

EDITORIAL COMMENTS:

. Hello again! This month features a reviev of a progral I obtained several veeks back, during a visit vith Mark
Gibson of Grand Forks. A hearty hello to all of the members of MAD HUG! I knov hov much you like to hear fros us.
Also in this newsletter is a continuation of .K article on softvare design called Testing and Debugging Software.
Prog-ammers Helpfile continues the debugging theme vith a brief exglanatlon of hov to use the assembly language
DEBUE proarap, vhile in the XBasic section there is a discussion about useing BREAK, TRACE, and ON ERROR sgatelents.
Forth enthusiasts can enjoy my attempt at a hi-resolution gra?hics dump ﬁrogral. Hints and Tips has Basic to C
conversions, and a X/Basic routine to shuffle cards. Thats all for mow. Until next month, Happy Programming!

If you have a review, user hints, or helpful progralling tips, get them to me for the next nevsletter. The
deadline that I have set for submissions is one week before the date of the group’s meeting. Thanks go to all who
have submitted items for this issue of our newsletter.

MISCELLANIA:

Niscellaneous news and reminders,

One more month till we break for sumaer,

Paul continues to bring with hin a regular monthly disk of grograls. The Clubline 99s I expected several weeks
ago have not arrived as of the typing of this, I don't know why he¥ are being delayed.

The IBM Qume hal f-height drives ordered through Paul Degner, after a bit of a scrounge for a working power
supplﬁ able to supply enough current for the thirsty thin?s, vork just fine,

Ron Bryson, an entergyislng gentleman, comes around to our monthly |eetings vith his cartload of computer
supplies. He of%grs conpetitive prices on a variety of floppy diskettes, diskefte holders and other items. We hope
to get a price list from Ron for the next newsletter. For more information on prices Ron will be available during
our meeting, or you can call him at 269-0675.

READER RESPONSE:
From the May 198G Compute' comes the following notice:

TI TIPS BOOK

In an effort to provide easily accessed documentation to TI users, I have put together a TI tips booklet that
consists of 99 tips for the TI-99/4A. These are a compilation of suggestions given in our user group mewsletter,
They include PEEKs, POKEs, listings, hints, and so on. Also included is a complete disk drive |e|0r¥ aap, summary of
Extended BASIC commands, and a sortan ﬂrogral wriften in BASIC and machine language. One such tip that may interest

our readers allovs thew to disable FUTN ="(QUIT) in Extended BASIC. To do this enfer this statement
ALL INIT :: CALL LDAD(-3180b, 16)

To enable it again, txge CALL LOAD(-31806,0). Another POKE allows you to grevent Extended BASIC programs froa
bein% listed. Ty?e CALL LOAD(-31931,128) to dc this. To unﬁroteit Extended BASIC prograss, emter CALL
LOAD{-31931,0). The TI tips booklet is available through the Central lova 99/4A Users Group for $4 (the cost of
naterials, printing, and postage) at the following address:

Central [ova 99/4A Users Group
Box 3043
Des Moines, 1A 50316

John Hamilton

REVIEWS:

‘This coluan presents reviews of materials that may be of interest to the user. The vievs expressed are the
opinions of the reviewers, exclusively.

SOFTWARE:

-

XB-Detective
Revieved by: M. Swiridenko

YB-Detective is a utility for YBasic prrogram development, written by Art Gibson and Bill Crowell. Since this
program consists of a machine code object file the 32K Mem-exp and a disk drive is required. A printer is
recoamended, also.

The XB-Detective package comes in a brown envelope with a brief description of the features of the enclosed
software. Also on the cover of the envelope is an intriguing dot matrix printer picture of Sherlock Holmes examining
?lfIOppz.disftthrough a magnifying glass. Inside the envelope one finds a single page of instructions and a single

oppy diskette,)

{oading and using the software is extremely easy and exYlain the lack of volumes of instructions. The prograa
vill auto-load if you start from the main screen and then select XBasic, or can be loaded from XBasic vith a single
CALL LDAD. When the program loads an impressive title screen (in my opinion) is displayed and a cartoon floppy disk,
on vheels, scoots across the screen. This is an entertaining distraction.

