

EDITORIAL COMMENTS:

or t:gke’Suiridenko, Newsletter Editor, is busy writing university finals so Paul Degner will slip in as Newsletter Editor
or this issue.

MISCELLANIA:

Miscellaneous news and reainders.

The FEDATA NETWORE provided us information on their FEDATA INFORMATION NETWORK B,B.S. containing a online catalog of
docusents, reports, handbooks, surveys, and books on and from the United States Government. They have given our user group a
free 1.D. and password to use their systes. 1f you are interested in trying out this B.B.S then please contact Paul gegner.

Last meeting the tape of the Chicago Faire was shown. Bill Quinn brought his portable VCR. Thanks Bill!

Our hardware ﬁeop e werg busy fast sonth! Sheldon Itscovich, a proud father of a bouncing baby widget, showed off his
four sliot darlxn?. e says he can produce these at forty dollars a pop. Steve labarylo walked in uit‘ @ aiternative widget,
two wmodules {full of GRO® games, and the home brew JZK expansion neatly attached to his Corcomp 9988 system. It’s truly
ispressive what Tlers can do on uxn{er evenings!

READER RESPONSE:
The following was attained from Charles Carlson. The author is unknown,
Sabject: 99/4 P-Box Power Supply Nodification

This modification should be performed only by cospentent electronic technicians.
This modification was perforsed to allow, firstj the console to run cooler, and second; to “beef® up the power supply so
it could supply enough power to run two disk drives in the P-Box.
 This wsodification involves removing the exsisting voltage regulators in the P-Box and replacing thea higher capacitv
units. Also three more voltage regulators will be added as to supply power to the console. Holes will have to be drilled in
the rear of the P-Box, to sount the voltage regulators. This is necessary to provide heatsinking for the regulators.
You will need to purchase the following parts:

2-7B12HK 12V SR T0-3 regqulator chips.

2-7885HK 5V 5A T0-3 regulator chips.

1-7985T -5V 1A TD-228 reguiator chip.

5-68,47 oF/35V tatalua capacitors.

5-2.2 uF/35V tatalum capacitors.

1-4,788 uF/35V electrolytic capacitor.

1-2,288 oha 1/2 watt resistor.

2-MR5H1 diodes,

4-10-3 transistor sounting sockets. -

1-set of T0-228 insulating aounting hardware.
f-aale and female 15 pin *d" connectors with hoods.
an assortaent of colored wire, 22 gauge is ideal.

roTa dEal U

2y

1. Reaove the top cover to the P-Box. Remove the flex-cable P-Box interface card, memory and R5-232 cards and any other
cards you may have exceft the disk controller.

2. Reaove the disk drive (two screws on toﬁ, two screws on bottom),

3. Reaove the disk drive data cable fros the disk controller.

4, Remove the disk controller card.

5. Remove the power switch knob (full it off),)

6. Remove the front cabinet from the P-Box (1 screw on left side, { screw on right side, top 4 screw on rear, 1 screw
beside fuse, 1 screw behind disk drive, 3 screws on right bottos side, 1 bottos front screw, 2 bottom left screws, and one
. bottom screw about 2 inches back fros where the PEB card mounts), _

7. Pull the cabinet foward and set it aside. You will see the power supply section on the left side {(power transformer,
in front of blower, and PC board to the left of the transtormer). At this point, you may wish to install a ditferent blower,
such as a high guality boxer fan in place of the blower. | rerlaced aine and it 1s much quiter and it pulls more air.

8. The PC board is msounted via a plastic holder that angles to the right on the bottos. There are two screws, one at
each end of the holder. Loosen them, but do not remove thes, There are two connectors that lock on to the PC board on the
rear. Push their tabs thru the board and pull the connectors off. There is also another connector on the front. Resove it
the same way. Then slide out the PC board. _

9. Locate the voltage requlator ICs(in the middle and center rear), Remove the regulators ICs.

h 18. lSolder three different color wires appx & inches long to the holes of the voltage regulator. Do this again for the
other requlator,

ll.g Locate D3 and D4. Note the polarity of the diodes. Solder two diodes to the transforser side of the existing
diodes. Be sure that the cathodes go towards the transformer side. Solder the anode ends together. Solder a wire appx B
inches lon%, to the ends you just soldered on the dicdes. Set the PC board aside.

12. Drill the T0-3 mounting holes on the rear of the expansion box. 1 mounted mine beside the blower, going downward
for three of the regulators and mounted the remaining below the blower above the fuse holder. You will have fo take a razor
blade and cut off part of the serial nusber tag. VYou need to do this so the chassis can be used for an heatsink. After
drilling be sure to file the holes saooth, .

13. Install the 8.47 uf capacitors to the inputs of the voltage regulator (pin 1) and install the 2.2uF capacitor to_the
gutputs)(pin 2). Solder the negative side to the chassis/ground lug on the mounting socket{this is only for the T0-3

evices).

{4, Mpunt the P-Boxr SV and 12V regulators. Use a good grade of silicone heatsinking cospound when vou instail the

regul ators.

A

15, Solder the wires fron the circuit board that went to the requlator that use to be on the board. Observe correct
wiring,
?b. Install the other two T0-3 regulators using htatsinkin? compound. On the 12V unit 'ung a wire from the {2V
regulators input you just installed. Also jumper a ground wire. Install the Capacitors, as before. %o he 5V regulator the
sane way. Sclder a wire appx 15 inches long to the outputs of the second set of T0-3 regulators. Route these wires to go out
the card cage, thru an unused P-Box slot.

