the last
label in the lookup table for that menu. In the case of this main aenu, that
simply takes us back to KYIN for another keystroke. In other amenus, that
last label in the lookup table takes us back to a previous menu.

Having found some key value other than 15, the progras sust now make sure
that the key struck in within the correct range for this menu. In this case
that’'s 1 through 8. We move the keystroke to R5, subtract >30 so the number
in RS will be 1 through 8, not >31 through >38. Now we check for a result
zero or less than zero. If either happens, the key struck was out of range,
so we ignore it and jump back to label KYIN. Finally, we compare RS to the
data at NOITEM, which in this case contains B. If it’'s greater than that, we
again ignore the keystroke. MWhile this senu is on-screen, hitting any key
other than the nuabers 1 through 8 will have no effect whatsoever.

Iamediately after the operation J6T KYIN, we know that the nuamber in RS
is a number in the range | through 8, so we can proceed to branch out froa
the menu. First we must DEC RO, so that the range is actually 0 through 7.
(1f Function-9 had been struck, we'd jusp to label ACC2 with 8 in R5.) Now,
since we're going to index a table of words, not bytes, we must double the
number in R5. The easiest way to double a simple integer like this is to
Shift it left by one bit, and that's what we do at label ACC2. Now the
number in R3S has a range of 0 through 14 (by twos), or 16 if Function-9 has
been pressed.

RS now has the index value for the seaber of the lookup table we want.
We add R13, which contains the address of the start of the lookup table. The
next operation, MOV *R5,R5, takes the number at that address in the lookup
table and places it in RS, Finally, we branch to the address contained in
RS, and that takes us into the selected function. In effect, we have
performed an ON-60TD function based on the key struck.

In this article we looked at some overall principles for Top-Down progras
design, then we presented one alternative for user interaction through a Menu
Selection, and showed the source code for a reasonably effective menu driver.
There are many other ways to implement a menu system, and we can be sure that
some of our readers will come up with better ones than ours. OQOur purpose in
these articles is mainly to teach principles of using Assembly, so the reader
can use his own creativity in this language.

In the next installment, we’ll try to concentrate on ways to make code as
efficient in memory use as possible, with some "wrong way"” and "right way®
examples.

* PORTIONS OF SOURCE CODE FROM GOLF SCORE ANALYZER
* > AS MENTIONED IN OPENING PARAGRAPH ¢

* EQUATE FOR 32 CHARACTER SCREEN

SCRWID EQU 32

®

* SETUP FOR ENTERING MENU DRIVER TO MAKE MAIN MENU
LI R9,MENDAT
LI R13,MAINBR
B @MENDRV

69

70

*

MENU DRIVER- SOURCE CODE STARTS

MENDRY
BL 8CLS
LI RO,SCRWID
NOVB #R9,R1
SRL R1,8
S R1,RO
SRL RO,1
Al RO,SCRWID
+ THE ABOVE SECTION SETS
* IN ROW 2 OF THE SCREEN
BL eDISLI

CLEAR THE SCREEN

SET RO TO SCREEN WIDTH

GET LENBTH OF TITLE IN Rl

RIGHT JUSTIFY LENGTH

SUBTRACT LENGTH FROM SCREEN WIDTH

CUT THAT NUMBER IN HALF

ADD ONE SCREEN WIDTH

RO AT A VALUE WHICH WILL AUTO-CENTER THE TITLE

DISPLAY THAT LINE OF TEXT

DISLI ADVANCES R9, SO IT NOW POINTS TO BYTE BEYOND END OF TITLE'S TEXT

HOVB #R9+,R8

SRL R8,8
MOV RB,ENDITEM
LI RO,8

§ R8,RO

Al RO,4

LI R3,SCRWID
MPY R3,RO

Al R1,8

MOV R1,RO

THE CODE ABOVE SETS RO

GET NUMBER OF ITEMS FOR MENU

RIGHT JUSTIFY IN R8

STASH THE NUMBER OF ITEMS AS DATA

LOAD RO WITH MAXIMUM NUMBER OF ITEMS IN ANY MENU
SUBTRACT THE NUMBER OF ITENMS

ADD FOUR

GET R3 TO EQUAL NUMBER OF CHARACTERS IN SCREEN WIDTH
MULTIPLY BY WIDTH OF SCREEN

ADD 8 FOR COLUMN POSITIONING

PLACE THIS NUMBER IN RO

TO VERTICALLY CENTER THE NUMBER OF ITEMS IN THE MENU

FOR A MORE CONSISTENT SCREEN APPEARANCE.

