£ Sioa 4 . s Y, P AP A °
: " N o & 3 = ;t‘ » -k % :
;. 5 ¥ P 3 1 % 0 3
Ea B : 3 2 ¥ : p &3 4
: i 2 i i] g e .‘g
T A i . c AURRE WS .
- i B % . AR .o P .-

Ghilaunidide ohniliaubiie siskie skdinde sbilize siidividie wbiiika abdivk

t

TI-99/4A USER GROUP U.K. COMMITTEE MEMBERS

Mr. Chairman: Trevor Stevens.

249 Southwell Road East, Rainworth, Notts. NG21 OBN
Telephone 0162 793077

Vice Chairman / Cassette Librarian: Mark Wills

20 Cocayne Green, Harlescott Grange, Shrewsbury. SY1l 3Qs
Telephone: 01743 350588

General Secretary: Richard Twyning

24 Peel Road, Mansfield, Notts. NG19 6HB

Telephone: 01623 27670

Membership Secretary: Alasdair Bryce

51 Dumbuie Avenue, Silverton, Dumbarton. Scotland. G82 2JH
Telephone: 01389 65903

Treasurer Alan Rutherford

13 The Circuit, Wilmslow, Cheshire. SK9 6DA
Telephone: 01625 524642

TI*MES Editor: Gary Smith

556 Boundary Road, Newark, Notts. NG24 4AJ
Telephone: 01836 708767

Disk Librarian: Stephen Shaw

10 Alstone Road, Stockport, Cheshire. SK4 S5AH
Module Librarian: Francesco L. Lama

14 Granville Court, Cheney Lane, Oxford. 0X3 OHJ
Telephone: 01865 721582

DISCLAIMER
All the views by contributors to this magazine are strictly
their own, and do not represent those of the committee.
Contrary opinions are very welcome and errors will be
corrected upon request.

NEXT COPY DATE
1995

lst March 9
CONTENTS
Page 1. The ultimate ACCEPT AT, by Bruce Harrison

Page 3. A short history of TI home computing by Charles Harrison

Page 8. Tips From The Tigercub, Number 70, by Jim Petérson
Page 12. The art of Assembly, part §, by Bruce Harrison
Page 20. System for Sale, from E.J. Stocks.

P#ge 21. YUV to RGB conversion by Gary Smith

Page 25. A Blast From The Past by Richard Speed

Page 30. E-Mail by Kenneth F. Hughes

Page 31. Notes from Mr. Editor

Page 32. Tips From The Tigercub, Number 35, by Jim Peterson
Page 34. Tips From The Tigercub, Number 36, by Jim Peterson

Page 38. Mr. General Secretary not wanting any complaints
about the thinnest issue for some time!

Page 40. Consoletation Zone: George Michel

Page 41. System for sale from Scott Whitley

Page 42. Pocket Cannon by Mike Poskitt

Page 43. TI-90/4A Fault Finding, by Mike Poskitt

Page 44. Nr. General Secretary takes a break from worrying
vhere to start his final year project to do a little bit about
the S&T Bulletin Board program.

THE ULTIMATE "ACCEPT AT"
software by Bruce Harrison

(This should be very useful to XB programmers or those who like to
modify existing XB programs. The disk is available from your User
Group disk " to the library. The software DOES NOT work properly on a
system with an AVPC card. It has not been tested on a Geneve or on a
system with @ TIM. Below are excerpts from Bruce's ULTIMATE ACCEPT AT

documentation.)

"We've all used the Extended Basic ACCEPT AT from time to time in
programs, and many have expressed the wish that it could handle
strings longer than 28 characters. Some have also wished it could put
the prompt on screen for inputs, instead of using a separate DISPLAY
AT. Some things we |iked about ACCEPT AT were, for example, the
ability to specify the length of input to accept, and the ability to
use a negative length so that a default "answer" could be placed on
the screen before the ACCEPT.

The "ULTIMATE ACCEPT AT" is an attempt to take all the good features
in the existing routine, then add features that were perhaps always
needed. Making this all work in a fairly short routine (less than
2000 bytes) was helped by being able to use the Tl's LINE EDITOR
function through GPLLNK. Using that line editor made the routine
simpler and easier to create, and left us free to include the "fancy
stuff".

THE CALL LINK
This routine is exercised through the XB CALL LINK process, with
either six or seven parameters to control its operation. The CALL
LINK looks like this:
CALL LINK("ULTACC",R,C,CL, "PRMP",CHRS,VAR(,B1)

The first two parameters, R and C stand for Row and Column, just as in
a normal ACCEPT AT. The third, CL, can have three possible states.
Putting O in for this parameter will do nothing. Putting 1 in will
cause the screen to be cleared before the ACCEPT happens. Putting 2
in there will cause the computer to reset all charaeter sets, color
tables, and so on to a state much as having just started Extended
Basic.

The parameter "PRMP" is the prompt for the user. This is limited to
28 or fewer characters, and may be either a direct quoted string like
"INPUT A NUMBER " or a string variable that contains the desired
prompt. It’'s important to include a space at the end of the prompt,
so that the input field will not be jammed up against the promgt.

The fifth parameter, shown here as CHRS, is simply the number of
characters to be allowed in the input field. For strings, this number
can range from 1 through 255. For numeric inputs, it will be fcrced
to 32 characters by the routine.

The sixth parameter is the variable into which the input is tc be

accepted. This may be either a string or a numeric varistle. It may
also be a specific member of an array variable, such as A%$(l), or
NCI) .,

THE OPTIONS
There are many ways to use this new ACCEPT routine, so let's cover a
few variations. If no prompt is desired, for example, a null string

(,"",) can be placed where the prompt would go, and this will cause no

prompi to appear. If the allowed length parameter is given as a
negative number, then the existing value of this variable will be
placed on screen in the input field as a default entry. If the length
allowed is a positive number, the input field will be initially blank.
A seventh parameter can be added, and this may be anything you like.
The simple presence of a seventh parameter of any kind will cause the
beep tone to sound. Thus the seventh parameter could be added to the
above LINK as (,"BEEP"), and the routine will produce the beep when

t's ready for input. Without a seventh parameter, no beep will be
heard. These various options may be excercised in any combination yocu
like.

OPERATION
Except for the screen clearing, the routine will start doing things at
the location given by the Row and Column parameters. If a prompt has

been included, that prompt will appear starting at R,C on the screen.
The routine will clear out enough space for the prompt and the
designated length for the entry field, then will either place a
default there or not, depending whether the length was positive or
negative.

The routine protects itself (and you) against the mistake of not
having enough room for the designated input length on the screen.
Suppose, for example, you started with R=23, C=1, and specified a
string input with a length of 70 characters. Obviously that long a
string will not fit in just two screen rcws, so the routine will mcve
your input field up by enough rows to make room for the desired input
length. (As with XB's ACCEPT AT, there are only 28 columns uzed on
each row of the screen.)

The routine also protects against the situation where the existing
length of a string is greater than the allowed length given in the
LINK. If that's so, the string will be truncated to the length
allowed. If you want to be sure of avoiding truncation, the best way
to do that is to always specify length at either one more than the
expected maximum, or at 255 in all cases. Of course specifying at 255
would limit you in terms of how far down the screen you can do your
ACCEPT. Normally a more sensible "safe" entry would te perhaps 81
characters. (None of this applies for numeric entries, where the
allowed length is always 32 characters.)

String entries are accepted "as is", with no checking on their
content. For numeric entries, there is also no checking performed on
the content of the field. If it is non-numeric, it will simply cause
a8 zero (0) value to be placed in the variable, with no error report.

FUNCT!CN KEY ACT!ICNS
As in the case of Extended Basic’s normal input and Accept At,
Function-1 will delete the character at the curzor position.
function-2 will initiate Insert mode at the cursor's positicn.
Function-3 will erase everything currently in the input fieid.
Function—4 though Function-9 will have no effect. Function-S and
Functicn-D will move the cursor left and right, respectively,
Function—-Y or Furction-E will have the same effect as ENTER, and
Function—= will exit to the Tl Title screen.

: THE ERROR TRAPS
As with any Harrison product, we have tried to pre-think what kind of
errors -the programmer might make in trying to use this routine, and
have provided on—screen repcrts in plain English for errors that can
be anticipated.

EXTRA FEATURES
For those cases where you're using this routine and want the ability
to just re—set Extended Basic to its default colors and character
sets, etc., there is a second "entry point" in the ULTACC/0O object
file. Once the routine is loaded, the re-setting of XB (and screen
clearing) can be accomplished by simply:
CALL LINK("ULTCLR")

No parameters are required. There is yet another bonus supplied on
this disk, an object file called RSXB/O. This allows access to the
same service as ULTCLR, by CALL LINK("RSXB"). This is provided for
those situations where you don't need the Ultimate Accept At, but
still want the re-setting capability available.

THE DEMOS
The disk includes demos, which have the routines embedded ‘in the XB
program with ALSAVE. The main one is called ULTDEMO, and it shows off
some of the features of the routine. The second is called RSTDEMO,
and it sets up a screen character font and changed colors, then uses
RSXB to clear everything back to the normal XB conditions.

THE 99/4 HOME COMPUTER
description of an antique by Charles Good
Lima Chio User Group

A SHORT HISTCRY OF THE T1 HOME COMPUTER

T! began shipping the 99/4 (copyright 1979 on the colcr bar title
screen) in October 1979. [t cost $1150 bundled with-a 13 inch color
monitor (FORTUNE, December 3, 1973, p.54). Initially you had to take
the monitor and could not purchase the 938/4 separately, and most
purchasers had to pay close to full price. Bundling was necessary
because the 99/4 console passed but Tls TV modulator initially failed
to pass FCC lab tests for noninterference with radio and TV broadcast
reception. .

The modulator emitted too much RF radiation (BUSINESS WEEK, March
19, 1979, p.37). However, at that time the FCC did not regulate RF
radiation from ccmputing devices not hooked directiy to Tvs. So TI
got around the FCC regulations by offering to the public a "complete
package".

It wasn't until January 1, 1981 that the FCC began testing ALL
computers likely to be used in a home environment for TV/radio
broadcast interference (POPULAR COMPUTING, November 1981, p.6). TI
eventually came up with a TV muculator that would pass FCC tests and
on November 28, 1280 began selling the console and monitor separately.
The console’'s list price was $63C (BUSINESS WEEK, December 8, 1S€C,
p.28). This was in one respect was actually a price increase, because
the separate prices of the conscie and monitor were $250 more than
their previous bundled price.

W

. Tl never published any sales data for the 83/4, but an
incependent market research firm estimated that T! would sell 250CO
between its introduction and the end of 1980 (FORTUNE, June 16, 1880,
p.132). During the summer of 1981 Tl quietly introcduced the 99/4A
with a list price of $525. By the time production of the 93/4A ceased
in late 1963 or early 13984 the store price for a brand new 939/4A was
$5C, and over 1 million, perhaps several million 99/4As had been
sold.

SUMMARY OF DIFFERENCES BETWEEN THE 38S/4 AND SS/4A.

The most obvious differences are the keyboard, the lack of lower
case letters on the "4", and the "4"s EQUATION CALCULATOR. Most "4"s
have an earphone jack on the front for private listening, but mine
decesn't. | will discuss most of these obvious differences in detail.

ther differences are listed in an accompanying article by Mike
Wright. The 4A gets its "A" from the fact that it has a 8918A video
processor, whereas the 89/4 has a 9918 video processor. The S9918A has
bit map mode, which is not found on the 9918 processor. This means
that any software that uses bit map mede will nct run on the 839/4.
Otrer differences between the 99/4 and 99/4A (such as the "4"s lack of
an X0P assembly directive) are referenced in the incdex of the
Editor‘Assembler manual (p.456) under the heading "Computer
differences”.

In general, all software written for the "4" will run on the 4A.
Some complicated routines on the 4A were required to achieve this
compatibility. The "4" has 256 bytes more free memory in Tl BASIC
than the 4A, so some BASIC software written on a "4" may not work on
an unexpanded 4A.

Lots of assembly or GPL software written for the 4A will NOT work
on the "4", and there is no easy way to upgrade a "4" to a 4A. The
Mini Memory moduie and its line by line assembler, and the E‘A module
and its editor and assembier work OK on the "4".