17, Insfall the 10-226 -5 Volt regulator. Be sure to use insulating hardware. Solder a wire to the output terainal and
solder 2 wires to the ground terminal, 'fﬁx 15 inches long. Route the wires out, as above with exception to one of the ground
wires, Jumper it to a 'ground on one of the TO-3 regulators. Add the bypass capacitors as above but note the polarity.
Solder ;?nhher wire to the input of the regulator, appx B inches long. Route this wire to the front ot the P-box near the
power switch,

18. Install the PC board back in place. The wire from the rectitiers you installed needs to be soldered to the 478§ f
filter cap. The wire that case fros the negative voltage requlator should be solder to the same point. Install a ground wire
from the tfilter cap to any ground %olnt on the PC Board. Again observe polarity.

19, At this point, the box should be wired. Check for rroper wiring. Turn on power to the P-Box. Very quickly check
the outputs of all regulators for p(oﬂer operation (one +12 and +5 for the drive, one +12 and +5 and -5 for the coaputer).
1+ all voltages are 0K, then procede with the next step. 1f you do not a have a voltage check the input to the regulator and
work it back. Check for shorts and proper wiring. ,]

26. On the wires that you routed out of the P-Box, you will need to indentify them and solder on a 13 pin *d* connector
temale jack, Use a 15 pin "D" so you will have no probieas with hookup(the joysticks and cassette ports are 9 pins). i
solder pin 7 to +12, 45 to pin 5, -5 to pin 3 and ground to pin i, .

21, Put your P-Box back together. Bring your system up with the computer to make sure its DK. Test a disk drive.

CONSOLE NODIFICATION,

Check the wiring on your 15 pin "d" plug. You need to construct another 15 pin "d" connector sale with 4 wires appx
15-38 inches lone. After saking the cable, hook it up to your system and turn the P-Box on, Use a volteeter to confira
wiring and mark each wire as to what voltage they are. Hookup is EXTREMELY sensitive at this point. If you wire a power
supply to the wrong power buss in the 99/4A computer, 1 may take its last dying gasg and saoke. There will be no way to
repair the damage as it will be extensive. Semiconductors do not like reverse vol ages. They usually conduct very heavy and
burn. I cannot overstress this point!

1. Open the 99/4A console by removing all the bottom screws. You will see the zouer supply beside the keyboard and
below the computer’s PC board. You will see four wires connecting the computer to the existing power supply. With the power
supply hoard exposed, turn on the cosputer and check the voltages where the wires connect to the power supply. Mark these
carefully, Turn off the cosputer. Connect the power cable tros the P-Box to these wires, again noting correct hook wp (+#12
to 412, +5 to +5, -3 to -5, ground to ground). Remove the 4A’s power supply. Keep it for the future,

<. Route the cable cutside the oxsisting hole whore the nower plug use to connect,

3. Take the big step. Hook the computer up to the P Box and the systea. Bring the system up. A1l should bhe well. It
you do not get your title screen shut down, and check connections and pray that you did not burn up anything. You should have
no probless 2 Yoxnt it you maintained correct uxrlng.)

It alls well, shut down the system. 1 left the origlnal power switch in the 4A cosputer. 1 sugerglued it in the on
position. You may wish to take it out and install a systes reset switch (1 highly recosmend as if the systes locks up you
will be powering down your whole systes. You can also use a Widget). Put your case back on and happy computing.

The best benefit 1s the lack of heat fros the console. Norsally, when] use my computer | am on for about twp hours.
Its strange not to feel any heat coming fros the cartridge port area. Also I put two half height drives in the P-Box and I
have had no problems. If you use the parts I recommended, you will not be able to destroy the Rouer supply, They are
internall¥ imited and the P-Box Roner transformer will burn up before the regulators will. Aiso, jusf to relieve your
worries, the P-Box can handle a heavy load. It was designed to operate B cards.

Here is some checks I did for current draw on the computer,

+12V draws 249 ma
43V draws 949 ma
-9V draws 132 ma

14 you have any guestons, feel free to contact ame.

There are two schematics for this article called before and after. Please pardon the word processor graphics, but if you
can read a schematic _you should not have any probles with these. I recomsend that you study thea begore you perfora the
eodifications, so you will understand exactly what 15 going on. Also take your tise and Xo the job right.

REVIEWS:

This coluen presents reviews of materials that may be of interest to the user. The views expressed are the opinions of
the reviewers, exclusively.

SOFTRARE:
€99 A review by Paul Degner

How can a person really review a cosputer language? Basically it is only as good as what you can do with it. I will

attempt to review this language to the best of amy knowledge.
fex month’s a%o I came across a advertisement in a2 CIN-99 newsletter for a subset [compiler. Not knowing such about

the language 1 sent oft my disk/mailer/money for this tryware package called c99 developed by Clint Pulley. Two weeks later
the package arrived. 1 read the documents, tried the example prograes, and filed it away for ru
way | tackle any new signiticant software arrivals.

In the package was a note fros Clint that he had just finished a library of graphic functions, a randos number penerator,
and a text forsatter written in c99. What he said sounded interesting so ! sent another disk/mailer/money to Clint.” Another
wait of two weeks and I recieved what 1 wanted. This time | was ready to learn the language. In order to do so I had to have

ture use, This is usually the

3

;one kind ofslp;rning aid so 1 decided to drop over to the local book shop and purchase a C book such as Jack J, Purdun’s C
rogramaing buide.