MEN1 BL @DISLI
Al RO,SCRWID#2
DEC RS
JNE MEN1

DISPLAY A LINE OF THE NENU

MOVE DOWN-SCREEN BY TWD LINES

DECREMENT COUNTER FOR NUMBER OF ITENMS

IF NOT ZERO, JUMP BACK TO DISPLAY NEXT ITEM

LI RO,22%#SCRWID+8 SET RO FOR ROW 23, COLUMN 9

LI R9,SELEC
BL eDISLI

KYIN BL @KEYLOO
€1 R8,15
INE ACCt
NDY 8NOITEM,RS
IMP ACC2

ACCI MOV R8,RS
S @NUMASK,RS
JE@ KYIN
JLT KYIN
t R5,eNCITEM
IS8T KYIN

+ AT THIS POINT, WE KNOW
DEC RS

ACC2 SLA RS,1
A RI3,RS
MOV *RS,RS
B RS

POINT TO STRING FOR "SELECT BY NUMBER"

DISPLAY THAT LEGEND

GET A KEYSTROKE

WAS FUNCTION-9 STRUCK?

IF NOT, JUMP AHEAD

ELSE PUT NUMBER OF ITEMS IN RS

THEN JUMP

PLACE KEYSTROKE IN RS

SUBTRACT >30 S0 RS5=NUMBER

IF RS ZERO, 60 GET ANOTHER KEYSTROKE, IGNORE THIS ONE
IF RS (ZERO, IGNORE

ELSE COMPARE TO NUMBER OF ITEMS

IF GREATER, IGNORE

A NUMBER KEY WITHIN THE CORRECT RANBE HAS BEEN STRUCK
IERD-BASE THE VALUE IN RS

DOUBLE THAT NUMBER, SINCE WE'RE INDEXINE BY WORDS

ADD TO RS THE START OF THE BRANCHING TABLE ’

GET THE ADDRESS OF THE SELECTED CODE SECTION INTQ RS
AND BRANCH TO THAT ADDRESS

END OF MENU DRIVER SOURCE CODE
% SUBROUTINE TO CLEAR SCREEN WITH OFFSET FOR XB

cLS
L1 R4,SCRWID
MOV R4,R2
L1 R&,SCRLI
MOV Ré,R1
NUYB @SPACE,RS

SET R4 TO WIDTH OF SCREEN

MAKE R2 ALSD = WIDTH OF SCREEN
POINT R& AT SCREEN LINE STORAGE
PLACE THAT ADDRESS IN R1 ALSO
PUT A SPACE WITH OFFSET INTO R3S

THE BYTE AT LABEL SPACE IS >20 + >60 FOR XB'S OFFSET

*

LOP1 MOVB RS,*R6+ MOVE ONE SPACE WITH OFFSET, INC Ré

DEC R4 © DECREMENT COUNTER
JNE LOPI IF NOT 1ERO, REPEAT
CLR RO SET RO TO SCREEN ORIGIN
LI R4,24 24 ROWS TO CLEAR
LOPZ BLWP @VNBN WRITE ONE LINE OF SCRWID SPACES
A R2,R0 ADD SCRWID TO RO
DEC R4 DECREMENT ROW COUNT
JNE LOP2 IF NOT ZERD, REPEAT
RT ELSE RETURN

