
/ 4 ,

*

*
VAST

99
USERS
GROUP

* *

VALLEY OF THE SUN 1.
TI 99 USERS GROUP

m ir,....1-ifrat

VOL NOVEMBER 3 7 1 9 36 h ,c , rriztr.

NO.9

:VAST 99 INFC„
:EUITCPS PAGE

WHEPEFOPTIIS,
Cie'i

AND TVIAT.
HNTS ANU TIPS .

,14

3
4

MaY

• 	•
a 	II

VAST 99 LES 437-4335
*

PAGE '5' INTHMETWEIN!

NOVEMBER, 1986

WAVn Cy N\TIMAVATPITNN
The VAST 99 USERS' GROUP is a

	
Deadline for submission of art-

support group for TI 99 Home Comput- icles or advertising for the News-
?r users. We meet on the second letter is the last Saturday of every
Saturday of the month at the Los month. Articles may be submitted in
)livos Resort Motel in the "Phoenix" any form, however, the preferred met-
'oom at 202 E. McDowell Road (about a hod is by phone transfer directly to
'lock East of the Library). The the Editor.
leetings start at 10:00 AM and con-
,inue until 	11:00 AM with social-

 t *t***************************
izing 	starting 	at 	9:00 AM. 	The
/early membership fee is $6.00. 	 Advertising rates are as follows:

All meetings are open and anyone
lay attend. Only dues paying mem-

, ers may vote in elections and ob-
ain programs from the Users' Group
library.

Commercial:

Full Page $10.00
Half Page $ 7.00

Quarter Page $4.00

The current officers are: 	 Personal:
President
Gerry Kennedy 	 992-7668 	 Four lines,

Vice-President 	 30 Characters/line
Doug Otten..». 	973-7768 	 41.00

Secretary 	 $.20 per line
Mike Marfisi 	 897-8280 	 over four.

Treasurer
Ike Van Kampen 	934-5164 	 All rates are for ONE issue only!

User Group Librarian
Earl Bonneau 	 269-3802 	*************************************

Newsletter Editor/BBS SysOp
Jim Ely 	 437-1796 	 Programs are available from the

t************************************ USERS' GROUP LIBRARY at the follow-
ing rates:

A FORTH Tutorial is being conduct-
ed by Rene' LeBlanc in this newslet-

	
SS/SD Disk $2.00

ter. 	It consists of a continuing
	

SS/DD Disk $4.00
series of 	articles relating to his .. 	 DS/SD Disk $4.00
version of FORTH which 	is available

	
DS/DD Disk $8.00

from the User Group Library. For
nore information, please contact him

	
If 	copying of 	documentation 	is

at (602) 991-1403. 	 required, it will be at the rate of
$.10 per page. 	If the User Group

The Users' Group's BBS is now in supplies the disk, please add $1.00

operation 24 hours a day. Contact it to the above charges. An exchange
at (602) 437-4335. There is a lot of program for free programs is also 	in
interesting conversation and informa- effect. 	Please contact the librarian
Lion available here so give it a try. 	for further information.

* ‘..71211.11y c3f 	tt-1 	 G.1-caup *

'r9 	AZ H ' TTH J

	 NOVEMBER, 1986 	

From The Eclitore besh

.P• a AV' 3

Gosh! The months are sure going
fast. 	Next month 	is Christmas al-
ready. 	Let's get right to it!

I normally publish 	last 	month's
meeting minutes on this page. There
are no minutes for the October meet-
ing, however, because of the SWAP
MEET which took up most of the
meeting and, by the way, was a great
success. We will do that again some
time. Now...

THE S T a .2e E

hi! F13EE)-

In this issue 	 Page 9 has part
3 of Using T.I. Multiplan, this time
taking a look at the "VALUE" func-
tion. Rene' explains how to enter an
array in WHEREFORTHS OF FORTH on page
4. Computer Tutor takes a look at a
couple of different functionq. (com-
mands) of Extended Basic with some
short sample programs, which, as
usual, will be available on the BBS
download section late this afternoon.
The article starts on page 6. Gerry
Kennedy has written a timely article
on how to change a "FLOPPY" disk into
a "FLIPPY" disk and this article is
on page B.