XB-Detective is different from mest XBasic utilit¥ prograas since it loads into the lov-aemory area of the
aeaory expansion, and vill not interfere with the functioning of an Extended Basic prograp. Other program utilities
I have seen must vork vith merge, or text files and cannot be loaded along vith your Xbasic program .

The XB-Detective utility cam be called up at any time vith a simple "FCIN 7' key press. Once you do this {ou
are presented vith a menu of options to choose from.” The Menu is easy enough to follow and almost sakes using the
YB-Detective self-explanatory. To really understand vhat each of the five options can do you have to try thea a fev
times. Retgrning to your XBasic program is just as easy and simply a matter of pressing Option & of the sain menu.

The five utility options that you may select are

1> LIST VARIABLES

2> FINL VARIAB.ZS

3> FIND RESZFYED WORDS

4> DELETE LINES
3> STRING 3zARCH

Option 1 will list for you all of the variables that are in gour XBasic program. Option 2 will find and list
all line numbers of lines containing a specific variable, Option 3 will find and list all lines in which a_specified
reserved word occurs, Reserved words are keywords such a FOR, GOSUB, REM, and so on, that are used in the Extended
Basic language. Oﬁtion 4 vill delete lines vithin your program. (4 1ockup will occur if you enter XB-Detective while
editting a line then delete the line ¥ou vere on.) Option O will find an¥ specified occurance of a string in your
program. The string may be within quotes, in a data statement, or part of a CALL statement. With each of the options
you have the choice of grxntin$ the information found or continuing. '

Options 1, 2, and 3 are often combined, in other utilit grograns, and are seen as a single Cross-reference
listing. I suppose the reason this wasn't done with this utility is so that the user may list selected inforeation
to the screen, as needed. Segerating these features in this vay helps to make XB-Detective very versatile. A
conﬁlete Cross-reference feature would; however, be nice since it is sometimes easier to mull over a single listing
vith all the reguired information than it is to scan several pages of selected Yrintout.)

Option 4, delete lines, is an interesting feature but seems a bit out of place. What I would have liked to have
seen vas an OEthH to McvZ, COPY and DELETE lines. This feature would be very welcome since these editing functions
are rather avkward to do vith the XBasic editor, and editing keys.

Option 3, STRING SEARCH, is usefull, and provides a function that is a combination of an editor and a
Cross-reference function. Like an editor you nay search for an occurance of some character string, like a
cross-reference utility it will tell you the lines in which the strinE vas found,

Gre feature I found lacking was an option to list all unique CALL strings. This option would show at a glance
the 'NAMZS' of all subroutines referenced in CALL statements. As it is you must search for a specific CALL name, or
list the numbers of all lines containing SUB statements.

All in all XB-Detective performs well, and is easy to use. XB-Detective will be quite usefull to XBasic
programmers needing a 'clean-and-fast’ interactive Cross-reference utility.

HELPFUL HINTS AND TIPS!
(FOR THE USERS, BY THE USERS!)
This coluan features tips brought to my attention from members of this group, other user group's newsletters,
and various other sources. HRRNING: These hints and tips are to be used at your own risk!

