T =ISK

= F FIXER

Unlocks the secrets of the disk and lets
you access hidden or “lost”’ information.

Includes
HIDDEN POWERS

by Bill Gronos

2
:

r

|||||||I|
il

OPERATING INSTRUCTIONS

The DISK FIXER is one of the most powerful utilities available for the Tl-
99/4A home computer. With DISK FIXER, you can access Floppy disks
by sector rather than by FILE NAME. You can now display or print the

actual “binary” contents of any sector of a floppy with a single
command.

Other features of the DISK FIXER allow you to change any byte on any
sector, or move data from one sector to another.

This program is ideal for fixing "blown directories,” improperly closed
files, and recovering data from diskettes otherwise inaccessable.

*** WARNING * **

THIS PROGRAM HAS THE CAPABILITY OF DESTROYING DATA ON
YOUR DISKETTE IF IMPROPERLY USED.

Page 2

OPERATING INSTRUCTIONS

1. Insert cartridge into “Game Port” on the console then select “DISK
FIXER” from main menu screen.

2. The Disk Fixer will load and begin execution and display the
banner:

**DISKFIXERVER2.0*"*
(C) Copyright 1983 By
NAVARONE INDUSTRIES

SELECT OPTION

R - READ
P - PRINT
W - WRITE

F - FIND STRING

A - ALTER DATA

D - DISPLAY BUFFER
C - CURRENT SECTOR
M - INSPECT RAM

H - HELP

Q - QUIT

3. Selectthe option by entering the appropriate command, and press
“enter.” It you enter the command incorrectly, the message, INVALID
COMMAND will be displayed and you may then re-enter the command.

READ SECTOR

To “read” a sector of data, enter the following command

R sss,d
where: sss = The actual sector address you wish to read. If you do not
enter this parameter, the program will use the last sector address

entered plus one. This can be used to read sequentially through the
diskette.

d = The disk drive device code. If you omit this parameter,
the program will use the previously entered device code.

Page 3

WRITE SECTOR

To “WRITE” a sector of data, enter the following command. This com-
mand should be used with caution as it will write the buffer contents
into the sector defined. if no sector addressis entered, the data will be
written into the “CURRENT" sector location.

CAUTION: Do not use the “W" option immediately following
a "P” rint function without specifying the entire syntax. The current
sector pointer is always incremented after a print function and the use
of a “W” without a sector address will cause the current buffer to be
written on the next sector. So don't do it!

W sss,d

Where: sss = The actual sector address you wish to read. if you do not
enter this parameter, the program will use the last sector address
entered.

d = The disk drive device code. If you omit this parameter,
the program will use the previously entered device code.

ALTER DATA

This command is used to alter or "change’ the data in the buffer. The
Disk fixer reads data from the diskette into an internal memory buffer.
This buffer can be written back out to the same sector it was read from
by just entering a W command. Use the ALTER command to change
the contents of the buffer before writing it back.

A 0000

Where: 0000 = The address of the data to alter. This is a relative
address, and as displayed by the D command.

After changing the contents of the buffer, you can use the D command
to display the butffer on the screen. The PRINT command cannot be
used because it performs a read from the diskette which will overlay
any change you have just made.

Page 4

DISPLAY BUFFER

This command will display the current memory buffer on the screen.
No reading or writing will occur with the use of the command.

D
INSPECT/CHANGE

This command is identical to the M command in the TI-DEBUGGER.
This option allows you to inspect or change any RAM location in the
system.

M ocoo

where: 0oo00 = The address of the data to inspect. This must be an
ABSOLUTE address. You can display the contents of VDP memory by
using a “V” after the address.

PRINT SECTOR

To “PRINT” a sector of data, enter the following command. You may
optionally print a consecutive series of sectors with this command.

P sss.,d.n

where: sss = The actual sector address you wish to read. If you do not
enter this parameter, the program will use the last sector address
entered plus one. This can be used to read sequentially through the
diskette.

d = The disk drive device code. If you omit this parameter,
the program will use the previously entered device code.

n'= The number of consecutive sectors to print.

A message will request you to enter the LIST DEVICE:
Enter the device to list the data. The default is
RS232.BA = 9600

HELP
Use this command to display the options on the screen.
H
QuUIT
This command causes DISK FIXER to return to the editor assembler.

Page 5

FIND CHARACTER STRING

Use this command to locate the sector address of a character string.
Enter the command as follows:
F SSS, EEE, d

Where SSS is the Starting Sector for the Search,
Where EEE is ending sector of the Search,
and d is the disk drive number.
The Prompt:
ENTER CHARACTER STRING

Enter up to 30 characters. The Disk Fixer will search between the sec-
tor limits specified on the Disk (d) and display the Sector address of the
First occurance of the character string entered.

If the Disk Fixer cannot find the character string it will display the
message:

STRING NOT FOUND - SECTOR ONNN (Sector number indicates
Last Sector Searched).

The Disk Fixer will allow you to change any byte on any sector, move
data from one sector to another, and, one of the most powerful options,
will search for a character string and DISPLAY the sector address of
where it found the data.

Page 6

THE HIDDEN POWERS OF DISK FIXER
by Bill Gronos

* INDEX *

FORWARD
1. USING DISK FIXER TO ENHANCE BASIC PROGRAMS

1-1 CREATING ILLEGAL LINE NUMBERS

1-2 HOW BASIC PROGRAMS ARE STORED IN CONSCLE ME-
MORY

1-3 HOW BASIC PROGRAMS ARE STORED ON DISK

1-4 MAKING BASIC PROGRAMS INVISIBLE

1-5 CREATING PROGRAM ODDITIES

1-5-1 APROGRAM THAT “DOESN'T DO WHAT IT IS SUPPOSE

TO DO”
1-5-2 A PROGRAM WITH LINE NUMBERS THAT RUN

BACKWARDS

2. UNPROTECTING PROGRAMS AND DISKS
2-1 REMOVING THE COMPANY DISK PROTECTION
2-2 COPYING DISKS WITH “HOME BREW"” PROTECTION
2-2-1 PROTECTION BASED ON STANDARD TRACT AND SEC-
TOR FORMAT
2-2-2 NON-STANDARD PROTECTION METHODS
2-3 UNPROTECTING EXTENDED BASIC PROGRAMS

3. USING DISK FIXER TO REPAIR BAD DISKS
3-1 HOW TO FIX A BLOWN BIT MAP
3-2 FIXING BLOWN DIRECTORY LINK MAPS
3-3 WHAT TO DO IF YOU ACCIDENTALLY DELETE A FILE
3-4 PARTIAL RECOVERY OF DAMAGED FILES
3-4-1 BASIC PROGRAM RECOVERY
3-4-2 TEXT FILE RECOVERY
3-5 HOW TO FIX A BLOWN FILE DIRECTORY
3-5-1 CONSTRUCTING TEXT FILE DIRECTORIES
3-5-2 CONSTRUCTING BASIC PROGRAM FILE DIRECTORIES

APPENDICES

A1 HEX TO DECIMAL CONVERSION
A2 HOW TO READ THE BIT MAP ON SECTOR O
A3 CONTROL SECTOR FORMATS

Page 7

FORWARD

I'm sure few of you Disk Fixer owners really know the power you
possess when you plug that module into your console.

Andthatis precisely the purpose of this booklet, to share the secrets of
that power with you. To spare you many hours of fabor spentunlocking
those secrets so that you may spend the time putting the power to
work.

I have written this booklet for the novice user who knows little or noth-
ing about the inner workings of either the disk controller or the 99/4
console. l will give you step by step procedures that wili allow you to do
scome pretty amazing things. The Disk Fixer is a magician's wand. | will
show you how this wand can do many tricks. Some of these tricks have
important programming applications, such as making some lines of a
BASIC program invisible or preventing a program from being aitered.
Other tricks are designed to amuse you and to mystity your friends.

Also, 1 will share some techniques to aid you in performing the delicate
surgical procedure that gives this unique module its name—a mini
medical school for the treatment of sick disks.

Throughout this booklet | have made references to hexadecimal num-
ber notation (base 16). This was absolutely necessary because we will
be dealing with the internal structure of disks and programs and hex-
adecimal is the language spoken in these realms. Your Disk Fixer pro-
gram speaks the same language, but your Disk Manager conversesin
standard decimal (base 10) numbers. This is a little confusing and a
giant pain in the posterior. For example, when you use the Disk
Managerto do adisk test, the bad sectors will be given in decimal nota-
tion. You have to convert these values to hexadecimal when you use
them with Disk Fixer. Hexadecimal numbers will be preceded by a
“greater than” symbol. Decimal 10 is > A, etc.

 All the examples of Basic programs in this booklet are written for T|
Basic {the language supplied with the console) and most of them will
work with Extended Basic. However, be aware that some format
changes do exist and may cause results to vary.

| have tried not to bore you by being overly technical, though a treatise
of this nature by necessity requires a certain amount of detail. Let’s
begin slowly so thatyou may gain confidence in using this module; let's
start by having a little fun with Basic programs.

Page 8

1. USING DISK FIXER TO ENHANCE BASIC PROGRAMS

One of the most valuable uses for Disk Fixer is to radically change
Basic programs as they are stored on disks. The modified programs
have properties that are both interesting, useful and impossibie 1o
duplicate through normal use of the Basic Language Editor.

When the modified programs are loaded into the console via the OLD
command, the changes are not detected by the Basic Editor. Incorrect
Basic lines will produce errors when the programs are run, but many
changes will execute correctly and produce beneficial results. Once
these special programsare in consoie memory, they can be resaved to
disk or tape. Thus users without disk drives can be mystified and
benefited by your newly acquired powers. We'll start with a simple
example to illustrate this technique.