I hope to start 	in next month's
newsletter a series of articles
explaining T.I. Assembly language and
to also have an article on using stile
Upload/Download section of the BBS..
Stay tuned!

E; a H 	L.. L) 	H

It was a real struggle last month
to get the newsletter out and in the
process, a few things got a little
messed up. The screen that appeared
as part of the Whereforths column was
incorrect! In reformatting the arti-
cle, the lines sort of got "squished"
together and a number of characters
in each line were dropped. 	If you
got the newsletter by mail, 	you got

the corrected version of the FORTH
screen. Those of you who got the
newsletter at the meeting and want
the corrected screen are in luck! I
felt the best way to do the correc-
tion was to make the whole page
available. You can take the old page
out of last month's and replace it
with the new page and no one will
ever know. Also available is a new
page 3-4. On this one, 	the margin
was on the wrong side and if you hole
punched it, 	you lost some of 	the
information. 	Again, 	those that got
it by mail, got the correct copy.
Those Halloween ghosts and gremlins
struck a little early in October....

That's enough OLD NEWS. Now...

5-7-: 14/ H /SIH1-7 IgH1-7E; „

I got a note in the mail from Home
Computing Journal (WHO??). It seems
that the next issue of their quarter-
ly (now about 2 months overdue) is
moving along quite well (their gos-
sip, 	not mine). 	No date as to when
it will be mailed but, 	in 	the 	mean
time, 	they have a lot of old back
issues of HCM (remember them?) and
software 	items they are trying to
sell. 	Any takers?? 	Contact them
directly.

Jim Peterson of Tigercub Software
out of Columbus, OH, has announced
that he is ceasing publication of his
"Tips from the Tigercub" newsletter.
It's hard to run a one man User Group
and apparently some of the groups he
has communicated with have not been
exactly friendly. Let me assure Jim
that none of the material he has sent
to this user group in the way of
software has made it to our library
for distribution and some that has
been uploaded to the PBS by other
persons has been removed before

C" c? r? t 1 ra 	=..(.1 o r?
.R.at(7 	I 0

!$ELEM ASCII , WORD HERE C@ 1+ ALLOT ;

<ER1> ." Index too large" ;

$ARRAY \ compile time (n) execution time (n 	addr)
<BUILDS DUP C, 0 DO !$ELEM LOOP DOES>
DUP CO ROT DUP ›R >
IF 	1+ R> -DUP IF 0 DO COUNT + LOOP THEN
ELSE R> DROP DROP C ' <ER1> 2+ 3 LITERAL THEN ;

\ Example Usage:
6 $ARRAY $A1 ABC,DEFG,HIJKL,MN OP QR,S T U V, 8 till 11 ,

TST (n) $A1 COUNT TYPE

(Figure 1)

\ I/O experiments3

RAGE 4

'9<9. ArHATE;L,HTTE

	 NOVEMBER, 1 9 B 6 	

1:11 	 [11—E1

In WHEREFORTHS 40 we
'efined the ACCEPT AT and
ASPLAY AT words and - added a
,ype conversion word stoi
string to integer). I am
rying to gradually build up

k set of I/O primitives that
)111 form a nice base for a
variety of application pro-
jrammtng projects. You see,
n Forth we usually start
iut by making a set of Ian-
juage extensions that will
ake our particular applica-
ion program much easier.

In this issue we 	are
joing to plunge into some
,iore advanced concepts of
'orth to create a new "de-
"ining word". This means
.hat we are going to extend
he compiler itself so that
ye have the ability to de-
'ine arrays of strings
Aored under names of our
.hoice for reference within
program.

"What's that???" you say
lith fear in your 	voices!!!
Jell, 	perhaps an example
could make this seem less
threatening.