The folloving BASIC to C conversions were gleaned from the May 1986 issue of Coneute!)
Froe 2 heginner's viewpoint, cne of the reascuring aspects of the © language is that it has samy things in
common vith BASIC. You can write a large part of your L program using statements that are just like or vgr{ similar
to Basic statements. Of course, they have no line numbers, are written vith lovercase letters, and end with a
semi-colon, But they use the same keywords as BASIC statements, and gerforl the same or nearly the same operations.
These are the C language statements that are equivalent to Basic statements:
1> Assxgnﬁent statement
2 TF statement
3> 1 3n loop
4> G0T0 statenent . .
An assigneent statement in Basic looks like this: 100 ITEM=4875.
The same stalement in C would look like this: item=4875;.)
Basic does not care wether the constant assigned to a numeric variable is an integer value or a decimal value, C
does. The uag { is told what kind of values a earticular variable may accept is by a declarator stateaent,
For example the declarator statement for 'ites’ would look like this: float item;.
Float means that 'item' may be assigned decimal values. A variable |a¥ also be specified as being of only ’integer!
t{pe.,Hhen an integer value is assigned to a 'float’ or floating point variable 1t is converted and saved as a
f oatlng point value. A float value‘assigned to an 'integer’ variable vill be converted to an integer value,
fonstants are also recognized as being o tyge float or of type integer. stng an integer constant were a float
constant is required may give incorrect results since integer operations may be gerforled. The declarator statement
also tells the C compiler"to reserve a specific amount of memory for the designated varaible. Other examples of
assignment statements are:

BASIC VERSION C VERSION
200 AVE = (A+B+()/3 ave = (a + b + ¢)/3.0; (float ave,a,b,c;)
250 SIDE = SIN(X) % HYP side = sin{x) 3 hyp;

The C 'if’ statement never needs a "then". It uses parenthises around the relational or logical expresion. You
ndy also leave off the else clause if you need to.
Here are some eXAITIQE
100 IF YEAR(1984 THEN A=28 ELSE A=30 200 IF MONTH=2 THEN N=29
In C this would be:
if (gear<1986) if (month=2)
a=28; n=29;
else
a=30;
Unlike Basic you li{ not branch to a sgecific Tike number from within an 'if' statement. You may; hovever, have
lultigle statements or 'blocks' of statements. These blocks are enclosed within braces.
%xasptﬁ; 400 IF YEAR)1983 THEN RATE=RATE+.01::BASE=BASE-500: : SURCHARGE=SURCHARGE+, 02
n is is
if (year»1983) {
ratesrate+,01;
base=base-300;

3

surcharge=surcharge+,02;

C's 'for' loop is much more versatile than BASIC's FOR-NEXT loop. The C version has no NEXT statement since the
C loop ends with a ';' or a '}', Statement blocks are also allowed in the "for' statement. The ;' vill end a single
statement 'for' loop. The expressions within the Yarenthises ismediately following the 'for' specify the starting
value terlxnating condition, and the stepping value of the loop.

An example: £00 50,000 = 1 sq = odd = 1

610 FOF R=1 T0 15 for (r=1; r{=13; r=r+l) {
26 PRINT Sp,R printf("1¢ ' Y0\n*,sq,1);

637 0OCE=0DD+2 odd=odd+2;

640 5E=50+0D0 sg=sq+odd;

650 NEXT R }

A statesent that 1s different from XBasic, but allows you to perform loops is the 'while' statement.
It looks like this: while (n{=21) { 100 IF N)21 THEN 200

scanf(*1d",n}; 110 INPUT N
n=n+3; 120 N=N+3
} 13¢ 8070 100

200 REM loop jumps to here.

BASIC's 60TO statement allows you to write unmanagable prograns, yet it is unavoidable in many BASIC programs.
C's 'goto' statement is seldom required. You should avoid using the 'goto’ statement to keep your programs
understandable.
Here is an exangle: 400 60TO 450
in C the equivalent is: goto there;.

Line nusbers are not possible 1n C but labels are. 'there’ is am example of a label. You must label the
statement you vish to go to in a 'goto’ statesent,
A labeled statement looks like this: there:year=¥ear+1;/x you may labe] any statement.X/ The remark between the
/3" and the '3/ is a coament and the '/%’ and 'X/' are comment delimiters. The comment delimiters correspond to a
REM statement in BASIC.

For more information about the C language you may consult one of the many books available on the subject.