+ SUBROUTINE TO DISPLAY ONE STRING ON THE SCREEN
pIstl LI R10,SCRLI POINT AT OUR BUFFER SCRLI

MOV R10,R1 MAKE R1 POINT AT THAT ADDRESS ALSO

MOVB *R9+,R4 . MOVE THE LENGTH BYTE INTO R4

SRL R4,8 RIGHT JUSTIFY

HOV R4,R2 PLACE THAT NUMBER IN R2 FOR VMBMW

JE@ DISLIX IF THAT LENGTH WAS ZERO, GET OUT OF SUBROUTINE

DIS1 MOVB #R%+,#R10 MOVE ONE BYTE OF CONTENT, INCREMENTING R9
AB @OFFSET,#R10+ ADD THE >60 OFFSET, AND INCREMENT R10

DEC R4 DECREMENT LENGTH COUNT

IJNE DISt IF NOT ZERO, REPEAT

BLWP @VMBW WRITE THE STRING WITH OFFSET TO SCREEN
DISLIX RT RETURN

*+ FOLLOWING LINES ARE FROM THE DATA SECTION OF SOURCE CODE
DATA FOR PRODUCING THE MAIN MENU

MENDAT BYTE 19 LENBTH OF TITLE
TEXT '6OLF SCORE ANALYIER® TITLE TEXT
BYTE 8,13 NUMBER OF ITEMS, LENGTH OF FOLLOWING TEXT
TEXT 'f ADD ROUNDS' TEXT LINE
BYTE 12 LENGTH OF TEXT FOLLOWING
TEXT 2 LOAD FILE' SECOND TEXT LINE
BYTE 14
TEXT '3 DELETE DATA’
BYTE 17
TEXT ‘4 ANALYIE SCORES’
BYTE 12
TEXT '3 SAVE FILE’
BYTE 19
TEXT ‘6 ADD/EDIT COURSES’
BYTE 17
TEXT '7 REVIEW COURSES’
BYTE 15 LENGTH OF LAST TEXT LINE

TEXT ‘8 EXIT PROGRAN' LAST TEXT LINE
*+ DATA FOR PRODUCING THE LEGEND AT BOTTON OF ANY MENU
SELEC BYTE 14 LENGTH OF LEGEND
TEXT ‘SELECT BY NUMBER' TEXT OF LEGEND
* LOOKUP TABLE FOR BRANCHING OUT FROM NAIN MENU
* EACH DATA ITEM AT MAINBR GIVES AN ADDRESS OF A LABEL TO WHICH CODE
* BRANCHES WHEN A SELECTION IS MADE FROM THE MAIN MENU
* THE LAST ENTRY IN THE TABLE IS WHERE THE CODE BRANCHES WHEN
¥ FUNCTION-9 WAS STRUCK. IN THIS CASE, WE EFFECTIVELY IGNORE THAT
* KEYSTROKE BY BRANCHING TO LABEL KYIN, WHICH SIMPLY WAITS FOR ANOTHER
¥ KEY TO BE STRUCK
HAINBR DATA NRIN,FILBET,SELCRD,SELCRS
DATA FILSAV,NCIN,CRSLST,BYE,KYIN
* MISCELLANEDUS DATA ITEMS
NUMASK DATA >30
NOITEM DATA ©
SCRLI BSS SCRWID
OFFSET BYTE 60
SPACE BYTE >20+>60 (--eof--> ~[END]-

71

72

DUTCH 80 COLUMN CARD

TI USER’S GROUP HOLLAND——88 COLUMN CARD.
PRESENTED BY TON DAMEM
Translated by Leon Burger (the flying Dutchman, June 1992)

Additional changes and notes by Derek Hayward of the TI99/4A
USER'S GROUP (UK).

August 1992.

NEMWS FROM THE HARDMARE GROUP

You must have been wondering what the Hardware Group have been
doing over the past few months? We have been working very hard, so
it is with great pleasure we announce the completion of our own 80
column card.

The word 8@ column is not actually the right word, because the 88
column mode is only a very small aspect of the possibilities the
video chip we have used can offer. You will be impressed with its
graphical screen modes and the stationary screen presentation.

The RGB-Encoder {(which most Tl users have instead of a TV.) is
very much inferior when compared to the colours and brightness the
video chip gives. 1 immediately sent my RGB-encoder into
retirment.

HISTORIC OVERVIEM

In 1988 we first noticed the development of the 8@ column card,
which was being designed and produced by Megatronics (in Germany)
and later on by Digit (in the USAR). Both these cards used the
Yamaha V9938 video chip. You will also find this same chip in the
Myarc computer, the MSX-2 also the Nintendo games computer.