I want the ability to
iefine an array of 	text
strings, 	each with its own
meceding count ("dimension-
ad strings"), and I want to
jive the whole array a name
;o I can reference it with
an index and its name. For
2xample, I'd like to be able
to define the array some-
thing like:

"6 $ARRAY MYSTRINGS The
first string is the zeroth
itring,String #1,String #2,
fet a third string,A
forth strinq,And
finally a 5 h
Aring,"

Given this defin-
ition for MYSTRINGS,
any particular
string could be ref-
erenced as:
'n MYSTRINGS" where
1 is the index. For
?xample:
"3 MYSTRINGS" would
-eturn the address
-pf the string: "Yet
a third string"

Another array
yith 	a 	different

name could be declared:

"3 $ARRAY $meal Have
breakfast ,Have lunch ,Have
dinner ,"

Then, "0 $meal" would re-
turn the address for "Have
breakfast ", "1 $meal" would
return the address for "Have
lunch " and so forth.

Well how do we do this"?
We need to define the new
"defining word" $ARRAY which
will allow us to use it to
define unique array names
that reference user-speci-
fied strings.

I went on to use screen
#11 on my work disk and
created the following words.
Now we can follow through
how they work. This screen
gets us into some of the
real power of Forth! (See
Figure 1 below.)

I'll 	th,,at 	wa 	are
getting into some "heavier"
Forth words here, but if you
dig in with me I think you
will find that you can un-
derstand what is happening.
Furthermore, you will learn
some things that will enable
you to do some really power-
ful things with the Forth
language.

The first 	definition 	is
for the word: !$ELEM (store
string element). This is
just a component word that I
factored out of the $ARRAY
word to keep its definition
simpler.

"ASCII ," 	returns 	the
ascii value for "," (comma).
I have chosen this to be the
delimiter for each string
element. If you would
rather use "1" or some other
character as a delimiter,
then substitute "ASCII /" or
whatever other character you
want as a delimiter.

WORD will parse the input
stream using the specified
character as a delimiter. 	I
used "," so our 	strings
could contain blanks. When
this word is executed the
input stream will either be
from a disk buffer if the
definition is being loaded
from disk, or it will be the
Terminal Input Buffer (TIB).
It will collect the char-
acters it finds in the input
stream and move them to the
top of the dictionary, be-
ginning at HERE as a dimen-
sioned string. (How handy;
just what we wanted!)

Howf2ver, 	doez not
allot the space, so we have
the code "HERE C "" to fetch
the count of characters in
the string, "1+" to add one
character to accommodate the
count character itself, then
"ALLOT" which moves the Dic-
tionary Pointer (DP) up to
the next byte after the
string found by WORD.

The next word defined is
"<ERl>". I defined this
word as a simple way to
create an error message
string that I need to use if
someone uses an improper in-
dex value as an index to an
array defined by the $ARRAY

FAG S

NOVEMBER, 1986

	precedence bit
+ 	smudge bit

+-unused

+-+-+-+-+-+-+-+-+
NFA--> :P:S:-:0:0:0:1:1:<--count for name

+-+-+-+-+-+-+-+-+\ 	field

a
	

<--name field

1
	 +1

CFA-->
	pointer to 	:

code field +

count of # of
3 	:<---strings in Sal PFA--> :

3 	:<---size of
string(0)

A

B

C

3

D

<-string(1)

F
+/

etc.

(Figure 2)

ecute the
<words2...> se-
quence follow-
ing the DOES>.
These are
called the
"execution
time words".

So, when we
execute the
word SARRAY, we
will be COM-
PILING an array
definition with
our choice for
<namel> and
executing the
<wordsl...>
sequence which
happens to be:

DUP C, 0 DO
!SELEM LOOP

Assume we
are executing
the definition:
"3 "ARRAY Sal
ABC,DEF,HIJKL,"

In this case
<name> = Sal,
and 	it will be
used to ref-
erence three
strings: "ABC",
"DEF" and
"HIJKL".

that will execute the !SELEM
word three times, once for
each string that we must
supply. The !SELEM word
will execute WORD and parse
the input stream to find
each of the strings and put
them at HERE which will be
moved up by the ALLOT word
each time !SELEM is execut-
ed. In this way, the three
strings are stored as dimen-
sioned strings in 	the 	dic-
tionary. 	This concludes the
<wordsl...> 	"compile 	time"
execution 	of 	the 	word
SARRAY.