EXTENDED BASIC

This routine vas discovered while writing a Cribbage game. Its function is to "shuffle' a "deck of 52 cards'.
The deck of cards is represented by an arra{ of the numbers 1-52,

There are many ways of aixing a collection of numbers. The principle of this grogral is to svap eleaents within
the array until a desired mix is achieved. The swap 15 done by taking a randonl¥ chosen element from the upper part
of the card arrai and exchanginE it with a selected element of the lower part of the arra¥. Since the exchange of
elements vithin the array has the effect of |ixin? two elements at the same time only half of the array need be
aixed in order to mix the entire array. This results in rather quick mix of the cards. Here is the program

100 DIM BECK32)

{10 REM IhITALIZE THE CARD DECK.

120 FOR 1=1 TD &2

130 DECK(I)=]

140 NEXT]

150 50=.'3 1000 ! SHUFFLE THE DECK.

160 #C% REST OF PROGRAM.

170 =N2

1000 F=™ SHUFFLE THE DECK.

1010 =g =1 10 26

1020 RANCINIZE

1030 ZARZ=I+INT (RAD¥(52-1)+1)

1040 PEM E1{HANGE SELECTED CARDS.

1050 “ee Iz IK(])

106G Szon (1)=DECK(CARD)

1070 £ <(CARD) =TEMP

1080 NEXT]

1090 RETURN

CURIOSITIES AND PASTIMES
This colusn features a monthly BRAIN TWISTER for your intellectual entertainment,

The following is called "Monkey and the Pulley®. The source of this puzzle states that "it is quite easy if you
have a pretty clear head.". I hope 1t won't keep you up late into the nite, as this one is tough!

A rope is passed over a pulleg. It has a veight at one end and a monkey at the other. There is the same length
of rope on either side and equillibrium is maintained. The rope weighs four ounces Eer foot. The age of the monkey
and the age of the monkey's mother toeether total four years. The velght of the monkey is as lanz pounds as the
sonkey’s mother is years old. The mon e¥'s nother is tvice as old as {he monkey vas when the mon e"s nother vas
half as old as the monkey vill be vhen the monkey's mother was three times as old as the monkey. The vexght of the
rope and the weight at the end was half as much again as the difference in weight between the weight of the weight
and the weight and the veight of the moakey.

Now, what vas the length of the rope?

Here is the solution to last month's puzzle. Football Results:

Scotland vs England 3 -0
Scotland vs Whales 2 -1
Scotland vs Ireland 2--0
Hhales s lrelnad 2 — 4

4

Article: DEBUGGING and TESTING SOFTWARE
Author: M. Swiridenke

To complete last months article about software design I will continue with a discusion of the procedure of
testing and debugging of software, Testing is done to show that a program will operate correctly. Testing to find
out why a progral per forms incorrectly and the subsequent correction of the error is the process commonly knov as
debugging. Debugging is a tera that originated in the days of the vacuum tube conﬂuter. Hanz computer fallures, in
those days, were caused by insects bogging down the computer's internal relays. Thus came the phrase, 'You have a
Thug’ in your computer?!’, .

Like designing software debugging of software can be done in a Top-down or Bottom-up manner. In top-down
testing high-level controlling programs are tested using dummy subprogyals to isolate the source of errors, As
errors in Ehe higher-level subroutines are eliminated lower-level routines will be introduced and further testing
vill be done. In Bottom-up testing, testing begins by insuring that each of the many lov-level subroutines of a
program function correctly. The subroutines at the lowest levels will first be tested individually. As errors are
¢lininated higher-level controllin? subroutines are included and testing continues. The approach most often taken is
a combination of the two methods. Tested low-level routines are added as high-level routines are corrected.
Dehugﬂing of a progras ﬁrocedes from the simple task of eliminating syntax errors to the more complex task of
ensuring that the logic of the program is correct. SYntax errors are the result of tinng nistakes, or the use of
incorrect progras statements. Syntax errors are usually found out before a pragran vill run. Logic errors, on th
other hand, are the result of incorrect data operations or flow of progras control, and occur dur@n? the execution

our progras. Incorrect assignment of values, wrong signs, and misuse of conditional operations will all result in
ogic errors.