1-1 CREATING ‘ILLEGAL’ LINE NUMBERS

Did you ever try entering a Basic Statement with line number 0 or
600007 ltyou did, you gotanerror. This error checking routineis active
only when you are creating or editing a program in the normat way.
Line numbers are not checked when programs are Run or Saved.
Therefore, illegal line numbers created with Disk Fixer will be accep-
ted by the Language Interpreter. Let's make a simple change to ilius-
trate this point:

1. Power-up your computer in Tl Basic and type in this line:
1 PRINT “0{S AN ILLEGAL LINE NUMBER”

2. Using a blank, initialized disk, save the program with the command:
SAVE DSK1.DEMO1

3. Exit Basic by typing BYE, and insert your Disk Fixer module. Select
DISK FIXER from the main menu.

4. With the disk containing DEMO1 in drive 1, read the sector contain-
ing the test program by entering the command:

R 22,1 [ENTER]
5. Next, press enter to return to the menu and bring up the line number
to be altered with the command :

A 8 [ENTER]
6.Change the line number to zero by typing in:

0 [ENTER]

Page 9

7. Save the altered sector back to disk with the Write command:
W [ENTER]

8.We're done, so exit Disk Fixer by typing :
Q [ENTER]

FIGURES 1 AND 2

NAVARORE IND. #%#% DISK FIXER V2.0 #% SECTOR DUMP SECTOR ADDRESS 0t
ADDR = 01 23 45 67 89 AB CD ¥ ¥ INTERPREIED

0000 = 0003 37B7 3784 37D7 Q0OU1 37B9 1F9C C7IH #n77747WHm 79
0010 = 3020 4953 2041 4E20 494C 4C45 4741 4C20 O 1S5 AN JLIECAL
0020 = 4C49 4FE45 Z04F 534D 4245 5200 AASEF FF1L LINE KUMBRRETES
0030 = (300 0000 G200 03C4 454D 4F31 2020 2020 = MO
Q040 = 2000 0OON0 G000 0100 0000 0LU0O QOO0 QOO0 R
0050 = 0000 0022 Q000 Q000 0000 OOUD 0060 HOCO

0060 = 0000 0000 D000 D000 G000 0000 Q000 Q00K

0070 = 00O0 0000 CCO0 CO00 OO0 0N00 0ROG GO0

0080 = CODC G000 0000 0000 0000 DONOC 0GOC 000D

QLUGO = Q000 0000 ODCG 0000 OVLG 0000 000 VOO0

00A0 = OC00 0000 000G 0000 GOGO 0CO0 0000 OO

QOBO = 0000 0000 0000 00600 0000 0000 000G (00D

00CO = 0000 0000 COCO QOO0 000C 0000 00U OGO

00D0 = Q000 0000 CVO0 COOO Q00O D000 GOOO DOKBU

QUEQ = 0000 00CO 0000 Q000 00LD 0000 QOGO GULD

OOF0 = 0000 0000 000U Q000 N00Q 000G OLOG OOO R R R

NAVARONE IND. #=% DISK FIXER V2.0 % SECTOR DUMP SECTOR ADDLRESS 0022
ADDR = C L 23 45 7 86 AB CD EVF INIERPERTED

0000 = 0003 37B7 37B4 3707 0000 37B9 1FIC C71B #¥IT747Wes7955Gw
U010 = 3020 4953 2041 4FE20 494C 4C45 4741 4C20 0 15 AN ILLEGAL
0020 = 4C49 4E45 204F 554D 4245 5200 AA3F FF1Y LINE NUMBER= 7%
0030 = 0300 0000 0200 03C4 454D 4F31 2020 2020 ##sssiiDEMO]
0040 = 2000 0000 0000 LD 0000 000G QOO Q000

0050 = 0000 0022 0000 OCC0 0000 UN00 DOOG BGON

0060 = 0000 0000 GO0 Q00D 0000 0000 00LN VOGO

0070 = 0000 0000 0000 UC0O 0000 QOGO G0N QOOG

0080 = 0000 0000 Q0OG Q00O OO0 0OOD 0VDO QOO0

0090 = 0000 0000 0000 0000 0000 QUDD 0000 COOG

O0AC = 0000 0000 QOO0 0N00 0DVO QOO0 0000 QOO0

COBO = 0000 0000 QOO0 000D 0000 0000 GO0O 0000

0UCO = Q000 0000 OO0 000C DOVO GOLD 0000 0000

oop0 = 0000 0000 GUOO VDO 0000 0UOD GOOC QUOO

Q0F0 = 0000 0000 D000 0000 0OV 00C0 0000 COOO

OOF0 = 0000 0000 QUUO G000 0000 0CCO 0000 GOGL

Page 10

I'm sorry if this detailed, step-by-step process offends any of youwho
areold hands atusing Disk Fixer, buttwanted to be surethatuserswho
have just inserted their modules into the console for the very first time
haven’t been left by the wayside. It would have been far simpler to
say:)

READ SECTOR >22, ALTER THE VALUE AT WORD >0008 to > 0000,
WRITE THE SECTOR BACK TO DISK AND EXIT.

It would have been even more concise to simply say:
CHANGE WORD >0008 OF SECTOR >22 to >0000

| won't go into as much detail on disk changes as | did here. When | say
to alter a byte or a word at a certain disk location, you wiil need to read
the sector, alter the appropriate values and save the changed sector
back to the disk. If you are ever confused, refer back to the detailed
instructions in this section.

Do you all know why | said to use an empty disk in step two? The first
program saved to a “clean” disk wili always begin at sector >22. Since
we know what sector the program would be saved to, we don't have to
hunt through the File Directories Iooking for the file name DEMO1.
Now let's take a look at the results of our alteration.

Return to Basic and load the altered program with the command OLD
DSK1.DEMO1. andlistit. Instead of 1 PRINT “TEST” you have O PRINT
“TEST”. Try erasing or editing the line and Basic will refuseto doit. Giv-
ing you a BAD LINE NUMBER error message. However, the program
will still run correctly!

Does this mean we havefound away to keep others from deleting lines
from our programs? No. That line 0 can be deleted if we first RESe-
quence the program. Type in RES and hit enter, list the program and
you -will see that line 0 is now 100 and can be edited or deleted.
Therefore,changing line numbers into illega! values isn't enough to
protect them from tampering. We must find a way to keep programs
from being resequenced--Disk Fixer can do it! But before we see how
this can be done, let me explain the memory format of a Basic
program.

Page 11

1-2 HOW BASIC PROGRAMS ARE STORED IN CONSOLE MEMORY

Figure 3 shows the contents of the sector that holds the Basic
program, 1 PRINT “TEST".

FIGURE 3

NAVARONE IXND. %% DISK FIXER V2,0 #% SECTOR DUMP SFCTOR ADBRESS 0023
ADDR = 01 23 45 67 8Y AB CD FF [INTFRPRETED

OUO0D = 0005 37CE 3708 3707 OL0T 3700 080C (704
0010 = BT45 3355 TRIAS SFFF 11073 0000 0003 0003
0020 = C445 4B4E 3220 2020 2020 0000 GOOO 0001
0030 = 0000 00GE OUOL OOOY 000D VOO0 2300 VOO0
0040 = 0000 GOOO VOOL DDUO OUND OOOL GOVO 0000
0050 = O0UO 00O U000 OO0 DOGD OGO GO0 VOO0
0060 = DGO 00UO VOONO VOOL VOGO UL VLB V00D
LO70 = 0000 V000 000NN OO V0O VOOD 0000 VOO
0080 = 0000 GOOG 00O DDOG V0D0 000G GO0 DO
GOV = 0000 0000 DeOL VOO0 0000 VUGG V000 000D
00AD = 0000 COGH 0000 G000 OGN0 GO0 0000 KLU
OOB0 = 0000 0000 V00O DOUG OO DOUHG D00O OO
O0CO = 0000 GOOD D000 VOOE DOOK VHCO V0BG 0D
OODO = VLG COOL OO0 000 00O DODG OGO LoD
ODEO = 0UOO Q0GR D000 0000 00GO N00G OUNO GO0
O0F0 = 0000 Q000 0000 0UNO 000D GUNG OCDO VOO0

By analyzing several short programs, | was able to figure out what all
thatgarbage means. This processis called “hacking” and, since Texas
Instruments treated all knowledge of the inner workings of the 99/4 as
top secret nuclear bomb plans and apparently viewed us hobbiests as
Soviet spies, it is the only way one can learn the full capabilities of
their computer.

To begin to understand how a program is stored on disk, we must
know how it is stored in the computer. Programs are stored in two sec-
tions:the Line Number Table and the Program Statement Table. When
a program is listed, the line numbers precede each instructions, but
this is simply for your convenience, not the computer’s.

Page 12

LINE NUMBER TABLE:

The line number table contains four bytes of information for each pro-
gram instructions. The first two bytes are the line number you used for
that instruction (in hexadecimal notation, of course) and the last two
bytes are the memory address where the computer actually puts the
instruction. The line numbers are stored in reverse order from the
highest to the lowest.

Whenaprogramisrun, theline numbers aren’tused unless the normal
sequential flow is altered by a GOTO, GOSURB, etc. When a transfer
instruction is encountered, the computer finds the new line number in
the table and begins executing instructions at the indicated memory
point.

PROGRAM INSTRUCTION STATEMENTS:

The instruction statements come after the line number table and are
stored in “tokenized” format. What does this mean?--you won't find
the word “PRINT” anywhere in Figure 3. if TI Basic weren’t tokenized,
“PRINT” would require five bytes of memory. Allthe commands would
require a byte for every character; “RANDOMIZE"” would take nine
bytes if commands weren't “crunched”.

Instead of suffering under such a colossal waste of memory, every
command is symbolized by a one byte value. This results in a subsan-
tial reduction in memory “overhead”.

The token for the command “PRINT” is hexadecimal >9C, which can
be found at byte >D of Fig. 3. The decimal value would be 156. Let me
give you an interesting demonstration of this:

1.POWER-UP YOUR COMPUTER IN Tl BASIC AND TYPE IN THE
LINE:

1 REM [CONTROL] [;] [ENTER])
2. LIST THE PROGRAM AND, MYSTERIOUSLY, THE WORD “PRINT"
HAS APPEARED.

Actually, since we know how programs are tokenized, it isn’t all that
mysterious. If you check the appendix in the Tl Basic “User’s Reference
Guide’”, page Ili-2, you'll find that [CONTROL] [;] has a character value
of 156. Seeing command tokens within REMs being printed out as
command names is just a quirk of Tl Basic.