The difference between the German and American cards is that the
Megatronic’'s card must be inserted sideways into the console and
the Digit is fitted into the PE-Box. Both constructions have
their good and bad points, the German design requires no
modification to the computer motherboard. the disadvatage is the
console becomes 18 cm wider and a separate feed/power supply is
required. The Digit card just plugs into the PE-Box, but the big
disadvantage is that two modifications to the motherboard must be
made.

Both cards have never been great sales successes because
especially the German card was very expensive and of low gquality.

PLEASE NOTE
This article is about three pages of circuit
diagram that the magazine editor never printed.

There was no update or any further news of
this project in TI*MES.

The American card should cost $208, a normal price in the USA, but
for us here in Holland, this would mean a price 1.7 times higher
pecause the value of the Valuta. Therefore we have been looking
for a Dutch alternative.

At first (1988) it did not seem worthwhile to design and build our
own 88 column card because the price of the parts were to high,
(in 1988 a 4464 chip was fl1 25.08, at this present time it is now
f1 5.8@) and the video chip was very hard to find and when we did
it was very expensive.

With some pushing from some of the other Club members, we reviewed
the situation to see if there was the possiblity of
manufacturing/building a card as the price of the chips started to
come down. The biggest problem at this time (1998) was and still
is the advalability of the V9938 chip. Via some contacts in the
trade we came by some second hand chips, this gave us the
opportunity to consider the development and constuction of the
board. (NOTE 1) The circuit design is our own and meets the
following demands: —

1) The board must be completely hardware/software compatible for
the TMS 9929.

2) It must either fit the TI PE-Box or Mini PEbox.

The basic design dates from April 1998, soon after this two test
boards were constructed, because of the very hot summer no work
was carried out during June-September. By the meeting in October
1998 we had finished the two test boards. At this stage they did
no work completely satisfactory, we still had problems with the
oscillator circuit (we discovered this afterwards). Following two
extra sessions with part of the hardware group all the remaining
problems were solved. So now we have two good working boards.

THE SCHEMATICS DIAGRAMS

As stated, the circuit is built around the V9938 (U13) video chip,
which is a 64 pin shrink DIP IC. This chip has the ideal
characteristics as it is 100%Z compatible with the TM 9929. This
means that the chip can inplanted into the existing TI hardwear
with no problems.

The circuit consists of the three parts:-

Buffer and memory decoder logics (page 2)

Video chip and video memory (page 3)

Monitor connections (page 4)

Page one is missing this is just a title page, used to transform

NO CIRCUIT
DIAGRAMS WERE
PRINTED 73

74

the schematic to print layout.
BUFFER AND MEMORY DECODER LOGICS.

Reference to page 2 you will see the IC's U4,U18 and Ul1l, these
separate the signals from the PE~-Box 1/0 bus. The chips U1,U2,USa
and Ubc will take care of the correct positioning of the 9938 and
the Eprom in the memory map of the TI1-99/4A.

As you might know, the video chip (TMS9929) is in the memory range
>880@8—>8FFF. Because the V9938 has several read and write
registers, this chip’'s memory map is extended. In the table below
the differences can be seen.

TMS 9929 veo3s DESCRIPTION

>8800 >8800 READ DATA

>8822 >88@82 READ STATUS

>BCO0 >8C00 WRITE DATA

>8Cez >8cez2 WRITE ADDRESS
>8C4 ACCESS PALETTE REGISTERS %
>8Cesé REGISTER INDIRECT ADDRESSING *

* SEE YAMAHA'S TECHNICAL DATA BOOK FOR DETAIL INFORMATION.

The main feature of this schematic is the function of C15, this,
at first sight may seem useless, this is not the case, it’'s of
vital importance for the whole of the circuits function, as there
is a BUG in the hardware of texy!

The A15 signal at the beginning of the memory cycle is not
completely stable, therefore the A15 is a pseudo (fake) signal,
consisting of the CRU-OUT clock and a dummy Al15. Because the
TMS99@@ is a 16 bit microprocessor it will process at anytime 156
bits, this applies for each byte operation as well. This suggests
that an A15 signal is needed to indicate if an even or uneven byte
has to be processed. That combined signal gives problems to the
new video chip. A number of times the VDPRD line will be active
because A1S is not stable during a read operation. Because of
this, non-authorized data will be read from the video chip and
will result in the wrong data.