Testing for logic errors involved the use of break ﬁoints, penory and/or variable dumps, inserting dummy
routines, and line number or execution tracing. All of these techniques are used to pineoxnt the faulty logxc within
the grogral. Once the logic is pinpointed it can be corrected. Once the logic is corrected the methods used to
locate the error must be deleted from the program, othervise the progran nay be hindered in its execution.

Break points, print statements, or even audio/visual effects, vhen inserted into several ﬂoxnts of a program,
can be used to indicate a progral’s flow of control., For instance if ¥ou set indicators throughout your program and
execute your program lou nay tell by the sequence of the afpearance of the indicators exactly how your progras is
perforaing. An indicator which does not aYpear or appears too many times tells you that there is solethlna wrong
with your program. By knowing where you f aced the particular indicator, and how the program was suposssed to
perform, you can get some idea of where the error is located,

Tracxn? can also be used to reveal the flov of control of ¥our program. Tracing usuallY results in a messy
display of line numbers. The indicators that I have already mentioned are often a more subtle way of do1ng the same
thing. The amount of tracing output necessary can be reduced by using subtle indicators to locate the part of the
program vhere the suspected error may be, then using a trace function to shov local flow of execution.

Memory and/or variable printouts will further narrov down the possible location of the error. Before and after
printoutsp of variable and/or memory contents, at selected points will helg to reveal what hapgens within your
prosrae, Chomses ip varizhles that choulde't change or variablec that don't change vhen they should will reveal
problems with assignments, operations, and conditionals.

In conclusion:
Testing and Debugging both gla¥ an important part in the development of computer software. A good approach to these
tasks will reduce the amount of frustration and time wasted spent trying to correct errors in a program.

PROGRAMMING HELP FILE:

The ?urpose of this column is to present, to the user, techniques and information that will be useful in the
vriting of programs for the TI-99/4A home computer.

BASIC/EX-BASIC:

Frequently vhen vriting programs a ﬁrograller aust make certain his vork performs correctly. Extended Basic has
several builtin statements that aid in the process of correcting Erogralling errors, and verifying the correct
operation of a program. The statemerts I will discuss here are BREAK, TRACE, ON ERRbR, and there related statements,
CONTINUE, UNBREAK, UNTRACE, CALL EPF, ON BREAK, and ON WARNING. For further information on these or other X/BASIC
stateaents consull the agpropriate manual.

To follow the operation of your program you will use the TRACE statement. TRACEing the execution of your
grogran will allov you to see which lines are being interpreted at any particular moment. TRACE, vhen executed

efore your progral or from within a program will furn on a feature vhich list the line nusber of a statement prior
to its interpretation. This is a software feature of the Extended Basic interpreter. UNTRACE will simply turn off
the TRACE feature. As zou nay expect ‘:a are able to trace the execution of specific seglents of {our progras with
carEEELE placement of the TRACE and UNTFACE statement. TRACEing is usefull when you don't really know when branching
or BCS Es are occuring.

There are times auring program execution when you want to make sure the values of variables are correct before
allowing your frogran to execute further. In this case you would use a BREAN statement. A BREAK statement will
temporarily halt execution of your program from within. To set a break-point within your program place a BREAK
sta e:gnt at the desired location. When the BREAK statement is encountered your program be interrupted and will stop
executing,

Dncg your program has halted, you are placed in immediate mode and may view variable contents by PRINTing them,
All of the variables within your progral are available to you with the exceptions of defined characters and sprites.
These are cleared and the standard character set is loaded when a BREAK occurs. If you don't change your progras,

SuTgﬁﬁElet it resume from the point it stopped by entering the CCNTINUE statement. CON is the ab

A function key that has the same effect as BREAK statement but operates externally to your program is the FCTN
4 or CLEAR key. As with a BREAK statement you lal list variables and resume with a CON statement.

