Autumn 1995

Contents

Page 3
Page 4
Page 8

Page 20

Page 23
Page 28
Page 35
Page 39
Page 50
Page 51
Page 52
Page 54
Page 57

Page 59

Editorial

What's happened to TI*MES?!

Rambles .

Stephen Shaw takes a look at a TI Emulator and answers a few critics
The TEX Files

Richard Twyning puts titles on his holiday videos using an ordinary Tl
From The Chairman’s Chair

Trevor Stevens on the BBS, printing with BASIC and a special Modem
offer for members

Drivel

An update on the membership from Mark Wills

Cracking The Code

Mark Wills takes a look at LINKing in Extended BASIC

The TI*'MES Enthusiast

DIY disk drive repairs and thoughts on the BBS from Ross Bennett
The Art Of Assembly

The 7th installment of Bruce Harrison’s step by step guide

Kiwi Korner

A letter from Mike Poskitt

Why Does It Work?

Walter Allum uses his TI99 to discover a mathematical phenomenon
Music SDA

Charles Good reviews an updated Music Maker that Tl never released
Never Released Tl Modules

More modules that didn’t quite make it before TI pulled the plug

Tips From The Tigercub

Help and advice from the late Jim Peterson

The Back Page

Are you a Real Programmer?

All contributions for issue 51 must be submitted by December 1st 1995

Chairman
Trevor Stevens
Vice Chairman
Mark Wills

Gen. Secretary
Richard Twyning
Treasurer

Alan Rutherford
Disk Librarian
Stephen Shaw
Module Librarian
Francesco Lama
Hardware

Gary Smith
TI*MES Editor
Richard Speed

249 Southwell Road East, Rainworth, Notts, NG21 OBN 01623 793077
20 Cockayne Road, Hartescott Grange, Shrewsbury 01743 350588
24 Peel Road, Mansfield, Nott, NG19 6HB 01623 27670
13 The Circuit, Wilmslow, Chesire, SK9 6DA 01625 524642
10 Alstone Road, Stockport, Cheshire, SK4 SAH
14 Granville Court, Cheney Ln, Oxford OX3 OH} 01865 721582
55 Boundary Road, Newark, Notts, NG24 4AJ 01636 706787
8 Corfe Close, Horsham, West Sussex, RH13 7XL 01403 730836
(Email: rspeed@CIX.COMPULINK.CO.UK)

Disclaimer

All the views expressed by the contributors of this magazine are strictly their own, and do not represent those of the committee. Contrary

opinions are very welcome and errors will be corrected on request.

TI*MES Issue 50 2 Autumn 1995

Editorial

elcome to issue 50 of

TI*MES - our first half

century! As you can

probably already see, I've
been playing with the magazine format
again... this time in an effort to improve
readability. After discussing the problem
of the faint quality of print within the
magazine with our printers 1 was given
two options. To explain these options, let
me just explain how the magazine is
normally put together:

Putting TI*MES Together

First I receive the articles from you, the
members. These articles are then cut
down to fit on an A4 page (with about a
half an inch gap on the left and right and
an inch on the top and bottom to allow me
to fit in the page headers). The A4 page is
preprinted with the header and footer
containing page number, and so on before
I actually stick the article on. All the
pages are prepared like this and once
complete it is then sent off to the printers.
The printers reduce the size to AS and
then use the reduced prints to produce the
magazine as you’re reading it now. As
you can see, there are two copying
processes - one to reduce the magazine
down and one to do the print run, so a
faint article is going to get fainter...

Darkening the print

So what are the solutions? The printers
can darken the pages as they reduce them,
but they charge for that, or all contributors
can buy lasers(!). However, while
discussing this problem with the printers
we came up with a third option. If they
are sent the magazine as one big
PostScript file on a PC or Mac disk, they
can then run it out on their 1200dpi laser
printer. Thus all the magazine would
come out in a clear dark print including
(hopefully) illustrations.

The uses of PCs

So how is this done? Well, I have an IBM
compatible PC at home which I use for
work. Since most contributors prefer to
submit on disk I can transfer the articles
from the TI to the PC where I can use a
DTP package. Once I've finished the
issue I can then print it out to a postscript
disk file and send that to the printers. As
you’ll see in this issue, all the articles are
printed in Times Roman with all listings
printed in Courier to help readability. I'd
welcome all comments and suggestions
though...

Diskless?

So where does this leave those members
who don’t have disk systems? Well, with
the help of Walter Allum, we are
producing a text entry program that can be
used to save text to cassette which I can
then load here and use, or I am more than
happy to type up anything I’m sent.

Disk Library Listing

You’ll also find a hard copy print out of
the disk library with this issue of TI*MES.
I hope it’ll encourage you all to have a
look at the disk library. Contact Stephen
for the latest information, but please be
patient if you don’t get a reply
immediately (see Rambles for more info.)

The MOBB BBS

Lastly, if you’re able, try the BBS - you’ll
find lots of files there including the disk
library list. You can also Email me (and
the committee members) with your
comments or suggestions.

Strewth, I've waffled on much too long!
Enjoy the rest of the mag!

Richard Speed

TI*MES Issue 50

Autumn 1995

Rambles

ello again. Quite a different
subject to begin with, and
multiple apologies to anyone

who does not have access to a |

PC and is unlikely to in the next couple of
years.

Emulating the Tl

The topic is EMULATORS- clever little
(?) programs that make one computer
think it is something else entirely. For the
PC you can buy a CD Rom with
emulators- and THOUSANDS of
programs for them- to keep your Spectrum
or Commodore 64 programs.

For the TI enthusiast, you can go to your
CD Rom supplier and ask for a copy of
Night Owl 13 (August 1994) and there
you will find a ready to run TI Emulator
with Extended Basic, TI Logo and Hunt
the Wumpus. This is an early version of
the TI Emulator written by Edward
Swartz, and right now it is totally
unsupported and registrations are not
accepted.

Moving on a little, I also have a PC disk
with Version 5.01 of Edwards emulator,
again a ready to run program and with a
little more TI stuff working. The principal
things you cannot do with it...

* Call
function

* Sound noise channel (4th channel) does
not function and may generate odd
sounds

Coinc(ALL) does not

Many modules avoided TI's standards,
notably Atarisoft and regrettably Scott
Foresman, and a number of machine code
programs used odd keyboard scans or disk
access. For this reason not everything will
function. The PC mouse and joystick are
VERY different devices to the TI joystick

and while the emulator will respond to
them, you may prefer like me to stick to
the keyboard - and for programs that insist
on joystick control, the emulator allows
YOU to insist on keyboard operation!

Emulator Requirements

The emulator requires a 386 processor,
preferably 33MHz or better. A few
programs may run very fast but can be
slowed down easily. I have put together
FOUR PC HD 3.5" disks with archived TI
material, ready to run programs and text
files. These expand to a little over 8
megabytes for your PC hard disk. They
are tied together with a DOS menu system
called ADMAST which makes selection
and operation that much easier (The
emulator only allows a maximum of 32
modules in a selection list so we use dos
to switch between lists and to set which
dos directories to use for data and so on).

I have also added the archive program for
anyone who does not have it - it is needed
to unarchive the files! (I have used ARJ). I
have also put in a batch file to simplify
installation to C:\TI but that is untested!
Please note that THIS version includes
code which is copyright by TI and can
only be supplied to TI owners who have
the original chips! Also note that Edward
has requested that this version is not
distributed, is not accepting registrations,
and is offering no support.

All together I have over a thousand files,
with lots of modules, and many TI Basic,
Extended Basic and TI Logo programs.
Some of the more interesting contents
include TI Base, TI Artist (Vn2),
Multiplan, Triton Super Extended Basic,
Mancala!, Adventure and Tunnels of
Doom (with databases), PRK,PRG, and
lots of others. I have not tried writing 9900
machine code with EdAs yet...

TI*MES Issue 50

Autumn 1995

Rambles

Oh yes- TI Writer AND Funlweb 5.01.
The emulator saves disk files in TI format
(eg with headers for TI programs to read)
and you cannot read a file saved from TI
Writer with a dos text editor.

Therefore I have added a dos utility from
Buttonware (originators of the shareware
concept) which acts as a shell to redirect
printer output to a disk file (using append
mode). This is NOT a TSR but is used to
run TI Emulate and anything you print to
PIO will be sent to a specified dos text file
which any word processor can pick up.
Documentation includes the dos-readable
text of my 1983 book.

I am in great debt to Mike Poskitt for the
transfers from TI to PC format.

The four PC disks are available at
"standard" PC shareware library prices-
that is all four disks for TEN POUNDS
including disks and postage. Please don't
send blank disks, PCs can catch things.

Moving on a little....

I also now have on one PC HD disk (3.5")
the very latest version 6 of Edwards TI
Emulator, and boy have things changed.
The "compatibility” claimed is only true if
you amend your previous files - and I have
over a thousand of em! Also there is
absolutely NO TI copyright code this time.
So if you want a TI system or modules,
you either supply them OR buy them from
Edward, who will pay TI a royalty. Also,
please note that Edward has clearly
stipulated that he will not offer any
support at all for this version after
December 1995.

The documentation refers to the fourth
sound channel being available under
certain circumstances but I cannot verify

that nor that CALL COINC(ALL now
works. It is also suggested that more
modules should operate under Vn 6.

Now comes the hard bit - with Vn 5.01, [
had it up and running immediately. I
cannot make Vn 6 operate at all on my
system. Utilities are provided to modify
your Vn 5 files but again, I could not get
these to work, although they did manage
to trash my (backed up!) original 5.01
files.

The set up of Vn 6 appears to me to be
quite a bit more complex than Funlweb, so
if you had any problems with configuring
Funlweb, you are likely to have problems
with this one! I will however copy the disk
for anyone who wants it for THREE
POUNDS including disk and postage. And
if anyone can set it up to work WITH
module files (Extended Basic and Ed/As
as a minimum!), and suitable to run from a
floppy on my system, you can have a
refund! And if you cannot make it work -
neither can I!

Of course there is also PC99, a
commercial program also paying royalties
to TL. This could cost you (in bare) as
much as emulators for a half dozen other
machines and thousands of programs for
them. But it is the only other available if
you want to emulate a TI99/4A on a PC. |
have not seen a copy but have heard that
the latest version is about as fast as a TI on
a fast PC.

I fully anticipate that my TI will go on
working longer than my new PC... but
when my TI finally ceases to operate I will
be able to buy a good 486 PC for about
fifty quid and get a full TI system to use
onit....

Answers to critics time....

TI*MES Issue 50

Autumn 1995

Rambles

The disk library operated at a loss last year
and ended the year in deficit. To obtain
disks from the USA I consider it fair that
we pay AT LEAST the cost of supply,
disk, disk mailer and postage. And new
disks need to have much larger take up if
the cost of obtaining them is to be met
from funds generated by the library.

The library costs are not met by current
charges. I am entirely happy to give disks
away for free- but SOMEBODY has to
pay for them and it is not going to be me!

I must also mention that other Group
members appear to be obtaining huge
amounts of software which they are NOT
sharing with the group library - and
complaining of library charges which they
need not pay if they share more
generously!

At present I have a large number of disks
available to obtain (for example the entire
collection of Jim Peterson disks) but lack
the funds to obtain them and also any
indication of interest should they be
obtained! It really is down to group
members (and officers) to decide what
they want. And pay for it.

With under a hundred members it is
unlikely that any new disk is going to be
"wanted" by more than a handful of
members, who therefore somehow have to
cover the costs of obtaining an original
copy of the software and also the costs of
UK distribution. A large quantity of new
software is dedicated to quite obscure
hardware, (TI's GRAM CARD for
example!), or is merely a minor rehash of
what has gone before.

PC Shareware libraries typically charge
from 2.25 to 2.80 per disk and while we
are talking 1.44M disks, we are also

talking bigger programs! There is usually
an extra pound for postage.

Looking at a current advert I see that ONE
dos game (an astonishing 3.6Mb) can be
obtained from one shareware library for
£5.50. (I got mine free with a PC
magazine but that doesn't mean the
shareware library supplies it free!).

I am yours to command - but I am not
going to continue to subsidise the disk
library, and diminishing numbers, usage,
and software, means costs RISE. Oh- and
those of you with CD Rom drives attached
to your TT's, the group would have to pay
something over forty pounds to have a CD
Rom filled with stuff from the disk library.
Plus the postage on the disks going to the
person putting the data on the CD. A CD
with TI*MES.... of course for a magazine
with a circulation of 40,000 the cost is
more akin to 50p a CD. ‘

I hate to have to refer to all this again but
some members do not seem to be reading
the magazine. I now have the care of my
blind insulin dependant diabetic father.
(Listening out there?). This takes up time.
I am in the throes of major changes at
work (no I did not keep my job and have
to learn a new one). And my son is mildly
troubled with one of those annoying
developmental syndromes... in a nutshell,
I no longer have absolutely oodles of time
for disk copying (or article writing, sorry).

If everyone sent in a major order to the
disk library, everyone would be kept
waiting for a very long time. Can we keep
it sensible please???? If you obtain lots of
programs at once you will take ages to
look through them all. Just get a few at a
time and take it easy and the disk library
can offer a reasonable service (TARGET
is to get your disks back to you within a

TI*MES Issue 50

Autumn 1995

Rambles

fortnight but very large orders wait until
they are done!). ‘

Back to IBM graphics (or ANSI graphics
as referred to in last issue). Funlweb Vn
5.01 offers full support for those single
and double line characters for drawing
boxes with! In the EDITOR. No need to
use 'orrible transliterate files.

My very ancient Epson FX80 printer does
NOT have IBM Graphics - the codes are
used for the italics and foreign characters.
However, using Funlweb on the PC I can
use AND print IBM graphics by using a
little dos TSR which converts the
characters to Epson Graphics commands.

You may have gathered that I have been
spending rather a lot of time putting
together my TI Emulator package on my
new (?) PC, so that it all works easily and
neatly from a simple menu structure. This
includes testing every TI module for
compatibility, and also adding
documentation files. My actual use of my
TI has been limited therefore. But it is all
in a good cause - continued use of my TI!

Older RAMBLES articles were triggered
by outside suggestions and queries - and
with almost no other user group
newsletters these days, that means it is up
to you dear reader to ask me questions (or
make suggestions) appropriate to my field
of knowledge - Basic programming.
Machine code and hardware I leave to all
those other clever folks!!

Our editor has chosen to omit the TIPS
FROM THE TIGERCUB - do you wish to
see them again, we have several more you
haven't seen yet! Write in to Richard and
ask POLITELY please.

Easy puzzle

To solve this take no short cuts but have
your program solve it. Area is length times
height. A St George flag has a red cross
on a white background. The area of red is
the same as the area of white and the flag
measures 7 feet by 9 feet. How wide are
the arms of the cross?

(Hint- break the cross up into rectangles)

Harder Puzzie

A class at school wanted to know their
marks in an exam. The teacher gave then
this data, which is sufficient to determine
the size of the class and the marks
awarded (though not to whom).

1. Maximum mark is 50

2. Each pupil had a different integer total
(no fractional marks!)

3. The highest mark times the lowest mark
=1012

4. Six times the average of the highest and
lowest marks is the same as the sum of
all of the marks.

5. The average of the second best and
third best marks is the same as twice the
difference between the highest and third
best mark.

You can make logical deductions but a
program will be required to find the
answer. Solutions - programs and answers
and timings - to the Editor for publication
please!

Not too long - nobody is writing to me
about Basic these days! - and in addition
to a week at the seaside, there are the
problems listed many times already plus
remarkably warm weather!

Best wishes to all and HAPPY Tling.

Stephen Shaw

TI*MES Issue 50

Autumn 1995

The TEX Files

ear computing enthusiasts,
Why have I opened without
saying "Dear Tl'ers"??? Well,
I thought I would use
something that I couldn't possibly have
used had we been in an IBM user group!

IBM user groups are mostly profit driven
rip-off's, and like most of my fellow
students on BSc. Computing Systems, are
only out for their own gain. You can tell
I'm not very pleased with Nottingham
Trent University after the way 1 feel I've
been treated.

If my article turns out to be very short,
then I will apologize now, but the course
and the university has left me completely
demoralized and I'm currently appealing
for my result, and I don't know whether to
finish my final year project or not!! They
constantly contradict themselves. They
say you are supposed to show initiative,
and form your own opinions, but if you do
this you are outcast. But, if you behave
like a sheep and swallow all their crap and
copy it word for word in an exam, then
you're given a 1st!!!!

At the moment I don't really care about a
career in computing. I just want to do
something I enjoy that will pay the bills so
I can do the important things in life, which
is of course support the group and write
programs for the 4A.

When I say I'm going to write a program
such as my CAD system, it's because I
want to add to the list of things that can't
be done on the 4A.

There was something I read ages ago
which I think might have even been in
Micropendium, and it said something like
"We can't expect to buy a database
program as powerful as DBASE for the
4A and pay peanuts for it!"

This was before TI-BASE was released,
but it proves that nothing is impossible on
the 4A. Please don't use PRESS as an
example! PRESS was to be the ultimate
Desk Top Publishing program for the 4A
and Geneve, but they ran into problems
with it. One of its authors was Charles
Earl, who wrote Telco, and co-wrote
Batch-It.

Therefore, I have two reasons for writing
my CAD program. [want to write it to
prove that it's not impossible, and I also
want to bring software to the 4A to
encourage users to stay with it, to prove
that you don't need PC's to produce decent
output. PC's just over complicate things.
I could never contemplate drawing a
serious picture with a PC or the AMIGA.
It's just not a comfortable thing to do.
There is something about our drawing
programs such as GRAPHX, TI-Artist,
and YAPP that makes them seem much
more precise.

There is one problem with them, which I
am sure you will agree with. They are
much easier to draw with, but their
resolutions do look a bit aged when
compared to today's machines.

The original reason I wanted to write the
CAD program was because I'd used
AutoCAD at West Nottinghamshire
college (we had no such luxury at
university!) and I found it quite
stimulating. It wasn't stimulating because
of the pictures I drew with it, but because

TI*MES Issue 50

Autumn 1995

The TEX Files

of the ways it offered of being able to
draw pictures. ‘

With a CAD program it is much easier to
overlay different seperate objects, and
then delete them seperately, bit if you're
drawing something with a bit-mapped
graphics program, which all of our
drawing programs are, then if you draw a
line over an object and decide you want to
erase it, then you had better hope that the
program has got an undo feature. If it
hasn't got an undo feature, which TI-Artist
and GRAPHX haven't, then you've got to
"draw out" the line by hand a pixel at a
time!