Page 13

Now that you understand how programs are kept in the console
memory, you'll see that they are stored on disk in almost an identi-
cal way.

1-3 HOW BASIC PROGRAMS ARE STORED ON DISK

On disk, programs are still stored in two sections: the line number
table and the instruction statements. However, the first eight bytes of
the first program sector are pointer values that are used by the Basic
program loader. These pointers are used to load the program into the
proper area of console memory and also to indicate where the Line
Number Table ends and the program instructions begin. We will con-
sider these pointer byles as a third section of the stored program.
Thus, programs are stored on disk in three segments:

PROGRAM LOAD INFORMATION.
LINE NUMBER TABLE.
INSTRUCTION STATEMENTS.

The Program Load Information always takes up the first eight bytes,
but the lengths of the other two sections will vary depending on the
number of lines and the lengths of the program statements.

Let's examine the disk storage format of our oneline program. Look at
Fig. 3 again while I give you a byte-by-byte explanation of what that
“garbage” means.

PROGRAM LOAD INFORMATION.

Bytes 0-1(005): This value is used by the Basic Program Loader (when
you use the 'OLD"” command) to check that what you are trying to load
is a valid program. It's value is obtained from the next four bytes.
Knowing how to find this value is of minor importance unless you want
to build Basic programs from scratch. For the sake of completeness,
I'll show you how to find this value.

You “exclusive or’ words >2 and >4.Todothis, expand the valuesinto
their binary equivatents and line up the columns. If the columns are dif-
ferent (0/1 or 1/0), write a one below thatcolumn. Change the resulting
binary value back into hex. This is the value that is placed in
bytes >Q-1

Page 14

EXAMPLE OF “EXCLUSIVE OR”
>2=37CE= 00110111 1100 1110
>4=37CB= 00110111 1100 1011

0000 0000 0000 0101
o 0 o0 5
THE VALUE >0005 IS THE RESULT

Bytes 2-3 (37CE): The console address of the end of theline num-
ber table:

Bytes 4-5 (37CB): The starting address of the line number table.

Bytes 6-7(37D7): The address of the highest memory location used by
the program.

These program location pointers are the values that were being used
by ihe Basicinterpreter whenthe programwas stored. i changedinese
onthedisk in an attemptto getthe programtoloadin a different area of
memory, butitdidn'twork. It seemsthatthe Basicloaderis goingto put
the program in the first available area of memory. It only uses the
stored addresses to getthe relative locations ofthe Line Number Table
and the Program Statements Table. Example: If you save a one line
program and then use Disk Fixer to subtract >3700 from all the
address values, the program stillloads in the same area as the original
values. Oh weil, being able to change the memory area where the pro-
gram would load is of very limited use anyway.

LINE NUMBER TABLE

Bytes 8-9(0001}: Thelastline number ofthe program (and, in this case,
the only line number).

Bytes >A-B(37D0): the beginning address of the program line.
PROGRAM STATEMENT TABLE

Byte >C{08): length of instruction.

Byte >D(9C): command token (PRINT).

Bytes >E-14: data for the print statement.

If this were a much longer program, say about 8000 bytes, the Line
Number Table would require several disk sectors. A 100 line program
requires 400 bytes of disk space to store the Line Number Table, which
is about a sector and a half.

Page 15

“Wait a minute”, you say, “Haven’t you forgot something? What's all
that stuft after the instruction statement?” This remaining information
is the data contained in the butler space used by the disk drive. It won't
affect the storage or loading of Basic programs. It just happens to get
saved if the program doesn’t exactly fill up the last sector compietely.

1-4 MAKING BASIC PROGRAMS INVISIBLE
Now that you've learned the mechanics of manipulating Basic pro-
gram statements, let me show you how to put this knowledge to good
use. _
Have you ever wanted to keep people from listing or altering your
Basic programs? Perhaps you have an educational program and you
wanted {0 protect it against those who are cunning enough to fist it out
and extract the answers. If you have, then Disk Fixer can do the job!
We've already learned how to change line numbers into illegal values
that can’t be edited or deleted, but we found that resequencing the
program easily changes therout of range numbers back to normal. Can
Disk Fixer keep a program from being resequenced?--you bet!Let me
demonstrate this process on the following two line program:

100REM COPYRIGHT 1984 NAVAR

ONE INDUSTRIES _

200 PRINT “THIS PROGRAM IS P

ROTECTED FROM ALTERATION-AND

LISTING BY DISK FIXER"
Figuré 4 shows how the program is saved on disk. Figure 5 shows the
changes you make using Disk Fixer to protect the program.

FIGURE 4

NAVARONE IND. ##% DISK FIXER V2,0 #% SECTOR DUMP SECTOR ADDRESS 0022
ADDR = 01 23 45 67 B89 AB CD EF INTERPRETED

0009 3768 3761 37D7 DUCB 376A 0064 37BZ ““*?h_’;’a?w‘lﬁlnj“?d?E

Q000 0000 GOoO 0000 QOO0 0000 0000 OO0 FEfssdeadeigs:
0000 0000 0000 000D 0000 OO0 DOVU 0000 bt R
0000 000G 0000 0000 000D IO 0000 OO0 FaeaadeiRisries

Page 16

oOna
O0ED -
QO

0000 =

0010 = 479C C743 5448 4953 2050 S24F 4752 414D G#GCTHIS PROGRAM
0020 = 2049 5320 5052 4F54 4543 5445 4420 4652 IS PROTECTED FR
0030 = 4F4D 2041 4C54 4552 4154 494F 4E20 414E OM ALTERATION AN
0040 = 4420 4C4T 5354 4YAE 4720 4259 2044 4953 D LISTING BY DIS
0350 = 4B20 46469 5845 5200 269A 2043 4F50 5952 K FTXER®&* COPYR
0060 = 4947 4854 2031 3938 3420 4E4]1 5641 524F 1GHT 1984 NAVARO
0070 = 4145 2049 444 5503 5452 4945 5320 00AA NE INDUSTRIES #=%
0080 = 3FFF 1103 0000 0002 0003 C445 4D4F 3320 ?awssiixssDEMO3
0090 = 2020 2020 0000 0000 OG0! OO GO0 0000 BRI
DOAD = OOOD 0O00 000G 2200 0000 0Q00 QUKD 000 ##itebaitEegdadsen
00BO = 0000 GO0 0000 (U0 00UO DOOD 0000 DOD(FH¥EtEE R
OOC0 = 0000 0000 Q000 OOU0 0000 0000 000G QU0 #isFERTEERET RS

FIGURE §

NAVAROND TN 252 DISK FIXER V2.0 5% SECTOR DUNMP SFCTOR ADDRESS O
AbDbR = 01 2% 4% 67 89 AB CD EVF INITERVRETED

Jl[

(ki) = 00O 3768 3761 3707 0000 376GA FFEE 3702 50 IRiaiws#7 (7772
VOIU = A7 C7473 5448 4953 2050 524F 4752 414D GXGCTHIS PROGRAM

0020 = 2049 5320 5052 4154 4543 S445 4420 4652 15 PROTECTED FR
O = 4EAD 2041 4CH4 4502 4154 4941 4T20 4141 O ALTERATION AN
MK = 44200 4049 1594 494ALE 4720 4259 2044 4953 D LISITING BY DIS
OO = 4R20 4649 5845 5200 279A 2043 4F50 5957 K FENTRZ'® COPYR

1)031) 4947 4854 203) 3938 3420 4141 5641 S24T TGHE 1984 NAVARO
DO = 4145 2049 4F44 50553 5402 409475 3300 Q0AA NI TNDUSTRIES R

0= = EEE THYS Q000 QU2 00073 CA44h 4D4F 33200 76 EMO3
Oredy = 20000 2020 Q000 A0 0001 Q000 OOCHY (K00 w4
OuAn = OO0 OO OO0 22000 00400 G000 ONOG. OO S

k) o Onnn 0000 0000 G000 OG0 OO0 GOEO o ¢

(HK'O = (UEG0 0000 ()00 0000 0000 0000 0O00 OO0

LHHHY = XEM) [D000 O D00 000G OO0 00060

tulj.os THIWY (UMY)00 X000 OEXNY (MHH) (XN (winy
0oy - R DYOU0 DO DD OD0L (H)DD ONdd) D) e

it would be pretty mean of me to make you scan both entire sector
print-outs for the four changes, so I'll spell them out. Type in the pro-
gram in Basic EXACTLY as it is shown above. If you put in one extra
space, the addresses won't match up with the instructions below.
There isn’t a space at the end of the REM statement. Save the program
to a blank initialized disk.

1. USE DISK FIXER TO READ SECTOR >22 INTO MEMORY

R 22,1 [ENTER]
2. RETURN TO THE DISK FIXER COMMAND MENU BY PRESSING
‘ENTER'.

3. GHANGE LINE NUMBER 200 TO 0 BY ALTERING WORD >8 (00C8)
TO BECOME 0:

A 8 [ENTER] O [ENTER]

4. CHANGE LINE NUMBER 100 TO 65535 BY ALTERING WORD >C,
(0064) TO BECOME >FFFF:

A C [ENTER] FFFF [ENTER]

5. ADD ONE TO THE LENGTH INDICATOR FOR LINE 100 (THE REM
STATEMENT), WHICH IS LOCATED AT WORD >58. THE CURRENT
VALUE IS >269A. The FIRST BYTE(>26) IS THE LENGTH AND THE
SECCND BYTE(>9A) 1S THE TOKEN FOR THE REM COMMAND. WE
ONLY WANT TO CHANGE THE FIRSTBYTETO >27, SOBESURETO

Page 17

RE-ENTER THE SECOND BYTE. THIS IS DONE WITH THIS KEY
SEQUENCE:

A 58 [ENTER] 279A [ENTER]

6. LIKE THE PERIOD AT THE END OF A SENTENCE, BASIC LINES
USE >00 TO MARK THE END OF THE STATEMENT. WE'LL CON-
FUSE THE INTERPRETER BY PUTTING TWOQO CONSECUTIVE
“PERIODS"” AT THE END OF THE REM STATEMENT. TO DO THIS
CHANGE THE LAST SPACE CHARACTER (>20) AT BYTE >7D TO
>00:

A 7C [ENTER] 5300 [ENTER]

7. ALL THAT'S LEFT TO DO IS TO WRITE THE ALTERED SECTOR
BACKTODISKWITHTHE "W’ COMMAND AND TEST THERESULTS
BY LOADING THE PROGRAM INTO BASIC.