Another method of settting BREAK points within your progral is to specify line numbers, seperated bY commas, in
a BREAK statement. When the line(s) specified are encountered a BREAK will occur. UNBREAK will remove all specified
BREAK points when, or specific BREAK points when line numbers are specified. ON BREAK is used to control external

reviated form of

c

BREAKinQ of your program. Using ON BREAK NEXT will cause the CLEAR key to be i?nored. Using ON BREAK STOP will
resume .ne receognition of the external BREAK key. ON WARNING allows you speci Y actions to be taken in situations
vere WARNING messages are given, ON WARNING NEXT will let the roEran i?nore all varning situations. ON WARNING ST0P
ul;lthalt your program when a WARNING situation occurs. ON WARNING PRINT allows the standard WARNINE messages to
print,

ON ERROR is used to trap errors that may hagpen in a progras. This statesent is useful when the normal XBasic
error messages don't tell you too such about what is going on. By sgecifying a line nuaber you may branch to your
own special error handlln? routine. The line number you specify must begin a series of statements endinE with a
RETURN statement. A usefull statement within your error handling routine is the CALL ERR statement. CALL ERR is a
special subroutine that will return the error romcer ard line number of the current error state of your program. To
resume noraal error handling you would use ON EFFC2 E7I7. The next error encountered will then teralnate execution
of your program.

) B{ selective Rlacelent of the statements discussed one can narrow down a search for programaing errors, and
'Kill them Bugs DEAD!'. DE-bug! Boss! De-bug!

ASSEMBLY:

The follouin9 discussion is based upon portions of chaEter 23 of the E/A manual, and chapter 10 of Ira
EﬁCorléck;s book "Learning TI 99/4A Home Computer Asseably Language Programming’. For additional information consult
ose texts.

Debugging an assewbly language program can be a long process if you do it by frial and error. A software
debugger u ilit{ can speed up the process of finding progras errors quite significantly. One ssuch debugger progras
is provided with the Editor/Assesbier package. It is the DEBUE program of the SIDE A disk. This discussion will be a
brief explanation of how to load and use this grogral.

The DEBUE program allows you to control the execution, and to examine/alter memory, and register contents of
your apglication pro?ral. Execution is controlled by setting the contents of the Workspace, PC, and status registers
and by the setting of program break-points. Break points are the asseebly equivalent of X/Basii's BREAK statement.
To use the Debnger you will need an assenbl{ source listing of your pro?ral. A source listing will give you a
reference to alc -sses were your program imstructions and data area are located.

To load the DEBUG program use option 3 of the E/A module and load in your object program, then load in the
DEBUG grogran by entering D5Kn.DEBUG, where n is the drive nusbér. Your program must not auto-start or you will
never be able to load the Debugger. After both prograns have been loaded gress return and enter the program name
'DEBUE'. You wil get the Debugger message and a '." prompt. All commands to the Debugger are single character and
vill be entered from the feriod proapt.

"y {Qe gaalﬁnds that will get you started are the M, R, B, E, W, and B commands., Other commands are '>', '.!,
LI Sl * .

M folloved b{ 3 hex address vill display the contents of the word of memory at the given location. After the
contents are displayed you may change the word b{ entering a hex value, Pressing the space bar will display the next
vord of memory. Pressing a carriage return will take ¥ou ack to the period prompt.

R will dlsglay the contents of the 85, PC, and STATUS registers one at a time. As each register 15 displayed
you may alter iltss contents by entering a hex value, Pressing a space bar will display the next register, A carriage
return will return you to the period prompt. By setting the contents of these CPU registers you can set the
execution conditions for the exeution of your program, and the subse?uent control by the debug progran.