A partial list of "won't work on the 99/4" software includes
Ti-Vriter, Multiplan, Funneiweb vd.x, all the Milton Bradley game
modules that were created to accompany the MBX system, Word Invasicn,
Parsec, Story Machine, Alpiner, Dragon Mix, and Word Radar. Most of
these modules are prpbably incompatible because they use bit map mode.
There are probably other reasons for the incompatibility of Multiplan,
TI-Writer, and Funnelweb. Even the non—-editor parts of Funnelweb
won't work on the "4". (The internal KSCAN must be used in order to
read a /4 keyboard-sjs). When ycu boot Funnelwet into the "4" using
the extended basic module, the title screen shows bianks where there
should be lower case letters. (The /4 did NGT have lower case
characters!). You can then go to Funnelweb's extended basic user list,
tut here the "4" locks up. You can’'t boot any software from the XB
user list.

THE KLUDGY S8S/4 KEYBOARD

After playing around with my "4" for a couple of months, | am
forced to agree with the statement made in an accompanying FORTUNE
magazine article. The 99/4 is a real dog, main!y because of its
keyboard. :

There are 41 "chicklet" style keys, each slightly contoured and
shaped like a narrow rectangle. The 4A keyboard has 48 keys.
Al though each 99/4 key depresses separately, the keys are not what
experienced users would call "full travel"” There is no tactile
response, no click, before the keys suddenly bottom out at the end of
their downward travel.

Non—alphanumeric keys include one (and only one) SHIFT, an ENTER,
a SPACE bar, and a SPACE key immediately to the left of the "A" key.
Alpha keys always produce upper case letters, so the SHIFT key is not
used as often as it is on the 99/4A. There is are no ALPHA LOCK,
FCTN, or CTRL keys on the "4". The "4"s SPACE key and bar do exactly
the same thing, leave a blank space. | can see no reason at all for
this space KEY, in addition tc the normally positioned space bar.
There are ASCIl!| characters built into the 838/4 console that are not
implemented on its limited keyboard, yet there is this stupid extra

space key.

‘“Touch typing on the 99/4 is difficult. The keys are spread apart
the same distance as on the familiar 99/4A keyboard, so it is possible
to get all your fingers at once onto the keys. But the small vertical
size of the keys and their lack of tactile feel makes touch typing
difficult. The small size and minimal contocur of the "4"s keys makes
it difficult for a touch typist to find by feel and seat his or her
fingers in the center of the desired keys as the fingers move blindly
around the keyboard. The fully contoured much larger keys of the 4A
(larger because there is less space between keys) makes tcuch typing
much easier.

A special problem to experienced touch typists is the lack of any
key to the right cf the "L". This means there is no "home" key for
the little finger of the right hand to touch, and this will drive most
touch typists crazy. Frequently, when | try to type on my "4" i end
up accidently moving my fingers over one key to the left on the home
key rcw so that all ten fingers have something to touch. My left hand
pinky finger is then on the usel!ess SPACE key instead of cn the "A"
wvhere it should be. Then | type rtow fevfw. TI! recognized this
problem. The only application software written for the 99/A that is
likely to require touch typing, the Terminal Emulator 1!, has a
keyboard overlay with a raised area creating a fake key for the right
hand's little finger. ’

Tl provided a series of overlays specifically for use with the
99/4 and not usable with the 4A. Some overlays were packaged with the
"4" and others were available with specific command modules. Because
of the narrow vertical size of each key there is enough room between
rows of keys on the "4" to display a text prompt immediately above ANY
key, not just above the numeric keys as is the case with the 4A. The
overlays have text prompts for special keypresses, and cover the
entire "4" keyboard, with the keys sticking up through holes in the
overlay.

Special keypress usually involve using the SHIFT key in
combination with a letter key. One overlay packaged with the "4"
shows the editing keys used in BASIC. SHIFT/Q=quit. SHIFT/W=begin.
SHIFT/ESDY.= arrows. SHIFT/R=redo. SHIFT/T=erase. SHIFT/A=aid.
SHIFT/F=delete. GSHIFT/G=insert. SHIFT/Z=back. SHIFT/C=clear.
SHIFT/V=proceed.

!

There is nothing intuitive about some of these keypresses (why
not SHIFT/B instead of /Z for back), so the overlay is really needed.
Another overlay packaged with the "4" shows the split keyboard keys
that can be used with some games to simulate the 8 positions of
joysticks #1 and #2. In addition to the overlays packaged with the
computer, I have seen overlays designed for use with the following
command modules: Terminal emulator 1, Terminal emulator I1, Video
graphs (PHM3C0S), and Video Chess.. There may be other overlays |
havn't seen.

ONLY UPPER CASE LETTERS

No keypress on the "4" keyboard will give ASCII codes 97-122, the
lower case letters. Everything you type is in upper case, and this
means you only use the SHIFT key in routine typing to shift the

numeric keys and display !'@@#$% 8&*(). The 99/4 uses a S5x6 pixel grid
to display upper case letters. The 99/4A uses a 5x7 grid to display
both upper case.-and lower case text. If you load into the "4" BASIC

software written on a 4A that includes lower case text, the program
seems to work OK, but no lowercase letters are displayed on screen.

THE EQUATION CALCULATOR

When you PRESS ANY KEY TO CONTINUE from the color bar powerup
screen of the "4", you get a menu with three choices. Press 1 for TI
BASIC, 2 for EQUATION CALCULATOR, 3 for TITLE OF COMMAND MODULE.

The EQUATION CALCULATOR is a way of using the "4" in mathematical
calculations without having to write a BASIC program to do the
calculations. You can do simple arithmetic, and you can also use
expcnential numbers, PIl, SQR, exponents, SIN, COS, TAN, and ATN in
your calculations. Everything that can be done using EQUIATION
CALCULATOR can also be done using @ Tl BASIC program, or directly from
BASIC command mode.

The EQUATION CALCULATOR screen is divided into three sections.
The bottom section is where you do your calculating. You can, for
example, type in a simple calculation such as 1567+56.98-145+(12/98),
press <enter>, and display the answer. To do the same thing in BASIC
command mode, you would have to type PRINT before you typed the
numbers of the calculation. A single calculation is limited to 28
characters (one line of text).

You can define variables such as LENGTH=60, press the up arrow,
and have this variable stored in memory and permanently displayed in
the upper third of the EQUATION CALCULATOR screen. You can display up
to 6 variable names and their current values on screen in this way and
not have to worry about the display scrolling off the tcp of the
screen. You can do the same thing in BASIC command mode by pressing
{enter> after typing LENGTH=60. The value of LENGTH would be stored
in the computer's memory, but it would only remain on screen until it
scrolled off the top due to subsequent entrys.

You can also define an equation such as
PERIMETER=2*LENGTH+2*WIDTH and store this egquation in the middie part
of the EQUATION CALCULATOR screen. You can then define the values of
the variables LENGTH and WIDTH, use the down arrow to bring the
equation into the bottom work area of the EQUATION CALCULATOR screen,
press <{enter> and display the current value of PERIMETER. You can
then redefine LENGTH and/or WIDTH, and reuse the equation to calculate
the new value of PERIMETER. You can also store equations for repeated
use in a BASIC program, although you cannot store such an equation in
memory in BASIC command mode. [n command mode you wouid have to
retype the equation each time.

I don’'t think EQUATION CALCULATOR is very useful. Apparently TI

idn’'t either, because they dropped it when the 4A was released. From
BASIC (a program or from commanrnd mode) you can do all the same things,
and more. The main limitation of EQUATION CALCULATCR is the 28
character size of a formula or chain calculation. The most common
routine calculating | do on my 99/4A is to balance my checkbook. |
enter BASIC command mode and type PRINT, followed by my initial bank
balance, followed by all my subsequent withdrawals (as minus- numbers)
and deposits (as positive numbers).

Before | press <enter> to display my balance | can check the
screen to see that all the numters in the calculation are typed
cerrectly and use INSERT or DELETE to correct mistakes. Such a long
chain calculation requires several lines on the screen to display all
the digits before pressing <enter>. TI BAS!C command mode gives me 4
lines. EXTENDED BASIC command mode gives me S lines. EQUATION
CALCULATOR allows me only one line of digits.

CCNCLUDING REMARKS

Wher. it was released in 1879 the 8939/4 was the only consumer
device that could really be called a "Home Computer". It was the
first to utilize cartridge software. Its speech synthesis was, and
still is, unequaled. It was easy to use, easy to program in BASIC,
and it was powerful. Its high price was probably the major reason for
its initially limited sales. 1ts rotten keyboard didn't help either.
I’'m sure glad we now have the S3/4A. The 4A is much superior to the
"4n,

N

TIPS FROM THE TIGERCUB
#35
Copyright 1986

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

The 4/86 Micropendium had
a rather slow routine to
count the number of words in
a D/sv text file. I think
the following will be much
faster. It ignores any
lines beginning with a
period (TI-Writer formatter
commands), otherwise counts
each cluster of characters
followed by a space, plus
the last- cluster on the
line.
10 'WORDCOUNT by Jim Peterso

n
100 DISPLAY AT(12,1)ERASE AL

L:"INPUT FILENAME? DSK" :: A
CCEPT AT(12,20):F$:: OPEN i
:"DSK"&F$, INPUT

110 A=1 :: LINPUT #1:M$:: |
F ASC(M$)=46 THEN 130

120 X=POS(M$,"” ",A):: IF X=0
THEN 130 :: IF X=A THEN A=X
¢1 :: GOTO 120 ELSE F=t :: C
=C+1 :: A=X+1 :: GOTO 120
130 C=C+F :: F=0 :: IF EOF(1\

y<>1 THEN 110 :: CLOSE #1 ::
DISPLAY AT(12,1)ERASE ALL:"
APPROXIMATELY "&STR$(C)&"™ WO
RDS"™

100 !'TIGERCUB GRAPHPRINT by

Jim Peterson

110 !'Will output to printer

a line graph of 31 items of

data, as for instance the

temperature for each day of

a month

120 !'Values must be positive
integers within a range of

75 from minimum to maximum
130 M$=RPT$("™!_",65):: DIM T
$(31),D8$(75):: MN=10000

140 DISPLAY AT(12,1)ERASE AL

L:"Input data - maximum 31i":
"items. Enter to finish"
150 FOR X=1 TO 31 :: DISPLAY

AT(14,1):X;TAB(4) ;CHR$(1)::
ACCEPT AT(14,4)VALIDATE(DIG
IT)SIZE(-S)BEEP:T$(X):: IF T
$(X)=CHR$ (1)THEN X=X-1 :: GO

TO 170

160 T=VAL(T$(X)):: MX=MAX(MX
,T):: MN=MIN(MN,T):: NEXT X
170 RN=MX-MN :: IF RN>75 THE
N PRINT "EXCEEDS MAXIMUM RAN
GE OF 75" :: STOP

180 IF MX>75 THEN AD=MX-75
190 OPEN #1:"PI0",VARIABLE 1
32 :: PRINT #1:CHR$(15);CHR$
(27);CHR$(51) ;CHR$(12):: PRI
NT #1:RPT$("_",132)

200 DISPLAY AT(12,1)ERASE AL
L:"Wait, please...™: :".....
.this takes time"™

210 LM=LEN(STR$(MX)):: FOR J
=1 TO 75 :: J$=STR$(76+AD-J)
220 IF J>66+AD THEN J$=J$&"
”

230 IF J/2=INT(J/2)THEN D$(J
)=RPT$("™ ",LM)&SEGS$(M$,1,132
-LM)ELSE D$(J)=J$&SEG$(M$,1,
132-LM)

240 NEXT J :: PRINT #1:RPT$¢(
" ", LM)&XSEG$(M$,1,132-LM)
250 J=1 :: T=VAL(T$(J))-AD :
: T=76-T :: D$(T)=SEG$(D$(T)
,1,J%4+4)&CHR$ (239)&SEGS$ (D$(
T),J*4+6,255):: J=J+1

260 T2=T :: T=VAL(T$(J))-AD
:: T=76-T :: FOR N=T2 TO T S
TEP (T2>T)+ABS(T>=T2):: D$(N
)=SEG$(D$(N),1,J%4+2)&CHRS$ (2
53+ (T<T2))&SEGS$(D$(N),Jx4+4,
255):: NEXT N

270 J=J+¢1 :: D$(T)=SEGS$(DS$(T
),1,J%4)&CHR$ (239)&SEG$(D$(T
),J%x4+42,255):: IF J<=X THEN
260

280 FOR J=1 TO 75 :: PRINT ¢
1:D$(J):: NEXT J :: PRINT #1
290 T=8 :: FOR J=1 TO 31 ::

PRINT #1:TAB(T);STR$(J);:: T

=T+4 :: NEXT J

1 still think of the TI as
a HOME computer, and I still
think that the home computer
is an invaluable educational
tool - but | guess not many
folks agree with me. I had
thought of wWwriting full
disks of a progressive
series of lessons on one
subject, but my present two
full disks of math education
have sold a combined total
of 7 copies in 7 months, so
that would obviously be a
waste of time.