Although the V9938 is 100% software compatible with the current
video chip we still require an EPROM chip in the circuit. The
video board would still work satisfactory without the eprom, but
as there is a BUG in GROM @ on the motherboard, the title screen
will be misformed. Solving this, is one of the functions of the
eprom. This problem is also known to exist in the TI BASIC and
CHESS MODULE CHIPS. The solution to this problem is not to change
the hardware of the computer, but rectify it by including the
changes in the software. We can confirm that EXTENDED BASIC and

epITOR/ASSEMBLER are working without any problems.

The eprom is situated at the normal position in the memory map, at
address >40088. This eprom can be switched by a selector switch,
thus giving another CRU address. This control is taken care of by
y7,uU8, U6A/B and SWi. Be WARNED only ONE switch can be closed at
any time, if not problems may occure with the hardware. You must
also note that other cards might also be using the same CRU
address. e.g.: the Disk control card uses CRU address >11008. The
following list shows the selectable CRU address:-—

SWITCH NUMBER CRU ADDRESS

>1 000

>1400

>1208

>1608

>1180

>1580

ri13ee

>17008

My advise is to switch the card to lowest CRU-address »100@,
because of possible video memory problems, which depend on the
type of software in the eprom.

N WU & W -

The power supply stabiliser U12 supplies the right voltage. This
transistor must be mounted onto the board using a U shaped cooling
plate.

VIDED CHIP AND VIDED MEMORY.

This part of the circuit seems complicated because of the many
connections but the idea is actually quite simple. Most of the
work is done by the video chip U13.1t takes care of the RAMS
memory refresh, the reading of the light pen and/or mouse,
digitizing of data and the supply of signals for the monitor. The
X1 crystal takes care of the video’s timing. The frequency is
near the upper value of Yamaha's advised value. This has been
done for two reasons:

By choosing the highest possible frequency, theoretically the
screen image will be improved. (NOTE 2)

The availablity and cost of the crystal. Because this part has a
standard frequency and cost only f13.00.

The VIDINT signal deserves extra attention, this must be connected
to the mother board of the TI-99/4A. Therefore a wire has to be
connected between the PE-Box and the console. Another way to
achieve this is to use one of the cores which is not used on the
ribbon cable which runs between the two units. {NOTE 3)

With reference to the K1 connector, all the signals not used by

75

U113 have been connected to this pincut. So in the future the
board is ready for other hardware to be added. These signals are
for the light pen, mouse and colour bus. The last one can be used
for digitizing video pictures.

A good tip for Megatronics card owners, the vertical rectangles on
the screen will decrease if a condenser like C23 is connected to
pin 33 of the video chip V9938. I must comment, ocur two
prototypes do not have any rectangles or stripes on the screen!

MONITOR CONNECTIONS

On page 3 you will see the relative simple circuit to interface
with the monitor. The basic circuit is repeated five times for
each signal, the transistors acting as buffers between the signal
from the V9938 and the monitor. These circuits makes our graphics
card suitable for normal RGB monitors (and television) with SCART
type connections. (NOTE 4) The composite video signal is an
extra, and is black and white suitable for monochrome monitors.

Although the V9938 can control direct so called PC—monitors
{(EBA/VBA with independent horizontal and vertical sync.), this
mode has not been assembled nor tested. This can be achieved by
adding an additional transistor stage to the HSYNC.

The 9 pin DIN plug is prepared for connecting to a PC and for
normal type monitors. With pin out K3 it is possible to choose to
transmit the composite video signal or a 5 volt supply which is
required for Scart plugs on some televisions.

MODIFICATIONS TO THE MOTHER BOARD OF THE TI-99/4A

Because of the circuit design of our graphics card we must do two
modifications on the motherboard.

i. The multiplexer on the board has to be modified. 1In the
current situation you can not do a read action in the memory’'s
video range (>8800->8802) via the I/0 -bus and thus the PE-box.
Therefore the printed circuit track on the mother board, which is
connected to pin 13 of the 7415138 -U606 (see arrow on photo 1)
(NOTE 5) has to be cut. The best place to do this is near to
Uéds. After this a wire connection must be made from pin 13 to
the +5V line. e.g. at pin 16 of the same chip U&06.

