NewsLetter

Copyright 1989 USUS, Inc.
All the News that Fits. We Print

Nov/Dec 1989

Volume 3

N3

William . D. Smith, Editor

Number 8

From the Editor ,
by William D. Smith

Well now what do you know? 1 have just
finished this, my last scheduled NewsLetter. A
little late as usual.

As of this time no one has come forward to take
over this job (or for that matter the
Administrator’s job). That means, the next
NewsLetter will arrive who knows when in the
future.

I have enjoyed doing the NewsLetter and will
continue to submit articles (units and programs).
At this time I have two possible articles from
David Craig (not in electronic format yet) about
the Macintosh and one from Felix Bearden
(arrived after the NewsLetter was layed out)
reviewing Insight Window Designer and KSAM.
If you wish more information on what is
involved, you may contact me at CIS: 73007,173
or (619) 941-4452 (after 10am please).

I hope you all had a Happy Thanksgiving and
wish you a Merry Christmas and prosperous
 New Year.

Administrator Says
by Hays Busch

" First, a couple of quick bits of information.

- FOG (First Osborne Group) offers a disk format
conversion service that can handle over 200
different formats. They charge $15 for the first
disk conversion on an order, and $5 each for
each added disk of the same format on the same
order. Obviously, many markets have
commercial outfits that provide this service, but if
you are stuck for a format, FOG may have the
ability to help. (There are some disk formats on
their list I've never even heard of before!!) Any

member wanting a copy of the write up on this

service needs only to drop me a note and I'll mail
it to you.

SIR_TECH offers user groups a 20 percent
discount on their game software. They have
eight games for Apple and IBM, and a few for
Macintosh, Commodore and Atari. Prices range
from $9.95 to $63.96. Titles include “Proving
Grounds”, “Knight of Diamonds”, “Legacy of
Llylgamyn”, “The Return of Werdna” and “Heart
of the Maelstrom” in the Wizzardy series.
(NOTE: T have not seen any of these work so
have no comments as a reviewer.) If you want a
copy of their brochure, drop me a note. Takes
ten orders from the group to qualify for the
discount. We'll see if there is enough interest
based on your requests for the brochure.

SO NOW IT'S GOODBYE! It's been three years
for me as Administrator and it's time for me give
someone else a chance!

The job is now down to a “quiet roar” and takes
only 1 to 3 days a week at most. That's if it is
done the way I do it. Someone else could be a lot
faster than I am. Iknow the job can be split into
at least three jobs without much loss of efficiency
and if this could happen it would be about a day a
week for each job.

Our Editor mentioned I was “stepping down” in
the September/October issue, but so far no one
has called me to ask about taking over. Someone
needs to! USUS can not run without someone
taking care of the details you all have come to
expect from the organization.

Also, someone with the ability to edit and
produce the artwork for the NewsLetter needs to
take over from William Smith. Without a
NewsLetter, much of what USUS means to
members will be lost. The NewsLetter need not
be produced on a Macintosh and Laser
printer...which is how William does it... but
hopefully it will be the product of a desktop
publishing effort.

Treasurer’s Report (September 1989)
by Robert E. Clark, Treasurer

Treasurer’s Report (October 1989)
by Robert E. Clark, Treasurer

Bank Balance $5740.00 08-31-89 Bank Balance $5,682.53 09-30-89
Income - September 1989 Income - rl
Dues: (new/renew) Dues: (new/renew)
Student 25.00 1/0 Student 50.00 0/2
General 280.00 177 General 1080.00 0/30
Professional 100.00 0/1 Professional 100.00 0/1
Institutional 0.00 0/0 Institutional 0.00 0/0
Other Income: Other Income:
Library fees 13.00 Library fees 6.00
CIS 40.18 CIS 36.84
E—— Donations 15.00
Total Income: $458.18 Publications 14.50
Expenses - Septomber 1 Total Tncome: $1,302.34
Administrator: B 1
CIS 79.01 xpenses - Lctober
Telephone 5.33 Administrator:
Postage 7.91 Telephone 13.88
Supplies 11.20 Photocopies 25.52
Equipment 53.00 Postage 34.57
Repairs 317.00 Other:
Other: Mail from La Jolla 1.05
LaJolla PO box rent 36.00 Library Distributor 5.00
Refund 5.00 Stamps 10.00
Bank charge 1.00 Bank charge 1.00
Total Expenses $515.65 Total Expenses $91.02
Bank Balance $5,682.53 09-30-89 Bank Balance $6,893.85 10-31-89

To all of you who helped me as Administrator,
heartfelt thanks... Frank Lawyer, William
Smith, Bob Clark, Robert Geeslin, Alex
Kleider and Verlene Bonham. To Jon
Nevins and Bob Clark, thanks for
PowerTools. To Sam'l Bassett, thanks for the
early efforts on the NewsLetter. To Harry
Baya and William Smith, thanks for taking
over MUSUS.

To members who helped with the SW Library:
William Reed, Gordy Kastner, David
Craig, P.D. Terry, Carl Helmers, Henry
Baumgarten, Bob Clark, Ken Hamai and
last but not least Frank Lawyer, my thanks.

And to all USUS members, and anyone I forgot
to mention above, thanks for your support of the
group for the past three or more years. I have
been impressed by how many original USUS
members are still with us and also how many of

Page 2

our newest members are renewing. It's gotten so
I can recognize most of you by name even tho we
may not have met.

I've been a member of USUS since sometime in
1980. UCSD Pascal was the only language 1
ever learned. The p-System is the only operating
system I ever used. A fellow by the name of
Chuck Howerton and I wrote a complete retail
inventory program for my ski shops. It was
written in Version II and ran on DEC LSI-11s. It
served the business well until last year when
sales volume simply outgrew the machines and
the programs. (And I'd hate to tell you what it
cost the business to replace the old stuff with
spiffy new Hewlett Packard machine that is on-
line to all stores and which collects data 24 hours
a day from wand reading cash registers. Put
another way, storage media went from 8-inch

SSSD floppies to 800 MB of hard disk storage.
Quite a jump!)

But as we all know, nothing holds still in the
computer environment. So it's time for me to
step aside. I'll work with whoever comes forth
to take the job on. That way there will be a
smooth transition. Being Administrator is an
important and interesting responsibility in USUS,
and its one of the jobs that is vital for the
continuation of USUS.

Any takers???

Deque Module
By Peter M. Perchansky
412-1 Springside, Drive East
Shillington, PA 19607
CompuServe: 71301,344
FidoNet: 1:273/101

The following (pages 4 thru 11) is my
implementation of a generic deque using JPI's
TopSpeed Modula-2 (version 1.17). A deque is
a form of double-ended queue (or stack
depending on your point of view). The deque
abstract data type allows you to perform queue
and stack operations.