I had written this next

THEN RETURN

320 M$(X)=SEG$(M$(X),1,T-1)&
C$&SEGS$ (M$(X),T+1,255):: M$(
X)=SEG$(M$(X),1,P-1)&"c"&SEG
$(M$(X),P+1,255):: GOSUB 340

:: F=1 :: RETURN

330 M$(1),M$(2),M$(8),M$(9)=
A$:: M$(3)=""71237""T" i M

$(4)="""4567""7" 1 M$(5)=""
“78cABT"" :: M$(6)="""""CDE~
" o M$(7)="""""FGH™"" :: R
ETURN

340 FOR J=8 TO 16 :: DISPLAY
AT(J,10):M$(J-7):: NEXT J

: RETURN
350 SUB CALLKEY(R,C,Vs$,K$)
360 CALL HCHAR(R,C+2,30):: F
OR T=f TO 3 :: CALL KEY(O,K,
S):: IF S5<>0 THEN 390
370 NEXT T :: CALL HCHAR(R,C
+2,20):: FOR T=1 TO 3 :: CAL
L KEY(0,K,S):: IF S<>0 THEN
390
380 NEXT T :: GOTO 360
390 IF POS(VS$,CHR$(K),1)=0 T
HEN 360 ELSE K$=CHR$ (K)
400 SUBEND

[“on disk from library"1

I don’t think this is very
useful, but somebody asked
me for it - it converts dec-
imals to fractions.

100 CALL CLEAR :: CALL CHAR(
95, "0O00000FF™)
110 DISPLAY AT(12,1):"Decima

1?7 :: ACCEPT AT(12,10):D ::
T=1

120 IF INT(D)<>D THEN D=D*10
:: T=T*10 :: DISPLAY AT(14,

1):D :: DISPLAY AT(16,1):T

: GOTO 120

130 DISPLAY AT(14,1):D :: DI
SPLAY AT(15,2):RPT$("_",LEN(
STR$(T))):: DISPLAY AT(16,1)
:T

140 FOR J=2 TO 5 STEP 3

150 IF D/J=INT(D/J)AND T/J=1
NT(T/J)THEN D=D/J :: T=T/J :
: DISPLAY AT(14,1):D :: DISP
LAY AT(16,1):T :: GOTO 150
160 NEXT J :: GOTO 110

Several years ago, John
Hamilton wrote a program you
could use to key in a pro-
gram with TI-Writer, then
merge it in, delete the "!"
after each line number, and
run it as a program. Its on-

ly problem was with lines
of over 80 characters. Since
then, better programs have

been written - XLATE and
TEXTLOADER - which do not
require deleting anything

but they still have some
trouble with long lines and
with missing spaces. This
little version overcomes
those faults but you do have
to delete the ™!".

Try keying in a program
into the Funlweb Editor, be
sure to put a carriage re-
turn at the end of each pro-
gram line. When finished,
check each program line
which has wrapped around to
two lines. If the first
character in that second
line should be preceded by
a space, insert a space as
its first character. Then
save the file with the PF
option and run this little

program. Enter NEW, merge
in the output file by MERGE
DSKn. filename, go through

it with FCTN X and FCTN 1
deleting the "!™ after each
l1ine number, and it should
run as a program.

100 DISPLAY AT(12,1)ERASE AL
L:"Input file? DSK":"":"0Outp
ut file? DSK"

110 ACCEPT AT(12,16):A$:: A
CCEPT AT(14,17):B$

120 OPEN #1:"DSK"&AS$, INPUT :
: OPEN #2:"DSK"&B$,VARIABLE
163, QUTPUT

130 LINPUT #1:M$

140 IF POS(M$,CHR$(13),1)=0
THEN LINPUT #1:M2% :: M$=M$&
M2¢ :: GOTO 140 ELSE M$=SEG$
(M$,1,LEN(MS$)-1)

150 X=POS(Ms$,"™ ",1):: Y=VAL(
SEG$(M$,1,X-1))

160 PRINT #2:CHR$(INT(Y/256)
J&CHRS$ (Y-256% INT(Y/256))&"™!'"
&SEG$ (M$,X+1, 255)&CHR$ (0)
170 IF EOF(1)<>1 THEN 130 EL
SE CLOSE #1 :: PRINT #2:CHRS$
(255)&CHR$(255):: CLOSE #2

I had a question from a
friend who wanted to key in
some pieces of information
in Funnelweb and then sort

them. Trouble was, the data
tended to be more than 80
characters long. Therefore
it was saved as two or more
separate records, which a
sort scrambled into garbage.

So, how do you create and
sort long records of varying
length? The easiest way is
to let the disk drive con-
troller do it for you. Just
type whatever you want, as
long as you want, then save
it as a separate file, using
the first several letters of
the text as the filename.
Don’t include any spaces or
periods, of course. If you
are using numbers as file-
names, pad them with leading
zeros to all the same length
such as 001 to 999 or 0001}
to 1000.

The drive controller will
sort those files alphabetic-
ally, and this little pro-
gram will print them in that
sequence -

100 CALL CLEAR ::
):: OPEN #1:"DSK1
ELATIVE, INTERNAL

:D$,A,B,C

110 INPUT #1:M$,A,B,C :: IF

A=2 AND C=80 THEN X=X+1 :: F
$(X)=M$

120 IF LEN(M$)<>0 THEN 110 E
LSE CLOSE #1 :: OPEN #2:"PIO
”

DIM F$(127
.7, INPUT ,R
:: INPUT #1

130 FOR J=1 TO X :: OPEN #1:
"DSK1."&F$(J), INPUT
140 LINPUT #1:M$:: IF ASC(M

$)<127 THEN PRINT #2:M$

150 IF EOF(1)<>1 THEN 140 EL
SE CLOSE #1

160 NEXT J :: STOP

This method is limited by
the fact that you can only
put 127 files on a disk, but
if you have more than one
drive you can have 127 on
each one, and use this pro-
gram -

100 DISPLAY AT(12,1)ERASE AL
L:"How many drives?" :: ACCE
PT AT(12,18)SIZE(1)VALIDATE(
NUMERIC):D :: DIM F$(510)

110 FOR J=1 TO D :: OPEN #1:

Ke;

"DSK"&STR$(J)&". ", INPUT ,REL

ATIVE, INTERNAL :: INPUT #1:D

$,A,B,C

120 INPUT #1:M$,A,B,C :: IF

A=2 AND C=80 THEN X=X+1 ::

$(X)=M$&"*"&STR$ (J)

130 IF LEN(M$)<>0 THEN 120

140 CLOSE #1 :: NEXT J :: CA

LL LONGSHELL(X,F$()):: OPEN

#2:"PI10O"

150 FOR J=1 TO X

(J),™ =" 1)

160 OPEN #1:"DSK"&SEG$(F$(J)

S, WL, 1)&" . "&SEGS(F$(J),1,W-1

)

170 LINPUT #1:M$:: IF ASC(M

$)<127 THEN PRINT #2:M$

180 IF EOF(1)<>1 THEN 170

190 PRINT #2:"" CLOSE #1

:: NEXT J

200 SUB LONGSHELL(N,N$())

210 D=N

220 D=INT(D/3)+1 :: FOR I1=1

TO N-D :: IF N$(I)<=N$(I+D)T

HEN 250 :: T$=N$(I+D):: J=1I

230 N$(J+D)=N$(J):: J=J-D ::
IF J<1 THEN 240 :: IF T$<N$

(J)THEN 230

240 N$(J+D)=T$%

250 NEXT 1

260 IF D>1 THEN 220

270 SUBEND

F

W=POS(F$

A recent article in a news
letter reminded me of some-
thing [knew long ago but
had forgotten. If you have
been entering a lot of data
into a disk file and the
program crashes, all is not
lost. Just enter CLOSE #1 in
command mode and your data
will be saved. 1f you get a
FILE ERROR message, just try
CLOSE #2 and so on until you
hit the right one.

Many user group newsletter
editors wuse a program that
puts a code on the address
label to indicate when mem-
bership expires. Trouble is,
no one ever reads their add-
ress label!

This quick & dirty little
program requires you to pre-
pare your address file in
TI-Writer or Funnelweb with
name on first line, address
on second, city and state on

third, the fourth line blank
or you can use it for addi-
tioal address, number of ex-
piration month on fifth line
and year on sixth.

Continue
with other addresses, making
sure you use six lines for
each. Such a file is easy to
update with TI-Writer. The
program will read addresses
from that file and print an
address label for everyone
whose membership has not ex-
pired.

It will also option-
ally print a warning label,
which you can slap conspic-
uously on the front page of
the newsletter, if the sub-
scription currently expires
or expires next month. If
you give a grace period for
renewal, you can choose to
print an address label and a
warning label for those who
are one month or two months
aoverdue.

100 DISPLAY AT(1,4)ERASE ALL
:"REMINDER LABEL PRINTER"
110 DISPLAY AT(3,1):"Address
file? DSK™ :: ACCEPT AT(3,1
8):F¢ :: OPEN #1:"DSK"&F$, IN
PUT
120 DISPLAY AT(5,1):"Printer
? PIO™ :: ACCEPT AT(5,10)S1Z
E(-20):P$:: OPEN #2:P$
130 DISPLAY AT(6,1):"Emphasi
zed print? (Y/N)™ :: ACCEPT
AT(6,25)VALIDATE("YN™)SIZE(1
J:E$:: IF E$="Y"™ THEN PRINT
#2:CHR$ (27)&"E"™;
140 DISPLAY AT(7,1):"Doubles
truck print? (Y/N)" :: ACCEP
T AT(7,27)VALIDATE("YN")SIZE
(1):D$:: IF D$="Y" THEN PRI
NT #2:CHR$(27)&"G";
150 DISPLAY AT(9,1):"Print p
ending expiration notice?
(Y/N)™ :: ACCEPT AT(10,15)S
IZE(1)VALIDATE("YN") : PEND$
160 DISPLAY AT(11,1):"Print
current expiration notice
? (Y/N)™ :: ACCEPT AT(12,15)
SIZE(1)VALIDATE("YN") :CURS
170 DISPLAY AT(13,1):"Print
past expiration notice
? (Y/N)"™ :: ACCEPT AT(14,15)
SIZE(1)VALIDATE("YN") : PAST$

180 DISPLAY AT(15,1):"Print
two months past expira
tion notice? (Y/N)" :: ACCEP
T AT(16,26)SIZE(1)VALIDATE("
YN™):PAST2¢
190 DISPLAY AT(18,1):"Curren
t year?" :: ACCEPT AT(18,15)
tY :: Y=Y+(Y>39)%1900 :: Y=Y
-92)
200 DISPLAY AT(20,1):"Number
of month?" :: ACCEPT AT(20,
18)VALIDATE(DIGIT):M :: X=M+
Yx12
210 IF EOF(1)=1 THEN 330 ::
LINPUT #1:A$:: IF ASC(AS$)=
28 THEN 330

1

220 LINPUT #1:B$:: LINPUT #
1:C$:: LINPUT #1:D$:: INPU
T #1:M,Y :: Y=Y+(Y>99)%1900

s Y=Y-92 :: M=M+Y*12
230 IF M>=X THEN GOSUB 280
240 IF M=X AND CUR$="Y" THEN
GOSUB 290 :: GOTO 210
250 IF M=X+1 AND PEND$="Y" T
HEN GOSUB 300 :: GOTO 210
260 IF M=X-1 AND PAST$="Y"
HEN GOSUB 280 :: GOSUB 310
: GOTO 210
270 IF M=X-2 AND PAST2¢="Y"
THEN GOSUB 280 :: GOSUB 320
:: GOTO 210 ELSE GOTO 210
280 PRINT #2:A$:B$:C$:D$:"":
""" :: RETURN
290 PRINT #2:A$:"YOUR SUBSCR
IPTION EXPIRES THIS™:"MONTH.
PLEASE RENEW NOW SO YOU":"W
ILL NOT MISS ANY ISSUES":™ =
:™ "™ :: RETURN .
300 PRINT #2:A$:"YOUR SUBSCR
IPTION EXPIRES NEXT™:"MONTH.
PLEASE RENEW NOW SO YOU™:"W
ILL NOT MISS ANY ISSUES™:" "
:™ ™ :: RETURN
310 PRINT #2:A$:"YOUR SUBSCR
IPTION EXPIRED LAST™:"MONTH.
PLEASE RENEW NOW SO YOU™:"W
ILL NOT MISS ANY ISSUES™:" "
:™ "™ :: RETURN
320 PRINT #2:A$:"YOUR SUBSCR
IPTION EXPIRED™:"TW0O MONTHS
AGO":"THIS WILL BE YOUR LAST
ISSUE™:"UNLESS YOU RENEW PR
OMPTLY":"™ ™ :: RETURN
330 CLOSE #1 :: END

-

Memory just about full -

Jim Peterson

The Art of Assembly — Part S
Useful Subroutines
By Bruce Harrison

Copyright 1991, Harrison Software

This month's article will be relatively short, but it’s accompanied by a
large dose of source code (see below). The source code for today is all
subroutines, one of the High level variety (a subroutine that calls other
subroutines) and several smaller ones.