With a CAD program however, the line is
just stored as four variables (for a 2D
system), so since the line is an individual
object, it can just be instantly deleted, and
the object which the line was drawn over
can be redrawn again perfectly as it was
without the line.

There are some so-called CAD programs
for the 4A that just don't live up to the
expectations of what a true CAD program
should be. After using AutoCAD -at
college,] knew that if there was such a
program on the 4A, then it might just
encourage a few extra members to stay
with the machine, and the group. Also, I
know how the program is likely to turn
out, and I know that if it does turn out as I
hope, then it will show people what is
possible with the machine. Some people
are starting to doubt what the machine is
capable of, and Nottingham Trent
University and others almost had me
doubting it too, but there's life left in it
yet, and while ever it takes a mere six
million bytes to load an IBM PC word
processor, there will still be life in the
99/4A. 1 like to think what I lack in
programming skills, I make up in vision. I
can visualize my CAD program, and it's

almost as though I can see it running in
my head. Hopefully, someone who is
more skilled in Assembly Language can
see what I'm getting at, and convert it into
raw 9900.

It was back in 1990 that I used AutoCAD
for the first time, and after using it only a
couple of times I decided that I just had to
have something similar on the 4A, and I
started studying how the program worked,
such as delays when you select an object
to be deleted, because the system is
searching its database and trying to find an
object that might be under the location of
the cursor.

There is no problem with writing the CAD
program, I have been thinking about it and
planning it for so long that I've worked out
most of the problems. The problem with it
is though, what language to use. The best
thing of course, would be to use Assembly
Language, which would be the best for
speed, and for maximizing memory, but
my Assembly Language experience is just
not up to it.

I would need somebody to give me a
tutorial on handling floating point
numbers, and I would need some decent
routines for produding bit-mapped lines
and circles, and of course, file handling.

It must be four or five years since I
attempted playing with Peripheral Access
Blocks after working through Ralph
Molesworth's book. My experiment didn't
work, which wasn't surprising, since [was
trying to play with the DSR Load and
Save routines to try and write a file
copying routine that could be LINK'ed
from Extended BASIC, but the routine
locked up and left me a bit disillusioned
with continuing. I suppose know that the
problem could have been because I had
written the routine as an extension to a

TI*MES Issue 50

Autumn 1995

The TEX Files

slightly out of date version of the XHI
source code. I had to do this because I
needed to use a DSRLNK that was

compatible with XHI, since XHI plays

around with VDP quite a bit, so that it can
display the high resolution screens from
XB. The reason it had to be compatible
with XHI was because I was hoping that I
could write a file copying routine that 1
could LINK from Workspace, but it didn't
work, so that was the end of that!

The next possibility of writing my CAD
program is to use C99, but there are one or
two problems. The first problem is that
floating point numbers are not properly
supported, and someone else wrote a
complete set of functions for supporting
floating point numbers. It's quite amazing
how the routines work, and I have
mentioned them ina previous article, and I
think I even included a sample program
that [wrote as a practice.

Even though the routines are written as an
extension to C99, and they're used in a
program with an #include directive, the
floating point numbers are defined with a
FLOAT directive (which is fiddled by
using a #define directive). The most
important feature of them though, is that I
needed the floating point numbers to be
able to be passed in and out of functions,
and after writing the little program to pass
the numbers in and out, I discovered that it
worked perfectly.

The only disadvantage with the floating
point routines, since they are an extension,
is that the numbers can only be operated
on by the functions iricluded, so you can't
use them in equations. Each calculation
has to be done a step at a time because
there's a seperate function for adding, and
seperate ones for subtracting, multiplying,
and dividing.

I will have to break each operation down
into loads of individual calculations,
which is not impossible, but is very time
consuming, since these calculations have
to be done at every stage, even when just
displaying things to the screen, because
everything is scaled to the screen
depending upon the currently selected
zoom area and size etc. The advantage of
a CAD program on the 4A is that the
quality of anything produced with it
shouldn't be too adversely affected by our
resolution, because the program will allow
any point of an image to be displayed full
screen, including a complete view of the
entire image. If there is a very detailed
part of the picture that needs to be worked
on, then this area can be displayed full
screen. Even if the area you want to work
on takes up only two pixels if you are
viewing the full image, then even this
small area can be scaled up to fill the
entire screen. This will give an advantage
when printing out the completed image,
because the increased resolution on the
printer will mean that the smallest details
will be sharp on the printer because
standard 9-pin printers have a maximum
resolution of 1920 pixels across the page.

Another disadvantage of using C99 is that
the bit map graphics routines do not
include anything to handle sprites, and I'll
need a sprite to use as a cursor, and as
markers for the outline of windows or
objects etc.

It would mean writing an extension to the
routines to handle a sprite, and then there's
also a problem of displaying text of
varying sizes for menu's and labels etc.

One advantage though with writing it in
C99 is that I can include Assembly
Language straight into it and therefore
have routines that instantly redraw menus
and define character sets.

TI*MES Issue 50

10

Autumn 1995

The TEX Files

I could also possibly make use of routines
for handling strings etc., or anything else 1
possibly can to speed up the program.
Much of the time, any language would be
able to support it. The only slow parts of
the program are when it's redrawing an
image, because it's got to step through the
entire image database and scale every
object to the current zoom size.

This gets worse when you want to edit or
delete an object, because when you try
and select something on screen, the
program not only has to scan the entire
database, but has to also step through
every object. K it's a line, then it's got to
check every pixel of the line to see if the
cursor was over it when the selection was
made, and if it's a circle, it's got to step
around the entire circumference of the
circle! I've just thought of a solution to
the problem while typing this! If I have a
visual marker (a sprite) on screen which
marks the pixel that the program's
currently scanning.

If the user can clearly see that the object
being scanned is not the one that needs
editing, then he/she can press a key to
escape from this object, and the next, and
the next, until the object requiring
selection is scanned. This will speed
things up alot, but there's still the problem
of objects that don't appear on the screen
because the area currently being displayed
is only a small part of the entire image.
I've got to write routines that check each
different object, such as lines and circles
etc., and if an object is entirely off of the
screen, then it can be ignored, which will
hopefully speed things up again, because
for a line I only need to check the end
points, and for a circle I only need to
check four points around the
circumference. See figure 1.

entire image Figure 1. circle with test
§ Ligure 1. points highlighted

g

e allowed
currently zoomed area

ﬁ\ O(— circle disallowed

line disallowed

From figure 1 you will see that the test
points start from 0 degrees, and are 90
degrees apart. Circles which have part of
their circumference crossing the zoom
area must still be allowed.

After talking to Mark about the CAD
program, he suggested that I write the first
version using The Missing Link. It will be
a quick way of testing out my theories,
and a way of getting a head start when I
finally attempt to write a version in C99. I
can think more clearly about a program if I
write it in Extended BASIC first, and
when 1 was still at the Hell Hole
(Nottingham Trent University!) I even
wrote all of my programming assignments
in Extended BASIC first, including a
lexical analyser that was supposed to
recognize individual C language
statements and operators. My XB version
was about ten lines long, and used a
RELATIVE file on disk to control the
recognition. The PASCAL version on the
IBM PC was about 300 lines long, and I
used XB to generate the PASCAL
program!

I originally decided not to write the
program for The Missing Link, because I
thought I wouldn't be able to erase pixels.
I thought that The Missing Link only
allowed pixels to be re-displayed in a new
colour, and not deleted completely, but
according to Mark, two colour mode of
Missing Link does allow pixels to be
erased again completely. After thinking
about it though, PEN ERASE should also
allow pixels to be entirely deleted in 16
colour mode. I will have to experiment

TI*MES Issue 50

11

Autumn 1995

The TEX Files

with it. [think that before when I
experimented with Missing Link I might
have erased some pixels that had been set
to a certain colour, and then overdrawn the
area with more pixels without specifying a
colour. The pixels would have been
erased from the pattern table, but the
colour table would not have been erased,
so the old colour would appear again.

I'm not making any promises on when I
will start work on the program again, but I
definitely will, and if anything goes wrong
with it, I'll start again from scratch, and I'll
only leave the project when the front cover
of TI*MES is produced with the program!

O.K., what's next? A little update on
proceedings following the AGM. Those
who attended will know that Francesco
brought Richard Sierakowski's collection
of hardware and software, and I was
surprised that Francesco was leaving me in
charge of dealing with it all, and Little
Nellie definitely used more petrol on the
return journey to Mansfield by the time
she was loaded up with everything.

I sold one or two things to various people
at the AGM, which was mainly books and
disks, but the rest of the gear is cluttering
up our hallway and my bedroom!!!!

This pile of equipment increased on the
25th of August, when Francesco made
another welcome visit to Mansfield. This
time he brought Peter Brooks' entire
collection of equipment, which includes a
very interesting find of an EPROM
programmer that fits in the console
cartridge port. Also in this collection I
have also discovered twelve (YES! 12)
full height floppy drives. I don't know if
these are double sided or single sided, but
if anyone is interested, then let me know.
I've also got more ROMOX's than you can
imagine. [thought I was doing well with

my original collection of ROMOX's, but
now it's beyond belief! If anyone wants
one (or some!) then they’re £2 each.

Also, there's a daisy wheel printer which I
will have to test, but if anyone is
interested, or is also interested in an
Expansion Box complete with Memory
Expansion, Disk Controller, RS232 card,
then give me a call.

Also, don't jump out of your seats when I
say that there is a MODEM in the
collection, but it's only a 1275 split baud
rate MODEM. It doesn't even do 300
baud, but only does 75bps receive and
1200bps transmit and vice versa.

The disadvantage of this is that it cannot
be used to access the bulletin board, but
you could use it to connect to other
members who have MODEMs that
support 1275/7512.

My Miracom will, Richard Speed's
definitely should do (it's an actual
Hayes!), Gary's does, and I'm sure Mark's
does.

If you require any software, then it allows
you to contact one of us, or anyone else
with the capability of the same speed, and
you can download any piece of software
you might need, or you could use it to
instantly upload magazine articles to Mr.
Editor! You can either receive 1200
baud, or transmit 1200 baud, so for the use
of XMODEM transfer on TELCO, you've
virtually got the equivalent of a full 1200
baud MODEM.

So, what have I been up to since the
AGM???

Well, I went on my first holiday in six
years! It was a camping holiday, and my
last holiday in 1989 was a camping trip to

TI*MES Issue 50

12

Autumn 1995

The TEX Files

Youlgreave in Derbyshire. This time I
wanted to be a bit more adventurous, and
my three college friends and I, travelled at
a steady warp six for about ten hours
(including stops!) and eventually arrived at
the Loch Ness Caravan and Camping site
in Invermorriston. We travelled up over
night on the Friday, and arrived at Fort
Augustus at around 8am. We were only
there for four days, and we travelled back
on the fifth day, but I recorded 6% hours of
video, including the journey and the
amazing scenery. I saw Derek Hayward
before 1 went up, and he said how good
the scenery would be on the A82 which
starts at Glasgow and ends at Inverness.

Anyone who has been up there will know
how good it is. It is sometimes difficult to
imagine that we are still in the British Isles
as you drive round a bend and through the
middle of a cloud!!! Then, as you look
upwards, you see a mountain above the
cloud and towering above you. When I
was editing the video and choosing a
soundtrack to accompany the mountainous
scenery, there is only one which is
suitable, and one that seems specially
written for the purpose, and that is the
JURASSIC PARK soundtrack!!!

I wanted to have a decent video of the
event that my friends and I could look
back on in a few years time, and this
meant doing it professionally, and adding
titles to it.

As you know, I've got an AMIGA, and I've
got a video titling program for it, so I
thought that if a job's worth doing, then it's
worth doing well, so I immediately dug
out my STAR TREK II: THE WRATH
OF KHAN video and grabbed some graph
paper! My friends and I are all into STAR
TREK, so I thought it would be good to
have titles that were done in the style of
STAR TREK. So, armed with a sheet of

graph paper and STAR TREK 2, I drew
out 16*16 pixel boxes for each large
character and drew the characters that I
could copy from the screen after pausing
the video at the main titles of the film!
Since there are only a few characters of
the alphabet, I had to fill in the extensive
gaps myself by drawing the rest of the
alphabet how I thought myself that they
should look and I'm quite pleased with the
effect, and it looks amazing on screen.

O.K,, if it looks so amazing, what system
did I use? Well, I said that if a job's
worth doing, then it's worth doing well, so
I also dug out a spare console and a tape
recorder and set it up next to my video in
the loft. I keep my SONY up there out of
sight, and out of mind, and keep my cheap
and nasty MATSUI video downstairs in
my bedroom.

So, how did I plug the 4A into the video?
Easy. You know that the console's video
port doesn't give out proper Composite
Video, but produces direct YUV which is
what only professional video systems use,
such as the large video cameras in
television studios, and YUV is the way
that T.V. pictures are transmitted. The
letters Y, U, and V, stand for different
parts of the signal, just as RGB does in
that system. Gary will correct me if I'm
wrong, but since it's ages ago when I
wired my plug to allow me to plug into
composite video, but I'm sure that it's the
Y and Ground pins that work: as composite
video.

But there must be some catch? Yes there
is. Since it's only brightness and the
colour component is seperate. Therefore,
you can only get monochrome from it,
which doesn't really affect the final result
of the titles, but you will remember that a
couple of issues ago, I re-submitted the
instructions on how to modify the

TI*MES Issue 50

13

Autumn 1995

The TEX Files

modulator to give true Composite Video
that 1 found when browsing the early
issues of TI*MES for my SOMEWHERE
IN TI*MES feature.

This also reminds me that I've not kept up
with this for quite a few issues, but you
never know, it might well return in the
Winter issue (if I have time!). [will start
my Winter article earlier, and I should get
the majority of completed, especially if the

experiment continues. What? Read on
and find out!
Right. Back to the video titling system.

Well, the video titling system on the
AMIGA might look very professional on

the surface, but I don't think it's very

useable, and like all software on other
machines, has convoluted menus and
functions that are just not laid out clearly
at all, so I decided to make life easier in
the way of achieving a predictable result,
but it was less easy, due to the fact of all
the drawing I had to do, and then typing in
the character definitions, but it was well
worth it, and because I did it with
Extended BASIC I even made a moving
star field with sprites to complete the
effect, and it looks incredible, just as
though we were watching the start of an
actual STAR TREK film!!! Tl let you
judge for yourselves though. You will see
that the program includes a small character
set as well as a large character set, and it
uses a double set of SUB PROGRAMS,
which are BIG and MBIG for the large
character set, and SMALL and MSMALL,
for the small character set.

The BIG subprograms are used as follows:

CALL BIGTEXT
Defines large character set.

CALL BIG(screen_row,
)

"string"

Prints the string at the specified screen
row. The string is automatically centred
left and right.

CALL MBIG(number_ of_rows,

l|,llll "ll’llll,ll",llll,"ll)
Prints the strings on the screen centred
left, right, top, and bottom.

Number_of_rows specifies the number of
strings that are displayed. 3 means display
the first three, and 8 is the maximum.

CALL SMALLTEXT
Defines small character set.

CALL SMALL(screen_row, "strin
g")

Prints the string at the specified screen
row. The string is automatically centred

left and right.

CALL MSMALL (number_of_rows,""

'"","",Il",l'll,llll’""'"ll)
Prints the strings on the screen centred
left, right, top, and bottom.

Number_of_rows specifies the number of
strings that are displayed. 3 means display
the first three, and 8 is the maximum.

There is a complication with the
characters that you need to use in the
subprograms though.

In the BIG routines you should just use
UPPER CASE, and in the SMALL
routines, lower case will give you normal
8*8 characters, and upper case will give
you double height 16*8 characters.

In both sets of routines you cannot use a
space character, but must use an at sign
"@" when you want to generate a space in
the final display.

In the BIG routines, you can generate a
full stop character by substituting a "["
character in your program.

TI*MES Issue 50

14

Autumn 1995

The TEX Files

In the SMALL routines,
substitutions can be made:

the following

? substituted for . ; substituted for ,
= substituted for - < substituted for (
> substituted for) : substituted for :

In the SMALL routines, as you will see
from the program, you can also use the
digits 0 to 9. Here's the program...