The queue operations are based on the following:
The front of the queue is the root node.
Enqueueing data will place the node at the rear of
the queue. Dequeueing (serving) data will
remove the node from the front of the queue.

The stack operations are based on the following:
The top of the stack is the end node. Pushing
data will place the node at the rear (top) of the
stack. Popping data will remove data from the
rear (top) of the stack.

This library module is generic. Any data type
(both standard and user-defined) can be operated
on in the deque. You can even mix and match
data types within the deque; however, you are
responsible for keeping track of what types are in
the deque.

Future versions of this module will include
procedures to compare deques, append one deque
to another deque, search for elements within the
deque, etc.

Please feel free to contact me via postal mail,
CompuServe, FidoNet, or Interlink (language or
Pascal Conference <they are working on adding a

Modula-2 Conference>) if you have any
questions or comments.

WDS Terminal Typed I/O Unit
By William D. Smith

Last NewsLetter I presented my terminal I/O unit
which allowed input and output of strings and
characters. This unit (code startting on page 13)
uses that unit to read and write a formatted string
from and to the terminal. It uses the string ops
unit to do the formatting. At this time there is
support for four data types: integers, dates, time
and YesNo (a two, three or four way switch).
There is a get procedure (beginning with “c_")
and a write procedure (beginning with “w_"") for
each of these four types. There are also two
miscellaneous procedures for informing the user
of current progress: InForm and W Dot. InForm
writes a message near the bottom of the screen
(such as “Reading 100 records”) and positions
the cursor for W_Dot. W_Dot writes one dot on
the current line up to fifty. It then erases the line
and starts again. The line begins with the last dot
written (eg. “< 50>.....”"). InForm should be
called once before a each loop with the message
and once after the last loop with null values for its
parameters. This last call cleans up the screen.
W_Dot is called once each time through a loop.
The counter is initialized before the first loop (and
maybe re-initialized before any of the other loops)
and is incremented by W_Dot.

Each of the write procedures clear the field (Len
spaces or the defined amount for date and time
types) if passed a null value.

Input is restricted by the number of characters
which are allowed to be entered and then
validated after the entry is accepted.

Page 3

(*

Program Id: PMPDEQUE

= Programmer: Peter M. Perchansky

= Purpose: Export procedures for dealing with deques. =

= Date Written: 10-29-89 =

e A —— ek)
DEFINITION MODULE PMPDeque;
e e Procedures from JPI's TopSpeed Modula II ————————————- *)
FROM SYSTEM IMPORT BYTE;
T o i e e 5l o e e *)
TYPE Deques; (* opaque type defined in implementation module *)
(* A deque is a circular queue allowing for both queue and stack *)
(* operations. This module is generic, allowing for operations on *)
(* any data type. *)
(* The deque must be initialized to NIL by calling Create (deque). *)
(* Create (deque) should only be called once. DestroyDeque should #*)
(* be called when the deque is no longer needed. *)
(* Procedures to initialize/remove the deque: %)
(* CreateDeque - set deque to NIL %)
(* DestroyDeque - remove deque from memory *)
(* Functions providing status information on the deque: *)
(* Empty - is deque NIL ¥y
(* Full - is deque full *)
(* DequeLength - number of nodes in deque *)
s DequePos - node number containing data (if found) *)
(* InDeque - is data in deque *)
(* Procedures to enter data in the deque: *)
(* <queue> Enqueue - place data in rear of deque *)
(* <stack> Push - place data in rear of deque *)
(* Procedures to remove data from the deque: *)
(* <queue> Dequeue - remove data from the front of the deque *)
(* <stack> Pop - remove data from the rear of the deque *)
(* Serve - remove nth item in the deque *)
(* Procedures to show data in the deque: *)
(* <queue> Front - show data from the front of the deque *)
(* <queue> Back - show data from the rear of the deque *)
(* <stack> Top - show data at top of the deque *)
(* Retrieve - show data from nth item in the deque *)

PROCEDURE CreateDeque (VAR deque : Deques):
(* Creates the deque by making it NIL. This procedure must be called *)
(* prior to performing operations on the deque. *)

PROCEDURE Empty (deque : Deques) : BOOLEAN;

(* Return TRUE if the deque is NIL *)

PROCEDURE DestroyDeque (VAR deque : Deques): |
(* Destroys the deque by deallocating deque nodes and contents. *) |

(* DestroyDeque should be called when the deque is no longer needed *)
(* in memory.

PROCEDURE Full (size : CARDINAL) : BOOLEAN;
(* Return TRUE if there is no Available memory for another deque node *)

PROCEDURE Dequelength (deque : Deques) : CARDINAL;
(* Returns the number of nodes in the deque %)

Page 4

PROCEDURE DegquePos (data : ARRAY OF BYTE; deque : Deques) : CARDINAL;

(* Returns the number of the node containing the data (if found). *)
(* Returns 0 if not found. The front of the deque is treated as node *)
(* number one. *)
PROCEDURE InDeque (data : ARRAY OF BYTE; deque : Deques) : BOOLEAN;
(* Returns TRUE if data is found in deque.)
PROCEDURE Enqueue (data : ARRAY OF BYTE;
VAR deque : Deques; VAR Ok : BOOLEAN) ;
(* Place data in node at the back of the deque. Ok will be set to *)
(* FALSE under the following conditions: Deque is full. *)
PROCEDURE Push (data : ARRAY OF BYTE;
VAR deque : Deques; VAR Ok : BOOLEAN) ;
(* Place data in node at the back of the deque. Ok will be set to %)
(* FALSE under the following conditions: Deque is full. *)
PROCEDURE Dequeue (VAR data : ARRAY OF BYTE;
VAR deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the front of the deque into data. *)
(* Remove the front node of the deque. Ok is set to FALSE upon the *)
(* following conditions: deque is empty, size of data does not equal *)
(* size of contents. *)
PROCEDURE Pop (VAR data : ARRAY OF BYTE;
VAR deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the back of the deque into data. *)
(* Remove the back node of the deque. Ok is set to FALSE upon the *)
(* following conditions: deque is empty, size of data does not equal *)
(* size of contents. *)
PROCEDURE Serve (VAR data : ARRAY OF BYTE;
nthItem : CARDINAL;
VAR deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from nth node of the deque into data. Remove the *)
(* nth node of the deque. 0k is set to FALSE upon the following *)
(* conditions: deque is empty, size of data does not equal size of *)
(* contents, nthItem is greater than number of nodes in the deque. *:)
PROCEDURE Front (VAR data : ARRAY OF BYTE;
deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the front of the deque into data. *)
(* Ok is set to FALSE upon the following conditions: deque is empty, *)
(* size of data does not equal size of contents. *)
PROCEDURE Back (VAR data : ARRAY OF BYTE:
deque : Deques; VAR Ck : BOOLEAN) ;
(* Place contents from node at the back of the deque into data. *)
(* Ok is set to FALSE upon the following conditions: deque is empty, *)
(* size of data does not equal size of contents. *)
PROCEDURE Top (VAR data : ARRAY OF BYTE;
deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the back (top) of the deque into data. *)
(* Ok is set to FALSE upon the following conditions: deque is empty, *)
(* size of data does not equal size of contents. *)
PROCEDURE Retrieve (VAR data : ARRAY CF BYTE; nthItem : CARDINAL;
deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from nth node of the deque into data. Ok is set to *)
(* FALSE upon the following conditions: deque is empty, size of data *)
(* does not equal size of contents. nthItem is greater than number *)

(* of nodes in the deque.
END PMPDeqgue.

