~
- S g
R e e N e w %— e ‘F
1 “~ L’—z\" L) . ~
P z TN A =
3 ~ WO - Lo s
~ a T3 - W~
h ~ TN N~ .
a~ A /"-h“’ K’ 4
~ e (e I s as
AR AN
~ o T T~
—‘m \l\~
~ o ~ ~ T 9 -~
~ “~ ~ ~ ~ 5 € ? idiad L
"~ -] "o ~ A ¥ad L
- rtrarma’s- - - R l\ﬂ,.’ b
~ e ~ o =TT, %
~ o~

OCTOBER 1984

STRING FUNCTIONS IN BASIC AND X-BASIC: .

A string_is a variable consisting of a bunch af characters “strung”’
together . I23 is a numeric value ( one hundred twenty three } "123" is a
string value character 49 "1" and character S0 "2" and character 51 "3Iv
The character numbers mentioned are ASCII characters a standard used by
computers so the can exchange information these character codes are in appendix
ITI-1 of vour TI 29/4A USERS REFERENCE GUIDE .

Strings can be defined simply by a statement A%="A"

They can also be defined like A%=CHR$(&5) ! &5 is the ASCII code for capital A
Here is a break down of the various string “functions® thes are in the USERS
REFERENCE GUIDE between pages 1I-929 and II-103

ASC{ string-expression ) This converts a single character into its A5CII code
and puts that code into a numeric variable . For instance CODE=ASC("A")
would make CODE=&S .

CHR% ( numeric expression ) does the reverse of ASC , it takes a number
between O and 255 and converts it to a single character with the code of
the numeric expression . For example STRING$=CHR$(&5} makes STRINGE="A"

LEN( string—expression ) This function puts the number of characters in
the string into a variable . LENGTHSTRING=LEN ("12Z4546782") would make
LENGTHSTRING=? ! You can use a variable name interchangably with a
literial string statement . You can substitute "12745&6789" for ONETOMINES
and vice—-versa . .

POS(stringl,stringZ,.num—expression) Finds the first occurence of stringZ in
stringl . It starts looking at the location specifisd in the numeric expression
and looks to the end of the string. If it dosent find a match it puts a O into

your variable else it puts the location of the start of the match into vour
variable

STR1$="127454787"

STR2$="455"

FOSZINI=FDS (STR1%,STR2%,1) would make FOSZIN1=2
POS2IN1=PDS (STR1$,STR2$,5) would make POSZINI=0 ! no match

SEG% (string,numl,num2) This makes the specified string up from a segment
of the original string . The segment starts a the character numl charac-—
ters into the string and end at the character numZ? charactesrs into the
string . PART$=SEGS ("1234546789",3,4) would make PART$="3454" it =tarts
at the third character and is made of the next 4 characters including the
third one . PART%=SEG%("1234546789",5,.2) would make PARTH="5&"

STR% (numeric—expression ) This conyerts the number specified into a string
A$=5TR% (1784) makes AE="1984" -

VAL( string—expression ) This converts a character string into a numeric value
the character string must be one that can be converted or an error will be pro-
duced . For example A=ASC("123")

There is another important symbol used with strings this is the & sign
this means CONCATINATION just think of it meaning AND or +
AS="12T4546782" or AS="12345"4"57892" are equivalint .
Here is a short program that takes your name as an imput (firstname/last-—t
name) and converts it from one string into two .

100 INFUT ¢ firstname (space) lastname “:FULLNAMES
110 SPACELOCATION=FOS (FULLNAME$, CHR$ (32}, 1)

120 FIRSTNAME$=SEGS (FULLNAMES, 1,SFACELOCATION—-1)

130 LASTNAMES=5EG% (FULLNAME%, SPACELOCATION+1,20)

140 FRINT "First name is "&"UHLFIRS TNAMESginon
151_:) PF,; INT 0 Last name i = " g( TRINIE &LASTNAHE$$} TR R}
140 FRINT

170 GOTO 100



ASSEMELY LANGUAGE BASICS :

First a basic program

100 FOR I=1 TO 10400 ¥ Starts loop sets counter to 1 .

110 CaALL CLEAR X Goes to clear rountine .

120 MEXT I ¥ increments counter % checks for end of loop .
120 END ¥ End of program .

In Ed/Assm 9?7200 Assembly lLanguage the program would be .
Q001 CLR RZ X Starts loop and

0002  ILOoFP Al RZ, 1 ¥ Increments counter by one .
QO0OZ BL BCLEAR ¥ Goes to clear routine .
2004 CI 3, 10000 ¥ Checks for end of loop
GO0S JNE  ILOOP ¥ Next loop if not done .
Q00s END ¥ End of pragram .