Each array (such as Sal)
that is defined using this
word will have its parameter
field loaded first with a
count of the 	number 	of
strings in its array follow-
ed 	by 	each 	dimensioned
string 	in 	the 	array.
However, the CODE field
pointer for each of these
array words will point to
the common "execution time"
words in the COES> portion
of the SARRAY defining word
used to create the indi-
vidual string array words.

Figure 2 at left shows
the form of the dictionary
entry for the Sal string
word.

<-string(0)

+/
:<---size of
+\ 	string(1)

E

word. 	I'll explain this 	in
more detail later.

Now we come to the main
workhorse; the SARRAY word.
Remember, this word will be
used to COMPILE other words
that are defined by the user
to create string arrays.
This word uses the

"<BUILDS <name> <wordsl...>
DOES> <words2...>"

cnnstuct where a new word
called whatever you use for
<name> 	will 	be created in
the dictionary. When you
are executing the <BUILDS
word you are COMPILING the
<name> word and will execute
the <wordsl...> sequence.
This 	is 	important! 	The
<wordsl...> 	sequence 	is
executed 	while 	COMPILING
<name>.

Later, when you execute
the word <name>, IT will ex-

When we execute SARRAY,
the •UILDS word will create
the header for Sal in the
dictionary. However, we
still have the "3" on the
stack (from "3 SARRAY") that
specifies how many elements
we want to define for this
array. The "DUP" will exe-
cute after' the <BUILDS word
and create another "3" on
the stack. Then "C," (C-,
comma) will execute and
allot one byte in the par-
ameter field for Sal and
stuff the extra copy of "3"
into it. We want to store
this here so we can range
check the index parameter
that will be supplied to the
Sal word during ITS execu-
tion.

Next we have the literal
"0" which will push on top
of the remaining "3" that
was on the stack. This "3
0" on the stack becomes the
loop indices for a DO loop

When the Sal word exe-
cutes, the DOES> word por-
tion of the defining SARRAY
word pointed to by the CFA
of the Sal word will be ex-
ecuted. Just keep on think-
ing about 	this until 	you
understand 	it, and you will
be greatly rewarded!

Execution of the Sal word
will begin with its PFA
being placed on the stack by
the DOES> word. Then we see
the sequence:

"DUP Cr ROT DUP >R >"

DUP duplicates the PFA,
CE' reads the contents of the
PFA which contains a count
of the number of strings in
the array Sal. When Sal is
executed, the array index i
is on the stack. The DOES>
puts the PFA on top of it.
DUP C@ puts the stored count
of strings (#s) in Sal on
top of that so we 	have
Con t i ri■ cscof on
RAGE i --=-- >

A a H
	

VA :E.:7' cri '9 1,1 H 1-1 S.; H 	H

NOVEMBER, 1986

Hope you had more treats

than tricks last month! We have
three treats for you 	in this

'I:7) months 	Computer 	Tutor sec-
-/ tion...and the good news is

that all three programs are of
the Q&D variety. Q&D stands 0 for quick and dirty which means

IP/ 1 ' 	you won't wear your 	fingers
down to the knuckles keying in

the program lines. 	This month

we have a program which helps
you find all possible key/ASCII
combinations; a program that
helps you understand the POS

lA statement 	in basic and, my
favorite, a Word Generator.

WORD GENERATOR: 	Browsing
through PC Magazine last month
I saw a review of a commercial-
ly available program that is
used to generate new words.

.'77) Many companies, like Proctor &
„:2.2 Colgat / PaImol;v,

etc., pay hundreds of thousands
of dollars to persons to create
new product names. The commer-

 cial program was priced at
about $200. Now you can create
the same results with some cre-
ative programming.