*)

Page 5

R —

= Program Id: PMPDEQUE =
= Programmer: Peter M. Perchansky =
= Purpose: Export procedures for dealing deques. =

Date Written: 10-29-89

IMPLEMENTATION MODULE PMPDeque;

e e Procedures from JPI's TopSpeed Modula II -—-—————-———— *)
FROM Lib IMPORT Compare, Move;

FROM SYSTEM IMPORT ADDRESS, BYTE, TSIZE;

FROM Storage IMPORT ALLOCATE, Available, DEALLOCATE;

(* __ *)
TYPE
Deques = POINTER TO DequeNodes; (* opaque type defined *)
DequeNodes = RECORD (* node *)
contents : ADDRESS; (* contents of node *)
size : CARDINAIL; (* size of contents *)
next : Deques; (* pointer to next node *)
previous : Deques; (* pointer to prev node *)
END;
(* __ *)
(* Utility procedures used internally by PMPDeque. *)
(* __ *),
PROCEDURE DeleteNode (VAR node : Deques):
(* Deletes specified node from deque =)
VAR temp : Deques; (* save pointer for deletion *)
BEGIN
IF node”.next = node THEN (* Delete last node in deque *)

DEALLOCATE (node”.contents, node”.size):
DEATLLOCATE (node, TSIZE (DequeNodes));
node := NIL;

ELSE
temp := node; (* Delete specified node *)
node := node”.next;
temp”.previous”.next := node;
node”.previous := temp”.previous;

DEALLOCATE (temp”.contents, temp”.size);
DEALLOCATE (temp, TSIZE (DequeNodes)):
END;
END DeleteNode;

PROCEDURE InsertNodeAtEnd (node : Deques; VAR deque : Deques);
(* Inserts specified node at end of deque)
BEGIN
IF Empty (deque) THEN (* create front ¥*)
node”.next := node;
node”.previous := node;
deque := node;
ELSE (* add to end *)
node”.next := deque;
node”.previous := deque”.previous;
deque”.previous”.next := node;
deque” .previous := node;
END;

END InsertNodeAtEnd;

Page 6

(* Procedures exported by PMPDeque. %)
(-k __ *)
PROCEDURE CreateDeque (VAR deque : Deques);

(* Creates the deque by making it NIL *)
(* This procedure must be called prior to performing operations on *)
(* the deque. *)
BEGIN

deque := NIL;
END CreateDeque;

PROCEDURE Empty (deque : Deques) : BOOLEAN;
(* Return TRUE if the deque is NIL %)
BEGIN

RETURN deque = NIL;
END Empty;
PROCEDURE DestroyDeque (VAR deque : Deques);
(* Destroys the deque by deallocating deque nodes and contents %)
(* DestroyDeque should be called when the deque is no longer needed *)
(* in memory.)
BEGIN

WHILE NOT Empty (deque) DO
DeleteNode (deque):;

END;
END DestroyDeque;
PROCEDURE Full (size : CARDINAL) : BOOLEAN;
(* Return TRUE if there is no Available memory for another deque node *)
BEGIN

RETURN (NOT (Available (TSIZE (DequeNodes)) AND Available (size))):
END Full;

PROCEDURE DequelLength (deque : Deques) : CARDINAL;

(* Returns the number of nodes in the deque *)
VAR
current : Deques; (* cursor used to walk the deque *)
count : CARDINAL; (* node counter *)
BEGIN
count := 0;
IF NOT Empty (deque) THEN
current := deque”.previous;
REPEAT
INC (count);
current := current”.next;

UNTTL current = deque”.previous;
END;

RETURN count;
END DequeLength;

PROCEDURE DequePos (data : ARRAY OF BYTE; deque : Deques) : CARDINAL;
(* Returns the number of the node containing the data (if found) . *)
(* Returns 0 if not found. The front of the deque is treated as node *)
(* number one. *)
VAR

count, (* node counter *)

pos : CARDINAL; (* returned from Lib.Compare *)

current : Deques; (* cursor used to walk the deque *)

Page 7

BEGIN

count := 0;
IF NOT Empty (deque) THEN
current := deque”.previous;
REPEAT
INC (count);
current := current”.next;
pos := Compare (ADR (data), current”.contents, current”.size);

UNTIL (current = deque”.previous) OR (pos = current”.size);
END;

IF pos = current”.size THEN
RETURN count
ELSE
RETURN 0
END;
END DequePos;

PROCEDURE InDeque (data : ARRAY OF BYTE; deque : Deques) : BOOLEAN;
(* Returns TRUE if data is found in deque. *)

BEGIN
RETURN (DequePos (data, deque) # 0);
END InDeque;

PROCEDURE Engueue (data : ARRAY OF BYTE;
VAR deque : Deques; VAR Ok : BOOLEAN);
(* Place data in node at the back of the deque. Ok will be set to *)

(* FALSE under the following conditions: Deque is full. *)
VAR

temp : Deques; (* used to create new node ¥*)

dataSize : CARDINAL; (* size of data *)
BEGIN

dataSize := HIGH (data) + 1;
Ok := NOT Full (dataSize);

IF Ok THEN
ALIOCATE (temp, TSIZE (DequeNodes)):;
ALLOCATE (temp”.contents, dataSize);
Move (ADR (data), temp”.contents, dataSize):

temp”.size := dataSize;
InsertNodeAtEnd (temp, deque):
END;
END Enqueue;
PROCEDURE Push (data : ARRAY OF BYTE;

VAR deque : Deques; VAR Ok : BOOLEAN);
(* Place data in node at the back of the deque. Ok will be set to *)

(* FALSE under the following conditions: Deque is full. *)
BEGIN
Enqueue (data, deque, Ok):
END Push;
PROCEDURE Dequeue (VAR data : ARRAY OF BYTE;
VAR deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the front of the deque into data. *)

(* Remove the front node of the deque. Ok is set to FALSE upon the *)
(* following conditions: deque is empty, size of data does not equal *)
(* size of contents.