1 ! video Titling - By Richar

d Twyning 27-7-95

2 CALL SMALLTEXT :: FOR D=0 T

0 14 :: CALL COLOR(D,16,1)::

NEXT D :: CALL SCREEN(2)

3 CALL CLEAR :: FOR D=1 TO 28
:: RANDOMIZE :: CALL SPRITE(

#D,143,15,INT(RND*192)+1,1,0,

INT(RND*19)+1):: NEXT D :: CA

LL MAGNIFY(1):: CALL D

4 CALL MSMALL (3, "TWYNINGE@HOME

QENTERTAINMENTS", "@", "present

s?@z@2?","","","","",""):: CAL

LD

5 CALL CLEAR :: CALL MSMALL(3

,"a", "RICHARD@TWYNING@" , "film

o, """y CALL D

6 CALL CLEAR :: CALL BIGTEXT

: CALL D :: CALL MBIG(1l,"LOC
HE@NESS","","", "" "n, no oo ony
t: CALL D

7 CALL CLEAR :: CALL MBIG(4,"

STARRING", "IN",“ALPHABETICAL"
’ "ORDER“ II " "n ’ LI ’ L ll) s CALL

D

8 CALL CLEAR :: CALL MBIG(Z,"

DARREN", "BLACKBAND","","","",
" “",“")‘. CAI.\LD

9 CALL CLEAR :: CALL MBIG(2,"

PAUL" , "BODSWORTH" , “"'"3““,""
I'll,llll).. CALLD

10 CALL CLEAR :: CALL MBIG(Z,

" KEVIN " " GOODWINII nn nn "nw "wn
llll'"ll)‘. CAI;LD

11 CALL CLEAR :: CALL MBIG(2,

" RICHARD" MNING" " u wn , " .

mewn wwye: CALL D ::
EAR :: CALL SMALLTEXT
12 CALL CLEAR :: CALL MSMALL(
5,"and@a@special”, "guest@appe
arance", "by", "STEVE@FELTHAM; "
, "monster@hunter?”,"","",""):
: CALL D
13 CALL CLEAR :: CALL MSMALL(
3, "Visual@and@Audio@effects",
"by", "RICHARD@TWYNING","","",
we wm wwy.. CALL D
14 CALL CLEAR :: CALL MSMALL(
3, "music@arranged”, "by", "RICH
ARD@TWYNING" ,"", ™", "", "",""):
¢ CALL D
15 CALL CLEAR :: CALL MSMALL(
3,"principal@music", "composed
@by", "JOHN@WILLIAMS",6"" "", ""
,"",""):: CALL D
16 CALL CLEAR :: CALL MSMALL(
6,"additional@music”, "by","JA
MES@HORNER" , "ELLIOT@GOLDENTHA
L", "DANNYQELFMAN", "ALAN@SILVE
STRI" "",""):: CALL D
17 CALL CLEAR :: CALL MSMALL(
6,"Tri=logic", "Optimum@Pictur
e@Control;","Digital@Stereo@S
ound;", "and@DYNAMICE@SIGNALGFI
LTERING", "by", "SONY@Inc?@JAPA
N?","",""):: CALL D
18 !
19 CALL CLEAR :: CALL MSMALL(
5, "camera@from”,"@", "Matsushi
ta@Corporation; ", "<PANASONIC>
;" ,"JAPAN?","", """, ""):: CALL
D
20 CALL CLEAR
21 CALL MSMALL(8,"filming","D
ARREN@BLACKBAND" , "PAUL@BODSWO
RTH" , "KEVIN@GOODWIN" , "RICHARD
@TWYNING","@", "additional@fil
ming@by" , "RICHARD@GOODWIN"): :
CALL D
22 CALL CLEAR :: CALL MSMALL(
4,"location@consultants”,"@",
"DARREN@BLACKBAND" , "RICHARDQT
WYNING","","","",""):: CALL D
23 CALL CLEAR :: CALL MSMALL(
4,"transportation”,"@", "KEVIN

CALL CL

TI*MES Issue 50

15

Autumn 1995

The TEX Files

@GOODWIN","RICBARD@TWYNING","
w, UL, MM "vys: CALL D
24 CALL CLEAR :: CALL MSMALL(
4,"executive@producers”, "@","
PAUL@BODSWORTH" , "KEVIN@GOODWI
N","","","",""):: CALL D
25 CALL CLEAR :: CALL MSMALL(
5, "produced;@edited; ", "and@di
rected", "by","@", "RICHARD@TWY
NING","","",""):: CALL D
26 CALL CLEAR :: CALL BIGTEXT
:: CALL CLEAR :: CALL MBIG(4
,"LATE","IN@THE","TWENTIETH",
"CENTURY[[[[","","","","")
27 CALL D :: CALL CLEAR :: CA
LL SMALLTEXT :: CALL DELSPRIT
E(ALL):: CALL MSMALL(1,"JUST
AFTER 7pm"I""I"“I"“I""I““I"“I
""):: CALL D
28 CALL CLEAR :: CALL MSMALL(
1, "EARTHDATE: @28=7=95","","",
" """, "",""):: CALL D
10000 SUB D
10001 CALL KEY(0,K,S)::
0 THEN 10001
10002 SUBEND
20000 SUB BIG(ROW,T$):: LC=1+
((32-LEN(T$)*2)/2):: FOR D=1
TO LEN(T$):: C=32+((ASC(SEGS(
T$,D,1))-64)*4)
20001 CALL HCHAR(ROW+1,LC+1,C
+3):: CALL HCHAR(ROW,LC,C)::
CALL HCHAR(ROW,LC+1,C+2):: CA
LL HCHAR(ROW+1,LC,C+l):: LC=L
C+2 :: NEXT D :: SUBEND
20002 SuB MBIG(ROWS,AS,Bs,CS,
D$,E$,F$,G$,HS):: TR=(24-((RO
WS*2)+ROWS-1))/2 :: CALL BIG(
TR,AS$):: IF ROWS=1] THEN SUBEX
IT
20003 TR=TR+3 :: CALL BIG(TR,
B$):: IF ROWS=2 THEN SUBEXIT
ELSE TR=TR+3 :: CALL BIG(TR,C
$):: IF ROWS=3 THEN SUBEXIT E
LSE TR=TR+3 :: CALL BIG(TR,DS

IF S=

)

20004 IF ROWS=4 THEN SUBEXIT

ELSE TR=TR+3 :: CALL BIG(TR,E
$):: IF ROWS=5 THEN SUBEXIT E

LSE TR=TR+3 :: CALL BIG(TR,FS
):: IF ROWS=6 THEN SUBEXIT
20005 TR=TR+3 :: CALL BIG(TR,
G$):: IF ROWS=7 THEN SUBEXIT
ELSE TR=TR+3 :: CALL BIG(TR,H
$)
20006 SUBEND
20007 SUB SMALL(ROW,T$):: LC=
INT(((32-LEN(T$))/2)+1):: FOR
D=1 TO LEN(TS$):: C=ASC (SEGS (
TS$,D,1))
20008 IF C>63 AND C<91 THEN C
=((C-64)*2)+32 :: CALL HCHAR(
ROW+1,1.C,C+1):: CALL HCHAR(RO
W,LC,C):: GOTO 20010 ELSE IF
C>96 AND C<123 THEN CALL HCHA
R(ROW+1,LC,C-11):: GOTO 20010
20009 IF C>47 AND C<64 THEN C
=((C~47)*2)+110 :: CALL HCHAR
(ROW+1,LC,C+1):: CALL HCHAR(R
OW,LC,C):: GOTO 20010
20010 LC=LC+l1l :: NEXT D :: SU
BEND
20011 SUB MSMALL(N,AS$,BS$,CS,D
$,E$,F$,GS$,HS) :: SR=INT((24-(
(N*2)+N))/2):: CALL SMALL(SR,
AS§):: IF N<2 THEN SUBEXIT ELS
E SR=SR+3 :: CALL SMALL(SR,Bs

)

20012 IF N<3 THEN SUBEXIT ELS

E SR=SR+3 :: CALL SMALL(SR,C$

):: IF N<4 THEN SUBEXIT ELSE

SR=SR+3 :: CALL SMALL(SR,D$):

: IF N<5 THEN SUBEXIT ELSE SR

=SR+3

20013 CALL SMALL(SR,ES$):: IF

N<6 THEN SUBEXIT ELSE SR=SR+3
:: CALL SMALL(SR,F$):: IF N<

7 THEN SUBEXIT ELSE SR=SR+3 :

: CALL SMALL(SR,G$)

20014 IF N<8 THEN SUBEXIT ELS

E SR=SR+3 :: CALL SMALL(SR,HS

)

20015 SUBEND

20016 SUB PR(AS$):: PRINT RPT$

(" ",INT((28-LEN(AS$))/2))&AS$

:: SUBEND

30000 SUB BIGTEXT

R(32,RPTS$("0",64))

:: CALL CHA

TI*MES Issue 50

16

Autumn 1995

The TEX Files

30001 CALL CHAR(36,"030404050
90909121213252524684878C02020
A09090904848C80404E412121E")
30002 CALL CHAR(40,"FF4040272
424272525242424274040FFFC0201
F10912E40402F10909F10204F8")
30003 CALL CHAR(44,"1F204047"
&RPTS ("48",8)&"4740201FFF0202
FC"&RPT$("0",16)&"FFO101FF")
30004 CALL CHAR(48,"FF4040272
424242424242424274040FFF80402
F10909090909090909F10204F8")
30005 CALL CHAR(52,"1F2040474
8484F4A4A4948484740201FFE0202
FEOOOOF80404FEO000FEQ202FE")
30006 CALL CHAR(56,"1F2040474
8484F4A4A49484848484878FE0202
FEOOOOFS0404FE")

30007 CALL CHAR(60,"1F2040474
8484848484948484740201FFC0202
FFO0007F8181F31212E20204F8")
30008 CALL CHAR(64,"407048484
8484F4A4A494848484848781E1212
121212F20202F2121212120E02")
30009 CALL CHAR(68,"3F10100EQ
2020202020202023E10100FF80404
7E4040404040404040780404FE")
30010 CALL CHAR(72,"070202010
00000000000784423201807FF0101
F71212121212121212E20204F8")
30011 CALL CHAR(76,"784848484
8484F40404F4848484848780F0912
2448902040402090482412090F ")
30012 CALL CHAR(80,"78"&RPTS (
"48",11)&"4F40407F"&RPTS ("0,
24)&"FC0202FF")

30013 CALL CHAR(84,"406050484
442494C4A4948484848704002060A
1222429232529212121212121E")
30014 CALL CHAR(88,"406050484
44A4D4R4948484848487040020E12
121212129252B25222120A0602")
30015 CALL CHAR(92,"071820234
44848484848484423201807E01804
C42212121212121222C40418E0")
30016 CALL CHAR(96,"7F40404F4
8484F4R4A49484848484878FC0202
F10909F10202FC00")

30017 CALL CHAR(100,"07182023
44484848484B494423201807E0180
4C422121212129252B28C021AEF")
30018 CALL CHAR(104,"7F40404F
48484F4M4A49484848484878FC020
2F10909F10202CC22121109090F")
30019 CALL CHAR(108,"OF102047
48484720100F0000FF40403FFC020
2FFO000F80402F10909F10204F8")
30020 CALL CHAR(112,"7F40407F
020302020202020202020203FE020
2FE0080404040404040404040C")
30021 CALL CHAR(116,"4070"&RP
T$("48",9)5"444320100F101E"&R
PT$("12",9)&"22C20408F0")
30022 CALL CHAR(120,"40704824
2424121212090909050404031E121
2242424484848909090A02020C0")
30023 CALL CHAR(124, "F0909090
48484848252526241112121COF090
90912121212A4A4642488484838")
30024 CALL CHAR(128,"78484824
2412130808131224244848781E121
2242448C81010C848242412121E")
30025 CALL CHAR(132,"78484824
2412120904020202020202031E121
2242448489020404040404040C")
30026 CALL CHAR(136,"3F2020FF
0001020404081122474080FFFF020
4C48810204040800000FF0202FC")
30027 CALL CHAR(140,RPTS$("0",
24)&"3E11110F"&RPTS$ ("0",30)&"
80")

30028 SUBEND

30030 SUB SMALLTEXT ::
HAR(32,RPT$ ("0",32))
30031 CALL CHAR(34,"101028282
8282844447C448282828282F84442
424242445844424242424244F8")
30032 CALL CHAR(38,"3E40"&RPT
$("80",12)&"403EF844 " &RPTS ("4
2",12)5"44F8")

30033 CALL CHAR(42,"FE8080808
080F88080808080808080FEFE8080
808080F8"&RPTS ("80",9))

30034 CALL CHAR(46,"3E4080808
0808F828282828282824438828282
828282FE828282828282828282")

CALL C

TI*MES Issue 50

17

Autumn 1995

The TEX Files

30035 CALL CHAR(50,"7C"&RPTS$ (
"10",14)&"7C3E"&RPTS("08",9)&
"88888888887")

30036 CALL CHAR(54,"82848890A

OAOCOAOA090908888848482" &RPTS

("80",15)&"FE")

30037 CALL CHAR(58,"82C6C6AAA
ARA9292929292929292929282C2C2
A2A2A2929292928A8A8A868682")
30038 CALL CHAR(62,"3844"&RPT
$("82",12)&"4438F884828282828
4B8"&RPTS$("80",8))

30039 CALL CHAR(66, 384482828
282828282828282928A443BF88482
82828284B88884828282828282")
30040 CALL CHAR(70,"3C4280808
08040380402020202824438FE"&RP
T$("10",15))

30041 CALL CHAR(74,RPTS("82",
14)&"443882828282824444444428
282828101010")

30042 CALL CHAR(78,"828282828
28282829292546C6C6C4444828244
44442828101028284444448282")
30043 CALL CHAR(82,"828244444
42828"&RPTS$("10",9)&"FE020404
0408081010202040404080FE")
30044 CALL CHAR(86,"102828447
C828282FC8282BC828282FC7E8080
808080807EFC828282828282FC")
30045 CALL CHAR(90, "FE8080F88
08080FEFE8080F8808080807E8080
9E8282827C828282FE82828282")
30046 CALL CHAR(94,"381010101
01010383F0202020202827C828488
F088848282"&RPTS$("80",7)&"FE"

)

30047 CALL CHAR(98,"82C6C6AAA
A92929282C2A2A2928A86827C" &RP
T$("82",6)&" TCFC8282BC8080808
0")

30048 CALL CHAR(102,"7C828282
829A867FFC8282BC828282827E808
07C020202FCFE"&RPT$ ("10",7))
30049 CALL CHAR(106,"82828282
8282827C828282444428281082828
244545428288244281010284482")
30050 CALL CHAR(110,"82442810
10101010FE040810102040FE")

30051 CALL CHAR(112,"38448686
S8ASASA9292A2A2A2C2C244381030"
&RPT$("10",13)&"38")

30052 CALL CHAR(116,"38448202
0204040808101020204040FE38448
202020204180804020202824438")
30053 CALL CHAR(120,"08181828
2848488888FE08080808081CFE808
080808040300804020202824438")
30054 CALL CHAR(124,"38408080
80808080B8C4828282824438FE020
20404040408080808101010101")
30055 CALL CHAR(128,"38448282
82824438448282828282443838448
2828282463A0202020202020438")
30056 CALL CHAR(132,"00000018
180000000000001818"):: CALL C
HAR(134,RPT$("0",24)&"1808081
0")

30057 CALL CHAR(136,"10102020
204040404040402020201010"&RPT
$("0",14)&"FE000")

30058 CALL CHAR(140,"10100808
080404040404040808081010" &RPT
$("0",28)&"1818")

30059 SUBEND

Happy tapping. Apologies if I've missed
out any substitution characters, but I
suppose it adds to the fun!!! You will
have to experiment!

Well what's this about an experiment?
Well, Richard Speed has asked me to
substitute my article in PC form! Ah!
"Religious Sacrilage!!" you're all shouting,
but my article this quarter has not touched
my GENEVE, but it also hasn't been
produced on a PC. It's been produced on a
multi-tasking operating system that is
1000 times more powerful than Windows
95, and that's, on my organizer! Yes,
even the diagrams. I'm even able to create
a dedicated icon (See Figure 2.) and file-
list dedicated to my articles, since I
normally type them on my organizer
anyway, and then upload them to the
GENEVE for proper formatting and

TI*MES Issue 50

18

Autumn 1995

The TEX Files

printing. This time though it's been done
entirely with my organizer.

Figure 2
s . W Vetical
i J |
%’ = = Reader
ClubsiA) Jobs Rduert{A) Jobs(A]
i i R DTS b
DatalAl X-files SeringISIA1 X-tiles
sonallA: ‘Summer S4LA1 Rwlu][ﬁl
Surever 35(A]
Vinter94tAl
Free 249K

did I draw it? 1 used the icon designer that
also runs on my organizer, and is shown in
Figure 3!!!

Figure 6.

" tn 5]
a =
1 ne_|
c
]
a
e: B
hi By
»l N\
w|)
d

e

And if that's not enough, then I've just
used it to access the bulletin board!!!

Tconc to Another sgT ge

Dedrcated 1o the Free Exchange o Fairesre & PWite Donain Programs & ldear

Keemin:
372

2,108 LR

il Rights Reserved

Figure 3.
Ti

K:24 Y125

e —]Icg':;}

SHADE: BLACK. Erase

T
mmen]
" IconEdit 3aVU1.1c
Copyright © 1994
[By Stephen Robertson

The organizer's word processor even gives
80-column text as shown in Figure 4.

RosLIy Erofit riven rip-0f s, and like nost of
w mxm Stents on G5¢. Conputing Sustenss are only oot for thel

an tell I'n not very pleased pith Nottinshan Trent University
Stter the way Ifeel I've been tre:
1F my article turns out to be very Sorty then 1 uill apologize novs put the
course an s loft me and I'n
gurrently appealing lor‘rw Fesilts and T don't kiiow unether 10 finiem my

ect or no

£3 constantly contradict thenselues, They say you are supposed to
Zhou initiatios and form youe oun opinions, but 17 wou do this you ar
outcast. But, if 5 benave Like a sheep nd swallow ail their cap and copy
word For wor d in an exar Uhen your6 aroen a 1ot

But if it's too difficult to read, then check
out Figure 5!!!!

Figure 4.
PDear computing enthusiasts,e PutumnI5]
I opened without saying "Dear *Normal
Tl'ers">?? Ue)l‘ I thought I would use something \hat I couldn’t possibly "
B User sroue Outline |

Figure 5.

»Dear computing enthusiasts,«

groupte

* IBM user groups are mostly profit driven
rip-off’s, and like most of my feliow students
on BSc. Computing Systems, are only out for

why have I opened * Dorweal
without saying "Dear TI’ers 22?7 Well, 1 Qutine
thought I would use something that I couldn’t
possxbly have used had we been in an IBM user [Ellmﬂ

And when you've completed your
document and want to see what it looks
like, then check out Figure 6!!!

000 [

,——‘

])

I'd like to see Microsoft producing an
operating system as advanced as that and
still fit it into 2.5 Megs, complete with all
the applications and data and
everything!!!!

That's enough complaining about Bill
Gates and the state of the world for this
issue. Sorry no news on the SCSI card
this quarter. I promise I will have a go at
getting it in my box before the Winter
issue.

Richard Twyning over and out

TI*MES Issue 50

19

Autumn 1995

From The Chairman’s Chair

am back with you this quarter, after

a long hair tearing time trying to sort

out the BBS and its silly quirks. Life

is not easy you know when it comes
to Comms. As usual there is no real
standard and you have to choose the best
of the best, or rework it to make it do what
you want. I will expand on that at a later
date.

Issue 49

I wish to say to Richard SPEED thank you
for taking up the post as Editor. The first
of his issues No 49 was a lovely issue. 1
love the top and bottom reference to the
magazine. What 1 would like to see is
some more listings in the magazine for the
lower end machine. I will be putting in
some BASIC stuff this issue. So look
around and find it.

1 would also like to say thankyou to Mark
Wills for taking on the job as Membership
Secretary which can be a real pain at
times. I believe he has had to sort out the
data base onto his PC as he has problems
with his TI at the moment.