The major purpose in this source code is to get user input from the
keyboard, display it stroke by stroke on the screen, then when the ENTER key
is pressed, to report out what's on the screen into a string at one specific
location in memory. In effect, this is like the Extended Basic ACCEPT AT
function for a string variable. The version shown was developed for use in
our Golf Score Analyzer program. In this listing, however, we've left out
the lines that deal with the character offset for Extended Basic. Thus this
subrcutine can be easily integrated into any Option 3 E/A type prcgram. The
label names used reflect its "Golf" origins to some extent, as the name of
the big subroutine CRSIN. short for Course Namne Input. In that program, this
was actually used for any occasion when we wanted to accept a string of
characters from the keyboard.

There is an auxiliary subroutine which we call CLRFLD (cle=ar field! alsc
included in the sidebar. That is used before CRSIN, to clear the screen area
into which we want user input. One can also use CRSIN without the CLRFLD, so
that something already in that screen location can be edited or accepted as a
default entry.

Let’s say that we want to accept a 20 character string with a cleared
field at Row 12, column S of the display screen. Here's what tie main
program would need to do to invoke the subroutines:

LI RC,SCRWID»11+4 Set RO tc Row 12, col 5

L1 R4,20 Numter of characters in R4

BL @CLRFLD Clear 20 characters at row 12 col S
BL @CRSIN Accept the input string

Note that the subroutine CLRFLD restores th= origiral value in RO and
retains the value in R4 upor exit, so the main prcgram need not relcad thcocoe
two registers before calling CRSIN.

Also plesse note that this subroutine will not work if RC is zero. I[f
it's set to a value of 1, the accept will happen at Rcw 1, Column 2 cf the
screen. The adept student may modify it sc it would work at the screan
origin, but we've never found it necsssary (or desirable) to accept 3 string

at that screen position.

Before we get further into how this sutrcutine CREIN works, we'd better
deal sgain with that business of staclking the return scddress fcr this High
leve! caze. What's shown here assumes that your program contains cther High
level subroutines and tha! scmewhere early in the program you'd pointed RiS
at a stack locaticn in memory. |If this were the only high level subrcutine
in your program, vcu cculd simply stash R1! in RIS itself, sc the opening
line in CRSIN would read:

(YR

CRSIN MOV R11,R1S
And the exit point would be:
CRIX B *R1S Branch to the address in R1S

The other possible case is that you’'d have CRSIN as the first High level!
subroutine in your program, in which case CRIX would be a label only, and
would be followed by the short piece of code shown at label~ SUBRET.

The subroutine CRSIN uses three others to do its work. For normal
keystroke inputs, it uses CURFRC to put the cursor on-screen, then uses KI2
to accept your keystroke into R8. When the input keystroke is one of the two
"arrow” keys Function-S or Function-D, the special repeat-key subrcutine KIZA
is used. Using that subroutine allows the curscr to be moved through the
input field by holding down the arrow key. There is a built-in delay in this
subroutine, so the cursor will not fly to the end of the field, but move in
human—-speed steps. The subroutine exits immediately if you release the key.
The delay imposed is modified by the subroutine, so the delay after the first
curzor move is cenziderably less than the first move. Moving the byte at
location ONE to lczation KI2A+2 clears the left byte of the immediate value
that follows the label KI2A. When you exit by releasing the arrow key, the
main subroutine re-sets the delay factor for a first arrow move.

This icdea of having the coce modify itself while you're using it is
tricky, and many programmers shun its use. We considered it a worthwhile
thing to do in this instance, to make the movement of the cursor more |ike
what the Tl user is accustomed to seeing.

Now let's start at the beginning of the subroutine. Some important v
things happen there. On entry, after stashing the return address, we clear
cur insert flag, sc that we’'re sure insert mode won't be on when we cdidn’t
ask for it.

Next, we stash the starting value of RO, then move back one location and
place an edge character on the screen. We then increment RO, add the length
cf the allowed string to it, and write another edge character. They are put
there so our subroutine will easily be able to distinguish the two ends of
the allowed input field. Ve also save this position of RO (one beyond the
last character to te accepted) for use later on. .When operating in most
modes, the edge character looks just like a space. This is not true when
entering from E/A Zption 3, in which case the edge character is a small
square. You can redefine It to look like a space by: .

L1 RO,32%8+>800 Point at space character .
LI R1,TEMSTR Use our temporary string buffer
LI R2,8 Eight bytes to read

BLWP @VMBR Read eight bytes from space

S F2,RO Back ug to edge character

BLWP @vMBW Write eight bytes

Finally in this opening section, we subtract R4 from RC so we're at the
first character spst in the field, then stash away the value in P4 for use
later.

. The section of code starting at CREICA Is the main operating lcop of this
subroutine. The first order of business is to grab the character present at
this spot on the screen and stash that at location ALTKEY. This will become
the character that alternates with the cursor while the cursor i{s at this
position.

The very next thing is to call the little subrcutine CURFRC. CURFRC is -
there so that every time the cursor moves to a new input location, the cursor
will appear on-screen, and start a new cycle of blinking. Were this not
done, the cursor could become invisible after some of your keystrokes, and we
find that disconcerting. Now we call the subroutine KI2 which simply keeps
blinking the cursor, alternating with whatever character was there before,
until you strike a key on the keyboard.

There are some checks now perormed on the value of the keystroke reported
into R8 by KI2. The cnly one of these that's not immediately obvious is the
check for the value 1S. That's the ASCI! code for Function-9, and behaves
the same as if ENTER were struck. In its application within the Golf Score
Analyzer, the key combination Functicn-9 gets you back to the part of the
prcgram which called CRSIN, which then uses the fact that you exited CRSIN by
Function-9 to escape gracefully from whatever function you were into. If you
don’t need that feature, you can omit the two lines ClI R8, 1S and JEQ
CRSDMY . .

We should at this point admit that this source code has not been
subjectecd to a thorough "scrubdown" effort. The two lines following that
compare to 15 and its jump instruction may be unnecessary. We're not going
to stop and make that change in the program, but will leave as an excercise
for the student the determination. As it {s, the subroutine dces werk, even
if it does contain a picece of sloppy ccding. Your author is human, like ycu.

There's another piece of inelegant ccde in here, concerning label CRSDMY.
That stands for DUMMY! During the development of this subroutine, we got
into the situation where some of our jumps to label CRSIX were out of range.
Ve could have corrected that situation by adding labels, reversing logic, and
including some B @CRSIX instructions. Instead, we wedged in that phony
label CRSDMY, which simply makes a second jump to CRSIX. This is really not
the soundest practice, but it’'s a quick, cheap, and ugly way out of a
problem. VWe're not proud of it, but it does assemble and work correctly, so
we're leaving it alone. Whenever your author starts to get too elegant with
his programming, he remembers a lesson taught by his first mentcr in
programming the Tl, a man named George R. Hendershot. The lesscn was "First,
get it to work!" One might add a corollary to that, such as "If it ain’t
broke, don’t fix it!"

At label CRSC4, we see whether the insert key Function-2 has been struck.
If it hasn't, we move on, and if it has, we set the insert flag (INSFLG) and
go back to CREI0. Once the insert key has been struck, characters entered
from the keyboard will be inserted at the current cursor positicn until
insert is cancelled by hitting the arrow keys, Function—-9, or EN

The next important keystroke the program looks for is ENTER. |If that's
been struck, we exit the subroutine. Given it’'s not the ENTER key, we check
for Function—-1. |[If that's been struck, we delete the character at the
current cursor position and move all the characters right of thst position in
the field one spot left. Next there's one final check to see if some other
key with an ASCI! code less than the spacebar's 32 has been struck. If so,
we ignore that keystroke.

g

Next there's a short section that converts lower case characters to upper
case. This may be omitted if you don't need it.

At label CRSI1, we check to see whether the insert flag is set by moving
that word into Rl and jumping ahead if the word was zero. If insert was in
effect, we perform the steps between JEQ CRSI1A and the label CRSI1A.

First, we write the character that was at the cursor position to the screen,
then move our variable word ENDOC into R2 and subtract RO from {t. This
makes R2 equal the number of characters between the current cursor position
and the edge marker at the end of the field. Now we use TEMSTR, which will
be the location for the string input when we're finished, as a temporary
buffer to hold all the characters from the cursor’'s position to the end of
the field. Ve then DEC R2, so that the writing back of these characters
will not extend to the edge character. If R2 has become zero, that means
we're at the last position in the field, so we skip ahead. Now, we increment
RO so we're writing to the next screen spot, and perform a BLWP @VMEW to
write the characters back to the screen one space to the right. Finally we
decrement RO so it points to where it was when we started this secticn of
code, and then proceed at label CRSI1A to write the struck key's character to
the screen.

Had we not been in insert, we would have jumgad to here and put the
character on the screen. After writing cre character, we increment RO so it
points at the next spot, check to see if the character we've reached {5 an
edge charscter, and jump back if it is, so we don't exceed the field limit.

The rest is pretty mundane stuff, simply handling the movement cf the
cursor in response to the arrow keys, so we'll skip ahead to CRS!Y, where
this string of characters gets "repcrted out” to the label TEMSTR.

The first order of business is to write back the ALTKEY character to the
screen, then set RO to point at the last spot in the field. Mext, we ge: the
field length from location SAV4 intc R2. We now start examining the
characters in the field in reverse order, looking for a ncn-space charac:ier,
and decrementing the count in R2 each time we find a space. This eliminates
trailing spaces from the length of the reported string. Cnce we’'ve fcund a
non-space, we have the length of the string in R2, so we swap the bytes in
R2, place the length tyte at locaticn TEMSTR, re-swap so RZ has the length as
a word value. At this point we check to see if a null string (all spaces) is
in the field and get out of here if that's so. Otherwise we set R! to pocint
to TEMSTR+!, and read the string’'s content from the screen via a BLWP @VMER.

When we finish, TEMSTR contains one byte at the beginning to indicate
length of the string, plus the string’'s content. From here, the main prcgram
can take the string at TEMSTR and move it to the deired memory !ccaticn via
the small subroutine MOVSTR, which was included in Part 2 of this series.

As the saying goes, use it in good health. This subroutinec can make ycur
life a bit easier when you are writing a program. If it does. trkat, in
addition to adding to your knowledge of Assembly programming, then it's been
worth the effort.

In cur next article, we'll discuss, among other topics, the business of
entering and returning gracefully from programs. We'll alzo discuss scme of

éheiramificatlons of working with Assembly programs started from E.::tended
asic.