VAR
dataSize : CARDINAL; (* size of data *)

Page 8

BEGIN

Ok := NOT Empty (deque):;
IF Ok THEN
dataSize := HIGH (data) + 1:

Ok := deque”.size = dataSize;
(* size of data must equal the size of contents *)

IF Ok THEN
Move (deque”™.contents, ADR (data), deque”.size);
DeleteNode (deque);
END;
END;

END Dequeue;
PROCEDURE Pop (VAR data : ARRAY OF BYTE;

(*
(*
(*
('k

VAR deque : Deques; VAR Ok : BOOLEAN);
Place contents from node at the back of the deque into data.
Remove the back node of the deque. Ok is set to FALSE upon the
following conditions: deque is empty, size of data does not equal
size of contents.

VAR

dataSize : CARDINAL;

(* size of data *)

BEGIN

END

PROCEDURE Serve (VAR data : ARRAY COF BYTE; nthItem : CARDINAL;

(*
(-k
('k
('k

VAR

Ok := NOT Empty (deque):;
IF Ok THEN
dataSize := HIGH (data) + 1:

IF deque”.next = deque THEN
Ok := deque”.size = dataSize;

(* only one node *)

(* size of data must equal size of contents *)

IF Ok THEN
Move (deque”™.contents, ADR (data), deque”™.size):
DeleteNode (deque);
END;
ELSE
Ok := deque”.previous”.size = dataSize;

(* size of data must equal size of contents *)
IF Ok THEN

%)
*)
*)

Move (deque”.previous”.contents, ADR (data), deque”.previous”.size);
qu p qu

DeleteNode (deque”.previous);
END;
END;
END;
Pop;

VAR deque : Deques; VAR Ok : BOOLEAN) ;
Place contents from nth node of the deque into data. Remove the
nth node of the deque. Ok is set to FALSE upon the following
conditions: deque is empty, size of data does not equal size of
contents, nthItem is greater than number of nodes in the deque.

current : Deques; (* used to walk the deque *)
dataSize, (* size of data *)
numberQfNodes, (* length of deque *)

count : CARDINAL; (* node counter *)

BEGIN

Ok := NOT Empty (deque):

*)
*)
*)

Page 9

IF Ok THEN
numberOfNodes := DequelLength (deque);:

Ok := (nthItem <= numberCfNodes) AND (nthItem > 0);
(* nthITtem must be less than length of deque & greater than 0 *)

IF Ok THEN
dataSize := HIGH (data) + 1;

count := 0;
current :=

REPEAT

INC (count);

current := current”.next;
UNTIL count = nthItem;

deque”.previous;

Ok := current”.size = dataSize;
(* size of contents must equal size of data *)

IF Ok THEN
Move (current”.contents, ADR (data), current”.size);

IF count = 1 THEN
DeleteNode (deque)

ELSE
DeleteNode (current)
END;
END;
END;
END;
END Serve;
PROCEDURE Front (VAR data : ARRAY OF BYTE;
deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the front of the deque into data. *)
(* Ok is set to FALSE upon the following conditions: deque is empty, *)
(* size of data does not equal size of contents. *)
VAR
dataSize : CARDINAL; (* size of data *)
BEGIN
Ok := NOT Empty (deque):
IF Ok THEN

dataSize := HIGH (data) + 1;
Ok := deque”.size = dataSize;

(* size of data must equal size of contents *) }

IF Ok THEN)
Move (deque”.contents, ADR (data), deque”.size);

END;

END;
END Front:
PROCEDURE Back (VAR data : ARRAY OF BYTE;

deque : Deques; VAR Ok : BOOLEAN) ;

(* Place contents from node at the back of the deque into data. *)
(* Ok is set to FALSE upon the following conditions: deque is empty, *)
(* size of data does not equal size of contents. *)
VAR ,

dataSize : CARDINAL; (* size of data *)
BEGIN

Ok := NOT Empty (deque):;

Page 10

IF Ok THEN
dataSize := HIGH (data) + 1:

Ok := deque”.previous”™.size = dataSize;
(* size of data must equal size of contents *)

IF Ok THEN
Move (deque”.previous”.contents, ADR (data), deque”.previous”.size);
END;

END;
END Back;

PROCEDURE Top (VAR data : ARRAY OF BYTE;

deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from node at the back (top) of the deque into data. *)
(* Ok is set to FALSE upon the following conditions: deque is empty, *)

(* size of data does not equal size of contents. *)
BEGIN
Back (data, deque, 0Ok);
END Top;
PROCEDURE Retrieve (VAR data : ARRAY OF BYTE;

nthItem : CARDINAL;

deque : Deques; VAR Ok : BOOLEAN) ;
(* Place contents from nth node of the deque into data. Ok is set to *)
(* FALSE upon the following conditions: deque is empty, size of data *)
(* does not equal size of contents. nthItem is greater than number *)

(* of nodes in the deque. %)
VAR
current : Deques; (* used to walk the deque *)
dataSize, (* size of data *)
numberOfNodes, (* length of deque *)
count : CARDINAL; (* node counter *)
BEGIN
Ok := NOT Empty (deque);
IF Ok THEN
numberOfNodes := DequeLength (deque);
Ok := (nthItem <= numberOfNodes) AND (nthItem > 0):
(* nthItem must be less than length of deque & greater than 0 *)
IF Ok THEN

dataSize := HIGH (data) + 1;

count := 0;
current := deque”.previous;
REPEAT

INC (count);

current := current”.next;

UNTIL count = nthItem;
Ok := current”.size = dataSize;
(* size of contents must equal size of data *)

IF Ok THEN
Move (current”.contents, ADR (data), current”.size):;
END;
END;
END;
END Retrieve;

END PMPDeque.

Page 11

WDS Startup Program
By William D. Smith

Since I've presented most of my units which
make up the WDS environment, I will now start
with the programs which use these units. This
first program is the first program which runs after
the operating system is ready. The code file is
named “SYSTEM.STARTUP” on the boot disk
which causes the operating system to
automatically execute it before displaying the
main system prompt.

This program starts by adjusting the terminal
screen size (Set_Sc_Sizein Initialize) to that
contained in the system miscinfo (my terminal
has multiple screen sizes and if the system
crashes with the terminal set wrong, what you
see is not always correct). It then displays a
prompt for the user to enter their userid (notice
that NoBreak is used to disable the system break
key). After entering an acceptable one, the main
menu is displayed. The three main things the
user can do are quit (in my case run off the hard
disk or floppy), proceed onward with the startup
program supplied by PECAN (which sets up
execution off of the ramdisk, more on this later)
or have the program prompt for the userid again
(which locks out unauthorized users while you
are away from your machine). At this time you
can also set the date on the boot disk (if it needs
changing) and set the system time (if you don’t
have a real time clock).