Once the program is loaded into Basic, LIST it and see that only the
REM statement appears and itis now line number 65535. Run the pro-
gram and the PRINT line works just fine. Now, for the acid test, try to
change the line numbers with the RES command. You'll notice a short
pause followed by the loss of the screen’s syncronization followed by a
flurry of color bars. What has happened?

This is only speculation, butit seems the execution of the RES instruc-
tion causes the interpreter to search for line numbers buried within
statements such as 100 GOTO 130. We have altered the beginning and
end of aline, so perhapsitis attempting to find the end of the program.
The screen loss occurs when the addresses memory-mapped for use
by the Video Processor are inadvertently accessed, causing the sync
loss. However it works, it's effective!

Now that you've seen how it works, let me give you the general pro-
cedure so you can protect your own programs from prying eyes.

GENERAL PROCEDURE FOR ALTERING A PROGRAM SO IT CAN'T
BE LISTED

To prevent a program from being listed or altered, make your first and
last program statements REMs, then four changes must be made:
change the highest line number to >0, change the lowest line number
to >FFFF, add one to the byte that contains the statement length of the
first REM, and change the final “space” character (>20) to >00. Can't
figure out how to do this?--let me spell it out:

1. Make the first line of your program a REM statement. Be sure no

Page 18

transfers (e.g. GOTO, GOSUB) are made to this line. If you use a com-
bination of letters that aren’t likely to be duptlicated elsewhere in your
‘program (such as 100 REM ZCFIRST), you can use the Disk Fixer's
FIND STRING (F) command instead of having to hunt fo the line
manually.

NOTE : DISKETTE VERSIONS OF DISK FIXER DO NOT HAVE THE
“FIND STRING” COMMAND.

2. To make it easy to find the last entry in the stored program’s line
number table, make your last line another distinctive statement, such
as 30000 REM ZCLAST

3. After saving your program to disk, use Disk Fixer to locate the start of
the Line Number Table. Since this will be stored on the first sector of
the program, you can find the sector number by reading the file's Direc-
tory sector.

Exampile, If the name of the file where the Basic program is stored is
“MYPROG"”, use the following Disk Fixer commanad:

F 1,21,1 [ENTER] (you will be prompted to enter the string to
search for)

MYPROG [ENTER]

The drive will start clicking off tracks until the string is found. When itis
found, press D [ENTER] to display the directory. Byte > 1C of the direc-
tory gives you the first sector number of the fiile.

Remember, you can eliminate searching for the first sector if the pro-
gram is saved to an empty disk, for then you know that sector >22 will
be the beginning sector. You can copy the program to whatever disk
you want after ail the changes are made.

4. When you have found the Line Number Table, alter the word atloca-
tion >8 to >0. This had been the highest line number used and now
you have changed it to zero.

5. Finding the highest line number in step 4 was easy because it will

always be in the same place, not so with the lowest line, its location will
depend on the length of the program. If the program has more than 62
lines, the Line Number Table will require more than one sector.

This is where making our highest numbered REM a distinctive charac-
ter string pays off. if the statement-- 30000 REM ZCLAST--is the last
statement we entered, it will be the first statement following the Line
Number Table. The Line Number Table always re-sorts its contents

when a new line is added, this isn’t true for the Statement Table. Pro-
Page 19

gram statements are added to the top of previously entered statements
regardless of their line numbers. Let me go off on a tangent and give
you a simplified example of hewthis works. I’'ll symbolize the line num-
ber and statement tables so it will be easier to follow.

Suppose a program is typed in as follows:

1 REM 1
2 REM 2
3 REM 3 _
We would have a Line Number Table ordered like this:

0003
0002
0001
And the statement table would line up as:
REM 3
REM 2
REM 1
However, if the statements had been entered in this order:

1 REM 1

3 REM 3 _

2 REM 2
The Line Number Table would look the same, but the statements
would be stored in a different order:

REM 2

REM 3

REM 1 _
Therefore, if you want to make it easy on yourself, you’ll make sure 1
REM ZCFIRST (or something similar) is the first line you enter and
30000 REM ZCLAST is the last line entered. If you want to add the list-
ing and alteration protection to a program you’'ve ailready created, and
if the first lineisn'ta REM you've got a problem. Not an unsolvable pro-
biem, mind you, just some extra work that | will explain latter. First, let's
get back to the easier example where the REMs have been entered

correctly.

You can find the sector that contains the lowest line number entry by
having Disk Fixer search for that ZCLAST sequence. Look at this sec-
tor and find that table entry for line number >0001. Alter the word that
contains “0001" to.become “FFFF".

6. With these first five steps you have changed the Line Number Table
so that only the first REM will show if the program is listed. Now let's
Page 20

finish the process by preventing the RESEQUENCE command from
undoing all our hard work. We do this by altering the stored format for
our 1 REM ZCFIRST statement. Atleastit's easyto find, it will be on the
last sector of the file.

Find the program’s last sector and display its contents. It will be stored
as the byte sequence 0B9A205A4346495253542000. Of course, Disk
Fixer displays sector contents with spaces between bytes, so the
sequence will appear as: :

0B 9A 20 5A 43 46 49 52 53 54 20 00

To prevent resequencing, change that first “OB” to "0C” and that last
20" to "00"”. To verify that you did this correctly, display the sector after
you have made the changes and you should see the tollowing
changed format:

0C OA 20 5A 43 46 49 52 53 54 00 00
If you see something else, you screwed up.

WHAT IF | WANT TO USE THIS PROCEDURE ON AN EXISTING
PROGRAM?

As| said earlier, thisinvolves alittle extra work. | discovered three ways
to do this. The first way is very tedious if the program is quite long. You
add the REMs 1 REM ZCFIRST and 30000 ZCLAST and then you edit
every line, retyping the first character of each statement. This puts the
program in the correct order and you can see the general method. A
semi-trained ape could use this method, but he's going to need a iot of
bananas if it's a 500 line program.

The second method took very little time, but required a lot of expertise
to understand the complex change that had to be made to the State-
ment Table. I'm not even going to bother to describe it because the
third solution is a piece of cake and equally effective.

The easy way is to change that last program statement into a REM so
we can use the generat method. We need to replace that missing line,
of course, orit’s highly doubtful the program will run as it was intended.
Let’s step through this process :

1. Make a copy of the program or at least have a printed listing of it.

2. Load the copy into Basic and RESEQUENCE it. Save the copy back
to disk. This step isn't essential aslong as none of theline numbers are
consecutive, e.g. 200, 201.

3.Fireup Disk Fixer and find the last sector of the program. Display this
Page 21

sector and find the last program statement. You can recognize the last
statement by scanning for the byte sequence AA 3F FF that will come
after the last statement.

4. Right before the “AA’ byte will be the end of statement marker “00".
Follow this backwards until you come to another “00”, which will be the
end marker for the next to tast statement. The first byte after this "00”
will be the length indicator for the statement we want to change into a
REM. Add one to the length and alter the byte with the new value. After
the length indicator will be the token for the statement's command.
Don'tworry about what it stands for, change itto “9A"” (the REM token).
Change the remaining bytes to “41” (the code for the letter “A”) except
for the one just before the “00”. Make it into a second “00".

Do you see what we did? We have changed the format of whatever the
last statement was into a non-resequenceable REM statement. Letme
give you an actual example in case my instructions are confusing.

If the last bytes of the program are:

00 08 9C C7 04 54 45 53 54 00 AA 3F FF
We would alter them to become:

00 09 9A 41 41 41 41 41 00 00 AA 3F FF

5. Exit Disk Fixer ana return to basic. Load the program copy and listit.
Scan the statements until you find the new REM statement made of
“A”s. Note the line number and view the original program to see what
was lost. Go back to the copy and type in the lost line using a line num-
ber one greater than the REM statement. This will restore the pragram
to original form. That added REM statement won't hurt a thing even it
other program lines reference it.

6. Typeinthe 1 REM ZCFIRST and 30000 REM ZCLAST statements.
Save the program back to disk and return to Disk Fixer.

Now all you have to do is alter those line numbers using the general
method given above. No need to make the last statemment Resequence
proof, as step 4 already took care of that.

After you've done a couple of these, you shouldn’t have any problems.

1-5 CREATING PROGRAM ODDITIES

After going through all the details of the listing/alteration protection,
you deserve a rest. Let's create a couple of bizarrely numbered pro-
grams. These are sure toraise a few eyebrows when they are tisted out
by the unsuspecting. These examples have little practical use, but they

are a lot of fun.
Page 22

1-5-1 A PROGRAM THAT “DOESN'T DO WHAT IT IS SUPPOSED
J0O bO” '

Did you ever see those computer quizzes that test your knowledge of
programming by having you analyze the flow of a program and predict
what will accur when.the program is run? Of course, those tests
assume the program wasn’t created with Disk Fixer!! Take the follow-
ing example:

WHAT WILL BE PRINTED WHEN THIS PROGRAM IS RUN?
100 REM PROGRAM QUIZ #1
110 PRINT “ALL IS NOT WHAT IT APPEARS TO BE”

“Come on, don’t insuit my intelligence”, your friends will say. We
wouldn’t do that, but we will pull their leg a little. Run the program for
mister-know-it-all and look what appears:

THE DARK SIDE OF DISK FIXER STRIKES AGAINY
Can you figure out how this is done? Answer: two tricks are involved.