The BASIC program can be typed in and run . The Assembly Language program
while correct will not run without additional supporting segments .  The sub-
pregram CLEAR has not been defined and no method for getting into or out of this
program has been provided .

The RZ retered to in line 1,2 and 4 of the program is REGISTER = . The
computer has 16 active registers form RO to R15S . A& register is a location in
memory in which is contained a value . The value can be a number or a character
or another location in memory . It is not necessarrwv to know where the
registers are located in order to use them . The computer keeps track of where
they are .

 Line 0G0l CLR RZ ( clear register % ) is equiwvalent to LI R3,0 ( lpad
immediate register 3 with O ) Both of these put a O into register 3 . We
don’t know where register T is but we know it has a ¢ 1in 1t . .

Line 0002 ILOOFP AI R3E,1 ILOOF is a label { when the program is loaded
into memory the location that the instruction AI R3,1 is put into will be
substituted for the label whenever it is retered to . I+ AI R3,1 where loaded
into >DOQO  then line 0OOOS JNE ILODFP whould in effect become JNE  FDOGO

the assembler uses labels to make your program easier to understand . )

AT Z.a1 ( add immediate to register = 1 . I+ register 2 contained a O before
this instruction it will now contain a 1 . :
Line 000OZ EL SCLEAR ( Branch and link at label CLEAR ) This is a jump

to a subprogram . Again CLEAR is a label which is the location of the start of
a subprogram which clears the screen [ it _dosent exist yet we have to write it 13
:  EBL m®BCLEAR can be thnught of as CALL CLEAR or GOSUR line XXXX in BASIC

The program will do the su
gram statement.

Line 0004 CI RZI.10000 ( Compare immediate value in register T with 10000
} This instruction sets various pointers in another register called the STATUS
register depending i+ the value in RZ=10000 or not . ( Again you don’t need to
know where the status register is , the computer knows . )

Line 0005 JNE  ILOOF ( Jump not equal to ILOCF ) This tests the status
register and i+ the =zgqual test bit has not been set ( IFf R3I<>10000 ) the program
jumps back to location ILOOFP else it continues to the next instruction . In the
case of this non working program this was the last instruction , the assembly
line END is somethin% called an ASSEMEBLER DIRECTIVE . It is used to let the
assembler know it is at the end of the SOURCE CODE listing and to stop making
OBJECT CORE , but the directive does not itself grnduce any DbEECt code .

SOURCE COLDE is the assembly language program that you type in the ASSEMBLER
reads it and produces a file of ORJECT CODE which the LOADER loads into the
computer for running.

Because this program is not made to return to the program that called it
the computer will look at the locations atter the program and try to do the
instructions that are there * Whatever is in memory after our program is just
garbage from our viewpoint but nobody told the computer so it wallows i1n the
garbage and pigs ocut into never—never—-land . It locks up { You would probably
have to shut if off

You will +ind this to be a popular past time duriﬂE Brogram development !

I will now try to explain the following REF DEF Gl -

The ED/ASSEM loader will support external REFerences . The X-BASIC loader
will not . That is why you go VMER EGQU 2114 in X-BASIC and REF VYMBR with
the ED/ASSH . .

When your program is loaded into memorv all1 REFerences to label VMER in
X-BASIC are replaced with »2114 . With MINIMEM and ED/ASSEM you can use external
REFerences . You go REF VMEFR in your program and when vyour program is loaded
into memory the LOADER look in a TABLE for the EQU addresses ., the loader in
effect does VMER EQU xuxx and that value replaces every VMER label as
yvour program 1is loaded . All that this doss is put the start point of a
subprogram called VMBR into your program wheresver you had the label VMER.

when you write a program vou need to give it a name so that you can
link to it to run it. This is done with the DEFine directive in the
mannar DEF START and a the start of your program line 0001 in this case
you would add your program name ss a label
0001 START CLR RZ
This tells the LOADER to put the label START into the REFerence table and
to put the entrv point of the program there as well .