2. Because of the above modification, the TMS 9929 chip does not
provide a good interrupt signal any longer. Therefore you must
carefully lift the TMS 9929 out of its socket and bend pin 16
outwards, so that when you refit it, this pin lays out the side of
the socket. When the chip is replaced it is only used for the
supply of the GROM CLOCK.

76

Now a wire has to be connected to a plug and K3 on the new card.
The position from which this connection is made on the motherboard
is shown by the arrow on photo 2. {(see FIG B) You will see when
you look closer to pin 16 on chip TMS59929 that there is a spare
hole adjacent to the pin. Into this hole you solder the wire.
with this connection made the VIDED INTERRUPT signal of the v9938
is transmitted. (NOTE 3)

THE RESIATS

we now have two good working (MINI) PE-box versions, all the
programs we have for 88 column are working OK without any errors.

But we must make the following comments:-—

- The sound signal is not yet transmitted via the board; you still
have to do this yoursel+. (NOTE 3)

-~ Without a modified EPROM, the title screen of TI BASIC and CHESS
MODULE are not readable. Though they operate OK. (NOTE &)

- Because there is no standards (of course) for the different
video cards, it is possible that some programs may not work with
this card (the other way round aswell)

These problems occure because the programs direct the V9938
incorrectly, the displacement of the disk buffers in the VIDEO RAM
and the wrong software in the EPROM.

WHAT TO DO NOW?

The MINI PE-box versions are working without any problems, and are
except for the connector and supply stabiliser, identical to the
TI- PEbox version. {NOTE 7 and 8)

But first I want to develop two TI-PEbox versions. This will not
take long as there is little difference between the two units.

It is very tempting to make this print available to any bady, but
there are a number of reasons why we should not do this at the
moment:

- The availability of the V9938 chip and its price. There are a
number of different possibilities but no serious solutions have
been found yet.

=~ I do not have a good price for the manufacture of the printed
tircuit board.

- Because there are a number of BUBS in the V9938, and now there
is an improved chip V9958. Some of the bugs in the V9938, have
been solved in the V9958, it has 19280 colours compared with 512
in the Vv9938. Also the hardware commands have been extended.

77

— Assuming one can obtain a circuit board, one must still make the
two earlier mentioned modifications to the mother board, this
could be a problem for most club members.

.I can give you an approximate cost of the unit. (NOTE 9)

PART APPROX PRICE(DUTCH GUILDERS)
Printed Circuit Card 75.08
I.C. V9938/V9958 75.00
MEMORY CHIPS 490. 00
REST OF PARTS {excl. EPROM) 25.08
PLUGS etc. 25.00
OPTIONAL EPROM 15.08

TOTAL... 255.00

To make it clear, these amounts are global prices, the more that
are purchased the lower the price.

Although one may have to pay quite a high price for the printed
circuit board, I think this is one of the few additions which will
pay off in the end. I can’t do without this up grade in my TI.

In the next edition I hope I will be able to publish a purchase
form.

Finally I would like to thank the co—-thinkers and builders (David,
Piet (England) and Ton) for all their effort and time in
ensureing the success of this project.

From this lonely place on a stormy evening in November, behind my
key board, I would like to wish you a good start toc 1991 with your
TI-99/4A.

Ton Damen.

NOTES BY DEREK HAYWARD

From the outset I must make it very clear that these notes are to
be read inconjunction with the original Dutch literature
(translated). Its hoped, more information will encourage more TI
users to stay with their machines and at the sametime enhance the
performance of the TI-29/4A.

As stated by Ton Damen in his text, this card is one of the most
impressive and final improvements you can make to your computer.

78

It must be understood that the comments I have made are my own
observations (while typing in this text on my TI), from the
translation which Leon Burger (a student over from Holland on
Iindustrial Training with the Company I work for) completed.

At this date (January 1993) no board has been constructed here in
the UK. The plan is to build three prototypes, and as this work
proceeds make further notes on the construction and any problems
we may encounter.

NOTE 1.