(1) Line 110 isn’t a real PRINT statement. It is actually part of the REM
statement that has wrapped around the screen. “110" only looks like a
line number!

(2) Therealline after 100 is invisible because its line number is greater
than that of the last line in the program, which is an aitered REM. The
hidden lines are:

110 PRINT “THE DARK SIDE OF DISK FIXER STRIKES AGAIN!!"
105 REM
HOW TO MAKE THIS PROGRAM
1. Type in the code as follows:
100 REM PROGRAM QUIZ #1bbbb1
10 PRINT “ALL IS NOT WHAT IT APPEARS TO BE"

Thisis how line 100 will appear on the screen whenitistyped. The take
line number will line up correctly when the program is listed. The four
“b"s are only there to show how many spaces are needed between the
two “1"8

110 PRINT THE DARK SIDE OF THE DISK

FIXER STRIKES AGAINII”

120 REM
Page 23

2. Save it to disk and engage Disk Fixer. The line number to change is
at word 8. Remember, it's in hexadecimal notation, so look for 0078,
not 120. Alter it to become 0069 (hex for 105).

3. Write the sector back to the disk and give the program a test
drive in Basic.

1-5-2 A PROGRAM WITH LINE NUMBERS THAT RUN BACKWARDS??

Remember, Basic arranges line numbers for your convenience, it
really doesn’t care what order they go in. Why?--because the real line
number is the actual memory address where the line is stored in con-
sole memory. When the Basic Interpreter encounters a line number in
a statement such as GOTO 100, it has to look up the memory
address before it can continue.

Let's make an inverse numbered program. Start with the “legal”
program:

1 PRINT "RUN";N
2 FOR X=11to 10

3 PRINT X

4 NEXT X

5 PRINT ::

6 N=N+1

7GOTO 1
Run the program to see what it is supposed to do. Stop the program
and changeline seven to 7 GOTO 6. We do this because we are going
to change the line number of the first line from 1 {o 6.

Save it and use Disk Fixer to reverse the line number order to become
6,5,4,.3,2,1,7. Why didn't we change 77 If we did, the rest of the lines
wouldn’t list and we wouldn’t see our results.

If you are becoming proficient with Disk Fixer, you should be able to
make the changes in less than a minute. The last line number can
always betfound atword 8 ofthe program’s first sector. We want to start
our changes at the next to last line number, so we add 4 bytes to 8,
which tells us word >C is where the first change needs to be made.
Less experienced users would probably scan the sector for the value
0006. | use small line numbers in most examples so you won't have to
make hexadecimal to decimal conversions when manually searching
for line number values.

Page 24

Once you have displayed the first sector, you can zip through the
needed changes with this key sequence:

A C [ENTER] 1 [SPACE] [SPACE] 2
[SPACE] [SPACE] 3 [SPACE] [SPACE] 4
[SPACE] [SPACE] 5 [SPACE] [SPACE] 6 [ENTER] W [ENTER] Q [ENTER]

After the reversed program is saved back to disk, all that's left to do is
load it back into Basic. List the program to see the change. Run the
program to see if it still works normaily.

Test your proficiency at changing line numbers. Create the following
program on your own:

OFOR X=1TO 10

O PRINT X

0 NEXT X

50000 PRINT ::
Duplicating line numbers doesn't cause any problems, unless you
transfer pregram control with a GOTO, GOSUB, IF...THEN, etc. If any
of these use a line number that has been duplicated, the program will
transfer control to the line number nearest the end of the Line Number
Table:

0GOTO 1
1 PRINT 1
1 PRINT 2
1 PRINT 3
When this program is run, only “3" will print.

2. UNPROTECTING PROGRAMS AND DISKS

WARNING: UNAUTHORIZED DUPLICATION OF COPYRIGHTED
MATERIAL IS A VIOLATION OF U.S. LAW.

I do not advocate program piracy, as | co-authored a game program
that lost substantial sales due to pirating. If you copy a program in
order to avoid having to pay for it, you are a thief. It's no different
from shoplifting.

However, legal owners of software are allowed to make additional

copies strictly for their own use as protection against damage. This

section is included in the hope that you will never have to use my

Instructions for fixing disks. Itisn't cost effective to save the $2 costofa

back-up disk and risk throwing away hundreds of hours of hard work
Page 25

you spent creating the contents of a disk. | learned my lesson the hard
way. The University of Hard Knocks has an extremely high tuition, but
you're not likely to forget the; lessons. If you spend $100 on a program
disk, $2 is cheap insurance.

“Wait a minute”, you say, “l would gladly make back-up copies, but
when | try all | get is a warning that the disk is ‘proprietary’ . Yes you
used to have a problem, but not any more--you own Disk Fixer! You
can remove the company protection in seconds and then make the
number of extra copies your particular level of paranoia warrants.

2-1 REMOVING THE COMPANY DISK PROTECTION

The Tl protection is pathetically weak. f assume the company was rely-
ing on the read/write sector subroutine that is the heart of Disk Fixer
remaining a deep, dark secret. Without Disk Fixer, knowing how the
protection works is of little value.

A disk is protected by giving byte > 10 on sector 0 a value of > 50 (which
is the ASCII code for “P"). To unprotect a disk, you simply change the
>50 to >20 (the “space” character). It's as simple as that.

2-2 COPYING DISK WITH “HOME BREW"” PROTECTION

Since the company protection is so easily broken, many independent
programmers develop more effective methods, they built a better
pirate trap. These protection schemes fall into two general groups:
those that use standard tract and sector formatting and those that
don’t. Disk Fixer can duplicate the first type of disks, but usualily it is
ineffective against the second. We'll look at both kinds.

2-2-1 PROTECTION BASED ON STANDARD TRACT AND SEC-
TOR FORMAT.

When you initialize a new disk, the Disk Controller marks it with a pat-
tern of sector addresses that are similar to house addresses. These
addresses are used to find data that has been stored on the disk. If all
of these addresses are numbered as they are supposed to be, the disk
is standard format and can be copied by Disk Fixer.

There are many ways to protect disks. Some assembly language pro-
grammers will purposely destroy File Directories and then use a spe-
cial subroutine to load the data sector by sector. Another method isto
erase part of the header on sector 0. You can still load programs from
the disk, but if you try to copy them with the Disk Manager you willgeta
“DISK NOT INITIALIZED” message instead of your copy. None of
these methods will prevent you from duplicating the disk.

It's atedious process. You use Disk Fixer to read all 360 sectors onone
Page 26

disk and write them to another. i you don’'t get any bad sector
messages, the deed is done.

2-2-2 NON STANDARD PROTECTION METHODS

The release of Disk Fixer panicked many software companies. Pro-
grams that once were safe from most pirates became vulnerable to
large scale theft. The first version of Disk Fixer was sold on disks and
people didn't hesitate to use it to unprotect itself. Now it is only sold
on module.

PSEUDO NON STANDARD PROTECTION METHODS

Creative programmers discovered ways toc make Disk Fixer users
think they were dealing with non-standard disk. When Disk Fixer tries
toread these damaged areas, it will indicate a bad sector. Of course, all
you have to do is ignore these messages and continue copying all of
the good sectors and you will get a working disk.

A fairty good way to throw most pirates off track is to use assembly
language to initialize an odd number of tracks, perhaps 30 instead of
the usual 35 or 40. The program on the disk would check the last sector
on the 29th track and the first sector of the 30th track. If these regis-
tered good/bad respectively, the program would execute normally. If
the sectors came out good/good or bad/bad, the program knows it
isn’'t on the original disk and will refuse to run. If you are REALLY
knowledgeable in assembly language, you simply initialize a disk with
the same number of tracks and then copythedisk onit. Not many peo-
ple know how to dc¢ this, but there is a way around it.

HOW TO UNPROTECT A DISK THAT ISN'T FULLY INITIALIZED.

To do this, we make use of another fine Navarone product, the
WIDGIT. The Widgit has a reset button that will halt the disk initializa-
tion atjustthe right point with no ill effects. You might be able to use the
console on/off switch, but it's chancy.

First, you have to test to see if the disk is not fully initialized. Use the
Disk Manager to run a non destructive test on the disk in question. Itis
not fully initialized if the first bad sector is evenly divisible by nine and
all the remaining sectors are also bad.

Example: if the first bad sector is 90 (90 is evenly divisible by nine) and
sectors 91-359 are bad, the disk is only partially initialized. Here’'s what
you do to make an identical disk:

» Install the Disk Manager into your Widgit and plug it into your con-
sole. You have to use a disk that has never been initialized so there will

Page 27

be no tracks already formed. luse aone pound magnetto bulk erasea
formatted disk and this removes any previous tracks.

* Divide the number of the first bad sector by nine (90/9=10)--this
tells you when to halt the initialization process.

* Withyour finger ready on the reset button, start the Initialization. The
number you got from the last step tells you how rmany “clicks ™ to listen
for from your drive. In our example, we would listen for 10 clicks and
just as soon as we heard number 10 we would press the reset button.
You have to be quick, but it's easy to hit it just right.

* Use Disk Fixer to test the disk. if the next to last sector (inthis case 89
or >59} is good and the next sector (90 or >5A) is bad you did it right. If
hot try again. _

* Nowthatyou have the disk, all you need to do is have Disk Fixer copy
all of the good tracks from the original to the copy.

DISKS THAT HAVE TRULY NON STANDARD FORMATS

You're out of luck--Disk Fixer is powerless against these. My new pro-
tection system uses this method and without giving away any house
secrets, I'll tell you a little about how | do it.

| analyzed the assembly language instructions contained on the read
only memory (ROM) inside the Disk Controller. With a lot of
experimenting, | learned how to alter the addresses of just a few sec-
tors. The protected program stored on these special disks contains a
subroutine that can detect these address changes. It knows when itis
residingonthe original disk. t works sowell thatt named it CIPHRDISK
and it is available for licensing .Serious inquiries can be sent to:

BILL GRONQS

9505 2 SE 15th SUITE B

MIDWEST CITY, OK 73130

Now we leave disk protection and examine program protection.