Now to stay out of never—never—-land after the program is done we want to
return to where we were before we linked to the program. When we first enter a
program the computer saves our return address in register 11 . It also saves
some other important stuff in other registers . It is a good idea when vyou
enter a program to save jthe registers’ in the condition that they are in . You
do this by switching to your own set of registers and using them until vou are
ready to return. When ready to retwrn vou restore the original registers and
branch to the location in register 11 .

program CLEAR return and continue with the next pro-



0001
QDO2Z2
OG0
aao4q
QO0S5
Q00G
QO07
GO08
o009
2010
0011
o1z
0017
0014
o015
Q016
QO17
0013
Q019
QO20
0021
Q022
Q023
o024
0025
Q025
Q27
o028
QOZ29
Q0320
0031

0014

Here is a complete program for use with ED/ASSM

REF VSEW ¥ Makes avaible a utility loaded by ED/ASSH .
DEF CLLOOP Enter from basic with CALL LINK("CLLDOFP"™)

SAVRTN  DATA =0000 Return address buffer .

MYREGS BSS 20 My registers use these to preserve environment

STATUS ERQU »BI7C Address of status bytes .

CLLODF MOV R11.38SAVRTN Save return address .
LWFI MYRERGS Use my own registers .
¥ Environment is set now entering main program segment .

W g W I IE P

CLR R3 ¥ Starts loop and
ILOGF Al R3. 1 ¥ Increments counter by one .
EL SCL EAR ¥ Goes to clear routine .
CI RZ. 10000 ¥ Checks for end of loop
JNE  ILOOP ¥ Next loop if not done .

¥ End of main program prepare for return to calling program .
CLR RO ¥ Prepare to retwn .
MDY RO, ESTATUS ¥ Indicate no errors in status .
RT ¥ S5ame as B XR11 Return to calling program .

¥ This is the end of the main program .
¥ Here is theosubprogram CLEAR .

CLEAR CLkR R ¥ Holds VDP address to be written to .

LI R1, »Z2000 ¥ Left byte HEX 20 (Blank) is wvalue to write .
JLOOP BLWP @aYSBW ¥ GOSUR VPP single byte write . This routine is
4 created and loaded by ED/ASSM cartridge .

Al RO, 1 ¥ Add 1 to VDP address value .

CI RO, 7568 X Check if the screen has been cleared ( there
x . are 7468 locations to clear on the screen )

JLT JLOOP ¥ If not done do JLODF again

RT ¥ Retwn to main program same as B ¥R1i1

END * This is an assembler directive to stop assembly

END ¥ End of program .

SCREEN DUMP FROM EXTENDED BASIC .

(TR RV v
AN

After wvour program draws its screen enter the line
RUN "DSkE 1. XBSCNDMP2"
Naturalv you call the program XBSCMNDMFZ

REM LAZYMANS SIDEWAYS SCREEN DUMP X-BASIC TOMNY BIGRAS OCT & 1984 ! GEMINI 10
DIM FPAT$(145) ! Holds printer ready character codes .
A$="84C2ALE195DIB7F"
DPEN #1:"FI10.CR"
PRINT #1:CHR${(27}&"A"%CHR$(7)! set linefeed to 7/72
FOR I=32 7O 1 STEP -1 ! Start to read screen send 32 lines to printer .
EEéNT ?1;8HR$(27)&"K"&CHR$(192}&CHR$(Q);! Graphics mode 192 bvites to come.
L J= 24

CALL GCHAR{J,I.A) ! Read values from the screen into A .
IF LEN(FAT${A))»1 THEN 2460 ! Dont get patern again.

IF (AXI2)+(AX143)THEN PATS (A) ="00000000" 1 GOTOD 240

CALL CHARFAT (A, AAS)

FOR K=2 TO 16 STEP Z ! Calculate the printer codes .

gé§42)=PDS(ﬁ$,SEG$(QQ$,K—1,1),1)+PDS(A$,SEG$(AQ$,H,1),1)*16
E
FATS (AY=CHRS(C (1)) &CHRS (C(2)) LCHRS (C(3) I RCHRS (C (4)Y Y LCHRF(C(S) )Y ACHRS (T (5) Y RCH

alJ
RE(C A7) IRCHRS(C{8))

260
270
280
290
Z00

DUTs=0UTHLFATE (A)
NEXT g

FRINT #1:0UT%$ :: OUT$="" ! Qutput to printer and reset OUTS$
PRINT #1:CHR%{(13)%&CHR$(10) ! Carriage retwn and linefeed .
MEXT I ! Do next line

PRINT #1:CHR%{(27)&"@" | Reset print to nornal mades

) CLOSE #1

END

For sale : Expansion box, 2 drives ,separatly or together
as a package .
Johan 2@ 479-7503



	Page 1
	Page 2
	Page 3