The concept 	is pretty sim-

71 ple. The alphabet is made up of vowels and consonants.

There are 	typical 	alphabet
patterns in many words. For
instance, 5 letter words are

/kJ frequently 	made 	up Of two
vowels and three consonants.
My word generator program
designates the first, third and
fifth characters as con-
sonants and the 2nd and 4th as

vowels. We assign all the
vowels to V$ and all consonants

74.7) 	to C$. 	Random numbers will be 1
used to pick the vowels from
the strings. 	The program will

generate a block of 36 words

T, per screen page.

If you want to save these
word gems, 	insert a. program

line that will also 	print 	the
words to your line printer as
well as the screen.

100 RANDOMIZE :: CALL CLEAR
:: CALL SCREEN(15)
110 V$="AEIOUY" 	C$="BCDFG
HJKLMNPGRSTVWXZ"
120 PRINT "WORD GENERATOR: b
y tom moran";RPT$("-",28):
130 FOR I=1 TO 36
140 FOR J=1 TO 3 :: C(J)=INT
(204RND+1):: NEXT J
150 FOR J=1 TO 2 :; V(J)=INT
(6*R0D+1):: NEXT J
160 W$SEGS(C$,C(1),1)8,SEG$(
V$,V(1),1)&SEG$(C$,C(2),1)&S
EG01,V(2),1)&SEG$(C$,C(3),
1)
170 PRINT W$,:: NEXT I
180 PRINT :; PRINT "PRESS AN
Y HEY FOR MORE WORDS"
190 CALL KEY(0,K,S):: IF

	

THEN X=RND 	GOTO 190 ELSE
'2,!= ', (7,070 12 1 '

	

POS STATEMENT: 	The POS
statement 	in TI 	}{-Basic is a
handy little command. You can
use 	it to find a string within
a string or search 	for 	a
special 	character 	within 	a
string. The demo program below LMU
uses POS to find and separately
define a first and 	last name.

When asking someone to input 0
their name they will, 	obvious-
ly, 	insert a space between

.1,heir first and last names. 	So
we' use the POS statement to
search for a space character
(ASCII 	32). 	When 	it finds a
space we record the position in
the string where it is located.
Then, by using the SEG$ state- al

ment we create two strings from

one. 	The full name is N$. 	The
first name is put in FN$ and p
the last name in l.0$.

100 CALL CLEAR 	CALL SCREE
N(4):: DISPLAY AT(12,1):"ENT
ER YOUR FIRST & LAST NAME.>"

110 ACCEPT AT(13,3):N$ 	X=

POS/N$," 	 FN$=SEG${N$,

I J

121 .i4 7' 9 '9 1,1 	L.. H T T H
	

F'44GE

NOVEMBER, 1986

COMPUTER TUTOR
Con t i rrvs -

1,X):: LN$=SEG$(N$,X+1,LEN(N
$))
120 CALL CLEAR
130 PRINT "HI ";FN$:
140 PRINT LN$;" IS SURE A FU
NNY":"LAST NAME"
150 STOP

KEYBOARD / ASCII READ:
Practically all 255 ASCII
characters are available to
be included in your program
from the keyboard. The only
problem is that TI did not
print a list to tell you how
to access characters lower
than 32 or greater than 126.
This little program will
record the character and the
ASCII number when you press
just about any key. I say
just about because if you
press FCTN+ you'll return to
the title screen. For in-
stance if you press FCTN V
(that means the FCTN key and
the V key simultaneously)
you will see that it is
ASCII character 127.

100 CALL CLEAR :; CALL SCREE
N(11):: DISPLAY AT(12,9):"PR
ESS ANY KEY"
110 ON BREAK NEXT
120 DISPLAY AT(1,1):" 	KEY
BOARD/ASCII SEARCH" :: DISPL
AY AT(2,1):RPT$("-",28)
130 CALL KEY(0,K,S):: IF S=0
THEN 130
140 IF K>128 OR K<32 THEN 15
0 ELSE 160
150 PRINT "Character: 	- No
t Defined -" 	GOTO 170
160 PRINT "Character: 	":CH
R$(K)
170 PRINT "ASCII #: 	":K
: PRINT 	GOTO 120

Next month we'll 	have
some Christmas gems for you.
Until then....don't eat too
much Turkey this month.