The BBS

Back to the BBs.... The BBs has been
running only a short while and is only on
line at the weekends. (Fri 7pm - 10pm Sat
& Sun 10pm -10pm). This so far has been
a success, with a total number of listed
members at the time of writing as 8.
However there will be more as the board
becomes used by outsiders. We will be
making a small charge to non members of
the group to help the BBs to run.

At this time I have two HARD DRIVES
on line, a 20meg and a 57meg. On the
board there are areas for TI, Amiga and
IBM. You can get onto the board with any
machine however the download and
upload areas have to be accessed with the

correct X MODEM CRC format to make
it work properly.

I am going to write to the Tim Tesh, the
man who wrote the software to see if he
can put Z modem on the system. I will
also be putting on a clock which will make
the board look real good very soon. Apart
from that everything is up and running
with a :-))) Big smile!

I will now go back in time for a little
while and do some basic programming
which I know a lot of you out there enjoy.

Printing with BASIC

What I am first of all going to cover is that
of Printing with Basic. This is at first sight
very restricted to a scrolling type input
such as :.

100 PRINT "hello"”
110 GOTO 100

As we all know this goes up the screen
and goes on forever. To be a little better
you can put a line at 50 CALL CLEAR
and change the line 110 GOTO 100 to
110 GOTO 50, and the ‘hello’ stays at
the bottom.

That is ok if you want it at the bottom.
What do you do if you want it some where
else on the screen? Put it in Extended
basic I hear a wag saying, OK - “But my
Extended BASIC broke down” or “I just
started with the machine”.

Well you do it like this.

100
110
120
130

CALL CLEAR

ROW =10

coL =1

A$="HELLO HOW ARE YOU"
140 GOSUB 1000

150 GOTO 100

1000 FOR I=1 TO LEN(AS$)

TI*MES Issue 50

20

Autumn 1995

From The Chairman’s Chair

1010 CALL HCHAR(ROW,COL+1,ASC

(SEGS (A$,I,)))
1020 RETURN

This will now allow you to place your text
anywhere on the screen with the ROW
COL coordinates and then print out the
screen text. When this performs it comes
out like a typewriter.

The PRINT command also has other little
tricks to it. There are things called
operators that tell the computer what type
of output to use. Try the following
program.

100 CALL CLEAR
110 PRINT "HELLO ";
120 GoTO 110

WHAT HAPPENS? Well the ; tells the
computer to print along the screen until
the screen is full with the complete word
and then scrolls round to the next line.
This can be very useful when you wish to
print out a matrix of numbers like this.

100 CALL CLEAR

110 FOR A=10 TO 44
120 PRINT A;

130 NEXT A

If you put in single numbers you will find
that they will drop out of line as the gaps
are smaller. To cure this you add a space
like this

100 CALL CLEAR

110 FOR A=1 TO 9
120 PRINT " ";A;
130 NEXT A

140 FOR A=10 TO 44
150 PRINT A;

160 NEXT A

You can play with this to your hearts
content and work out all sorts of display

ways. Next you can manipulate the print
setting in mid stream. on the program
above try 120 as PRINT " ":A: or
PRINT " ":A See what happens.

The print command can also be used to
place graphics on the screen in a very
successful way. This can be done with
redfined letters and printed onto the
screen. The other way is to use data
statements and redifined characters and
display with the CALL HCHAR routine. In
the following program both types of
printing are shown. This program prints
out a horse graphic.

100 REM HORSE

110 CALL CLEAR

120 FOR C=96 TO 126

130 READ C$

140 CALL CHAR(C,CS$)

150 NEXT C

160 DATA 0000000001010103,422
27DFFFFFFFFBF , 0060FEFFFFFFFFF
F,0000000008080E0F , 0300000103
070707

170 DATA 67ETEFFFFFFFFEFD,FFF
FFFFFFFFFFFFF , FOEOFOFOFOFOF 2F
E,000303071F1F3F3F, 000080COEO
FOFOF9

180 DATA 70000000000000E, 8303
0307070F1F3F, 7ETEBCBSBSB08OC,
0003030100010703, 7FFFFFFFFEFE
FEFE

190 DATA FFFF9F3F7FTF7FTF,COC
0CO8080C6FFFF , BE3E3EFFFF3F3E3
E,3F3F1F1F1F1F3F7F,FTFTFTEFDF
BF8

200 DATA FFFFFFFFFEFCE, FFFFFC
FOFOFOFOF , CF8F1F3E7CF8FOE, 010
30301, 7EFCFCF8, TF3FOF07030301
o1

210 DATA FS8FEFFFF8ES80COC,FOF0
FOFOFOFOF078,030303010101, EOE
OEOFOF8F87,787C3C

220 PRINT "METHOD 1:";TAB(15)
; "METHOD 2:"

TI*MES Issue 50

Autumn 1995

From The Chairman’s Chair

230 PRINT : : : "{3 SPACES} a
bc":"{3 SPACES}defg":" hijkfl

240 PRINT "mnofffp":" qrstuv"”
250 PRINT "wxyz {":" |} ~":"

260 FOR I=1 TO 35

270 READ X,Y,G

280 CALL HCHAR(X,Y,G)

290 NEXT I

300 DATA 13,21,96,13,22,97,13
,23,98,13,24,99,14,21,100, 14,
22,101,14,23,102,14,24,103
310 DATA 15,19,104,15,20,105,
15,21,106,15,22,107,15,23,102
,15,24,108,16,18,109,16,19,11
0

320 DATA 16,20,111,16,21,102,
16,22,102,16,23,102,16,24,112
,17,19,113,17,20,114,17,21,11
5

330 DATA 17,22,116,17,23,117,
17,24,118,18,18,119,18,19,120
,18,20,121,18,21,122,18,23,12
3

340 DATA 19,20,124,19,21,125,
19,23,126

350 GOTO 350

360 STOP

When you type this in you will find that
this will show you Method 1 which will
fill in the picture in lines across screen
scrolling upward. Method 2 uses the
HCHAR statement to put the graphic onto
the screen. With the print section you will
note that the letters 96 through to 126 are
placed on the screen. These being
redefined by the CHAR statement allow
you to print onto the screen.

There is just one more thing which is TAB.
This acts like a TABULATOR on a
typewriter and jumps along the line with
no print for the spaces given ie TAB(10)
jumps 10 spaces.

Look at the above program and you will
see its use.

MEMORY FULL FCTN QUIT.......
The MOBB BBS Special Offer

How much would you like your own
MODEM?

Be able to talk to other group users?

Have fun wth on-line games?

Download free software into the PD
Domain?

Get useful info on different subjects?

Be part of something?

Well you can. The TIUG (UK) OFFERS
YOU the chance to purchase at a very
special price the following MODEMS
which offer the following:

1. 14400bps and 9600 bps fax
2. 9600bps only

Both modems are fully BABT approved.

No.1 is £87 inc post, packing and VAT.
No.2 is £73 inc post, packing and VAT.

Contact Richard Twyning or Trev Stevens.

The small profit goes to Group Funds.

TI*MES Issue 50

22

Autumn 1995

Mark V_IiIIs
Drivel

(222 2NN 111 N B # daReir 8
& & % % 3 L #
0% % % % ¥ % %
#0008 #0223 BN ¥
0# & ¥ ¥ ¥ % #
% % % # LR #
(227 SN S B # i B

From The Vice Chairmans Very Own
Clapped Out Keyboard...

reetings once again. Been a

long time since I wrote a darn

thing forthe Mag, what with the

birth of our our second child,
moving house,working in foreign
countries... it's amazing how the time
goes. I really do think the older you get,
the faster it goes! (It's a shame our TI's
don't go faster as they get older!)

For those of you who need to contact me,
you can either write to me (address on
front cover) or mail me on the groups
BBS. My user number is number 5. You
are welcome to phone me at home as well
on 01743 350588.

Membership News

Those of you that renewed your
membership last quarter will know that I
am now the membership secretary.
Therefore, if you get the 'reminder' letter
in with your mag, please send your re-
newals to me.

Many thanks to all those that have
renewed. I hope you are all happier with
the new magazine layout. RICHARD
SPEED has done an amazing job. Now
that the group has had some internal re-
organisation, and what with the groups
BBS, things are really looking up for the

group.

Thanks also to those that have given
contributions in addition to their re-newal
fee. The contributions will be sent to
Stephen Shaw who will put them to good

use in the procurement of new software
for the groups disk library.

Renewals Last Quarter

'Welcome back to the fold' goes out to the
following persons who have renewed their
subscriptions: As of 26th August 1995 31
members have re-newed. A total of 16.00
pounds in voluntary donations has been
given by the members.

John Bingham Roy Robinson Ian Hewitt
Mr. Strong Sam Wardle John Murphy
Graham Steward Walter Allum Mike
Poskitt Victor Reinar Derek Hayward
Bill Moran = Stanley Moran David
McCann Daryl Muncy Ross Bennett
Francesco Lama Edwin George Edward
Shaw Peter Jackson Thomas Southwell
Ian Kileour Charles Skrzynski Alan Bray
Roger Nicholl Alan Rutherford William
Woermijer David Caine James Troy
Terry Leach John Dunning James Murta
Thomas Norman Douglas Moller

Nice to see Edward Shaw re-newing his
membership. Edward did a sterling job a
few years back as Module Librarian for
the group. Welcome Edward.

A special welcome to Mr. Douglas Moller
from Aitkenvale, Australia. Thanks for
your kind comments about the group Mr.
Moller. It's nice to know that our efforts
are appreciated.

Many thanks to Ross Bennett and his wife
(also ex committee members) for their
kind comments about the group.

Unfortunately, due to the change over of
membership post from Alasdair Bryce to
myself, there have been problems with
members details going astray/not being
kept up to date etc. A few members have
contacted me to say that they have sent
cheques to Alasdair but they have not been

TI*MES Issue 50

23

Autumn 1995

Drivel

cashed and they have not received any
more magazines. In addition, we have had
problems with the groups data base getting
corrupted.

If your supply of magazines suddenly
dries up without notice, or you get a
reminder letter when you shouldn't then
PLEASE CONTACT ME
IMMEDIATELY so that I can change
your details. We will do our best to get
any issues that you have missed to you.

Drivel Drivel Drivel Drivel

Readers will have noticed that the subject
of communications has dominated the last
few issues, due mainly to the group getting
it's phone and BBS installed.

I work for a company called Merlin
Research writing communications
software. It is my job to get two computers
that are completely alien to one another
(and use their own transmission / packet
protocols) and make them talk. I do this
using a third computer (phew!) which can
understand the protocols of both the
machines in question and translate them as
the messages are sent and received.
Literally a translator / interpreter that sits
in between the machines and converts the
data so that they can both understand
them. Clever it is. Easy? Not blummin'
always!

Anyway, I digress. I thought this issue, I
would look at making your TI talk other
computers. Namely a PC. Many of you
have PC's at home in addition to your TL
Perhaps you have a laptop/notebook PC
that you use at work, or perhaps the wife
has one to hold the membership details of
her monthly 'Blue Rinse, Cup Of Tea, Bit
'O Knitting and Good 'Ol Gossip Club'.
More likely though, your five year old son
or daughter has one do his / her homework
on the investigation of Black Holes and

their ability to bend light, matter, life, the
universe and everything!

Any computer worth it's salt has a
communications port. In the early days
they were less common (certainly on home
machines) because computer
communications was “for the
professionals man” and not something that
the everyday space invader player was
interested in.

TI, sensibly, gave you the option.
Computers in the late seventies and early
eighties were pretty expensive, so it was a
good idea for TI to develop the Home
Computer in the modular, expandable way
that they did. You bought what you could
afford, when you could afford it. What's
the point in an RS232 when all you want
to do is play Alpiner (my favourite TI
game!)

Nowadays, the price of IC's is so low, just
about any machine built this side of 1990
will have one or maybe two
communications ports (The TI card has 2).

TI's and PC's have an RS232 port. Apple
Macs have an RS422. RS232 is the world
wide adopted standard for short distance
communications (up to 50 metres), RS422
is for medium distance (200 metres) and
RS485 (which I work with) works up to
about a mile. RS485 and RS422 use a line
differential system to communicate. They
have two RX lines and two TX lines,
whereas RS232 only has one. In RS422
and 485, as one line goes high, the other
goes low. If the DIFFERENCE between
them is more than (I think) 200 milli-volts
then it is deemed a valid data pulse.

Using this system, you can see that data
transmitted using this system is highly
protected from noise, as any noise (say
from mains cable) would have to induce a

TI*MES Issue 50

24

Autumn 1995

Drivel

voltage of over 200 milli-volts in order to
corrupt the data travelling along the wires.

RS485 uses low impedance cable in order
to minimize the volt dropalong long
lengths of cable, helping to ensure that
data can be carried long distances. In
addition, RS485 transmitters tri-state
themselves from the transmit lines when
they are not talking, but always remain
connected to the receive lines (the listen
lines). This allows what is known in the
industry as Multi-Drop systems to be used
with RS485 (that is multiple machines
connected to the same, common RS485
data lines).

Machines on a factory floor might be
hooked up to an RS485 system with a
'data monitor terminal' collecting data
from all of the machines and displaying it
on a screen for the factory operators (my
job!). RS422 does not have this capability.
Any way, I digress again...

Connecting Your Tl to a PC

For what we are going to do, only three
wires are necessary. RX (receive) TX
(transmit) and GROUND (0V).

RS232 wiring convention states that the
TX line from one machine is connected to
the RX line of the other, and the RX line
is connected to the TX line of the other. In
other words the RX and TX lines are
crossed over, so that when one machine
sends something on its TX line (transmit)
the other machine receives it on it's RX
line. The ground (OV) line is simply
connected together so that the two
machines are referenced to each other.

Assuming your PC to have a NINE pin
COM port, this is how to connect your TI
to your PC:

PCPIN No TI PIN No
2 3
3 2
5 7

That's all you need. This should be good
for TI to PC communications at up to
9600 baud, and good for PC to TI
communications at 2400 baud to 4800
baud. (The TI is a slower machine, and
cannot handle large amounts of data in a
short time, thus slower baud rates are
recommended - unless you connect the
handshake cables of the RS232 leads -
beyond the scope of this article. I
recommend that you run at 2400 baud -
you'll be surprised at how fast it is.)

PC Terminal Emulation Software
I will discuss talking to your TI via
PROCOMM and Windows Terminal.

If you want a copy of the shareware
version of PROCOMM for the PC, send
me a PC disk (3&1/2" or 5&1/4") and a
STAMPED ADDRESSED ENVELOPE
and I will send you copy. TELCO is
available from the group library at the
normal rates.

First connect the two machines up via the
cable. (Have both machines turned off.)

Setting the Baud Rate

This is the speed at which the data travels
between the two computers. Both
machines must be talking at the same
speed or else they will not be able to
communicate. Along with the baud rate,
we shall set the number of stop bits and
the Parity, and number of data bits. This
forms part of the 'Communication
Protocol’, too involved for this article, but
suffice it to say that if both machines are
not set the same, you may be able to
communicate but you will get false errors

TI*MES Issue 50

25

Autumn 1995

Drivel

being reported, and may notice 'rubbish'
characters on the screens of the machines
when you transfer text (especially if the

text contains extended characters/control

codes etc).

We are going to communicate at 2400
baud, 8 data bits (thus character codes 0 to
255 can be transmitted - essential for
binary transfers, not essential for text
transfers), No parity, and 1 stop bit. The
techno speak for this. communication
protocol is 2400 8N 1

With this protocol, you should have no
problems communicating at all.

Procomm (PC)

Press ALT P Then press 9 and ENTER
Select the appropriate number number for
the COM port you are using and then
select the number for save changes.
Procomm will be set to these settings each
time it loads.

PRESS ESC to return the Main Screen.

Windows Terminal
Click on the SETTINGS bar at the top of
the windows, and then click on

Communications. Click the appropriate
buttons for Baud, Parity, Stop Bits, Serial
port etc. (Editor’s note - Hyper Terminal,
which is included with Wndows 95 works a
treat and supports ANSI graphics too...)

TELCO (T1)

When TELCO loads, select TERMINAL.
When the Terminal loads, Press FCTN B
for the terminal settings. Press Q for baud
rate, then select 2400 baud.

Do the same for STOP BITS and
PARITY, select 1 stop bit and no parity,
and 8 DATA BITS.

Lets Talk

Lets have a look and see if we can Talk'
from one machine to the other. We will
also change a few settings and discuss
them on the way such as line feed codes,
carriage returns etc.

Type something on the TI keyboard. Does
it appear on your PC screen? If not, then
you've done something wrong, go back
through the info above and check.

If it appears on the PC screen, but you
don't see anything on your TI screen, then
you need to change the ECHO settings.
Hit FCTN B, and you will see the option
on the menu, which you can toggle
between on and off.

Now press a key on your PC. You should
see it on your TI screen. If you see it on
your TI but don't see it on your PC then :

Procomm:

Press ALT E to toggle Duplex
Windows Terminal:

Click on Settings then click Terminal
Preferences. Click on the Local Echo
button

Transferring Text Files
This is an aspect communications which
always confuses new-comers.

Many times, when sending a text file from
one machine to another via a terminal
program, the text does not appear to arrive
in the way that it was sent. Sometimes
there is a blank line in-between each line
of text, and sometimes all the text looks
like one giant paragraph etc etc. This is all
to do with the settings on the remote
machine and your machine. When
transferring TEXT, one will come across
LINE FEED and carriage return options.
A good rule of thumb is to set both
machines to perform no translation on

TI*MES Issue 50

26

Autumn 1995

Drivel

either in-coming or outgoing text, that way
you can guarantee the text is received in
the way it was sent.

The other fool proof way of capturing text
files is to download or upload them using
a binary transfer method such as
XMODEM. (Binary transfer protocols are
usually used for sending and receiving
programs and data but there is nothing to
stop you sending text using the same
protocols). XMODEM and it's counter
parts perform no translation at all on any
data, due to the type of data that they are
sending/receiving. le. Programs. One
hardly hardly change the contents of a
program file and still expect it to work!

Transferring using XMODEM
The method is the same which ever way
around you do it (TI to PC or PC to TI):

Tito PC

Select UPLOAD on TELCO, then select
XMODEM Select DOWNLOAD on your
PC program, then type a file name for the
file that is going to be received. On your
TI, type the file name of the file that you
want to send and hit ENTER. The file will
be sent from your TI to your PC.