B followed by a hex address, allows you to set a breakgoint. B followed by a carriage return will list all
break points that have been set. You may set from 11 to 16 breakpoints. Entering a '-' will clear all breakpoints,
Ente{in? a '-" after a hex address will clear a sYecific breakpoint. After you set the CPU registers and execute Lhe
application program an{ breakpoint encountered will return you to the Debug program. A B and the contents of the CPU
registers will be displayed, eg.- B 2000 AG10 3000, followed by the period pronﬁt. From the prompt ¥ou nay then
inspect/alter registers, and memory locations. As Ereakpoints are encountered they are removed and thus must be
reset i1f they are needed again i.e.~ in a loop, Execution may be resumed from the breakpoint provided that the CPU
registers aren't altered. . .

To execute your progras from the Debugger ¥ou aust set the contents of the CPU registers to valid values prior
to entering a £ command, Your program will start executing from the location in the PC register and will continue
until a breakpoint, lockup, or end of the rrogral occurs. .

Entering a W at the geriod prompt followed by a carriage return will diSPIA{ the contents of all of the vork1n3
registers. Entering a nuaber before pressing the return key and the contents of the specified reaister are displaye
for inspection, To change the contents of the register enter a hex value, Enter a sgace to get the contents of the
next register, a '-' to ﬁet the contents of the previous register, or a carriage return to get the period prongt.

The final comnand that you vill need to know is @ the quit command. Entering a 8 command wvill quit the debugger

rogran.

pres Other commands that are usefull are the '), '.' and 'X,Y,I'. "7 and '." are convert to decimal and convert
to hex, respectively. "> folloved by a hex value vill return'the decimal conversion. '.' folloved by a decimal
value will return the hex conversion. X, Y, 1, are bias variables. These variable can be set to a specific hex value
and used with relative addresses. Ex.- k=a800" then 10X will be interpreted as AOI0 by the debug?er.

This concludes a somewhat brief description of the use of the E/A DEBUB utility. On a findl note there are
other more ssophisticated debug utilities around but these programs occupy much more memory than T1's DERUS.
Debuggin? an assembly program need not be a trial and error process and can be made much easier with evan a small
utility like DEBUE.

FORTH:

The folloving is a TI-Forth GRAPHICS? mode screen dump progras. To use this screen dung load -PRINT and the
screen listed below, and insert the word HDUMP into your graphics word at the approgrlate place. The speed of this
dumg is rather slow (two to five minutes ger dump) and can be improved by writing it in Forth Assesbly language. !
will leave that as an exercise for the villing.

ourn Png Jud

et
aall cusrdl

By PAUL DESMNTER

It was nice to contribute a little more than I usually do to last aonth’s newsletter. I want to thank Mike for giving ze
the opportunity to do so. . o

I wrote a review last month on Clint Pulley’s c99 laro.age in attBept to hl%hlight what vou can or cannat do with his
subset version of C and I think I had overstressed the word Cf%4T too much. Since this review, Clint has sent out version
2.8 of ©99 and has added more CANs than CANNDTS such as reiative file access, floating point operations, underscore, new
assignment ugerators, and new statesent keywords. This version will be available in the May sonthly disk collection.

In the last newsletter, I published a c99 prograe that 1 wrote up to convince myself that I am still a programmer rather
than a software collector. FPrograamers, no smatter how good they na¥ be, do make aistakes and I’a no exception! After having
ay initial version running, I decided to clean it up and in doing so [added a semicolon to where it shouldn’t be as in the
line whilel 1 ¢ leninbuf)j so please correct it if you intend to use this program. If it was left as is, it could lack up
your computer. Thanks to ay sister’s cat, Daisy, for pointing out the error! _

I finally received the shigment of disk drives from B.6. Micro last month. The brand shipped was 142 LX Quaetraks. 5o
far there isn’t any apparent bugs though the 1425 draw far too many watts to have thea connected to a single power supply.
Steve labarylo was kind enough to fix ay problem. If you are thinking of buying Quaetraks and have a FEB, talk to Steve on
how to beef up your power suppl{! By the way, I'am powering ay Panasonic 1/2 height with a Y2.2 console power supply, available
at J&J. 1t seems a very reliable and better alternative to the other power supplies they sell.