2-3 UNPROTECTING EXTENDED BASIC PROGRAMS
This is an easy task, if you understand how hexadecimal “twos com-

plement” arithmetic works.
To illustrate this protection, we’'ll create two BASIC programs. If you
startwith a blank initialized disk, youwon’thave to search forwhere the
two programs have been stored. Enter Extended Basic and Typein the
following program:

Page 28

1 REM
Now save it unprotected with the following command:

SAVE DSK1.TEST1
Next, save it to a new file ir] protected format:

SAVE DSK1.TEST2,PROTECTED

We can now plug in our Disk fixer modules and inspect these two pro-
grams. Since the disk is empty, the unprotected program willbe stored
atsector >22. Bytes 0 and 1 of this sector contain the value >0005. The
protected program is stored at sector >23 and its first two bytes con-
tain the value >FFFB. Hexadecimal value >FFFB is the twos comple-
ment of >0005. Another way of looking at twos complement numbers
is as positive and negative values. The value >FFFB can be con-
sidered as ->0005. This is how assembly language handles nega-
tive values.

So, if you want to unprotect an Extended Basic program, all you have
todoischangethe valueinthe firsttwo bytes of the program’sfirst sec-
tor into its twos complement value.

If you can do hexadecimal arithmetic, this can be done by subtracting
the value from >FFFF and then adding one. E.G.,>FFFF-FFFB
=>0004. Add one and you get >0005. Use the Disk Fixer Alter(A)com-
mand to replace >FFFB with >0005, save the changed sector to the
disk with the Write{W) command and the protection is nullified!

3. USING DISK FIXER TO REPAIR BAD DISKS

Disk Fixer is like a bottle of glue: it'll put an arm back on a broken
figurine, but it won’t be much help in putting a pile of plaster dust back
into the shape of a statue. If your prize disk accidentally got picked up
by the magnetic crane thatlifts carsin junk yards, | recommend you try
using Buddhist chants or prayers to Saint Jude because Disk Fixer
isn't going to do you a bit of good.

Disk Fixer has saved three disks of mine that had blown bit maps
(located on sector) and can handle a variety of other disk diseases.
Here is a brief run down of maladies for which Disk Fixer is a specific
remedy, plus the difficulty of the required operation:

* BLOWN BIT MAP/DISK HEADER (SECTOR 0)--VERY EASY.

* BLOWN DIRECTORY LINK MAP (SECTOR 1)--EASY.

* FILES DELETED BY ACCIDENT--EASY IF NO NEW FILES WERE
WRITTEN TO THE DISK AFTER THE DELETION OCCURED.

Page 29

* DAMAGED SECTORS OF BASIC PROGRAMS OR TEXT FILES--
PARTIAL DATA RECOVERY IS FAIRLY EASY.

* BLOWN FILE DIRECTDHRY (USUALLY SECTORS 2 TO >21)--
DIFFICULT TO VIRTUALLY IMPOSSIBLE).

The above text is the course listing for the Floppy Disk School of
Medicine. Completion of this program results in the award of a degree
in Surgical Discology.

First, let me differentiate between blown and damaged sectors. Blown
sectors are those that have had the data changed, but still have the
proper sector and track addresses. Blown sectors can be reused
because they can still be re-written.

Damaged sectors, however, can not be reused unless you re-initialize
the disk. These sectors have had their identification markings altered
or destroyed. You can not read these markings with Disk Fixer, nor can
you repair them. if your disk has encountered a stray magnetic field,
you will have some damaged sectors.

It's easy to tell if a sector has been blown or damaged; Disk Fixer will
read or write to blown sectors, but it will indicate an error if you try to
access a damaged sector. Let's start your lessons with the easiest

case.
3-1 HOW TO FIX A BLOWN BIT MAP (SECTOR 0)

Ruined Bit Maps may go undetected. Even if this sector is completely
lost, you will be able to load Basic programs, read TI-Writer files, etc.
You may not know the Bit Map sector has been lost until you try to
catalog or copy the disk with the Disk Manager and you get the "DISK
NOT INITIALIZED” message.

The danger of an altered Bit Map looms into view when you save more
data to the disk. For instance, if the Bit Map sector was changed to all
zeroes, new data would be saved on top of data already on the disk--
the Disk Controller thinks all those sectors are still available.

Page 30

Fixing bad Bit Maps is a piece of cake. Even if sector 0 was completely
‘erased, you can easily recover every bit of data stored on the disk.

A quick fix is to copy a good sector O from another disk and write it to
the sick disk. This restores all the initialization data but not the bit map.
You can now read or write to the disk, but since you no longer have a
correct bit map to indicate which sectors are used and which are avail-
able, writing to the disk will likely overprintfiles on top of good data. No
problem! Simply make a back-up of the fixed disk with the Disk
Manager and reinit. the fixed disk for re-use.

Be sure that the disk you copy sector 0 off of is the same type as the
disk you are repairing; e.g., if it is a double-sided disk, copy sector 0
from another double-sided disk.

WHAT DO | DO IF SECTOR 0 IS DAMAGED RATHER THAN BLOWN!

Trying to write to a damaged sector will produce an error, so copying a
good sector 0 is out. The fix is still easy, but it is tedious.

You start with an empty good disk and copy all of the sectors from the
sick disk to it. Then you simply make a back-up disk to restore the
bit map.

Copying 359 sectors from one disk 10 another is going 1o take a linte
time, but it sure beats having to rewrite all of the files that would other-
wise be lost.

3-2 FIXING BLOWN DIRECTORY LINK MAPS (SECTOR 1)

This is almost as easy as the first case. Just as with sector O, if sector 1
is bad the entire disk will be unreadabie by normal means.

You fix sector 1 by manually reconstructing it. You locate all the File
Directories and note the file names and which sectors the File Direc-
tories are located on. Next, you place the file names in alphabetical
order. Once this is done, creating a new directory link map is a snap.
Let's do one together.

File Directories are usually located on sectors >2->21 (2-33 in decimal
notation). First, we use Disk Fixer to scan these areas, locate all the file
directories and write down the sector number and the contents of the
first 10 bytes. These bytes are the hexadecimal form of the file names.
File Directory format is described in appendix A3. They're easy to spot
by the large number of 00 bytes towards the end of the sector.

Page 31

In our example, four File Directories were found and we wrote down
the following work sheet:

SEC# FILE NAME
2 4D 59 50 52 4F 47 20 20 20 20
3 54 45 53 54 31 20 20 20 20 20
4 42 41 54 54 AC 45 SA 4F 4E 45
5 4A 55 41 A4E 49 54 41 20 20 20

No need to translate the hex codes into letters. The alphabetical order
will be the same as the numeric order of the file names. Just treat the
names as if they were 20 digit numbers and rank them from lowest to
highest. Write down the new order of the directory sectors:

4523
Next, make them into four digit work values:

0004 0005 0002 0003

The last step is to use Disk Fixer to write these values to sector 1 start-
ing at the first byte (byte 0). You must start with sector 1 being ali
zeroes. So, if a lot of garbage has been dumped there, change every
byte to 00 and then put in the Directory Link Map.

There is one snag that slightly complicates this otherwise simple
operation. If you delete files, the directory link map is instantly
changed, but the old File Directories will remain until they are reused.
Thus, you may find some of these during your search. They will ook
like valid directories, but you don’t want to use them in re-creating the
directory map. What can be done?

You can avoid this problem by checking your list of file directories
against the Bit Map on sector 0. The directories for current tiles will be
allocated in the Bit Map. i the file has been deleted, the Bit Map will
show that the sector where the old directory sits is available for reuse
Appendix A2 will show you how to read the bit map.

The above instructions will work if sector 1 is blown. If it is damaged,
Disk Fixer will give you an error when you try to recreate the Directory
Link Map. Just as in the first corrective procedure, you are going to
have to do the tedious job of recreating the directory link on to a good
disk and then transferring all the other good secors on to the new
disk.

3-3 WHAT TO DO IF YOU ACCIDENTALLY DELETE A FILE

If you studied the previous operation on fixing blown Directory Link
Page 32

Maps, you may have already figured out how to “un-delete” a file.

when a file is deleted, the location of its File Directory sector is
removed from the Directory Link Map at sector 1. The Bit Map at sector
0 is changed to show that the sectors used by the deleted file are now
up for grabs when new files are added to the disk. The actual file is not
changed in any way. '

Allyou do is add the location of the file's directory back to the Directory
Link Map as explained in section 3-2. Of course, you need to change
the sector O Bit map to show that the file’s sectors are back in use, but
there is a simpler method of doing this.

To have the Bit Map corrected automatically, all you do is this:

1. Add the location of the deleted file's directory sector back to its pro-
per place on sector 1.

2. Copy the file to another disk.

3. Copy the file from the new disk back to the original disk using the
same name.

When the file is recopied to the original disk, its sectors will be shown
as in use and the data will be protected from overwriting.

3-4 PARTIAL RECOVERY OF DAMAGED FILES

if an important sector, such as the Directory Link Map, is bad, the disk
isunusable. In other cases, sectors within afile that actually containthe
data may be damaged and only that one file is unreadable. Disk Fixer
lets you recover the undamaged file portions which otherwise may
have been inaccessable.

3-4-1 BASIC PROGRAM RECOVERY

If the partially damaged sector is a Basic program, loading will halt
when the damaed sectoris encountered and you’'llget the “WARNING,
CHECK PROGRAM IN MEMORY” advisory. Most of the program
could still be good, but the Basic Loader refuses to let you see any
of it. .

Whatif you had a 500 line program with a single bad sector? if you had
a listing, you could type the program back in, but that would be a big
job--especially if you didn’'t know how to type. If the bad sector was in
the Program Statement Section, you wouldn’t have to reenter the
entire program, just the lost lines. The Basic Editor won' let you do
this, but Disk Fixer will!

Even if you don’'t have a program listing, partiai recovery will aid you in
Page 33

rewriting the program if it is one of your own creations. You may be
able to salvage valuable subroutines or perhaps all you will need to do
isreprogram a fewlines that have been lost. Beforel get your hopesup
too much, let me explain the limitations of this process.