PECAN provides a startup program with version
IV.2.2 which performs a set of commands (such
as zeroing the ramdisk, transfering files from one
disk to another, mounting sub-volumes, setting
the boot and prefix volumes, specifying the file
names of the compiler, editor, etc.) contained in a
file called “*LOADFILES.TEXT”. I use these
two files to setup my system for use.

If you remember from previous NewsLetters, my
ramdisk is large enough to contain the whole
system, all my utilities, and my complete current
project (and still have 2000 blocks free). As any
developer knows from experience, when you do
testing, the system sometimes crashes and needs
re-booting. Except for rare times, the ramdisk is
not harmed but if T boot in my normal manner it
gets zeroed. Because of this I set up my startup
program to be able to boot in many different
ways.

Page 12

How did I do this? First I changed the name of
PECAN’s startup program from “SYSTEM.
STARTUP” to “LOADFILES.CODE”. This lets
my program execute first (since its named
“SYSTEM.STARTUP”).

“LOADFILES.CODE” always uses “*LOAD-
FILES.TEXT” as its command file (its imbedded
in the program and the user is not given a way of
changing it on the fly, use can use patch to
change it.). I didn’t like this so I developed a
process of changing it prior to chaining to it. The
function FixStartup copies the string specified
by the user in the L(oadFiles input line to every
place that “*LOADFILES.TEXT” occured in the
original code (object code). The locations are
place at the end of the last block of the
“LOADFILES.CODE” program in the form block
number, byte number.

FixStartup locates the last block of the code file
(not counting the QuickStart blocks), starts at the
end working backward until it reads a block
number of zero. — One note, FixStartup does
not handle the byte sex problem either when
locating the last block or when getting the string
locations.

The L(oadFiles input line is limited to 15
characters since that is how much room there is in
the string “*LOADFILES. TEXT".

In Initialize, the default values for Loadrile,
MsgFile, StartCode are blank filled out to their
maximum possible length so that the code can be
paiched with new values without needing re-
compiled.

The message file is used to leave yourself a
message or when more then one user uses the
machine, leave messages for them. Both the load
file and message file (or any other text file, just
change the message file name) can be read with
the eX(amine command. This command uses a
function from a unit not covered yet which allows
the user to examine a text file (read forward and
backward).

{ WDS terminal typed I/O unit [1.05] -——— 20 Oct 87 } { |xjmSd|nx|f8|e|. }

{SO+}
{$C (¢) William D. Smith =-- 1987 to 1989, All rights reserved. }
{ File: T Tio U.Text Version 1.05 20 Oct 87
Author: William D. Smith Phone: (619) 941-4452
P.0. Box 1139 CIsx 73007133
Vista, CA 92083
Notice: The information in this document is the exclusive
property of William D. Smith. All rights reserved.
Copyright (c) 1987 to 1989.
System: Power System version IV.2.2
Compiler: Power System Pascal Compiler
Keywords: WDS T Tio U Terminal Typed Input Output Unit

{s

{s
{s

Description: WDS terminal typed input / output unit. This unit contains
procedures for typed terminal input and output. The procedures
are for reading / writing dates, integers, time, and YesNo.

Change log: (most recent first)
te Id Vers Comment

Oct 87 WDS 1.05 Added Vs T Tio U and its use.

Sep 87 WDS 1.04 Added W Time and G Time.

Aug 87 WDS 1.03 Fixed for version IV.22.

Aug 87 WDS 1.02 Made InForm clear lines when input is null.
Jul 87 WDS 1.01 Put in version control.

Jun 87 WDS 1.00 Derived from F.T To.

I VERSION.TEXT} { Declares conditional compilation flags }

D CSR-} { Outputs cursor type }
D KBD-} { Outputs keyboard lock status }

unit T Tio U;
interface {$ T Tio U [1.05] 20 Oct 87 }
uses Glbs U; { WDS globals unit }

const Vc T Tio U

4; { 09 Mar 88 }

(I

Vs T Tio U P To U
var Vv T Tio U : integer;
DotOk : boolean; { Set to false when InForm/W_Dot not wanted }

procedure W Int (I, Len, Blank : integer):

{ Write the integer I to the screen. Use Len spaces. Leading zeros are
blank. Right justified the number. If I equals Blank, then clear Len
spaces. Blank is the null value for the particular type of integer

}

procedure W Date (Date : DateRec):
{ Write Date to the screen in the form "mm-dd-yy". Uses eight spaces. }

procedure W_¥Yn (Yn : YesNo; Len : integer);
{ Write the value of ¥n to the screen. Use Len spaces. }

procedure W Time (Tr : TimeRec);
{ Write the time Tr to the screen in the form "hh:mm". Uses five spaces. }

procedure InForm (S1 : Str 63; I : integer; S2 : Str 63);
{ Inform. This procedure writes S1, I, and S2 to the 2nd to last line of the
screen. The cursor is left at the bottom line of the screen for W Dot.

-}

Page 13

pProcedure W Dot (var Count : integer) ;

{ Write dot. If Count mod 50 is 0, this procedure clears the current line and
writes count to the screen. In all cases this procedure writes a dot at the
location of the cursor. Count is incremented by one. InForm is usually
called before this procedure to set up the cursor.

}

{ Typed input procedures. The cursor is left at the end of the value entered.
Invalid values cause an error to be displayed and the terminal to beep. The
value sent into the function is displayed on the screen as the default value.
The functions return the last character typed which will be an accept key or
the abort key. If an accept key is entered, the value returned is what the
user entered, otherwise the value is unchanged from the default value.

}

function G_Int (var Int : integer; Min, Max, Blank : integer) : char;

{ Get inteéér. Min and Max are the minimum and maximum values allowed. If
the user enters a blank value (nothing), Int is returned as Blank. If Blank
equals Min, the user is not allowed to enter a blank.

}

function G Date (var D : DateRec) : char;
{ Get Date. Uses eight spaces. The user inputs a legal date in the form
"mm?dd?yy"”, where the "?" can be any non-numeric character.

function G_Yn (var Yn : YesNo; Allowed : YnSet) : char;
{ Get yes/no. Allowed contains the set of allowed values ("", "Yes", "No" or
"Only") which may be entered by the user.

function G_Time (var Tr : TimeRec) : char:
{ Get time. This function allows the user to enter a time in the form
"hh:mm" .,
}
implementation
uses StrOps U, { WDS string conversion ops unit }
T Io U, { WDS terminal I/O unit }
OpSys Uy { WDS to operating system interface unit }
function I Len (I : integer) : integer;
var J : integer;
begin
if T < 0 then begin J :=1; I :=-I; end { if }
else J := 0;
if I < 10 then I :=1
else if I < 100 then I := 2
else if T < 1000 then I := 3
else if I < 10000 then I := 4
else I := 5;