T.M
4- -I- 4- 	4- -4- 4- 4- -1- -1- -4- -1- 4-

WHEREPORTHS -
Cant 1 nucl f
PAGE 5

(i pfa #s) 	on the stack.
ROT DUP 	leaves 	us 	with
(pfa #s i i). Then >R
pushes the top "i" onto the
return stack for temporary
storage. Then ">" tests if
#s > i and leaves a boolean
flag above the pfa value on
the stack. 	If this is true,
then the index "i" 	supplied
is within the valid range.

The IF test removes the
flag, leaving only the pfa
on the stack. Assuming the
index was valid we want to
step the pfa to the first
string. 1+ does this. Now
we yank the saved value of i
off the return stack with
R>. -DUP conditionally dup-
licates it only if it is
greater than 0. If you want
to access the "zeroth" ele-
ment we are already pointed
to the right place so we
want to skip the rest of the
code and just return.

If i is not 0, then -DUP
will make two copies and
then the IF test will con-
sume one of them. Then the
0 puts the initial loop in-
dex on top of the stack and
the stack now contains
(pfa+1 i 0). The (i 0) pro-
vide the loop indices for a
DO loop to step to the
desired element of the array
of strings. "COUNT +" steps
the address to the end of
the current string, and this
is repeated i times to
finally leave the address of
the selected string on the
stack.

Finally we will look at
the error case (the ELSE
clause) where i was larger
than the number of string
elements in the array. If
the ELSE clause is being
executed, the index i is
still on the return stack,
so the R> drop gets it off
and dumps it into the bit
bucket. 	The 	next 	DROP
eliminates the pfa+1 from
the stack since we don't
know what ■ to do with it.
Instead, we want to return
the address of an error
message string that
created with the <ER1> word
up above.

The "t" word says "Lets
stop compiling for a minute
and just execute the fol-
lowing code." The "follow-
ing code" is "' <ER1> 2+"
which calculates the address
of the error message string
in the parameter field of
the 	<ER1> 	word (well, yes,
it is a bit "tricky"). This
address is left on the stack
and then the "J" word says,
"Let's resume compiling
again." "LITERAL" is a word
that expects to find some-

thing on the stack and com-
pile it into the dictionary.
You see, it is this address
that we want to compile into
the dictionary so that when
the ELSE clause executes it
will encounter the literal
and 	put it back on the
stack, leaving it as the
output for the Cal word (or
any other string array word
compiled by $ARRAY) when it
is given an invalid index.

The rest of the code on
the screen is an example ar-
ray and a test word to make
it easy to try out this
thing. 	Just execute "n TST"
and 	it should print out the
desired string element or
the error message if n is
too big.

I hope you have been able
to dig through this session.
It does cover some of the
more interesting capabil-
ities of Forth.

Rene' LeElanc

< < <<<< <>>>>>>>

< * ** * >

T H E

< VAST 99 >

B. Et S

< 24 HOURS >

DAY

7 DAYS

131 WEEK

FOIR

NEWS

< I NFCMVIALT I ON >

nrar)
FUN!

< 61 0 2 — 4 3 7 — 4 3 3 5 >

• * * 	* >

<

•

< < < < < < > > > > > > >

FAaH
	

S■ c? 14ZHAT531-17T7Hle

	 NOVEMBER, 1966- --- 	-

HIS FIND THFIT
DOUBLE YOUR DISK CAPACITY 	 The best way I have found to mark

the disk for punching is to lay an-
This article may be old news to other disk upside down over the 	in-

nany of you, but I have encountered tended victim. 	If you turn the disk
luite a few people lately who haven't so the index hole is showing, you can
discovered 	"flippy" 	disks. 	If you mark 	the 	jacket 	of the bottom disk
Are still using the original equip- through it. Point of caution here!
nent single sided disk drive that You only want a hole in the jacket,
:ame with your expansion box, you not the disk. You'll have to mark
lave the option of modifying your both sides of the jacket at the index
disks so you can use both sides of hole and slip your hole punch into
them. In order to read the backside the jacket. I use a piece of label
/ou must flip the disk over, thus the backing to protect the disk from
"flippy" name. scratches when I do this part. If

you have a disk that's no good you
The only tool necessary for this can use the jacket for a template by