Bripfs:

#hile scanning Mike's stockpile of medium range newsletters for documentation on how to build Super Carte I +Iira 3
artifle on another way to use your load interrupt switch as appeared in Rick Lumsden’s February BS issue of R/D CLMFLY!
newsietter.

An article by Jon Bannister of 979 users grUUﬂ in Toronto described a modification to the bus lines found in
the speech synthesizer to utilize tby grounding) the LOAD interrupt line on the 44 pin I/0. This is similar to Bill
Gronos’ GROM BUSTER with the switch debounce through hardware—-rather than software. This causes the computer te do
3 BLWP to vector FFFC where FFFC contains the Workspace Pointer and FFFE the Program Counter. 5o at any time in
the esecution of a program {like when it inevitzhly locke up) I oroce the hutton and hranch to the dabugper, Jon's
device is pretty easy to msake. You need a momentary contact, normally open bush button switch {Radio Shack
8275-1547), a .1 #F bygass capacitor (#272-135) and a 2.2K resistor (#271-13251. OSolder the capacitor across the
switch keeging the leads as short as possible. Solder one lead of the resistor to one side of the switch and the
other lead to a 7° insulated wire. Connect the other end of the wire to LOAD pin on the speech synthesizer. This
is pin 13 on the [/0 buss, Luuking at the edge of the card at the upper right of the console, pin 13 is the seventh
ﬁin froa the left on the bottos. Flip the bpard upside down so that you cannot see any cosponents. and place the
lack female connector on the right side. Pin 13 LOAD is then seventh from the bottoa.

A second 7 inch insulated wire should be soldered to the other side of the switch and then to Ground - leads I
12 13 and 14 from the bottom (with the black connector on the right). You can easily recognize them because they
are ail soldered tooether.

All that remains is to mount the switch inside the speech synthesizer under the hood. You'll need 3/16th inch
hole for the Radio Shack switch.

Now, 1f vou’ve made it this far, put in your E/A module, connect the aodified Speech Synthesizer. Flare the
E/A disk with DEBUG on it in drive 41 and run the following progras:

188 CALL INIT
118 CALL L.=r (8278,
128 CALL LI3I "D5K!.DEBUG™)

138 CALL LﬂﬁD(-4li312224.112,19@)
148 CALL L1 B228,158,4

138 PRINT -=3Z55 @ THE ENTER®

168 CALL LINK{"DEBUE")

176 END

96, 8)

This will load the DEBUG wutility. MNow enter BYE to leave basic and select an option of Editor Asseabler -
e,4.. Load and Run. Whep you press the LOAD button on your speech synthesizer you should be in the debugger. To
leave the debugger, use FCTN BUIT.

Tlers on Timeline say Unisource ceased operation, One less supplier of TI wares!

The April 2&th TI Fest in Ottawa has come and gone. It supposedly was a smashing success with around three hundred and
titty people attending, Many distributers from North America came to show their wares. Myarc and Horizon Computers brought
their wire wrapped 'Noah’ computer and their (92K RAMdisk. More details as they come in!

 Millers Braphits summer catalog are mentioned several interesting products. There is a book called The Orphan Chronicles
written by a good friend, Ron Albright. The history and future of our computer is suppozesiv conzined within. #B6@7 $9.95.
A spart disassembler called DISKASSEMBLER and is said to disasseable DIS/FIX B8 or "5 L7GM INAZZ Files right off the disk!
BUTET $19.95. A game called Night Mission which seeas to me a lame duck. #G18D (or #614U for cassette usersi $19.95. If
interested see Paul Degner for more information.

That’s all for this month. Sorry for shortness but I’ve been playing with £99 to much.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