* SUBROUTINES WHICH MAY PROVE USEFUL
'+ DESIGNED FCR USE IN OPTICN 3 E/A PROGRAMS

* CODE BY BRUCE HARRISON — PUBLIC DOMAIN

» 22 JUNE 1991

»

* REQUIRED REFERENCES

_ REF KSCAN,VMBW,VMBR, VSBV, VSBR

*

» REQUIRED EQUATES

STATUS EQU >837C

KEYADR EQU >8374

KEYVAL EQU >8375

*

» THE FOLLOWING SUBROUTINE ACCEPTS A STRING OF CHARACTERS STARTING AT LOCATION
* POINTED TO BY RO, NUMBER OF CHARACTERS TO ACCEPT MUST BE IN R4

*» INPUT STRING IS PLACED AT LOCATION TEMSTR
»*

CRSIN
MOV Rll,*RIS+ STACK RETURN ADDRESS
CLR @INSFLG CLEAR OUR INSERT FLAG
MOV RO, @PGNUM STASH RO IN MEMORY LOCATICN
DEC RO DECREMENT RO
MCVB ©ELCE,R! PLACE EDGE CHARACTER IN LEFT BYTE R1
3LWP @vsBw WRITE EDGE CHARACTER TO SCREEN
INC RO RESET RO.TO ORIGINAL VALUE
A R4,RO ADD NUMBER OF CHARACTERS TO ACCEPT
BLWP QVSBW WRITE AN EDGE CHARACTER TO SPOT BEYOND FiELD
MOV RO,BENDOC SAVE THIS LOCATICN IN MEMORY
S R4,RO RESET RO TO CRIGINAL VALUE
MOV R4,@SAva STASH R4 IN MEMCRY
CRSIOA BLWP @VSER REAC THE CHARACTER POINTEC TO BY RC
MOVB R1,8ALTKE STASH THAT CHARACTER AT LOCATION ALTKEY
CRSIC BL @CURFRC FCRCE THE CURSCR ONTO THE SCREEM
BL @Ki2 USE THE SCANNING SUBROUTINE WITH FLASHING CURSOR
Cl R8,2 HAS RIGHT ARROW EEEN STRUCK? .
JEQ Cl IF S0, JuMP
Cl R8,8 HAS LEFT ARROW BEEN STRUCK?
JEQ CRSBK IF 80, JuMP
Cl R8, 10 DOWN ARROW?
JLT CRSC4 IF LESS, JuMP
Cl R8.1S HAS FUNCTION-9 BEEN STRUCK?
JEQ CRSDMY IF €0, JuMP
Cl R8,13 HAS ENTER KEY EEEM STRUCK?
JLT CRSDMY IF LESS, JUMP
CREC4 ClI R8,4 HAS FUNCTION-2 (INSERT) BEEN STRUCK?
JNE CRSENT IF NOT, JUMP
INC @INSFLG ELSE SET INSERT FLAG
JMP CRS!0 THEN JUMP BACK
CRSENT CB @KEYVAL,2ENTERV HAZ ENTER BEEM STRUCK?
JEQ CREDMY IF 80, JUMP
Cl R8,.3 HAS FUNCTICN-! (CELETE! BE=N STRUCK?
JEQ CRSCEL IF S0, JUuMP
Cl R8,32 SPACE BAR
JLT CRSIO IF LESE, JuMP

* THE FOLLOWING FIVE LINES ARE NESDED CNLY IF ONE WANTS LOWER CASE
* CHARACTERS CONVERTED TO UPPER CASE. |IF MNOT, OMIT THESE FIVE LINES
Cl R8, 122 COMPARE TO LOWER CASE 2

b

JGT CRSIO IF GREATER, JUMP

Cl R8,97 COMPARE TO LOWER CASE A

JLT CRSI1 IF LOVER, JUMP

SB @ANYKEY,@KEYVAL ELSE SUEBTRACT >20 FRCM KEYSTROKE
CRSI1

MOV @INSFLG,R! TEST IF INSERT FLAG CN

JEQ CRSI1A IF NOT, JUMP

MOYB @ALTKEY,R1 ELSE WRITE CURRENT CHARACTER

BLWP avsBw TO CURRENT SCREEN POSITION

MOV ©@ENCOC,R2 MOVE LIMIT ADDRESS INTO R2

S RO,R2 SUBTRACT CURRENT RO POSITION

LI Ri1,TEMSTR POINT TO TEMSTR LCCATION

BLWP QVMBR READ 'CHARACTERS FROM SCREEN

DEC R2 DECREMENT CHARACTER COUNT

JEQ CRSI1A IF R2 1S ZERO, NO INSERT - WE'RE AT LAST POSITION

INC RO INCREMENT SCREEN POSITION

BLWP @VMBW WRITE CHARACTERS BACK

CEC RO POINT BACK CNE SPOT
CRSI11A MCVB @KEYVAL,R1 MOVE THE KEY STRUCK INTO LEFT BYTE R1

BLWP @vsBw WRITE KEY VALUE TO SCREEN

INC RO POINT AT NEXT CHARACTER PCSITION

BLWP @VSBR READ CHARACTER THAT'S THERE

CB Rl,8EDGE IS THIS AN EDGE CHARACTER?

JNE CRSIOA IF NOT, JUMP

DEC RO ELSE BACK UP ONE CHARACTER

JMP CRSIOA THEN BACK FCR ANOTHER KEY INPUT
CRSRT MOVB @ALTKEY,R1 TAKE CURRENT SCREEN CHARACTER INTO LEFT BYTE Rl

BLWP @vsBw WRITE CHARACTER TO SCREEN

CLR @INSFLG CLEAR THE INSERT FLAG

INC RO MOVE TO NEXT SPOT

BLWP @VSBR READ THE CHARACTER THERE

CB R1,8EDGE 1S THAT EDGE CHARACTER?

JEQ CRSRT1 IF S0, JUMP

MOVB R1,@ALTKEY ELSE STASH CURRENT SCREEN CHARACTER

BL @CURFRC FORCE CURSOR CNTO SCREEN

BL @KI2A GO SCAN KEYBOARD

CB @KEYVAL,@RITEV 1S RIGHT ARROW STILL HELD DOUN"

JEQ CRSRT IF 80, KEEP GOING RIGHT

CB @KEYVAL,@BNOKEY HAS NO KEY BEEN STRUCK?

JEQ CRERT2 IF 80, JuMP
“RSRT1 DEC RO BACK TO PREVIOUS SPOT

CRSRT2 MOVB @ONOFF ,@K12A+2 RESTORE DELAY CONSTANT
MOVB @ALTKEY,R1 GET CHARACTER INTO LEFT BYTE R1

BLWP @vsBwW WRITE TO SCREEN

JMP CRSIO THEN JUMP BACK FOR ANOTHER KEY
CRSBK MOVB @ALTKEY,R1 GET CURRENT CHARACTER IN R1

BLWP @vsBw WRITE TO SCREEN

CLR B@INSFLG CLEAR INSERT FLAG

DEC RO BACK ONE SPOT

BLWP @VSER READ CHARACTER FROM SCREEN

CB R1,0EDGE 1S THAT EDGE CHARACTER?

JEQ CRSBK1 IF €0, JUMP

MOVB. R! ,BALTKEY ELSE STASH CHARACTER AT ALTKEY

BL @CURFRC FORCE CURSCR CNTO SCREEMN

SL @eKlI2A GO GET KEYSTROXE

C8 OKEYVAL,@LEFTV IS LEFT ARROW STILL HELD DOWN?

JEQ CRSBK IF 80, GO BACK AGAIN

CB - @KEYVAL,@NOKEY HAS NO KEY BEEN STRUCK

JEQ CRSRT2 IF 80, JuMP

17

CRSBK1 INC RO MOVE TO NEXT SPOT

JMP CRERTZ THEN JUMP
CRSDMY JMP CRSIX THIS IS A DUMMY JUMP TO KEEP JUMPE [N RANGE
CRSDEL. MOV RO,R7 STASH RO IN R7 .
CLR @INSFLG CLEAR INSERT FLAG, SINCE WE'RE DELETING
MOV @ENDOC,R2 END OF FIELD ADDRESS IN R2
S RO,R2 SUBTRACT CURRENT CHARACTER ADDRESS
INC RO POINT TO NEXT CHARACTER
DEC R2 DECREMENT R2 COUNT
JEQ CRSD1 IF R2 ZERO, PRINT SPACE — WERE AT LAST POSITION
L1 R1,TEMSTR POINT R1 AT TEMSTR FOR TEMPCRARY STORAGE
BLWP @VMER READ CHARACTERS INTO LOCATION TEMSTR
MOV R7,RO " PUT BACK RO
BLWP @VMBW WRITE CHARACTERS FROM TEMSTR TO SCREEN

CRSD1 MOVB @ANYKEY,R1 PUT A SPACE IN LEFT BYTE Rl
MOV @ENCCC,RO GET LIMIT SPOT INTO RO

DEC RO DECREMENT BY ONE
BLWP @VSBW: WRITE A SPACE TO SPOT JUST ESFORE LIMIT
MOV R7,RO GET RO BACK AGAIN

CREDO B ACRSICA BRANCH BACK TO BEGINNING

CRSIX MOVB @ALTKEY,R1 WRITE CURRENT CHARACTER TO SCREEN
BLWP @vEBW
MOV @SNDCC,RO SET LIMIT PCSITION IN RO

DEC RO DECREMENT BY ONE
MOV @SAv4,R2 MOVE MAX NUMBER OF CHARACTERS INTO RZ
CRSIX1 BLWP @VSER READ THE CHARACTER AT CURREMT RO PCSITICN
CB Rl ,@ANYKEY IS THAT A SPACE?
JNE CRSIXX IF NOT, WE'VE REACHED CONTENT OF STRING
DEC RO ELSE MOVE BACK ONE SPCT
DEC R2 ’ DECREASE CHARACTER COUNT BY CNE
JGT CRSIX1 IF GREATER THAN ZERO, JUMP BACK
CREIXX MOV @PGMUM,RO GET ORIGINAL RO PCSITION BACK
SWPE RZ PUT CHARACTER CCUNT IN LEFT BYTE R2
MOVB RZ,@TEMSTR FLACE THAT AT TEMSTR
SWPB R2 REVERSE R2Z AGAIN
JEQ CRIX IF R2=0, JUMP
LI R1,TEMSTR+l ELSE SET R1 TC POINT TO STRING CO"JTEHT STORAGE
CRSIXZ BLWP 2VMBR READ THE STRING FRCM THE SCREEN
CRIX B ©SUBRET RETURN FROM THIS SUEROUTIMNE
*

*» SUBRET IS SHOWN HERE FOR REFERENCE. NORMALLY IT'S MADE A PART OF THE FIRST
* HIGH-LEVEL SUBRCUTINE USED IN THE mm

SJBRET DECT RIS
l"D’V *R15,R11
RT

»
* THE FOLLOWIMG SUBRCUTINE GETS KEYSTRCKES FRCM THE KEYPOARD WHILE ALTERNATINCG
* THE CURSOR WITH A CHARACTER STASHED AT ALTKEY
* THE LIMES LiMI 2 AND LIMI O ALLOW THE SENSING OF FUMCTION-QUIT AND ALSC ALLT
* A BEEP VIA GPLLNK TC OPERATE PROPERLY
-
K12 CLR @STATUS KEY—!M WITH ALTERNATIMG
BLWP 3KSCAN CHARACTER AMD CURSCR
LIMI 2 ACTIVATE INTERRUPTE
LMl O SHUT OFF INTERRUPTE
CEC R ENTER AF‘TER R4 SET TO :020C
JEQ CHNG AND Rl TO > 1ECO AND VSEW

C8 @ANYKEY,@STATUS HAS A KEY BEEM STRUCK?

s

JNE K!2 IF NOT, RE-ECAN KEYBOARD
MOV @KEYADR,R8 ELSE PUT KEY'S VALUE IN R8
RT

THEN RETURN
CHNG ClI R1,>1EQC 1S Rl SET TO CURECR CHARACTER?
JEQ L1 IF SO, JuMP '
L! R1, >1ECO ELSE SET LEFT BYTE R1 TO CURSOR
BLWP @vsBvw WRITE CURSOR TO SCREEN)
MOVB @ONOFF,R4 PLACE TIMING IN LEFT SYTE R4
JMP KI2 GO BACK TO SCANNING KEYBOARD
L1 MOVB @ALTKEY,R1 PLACE ALTERNATING CHARACTER IN LEFT BYTE Rl
MOVB @ONOFF+1,R4 PLACE ALTERNATE DELAY IN LEFT BYTE R4
BLWP @vsBw WRITE CHARACTER TO SCREEN
JMP KI2 GO BACK TO SCANNING KEYBOARD