_took a weekend to read Purdus’s book froa cover to cover which made me very eager to cospare sy subset C cospiler to
the various ones described in the book. Looking at the specifications sheet of ¢99 1 found a soneuha‘ cosplete subset C
cospiler as compared with Purdua’s ideas of what a subset C compiler should be.

Nissing in 99 VI.32 were the objects (float, double, enus, and void), data types (multi-dimensional arrays, function
returns other than integers, structures, and unions), identifiers (underscore), storage classes (automatic, static, external,
and register), attributes, assignaent operators (4=, -=, #=, /=, I=, })=, &=, |=, and =), statesent keywords (for, switch,
case, default du-uhile,‘ané sizeot), wacro preprocessor and control {ines’ t#undet 'and #if), and all parametized macros. Wot
such’ eh? Clint says he will have these options installed in further releases of c99.

To use this language to do something is another task indeed! The best configuration is to install the c99 compiler, TI

asseabler, libraries, rets, and a program isage disk cataloger such as 5D on a drive one diskette while keeping drive two
diskette allocated for c99/EDASH source and object files. Next is to develop a progras. 1 eventually decided on'a conversion
fros BASIC to 99 of a progras which appeared in a Byte magazine dealing with encoding and decoding of text files wsirc
pgssmgrds.d It took me about two weeks of sy spare time to perfect because of the time it takes to gef your c99 source to 9998
object code.
o1 mas alua{s hoping soaeday there would be a good lgnguage cospiler available for the 99/4A and 1 think I {inally 4ound
it. Clint Pulley has put a lot of his tise and etfort into evelofxng €99 and he asks if you think he has to send hia twenty
dollars. 1 think it isn’t enough for what he has put into c99 but I can only abide by his wishes and he also guarantees
notice of any new updates of c99 to the user.

For more inforsation on c99 write to:

Clint Pulley
gB }pun:end ggfnug
. urlington, Ontario
Ve Canada LJT 116

416/639-4583
5TC T17395

L{

HELPFUL HINTS AND TIPS!
(FOR THE USERS, BY THE USERS!)

This colusn feature tips brought to sy attention from sesbers of this group, other user group’s newsletters, and various
other sources. NARNIKE: These hints and tips are to be used at your own risk’

RULTIPLAK:
The following is reprinted fros the 99°ER ONLINE February newsletter.

A BUB IN TI MULTIPLAN by Bob Chapman

I have been working on a ﬁrojg:t to get the old fasily Brandfather Clock back into operation and ran into a spot of
bother with the pendulus length - it wasn’t quite long enough to give a beat of one second (ie, a period of two seconds). How
long should the effective length be? .

Dut came the high school physics book and a few sinutes research revealed the foraula:

T=2#P]#50RT{L/B)

where T is the period, L is the effective lenith and 6 is gravitational accelleration (32.174 feet/second/second).
Then 1 soved over to sy TI and loaded up MULY PLhN and set up two coluans, one for L (in inches), the other for T. The
formula in MULTIPLANESE is:i

2¢()#50RT(RCL-11/12/32.174)

where RC[-1] picks up the value for L. I varied L froa 12 to 48 inches and took a look at the results.

Something was wrong; between 38 and 39 inches, the period %unped by a factor of ten' Now, ! knew that the length should
be about 4% inches, which is what MULTIPLAN was indicating. But for lenaths under 38 inches, the results were obviously
whacko. On analysis, I found that at this and shorter lengths MULTIPLAN aust calculate the Square Root of numbers smaller
than .#1 but it gets them wrong - by & factor of ten. For exalgle, it tells ae the SORT of .#9 is 3 when it should be #.3.

I tried changing the formula by using an exponential of .5 and got the sase results. Next I tried it in basic and qot
the correct answers. On an IBM-PC, using LOTUS 123, I got the correct answers,

Does anyone know why TI NULTfPLAN cannot find the correct roots of nuaber smaller than #.817 I don’t know the answer but

1 would like to hear your theories or facts'
c99:

/% c99 encoding progras))
#+ This progras was originally developed by ralph roberts which appeared in the
april B2 issue of byte. The frogran is really pretty sisple--but the code it
#+ generates is not. The encryption begins as a sisple offset. The progras

#+ tirst reads your password (or passphrase) and suss the ascii values of all
#t the letters ang spaces. To obtain the offset, the progras divides the sua by
#+ the nusber of letters and spaces in the password. With an offset of &3, for
#+ pxample, every letter is printed 43 characters higher than it actually is

+H (uit% a wrap-around feature to saintain the desired ascii range of 32 to 123
#% and an upward shift of one so no space will be printed). In each succeeding
ling, the offset is increased by one. This prevents anyone from breaking

75/4R P-Box Before Modification (power supply)

—
-
[
— — o o
=3 = - o
-~ - = -
w QU o = "
=0T 3 - =2 M
- Ooa a o o
g - — e
- D e - o -~
PR s n "
1
i
o~ w - @ == - g
- D
L e L e R T
w -
2 w
A
= =2
on bm
e o
= & 2
s (e
>a
1 >
1 o o~
i — —
' - +
o~ ~~
‘
1
1
| me i g ==
i -]
’ —
“ (&)
. -) --
: i "o’ -
\ 1 -
\ o
! -———mm e
'
1 i H
N i -— 1
i 1 ac [lalatel
1 i > H
] 1 !
1
)
i
]
1