PCto Tl

Select upload on your PC, then select
XMODEM. Select Download on TELCO,
then XMODEM. Enter the filename to
receive on your TI and hit enter. On your
PC, give the file name of the file to send.
The file will be sent from your PC to your
TI.

Waffle Waffle Waffle

That's all for communications for this
issue. If you have any difficulties then
give me a call or write. Further, if you
need a cable made to connect you
machines together, send a stamped

addressed envelope to me with a fiver in
it to cover cost of parts and I'll make you
one and send it back to you. Copies of
PROCOMM (shareware) can also be
supplied but only if you send me a disk (3
1/2" or 5 1/4")

Over and Out.

WANTED
Myarc Geneve 9640 card for TI
Expansion Box with appropriate DOS
software.

WILL PAY UP TO 150 POUNDS
Please contact Mark Wills on 01743
350588 if you have a Geneve that you

wish to sell. Can collect if neccessary.

Overseas offers welcome. Address on
front cover.

TI*MES Issue 50

27

Autumn 1995

Cracking The Code

his article is in response to
Walter Allums request last issue
for information about interfacing

Assembly Language programs to

Extended Basic Programs. I'm sorry we
seem to have lost touch Walter, will
contact you soon. Got your letter about
your membership details. Thanks!

It's Easy. If you've managed to do it with
the editor assembler (oooh Matron!) and
TI basic, or MINI MEMORY and TI
Basic, then you're a good 95% of the way
there.

it's A Bummer

There are only a few differences between
the Editor Assembler and TI Basic
environments, unfortunately, they are
enough to totally stump the new-comer to
Assembly Language and hence this article.
The topic is covered in the Editor
Assembler manual, but not directly. If
memory serves me correctly, there is a
section on the Extended Basic Object
Code Loader (it's been eons since I looked
at the Editor Assembler Book - (hangs
head in shame))

Basically, the Extended Basic loader is
naff. It cannot load Compressed Object
Code (another subject!) and it does not

support the REF directive (heavy
bummer), additionally, it is
SLOOOWWW.. you begin to get the
picture!

It's important to realise that the way you
write your code does not change as such.
It's the way you assemble it that differs,
although the addresses of all the Basic to
Assembly Language Utilities change in
addition to things such as the sprite
attribute list etc etc, which can give rise to
some fairly serious cranial agitation!

For example,the memory mapped ports are
still in the same place (GROM
READ/WRITE etc), but the address of the
VSBW routine is totally different. I will
give a list of the Extended Basic utility
addresses later.

So What are you REFering to?

So where's this all going I hear you ask?
Well guv, it's the REF directive innit.
Yeah. Know wot I mean? It wanna work
wiv du REF directive.

Extended Basic does know about it and
does not care about it. If it sees a REF tag
in the object code that it is trying to load,
you get the old two fingered salute from
your TI!

Let's have a look at what the REF directive
is. It's rather clever, and T would suggest
that when TI implemented it, it was years
ahead of it's time.

Here's a piece of Assembly Language that

will work in the editor assembler
environment:

REF VSBW

DEF START
MYWS BSS 32
START LWPI MYWS

LI RO,767

LI R1,>2000
LOOP BLWP @VSBW

DEC RO

JNE LOOP
LOCK B @QLOCK

Those of you who know machine code
will know that the above routine will clear
the screen, starting at the bottom right and
finishing at the top left (‘cause it's quicker
that way - look at the code and think about
it. Answers on a postcard please!)

TI*MES Issue 50

28

Autumn 1995

Cracking The Code

You would load it from TI BASIC with
CALL LOAD and then do a CALL
LINK("START") to call it. It would clear
the screen (fast) and then lock up.

This would NOT work in extended basic
however. Not because the code is wrong,
but because the XB loader does not
recognize the REF directive.

The REF directive

The REF directive allows the programmer
to REFer to certain system utilities by
name rather than by address. Which line
of code would be more understandable
twelve months after you wrote it:

BLWP QVMBW
or
BLWP @>20C0
(20C0 is just an example address)

There are many utilities tucked into the
TI's ROM that the programmer can refer
to by name GPLLNK, DSRLNK, VSBR,
VWTR etc etc.

Why Not Use the EQU Directive?
This is a good question. You would be
quite right to say that you could
accomplish the same using the following:

VMBW EQU >20C0

(later in program)

BLWP @VMBW

Portability Mate. It's Portability
Innit!

The idea is as clever as it is sophisticated.
The three main modules (Editor
Assembler, Mini Memory, and Extended
Basic) all have pretty much the same
number of utilities tucked into them (I
think the XB module has some of them
missing... may be wrong though). The
problem is, that the vectors for the utilities
are all at different addresses depending
which module you have plugged into your
rather old and somewhat dodgy and
decrepit module port (if it's anything like
mine).

All this spells headaches for the Assembly
Language Programmer. It means that if he
wants his machine code program to run in
any of the modules, he must have a
version for each that has the correct
address of all the utilities he is using.

TI saw this problem and set about fixing
it. Hence the REF directive.

When you include a REF in your source
code, the assembler makes a note of it in
the resulting object file (have a look at the
end of a DF80 file with the funnelweb
program. Notice anything?)

When you load that object file into BASIC
with the CALL LOAD command, those
REF's say "Oy. I'm gonna be using VSBR
etc etc"

The object code loader (which is built into
the module that is plugged in) know's
which address corresponds to which
utility. For example, if the ED/Ass
module is in use and it comes across a
KSCAN ref, each time it sees KSCAN in
the object file, it will swap it for the
correct address of the KSCAN utility - ON
THE FLY as your object code loads!!
Really NEAT!

TI*MES Issue 50

29

Autumn 1995

Cracking The Code

This means that the very same object file
will work on both the Mini Mem and the
Ed/Assembler module! No re-
programming and having to remember

loads of different addresses! Cool or what!

The Bad Apple

(Music from the film JAWS plays while a
scene is shown depicting a poor Assembly
programmer trying to get a program that is
fine under Ed/Assembler but just wont
have it under XB to work...

Our programmer looks around in sheer
disgust and exasperation. Why won't XB
even LOAD the object file? He looks at
the error message again, and the looks at
his source code. Oh No! It's those REF
statements... (change music to the music
from Physco)... Fade to Black.

A new scene. The programmer sits happily
in his padded cell playing a game of Tetris
on his Game Boy...Aaah, that's better!

In an effort to squeeze all the functionality
of XB in, they had to kick a few bells and
whistles out. One of them was all the
funky things in the object code loader.

The object code loader DOES NOT
SUPPORT THE REF DIRECTIVE so
don't use it. See below for the solution.
The DEF directive is allowed however.

Also please note that the BSCSUP file
found on the editor assembler disk IS
NOT REQUIRED under Extended Basic,
so again, don't use it. It won't work
anyway due to the fact that the object code
contains REF directives which, as I have
been at pains to point out, is not
supported!

Machine Code in the XB Environment
(spit!) Here is the above program, written
to work in XB.

DEF START
VSBW EQU >2020
MYSW BSS 32
START LWPI MYWS

LI RO,767

LI R1,>2000
LOOP BLWP @QVSBW

DEC RO

JNE LOOP
LOCK B @LOCK

You'll notice that all I've done is declare
VSBW myself using an EQU directive.
This is all you have to do. Of course this
requires you to know the correct addresses
of each of the utilities, so in the best Blue
Peter tradition, here's a little list that I
prepared earlier...

The numbers in brackets are the Editor
Assembler equivalents. You will find a
similar table in the Editor Assembler
manual, but please note that the value for
CFI (convert floating point to integer) in
the book is WRONG!! Just about the most
important one too as that's the one you use
when you pass numbers from your BASIC
program to your machine code program!
You can trust TI to cock it up!

The Mark Wills Magic Table of
Extended Basic Equates:

VSBW EQU >2020 (6024)
VSBR EQU >2028 (602C)
VMBW EQU >2024 (6028)
VMBR EQU >202C (6030)
NUMASG EQU >2008 (6040)
NUMREF EQU >200C (6044)
STRASG EQU >2010 (6048)
STRREF EQU >2014 (604C)
KSCAN EQU >201C (6020)
CFI EQU >12B8 (2???)
XMLLNK EQU >2018 (601C)
GPLWS EQU >83EQ (83EO)

TI*MES Issue 50

30

Autumn 1995

Cracking The Code

STATUS EQU >837C (837C)
CIF EQU >2000 (2?2?)
VWITR EQU >2030 (????)

Okay. So now you know the addresses of
the most used Extended basic utilities.
Lets have a look at writing some assembly
language programs and passing data
between them and an Extended Basic
program.

Passing numbers from XB to
Assembly

Not hard. First the NUMREF routine is
used to actually get the number from
wherever XB keeps it into our machine
codc program.

You have to tell NUMREF which
parameter you want from the CALL LINK
statement. For example : CALL
LINK("BLOG",X,Y) X is parameter 1, Y
is parameter 2. You tell it by loading the
parameter number in R1.

If you are passing whole arrays (not
covered in this article) then you give the
element number in RO. (We will be setting
RO to 0)

XB handles numbers in floating point
(radix 100) format, so, before we can store
the number in a register, we need to
convert the radix 100 number to an
integer.

Now the assembly language:
DEF TRY
NUMREF EQU >200C
XMLLNK EQU >2018
CF1 EQU >2000
MYWKSP BSS 32

TRY LWPI MYWKSP

The radix 100 number, after it has been
fetched from XB is stored in a place called
the Floating Point Accumulator (FAC) and
it's STARTING address is >834A.

After we have converted it to an integer,
the integer will be stored at >834A, ready
for us to load into a register.

The above addresses are constant and
fixed. They cannot be changed by you,
and you can be sure that the system will
not change them at any time.

The Convert Floating Point to Integer
routine (CFI) is accessed via the
XMLLNK utility. This utility takes a
parameter in the form of a number after
the branch to XMLLNK in your code.
Instead of a number however we will use
the symbol CFI which we will have
previously declared using an EQU
directive.

Here is a program in assembly language
which will take a number from XB and
add 1 to it, leaving that number in R8:

First an example XB program to call our
assembly program:

10 CALL INIT

20 CALL LOAD("DSK1.TEST/O")
30 A=145

40 CALL LINK("TRY",A)

50 END

TI*MES Issue 50

Autumn 1995

Cracking The Code

CLR RO
LI R1,1
BLWP @NUMREF

not an array element-normal variable
first parameter from call link
get the number in radix 100 from XB

(number starts at >834A)

BLWP @XMLLNK
DATA CFI

call XMLLNK routine
tell XMLLNK we are using CFI routine

(the integer number is now at >834A)

MOV @>834A,R8

INC RS
LOCK B @LOCK
Okay, so it's a boring program. But it
demonstrates just how easy it is to do it. If
there was another parameter in the CALL
LINK statement, just add 1 to R1 (the
parameter counter in the CALL LINK
statement) and do the same again. Make
sure that the parameters type matches
though. Don't use NUMREF when you
pass a string to your assembly language
program!! You can see that you have to
define the order of your parameters and
stick to them. It is possible to determine
the type of parameters passed, and the
number of parameters passed from within
your assembly language program, but it is
beyond the scope of this article. Request it
and I will write about in a future issue if
anyone wants to know.

Returning Numbers from Assembly
Language to XB

Building on from the first example, we
will pass a number to assembly language,
the assembly language program will add 1
to it, and then return it back to XB. this
program also illustrates the correct way to

return back to the XB environment.

To assign a number to a basic variable we
use the NUMASG utility.

DEF TRY
NUMREF EQU >200C
NUMASG EQU >2008
XMLLNK EQU >2018

get integer in R8
add 1 to the number

Again, RO contains the element number,
R1 the parameter, and the NUMASG
utility expects the value to assign in the
floating point accumulator (FAC) already
in floating point format. We therefore
have

to convert the number twice - once from
floating point to integer so that we can add
1 to it, and then back to floating point so
that we can assign it.

To convert from integer to floating point is
very simple. We move the integer to the
first word in the FAC and then call the
CIF routine in XMLLNK.

First, the XB:

10 CALL INIT

20 CALL LOAD("DSK1l.TRY/O")

30 A=145

40 PRINT "BEFORE ASSEMBLY LAN
GUAGE=";A

50 CALL LINK("TRY",A,B)

60 PRINT "AFTER ASSEMBLY LANG
UAGE=";B

70 END

Now the assembly:

TI*MES Issue 50

32

Autumn 1995

Cracking The Code

CF1 EQU >2000
GPLWS EQU >83E0
MYWKSP BSS 32
TRY LWPI MYWKSP
CLR RO not an array element-normal variable
LI R1,1 first parameter from call link
BLWP @NUMREF get the number in radix 100 from XB (number starts
at >834A)
BLWP @XMLLNK call XMLLNK routine

DATA CFI tell XMLLNK we are using CFI routine
(the integer number is now at >834A)
get integer in R8

add 1 to the number

MOV @>834A,R8
INC R8

(we now get ready to assign the number back to XB)
(notice RO is still zero-not an array)

move RS to FAC
call XMLLNK utility
tell XMLLNK we are using CIF

MOV RS,@>834A
BLWP @XMLLNK
DATA CIF

(the value in R8 is now in floating point format in. FAC)

INC R1 point to second parameter in CALL LINK

BLWP @NUMASG call numeric assign routine. XB now has the variable.
LWPI GPLWS get ready to return to XB. Load GPL.registers

CLR @>837C clear GPL status byte (YOU MUST DO.THIS)

RT return via GPL register R11

If you assemble this and run it in
conjunction with the XB program, you
should find that A contains 145 and B
contains 146.

Next Issue

Next issue I'll show you how to send
TEXT strings from XB to machine code.
Just to wet your appetite however, here's a
program in machine code for the XB
environment that I wrote yonks ago which
is basically a DISPLAY AT command ala
XB. however, it uses the 32 column
screen, not the 28 column screen like
DISPLAY at.

Also, the third parameter is a direction
parameter. Using this you can print text
backwards etc. Here are some examples:

CALL LINK("PRINT",10,10,1,"HE
LLO")
RESULT HELLO

CALL LINK("PRINT",10,10, —
1, "HELLO")
RESULT OLLEH

CALL LINK("PRINT",10,10,32,"H
ELLO")

TI*MES Issue 50

33

Autumn 1995

Cracking The Code

RESULT H NUMREF EQU >200C
E XMLLNK EQU >2018
L STRREF EQU >2014
L CFI EQU >2000
0 GPLWS EQU >83E0
MYWKSP BSS 32
CALL LINK("PRINT",b10,10,- BUFFER BSS 256
32, "HELLO")
PRINT LWPI MYWKSP
RESULT o CLR RO
L CLR R3
L LI R1,1
E LI R2,BUFFER
H BLWP @NUMREF
BLWP @XMLLNK
CALL LINK("PRINT",10,10,31,"H DATA CFI
LI R4,32
RESULT H ’I‘;’Cf ﬁ‘i'“
LE BLWP @NUMREF
L BLWP @XMLLNK
o DATA CF1
MOV @>834A,R5
CALL LINK("PRINT",10,10,- ?Ngséfs
31, "HELLO") BLWP @NUMREF
BLWP @XMLLNK
RESULT o DATA CFI
L MOV @>834A,R7
L INC R1
E LI R5,>FF00
H MOVB R5, @BUFFER
BLWP @STRREF
You get the idea. It also illustrates the MOVB *R2+,R3
ASCII offset required when printing text SWPB R3
on the screen from machine code. We'll MOV R6,RO
discuss the program next issue. Ta Ta for LOOP MOVB *R2+,R1
now. AI R1,>6000
BLWP QVSBW
* PRINT ROUTINE: A R7,RO
* PRINTS A STRING AT A DEC R3
* SPECIFIED Y&X LOCATION, CI R3,0
* WITH A SPECIFIED "GAP" JNE P1
* BETWEEN CHARCTERS ALLOWING LWPI GPLWS
* VERTICAL PRINTING (UP AND CLR @837cC
* .DOWN) BACKWARDS PRINTING, RT

* ANGLED ETC.

TI*MES Issue 50 34 Autumn 1995

The TI*MES Enthusiast

fter my staggering success of

having an article appear in

TI*MES many issues ago,] feel
~ committed to try to repeat the
feat. I know that there's someone else out
there with a 99/4A! This article was
originally submitted for publication many
moons ago, but for some reason never
appeared in print. So, dusted of, and re-
arranged, try again. For the confused, let
me explain. Previous to sitting at the
keyboard to write the article in issue 22, I
had never submitted anything for
publication. To have my meanderings and
ravings printed was wonderfully
rewarding. But, hello, what is this in the
letter box? Not a gas bill,inland revenue
summons, or even junk mail, but a genuine
reply from an enthusiast in West Sussex.
Leo Hughes, you are a diamond. His
response to my primitive efforts with TI-
Writer are reward aplenty. I hope that he
is still a subscriber. Thanks also to the

commitee members for correcting,
reprinting and publishing my
reminiscences.

Now I know how copy should be sent, this
item should be correct, apart from my
usual bad spelling. A rose by any other
name and so on. For this article I am
using left margin 5, right margin 75, page
length 58, with fill adjust turned on. The
extra space after full stops (and question
and exclamation marks) is avoided by
using a required space carat. [Which
Microsoft Word 6 has decided to
completely ignore! - ed]

Tempting Fate

All this elation was shortlived however, as
after my assertion that computer
equipment was reliable the last months
have been the worst ever for faults
developing. Perhaps [was tempting fate
but everything has now been fixed and at

risk of it happening again I will describe
the problems. To those readers who find
this of no interest I apologise; to stop my
ravings you will just have to write an
article yourselves. No doubt if there is a
sudden glut of material for TI*MES, my
articles will be the first in the editor's bin
again!