THE FOLLOWING 1S A SPECIAL KEY INPUT FOR REPEATING OPERATION CF
THE RIGHT AND LEFT ARROW KEYS
THIS SUBROUTINE INCLUDES SELF-MODIFYING CCDE

® X K X X

KIZ2A LI RS, >0280 LOAD RS WITH DELAY FACTCR
KI2B CLR @STATUS CLEAR GPL STATUS
BLWP @KECAN - SCAN KEYBOARD .
CB @KEYVAL,@NOKEY HAS NO KEY BEEN STRUCK?
JEQ KI2C IF €0, JUMP
LIMI 2 SET INTERRUPTS ON
LIMI C SET INTERRUPTS OFF
CEC RS DECREMENT DELAY COUNTER
JNE KI2B IF NOT ZERO, SCAN AGA!N
MOVB QONE,@K12A+2 ELSE MODIFY DELAY COUNT
Ki2C RT THEN RETURN
»

* THE FCLLOWING SUBROUTINE FCRCES THE CURSCR CHARACTER CONTO THE SCREEN
»

CURFRC LI R1,>1ECO PUT CURSCR CHARACTER IN LEFT BYTE R1

LI R4,>0100 SET DELAY FACTOR IN R4
BLWP @veBw WRITE CURSOR TO ECREEM
RT RETURN

FCLLOWING SUBROUTINE CLEARS AM INPUT FIELD .
BEGINNING AT RO POSITION, EXTENDING NUMBER OF CHARACTERS IN R4

= ®x x x

CLRFLD ‘
MOV R4,R2 PLACE VALUE OF R4 IN R2
MOV RO,R3 SAVE RO
MOVB @ANYKEY,R1 PUT SPACE CHARACTER [N LEFT BYTE CF RI
CLRFL1 BLWP @VSBW WRITE ONE SPACE IN FIELD ‘
INC RO POINT TO NEXT CHARACTER SPOT
DEC R2 DECREMENT COUNT OF SPACES -
JNE CLRFL1 IF NCT ZERO, REPEAT WRIT!NG CPERATIOMN
MOV R3,RO REPLACE ORIGINAL VALUE OF RO
RT RETURN -

»

* REQUIRED DATA SECTION

* THE FOLLOWING DATA SOURCE LINES ARE REQUIRED SY THESE SUBRQUTIMNES
*

ONE OATA 1

ENDOC DATA C

INSFLG DATA O

PGNUM DATA O

SAV4 DATA O

1q

ONOFF DATA >0201
EDGE BYTE »IF

ANYKEY BYTE >20

NOKEY BYTE >FF

ALTKEY BYTE O

ENTERV BYTE 13

RITEV BYTE 3

LEFTV BYTE 8

TEMSTR BSS 41 R

* THE NUMBER IN THIS BSS MUST BE ONE MCRE THAN THE LARGEST STRING LENGTH
* EXPECTED IN THE PROGRAM'S EXECUTION

11 Stcnehill Read
Roxwell
Chelmsford

CM1 4PF

SYSTEM FOR SALE. !l

EXPANSION SYSTEM (RS232/32k MEM / DISK)
EDITOR / ASSEMBLER

MULTIPLAN

PASCAL

D-BASE

MODEM

ALLFOR £150............. BUYER COLLECTS.

PHONE CHELMSFORD —— 248137.

E.J.STOCKS

20

YUV TC RCG.B CONVERSION.

I suppese the first question has to be why do people use Y,U,V cclour
cemponents rather than the easier R,G,B components and how did this
standard come about?

In the beginning there was black and white. The B.B.C. looked at what
was created and said it was good! The decision to send the brightness or
luminance of the scene was rushed into without any thought of future
compatibility. This is the stem from where Y,U,V came from.

A black and white system sends the luminance of the scene along with
some pulses called synchronisation. These pulses tell the T.V. screen or
monitor when to start a new line and when to start at the top of the screen
again.

Now. when the thought of colour came,the people in power decided
against sending the brightness of the three primary colours. This was due to
the fact that the amount of radio frequency space is limited and would take up
three times as much room in the radio spectrum. There was another reason to
not use this method and this was compatibility. Sending three pictures, one in
biue. one in red and one in green, was incompatible with all black and white
sets and sending the old black and white image would be incompatible with the
new colour sets.

Problem, what do you do?

It was by luck that the old black and white cameras had no blocking
effects on any colour. In fact they read the scene better than the human eye
could. They summed up the total brightness of each colour from each position
in the picture and by trial and error and one or two laboratory tests the
equation for the luminance of any point in the scene was found to be:

Y=03R + 059G + 0.11B

This is how well our human eye responds to the different colour
frequencies. Red and blue are at each end of our vision so they are less
powerful and green is sat in the centre so giving a stronger response.

- We can now have three cameras reading the primary colours and we
can reconstruct what the luminance signal should be. Therefore by using the
primary colours and a bit of circuitry we have a signal which will be compatible
with the old black and white system. Also on this Y signal will be the
synchronisation pulses as before.

2

YUV TO RG.B CONVERSION.

Cne preblem with the above is that it still does not give us colour if we
require it. Thus two more signals were carefully created from the three primary
colours so that they could be manipulated with the Y luminance signal to
retrieve the three primary colours on a colour set or could be ignored on the
black and white set. These other two signals are referred to as the U and V or
I (in phase) and Q (quanrature phase). The equations are as follows:

l=U=06R -028G - 0328B
Q=V=021R - 052G + 0318

Now what happens is that the Y signal is sent as normal and the U and
V signals are cleverly combined and sent at a different sub carrier and finally
the sound is added. The whole lot of this is then modulated up to some daft
frequency to allow the use of small aerials on roofs.

All T.V. sets contain circuitry to demodulate the signal then strip off the
sound, U, V, and then Y components. The Y,U,V signals are mixed to produce
the R.G,B signals. These are then amplified and sent to three electron guns at
the back of the cathode ray tube. These guns are all the same and just emit a
stream of electrons which is proportional to the current supplied to them. The
colour is produced by phospherous elements on the screen. The three guns
are all signtly out of atignment which means when the magnetic coils try to
focus on a pont on the screen they will be fractionally out. This allows red.
green, and blue phosphor to be in a mosaic on the back on the screen. One
gun will hit all of the blue elements, one will hit all the red and so on.

This 1s why Texas Instruments used Y,U.V. The 4A computer was to be
used on T.V. sets and Y,U,V needed to be sent just like with the three colour
T.V. cameras. R,G.B would have been of no use and was very little thought
about until computer monitors were specifically being made. Todays computer
systems use R,G,B which goes directly into the monitor, gets amplified. and
sent to the guns without extra Y.U.V to R,G,B conversion. The interesting thing
is that you could take your 4A to any television transmitting station, plug in the
Y.U.V signal into the modulator and hey presto the coiour bar screen would be
transmitted to millions of viewers around the U.K.

Decwn to business. To make the Y,U,V to R,G.B converter a few things
heed to be done. First of all the synchronisation signal needs to be taken out of
the Y channel. This signal is then fed into the monitor being used. Secondly the
Y.U.V components need to be mixed to make R,G.B. To find out how they are
mixed, rearrange the equations above and solve in terms of R,G, and B.

YUV TO RG.B CONVERSION.

The new equaticns are:
B=173Q - 1101l + Y
R=Y + 0951 + 062Q
G=Y-064Q - 0281

These equations can be tested by giving R,G, and B any value the first
three equations and finding the corresponding values for Y U. and V. Then
place the Y, U, and v values into the three equations on this page and R,G, and
B should appear as the values that you first placed into the equations on the
other page.

All that is needed now is some circuitry to whip of the synchronisation
signal and some electronics to provide the formulae manipulation.

The following circuit is untested so I can not claim it works perfectly but
it should cause no damage to the 4A or the monitor as the voltages are all
very low.

——l e s g

¢ ey
! Unvtiefod
!
f e
-
”n .
AL
e
“.
o it 1
Agl —
8. T e
1 ! N
g e - ———f . 3
| H - - —————————
‘ —_——— ‘
i B
!]
i H
i : 3 i
. i ey
o ¢ —
[
Y
o
I 102 e
g ' ay T -
' l | SME D
i I Tiee2 H LM
i : - & —f= F
i ———————»
i i
' o
T H
4 i A -
2022 note: This diagram was not legible in the original magazine

23

Tthstitled’

2022 note: This diagram was illegible in the original magazine

NO couwf"f“‘/“
AT TS L
PocasT -

o SR G

P
T
R
¥ - LHse
@ e e e m ety . - [
D 1A
. L
g T 17 =
D e & i
-t
POCSN
v [T RE]]
— G- J HITHE
H Te—————e
i

1

€

With this circuit diagram | am taking the assumptions made by M.Shibuya in

Mike Goddards book of hardware projects o be true | don't have much time at the
moment to test the circuit but the only problem | can foresee is that the synchrenisation

puises are not fully stripped off the Y signal and therefore this may cause some colour
jitter. However. this should be in a blanking period on the screen and did not seem to

bother Mr. Shibuya.

Calibration can he done by eye or with a voltmeter. The by eye method il take

info account any colour attenuation in the specific monitor so may look better than the

exact calibration method.
To do a full calibration :

Place 1volt on | and adjust variable resistor A until 0 28 voits eppear.
Place 1volt on Q and adjust variable resistor B until 0.64 voits appear.

This should have created the correct green and red signals. There are no
variable resistors for the red signal. This was done to simplify the design and
calibration. The | signal is 0.95 so we can call this 1 and the O signal for the red is

almost the same as for the green so we might aswell tap the voltage from the green

selting. Using the same procedure. let C have 1.10 volts and let D have 1.73 voits. The

negative signs from the equations are catered for by the opamps.

Finally note . the 12 volt povwer for the opamps is taken from the Texas video
oulput socket pin 1. Ground is pin 6. Y is pin 2 | think the U or lis pin 3 and so Q or V
is on pin 4. Also this circuil contains an amplifier to allow the use of a small speaker.

v

The volume level is altered by E.

v

SASORES

0T ACLE AT

¢

—~ ANPOT o

eP ApMmp

MHEFASORE C ¥'])

SUTPUT o f

<" BLTACY AT

ef ANPS ¢y

A Blast from the Past

I’ll begin this by saying that there’s no point in we members complaining
about the lack of diverse articles in TI*MES unless we all start contributing
and give the editor more of a choice. So here is my contribution. I’m not
especially gifted in the area of writing, but I figure if I can do it, then anybody
can.

I’ll start by giving a brief potted history of my initially stormy relationship
with the TI and why I abandoned it to my attic about 7 years ago...

I’m not sure what started it. It might have been a conversation on CIX. It
might have been a sense of dissatisfaction with my PC. More likely it was
Roy Robinson, but after six or seven long years in the wilderness I removed
my mothballed TI from the attic, dug out all the bits and pieces I still had for
it, checked the power supply and plugged it in for a serious dose of nostalgia
for the time when there were more hobbyists than businessmen in the home
computer market and we were all pioneers...

My TI99 was a Christmas present bought at just about the time when TI
decided to drop the range of products. My friends had Spectri or
Commodores and I had something that looked decidedly 70s with a really
pathetic range of cassette games (and an incredibly expensive range of
cartridge games). It was not a good start - my father had asked the IT
manager at his work to recommend a home computer, and the TI99 had been
the suggestion. For about a year I detested that man.

So, all my friends were enjoying the delights of Manic Miner (£5.95) while I
struggled along with Adventure Mania and Hunt the Wumpus. I consoled
myself with TI BASIC and set about writing my own games and utilities. It
wasn’t until the following Christmas that my affair with the TI began in
earnest. I was given Extended BASIC. Suddenly, the balances tipped - here
was I with 28 hardware sprites (with no attribute clash), three sound
channels, one noise channel and a decent structured language. I was soon
churning out software far superior to any that my friends could manage.
Commodore’s have never really had any kind of programming language and
Sinclair BASIC was at best limited.