L3

Ll
Yi=-~=0---yuu-----uuy

NN TR e e

&~

—— ———— =y

~

—m————————
-
-

C7-C13-Cie- Ri<

L]

P T T RN

Cl:

- - = ——
o~
—l

!
L]

- ————— -y

iC4

[}
1
1)
]
)
‘
[}
L}
]
]
]
L]
1
'
]
]

inc
===2i0-1---uuu

0

Ul

connection
= no connection

> +8V unreg buss

7812
78857

ne
VR!
VR2

(=]
-
>
e
w e
aw
F-
e
o
[TR
[]
>
w
<+
~
1
]
I == 1
[} o
—
m []
I == | ® e
' ~
1 —
[] [&]
]
] 1
[] []
=~ R
r———
“ > "

NN mman e W

R%C

) @ e mm e ——n
-
-

S
-
—
[]

o] @ mm e e W
(=]
(=]

- & em e amtman M
(" 2]
(5]

e | & emmmmemean
o~

C

. M R e P me T S = e T N R e e . S

. e e T e T M e T P P o T e e P e

2. Wire components according to schematic

1. Empty parts on clean workspace.
diagram.

Do-1i-Y ourself Instructions

3. Plug in and turn on.
4. Write programs,

. T . T R o R s S s R R s R v tn B m S o B s P mam h A g P tn S e S e S v S i R mm e B m R mm R mr = .

w
L]
=2
<~
on
QU
—
[
=2
-
~O
-
i
~
i i e LR
”
-3
| @ mmm—ma
&N
-
<3
] # mmmm e
~0 3 N
- =2 bard
=2 [SS]
e & memm———
o
(=)
LN IR SRR Ty)
s =2 ~0
—t =2 [&)
Povid ccmce
] [
“ (&)
' A= ee mm e e - ——— -
] y ! ~0
- ~ IIDM
-~ \ '
! |l|l|lﬂ.v
o bt B s S Bt S bt = st B g St Bt

£ transforaer

1-- = diode
u = inductor

)
u

(
u

----) 416V unreg buss

gnd to console
pin 1

)

{power supply)

L3

d====0---uuy-----uuy

99/4¢ P-Box After Modification

-l - o
[[= e~
-] S m & 8TsE
- e L o Q) ud w =
w () Q > T L]
21 B2 5 =255 =285
-
mwo e - mtaa TEPO
L e !W R (= e o]
.E =] [V “ w Y " ~ Qe e
hanetl. B [
) ERRELX] =3 -=23 US5ESs
——y gt gy =2
< 3 re oS U LSas LTge
m MW&L [=4 N [= -
L B KL) - ~ S O o ol
%e NgegseogL § Ysve Uggs
oy . Bl = (=K el
o e R = LT > [~] [=] wm o
5 5 cf REBE3EESxx, o, 2527 LZ2%
e =] - R 0o Tall TaNNEINM nSne C So
I = w [=] ot bl et U e W) et VD LR &8 D = -
o = — Mr.. Wy S aO o K > A3 O e O -
[~ o [S — [¥] [or] S o £ b a UT e
~ - I o m ~T O o -] —) D g et .dm
o} on ~— [V T Cys e LW — e L VT
o 2 Moy D mit g SR O O B A et A o
a [W (L] Q@ Q [~] WRR./-I Q& > o ® o
= [¥y o (= =3"1] ¢ Wi [= 8-
L) e DUV W . T o a
w LSl T O0~g 0. BTV oOBDaOao wn
— - W RE L — I LA LR L TYREr .. =
e e e e e e e e S e R e e e e e R e e e Rl R e = e Y A e A e e i — — —— n — e e = e = o
o
- a o n
w - — L T
woq An > [=] — =
> > = n - [W L [-1]
-y E R = on Qo
A= on L [v] o o -~ T
on @ = &4 (- =
b [cn N o = - O c
~ = as - Y o [~¥"r] =1 — e
- = [Lo o (-9
> N = = > >0
) = = - = i ~0 v
-— ==Y D -— U -9 -— L x/
-+ + -+ -+ R d] '
”~~ -~ ~ ~ -~ ~ o~
1 1] ']
]] i []
[[T J——] i i
[T L [o~ i [1
" (< =] 4 — ” "]
—)
1 [5 » e i | t
" \ | == | @ " " "
- & ==
a 1 "w a) = (v} = | -1
L= n_u [5] o [~]
t (5] 1 ['
llllllllll ———————— e am mmemm——— - —— -
[} []] i]] [} 1 !
' !]])]]] 1 1
[1 []] 1 []] - b == o o] w2 o == e W
1 m e == - - 1 o= =] m]] o 1
'] [i] ==] 1] \ = \
[i i ' i i 3) | 1
--e- - —m e mm - v - === e
L= 4] w0 [~] 50 ¥ (¥ i
o ! o w i i = = =1 !
- w - <! ! Fialait - e m——— e D
] = e e e P a E e . | e e e e = - - —— H
. e . e e - - T iy T o T e W e S e W “
D N N L L DI e s NN e = M] ——— N N m— -
— o~ H (]
[~ 3 o “ o
e | & mamm e e o | & mmmmaam oo b == e - d emmm——
- - o~
o] a
tlnﬂv& lllllllllltl“- H-ll P & comw - P < < .h-ll P @ mwmmma
(] -
-— - = S e == | & camm -t .l.u. m
3 = F
LRI JECT T T S o I == | & cewec— = L Rl Y
~ [[] o~
[] " [X] []
Ll B B e TR § »= | & mmmmme ==L . . - - lllln. e] P amm=——
- o~ = w3 w2 =
(=} — 3 O ! ey -~ 2
e | # wemmea e e 1-.. | § cermcnm—aa . i) | emmm—a
- [V o~ i [| 5
o = 1 [- - - - - CI.l.lll.l - - "||~ - - o
- & . e R - O mm e
—_— e s M ke nn..h I\%M
~” ~~ t —-- ~ -
I~ ~ . - =3 \./M ']
% —————— H LA - m