Disk Repairing

The nightmare started soon after the last
article was written. Attentive readers may
remember a comment about my second
disc drive not formatting discs. Whilst
investigating this I realised how litte I
knew about how our computer talks to the
discs, so I researched and discovered that
the drives are designated as 1,2,or 3 by a
shorting plug on each drive. These were
correctly set but I had a terminating
network on both drives! Wrong! So
remove network from drive 1 and now 2
would perform correctly. But now a
problem which I had experienced on odd
occasions became much worse. Drive 1
head would often not “load” into contact
with the disc, giving drive error codes.
Studying the circuit diagrams showed
what to me seemed a complicated
arrangement. of an AND gate supplying
the head load solenoid with a 20 msec one
shot multivibrator switching a transistor
on to overcome the inertia of the solenoid.
Presumably this is to reduce the normal
current load when the drive is reading or
writing. The one shot was half of a 9602
chip and my comment about state of the
art electronics backfired when I
discovered that this is no longer available!
However by some butchering,
piggybacking a 74LS121 onto this chip,
and working out the logic required, this
was fixed. Who called it "logic" in the
first place?

During all this testing and disturbance of
the console a persistant crashing of the

TI*MES Issue 50

35

Autumn 1995

The TI*MES Enthusiast

system became apparent, 3 hours of
searching the processor pcb with a
magnifying glass, and twisting the board
to find a slight squeak, produced a dry
joint. Why this had not shown up years
ago is a mystery. So, great, now it must
work. Wrong, ncw the drive searched
endlessly for the directory on the disc! At
that I gave up for three weeks and
struggled with one drive working, resigned
to buying one or maybe two new half
height drives.

New drives? Bah, Humbug!

The Scrooge instinct prevailed eventually
and a close examination of the drive pcb
revealed a FET with two broken leads,
possibly due to handling of the drive
whilst finding the first fault. Looking
through my collection of discarded pcb's
only produced P type FET's, so with
nothing to lose I tried to solder two leads
back on. This proved to be dificult as there
was no wire sticking out of the device.
Eventually I managed to attach one strand
of flex to each lead but the FET was very
hot by this time. I did warn you that I
butchered! Even though I had to melt the
plastic encapsulation and FET's are
notoriously delicate to heat and static, it
worked. When everything was
reassembled, both drives worked fine,
much to my relief.

Assuming that they would stay working
for some time, another 100 discs were
purchased, but double sided just in case I
had to replace one or other of the drives.
Fortunately there are few programs which
demand double sided drives so the cash
could have been spent on further
expansion, maybe a ram disc which I am
tempted to try to build. Anyone know how
it is done?

The discs were a bargain, 22p each and a
free 100 locking box too! They seem to be

good quality, working fine at 80 track
double density on the office Amstrads.
On the subject of components, my best
source of free bits is the local office
equipment suppliers as they scrap large
numbers of keyboards, printers,
typewriters etc. because the ironmongery
is shot but the electronics are usually in
good order and of the right age for our
use. I even wuse reclaimed chips,
unsoldering them with a suck tool and
metal heat sink. Disc drives from this
source however are normally worn out and
beyond repair due to head wear and/or
misalignment.

PEB Power Supply

These recent repairs had brought to light
the fact that the 12v supply in the PEB is
only just sufficient for two older type
drives. I seem to remember reading that
the regulator was a large T03 can type but
my PEB and the manual both agree that it
is a 7812 plastic reg. Is this yet another
production change by TI? The PEB
transformer should be capable of more
than 1 amp max so I will double up on this
regulator next time the PEB is opened.
The 12v rail sinks to 11.66v when both
drives are enabled as when disc copying.
The 5v rail maintains 4.87v which is
plenty, no need to wear out chips too
soon! This is no doubt why at the AGM
Trevor had found powering up the 65Meg
hard drive impossible with the PEB power
supply. However we are fortunate that the
design of the PEB is so arranged that all
cards have their own regulators for both
Sv and 12v. Any power failures on cards
are isolated to that card only, more of this
later!

We have a Silver Reed electric typewriter
at work and as the interfaces to use it as a
printer are rapidly dissapearing I decided
to buy one. Unfortunatly only the parallel
version was available so if anyone will

TI*MES Issue 50

36

Autumn 1995

The TI*MES Enthusiast

swap for a serial RS232 version they can
have my brand new one. Otherwise a
parallel interface for the 99/4A will have
to be built. Does anyone know what
signals are used? The Silver Reed
instructions refer to “data strobe”,
“prime”, “ack”, “busy”, and “select”.

Presumably the DSR is already in my
RS232 eprom so once I can decode the
correct addresses and signals it should
work. The dense black print out should be
better and cheaper than using this Brother
EP44 in its overstike mode as it overstikes
no less than four times with TI-Writer and
uses up film ribbons at an alarming rate.

Trevor’s phone call at the end of July has
resolved this particular problem; he is
sending me a proper RS232 card, what a
nice person he is!

In the months following the disc drive
problems, my feelings towards these old
BASF items became more and more
distrustful. They are noisy, large, old and I
would suspect, heavy on the discs. The
local electronics shop came to the rescue
just at the time when I had some cash.
Alan Bray in Reddish had a chip problem
with his disc controiler card which we
managed to fix, and whilst setting up his
drives again, mentioned that this shop had
some new double sided 40 track drives.
When I called he had 3 new Panasonics
left, I bought the lot on impulse for 40
pounds. This was probably the best
purchase [have made for some time, they
are quiet, smaller and use practically no
power from the PEB compaired with the
old ones.

Whilst in the spending mood, I also
bought a spare Western Digital chip for
the disc controller card as they are no
longer in production and have no
equivalent. Should any one want one I can

get them for 4 pounds 50p which I
considered to be a cheap insurance against
losing the use of my system. The rest of
the chips on this card are common with
the exeption of the PALI2 but I believe
from Trevor that Gary Smith can program
new PALs.

Realising that now I had twice the disc
capacity the decision of whether to change
the existing format to all double sided or
to leave the software on singe sided had to
be made. The decision was made for me
by finding a source of good quality double
sided discs at a brilliant price. 500 were
purchased, more than I will ever need. So,
if anyone wants any discs, Fuji MD2D, at
£2.00 for a box of 10, I will gladly post
them off and donate 25p a time to
TI*MES funds. Fuller details are on the
MOBB BBS.

Thoughts on the BBS

And so to the BBS. I tried this out the last
couple of weekends (22 29 July) and
found it great to use, logging on for 18
mins and printing out the log after to find
my way around the menus. Sysop Trevor
was great, breaking in when I was having
problems uploading and as he put it
‘leading by the hand’ without being at all
intrusive, many thank Trevor for the help
and also to all the members who have
spent so much time and effort to get the
board up and running. To those who have
yet to try it, all I can say is go for it. This
could be the best way of bringing all the
Group together. For those without the
necessary hardware the Group are
arranging a loan system. It will be
interresting to see how many new
members or just other users that the BBS
will attract. Shame that the hollidays
forced a shut down, but I suppose Trevor
couldn't be expected to carry all that gear
away! Bet he misses it whilst away
though!

TI*MES Issue 50

37

Autumn 1995

The TI*MES Enthusiast

The Curse of MOBB

After using the BBS, next day my PEB
died. That lump in the throat feeling again!
The console worked OK both alone and
connected but SIZE showed no PEB
expansion present. Trying not to panic and
be logical, (THAT word AGAIN!) [first
checked that the unregulated supplies from
PEB power supply were OK, yes, so apart
came the firehose plug. In there is only
one data buffer chip and Sv regulator.
Only 1v on 5v line and no shorts meant
the 78MO5 reg was duff. Quick
replacement with available (second hand
of course,) 7805 and up and running
again.

This regulator now runs much cooler than
before, convincing me that all new uprated
regs should be fitted throughout, 78S

series will give cooler running being rated-

at 2 Amps. BBS tip, at present you must
type in messages in the For Sale and
Wanted Sub Boards, so upload your
message from disc into the TI*MES area
of the Message Base and leave just a note
refering in the Sub Board areas. Or dump
your message into the Sub Board area
using pre-written Macros chained together
from Telco. It all saves on line time.

I seem to be having difficulty using ANSI
terminal option in Telco, perhaps my file
is duff as it locks my keyboard out without
locking up the computer, so I have yet to
see all the graphics and menu boxes.

Anyone for an Adventure?

Who is playing adventures? There must be
someone who knows where that cursed
alarm clock is in Scott Adams' Return To
Pirates' Isle. Please tell me, as for ten
years this has driven me mad. I have tried
hacking into the code but my assembler
experience is too limited. Most of the
other common adventures are logical but

the frustration of this one is discouraging
me from. trying any of the later difficult
ones.

TI Writer Problems

As I use TI-Writer more I find the window
system of text display less difficult but it
is a poor substitute for the 90 column
screen I am used to. Also, when inserting
characters at the end of words, pressing
reformat wipes out the space at the end of
the word. Is there a way of avoiding this
infuriating bug or is it supposed to? The
manual seems to make no mention of this
but there again it fails to mention a lot of
other things too. And no-matter what I try,
headers (.HE text) refuse to work.
Perhaps one day someone who uses TI-
Writer frequently will tell us occasional
users of all the quirks so that we can
correct our versions.

As this article will already take about 20
minutes to print at four overstrikes perhaps
this is enough for this time, must leave
space in TI*MES for everyone else! Better
idea, i'll send the disc to Richard instead
and then blame him for the wrong format
and typos! [gee, thanks - ed] Only joking.
So happy soldering till next issue.

TI*MES Issue 50

38

Autumn 1995

The Art Of Assembly Part 7

his month's installment is not for

the faint of heart. It will be

heavy seas, high winds, rough

waters. The subject is loaders.
A loader is a program whose primary job
is to load another program. Much of this
article will be difficult to understand, and
you may feel a little like Chico Marx in
the movie The Cocoanuts, when he keeps
asking Groucho "Why a duck?". Groucho
was of course speaking of a Viaduct.

Putting first things first, we should
answer the question "Why a Loader?”
There are two answers to that question.
One is speed, the other is memory
allocation. One can, for example, write a
loader that performs certain "once only"
chores, then is mostly replaced by the
program it loads, thus freeing up memory
space for that program to use. The
example we'll use today is taken from our
Word Processor. In the sidebar is the
source code for a loader we use so that the
program may be used with the E/A module
or the TI Writer module. The file it
creates is an Option 5 type program file
called UTIL1. That is the default filename
that both E/A Option 5 and TIW Option 3
will look for on DSK1.

We said the going would get rough, and
here's the opening blast of the hurricane.
This source code actually makes two
programs in one. The object file
containing both programs is loaded into
memory under E/A Option 3, along with
TI's SAVE utility. We enter the program
by typing GETUT as a Program Name,
thus entering the first of the two programs
at that label. This little program gets a
memory image file containing the
Extended Basic utilities and stashes that
code within the memory space occupied
by the second program, then exits to TI's
SAVE utility, so we can save the second

program to disk as UTILI1.
Duck?", you ask.

"Why a

Well, over here is the Viaduct. Just
kidding! The reason is simple. The Word
Processor was first developed as an
Option 3 E/A program, mainly for our
own use. When we decided to market it as
a commercial product, we adapted it to run
under Extended Basic with a custom
loader submerged under an XB LOAD
program. This meant that all the utilities
such as VMBW, KSCAN, and so on were
handled as Equates to the locations of
these vectors when XB is in place. Much
later, we decided, as part of a general
upgrade, to add the ability to load from
either E/A or TIW. Still, all the bulk of
the program relied on finding utilities
where XB places them. Thus we had to
give our UTIL1 loader the capability of
putting all those utilities in the right place
before turning the computer over to the
Word Processing program.

We then wrote a small Assembly program
which would run under XB and capture
the XB utilites for us in a memory image
file called XBUT. Having that gave us the
means to use the source code shown in the
sidebar along with TI's SAVE utility to
create our own custom Option 5 loader.

And that is part of the reason for a custom
loader. Back when we decided to make
the program operate from Extended Basic,
we needed a loader so that we would not
have to load the object file with XB's
CALL LOAD. The Word Processor
proper fills nearly all of both the Low and
High portions of the 32K memory. The
object file (uncompressed) fills 394
sectors of disk space, and cannot be
loaded by the E/A Option 3 loader
because it AORGs into space used by that
loader itself. Loading that object code
under Extended Basic takes all of seven

TI*MES Issue 50

39

Autumn 1995

The Art Of Assembly Part 7

minutes. That's a long time to look at a
screen which says "LOADING MAIN
PROGRAM" and "PLEASE STAND BY".
Thus we included in the WP code a
custom "save" utility, so that the WP
program could save itself as five separate
memory image files. Then we wrote a
loader which would be embedded under
an XB LOAD program, and would load in
these five memory image files from the
disk. That way, from selecting XB to the
Main Menu of WP on screen takes about
25 seconds from a floppy drive, or about
four seconds from RAMDISK.

Much of the code in today's source is
derived from that original Assembly
loader we wrote for submerging under the
XB LOAD program. It's not the prettiest
code we've shown. In fact it's probably
the ugliest we'll ever show you. We have
violated many of our own rules in
throwing this together. For example, there
are data sections mixed in among the code
sections. Also, there are places where we
could have used our own methods to save
memory space, but haven't done so.
Instead, we followed the maxim "First, get
it to work".

When we looked at the source code to
prepare it for this article, we found "dead
code" sections, subroutines that were
never called, and unused data lines in it.
Our only excuse is that this was mostly
borrowed from the loader written for the
XB version, hastily thrown together for a
show deadline, and we quit looking at it
once we got it to work. The version
shown here will still work, but has been
cleaned up considerably, and of course has
been annotated so you can follow what it's
doing line by line.

Before we look at the source code in
detail, let's look at the Memory mapping
for the WP program. (See Figure 1) In

Low memory we have the XB utilities,
then the section of code which starts up
the program and puts the menu on the
screen. Starting at >2A66 we have the
code used for printing documents, plus the
part that finds and reads a user's
configuration file if he's configured his
copy. That all ends at >39FE.

In High memory we have three arbitrarily
divided sections of the code, which ends at
>F1C0.

These five sections of code are stored on
the disk in five Memory Image files,
named as shown in Figure 1. The part
called PRINTCODE could have been
combined with the MENUCODE in one
file, except that the section PRINTCODE
is on occasion overwritten by either utility
programs loaded as overlays, or by text
from a Move or Copy text operation.
Thus there are times during the program's
operation that it must re-load
PRINTCODE to print a document.

As you can see, the Loader sits at the
higher addresses in High memory. At
present, there's a gap between the end of
the main program's code and the loader's
beginning. If we wanted to, we could
have the last section of code in the main
program overlap all but a small portion of
the loader without any harm. As it is, we
have no plans presently for using up that
remaining space.

Now into the source code. The REFs at
the beginning refer to the E/A utilities
which are available to us when the object
code is loaded under Option 3. The code
between label GETUT and the line
reading B SAVE is all that gets executed
after the Option 3 loading. This code
establishes a Peripheral Access Block
using the data at label SAVDT, then uses
DSRLNK to bring the memory image file

TI*MES Issue 50

40

Autumn 1995

The Art Of Assembly Part 7

XBUT into a VDP Ram buffer area. It
then performs a VMBR operation to place
that file's contents at label DATALD,
within the part of the code that will be
saved as UTIL1.

The TI SAVE utility takes everything
between label SFIRST and SLAST and
stores that as an Option 5 program file,
which we name UTIL1. Thus the section
at GETUT allows us to embed the
Extended Basic utilities within that Option
5 program file before it's saved to disk.

We hope that's all clear, because if it isn't,
then what follows will be very muddy
indeed.

We now plunge into the murky waters of
how the actual loader, saved as UTILI1,
works. The very first thing it does is stash
R11, which probably could be dispensed
with, but it's there. Next it loads a
temporary workspace, rather than our
usual >20BA. The reason for this is
simple. We will be writing to the area in
low memory that includes >20BA, using
registers as pointers, and we can't
overwrite the workspace we're using.
Thus we have a temporary workspace at
label WS16 within the UTIL1 program's
space.

The program now moves the 1262 bytes
containing the XB utilities from label
DATALD to their proper place in low
memory, using the loop at label PUTUT.
From this point on, the program will use
the XB equates for its utility vectors such

as VMBW. We've given these equates °

different names so they won't conflict with
the REFs used in the GETUT section.

At label OPEN, we perform what's called
"Boot Tracking". This section of code
finds out what disk drive the UTIL1
program was loaded from, and passesthat

information into the PAB data that it will
use to load the main program's five
memory image files. Thus if one has the
Word Processor disk in drive 2, or any
other drive including Ramdisk, the UTIL1
program will go to that same drive to find
its files and load them. This program,
incidentally, has not been made
compatible with hard disk systems, but
will load and run from any floppy or
Ramdisk, regardless of what its drive
number or letter is.

After that, we branch to label MENU,
where we load the final workspace at
>20BA. Next we perform a little
operation that's only needed when we've
entered with the TI-Writer module. We
simply capture the character definition for
the space character, then use that to define
the zero character [CHR$(0)] to look like
a space. The main WP program will load
its own character set beginning at
character one [CHR$(1)], and extending
through character 144, but the TIW
module would leave the zero character
defined, and we want it to look like a
space.

Now we do some VWTR operations to set
the screen to text mode, set up the colors
for text mode, and to insure that VDP will
look for character definitions at >800, then
clear the screen. Now we give the user
two messages on the screen, and get on
with the real work of loading the five
memory image files.

This would get repetitious, so we'll just go
through the process of loading the first
such file, called MENUCODE. First, we
set RO to point to the PAB area in VDP,
R1 to point to the data, R2 to the length of
that data, then write the PAB into VDP
Ram. The PAB contains the opcode 05,
which is used to load a memory image
file. Next in the PAB is the VDP buffer

TI*MES Issue 50

41

Autumn 1995

The Art Of Assembly Part 7

address into which the bytes from that file
will be dumped by the DSR. The third
word in the PAB is always 0 for this kind
of file, and the fourth indicates the
maximum number of bytes to be taken
from the file. This number must be equal
to or greater than the actual file content.
In our case, we've made it exactly equal to
the number of bytes found in
MENUCODE. Finally, there's a byte set
to zero, then the length of the file
descriptor, followed by the file descriptor
text 'DSKx.MENUCODE'. The x is there
to indicate that the 1 of DSK1 will have
been replaced by the boot tracking
process.

Once we've moved the PAB address plus
nine into >8356 and cleared the STATUS,
we proceed to get the file into the VDP
Ram buffer by a BLWP DSRLNI
DSRLNJ? Why not DSRLNK, you ask?
The utility vector DSRLNK has been
overwritten when we moved the XB
utilities into Low memory, so we can't use
it. Instead, we've included a DSR Linkage
(thanks to Doug Warren/Craig Miller)
which has been renamed DSRLNJ so it
won't upset the Assembler. This is the
same DSRLNK that was included in Barry
Traver's column some time ago. That link
vector and its associated code is part of
our program UTIL1, which is kept in the
highest available addresses in High
memory.