)

U\

The big break came when an expansion box the size of a coffee table arrived
complete with 32 massive kilobytes of RAM, a 90 kilobyte floppy disk, serial
and parallel ports and a 9 pin printer. Now I was word processing, running
all the Infocom games that non disk based systems could only dream of, using
Pascal and so on. Great!

As time went by I succumbed to the charms of an Atari ST, but retuned to
the TI swiftly after. The Amiga was the final blow... do I spend £399 on an
Amiga or on upgrading the TI? No competition really, especially since the
Amiga had far better graphics and a much easier way of using them - Deluxe
Paint II. The TI was shelved and gradually sold off piece by piece to fund
university (I had to sell my Mini too :-().

The Amiga was later sold to make way for a mighty 486DX-33 (well, it was
mighty when I bought it), and I began work as a Visual BASIC programmer.
Funny how these things work out - started with BASIC, finished with BASIC.
Two years down the line you find me here, still in Visual BASIC running on a
90 MHz Pentium with a lovely 17 inch screen displaying at 1152x852 in 24
bit colour. How fickle is the heart of a computer programmer.

But the TI was still with me, like the moth-eaten teddy bear you can’t bear to
throw out - it had survived three upgrades and was still with me. I hadn’t lost
it during four house moves, and all the parts were intact (minus the expansion
box).

So one stormy night (when the wife was out), I unpacked it, assembled the
components, and switched it on. Nothing. I hopefully unplugged Extended
BASIC and the Speech Synthesiser. Not a sausage. [’ve since learned from
such luminaries as Stephen Shaw that the years or disuse may have damaged
the board, and Richard Twyning who was correct in saying that the heat sink
on the vdp chip had melted but was sadly mistaken in asserting that a clean of
the pins would cure the problem. TI was dead. By this point I was well and
truly hooked again. I had to get Extended BASIC going and start typing in
programs. In desperation I turned to my PC and loaded up the TI Emulator...
bliss, a fully working TI99 (running considerably faster than normal) and my
humble PC. With Windows I found I could have four or five TI99s all
running at the same time! Spoiled for choice or what?

And that’s where its at now. I’'m using the emulator which works superbly
(recommended to anyone with a 386 or higher) while I hunt about for a new
system (console + peb with 32k, disk drives and pio card). Even the speech
synth works!

So, having been out of the TI world for a good seven years or so, what does it
all look like now to an outsider? Well, (and apologies to Richard Tywning in
advance), there seems to be a hell of a lot of vapourware floating about... hell,
that’s no bad thing (unless its costing people anything) - living in the PC
world, I’'m well used to vapourware; take Windows 95 (aka Chicago, aka
Windows 4) for example... or IBM’s PowerPC. The list is endless. So that’s
ok - I don’t mind the vapourware, its interesting to know what’s being
developed and what the TI can be coaxed into doing in its advanced state of
years. A SCSI card sounds very interesting; it would be great if a SCSI hard
disk could somehow be attached to it... hard disk prices are dropping all the
time and imagine the BBS with 500mb of on-line storage accessing at hard
disk speeds.

Yep, the TI needs a hard disk interface; that’s for sure. IDE is probably out
of the question, but SCSI... then you’d be talking.

The BBS also sounds like a great idea - with modem prices currently
dropping through the floor (lets face it, TI programs are nowhere near as
bloated as it modern contemporaries so modems capable of in excess of
9600baud are not a lot of use to somebody logging onto to the BBS) you can
pick up 2400baud (240bps) modems for under £40 if you hunt around. I
supposed you could also use your modem to connect to some of the on-line
services like CIX. I wonder if there’s any BBS software available that would
support conferencing.... now there’s a thought.

Yes, a BBS is an excellent idea. 99er’s could download software to cassette
or floppy (maybe even documents as well). One thing I’m not sure about is
how its going to work. The server would need massive (in terms of 90k
disks) on line storage, and I don’t know how that could be achieved without
fitting a hard disk to a TI. Or using a different computer.

That reminds me of something that does annoy me in TI*MES (doubtless
along with many other members) - why is there so much berating of other
computer systems? Are we so insecure that we feel the need to criticise and

)
~

slam other hardware designs? True, the ISA bus (and to a certain extent the
EISA and VL bus) that forms the backbone of the IBM Pcs design (I’ll not
mention MCA) is not as sophisticated as the TI system but it has endured for
14 years and it still the most supported bus in the world. Suggest people are
stupid for buying such machinery and you're alienating people. Iknow full
well that the sub £2,000 computer I’'m typing this on is infinitely better in
every way to my TI99 (display, speed, software etc. etc.), but I’'m not afraid
to admit this. The TI is now, to me, more like as classic motor car. I drive a
fast, quiet, comfortable, boring car all week to work, but at weekends I drive
my Mini Cooper and enjoy myself. I hope that makes some sense...

I couldn’t make the workshop (unfortunately) and so missed out on the demo.
[hope all went well and Richard got the CD-ROM working. Maybe he’d
consider donating it for use on the BBS? I’'m kidding, honest!

I’ll sign off now and carry on trying to make the emulator fall down... maybe
some of those tricky CALL LOADs will do it.

If anyone wants to write to me, [’'m at
8 Corfe Close

Southwater

Horsham

West Sussex

RHI13 7XL

or (preferably) use one of the on-line services, my address at these are

CIX : SEG
Compuserve : 100023,74
Internet Mail : SEG@CIX.COMPULINK.CO.UK

and I'll reply as soon as I can.

If anyone violently disagrees with something I’ve said then write to TI*XMES
and lets get some real discussion going!

13
n

And finally, something to cheer those of you up who are forced to use
Windows at work...

| £ mulator

TEXAS INSTRUMENTS
HOME COMPUTER

[Mansger

=l Program Mansger |
Ele_Qptons Windew Helo READY-PRESS ANY KEY TO BEGIN

©1981 TEXAS INSTRUMENTS

Chasacts Map Medie Payer Sourd
Recarce
FE i
Netwark Stastllp ‘Microsoft Visusl Banc Corels
Otce kL

Now that’s hy kind of desk top!

Richard Speed

2022 note: If the name Richard Speed rings a bell- for many years Richard regularly contributed
articles to the tech news website theregister.com, often working in a reference to the TI99/4a.
Richard retired around 2020, and as he was using the emulators of the TI on his PC, he donated
his TI equipment to the UK User Group to sell for group funds.

[N
_f

K F . HIMGHES

28/10/94 220 BROADLAND CRIVE,
LAWRENUCE WESTON
BRISTOL . AYON
BS11 OFN

Dear Gary,

Here is an article for the magazine on E-MAIL, I
don’t know 1f it is any interest to any of the members.But on
past experience I have found that most members have more than
one computer at hand,also they deal with COMMS like I do.So
this might be of some interest to a few members.

TRADEMARK + COPYRIGHT
ON THE USE OF E-MAIL ADDRESSES

E-MAIL addresses everyone wants one nowadays but how to find
a name or handle no-one else has got or who are using.To find
out on-the UNIX INTERNET it is easy to do,by typing, " whois<
domain name>" = $whois nbc.com and within a few seconds you
get your answer.
NATIONAL BROADCASTING COMFANY INC.
(address etc.)

When you have found out that the name you want to use,is not
being used by anyone or is not registered.You inform the -
INTERNET HEADGQUARTERS that you want to register your name -
handle and they inform you it is 0.K. or not.

The people involved in registering are THE INTERNET NETWORK
INFORMATION CENTRE,they assign domain names and rules of use.
The agency receive over ONE THOUSAND requests for domain names
a month and rising.The problem with names are that are TRADE-
MARKS etc. are the problem of the requester.

Which as quoted in WIRED (OCT 94) A reporter requested to
use the name MCDONALDS.COM .He was told that it was o.k. as
the company of McDonalds hadn’t requested that name to use on
the network themselves.But he was told it is up to him if he
wanted to use it,as there is no policy on the Net for domain
names and their use.So if they are not registered they are
fair game to all,so if you think of an usual name not used by
anycne, it’'s up to you.How about TI*MES.COM - - - - ha,ha.

The problem with registering domain names that are not in
use,like MCDONALDS etc. are breach of trademark etc. Though
there are no written Law or Policy on domain E-MAIL names,one
will have to be written soon.

Here is a sample from WIRED (oct 94) as an idea of the
probhlem -: Adam Curry in June 93 was an MTV video jockey who
registered his domain name as MTY.COM. with the Internet.
Curry was an computer disc jockey using his mtv.com on the net
to take messages on all subjects musical (Rock + Pop). MTV
the company had no objections,also he paid for the site him-
se=lf and all costs involved.Then in April 94 he resigned from
MTV,h2 was promptly sued for copyright for using mtv.com.The
lawyers of MTV fought on the TRADEMARK grounds. At the moment
he is not using mtv.com,as he is fighting in the courts for

30

tihe Rights of the name.Millions of net users associate mtv.com
with Curry not MTV the company. (big boy bullying tatics)
will not succede I hope.Most people who apply for domain names
ar=2 usually scared off ,from doing so with frets of court
action, from the companies concerned,Soc do they have the right?
Any opinions will be appreciated on the question of E-MAIL
addresses,write to me ,as above ,or E-MAIL
ken.hughes@walusoft.centron.com

Or ask the Editor to write a Question + Response Section ...

Another idea on the infringement on Trademarks + Copyright ..
are CB handles etc. Who owns them ,for an example...

rubber duck ..etc ,You know what I mean,they will get writs
from Walt Disney next.Alsoc the name TIMES ,WATCH OUT the news
paper giants will be after you,knock#knock..

Here’'s a.silly scenario who owns the rights to the alphabet
or the English language,inventions of your mind,makes you think
Oh well I could go on - and —on but that’s enough from me

for now. Hi to all TI-er’'s and a MERRY XMAS and a HAPPY NEW
YEAR to all...Idea’s and suggetsions on the subject would
make a good column in the magazine (hey ED) WHAT DO YOU THINK?

Thanx to all in the past and present
for help!

Ken Hughes

P.S, anymore Email users ,committee or you Ed.
or an Email list.What’'s the score on the BBS....

NOTE FROM THE ED......

First of all | would like to thank everyone who has contributed to
this issue of TI*MES. | will take this opportunity to remind you that the
positions of Editor and Membership Secretary are open. If you are
interested than please contact the Chairman.

Secondly, the “S&T" bulletin board has finalfy arrived and is in

the hands of the Chairman. If you wish to know more about this
facility or maybe give it a go then please contact the Chairman again.