[l L R PP S PP SR Y e Py S D Sy e g e Py e S et Gt St Gl Sl S e o Nk o ek g St et Sl et

Article: SOFTWARE DESIGN
Authort M. Bwiridenko

What is softvare design?

Software design is the organized method of writing and testing cosputer prograss. Prograss writien in an
unorganized fashion tend tc be hard to understand, and difficult to debug. Software design helps the prograsmer to
write Erograls that vill be easier to understand, and get running. Because the programs will be easier to
understand, they will be easier to change.

The first step of designing a progras is to write down, in plain English, a description of what it is you want
your grogran to do. Writing down a program descrition not onl{ pakes clear, in your own aind, vhat the prograr is
all about, it states for you an objective which you can work towards, Also should you decide to change Some aspect
of your prograr you may alter it, easilg, b{ changing the descrition before you actually start writing the pro?ral
Bta‘enen 5. Once you have the prograw objectives clearly in your mind, you may procede to the next steps of Software

esighn :
gThe next stegs of prosran design include writing program 'psuedo-code’ and actual program statements, followed
by testing and deougging of the progras.] _)

Before I get involved further with these steps 1 will discuss the basic structure that all programes have. Al
programs usually c°"§h§570f three parts:

AL

F=Z.Z851N6

QuipUT
Each of these parts don't necessarily follov in the order stated, and may be inter-mixed through-out a progras. A
program vill consist of controlling code, and code which perfore processing operations. The processing code can be
furgher divided into independent functions, or subroutines. Controlling code directs how processing is to proceed,
and thusly deterwines (by means of logical comparisons) when particular subroutines are to perform their task.
Subroutines may be further broken down into controlling code and other processing tasks. These subtasks of a
subroutine may be divided into other parts, and so on. The breaking down of a pro?rah into controiling code, and
independently executable processing code il lustrates the hierarchical structure o prograss, That is programs can be
divided into small parts which are controlled from routines which call those parts. These routines may then be
called from other controlling routines, and so on, for as many levels as are needed. A controlling routine which
calls a subroufine is said to be a level above the subroutine. A routine which calls the controlling routine is said
to be two levels ahove the subroutine, and so on.)

Because programs can be written as subroutines vhich call subroutines, you may write your program in seall
parts rather than all at once. Software design.lethods take advantage of this fact.

There are two basic Software Desi?n techniques that are may applied when you create your program, These are
Top-Down design or prograseing, and Bottom-Up design or Yrograniing

Tog~ﬁown design ifvolves the writing of the controlling code before writing the processing subroutines. This
means that the higher level routines viil be written before the lower level voulines. Botlon-Down design ic the
exact reverse. In Bottow-Down design the lover level routines are written before the higher level controlling
routines. Design and testing of programs may use both of these techniques.)

There are several advantages/dxsadvantages to each method. Top-down code is easier to test and get running
quickly. Bottom-Up written code can be tested only a subroutine at a time, and often requires special controlling
routines (called drivers) for testing gurposes. In the Top-Down aggroach, overall program testing is possible since
dumsy routines may be substituted for lover level routines. In Bottom-Up frograiling you may test the lov level
routines individually, but must wait for the higher level controliing routines to be vwritten before the entire
pro?rai way be tested. If you want to see your program vorking before you have finished all of the programsing you
vill use the Top-Dowr approach. If you vani to spend less time adding and testing subroutines you vill use the
Botton-Up apgroach to programming.

Nov that you have the choice Bottom-Up or Tog—noun designing your grogran code you will want to start writing
our code, A usefull design technique that can help, at this point, is the use of what is known a 'Psuedo-code’,
suedo-code are descriptive English-like statements that regresent prograe code. Psuedo-code is not restricted by

the demands of syntax that norsal progras code is. English-like vording ang lack of syntax restrictiveness make
Psuedo-code easy for the programmer to work with and understand, Psuedo-code, because it represents program code is
also easily translatable 1mto working program code. The followving Is an example of some Psuedo-code

displaz sailing label title)
open the lailing file &1,

Yoop for 1 to 20 vhile reading and printing a wailing labe!l.
close the mailing file &1,

display the end of programe message.

quit tie progr a.

The above Psuedc-code is easily translated info the following Basic prograe.

100 PRINT *NAILING LABELS PROBRAN"

110 DFEN #13"DSK1. MAILLIST*, INPUT, INTERNAL , VARI ABLE 80
120 FOR 1=1 10 25

130 INFUT #1:NAKES, ADDRS, CITYS, FROVS, PCS

140 PRINT NARES: aDDRs: CI1TYs:PROVS:PCS

150 NEXT 1

150 PRINT :"END OF MAILING LIST PROGRAM®

176 END

To summarize and end what 1 have said: _
Software Design techniques methods take advantage of the hierarchical structure of programs, and facilitates
rogrameing by the use of Psuedo-code, and the methods of Top-Down and Bottom-Up programeing and testing. More vill
Ee said on the subject of progras tes{ing and debugging in a future article,

PROGRAMMING HELP FILE:

The purpose of this column is to present, to the user, techniques that will be useful in the writing of
prograss for the T1-99/4¢ home computer. I hope that there is something, in what follows, for everyonme. gf ou can
provide some pr%ralllng insight that might be useful to someone, please, feel free to pass it on to me and I'11 get
it into the next newsletter.