The partialloss of a Basic program could have occured in three places:
theFile Directory (which has nothing to do with the Basic programand
will be covered separately in section 3-5), the Line Number Table, or
the Program Statement Table. The difficulty of the recovery will
depend on where the damage occured, so let's look at what we can
hope to achieve from each section.

BAD LINE NUMBER TABLE _

Earlier in this booklet, | explained how Basic program lines will be
saved in reverse consecutive order if they are entered intheir proper
sequence and none of the lines were edited. If this is the case, we can
compute all statement starting addresses and put in new line num-
bers. There is a problem. If any of the statements transfer program
control to another line number, such as GOTO 100, we have to know
which of the lines was the old number 100. We may be able to figure
this out by analyzing the program, but then again we may not.

If the Line Number Table was not saved in consecutive order our job
becomes more difficult. We can reconstruct all the lines, but we can’t
be sure what order they go in. This could be very tough if the program
was written by someone eise.

BAD PROGRAM STATEMENT TABLE

In this case we can amputate the bad sectors and replace them with filler
material. Then we can get a listing of what's left and try to work it out
from there. The missing statements will show up as line numbers only.
The recovered listing will be something like:

100 PRINT “SAMPLE PROGRAM"
110 PRINT “AMPUTATED LINES”
120 FOR X=1TO 100

130 PRINT X

140

150

160

170 REM INTEREST SUBROUTINE
180 INT=R*P

190 RETURN

If you have a printed listing of the program, all you need todoisfillinthe
gaps. If you don’t have a listing you'll have to recreate those missing
Page 34

lines by analysis. If the program has been heavily damaged, you may
have to deduce the entire animal from its jaw bone.

Since the bad Program Statement Table is the easter repair to des-
cribe, we'll start with it. We'll use the simplest example: a program with
one damaged sector.

PATCHING A BAD PROGRAM STATEMENT TABLE

Our patient is a middle-aged male basic program. When we try to load
the program intc basic we get an error message. We take an “x-ray"of
the patient by using the disk manager to do a non-destructive test. The
test results indicate sector 36 (hex >24) has a bad address code. The
cause could have been a scratch, a piece of dust or a memo magnet
your wife used 10 pin your pricetess disk to the ‘iridge so you wouldn't
jose it. Your trained eye scans the sector contents displayed by Disk
Fixer and you see that the line number is complete. The bad sector
took a hunk out of the middle of the Program Statement Table. it's a
text book case and the school solution is a sector by-pass operation.

Your pre-operative preparation is to make a program filler out of an
unused disk sector. To do this, make a sector which has 00 in every
byte location. The quickest way to do this is to copy sector 1 from a
blank initialized disk. Note the sector address of the filler.

The by-pass must be performed on the program’s File Directory. To
find this, use the Find string (F) command in Disk Fixer to search forthe
file's name. Display the indicated sector. Figure 6 is a print out of our
example program. '

Figure 6

NAVARDNE INI. ¥1* DISK FIXER V2.0 ¥X S
ADDR = 61 23 45 67 E9 4B
""‘E'?;EEE’EIEE'EEE"H?"§656‘6656'ﬁc’:@'ﬁ@éf“?ﬁﬁ.ﬁi?é"'iEEEEE“
0015 = 2100 DOOD 000G 0UHD DOGOG DODD 2TAG DODD MINKEFXVFYEIEOHY
0020 = 0000 0000 0000 G0GO G000 0000 OGO OOKL FEERERRFFRLE{RLY

Lo | I'"'I
=2 ...|

DP [“J*‘:F stiif
SFREY

003¢ = 0G0O OO0 0000 Q000 000G GO0 Q000 DOOG FRrIREEIriissiry
0040 = QOOC 0000 0000 0000 200G G000 J000 0000 SEFLTFETRITELELE
0050 = Q000 0000 0GOO 0000 0000 GOGO (OO0 QCGLO FFRXTFRIRFXFYERX
00&0 = Q00OG CQOC DO00D Q0Q0 CCO0 DGCO 000D 000D FXFTXRTLEXINRRAR
0070 = 0000 Q000 Q00O 0600 0000 CGCOO GOOC GOO0 MEFRREYEREI¥spdy
RGBO = (000 G000 0000 Q000 G000 Q000 2300 JO0C TITRFETTLLTRLIRL
00%0 = 0000 000G OQ0C Q0QC CGOQO QOG0 QOGO OULT IXFFFFIIFFIEIFEY
00A0 = 0000 0000 COOQ QOQC 0000 OOGT O0OC 0000 FRERTERIRYIFEERK
GORG = 0000 OGCC QOO0 0000 COGC CRO0 OGOC O0GT ¥FF¥X¥FIVERFLTEE
00CO = QOGO 0000 OO0 0000 0G00G (00D (000 0008 KFRERFTEXIREITES

0000 = 0000 0000 0000 QGO0 GO0 000 COGC OO0 IRRYrrrizirs¥sve
0G0e G000 Q000 HGOC OGO G00C J0D0 GODD REFTXTLIREIRETEL
G600 0020 QCO% GGO0 O0OC CGGGO OOC0 GOLC RIVERRRisdrsisty

[]
e
as |
L]

i H

The partof the sectorwe need to change beginsatbyte >1C. Thisisthe
Block Link and it is explained.in detail in appendix A3. If you are not
familiar with how these work, now is a good time to review that appen-
dix. Briefly, Block Link is used to join together the fragments of a file
that have not been stored in a consecutive block of sectors. if there is
only one link, the file has not been fragmented and all the sectors are
continuous. Each link is three bytes long.

We perform the by-pass by adding additional Block Links to the File
Directory sector. These extra Links will point to the location of the pro-
gram filler sector. We alter the other link(s) so that the bad sector will
not be part of the file.

Our example program (figure 6) has one Block Link, so all the file sec-
tors are located in one continuous group. In the middle of this groupis
a bad sector that we need to by-pass. The three bytesthatmakeup the
Block Link have the values 2260 00. Thistells us that the file consists

of sectors:
22, 23, 24, 25, 26, 27, 28

Our program filler is at sector >5C and the bad section we need to
by-passis at sector >24. Therefore, we need to alter the Block Links SO
the file structure will be:

22, 23 5C 25, 26, 27, 28

Instead of one continous area of sectors for our program we now have
three. Therefore three Block Links are required. Each Link must con-
tain the location of the first sector in the block and also the highest
numbered sector withinthe block. There are seven sectors in the block
and these are numbered 0-6. Sector > 22is number 0, sector > 23 is
number 1, sector >5C is number 2 and sector >28 is number 6. So,

our Block Links will be:
22 10 00

5C 20 00
25 60 00

If youdon'tunderstand the peculiar format Block Links have, you need
to take a look at appendix A3.

Page 36

We are now ready to perform the actual by-pass operation by writing
these nine bytes to the File Directory sector starting at byte >1C. The
by-passisfinished. If you have done everything right, the program will
now load in Basic and you can list it and view the gap where the filler
has been inserted.

For practice why don’t you create this file, pretend sector > 24 is bad
and perform the by-pass. Start with an empty initialized disk. Use Disk
Fixer to copy sector 1 to sector >5C to create the needed filler. To
create a Basic program that will not have any of its Line Number Table
in sector >24, type in the following line 15 times. Use different line
number for each line:

100 REM 1234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890

Savethe program, perform the by-pass as outlined above and view the
results. Two lines have only line numbers followed by blanks and one
line has been partially lost. The important thing is that 12 good lines
have beenrecovered. This recovered portion could have been several
hundred lines of coding if this had been a long program.

For additicnal practice, pretend sector >28 is damaged and change
the block Links to by-pass it. Since the bad sector is at the end of the
tile, only two Links are required:

22 50 00
5C 60 00

Be sure the remainder of the sector following the Block Links is all
00’s.

As you can see, it is fairly simple to patch programs that have one bad
sector in the Program Statement Table. [tonly takes a bit more work to
patch a program with multiple bad sectors. As an examiple, assume
the sample program is bad at sectors >24 and >25.

We are going to need two sectors of filler material, so copy sector >5C
into >5D. Three Block Links are required for the by-pass:

22 10 00
5C 30 00
26 60 00

Page 37

What if we had two bad sectors that were not consecutive, such as >24
and >267 Simple? We do a double by-pass and the Block Links
would be:

22 10 00

5C 20 00

25 30 00

5C 40 00

27 60 00
Did I lose you on this one? Let's take a closer look. Here are diagrams
of the originai file and the patched file:

ORIGINAL FILE
SECORDER 00 01 02 03 04 05 06
SEC NUMBR 22 23 24 25 26 27 28

PATCHED FILE
SEC ORDER 00 01 02 03 04 05 06
SEC NUMBR 22 23 5C 25 5C 27 28

If you use tables such as these, the Block Links are child’'s play to
make. This should be enough examples of statement patching. We'll
move into the trickier reatm of mending Line Number Tabiles.

PATCHING LINE NUMBER TABLES

Thisis pretty much like fixing Program Statement Tables, butthere are
two differences: the filler material is different and there are several dif-
ficult complications.

The worst complication occurs when the program’s first sector is bad.
Sure, it can be patched around, but thatisn't going to help much. The
first sector contains the program'’s critical loading information. It tells
Basic where the Line Number Tabie ends and where the program
staternents begin. 1t also has error checking values that will prevent the
program from loading if they are not correct.

It is possibie to recover some data if this first sector is bad, butitisa
complicated, painstaking process that does not have general pro-
cedures that can be readily followed. As | said earlier, if the Line Num-
ber Table is completely wiped out you can still recover every
statement, but you have no certainty as to what order they go in. Have
you ever written a long program where you didn’t have to edit a singie
statement or squeeze in an extra line? Not likely. If any editing was
done 1o the program, the statements will not be stored in consecutive
order. | will limit the discussion on patching Line Number Tables to

cases where the first sector is still intact.
Page 38

If the bad sector is somewherein the middle of the Line Number Table,
we can patch it just as we did the Program Statement Table. First, we
need to create a special filler sector that will replace all missing line
numbers with 0 and leave the rest of the line blank. To make this filler,
find an unused sector and repeat the byte pattern 0000 37 D7 0000 37
D7 until the entire sector is filled. Write this data to an unused disk sec-
tor and prepare to operate.