When our main program is running, it too
uses this linkage vector to perform file
accesses. It also uses the GPLLNK
included in our UTIL1 program, just
before DSRLNJ.

Okay, so now we've got the section called
MENUCODE in VDP Ram. The next
step is to put that into Low memory at the
correct address. That address is
>24F4+128, or >2574. The 128 bytes

between >24F4 and >2574 are used when
we enter from XB to stash some system
data which XB will need when we exit the
program, hence the actual content of our
WP program starts at >2574. Moving of
the code into its proper place is done by a
BLWP VMBRA, which is of course one
of those XB utilities we put in place
earlier.

Ths process continues until we've loaded
all five memory image files. These files
are true memory image, with no file
headers attached to them. Many authors
will go to some trouble about making file
headers, but our reasoning was that, since
the only possible use these files have is to
be loaded by our own loader, there was no
point in providing them with headers.
There are days when we regret that
decision, especially when we make
changes in the main program which
require changing the addresses equated in
our loader, which then must be re-
assembled just because one of those
addresses changed by two bytes. The very
next time we write a WP program, we'll
put a file header of some kind in, giving us
some information about the length of the
file's content, and then we won't need to
change and assemble the loader each time
we change the main program.

The last couple of things this program
does is to place the last section of code
(WORDCODE3) into high memory, send
the drive designator byte to location
>FDOE+13, then branch to address >2840,
the entry point of the main progam.
Location >FDOE+13 is meaningless in this
program per se, but it happens to be the
location where the XB loader has the drive
designator byte, so we park that byte at
that location, where the main program can
get the information about what drive the
program disk resides in.

TI*MES Issue 50

42

Autumn 1995

The Art Of Assembly Part 7

This loader is fairly messy, and we really
should get around to cleaning it up, but the
idea in today's article was to give you
some ideas to play with, and to show some
essential things a loader must do. We
understand that there are some “General
Purpose” loaders available in the TI
community, but our experience has been
that, since our own style of doing things is
unique, we're stuck with writing our own

* Source code for utill loader

loaders. After doing a couple of them, one
can always take an old one, make some
changes to the source code, and generate a
new custom loader with very little effort.
We hope you now know "Why a Duck".

Our next article will go into the topic of
file accesses in more depth, with emphasis
on trapping errors in file operations.

* to load harrison's wp under editor/assembler option 5

* this is actually two programs in one

* the first gets and stows the xb utilities within the second,

* then branches to ti's save utility
*

AORG >F690
DEF GETUT
REF SAVE
REF

GETUT MOV R11,>8300
LWPI WS16
LI RO,PABl
LI R1,SAVDT
LI R2,19
BLWP VMBW
AI RO,9
MOV RO,PABPNT
CLR STATUS
BLWP DSRLNK
DATA 8
LI RO,>1020
LI R1,DATALD
MOV SAVDT+6,R2
BLWP VMBR
B SAVE
SAVDT DATA
TEXT 'DSK4.XBUT'
* End of first program

* start of second program

set memory location for this code

define entry point for first program

refernce the label save in the ti save utility
VMBW, VMBR, VSBW, VSBR, DSRLNK

stash register 11 at >8300

load a workspace within our own code

set pointer for peripheral access block

point to the data for that pab

nineteen bytes in the pab data

write 19 bytes to vdp ram

add 9 to r0

place that number at >8356

clear the gpl status byte

get the xb utilities into vdp buffer from disk file
data for dsr linkage

point to buffer space in vdp ram

point r1 to location within program to be saved
get length of file into r2

read the xb utilities into memory

branch to the ti save utility
>0500,>1020,0,>24F6->2008,>0009

* the part from here to the end is saved by the ti save utility as file utill
* this part is what loads the five memory image files comprising the wp program

TI*MES Issue 50

43

Autumn 1995

The Art Of Assembly Part 7

DEF
MOV
LWPI
LI
LI
LI
PUTUT MOV
DECT
JINE
B
WS16 BSS
DATALD BSS
FSTEND EQU
ENDCNF EQU
DEFPRN EQU
FAC EQU
Ws EQU
VSBRA EQU

OPEN

SFIRST,SLAST,SLOAD defined labels required by ti's save utility

R11,>8300

Ws16

R9,DATALD
R10,>2008
R4,>24F6->2008
*R9+, *R10+

R4

PUTUT

OPEN

32
>24F6-~>2008
>2A66

>39FE
>FOF8+200
>834A
>20BA
>2028

stash r11

load temporary workspace

point at data from saved xb utilities

point at start of xb utility vector area

set r4 for number of bytes in xbut

move a word into low memory area, increment
pointers

decrement count by two, since we're moving a
word

if not zero, repeat

branch to next section of code

temporary workspace

storage area for xb utilities

end of first section of main program

end of configuration setting code

end of high memory part of wp

floating point accumulator

real workspace

the xb vsbr vector's address

* The section here at label open performs “boot tracking”
* that is, it tells our program which drive it was loaded from

MoV
MOV
LDCR
Al
MOVB
SRL
LI
MOVIT MOVB
DEC

LDCR
MOVB
MOVB

ONES DATA

VMBWA EQU
VMBRA EQU

>83D0,R12
>83D2,R9
ONES, 0

R9,4

*R9+, R4

R4,8
R10,SAVDT3+10
*RO+, *R10+
R4

MOVIT

R4,0
SAVDT3+13,R1
R1,MENUDT+13
MENU

>0101

>2024
>202C

get the cru base in r12

get the rom address for device
enable the rom

adding four puts us at the length byte
place that in r4 and increment r9
right justify length in r4

point to text buffer

mov one byte from rom to text buffer
finished?

no, do another byte

disable the rom (r4 is zero at this point)
move drive number (or letter) into rl
then move into the pab data lines
branch to next section of code

word to turn on rom in cru

xb's vmbw vector location
xb's vmbr location

TI*MES Issue 50

44 Autumn 1995

The Art Of Assembly Part 7

VSBWA EQU >2020 xb's vsbwa

VWTR EQU >2030 xb's vwtr location

KEYADR EQU >8374 key-unit address

STATUS EQU >837C gpl status byte

SCRMO EQU >83D4 storage location for screen mode byte
PABPNT EQU >8356 pointer location for dsr linkage
PAB1 EQU >400 first pab address

TEXMO BYTE >FO text mode byte

BLNKLN TEXT ' '
OPMSG TEXT 'LOADING IN MAIN PROGRAM' fext message

PSBMSG TEXT 'PLEASE STAND BY'

CRITE BSS 8

* Following data section contains the pab data for the sections of main program

MENUDT DATA >0500,>1000,0,FSTEND->2574,>000D
TEXT 'DSK1.MENUCODE'
SAVDT3 DATA >0500,>1000,0,ENDCNF-FSTEND,>000E
TEXT 'DSK1.PRINTCODE'
WRD1DT DATA >0500,>0D00,0,9983,>000E
TEXT 'DSK1.WORDCODE1l'
WRD2DT DATA >0500,>0D00,0,9983,>000E
TEXT 'DSK1.WORDCODE2'
WRD3DT DATA >0500,>0D00,0,DEFPRN+2->A000-9983-9983,>000E
TEXT 'DSK1.WORDCODE3'

* main part of loader begins here

MENU LWPI WS sets up workspace
MOVB TEXMO, SCRMO move byte >f0 into >83d4
CLR KEYADR clear word at >8374

* The next six lines are here to clear out the definition of character zero.

* that character is defined when we enter from ti-writer module, so we set it

* up to look like a space character.

* this is necessary since our wp makes use of character zero, and we want it to
* look like a space on the screen

LI RO, 32*8+>800 set r0 to space character definition
LI R1,CRITE use a storage space
LI R2,8 eight bytes to get
BLWP VMBRA read eight bytes
LI RO, >800 point to character zero definition
BLWP VMBWA write eight bytes
TEXT LI RO,>01F0 prepares for text mode
BLWP VWTR sets screen in text mode
LI RO,>074E sets colors

TI*MES Issue 50 45 Autumn 1995

The Art Of Assembly Part 7

BLWP VWTR
LI RO,>0401
BLWP VWTR
cLs CLR RO
LI R4,24
LI R1,BLNKLN
LI R2,40
LOOP BLWP VMBWA
A R2,RO
DEC R4
JNE LOOP
LI RO,9+9
LI R2,23
LI R1,OPMSG
BLWP VMBWA
LI RO,11+12
LI R2,15
LI R1,PSBMSG
BLWP VMBWA

LI RO,PAB1
LI R1,MENUDT

LI R2,23
BLWP VMBWA
Al RO,9

MOV RO,PABPNT
CLR STATUS

BLWP DSRLNJ

DATA 8

LI RO,>1000
MOV MENUDT+6,R2
LI R1,>24F4+128
BLWP VMBRA

LI RO, PAB1

LI R1,SAVDT3

LI R2,24
BLWP VMBWA
AI RO,9

MOV RO,PABPNT
CLR STATUS
BLWP DSRLNJ
DATA 8

LI RO,>1000
LI R1,FSTEND

for text mode

prep to set charcter table at >800

set it there

point r0 to screen origin

24 rows to clear

point to 40 spaces text

40 characters per row to write

write 40 spaces

move write address 1 line (add 40 to r0)
decrease count of rows

if not zero,loop back and do another

set r0 for row 10, column 10

23 characters in message

point rl at message

write "loading in main program” to screen
set r0 for row 12, column 13

15 bytes in message

write "please stand by"

to the screen

point r0 to peripheral access block vdp address
point to first pab data block

23 characters in block

write pab to vdp ram

add nine to address

move that value to >8356

clear status byte

use dsr linkage vector

data for dsr link

point to buffer area

get file length into r2

point at low memory location for first code section
read the section menucode into low memory
point to pab location

savdt3 is second pab data portion

24 bytes to write

write pab into vdp

add nine to address

move that to >8356

clear gpl status byte

use dsr linkage vector

required data

point to buffer

point to end of first code section

TI*MES Issue 50

46 Autumn 1995

The Art Of Assembly Part 7

MOV
BLWP
LI
LI
LI
BLWP
AI
MOV
CLR
BLWP
DATA
LI
LI
LI
BLWP
LI
LI
LI
BLWP
Al
MOV
CLR
BLWP
DATA
LI
LI
LI
BLWP
LI
LI
LI
BLWP
AI
MOV
CLR
BLWP
DATA
LI
LI
MoV
BLWP
MOVB

SAVDT3+6,R2 length of code section in r2

VMBRA move the file printcode into low memory

R1,WRD1DT point to next pab data

RO, PAB1 set r0 to pab

R2,24 24 bytes to write

VMBWA write data to pab

RO,9 add NINE

RO, PABPNT move to >8356

STATUS clr status

DSRLNJ dsr link

8 req'd data

RO, >0D00O set to buffer location

R1,>A000 point rl to start of high memory

R2,9983 9983 bytes in file

VMBRA read this section into high memory

RO, PAB1 reset to pab

R1,WRD2DT second high memory part

R2,24 24 bytes

VMBWA write pab

RO,9 add 9

RO, PABPNT to >8356

STATUS clr status

DSRLNJ dsr link

8 data

RO,>0D0OO point to buffer

R1,>A000+9983 address for second section of high memory code

R2,9983 9983 bytes to read

VMBRA read into high memory

RO, PAB1 set to pab

R1,WRD3DT third high memory part

R2,24 24 bytes pab data

VMBWA write to vdp

RO,9 add 9

RO, PABPNT to >8356

STATUS clr status

DSRLNJ dsr link

8 data

RO,>0D00 set tq buffer

R1,>A000+9983+9983 address for last section of code

WRD3DT+6, R2 length of code section

VMBRA read code into high memory

SAVDT3+13,>FDOE+13 "mailbox" the drive designator for main
pgm

>2840 branch to main program entry point

TI*MES Issue 50

47 Autumn 1995

The Art Of Assembly Part 7

* General purpose gpl and dsr links
* for use under extended basic

* this code by doug warren/craig miller of miller's graphics

GPLWS EQU
GR4 EQU
GR6 EQU
STKPNT EQU
LDGADD EQU
XTAB27 EQU
GETSTK EQU
AORG

* This aorg is set so that utilities wind up at the same location as with the

>83E0
GPLWS+8
GPLWS+12
>8373
>60
>200E
>166C

>FF2C set memory location for linkage routines

* extended basic loader

GPLLNK DATA
DATA

RTNAD DATA
GXMLAD DATA
DATA
GLNKWS EQU
BSS
GLINK1 MOV
MOV
MoV
MOV
LWPI
BL
MOV
INCT
B
XMLRTN MOV
BL
LWPI
MOV
RTWP
PUTSTK EQU
TYPE EQU
NAMLEN EQU
VWA EQU
VRD EQU
GR4LB EQU
GSTAT EQU
DSRLNJ DATA
DSRWS EQU
DR3LB EQU
DLINK1 MOV
JNE

GLNKWS
GLINK1
XMLRTN
>176C

>50

$->18

>08
*R11,GR4
*R14+,GR6
XTAB27,R12
R9,XTAB27
GPLWS

*R4
GXMLAD, >8302 (R4)
STKPNT
LDGADD
GETSTK, R4
*R4

GLNKWS
R12,XTAB27

>50
>836D
>8356
>8C02
>8800
>83E9
>837C
DSRWS, DLINK1
$

$+7
R12,R12
DLINK3

TI*MES Issue 50 48

Autumn 1995

The Art Of Assembly Part 7

LWPI
MOV
BL
LI
MOV

DATA
DATA
DLINK2 MOVB
MOV
MOVB
INCT
BL
LWPI
LI
DLINK3 INC
MOVB
MOV
Al
BLWP
DSRADD BYTE
DSRAD1 BYTE
MOVB
MOVB
SZCB
MOVB
SRL
MOVB
JNE
coc
JNE
SETEQ SOCB
DSREND RTWP
SLAST END

* Slast marks the end of what's saved in the file utill

GPLWS
PUTSTK, R4
*R4
R4,>11
R4,>402 (R13)
DLINK2

0

0,0,0
GR4LB,>402 (R13)
GETSTK, RS
*R13,DSRAD1
DSRADD
*R5

DSRWS
R12,>2000
R14

*R14, TYPE
NAMLEN, R3
R3,-8
GPLLNK
>03

00

DR3LB, VWA
R3,VWA
R12,R15
VRD,R3
R3,5
R3,*R13
SETEQ
GSTAT,R12
DSREND
R12,R15

TI*MES Issue 50

49

Autumn 1995

Kiwi Korner

irstly thankyou Stephen for your
comments (pl7 ish 49) it is
certainly hard to belieive that it is
only 12 years since I eagerly sent
my first order to you (care of Stainless
Software) for some cassette based Exented
BASIC games software. Great stuff!

Yes, 1 am currently residing in New
Zealand but my trusty TI99/4a is still
somewhere on the high seas along with
most of our worldly belongings! I do
however plan to remain a member of the
UK Ti User Group despite living (for the
time being at least) thousands of miles
away from the UK and anyway, I doubt
there is a New Zealand TI user group -
please write in if you know otherwise.

It would be sad to see the group go under
through dwindling support so in an effort
to boost membership I sent information to
Computer Shopper earlier this year for
inclusion in their user group page (yes -
confession time - it was me!)
Unfortaunately, it took several months to
be included and in the meantime Alasdair
Bryce resigned his post as membership
secreatary - so apologies to Alasdair if he
was innundated with mail.

I wonder if it actually increased
membership? Perhaps the new
membership secretary should submit a
more detailed overview of the group to
Computer Shopper?

Apologies also to anyone who tried
register with Edward Schwartz for TI
Emulator for the PC after reading my
article in issue 48. Stephen Shaw’s update
(page 17 ish 49) suggests that Edward has
had to withdraw support. I hope this is
only temporary and I am currently trying
to find out further details from Edward
about TI Emulator’s long-term prospects.

I am pleased to see the enthusiasm with
which our new editor seems to have taken
on his new post.

The magazine has been given a new lease
of life (and that’s no criticism of the
previous editor, who did an excellent job)
and [particularly hpoe the inclusion of an
editorial and a ‘back page’ will remain a
regular feature - it kind of gets the whole
thing together.

Well, I’d better sing off for now - must
tend to the sheep...

FCTN - QUIT

TI*MES Issue 50

50

Autumn 1995

Why Does It Work?

mathematical friend of mine
sent me an iterative procedure
for calculating a well known
umber. He had from a mutual
friend who, I understand, came across a
description, but not the original reference,
in a recent book. The thing is: none of us
can see why it works. A remarkable
feature is that, if you can upgrade the
precision of the machine’s arithmetic to
match, each iteration roughly doubles the
number of significant figures in the
estimate. Here is the procedure using
standard TI arithmetic and print out.

100
110
120
130
140
150
160
170
180
190
200
210
220
230

A=1

X=1

B=1/SQR(2)

Cc=1/4

v=0

VR=0

Y=A .
A=(A+B)/2
B=SQR(B*Y)
C=C-X*(A-Y)"2
X=2*X
V=(A+B)"2/(4*C)
IF V=VR THEN 270
VR=V

240 PRINT

250 PRINT “A,B,C,X,Y,V”;A:B:C
:X:Y:V

260 GOTO 160

270 END

The TI actually holds the digits 35 9 3 for
the ninth to twelfth decimal places but
prints only to the ninth after rounding up.
Only the tenth place is correct.

The method was used by some Japanese to
develop our number to sixteen million
decimal places, requires some tens of
iterations. A fast conventional series
could require about seven hundred
thousand terms. In either case, there must
be massive practical problems in
controlling the work. While I do not

intend to experience too much of them
myself, I am sure that some of us will be
interested in an article on general tactics
from a member wise in the matter of high
precision calculations.

As to the underlying theory, the word is
that it has something to do with Gauss’
work on arithmetic and geometric means
of two numbers. Now, we all know that
Karl Friedrich G had a finger in a great
many pies but I don’t of this work and
have been unable to find a reference. Can
anyone help?