I Len :=1 + J;
end { I Len };

procedure W Int { (I, Len, Blank : integer) };
var S : Str 81;

begin
if (Len = 0) and (I <> Blank) then Len := I Len (I);
S [0] := chr (Len):
fillchar (S [1], Len, " ');
if T <> Blank then I into S (I, S, 1, Len);
W Str (S):

end { W Int };

Page 14

procedure W Date { (Date : DateRec) };
var 8§ : Str 9;

begin
S [0] := chr (8):
fillchar (S [1], 8, " "):
D into S (Date, S, 1);:
| W Str (S):

| end { W Date };

procedure W_Y¥n { (Yn : YesNo; Len : integer) };
var Ss : Str 5; S : Str 81:

begin
S [0] := chr (Len);
fillchar (S [1], Len, ' ");

| ¥n to S (¥n, Ss);
if length (Ss) > 0 then
moveleft (Ss [1l], S [Len - length (Ss) + 1], length (Ss)):
W _Str (S);
end { W ¥n };

procedure W Time { (Tr : TimeRec) };
var S : Str 5;

begin
if Tr = NullTad .T then
S = 1} T
else
begin
S o= ®¥00:007';

T into S (Tr, false, S, 1);
end { else };
W Str (S);
end { W Time };

procedure InForm { (S1 : Str 63; I : integer; S2 : Str 63) };
var LastLine, Xx : integer;
begin
if DotOk then
begin
LastLine := Height - 1;
if Y = LastLine then Xx := X
else Xx := 0;
Set Xy (0, LastLine - 1);

|

|

if (length (S1) = 0) and (I = Null) and (length (52) = 0) then
begin
:

C Eol;
SetXy (0, Y + 1)
C_Eol:
end { if }
else
begin
W Str (S1);
W Int (I, 0, Null);
W Str (s2);
€ Fols

end { else }:
Set Xy (Xx, LastLine);
S Info ('"):
end { if };
end { InForm };

Page 15

procedure W Dot { (var Count : integerxr) }:
var Xx : integer; S : Str 9;
begin N
if DotOk then
begin
if Count mod 50 = 0 then
begin

if X > 56 then Xx := X - 56

else Xx := 0;

S = '< 0>y

end

I into S (Count, S, 2, 4):
Set Xy (Xx, Y); W Str (S); C_Eol;
S Info ('');
end { if };
W Char ('.');
Count := Count + 1:
end { if };
{ W Dot }:

function G Int { (var Int : integer; Min, Max, Blank : integer)

var

Ch : char;

Ax : integer;

L : integer; { length of Int }
Len : integer; { length of string 1}
Tmp : integer;

Blnk : integer;

Done : boolean;

] : Str_31;

begin
Xx = X;

L

:= I Len (Int);

Len := I Len (Max);
Tmp := I Len (Min):

if Tmp > Len then ILen := Tmp;

if Min = Blank then Blnk := Blank - 1
else Blnk := Blank;

Done := false;

repeat

Page 16

if Int = Blnk then S := "'
else
begin
S [0] := chx (L):
fillchar (S [1], length (S), ' '):
I into S (Int, S, 1, L);
end { else };

Ch := G Str (S, Len);

if Ch = chr (Esc) then Done := true
else
begin
Crunch Str (S, S):
if length (S) = 0 then

if Min = Blank then
Error ('Value required')

else
begin Int := Blank; Done := true; end { else }
else if S to I (S, Tmp, Min, Max) then
begin Int := Tmp; Done := true; end { else if }

char };

else
begin {12345678 1 2345678 2 2345}
S := '"Invalid, (to bR
I into S (Min, S, 11, 5):
I into S (Max, S, 20, 5);

Error (S);
end { else }:
end { else };

SetXy (Xx, Y):
until Done;
W Int (Int, Len, Blnk);
G Int := Ch;
end { G Int };

function G Date { (var D : DateRec) : char };
var Xx : integer;
Tmp : DateRec;
Ch : char;
Done : boolean;
S : Str 9y
Ss : Str 9;
begin
Xx = X;
if D = NullTad .D then Ss := "'
else
begin {12345678}
Ss =" Lo

D into S (D, Ss, 1);
end { else };

| Done := false;
| repeat
| S := Ss;

Ch := G_Str (S, 8);

if Ch = chr (Esc) then Done
else if S to D (S, Tmp) then
begin
D := Tmp;
Done := true;
end { else if }
else Error ('Invalid, (check

| SetXy (Xx, Y):
until Done;
| W Date (D)

G Date := Ch;
end { G Date };
|
|

\
Tmp := D;
|

function G_¥n { (var ¥Yn : YesNo;

var Xx : integer:
Len : integer;
Ch : char;
; Done : boolean;
| Tmp : YesNo;
| S ¥ St 3L;
| begin { G ¥Yn }
Xx = X;
Done := false;

if Only in Allowed then Len :=

else Len := 3;

:E. -

:= true

illegal dates)');

Allowed : YnSet)

char };

Page 17

repeat
¥n to S (Yn, S):
Ch := G _Str (S, Len);

if Ch = chr (Esc) then Done := true
else if S to Yn (S, Tmp, Allowed) then
begin Yn := Tmp; Done := true; end { else if }
else
begin
S := 'Invalid, (Yes, No)'

if Only in Allowed then
insert (', Only', S, pos (')', S));:
Exrror (S);:
end { else };
SetXy (Xx, Y):
until Done;
W_¥n (¥Yn, Len);
G_Yn := Ch;
end { G Yn };

function G_Time { (var Tr : TimeRec) : char };:
var Xx : integer;
CH : char;
Done : boolean:;
Tmp : TimeRec;
S i Str B¢
Ss : Str 5;
begin
Xx := X; Done := false;
if Tr = NullTad .T then Ss := '!
else
begin
Ss := '00:00";

T into S (Tr, false, Ss, 1):
end { else }:
repeat
S = S8s;
Ch = G Str (8, 5):
if Ch = chr (Esc) then Done := true
else if length (S) = 0 then
begin Tr := NullTad .T; Done := true; end { else if }
else if S to T (S, Tmp) then
begin Tr := Tmp; Done := true; end { else if }
else Error ('Invalid time');
SetXy (Xx, Y):
until Done;
W Time (Tr):;
G Time := Ch;
end { G Time };
begin
Vv_T Tio U := Ve T Tio U;
Ck Version (Vv_Glbs U, Vc Glbs U, Vs T Tio U, Vs _Glbs U);
Ck Version (Vv StrOps U, Vc StrOps U, Vs T Tio U, Vs _StrOps U);
Ck Version (Vv_T Io U, Vc T Io U, Vs T Tio U, Vs T Io U);
DotOk := true;
*k k

end {$0- T Tio U }.