BASIC/EX-BASICt

A gart of BASIC prograsming that many beginners find difficult to understand is the ARRAY. This month's
IBASIC/BASIC help-file discussion will try to explain vhat ARRAYS are all about, and how this very usefull
fundanental data construct can be used.

i ARRAYS are basicly lists of related data values. An ARRAY may be a list of number values or a list of character
strings.
gn example of a number list is a price list for products in a hardware store. If the items in the store are

nunbered from | to 20 ther there wo.id be 20 grices in (our list, and in your prograe you would have to DIMENSION
your array for 20 numbers, Your LIRINSION statement would look like this:

100 DI PRICES(Z0)
The default DIMENSION, in TI X/Basic, is 10. If you meed more array space than the default of 10 itews, you have to
use a DIM statement tc have the Basit interpreter reserve more mewory, You may alsc DIMENSION an array, for less
then 10 elements, to save mewory. An array of one element (DIM ARRAY(1)) is like a simple variable except that it
requires an index,

Back to the price list again. If you numbered your products 1 to 20 you vould be able to find the price of

product numbered 13 as follows:

110 PRINT PRICES(13)
To change a price, say the itew nushered 18, from vhatever it vas before plus a 61 increase, due to infiation, you
vould do the follovin?:

120 PRICES{18)=PRICES(1B)%1.06
As you can Se¢ an nukeric ARRAY differs from an ordinary numeric variable in that it is imsediately folloved by &
set” of parenthises which enclose a number. The parenthises indicate that the variable is a list of nusbers ratler
than the singlé value that a variable is. The nueber within the Earenthises is called the "index' of the array. The
index is used to indicate which element of the array list is to be used. The index may be a numeric variable. Havin
a variable as an index makes your arraz gore versatile to use. You can now assign values to each element of an AREA%
variable with a FOR-NEXT loop. To get he prices for your 20 hardware items you vould do the following:

200 REM READ PRICES INTO THE ARFAY,

210 FOR iNZZz={ TO 20

220 READ T ZESCINCEX)

230 WX INDEX

235 Fe* 26 PRICES FOR THE PRICE LIST

240 DATA 1.29,0.99,5.99,1.44,3.83

25° DATA 1.34.9.98,8.69,1.59,1.75
260 DaTh 20.35,89. % 4557, 31, 13,63.71
270 DATA 13.24,0.59, 77. 21, 345,65, 11.25
28 REM END OF PRICES.

To see the prices in your array you vould also use a loop anc a variable index to print the prices to the
screen. The follovinﬁ loop will grint the Erices ir tabular form
300 REX PKINT PRICES TO THE SCREEN
310 PEINT "ITEM®:TAB(B); "PRICE"
320 FOF INDEX=1 Y0 20
330 PEINT INDEX;TAB(B);PRICESCINIEX)
340 NEXT INDEX
350 PRINT "END OF PRICE LIST®

Character arra{s are also available. An exagpie of a character array is a list, by name, of ail 20 products
that the hardvare store handles. Lets call this array PRODS. You vould use indexes to change, read or print itemc in
this list. A DIMENSION satement would also be needed as there would be 20 items in this list. An exampie of changing

a Rame 15!
400 PRODS(20)="HAMMER"
A revised price list Erogra: follows. It will displag the nase of the items as well as their prices.
500 RE® PRICE LIST WITH PRODUCT NAMES INCLUDED
505 PRINT "ITEM®:TAB(E);"NAKE";TAB(23); "PRICE"
510 FOR IN2CE=1 10 2
520 PRINT IN..X;TAE{G);FRODS CINDEX);TAB(Z3);PRICESCINDEX)
530 NEST INE:
540 PRINT "Ew) OF PRICE LIST®

If the hardvare store decides to espand its product line ang nov has 30 products rather than the previcis 20
itens, ve vould have to chan?e our DIM statements and the loop lieits to reflect the increased memory need. If we
had used a variable for our oog linits then this change vould be simple. Since we did not ve will have to change
the limits for all of the FOR-NEXT loops in our progras{s).

The arrays, PRICES and PRODS$, are exapies of sxngle dimensioned arrays. Arrays way be multi-dimensioned. An
esample of a 2 dimensicnec arraz 15 4 |ultiglicatjon able. A 10510 multiplication table is a 10 by 10 array. The
dimension statement for such a table would look like this:

106 DIX TABLE(10,10)
To %et at a value in this table you must 5ugp1¥ tvo index values, TABLE(S,S) will index the fifth element of the
fifth row, or the value 25, in our table. The TV screen is 32 columrs by 24 rovs long, and can also be regarded as a
tvo-dinsnsional table. Meit:-dimensioned arrays must always have their indexes seperafed b‘ comkas. Arrays of wore -
than tvo dimensions carn be thought of simple ac lists or pages of two-dieensional tables. Multi-dimensictiec
character arrays are also possible.

|0

This ends ay discussion of arrays. I hope that it has shed a bit of light on the subject. Bye till mext time,

ABSERBLY:

This month I will diccuss memory addressing. As this is the heart of what asseably language is all about, I can
only hope to cover a swall part of it in this short space. What I hope to convey 15 the sente of how asseably
language, and the underly:ng machine code function.