When I read about going to sixteen million
places my reaction was ‘whatever for?’
Since 1882, the number has been known
to be transcendental, which fact rules out
it having a recurring decimal part of
however long a period. So, finding one
can’t be the object of the exercise. On the
other hand, there are some curious
patterns even as early as the stretch from
the sixth to the thirty first decimal places:

265358979 32 38 49264338 32
795

Is someone on the track of a little surprice
the Nature has concealed from us so far?

TI*MES Issue 50

51

Autumn 1995

Music SDA

Another Official TI Never Released
Module

described by Charles Good
Lima Ohio User Group

his is the MUSIC MAKER
module with an extra Grom.
This extra grom turns MUSIC
SDA into something really
useful, not just the toy that MUSIC
MAKER is. With MUSIC SDA you can
create music disk files directly usable in
BASIC, GPL, and ASSEMBLY programs.

The title screen says "copyright 1980
Texas Instruments" and looks identical to
the MUSIC MAKER title screen except
that it says "MUSIC SDA" instead of
MUSIC MAKER. I have no idea what the
"SDA" means. First you load some music
into the module from disk or tape, or you
create some music from within the module
in the same way as is done with MUSIC
MAKER. You are then presented with the
following list of options, two of which are
not found in MUSIC MAKER:

EDIT
PLAY
SAVE (creates a cassette file or a 59
sector disk file irrespective of how many

measures long the music actually is)

PRINT (only works with the TP, prints
music on the staff)

DUMP (not in MUSIC MAKER)
EXECUTE (not in MUSIC MAKER).
I am not really sure about the purpose of

EXECUTE. You are given options to
change speed, start and stop measure,

number of voices, etc., just as when you
select PLAY. The computer then grinds
away internally for a while and then plays
the music. You can speed up the pace of
the music that is played tremendously with
EXECUTE, much more so than with
PLAY. I think you are supposed to
EXECUTE if you make any changes
before you DUMP the music.

DUMP is the really neat feature of
MUSIC SDA. It saves music to disk in
really useful formats, not the "can only be
read into MUSIC MAKER" 59 sector
format you get with SAVE. When DUMP
is selected you get these options:

1.GPL

2. BASIC (DISPLAY FORMAT)
3. BASIC (MERGE FORMAT)
4. ASSEMBLER

DUMP GPL creates a DV80 file that can
be used as source code for programming
in GPL.

DUMP BASIC (DISPLAY) creates a
DV80 file that looks like a TI BASIC
program listing. You can type this list into
TI BASIC or XB and play the music at the
speed you designated from EXECUTE.

DUMP BASIC (MERGE) creates a
DV163 file that you can MERGE into any
XB program.

DUMP ASSEMBLER makes a DV8O0 file
of the music that can be used in assembly
language programming.

Thanks to Mike Wright for calling this
little gem to my attention. I asked Mike
what the "SDA" of MUSIC SDA stands
for. He is obviously as knowledgable as I

TI*MES Issue 50

52

Autumn 1995

Music SDA

am. "Hell if I know," he said.

This would have been a REALLY
USEFUL command module if it had ever
been released to the public. Its title screen
date date suggests that it was in existence
in the early stage. of the 99/4(A)'s history.
Why was it never released? My guess is
that TI didn't want the public to know
what GPL source code looked like.

The following are samples of the exact
same two measures saved to disk with
DUMP. Each DUMP automatically
generates comments indicating the title of
the music, the start of each new measure,
and the total length of the dumped music
in bytes.

DUMP GP
* FUGHETTA
* MEASURE: 0001

DATA >03, #>8EOF,>90,>
oc
DATA
DATA
DATA

>02, #>8R0C,>04
>02, #>830E,>04
>02, #>8315,>04
DATA >02,#>8709,>04
DATA >02, #>8EOB,>04
* MEASURE: 0002
DATA >02, #>8A0C,>04
DATA >02, #>8EOF,>04
DATA >02, #>8F07,>10
DATA >02,#>8708,>08
ENDSND DATA >04,>9F,>BF,>DF,
>FF,>00
* 00047 BYTES

--- DUMP BASIC DISPLAY ---
20000 REM FUGHETTA

20010 REM MEASURE: 0001

20020 CALL SOUND(0200,00440,0
0)

20030 CALL SOUND(0067,00554,0
0)

20040 CALL SOUND(0067,00494,0
0)

20050 CALL SOUND(0067,00330,0

0)
20060 CALL SOUND(0067,00740,0
0)
20070 CALL SOUND(0067,00657,0
0)
20080 REM MEASURE: 0002
20090 CALL SOUND(0067,00554,0
0)
20100 CALL SOUND(0067,00440,0
0)
20110 CALL SOUND(0267,00880,0
0)
20120 CALL SOUND(0133,00831,0
0)
20130 REM 00427 BYTES
--- DUMP ASSEMBLER ---
* FUGHETTA
* MEASURE: 0001
BYTE >03,>8E,>O0F,>90,
>0C
BYTE >02,>8A,>0C,>04
BYTE >02,>83,>0E,>04
BYTE >02,>83,>15,>04
BYTE >02,>87,>09,>04
BYTE >02,>8E,>0B,>04
* MEASURE: 0002
BYTE >02,>8A,>0C,>04
BYTE >02,>8E,>OF,>04
BYTE >02,>8F,>07,>10
BYTE >02,>87,>08,>08
ENDSND BYTE >04,>9F,>BF,>DF,
>FF,>00
* 00047 BYTES

TI*MES Issue 50

53

Autumn 1995

Never Released Tl Modules

Never Released Official TI Modules:
by Charles Good
Lima Ohio User Group

Wing War
he title screen says “Texas
Instruments presents Wing War,
copyright IMAGIC 1983” You
see an elaborately detailed
underground cavern with stalagtites,
stalagmites, etc. A pair of birds descend
from the ceiling, and the speech
synthesizer says in a very realistic voice,
"Adventures await dragon master." A
dragon appears in the lower part of the
screen that you control with the joystick.
You make the dragon fly by flapping its
wings, accompanied by very realistic
flapping wing sounds. The dragon can
spit out fireballs which will melt the rock
walls of the cavern and allow access to
goodies that you can see imbedded in the
rock. There are holes in the top of the
cavern, and the dragon can fly out these
holes to the open sky. Various treasures
and things can be found floating around in
the sky.

On screen instructions give you the
following information:

Collect crystals for power.
Obtain treasures from a cave.
Blast rocks in sky for gifts.

Wash crystals and treasures in the magic
fountains (you find lots of these in your
travals around the caverns) and then take
them to your lair.

JS or keyboard.

To move press left or right.
To fly down press up.

To fire fireballs press down.

To fly up press firebutton.

Talk about confusing instructions! "To fly
down press up." I never did really get the
hang of controlling the dragon, mainly
because the consfusing use of joystick
movements. Why not, for example, press
the firebutton to fire fireballs. Movement
of the dragon responds realistically to the
earth's gravity. If you press the fire button
a couple of times (for up), the dragon will
shoot up even after you let go of the fire
button.

Its rate of upward movement will
gradually slow and then it will start to sink
unless you give it a few more jolts of "up”
with the firebutton. When set in motion
left/right, the dragon will continue to
move after the joystick is released, but
will gradually sink to the bottom of the
cave unless some "up" force is also
applied. These sorts of movements are
just what one would expect from analysis
of vector physics on a free moving body
influenced by gravity.

According to the on screen instructions,
scoring is as follows:

Purified crystals 10
Super crystals 100
Super super crystals 500
Eggs (game over) 512
Lives (game over) 1024
Mate 1000
Treasures x256
Fireballs (game over) 1

Presumably the word "Mate" above is a
noun rather than a verb. I have never
found a mate in my bumbling around with
this game. When one of the creepy things
in the cave kills you and you lose a life,
the computer says "Alas." When you are
down to your last dragon (life), the
computer says "No eggs left in lair,

TI*MES Issue 50

54

Autumn 1995

Never Released Tl Modules

master." When your last dragon bites the
dust, the game ends with the computer
saying "Our glory is now only a passing
memory."

Mouse Attack:

The title screen reads "by Don Fitchhorn,
copyright 1983 Sierra On-Line". This
game is another PacMan look alike for one
or two players. The players are
"plumbers" who have to traverse every
spot in the maze before moving on to the
next screen. There are three mice that
float around the maze. At specific times
the plumber can catch mice for extra
points. At most times the mice chase and
try to kill the plumber.

At the beginning of the game, you are
given the opportunity to change defaults,
as follows:

1 or 2 players

Keyboard or Joystick. If you chose the
keyboard, you are given the option of
using the ESDX or the ESDF keys for
movement.

Music YN

Sound effects YN
Character speed 1=slow 9= fast

The ability to set the speed of each of the
two possible plumbers and each of the
three mice individually is a nice feature.
You can set up this game so that any klutz
can get lots and lots of points. Just set
your plumber speed for maximum and the
mice speed for minimum. It is really hard
to get killed this way, and the game can go
on almost forever. I have seen my 9 year
old spend several hours just piling up the
points with Mouse Attack set up this way.

Sub Oceanic:

The title screen says "by Dominic J. Melfi,
copyright 1982 by Texas Instruments
Incorporated. Press enter or joystick fire
to use keyboard or joystick."

You command a submarine and can move
rapidly left/right and up/down under
water, or surface. You fire vertical
torpedos at an endless host of ships,
planes of various types, and helicopters
that are out to get you. Your torpedos pop
right out of the water and up into the sky
to hit the planes. The opposition drops
depth charge clusters and rapidly falling
vertical torpedos which you must dodge.
After you have been hit a few times you
can't dive down as far into the ocean, and
eventually you must stay on the surface.
This brings the game to a rapid end,
because on or near the surface your
reaction time to dodge the incoming
torpedos is greatly reduced.

There is alot of fast action and eye/hand
coordination in Sub Oceanic. It is your
typical "shoot up the never ending hords
of bad guys" kind of game. The 1982
copyright suprises me. Apparently this is
not a module that was abandoned by TI
when they left the home computer market.
The 1982 date suggests that TI had
previously decided not to market this
module.

Paddle Ball:

"Copyright 1983 TL." Do you remember
when TV games first became popular?
Just before the original Atari game system
was marketed the most popular TV game
was PONG, which resembled ping pong.
This is TI's version of PONG, with lots of
possible variations. What I have is an
EAS file that will load and run out of a
GramKTracker in the usual way and which
can also be loaded and run using an
ordinary E/A module without a gram

TI*MES Issue 50

55

Autumn 1995

Never Released Tl Modules

device or supercart. After booting, if you
just leave this module on the screen
without pressing keys the module will
eventually shift into a self demonstration
mode and illustrate automatically all of the
following options.

1. Single ball

2. With central fog area

3. Center field blockades
4. 2 balls

5. Double blockades

6. 3 balls

7. Bomb with blockades

8. 2 bombs

9. Hole paddle on screen 3
10. Hole paddle on screen 4

A center field blockade is a moving bar
with a hole in it near the center of the
screen. The bouncing ball may go through
the blockade if it passes through the hole.
Otherwise the ball hits the blockade and
rapidly bounces back toward the paddle.
A bomb is a ball that randomly turns from
green to red. When it is green, you are
supposed to hit it with the paddle as is
normal. When the ball is red you must
AVOID touching the ball with the paddle
or you loose the turn. Bombs change
color rapidly and randomly, making game
play very interesting.

This is my personal favorite of this bunch
of never released modules. The action is
fast and there is lots of variety. I think
this would have been a commercial
success for TI.

Simon Says!

That's what the title screen says, complete
with explamation mark. There is no
copyright notice. This is your typical
SIMON game in which you are asked to
exactly repeat an ever increasing sequence
of ESDX keypresses. Each keypress
generates a different tone. With each

successful try the computer adds one
keypress to the end of the sequence.
There are four levels of difficulty, but I
can't tell what the difference in difficulty
is. Each level seems to play the tones at
the same speed. If you make a mistake
you are given the opportunity to review
the keypress/tone sequence before
continuing the game or starting another
game.

There is nothing fancy about SIMON
SAYS!, but I like it anyway. It is as fast,
as colorful, and as pleasing to the ear as
any of the stand alone SIMON electronic
games that were sold a few years ago.

Acknowledgements:

In ending I want to acknowledge the
assistance of Mike Wright (TI Sig, Boston
Computer Society), and Gary Cox (Mid
South 99ers). These individuals provided
me with much of the software described in
these articles.

TI*MES Issue 50

56

Autumn 1995

SIPETR VJAe TY R

Tips From The Tigercub

ore on the pestiferous
asterisk bug in TI-Writer.
Dr. Guy-Stefan Romano has
confirmed and explained it.
If you are printing out of the Formatter
mode and your text contains an asterisk
followed by two or more numeric digits
- the asterisk and two digits will
disappear! For instance, A*256 becomes
A6, and I've noticed that A6 in programs
published in several newsletters recently.

The TI-Writer program misinterprets the
asterisk and two digits as an instruction to
input data from a "value file" (see
Alternate Input on p. 111 of the manual).

The solution to this bug is to type two
asterisks foll- owed by two dummy digits,
then the actual digits.

For instance, instead of A*256 type
A**25256.

Trouble is, the bug usually shows up in a
program which has been LISTed to disk
and then MERGEd into TI-Writer, and is
usually not noticed. The solution? Run the
pro- gram through my 28-Column
Converter (see Tips #18!).

I would suggest that you also avoid the use
of the & and @. The & will only underline
a single word, unless you tie words
together with the * sign. If you tie words
together, the Fill and Adjust will leave
gaping blanks in your lines and if you tie
too many together the line will extend
beyond the right margin!

Also, the underlining is a broken line. It is
better to use the escape codes CTRL U,
FCIN R, CTRL U, SHIFT -,CTRL U,
SHIFT A, CTRL U, which will give a
solid underline until you turn it off with
CIRL U, FCTIN R, CTRL U, SHIFT -,

CTRL U, SHIFT @, CTRL U.

The @ is handy to emphasize a single
word, but if you want to double-strike a
whole sentence or paragraph it is better to
use the escape code CTRL U, FCTN R,
CTRL U, SHIFT G, and turn it off again
with CTRL U, FCTN R, CTRL U, SHIFT
H.

The period bug is another killer - the
Formatter thinks that any line which
begins with a period is a formatter
command, and deletes the whole line! If
your text contains a decimal value such as
.11 and the wraparound puts it at the
beginning of a line, the line disappears!
There are two ways around this - put a 0
in front of all your decimals, as 0.11, or
transliterate all your periods.

In all, the TI-Writer formatter is a temper-
amental piece of software, prone to
unwanted line feeds and unexpected
paper- wasting form feeds. I like to use it
to right-justify text back to the disk, but
from then on I prefer to print it out of the
editor mode, or out of my own program.

[Art Green has addressed these problems
in his TI Writer Version 5.0 available from
the disk library- sjs]

Micropendium ran a contest to improve on
a brief ingenious organ program. The
winner was Michael Christianson, who
wrote a superb program. I didn't enter the
contest, of course, and my version is not
nearly as good, but have fun -

90 CALL CLEAR

95 PRINT TAB(5);"MICROPENDIU
M ORGAN": : : : : : : : :"Pl
ay bass with left hand": :"o
n left side of keyboard,": :
"melody on the right": : :
100 REM - MICROPENDIUM ORGAN

TI*MES Issue 50

57

Autumn 1995

Tips From The Tigercub

modified by Jim Peterson
110 OPTION BASE 0

120 DIM NOTE (20)

130 FOR A=0 TO 20

140 READ NOTE(A)

150 NEXT A

160 DATA 40000,220,247,262,2
94,330,349,392,440,494,523,5
87,659,698,784,880,988,1047,
1175,1319,1397

170 CALL KEY(1,Kl1,S)

180 CALL KEY(2,K2,S)

190 CALL SOUND(-1000,NOTE (K2
+1),0,NOTE (K2+1)*1.01,5,NOTE
(K1+1)*3.75-ABS (K1+1=0)*1100
00,30,-4,0+ABS (K1+1=0) *30)
200 GOTO 170

A sprite routine that doesn't do anything
but look pretty. I call it Patches.

50 CALL CLEAR :: CALL SCREEN
(5)

100 A$=RPTS$("AA55",16):: B$=
RPTS$("F",64):: CALL MAGNIFY(
4):: RANDOMIZE

110 FOR CH=40 TO 136 STEP 8

:: CALL CHAR(CH,AS,CH+4,B$):
¢+ NEXT CH

120 C=2 :: S=40 :: R=1 :: FO
R T=1 TO 24 STEP 2 :: COL=15
O*RND+50 :: CALL SPRITE(#T,S
,C,R,COL, #T+1,S+4,C+1,R,COL)
:: S=S+8 :: C=C+1l :: R=R+15

:: NEXT T

140 FOR T=1 TO 50 :: CALL CO
LOR(#INT(24*RND+1), INT(16*RN
D+1)):: NEXT T :: GOTO 120

This is one that I fancied up, based on a
sprite routine written by a youngster
named Andrew Sorenson, published in the
Sydney Newsdigest from Australia.

100 ! WILL O' WISP
by Jim Peterson
based on
Andrew Sorensen's
sprite routine

110 CALL CLEAR :: CALL SCREE

N(2):: CR=48

120 FOR CH=48 TO 63 :: FOR L

=1 TO 4 :: RANDOMIZE :: X=IN

T(16*RND+1)*2-1 :: X$=SEGS$("

0018243C425A667E8199A5BDC3DB

E7FF",X,2):: B$=B$&X$:: C$=

X$&CS :: NEXT :: CALL CHAR

(CH,B$&C$):: B$,C$="" :: NEX

T CH

130 FOR N=1 TO 28 :: CALL SP

RITE (#N,CR, INT(14*RND+3),8*N

+20,120,5,0):: NEXT N :: IF

CR=64 THEN CR=48 :: T=T+1+(T

=2)*2 :: CALL MAGNIFY(T)

140 X=(INT(3*RND)-1)*4 :: ¥Y=

(INT(3*RND)-1)*4

150 IF INT(10*RND+10)<>10 TH

EN 170

160 CR=CR+1 :: GOTO 130

170 FOR N=1 TO 28 :: CALL MO

TION(#N,-Y*20,X*20):: NEXT N
:: GOTO 140

Memory Full!

Jim Peterson

TI*MES Issue 50

Autumn 1995

The Back Page

TI*MES Issue 50 59 Autumn 1995

60

This page
is blank