3roject is a hole punch. 	It would be removing the disk. 	It's a lot easier
Advisable to use one that has a to mark the 	index hole this way.
dinged holder to catch the 	 Otherwise you can only make
pieces as you punch the 	 a small mark on the jacket
soles, otherwise they couldfi7 	 though 	the 	index hole in
Fall into the disk jacket. 	 the upper disk.

In the illustration, 	we
lave 	a 	disk 	that 	is
nodified to 	be 	a 	flippy.

	

point A 	is a square
iotch. 	This is 	the 	read/
rite protect notch. 	At
joint B is a 	hole 	with 	a
natching one on the back
side. 	If 	you 	turn 	the
disk carefully 	in 	the 	jacket, 	you
gill 	see 	a 	small 	hole in the disk
sere. This is an index hole for the
disk drive. To make use of the back
side of your disk, you simply make
holes on the left side of the jacket
to match those on the right. 	Those
additional 	holes are shown by points

	

in the illustration. 	I 	know, 	the
sead/write notch is square. The disk
drive doesn't care if it's round or
square. If you insist on having a
square 	hole, 	I've 	seen 	tools
advertised that will cut a square
hole and they cost about 15 bucks.
the round punch is about $2. Don't
4oirry about making that hole too deep
either. You would have to punch a
hole almost a half inch deep to cut
the disk inside (you wouldn't cut it
that deep would you?).

One other thing I 	might
mention here just so you
can be forewarned. 	Theo-
retically, what you are
doing is a nu-no. When you
turn the disk over, you're
turning it backwards in the
drive. The lining in the
jacket is there to catch

dust etc. and keep it off the disk.
When you turn it backwards, you are
putt ing dust on the disk. In actual
practice, 	however, 	I've never heard
pfanyone having a problem. 	Many
people do this, 	including software
manufacturers. 	It isn't necessary to
purchase double sided disks either.
Although single sided disks are only
guaranteed on one side, I've yet to
see one that was bad on the back. If
you should have a bad sector, it will
be flaged when you initialize the
disk if you verify the sectors and
then when the computer writes to that
disk, those flagged sectors are just
skipped.

Gerry Kennedy

1'4e1.537- 	 MI7;1531-172'2- 2712 	 1=',A(317

	 NOVEMBER, 1986 	

CaLT6t
USING T.I. MULTIPLAN (PART 3)

One of the main uses of 	the T.I.
MultiPlan 	(TIMP) for a home computer
owner would be to keep track of 	in-
vestments. Each person would want to
set up his own spreadsheet, so below
is an example.

can contain + 	W / as needed. The
method using the arrow keys works
very well for a few lines, but if our
list of stocks were longer we might
just type out the formula for each
line, thus:(assuming row 3)

RC-C2]*R[-C17 (Press ENTER)
The amount in column 4 would be

automatically calculated by causing
col 	3 	to be multiplied by col 2 for 	This translates into: on the 	same
each row and the amount 	in col 	4 row take the cell 2 columns to the
designated as total would be kept up 	left and multiply it by the cell 	one
to date by having column 4 add itself 	column to the left and enter the
and show the total at RGC4, which is result in the home cell (R8C4).
the way a cell is designated.