The supply of the chip V9938 has been no problem here in the UK.
A telephone call to Yamaha-Kemble and my order was placed. The
information to order is as follows:—

YAMAHA-KEMBLE MUSIC (UK) LTD.
SHERBOURNE DRIVE
TILBROOK, MILTON KEYNES.

TEL @908 3466700
Order part REF XA@37001 VIDEO CHIP Vv9938.
NOTE 2

This crystal at first, seemed a problem, the frequency stated is
NON standard for the UK. But while checking back over old
documents concerning the chip and 88 column card, I found a report
in MICROpendium, dated September 1988 by Tony Lewis, in which he
states that Yamaha had designed the chip to operate with a crystal
at 22 MHZ (I do not have the manual on the V9938). This crystal
is standard and can be easily purchased.

NOTE 3

The wire link between the motherboard and the PE-box could be a
problem. While considering this, remember a further wire will be
required for the sound signal. If you want the TI sound - first
your monitor must have an audio amplifier fitted into it. Then
the cable/flex connecting the computer (PE-box) to the monitor
must also carry the AUDIO signal. With the new card fitted into
the PE-box then its assumed that one cable will be used for this
purpose, therefore the AUDIO signal must be connected onto the 88
column card from the motherboard, before connecting the 88 column
Card to the monitor.

There is no out going AUDIO signal sent along the multi-core
ribbon cable those pipe), between the computer and the PE-box. So
two wires are required, one for the VIDANT and the other for the
AUDIO signal. You could connect a two core screened cable between

the two units, independent of the "hose’. Or alternatively {(on
checking the Technical Data Sheets on the TI), I see TI use 4
cores of the ribbon cable for the earth return between the two
units, core numbers 21,23,26 and 27 at the 1/0 socket of the
computer. On arrival at the PE-box end they become cores
3,5,7,28,27,47,49 and 53. Maybe 2 of these cores can be separated
from the common earth connection and used for these two signals.

I do not have this problem as my TI has been converted by fitting
the RAVE 99 Keyboard interface, so now I have the standard PC 181
keyboard and no computer console. By adding an additional metal
panel on the back of my PE-box (making it slightly deeper by 2.5
ins) onto which I have mounted my motherboard still screened by
its metal cannister. With the unit so close to the back of the
PE-box there is no need for the "hose’ connection, just a short
ribbon cable is used. Back to the 88 column card, as the new card
will be just in front of the motherboard, I will run a short
length of two core screen cable between the two boards. The AUDIO
signal being taken from the back of the 6 pin DIN socket on the
motherboard.

NOTE 4

In another write-up (supplied on disk via the TI-USERS (UK) CLUB
disk library — thanks to Stephen Shaw) DIJIT have made comments as
to the type of monitor that must be used with their 88 column
card. The point made, being that a monitor with a reasonable high
resolution must be used to get the benifit of the more detailed
screen format. I plan to use my TATUNG model TMO1, which may or
may not be good enough. I will report on this later.

NOTE S

As both the photographs in the oringinal manuscript were very poor
reproduction, I have checked the component layout on the
motherboard and have made two illustrations, they show exactly at
which points the mods must be made on the board, see FIG A and FIG
B.

In Ton's write—-up he has designated the chip as U686, while the
official technical data manual from TI is a poor print, I think
this chip should be US®&. This is further confirmed by Eric Zeno
(designer of the Zeno Board) he also numbered the chip as US@6.
There will be no problem with this change in chip numbers
providing you use the illustration FIG A and B to find the
location of the parts on the motherboard.

NOTE &6
If there is still a problem with the screen presentation on

TI-BASIC, its hoped to change the program which is burnt inte the
EPROM. Further news on this later.

80

NOTE 7

Following a telephone call from Ton Damen (in Holland), he has
confirmed the design of the printed circuit board included in the
oringinal manuscript (Ref TI8S8@COPS PO and Pl1) is for the standard
TI PE-box. As to the stabilised power supply, that is still not
resolved. I make this comment because the assembled board which
Berry Haman brought to the TI-USERS AGM had an additional diode
fitted to one of the legs of the power transistor, this must be
checked.