The first thing that sust be understood _about hov the compuler operates is that any prograe that it executes
aust operate in a limitec amount of lenorg. The NeRory that a conEuter can vork vith is called its address space.
The 9980 CPU has an address space of 64K gtes. Now, 'Mhat does thal mean?’, you ask. From a %revious discusion you
know that the conguter vorks with 1's and 0's, bits. These bits are grouped into sets of eight, called bytes, anc
pairs of bytes called words. The 9900 has 15 lines with vhich it may address words of |enor{. ach line may have a +
or 0 voltage. Because an address line can have two values and there are 15 of these lines, the 9900 can vork with
%213 Y%rds,agi 2*16 bytes of memory. Now, 2°16 = 65336 bytes, and 2*10 = 1024, or 1K in computer lingo, so 2°16 =

x2*10 or 64K,

So now you knov that the 9900 can address 64K bytes of memory, but vhere are these bytes kept and hov are they
arranged. The 64K address sgace of the 9900 is cpngosed of ROM, and RAM. The bytes of ROM, and RAM are arranged one
after the other in a sequential fashion. Sequential means that hlte 16 follows byte 15 and byte 15 follows byte 14,
and 50 on. Thus each byte of memory can be numbered frou 0 to 65336, The zero'th byle is addressed when all of the
address lines carr¥ zerc voltages. Different combinations of voltages on the address lines will access each of
cosputer’s mesory locations (words).

Hov does the computer knov where a program is in its sesory? The computer, when you turn it on, witl look for a
progran starting at mesory location zerc, This is the first b¥te of the computer’s memory space. The computer will
then follow the instructions that it finds at thal location. In the TI conscle location zerc is in pre-programmed
ROM which contains the corscle’s ogerating syten, Becasue the ogerating systes is at location zero, the operatin?
syster will take over control of the computer. The first thing the operating s¥ste1 will do is to perfors severa
checks to see what accescries are attached, and if & cariridge is ﬂlugged in. The operating systes will then
fransfer control to the apgropriate software, as selected by you the user.

How does a prograe get to be executed by the computer? The 990G is kept going by a clock (a guartz crystal)
and vith a certain nuaber of clock cycles it will fetch an instruction fromw mesory, and execute if. The 9%u¢ vill
then get the next instruction fros memory based on the value of the 99007s address register. The address register is
refered to as the ﬂrograi counter or PL. The PC is set to zero when the power switch 1s turned on so the first
instruction that the computer will get is from memory address zero. As an instruction is executed the PC will change
value. If the instructior currently executing is two bytes long then the value of the PL will be increased by two
sc that it will point to the instruction immediately after the current one. If the instruction was a jump fto another
seory location vhe £C will Yake on the value of the mev mesory lecation, and the 9900 will fetch and execute its
next 1nstruction from the new location in the PC. This is basically hov the computer functions. It ?ets an
instruction, executes it, then gets the next instruction. If for some reason there is no recognizable instruction at
the next PC location the computer will stop or "Lock Up'. A correctly written program will never intentiomally 'lock
up', and should restore the P value so that control goes back to the eratin? syst es.

When Zou load and rur an assesbly prograi the loader prog(an {in ROM) will put the sfart address of your
?rogran into the PC, and the CPU will fetc ion in your progras and execute it. The computer will

her be under the control of your program

Hov do machine instructions make the CPU do thirz:™ The 9300 has 63 machine instructions. Fach instruction is
represented by a different set of bit patterns. The {F_ vas built so that it will do different (predefined)
operations deiending on the bit patterns that are loaded intc its instruction register. The instruction register is
internal to the CPL and is where an instruction is kept while it is being examined and esecuted.

The Acsembler will ailow & programeer to formal instructions usin? eacy to resesher names rather thar the
tedious to use bit patterns that the CPU understands. The asseabler will change your descriptive English-like
ascembly mnekonics into machine readable code,

Where is data kept ir mewory? Data is often kept before the start of a progras, or afier the last instruction
of a progras. If data is mixed with the instructions of a program unpredicatable resulis may occur unless
precautions are taken to 'jusp' around those dafa areas. Dala may alsc be stored vithin a sachine instruction. Types
of data that can be stored vithin an instruction are addressec to a data ares (or areas), an address (or addresses!
to an instruction (or instructions), or even a nukeric data value. The type and number of datz values that nay be
within an instruction de?end on the format of the imstruction.

There eight types of instruction formats. These instruction formats are:

1. Register Direct 2, Register Indirect 3. Register Inderect Autoincrement 4. Memory Direct/®symbolic”
5. Megory Indexed b, Immediate 7. PU-Relative B, CRU/Gingle-bit/Multi-bit
The firet five are refered to as the general addressing modes (GAS), and are the most comeonly used of the eight,

That is all epace will allow this month. I will continue with addressing formats, and how they look im

assegbier mmemonics, next month, Till then, happy programsi g

FORTH:

the first instruc

Rather tham discuss a particular aspect of the Forth language I will Fresent sose of my own Forth pro%ralning
:é@enpt?. Also if the readers have any particular questions aboul the Forth language I wiil try to answer thes in
is columr.