Page 18

{ System startup (Wyse 1IV) [2.09] ——— 09 Mar 88 } { [xjmSd|nx|£f8|e]|. }

{50+}
{$C (c) william D. Smith =-- 1985 to 1989, All rights reserved. }
{ File: Startup.Text Version 2.09 09 Mar 88
Author: William D. Smith Phone: (619) 941-4452
P.0O. Box 1139 CIS: 73007,173
Vista, CA 92083
Notice: The information in this document is the exclusive
property of William D, Smith. All rights reserved.
Copyright (c) 1985 to 1989.
System: Power System version IV.2.2
Compiler: Power System Pascal Compiler
Keywords: WDS System Startup Program
Description: Startup program. This is the first program executed when the
system boots up.
Change log: (most recent first)
Date Id Vers Comment
09 Mar 88 WDS 2.09 Changed to use F Io U.
07 Feb 88 WDS 2.08 Used Get MyHelp.
06 Feb 88 WDS 2.07 Changed to reflect changes in T Io U for C_Sc.
24 Jan 88 WDS 2.07 Added eX(amine command.
20 Oct 87 WDS 2.06 Changed to use Vs _ names.
28 Sep 87 WDS 2.05 Added H(elp command.
23 Sep 87 WDS 2.04 Added C(heckLoadFile command.
16 Sep 87 WDS 2.04 Fixed some errors in G Time.
14 Sep 87 WDS 2.03 Fixed so that the name of LoadFiles.Text can be changed.
14 Sep 87 WDS 2.02 Changed to use Display U.
20 Aug 87 WDS 2.01 Added Caps to AppendText.
19 Jun 87 WDS 2.00 Used WDS units.
04 Apr 87 WDS 1.11 For IV2l, chain to *SYSDATE before creating ramdisk.
06 Nov 86 WDS 1.10 Changed the way volumes are set.
31 Cct 86 WDS 1.09 Added code to use LoadFuncKeys unit.
21 Jul 86 WDS 1.08 Changed ".FCN" to ".FKYS".
14 Jun 86 WDS 1.07 Added use of Version.Text.
17 Feb 86 WDS 1.06 Added stuff for IV.21 startup.
29 Nov 85 WDS 1.05 Changed prefix vol to FDBL1TXT:.
12 Sep 85 WDS 1.04 Added conditional compilation for setting prefix.
07 Sep 85 WDS 1.03 Added writing out prefix volume.
07 Sep 85 WDS 1.02 Added AOS conditiocnal compilation.
31 Aug 85 WDS 1.01 Added command to chain to set date program.
05 Feb 85 WDS 1.00 Added function key definitions.

{STI VERSION.TEXT} { Declares conditional compilation flags }
program Startup;

uses Glbs U;

WDS globals unit }

{
StrOps U, { WDS string ops unit }
F To U, { WDS file I/O unit }
OpSys U, { WDS operating system interface unit }
T Io U, { WDS terminal I/O unit }
T Tie Uy { WDS terminal typed I/O unit }
Display U, { WDS display unit }
wild,
Dir Info,

Command To:

Page 19

const Version

'[2.09]";{09 Mar 88}

MaxCount 4;
Other = 'FFFF';
Other Ok = false;
var Ch : char;
Cx : integer;
Dy : integer;
Ly : integer;
My : integer;
Px : integer;
Break Ok boolean;
Done : boolean;
N Menu : boolean;
LoadFile Str 23;
MsgFile Str 23;
HelpFile Str 23;
StartCode : Str 23;
Cmds : CharSet;

procedure S Tad (Tad : TadRec);

{ Show time and date }

var S : Str 31;

begin {12345678 1 2345678 2 234}
S := '00-00-00 00:00 00:00am';
D into S (Tad .D, S, 1):
T into S (Tad .T, false, S, 11):
T into S (Tad .T, true, S, 18):;
W _Str (S):

end { S Tad };

procedure SetTime;
var Tad, SaveTad : TadRec;
S 2 Str 63;
begin
SetXy (Cx + 10, Dy):
Get_Sys Tad (Tad):
SaveTad := Tad;

if G Time (Tad .T) <>
chr (Esc) then
if Tad <> SaveTad then
begin
Tad .D := NullTad .D;
Set Sys Tad (Tad);
S Time;
end { if if };
SetXy (Cx, Dy):
Get Sys Tad (Tad):
S Tad (Tad);
end { SetTime };

procedure SetDate;
var Tad, SaveTad : TadRec;
begin
SetXy (Cx, Dy):
Get Sys Tad (Tad);
Tad .T := NullTad .T;
SaveTad := Tad;

{ Get Date from user }
if G Date (Tad .D) <>
chr (Esc) then
if Tad .D <> NullTad .D then

Page 20

if Tad <> SaveTad then
begin
Set_Sys Tad (Tad):

if D ChangeDate ('*',
Tad .D, [D_Vol]) <> D Okay then
Error ("Error ece
changing date on system volume "#"7');
end { if if if };

SetXy (Cx, Dy):

Get Sys Tad (Tad): |

S Tad (Tad); |
end { SetDate };

function G Id
var Done, NotDone
I : integer; Id

begin

G_Id := false;

Done := false;

C _Sc (true);

N Menu := true;

boclean;
boolean;
Str 31; |

repeat
NotDone := true;
SetXy (0, ¥ + 1);
W_Str ('User id -> ');
Beep;
Id := "'; I := 0;
while NotDone do begin
Ch := G Chars ([' '..'~'],
true);

if Ch = chr (Esc) then
begin
NotDone := false;
Done := true;
end { if }
else if Ck_Accept (Ch) then
begin
if validUser (Id) then
begin
NotDone := false;
Done := true;
G _Id := true;
end { else if }
else NotDone := false;
end { else if }
else if T = 31 then
NotDone := false;
else
begin
I:=1+ 1;
Id [0] := e¢hr (I):
Id [I] := Ch:
W Char ('#'");
end { else };
end { while };
until Done;
end { G_Id };

function FixStartup (CodeName : Str_ 23; LoadFile : Str 23) : boolean;

type BlockByte = record
BlockNum : integer;

ByteNum : integer;
end { BlockByte };
var T : integer;

Msg : integer;

LastBlock : integer:

F : FibPtr;

CkBlock : array [0..127] of BlockByte;