NOTE 8

while checking out the board design to establish whether it was
designed for the mini or standard PE-box, I noticed that the
component layout board TI8%0COFS6 P2 had some minor mistakes when
compaired with the Schmactic diagrams. I dont think this is a
major problem, but I have revised the layout to match the
schematic diagram. See FIG C.

Reference to the back face of the board (solder side) on DRG
T188COP6 P1. Part of one track is missing (this might have been
lost during printing) in the upper top R.H.corner, close to the 3
holes into which you solder @1 transistor. 1 can confirm the
missing track is connected to the hole directly above it. This
point inturn connects to the emitter of @1 and resistor R4 (per my
new layout).

NOTE 9

Listed is the price 1 have, or expect to pay to complete my aa
column card. Please note (as Ton mentioned in his report) the
major problem will be the manufacture of the circuit board. Mike
Goddard has made enquiries, and to date the information is this—
43 to S@ boards must be made with the cost coming out at about £25

per board. The problem is what are we going to do with 48 or so
boards??

PART APPROX PRICE (£)
PRINTED CIRCUIT BOARD 25.00

I.c. v9938 25.17

MEMORY CHIPS 4464 20.16

CHIPS U®1i to U12 18.56

EPROM U3 2764 3.45

21 to @3 BCSA47 1.20

HARDWARE ETC. 18.61

TOTAL..........93.59

Most of the above prices are based on those quoted in the Maplin
Catalogue 1992

Derek Hayward.........Jdanuary 1993.

81

82

FC S LIVINOINOD

&7 =L

83

Z/2 /g \

B85 &

—
2/7 vu: H

A | 555

\£70
vzy [[~ S TA/ODOET L DIT 2T

2D szor— =3

CFON GO Q /ey LOORS D LINMFNOANCD TTFEINTY
3_”_ 2o D_wa

INASO P Q —| |/

rzo —o €27
: g5 ¢ Q —c> i
I sz>)
R O —7
2d oz> g .
Fn78 1 © O e 1A 4T 4 M

_ CJ .3 o

8L

TIPPSY

This is a small artical which we hope will give you little
tips so that you can use you machine in a better way. The tips
of course can't come from one source, so we ask you to write
into the editor with YOUR tips.

Here are a few to start the ball rolling.

Tl WRITER (T.S)

Have you ever tried to print out a multi document through
the PF (print file) command, and suddenly realised that on
page two of four there is a mistake. Or you want to print out
only a paragraph, or prehaps save a line to disk without CR
marks in them. Well you can. | have looked at the Tl WRITER
manual and can find no reference to the following command in
it. I found it out by mistake when tried to save a file to
disk.

What you do is take note of the line numbers (inclusive) that
you want to print or save and then return to the E(dit) Mode,
wvhich is on the top line. Then type PF (Print file). You will
then be presented with PI0O or RS232.300 or similar. In my case
| use PIO. You then back space over the PIO to the begining of
the entry field. Say you want to print line 20 through to 40,
you will then type 20 40 PI0O. Press return and the lines 20 tc
40 are only transmitted to your printer and printed. For a
single line type the single line number only. eg 20 PIQ.
Remember however to put the spaces between as given in the
above examples. If you want it to disk, replace PlO with the
DSKx. command.

T1 EXTENDED BASIC

Did you know that you can chain link cassette programs?
What is chain link you may ask, well it is where you can write
a basic program from EXB which can load and run another
program from your cassette recorder. When this happens the
original is over written and the new one then replaces the old
and then runs. You must however be at the begining of the
program on the tape for this to happen. You do this with the
RUN command. |f you branch in your program to RUN "CS1" you
will be able to chain for as long as you like. This can
increase memory storage. The only down side is that tape takes
a long time to load.

DEMO to the above TIP.

100 CALL CLEAR

110 PRINT "THIS 15 PROGRAM 1"
120 FOR A=1 TO 1000 :: NEXT A
130 RUN "CS1"

Save to CS1 first.

Rewind AFTER saving second
part below and load this
program.

e o

100 CALL CLEAR

110 PRINT "THIS 1S PROGRAM 1
120 FOR A=1 TO 1000 :: NEXT A
130 PRINT "FINISHED"

Save to CS1 second

e

* *MEMORY FULL*#* FUNCTION QUIT! 11112

85