3

TIPS FROM THE TIGERCUB
#35
Copyright 1986

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

The 4/86 Micropendium had
a rather slow routine to
count the number of words in
a D/Vv text file. 1 think
the following will be much
faster. It ignores any
lines beginning with a
period (TI-Writer formatter
commands), otherwise counts
each cluster of characters
followed by a space, plus
the last cluster on the
line.
10 !'WORDCOUNT by Jim Peterso

n
100 DISPLAY AT(12,1)ERASE AL
L:"INPUT FILENAME? DSK" :: A
CCEPT AT(12,20):F$:: OPEN #
1:"DSK"&F$, INPUT
110 A=1 :: LINPUT #1:M$:: |
F ASC(M$)=46 THEN 130
120 X=POS(Ms$," ",A):: IF X=0
THEN 130 :: IF X=A THEN A=X
+1 :: GOTO 120 ELSE F=1 :: C
=C+1 :: A=X+1 :: GOTO 120
130 C=C+F :: F=0 :: [F EOF(1
J<>1 THEN 110 :: CLOSE #1i ::
DISPLAY AT(12,1)ERASE ALL:"
APPROXIMATELY "&STR$(C)&"™ WO
RDS"™

100 !TIGERCUB GRAPHPRINT by

Jim Peterson

110 'Will output to printer

a line graph of 31 items of

data, as for instance the

temperature for each day of

a month

120 !'Values must be positive
integers within a range of

75 from minimum to maximum

130 M$=RPT$("!_",65):: DIM T

$(31),D$(75):: MN=10000

140 DISPLAY AT(12,1)ERASE AL
:"Input data - maximum 31":

"items. Enter to finish"

150 FOR X=1 TO 31 :: DISPLAY
AT(14,1):X;TAB(4);CHRS$(1)::
ACCEPT AT(14,4)VALIDATE(DIG
IT)SIZE(-S)BEEP:T$(X):: IF T

$(X)=CHR$ (1)THEN X=X-1 :: GO

l/;)

TO 170

160 T=VAL(T$(X)):: MX=MAX(MX
»T):: MN=MIN(MN,T):: NEXT X
170 RN=MX-MN :: IF RN>75 THE
N PRINT "EXCEEDS MAXIMUM RAN
GE OF 75" :: STOP

180 IF MX>75 THEN AD=MX-75
190 OPEN #1:"PI10",VARIABLE 1
32 :: PRINT #1:CHR$(15) ;CHRS
(27) ;CHR$(51) ;CHR$(12):: PR!
NT #1:RPT$("_",132)

200 DISPLAY AT(12,1)ERASE AL
L:"Wait, please...™: :™.....
.this takes time"

210 LM=LEN(STR$(MX)):: FOR J
=1 TO 75 :: J$=STR$(76+AD-J)
220 IF J>66+AD THEN J$=J$&"
”n

230 IF J/2=INT(J/2)THEN D$(J
)=RPT$(™ ",LM)&SEG$(M$,1,132
~LM)ELSE D$(J)=J$&SEGS$(M$,1,
132-LM)

240 NEXT J :: PRINT #1:RPTs$(
" ", LM)&SEG$(M$,1, 132-LM)
250 J=1 :: T=VAL(T$(J))-AD :
: T=76-T :: D$(T)=SEG$(D$(T)
,1,J%x4+4)&CHR$ (239)&SEGS$ (D$(
T), J*#4+6,255):: J=J+1

260 T2=T :: T=VAL(T$(J))-AD
:: T=76-T :: FOR N=T2 TO T S
TEP (T2>T)+ABS(T>=T2):: D$(N
)=SEG$(D$(N), 1,J%4+2)&CHRS$ (2
53+ (T<T2))&SEG$(D$(N),JI*x4+4,
255):: NEXT N

270 J=J+1 :: D$(T)=SEG$(D$(T
),1,J%4)&CHR$ (239)&SEG$ (D$(T
),J%4+2,255):: IF J<=X THEN
260 .

280 FOR J=1 TO 75 :: PRINT #
1:D$(J):: NEXT J :: PRINT #1
290 T=8 :: FOR J=1 TO 31 :
PRINT #1:TAB(T);STR$(J);:: T
=T+4 :: NEXT J

1 still think of the TI as
a HOME computer, and I still
think that the home computer
is an invaluable educational
tool - but I guess not many
folks agree with me. I had
thought of writing full
disks of a progressive
series of lessons on one
subject, but my present two
full disks of math education
have sold a combined total
of 7 copies in 7 months, so
that would obviously be a
waste of time.

I had written this next

program for that purpose and
I guess it’s no use wasting
it, so -
100 CALL CLEAR :: CALL TITLE
(5,"TAKE AWAY™)!by Jim Peter
son
110 DISPLAY AT(3,10):"COPYRI
GHT" :TAB(10) ; "TIGERCUB SOFTW
ARE™:TAB(10); "FOR FREE"™:TAB(
12);™ DISTRIBUTION™:TAB(11);
"SALE PROHIBITED"™
120 CALL PEEK(-28672,A@):: I
F A@=0 THEN 150
130 DATA FINE, NO, GOOD, UHOH, R
IGHT, TRY AGAIN, YES, THAT IS N
OT RIGHT
140 FOR J=1 TO 4 :: READ RIG
HT$(J),WRONG$(J):: NEXT J
150 FOR D=1 TO 1000 :: NEXT
:: CALL DELSPRITE(ALL)
160 CALL CLEAR :: CALL CHAR(
95, "FFFF"):: CALL MAGNIFY(2)
:: RANDOMIZE :: CALL SCREEN(
14):: FOR SET=5 TO 8 :: CALL
COLOR(SET, 16,1):: NEXT SET
170 CALL CHAR(120, "E70042001
B8007E0000E700420099423CE7004
20099423C0O0E7004218003C4200"
)

180 CALL CHAR(124,"0E0004010
00708007000208000E01000™)
190 DISPLAY AT(3,10):"TAKE A
WAY" :: CALL CHAMELEON

200 CALL COLOR(14,2,2):: CAL

L HCHAR(4,4,143,2):: CALL HC

HAR(5,4,143,2):: CALL SPRITE

(#25,120,11,25,25)

210 T=T+1 :: N=1-(T>S5)-(T>15
:: G=10-(T>5)*80-(T>15)*810
:: H=0-(T>5)#10-(T>15) %90

220 X=INT(G*RND+H):: Y=INT(G

*RND+H):: IF Y>X THEN TT=X :

: X=Y :: Y=TT

230 IF X=X2 OR Y=Y2 THEN 220
t: X2=X :: Y2=Y :: Z=X-Y

240 GOSUB 250 :: GOTO 210

250 GOSUB 260 :: GOSUB 280 :

: GOSUB 310 :: FOR D=1 TO 20

O :: NEXT D :: CALL DELSPRIT

E(ALL):: DISPLAY AT(18,1)::

CALL CHAMELEON :: CALL SPRIT

E(#25,120,11,25,25):: RETURN

260 FOR J=1 TO LEN(STR$(X)):

: :: A(J)=VAL(SEG$(STR$(X),J

»1)):: NEXT J :: FOR J=1 TO

LEN(STR$(Y)):: B(J)=VAL(SEGS$

(STR$(Y),J,1)):: NEXT J

270 FOR J=1 TO LEN(STR$(Z)):

: C(J)=VAL(SEG$(STR$(Z),J,1)

Y:: NEXT J :: W=LEN(STR$(2))

33

-LEN(STR$(X)):: RETURN

280 R=96 :: CC=96 :: FOR J=1
TO N :: CALL SPRITE(#J,48+A
(J),11,R,CC):: CC=CC+16 ::
EXT J

290 R=116 :: CC=96 :: FOR J=
1 TO N :: CALL SPRITE($#4+J,4

8+B(J),11,R,CC):: CC=CC+16 :
: NEXT J

300 CALL HCHAR(18,12,95,N#3)
:: CC=CC-16 :: RETURN

310 R=140 :: FOR J=LEN(STR$(
Z))TO 1 STEP -1 :: IF LEN(ST

R$(X))=1 THEN M=CC :: GOTO 3

30

320 FOR M=CC TO CC+8 :: CALL
LOCATE(#J-W,96,M, #J+4-W, 116
,M):: NEXT M

330 IF A(J-W)>=B(J-W)THEN 36

0 :: CALL SPRITE(#28,49,16,9

6,M-9)

340 IF F3=1 THEN 360 :: F1=
2 AJ-W-1)=A0J-W-1)-1 ::
F A(J-W-1)<0 THEN A(J-W-1)=9
13 F2=1 :: A(J-W-2)=AW(J-W-

)-1
350 CALL SPRITE(#22,48+A(J-VW
-1),16,80,M-24):: IF F2=1 TH
EN CALL SPRITE(#21,48+A(J-W-
2),16,80,M-40)
360 CALL SPRITE(#27,45,16,11
6,M-12)
370 CALL SPRITE(#20,63,11,R,
M)
380 CALL KEY(3,K,ST):: IF ST
<1 OR K<48 OR K>57 THEN CALL
PATTERN(#20,32):: CALL PATT
ERN($#20,63):: GOTO 380
390 CALL DELSPRITE(%20, #28):
: CALL SPRITE(#12+J,K,11,R,M
)
400 IF K-48<>C(J)THEN GOSUB
450 :: CALL DELSPRITE(#12+J)
:: F3=1 :: GOTO 330
410 CALL DELSPRITE(#27):: IF
F1=1 THEN 420 ELSE IF F2=1
THEN 430 ELSE 440
420 F1=0 :: CALL DELSPRITE(#
J-W-1):: FOR P=80 TO 96 :: C
ALL LOCATE(#22,P,M-24):: NEX
T P :: CALL SPRITE(#J-W-1,48
+A(J-W-1),16,96,M-24):: CALL
DELSPRITE(#22):: GOTO 440
430 F2=0 :: CALL DELSPRITE(#
J-1-W):: FOR P=80 TO 96 :: C
ALL LOCATE(#21,P,M-24):: NEX
T P :: CALL SPRITE(#J-1-VW, 48
+A(J-1-W),16,96,M-24):: CALL
DELSPRITE(#21)
440 CC=CC-16 :: NEXT J :: GO

1
I
2

SUB 480 :: F3=0 :: RETURN
450 DATA 123,124,125,123,124
,125,123,120

460 IF A@=0 THEN 470 :: CALL
SAY (WRONGS$ (INT(RND%4+1)))
470 RESTORE 450 :: FOR JJ=1
TO 8 :: READ P :: CALL PATTE
RN(#25,P):: XX=27250 :: NEXT
JJ :: RETURN

480 DATA 121,122,121,122,121
, 122

490 IF A@=0 THEN 500 :: CALL
SAY(RIGHT$ (INT(4%RND+1)))
500 RESTORE 480 :: FOR JJ=1

TO 6 :: READ P :: CALL PATTE
RN(#25,P):: XX=27250 :: NEXT
JJ :: RETURN

510 SUB CHAMELEON

520 M$="1800665AC342DB667E18
8100995AC3A5E78142BD24DB6600

81429924007E5AC3A53C241800FF

DBSAFF7EFF0099188100660018"

530 RANDOMIZE :: CALL CHAR(1

28,SEG$(M$, INT(43*RND+1)x2-1
»16)):: X=INT(14*RND+3)

540 Y=INT(14%RND+3):: IF Y=X
THEN 540 :: CALL COLOR(13,X
,Y) -

550 CALL HCHAR(1,2,128,30)::
CALL HCHAR(24,2,128,30):: C

ALL VCHAR(1,31,128,96):: SUB

END

560 SUB TITLE(S,T$)

570 CALL SCREEN(S):: L=LEN(T
$):: CALL MAGNIFY(2)

580 FOR J=1 TO L :: CALL SPR
ITE(#J,ASC(SEG$(T$,J,1)),J+1
“(J+1=5)+(J+1=S+13)+(J>14) »1

3,J%(170/L),10+J%(200/L)) ::

NEXT J

590 SUBEND

When you give your printer
instructions, it remembers

them until you turn it off.
That is why you may find
that your letter to Aunt
Sally 1is being printed in
double width underl ined
italics. The solution is

found in another gobblede-
gook paragraph in the Gemini
manual - "when (ESC "e")
is sent to the printer, the
conditions of the printer
are initialized."™
In plain English,

OPEN #1:"PIO" :: PRINT #1:C
HR$(27);™@" in your program
or CTRL U, FCTN R, CTRL U,

34

SHIFT 2 at the beginning of

your TI-Writer text will
cancel out any special
orders the printer is still

remembering and return it to
its default conditions.

Here’s a bright idea by
Scott King in the AVTI UG
newsletter. When you locad a
program in order to modify
it, put a reminder of its
filename in .the first line,
such as 1 ! SAVE DSK1.NAME .
Then, when you are ready to
save it, just list line 1,
FCTN 8, use the space bar to
erase the 1 !, and Enter.

TIPS FROM THE TIGERCUB
#36
Copyright 1986

Some old business to take
care of -
Tom Wible (? - handwritten
signature), in the MANNERS
NEWSLETTER for April, points
out that I am all wrong in
my comments about updating a
FIXED SEQUENTIAL file.
There 1is no such thing as a
fixed sequential or fixed
relative file, only fixed
files accessed sequentially
or randomly (relative).
Sequential and relative are
access modes, not file
attributes. ’

There is
opena fixed

no reason to
file in any-
thing other than RELATIVE
mode, because if you do not
specify the REC clause in
your INPUT or PRINT, the
computer defaults to sequen-
tial processing.

In one paragraph, that
gentleman told me something
about files I had’nt learned
from the Tl manuals and from
the 2000+ newsletters on my

shelf. File handling is
apparently easy to
understand for those who
have had formal computer

training, but it is a
frustrating mystery to those
of us who try<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>