The folloving screens work with the Hi-Resolution ?ra hics mode, of the 991BA video chip, that is accessable
froe TI-Forth. The first screen is a Forth version of the Mini-Memory's 'UINES' desc prograe. The second screen is a
word which draws a circle.

To run these screens you must load the TI-Forth options -TEXT, -GRAPH, and -GRAPHZ. -GRAPH and -GRAPHZ loads
the Forth words that let you access Hi-Res or 'GRAPHICS2' mode, and also has the words to Elot goints and draw lines
in this mode. -TEXT load:z the word that will refurn you froe the Hi-Res mode back to normal 'TEXT' mode. After

l

loadin? in these options you can ther enter 'scré LOAD' for the appropriate screen and it will run automatically,

A

ter the lines demc is running pressing 'REDD' will quit the current drawin
'CLEAR' will quit the demo anc return you to text mode. Any other key will pause

%

ang start another one. Pressing
he demo. The circle deso merely

plots a circle on the screen, waits for a ke¥ press, then returns to text mode. Mo checking is done for a circle

exceeding the edges ofthe screen, With a lit
draver,
n' 1 did

then Forth seews to be a good answer. Have

SOk 32
0 ¢ LINES DEMD PRGM.) : WAIT 20000 0 DD LDOP ; : NEG -1 X
1 0 VARIABLE X0 O VARIABLE YU G VARIABLE X! 0 VARIABLE Vi
2 0 VAr IABLE XDO O VARIABLE YDD 0 VARIAE.D XD1 O VARIAED YD!
3 RANZI¥IIE + R1 4 RND 1+ ; : ND RZ 2 PN IF NEG RI THI R7 MEG
4:SE NDYDO ' YD ' ND DO ' EDI T g : RY 40 - RND 20 + ;
5 : SE1 SDR 256 RY X0 ! 256 RY X! ! {9 RY YO ! 192RY VI !
6 ; KVENDS X0 @ XDO & + .7 0 SWAF 255 > OR IF XDO € NEG xb
7 Trih YO @ YDO € + Lub 0 SWAF 191 > OR IF YDO & NEG YU !
B THIN X1 @ XDI @ + DUP OC SWAF 255 > OR IF XDI € NEG XD! !
9 THEK Y1 @ YDL & + DUF 0+ SwAP 191 > OR IF YD1 & NEG YD !
10 THEN X0 @ XDO @ + XO ! YO € YOO @ + YO ! X1 € XDI €+ X1 !

11 YieYpr e+ vy

20 BT ONE XO B YO B XD B YL & LINE ; @ HCLR BI92 E144 0 VFILL
: [Z_INES 100 0 DO MVENDS DTLINE key -DUF IF 6 = If LEAVE ELbE
14 PAuSt IF TEXT ABORT THERN Taih THEN LODP 7KEY 0= IF WAIT THEN ;
15 : LINES GRAPHICS2 BEGIN SET DO_INES WAIT HCLR AGAIN ; LINES

SCR $27

0 (CIRCLE DRAW PROGRAM)

1 0 VARIABLE & 0 VARIABLE B 0 VARIABLE RADIUS O VARIABLE PH
2 0 VARIABLE X1 0 VARTABLE Y! O VARIABLE PY (VARIABLE PY

30 INITD 160 B0 S0 O O M1 ¢ PH * DUP X1 ' RADIUS ' B : & !
4 : CIRCLE BEGIN X1 @ Y1 &< 0= WILE

5 PHR&YHL RDUP++ 1+ PY 'PY® XI @ DUP + -1+ PY!

6 AGYie+BeY 8+D0T ARYI 8 +BEIJIE+DOT

7 A& A-BEYIE+OC AEYI @-BEXI @+

B AeXie+pevie-DbiT AeYie+BeXle-D07

9 Aexie-BeYVie-DOT Ae€vYIe@-DBeEXte-DT

10 PYE&PH! Yl €1+V]

11 PY €ABS PY @ ABS (IF PX @ PH ' X1 &1 - XI ! THEN REPEAT ;
{2 : CTEST GRAPHICSZ INITD CIRCLE KEY DROP TEXT ;

2

14 CIEST

15

CURIOSITIES AND PASTIMES
This month's BRAIN TWISTER: FOOTBALL RESULTS

It ¥ou're looking for a quick and dirt¥ vay to access and learn about the TI's Hi-Res graphics capabilities
u

le nodification the 'CIRCLE" word could become a general purpose circle

917 Je¥ ‘vavayD .
VADLINVN T93dINNI

Near the close of the football season a correspondent informed me that when he was returning from Elasgow after
the international match between Scotland and England the following table caught his eye in a newspaper:

Bzals

Playet Wor Lost Drawn For Against Points
Scotland.... 3 3 ¢ ¢ 17 1T 1 &
England . K1 i i 112 3 1 3
Wai€S vuerns 3 1 1 113 3 1 2
Ireland ... 3 ¢ 3 6 11 & 1 0

As he knew, of course, that Scotland had beaten England by 3--0, it struck hie that it wight be possible to
find the scores in the ofher five matches from the table. In this he succeeded. Can you discover fros it how many

geals were won, drawn, or loct by each side in every match?

For Sale:

HAM -teletype. 110 BAUD. DATA 100, -8B level. $20.00,
Phone: Benny Crooks. Home: B85-144 or Work: 895-5791.

'§°0°d

S1L1

66 9IJINNTH

431103 ¥311375H3N

dnoNs Sx¥3sn 4/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