	

In practice, a column could be 	A series of columns with an addi-
inserted so that the Stock Exchange tional total column could be added to
Symbols would be in column 	1, cost show the dividends received on these
and total cost columns could he stocks or a separate file (XTERn)
inserted between cols 2 and 3 and could be set up as apppended to the
even expected returns and yield file. If the latter is done the
columns are feasible. 	And 	in all 	external files are updated and enter-
cases the amounts would figure ed on the main spreadsheet each time
themselves out at each recalcula- the TRANS - Load: mainfile (or other
tion, name) is loaded.

	

As an example of how these form- 	Notice 	that the difference 	in
ulae are entered, to get the value in 	widths of the columns in the example,
R8C4, the cursor would be placed over and the difference 	in the type of
that cell; pressing "V" 	for 	"value"

	
information in each of 	them 	is set

would command that a formula be en- using the FORmat command.
tered and then the UP arrow would be
used until 	the cursor 	is over the

	
Next time we'll 	look at some of

R3C4 cell. The add(+) is punched and the other aspects of TIMP.
the cursor 	immediately drops to the
home cell (R8C4). Use the UP arrow

	
By Herbert Schlesinger

again to the next lower amount, use +
and again the cursor comes +, 	
home. 	Repeat this 	for :
	

Sample Worksheet

each value to be added ex- :
cept the last when ENTER : 	1 	 2 	3
is pressed completing the :1 Name of Company #shares Pr.Val
operation and the Total :2 	
sought will 	enter itself :q Aetna Life

	100
	

$45.25
	

$4525.00
in the proper (home) cell. :4 Burroughs Corp

	
150
	

$55.25
	

$8287.50 	:
Upon RECALC any changes in :5 Detroit Edison

	100
	

$17 . 25
	

$1725.00
any of 	the 	figures 	will :6
reflect 	in the TOTAL cell :7
(R8C4 in this case). 	In :8 TOTAL
	

$14537.50
using VALUE the formula + 	

4
Total Value:

PAaH I CI
	

Air 3; 	 2;r:?

NOVEMBER, 1936

	

I 7_ 7! 1:1110
	 , c vIT 	tr".>

laking it to 	the 	download 	section. 	times a 	file 	has 	been successfully
orry to see the Tigercub Newsletter downIoaded. 	One of the main reasons
10, 	but 	Jim is going to continue in 	for this change is an 	effort 	on 	my
he software business, at least for a part 	tr, write a "REUOTE SYSOP" pro-
ihile, while 	taking on 	other 	pro- g.ram so that an assistant 	SysOp 	can
iects. 	Good Luck, Jim. 	 maintain 	the 	board 	as 	well as the

main 	CysOp 	who 	is 	running 	it.
MICROpendium announced in the last Bulletins can be changed and updated,

ssue that you could get a FREE issue uploads can be checked. deleted or
4 their magazine (one copy only) by mo ,:sd to the download section and
just 	sending 	them 	your 	address. 	much more. 	Must of this 	program 	is
i(:)unds 	like 	a good deal to me for a 	finished and working just great, just

- eally good T.I. specific periodical. 	ask Gerry Kennedy.
[heir address is P.O. Box 1343, Round
lock, TX 78680. 	 That's about enough of 	this ram-

bling for now. 	I hope you all have a
Our BBS will pass the 1800 caller very nice Thanksgiving and-l-win see

lark this weekend. 	I've made a few you 	all 	at the next m0jAri
:hanges, 	hope for 	the 	better, 	in Dec. 13', 1986.
Lhe Upload 	and 	Download 	sections. 	 •

hey are very apparent in 	the 	do%,n- 	 Jim Ely,
load section in that now you can see 	 Newslotter Editor/
/hen a file was uploaded ard how many 	 7.7,113 E, y s ()2

TAY
GAR 'CD t....J1F-P.

 cp 	11 1 -LI -11- 	 'y

F" 	 AIM 	E3 T..") 0 -11- 0

;4i 14!

7
_

-4.0014

771-1 f?.1:3

EDMONTON TI99 , 4iLi COMPUTER
P.O.BOX 11983
EDMONTON, ALBERTA
CANADA T5J 3L1

17 I I I F'..e ED, C; 	 I
Noverntr. 1906

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