Block : packed array [0..511] of Byte:;
procedure SetMsg (var Msg : integer; Ior integer) ;
begin

if Jor = M NoError then Msg := M Unknown
else Msg := Ior;

end { SetMsqg };

begin { FixStartup }
Msg := M NoOError;
if OpenFile (F, CodeName, BlkFile, true, Msg) then

begin
if BlockIo (F, CkBlock, 1, 0, true) <> 1 then SetMsg (Msg, ioresult)

else
begin
if CkBlock [106] .BlockNum > 0 then
LastBlock := CkBlock [106] .BlockNum - 1
else LastBlock := File Size (F) - 1;
if BlockIo (F, CkBlock, 1, LastBlock, true) <> 1 then
SetMsg (Msg, ioresult)
else
begin
I :=127;
while (Msg = M NoError) and
(CkBlock [I] .ByteNum > 0) do begin

if BlockIo (F, Block, 1,
CkBlock [I] .BlockNum, true) <> 1 then

SetMsg (Msg, ioresult)
else

begin
moveleft (LoadFile [0], Block [CkBlock [I] .ByteNum],

length (LoadFile) + 1);

if BlockIo (F, Block, 1,
CkBlock [I] .BlockNum, false) = 1 then

I:=1-1

else SetMsg (Msg, ioresult):
end { else };
end { while };
end { else };
end { else };
CloseFile (F, false):
end { else };
if Msg = M NoError then FixStartup
else begin Err Msg (Msg, CodeName);
end { FixStartup };

procedure S Menu (Prompt : boolean);
var Tad : TadRec;
begin

if Prompt then

:= true
FixStartup := false; end;

Page 21

begin
C_Sc (false);
Px := S _Prompt ('Startup: H(elp G(oLoadFile U(serId eX(amine Q(uit',
Version, false);

end { if };
SetXy (2, 5): W _Str ('D(ate & T(ime ----—- > '); Dy :=Y;
Cx = X;
Get_Sys Tad (Tad); S Tad (Tad):
SetXy (2, Y + 2); W Str ('L(oadFile —---—----- > 1y Ly :=Y;
W _Str (LoadFile);
SetXy (2, Y + 2): W _Str ('M(essage file —-——--- > T); My :=Y;
W_Str (MsgFile);
S_Info (''); N Menu := false;

end { S Menu };

procedure Examine;
var Ch : char; Xx : integer;

begin
Py =Py + 1;
Xx := S Prompt ('Examine: L(oadFile M(essageFile Q(uit', Version, false);
repeat

SetXy (Xx, Py):
Ch := G Char (['L', 'M', 'Q'], false, true);
case Ch of
'L' : if DisplayFile (Py + 1, Null, LoadFile) then N Menu := true;
'M' : if DisplayFile (Py + 1, Null, MsgFile) then N Menu := true;
end { cases };

if N Menu then S Menu (false):
until Ch = 'Q';
SetXy (0, Py):; C Fol; Py :=Py - 1;
end { Examine };

procedure Initialize;

var S : Str_ 15;

begin
S := 'Startup':
Ck Version (Vv_Glbs U, Vc Glbs U, S, Vs Glbs U):
Ck _Version (Vv StrOps U, Ve StrOps U, S Vs StrOps U);
Ck Version (Vv_F Io U, Vc F TIo U, S, Vs F Io U);
Ck Version (Vv OpSys U, Ve OpSys U; Sy Vs_QpSys_U):
Ck Version (vv T Io U, Ve T To U, S, Vs T TIo U);
Ck Version (Vv T Tio U, Ve T Tio U, S, Vs T Tio U);
Ck Version (Vv) Dlsplay U, Ve Dlsplay U, S, Vs Display U);

Set Sc Size (AdjustsSc, AdjustSc):
Break Ok := not NoBreak (Show):
if NoBreak (On) then ;

repeat wuntil G Id (false);

if Break Ok then
if NoBreak (0Off) then ;

LoadFile = 'ZBOOT.TEXT i
MsgFile = 'MSG.TEXT ';
StartCode := '"LOADFILES.CODE '

Crunch Str (LoadFile, LoadFile);
Crunch Str (MsgFile, MsgFile);
Crunch_Str (StartCode, StartCode);

Get MyHelp (S, HelpFile);

Page 22

Initialize
; repeat

IDI
IGI

THI
ILI

IQI
lTl
|U|

lxl

C Msg (0);

false; N Menu := true;
['IDT’ IGI' IHI" ILI' 'M', IQI' IT'I" TUI’ lxl];

S Msg (false, false, CopyRight);
end { Initialize };

begin { Startup }

.
r

if N Menu then S Menu (true):;
SetXy (Px, Py):
case G Char (Cmds, false, txrue) of

SetDate;

: begin

Cursor (Off);

if FixStartup (StartCode, LoadFile) then
begin
S Msg (false, false, "Dismounting all subsidiary volumes');

if D DisMount ('="') = D_Okay then ;

Chain (concat (StartCode, '.')): { Performs loadfiles }
Done := true; C Msg (1);
end { if };

Cursor (Pop);
end { case 'C' };

: if DisplayFile (My + 1, Null, HelpFile) then ;
: begin

SetXy (Cx, Ly):
if G Str (LoadFile, 15) <> chr (Esc) then
begin
CapStr (LoadFile);
SetXy (Cx, Ly); W Str (LoadFile);
C Eol;
end { if };
end { case ™' };

: begin

SetXy (Cx, My):
if G Str (MsgFile, 23) <> chr (Esc) then
begin
AppendText (MsgFile, txue):
SetXy (Cx, My); W Str (MsgFile); C Eol;
end { if };
end { case '™M' };

: Done := true;

SetTime;

: begin

if NoBreak (On) then ;
repeat until G Id (false);

if Break Ok then
if NoBreak (Off) then ;
end { case 'U" };

Examine;

end { cases };
until Done;

end {$0- Startup }.

Page 23

"'NMONMINN ¢Buiwod sene1smsN 1xoN

06/€2//S0 06/91/S0 06/60/L0 06 3nv/A[ar™ [N _ R .
06/17/SO0 06/71/S0 06/L0/SO 06 unf/Kep
06/61/0 06/T1/€0 06/S0/S0 06 v/
06/ST/T0 06/30/T0 06/10/10 06 qad/uef
JJms 1ogs SOOIy SUHOg/opo) NI SMAN
<lep ang a1ep angg arep angg
Sale(] UOLIRITGNg IR TSMAN

11 SurpeaI 9IN0 X pug
g werm £q
weidord dmrelg sam 61 ‘Z1
IS wemm Aq

1) O/I PAAA], TeURLIST, SAM €1 ‘¢
Aysueyorad]\ 19194 Aq
SMPOIA 2nbag v '€

a)
L
—
SLI0daI S I0IMSBI], Z [o'e) E
sAeg IOJRDSIUTIIPY ¥ ™ W
I0MPY oY) WOL] I = w
pay. 3%eg b3 -
=
o < &
<3 =
o B
; < =
8 JeqWNN JONPT ‘UNwS Q Welim > Q®
€ ewnjop Pamssay SIBIY [y (o= L
oul ‘SNSN ‘6861 WBLAdo OmO ha
121327 7SMm2 S5os gt
n O« ow
6861 92Q/AON o I o

	20100325180442468.pdf
	20100325180727549.pdf