Now that the filler is created, the rest of the process is just like patching
Program Statement Tables. You create the new Btock Links and place
them in the File Directory sector in exactly the same way.

When you list the patched programs, you will see continuous sections
of 64 blank lines that are numbered 0. These sections will occur
wherever the lost lines would have normally listed.

Thats atl { have to say about attempting to fix Basic programs. While
the patching process is easy, recoding the missing section can be next
to impossible. Textfiles are just as easy to patch and far more easierto
reconstruct. We’ll look at them next.

'3-4-2 TEXT FILE RECOVERY

Unlike Basic programs files which have a formatthat is very foreign to
us, textfiles lend themselves to partial recovery. If welostone sectorof
a Line Number Table, the reconstruction is going to be tough. Butifa
single sector of a text file was lost, we would only need to rewrite a short
paragraph. This paragraph is about one sector’s worth of data.

Plus, text files are very forgiving. If we don't reword the missing sec-
tion in exactly the same language, no real harm will probably be done.
We may even improve on the content since it is our second crack at
it '

Most text files the average user will produce will likely be TiI-Writer
documents. | had a magazine article stored on a disk with files totaling
over 100 sectors. The disk developed three bad sectors in one of the
files and | felt like sticking my head in the oven. The bad sectors were
near the beginning of a 49 sector file. When | tried to load the file with
TiI-Writer all | got was the first five sectors and then the disk error
message. 1t looked like 44 sectors worth of hard work had been lost.
Luckily, | had Disk Fixer. it was this file loss that got me started on the
techniques in this bookliet.

llearned | could patch around the bad sectors and recover 46 sectors.
The lost sectors werre easily rewritten in about half an hour. If it hadn’t_

Page 39

been for Disk Fixer, it would have been no less than five hours of work.
It only took 15 minutes to patch the file.

The actual patching operatibn is just as described for fixing Basic pro-
gram files, just the filler material is different. The filler material isn't as
critical as with Basic programs. Anything that will readily show us the
lost areas will do. Personally, { use a filler sector of asterisks{*)
because they reaily stand out.

To make the asterisk filler, power up TI-Writer and type in eight lines,
each containing 32 asterisks. Save the file to disk and all you need o
do is locate the first sector of the file. Jot down the sector number and
you're ready to patch. When you load the patched file into TI-Writer,
here’s what it may like:

THE QUICK BROWN FOX JUMPS OVER THE LAZY

(2 2 23222 R XREE S ERE LI NS EXREEETREY S 8

42 232 AR X2 A2 2 X 2R YR 2R R SRR XL R R

o e ol ol o T ol ol o e e ol o e e o i o ol o el ol e ol o e e R R

(22 R 2 22T XX R LR XERER S ENE R ERXE F N

TO COME TO THE AID OF THEIR COUNTRY
3-5 HOW TO FIX A BLOWN FILE DIRECTORY

I rated this repair the most difficult because you have nothing to show
you where to begin. The sectors that make up the file could be any-
where on the disk and in any order. iIf the file is long and highly
fragmented you’ve got a tough job ahead.

If you knew the location of every sector in the file and what order they
are supposed to be in, the job would be easy. Our example will be just
such a case.

3-5-1 CONSTRUCTING TEXT FILE DIRECTORIES

Our patient is a TI-Writer file that has a blown File Dwectory Thefileis
32 sectors long (not counting the sector used by the Fite Directory) and
occupies consecutive sectors numbered >30 to >50. With this infor-
mation we can easily construct a replacement file directory by follow-
ing these steps:

1. Find an empty sector to use for the file dictionary and note its sector

number. See appendix A2 on how to read the bit map on sector O ifyou

don’t know how to find unused sectors. Fill all the bytes in this sector
Page 40 :

with OO’s.

2. We know everything required to construct the File Directory except
for one item--the contents of byte > 10. Atfirst glance, it was ditficult to
see what this byte had to do with the file contents, so { had to do
some experimenting.

It seems that this byte shows how many bytes of thefile’s last sector are
actually used. If the TI-Writer document that was saved to this file did
not exactly fill all of the 32 sectors, this byte will tell the computer how
much of the last sector contains data. How do we figure this out?

Tofind this value we need to find where the last record written to the file
ends. TI-Writer ends a file by writing a tab and margin record to the
disk. This is what we need to look for in the file’s last sector. A typical
tab and margin record will look similar to this when displayed by the
Disk Fixer:

16 80 86 80 AD 86 8B 90 95 9F A9 D5 D5 DS D& DS
D5 D5 DS D5 D5 80 86 FF

Every line of a text file has the same format and the tab/margin record
is no exception. The first character will be the length of the line in bytes
and the last character of the line will be the end of line marker “FF".

The tab/margin record is normally the last record on the last sector
and is usually followed by 00 values, but not always. I've examined a
bunch of text files and somet;mes whatseemsto be garbage will follow
the T/M record.

The easiestway tofindthe T/Mrecord isto startfrom the end of the last
sector and look backwards for the FF marker. Another sign postis that
string of D5 values. These are unused tab stops. If you find what seems
to be the T/M record, but you still have some doubt, count backwards
23 bytes from the FF. If this is a T/M record, the 23rd byte backwards
will be the value 16.

Don’tletthis scare you, the tab/margin records are much easier to find
than this would indicate. Practice finding these by examining some of
your text with Disk Fixer and soon they will jump right out at you.

IF THIS EXPLANATION HAS YOU TOTALLY LOST, YOU CAN PRO-

BABLY USE A VALUE OF FF WITH NO ILL EFFECTS. | did a little

experimenting with this and found that the files will load correctly. You

may get a little garbage displayed when you load the file back into Tl-

Writer, butit’s easy to clean it up. To be on the safe side, | recommend

deleting everything that shows up after the 1ast bit of recognizable text.
Page 41

Some of the garbage could be invisible control characters.

Getting back to our example, the value we need is the byte location
of the T/M record’s FF marker which is shown by Disk Fixer's index
scaleslocated above and to the left of the displayed sectior. In our sam-
ple case we found this value to be >8C. Now we have all the informa-
tion we need. The rest is all down hiil.

3. The next step is to construct the File Directory contents. it's best to
do this on paper and then use Disk Fixer to transter the proper values
to the File Directory sector. Here are all the values:

A. BYTES 0-9, FILE NAME: 7A 20 20 20 20 20 20 20 20 20

This sequence causes the file to be named lower case z. This should,
alphabetically, be the last file on the disk and thus will make addingthe
File Directory’s sector location to the File Index {(located on disk sector)
very simple.

B. BYTES >A-E, FILE SPECIFICATIONS : 00 00 80 03 €0
These values are always the same for TI-Writer text files.
C. BYTE >F, NUMBER OF SECTORS INFILE : 20

This value will vary according to the tile size. in our example, we have
32 sectors (> 20). Remember, we don't count the one sectior that is
used by the File Directory.

D. BYTE >10, BYTES USED IN LAST SECTOR : 8C

This is the value we found in step two. if you can't figure it out, iry
using FF.

E. BYTE >11, MAXIMUM RECORD SIZE : 50
This too, will always be the same.
F. BYTE >12, NUMBER OF RECORDS W FiLE . 20

This value varies with thefile size. For variable record length files (such
as TI-Writer output) it will be the same as the number of sectors given
previously in step 3B.

G. BYTES >13-18, FILL WITH 00’s: 00 00 00 00 00 00 00 00 00
H. BYTES >1C-1E, BLOCK LINK: 30 FO 01

This is formed just as described above in the section 3-4-1 on partial
file recovery. Block Links are explained in detail in appendix A3.

Page 42

In this example, the file begins at sector >30 and is >20 sectors long.
Since it is one consecutive block of sectors, only one Block Link is
needed. Within the file itself, sectors are numbered >00-1F. The
highest sector number contained in this block will be the last
sector, >1F.

. BYTES >1F-21, END OF BLOCK LINKS: 00 00 00

The end of the Block Link section is indicated by these 00 bytes. If gar-
bage follows these values, the file will still function. However, it'sbestto
zero out the restof the sector or you may have problemsif youincrease
the size of the file.

4. The File Directory is now complete and ready to save to disk. It's a
good idea to use the Disk Fixer Dump(D)command to check over your
work--it's awfully easy to make mistakes in altering bytes.

We’'ll assume the unused sector you've chosen is number >A. Write
the sector to this location.

5. Last step. We need to add the location of this File Directory to the
index at sector 1. This is where naming the file “z” comes in handy.
Instead of having to reorder the entire index, all we do is add 00 0A to
the end of the list:

BEFORE: 00 05 00 02 00 01 00 03 00 OO0 00 00
AFTER: 00 05 00 02 00 01 00 03 00 OA 00 00

6. Power up TI-Writer and load the file--the name will be DSKI.z
(remember to use a small “2”). If you did everything right, you should
have your file back.

3-5-2 CONSTRUCTING BASIC PROGRAM FILE DIRECTORIES

Basic program file directories are handled in nearly the same way that
text files were handled in section 3-5-1. However,Basic uses “memory
image” files rather than “record"” files, so the bytes that indicate thefile
type will be different. We only need to change steps 2 and 3; the others
are the same as in section 3-5-1.

1. See section 3-5-1

2. Byte > 10 of a Basic program File Directory has the same purpose as
in text files; it indicates how much of the last file sector needs to be
toaded. Figuring out the correct value is easier than for text files
because all Basic program files end identically.

Page 43

To find the program'’s final hyte, display its last sector and scan the
contents for the sequence 00 AA 3F FF. The byte containing 00 that
precedes the AA value is the last byte of the file. Jot down the location
of this byte within the sector and save it for step three.

If for some reason you just can’tlocate this last byte, you can get away
with using a value of FF. This will cause extra data to be loaded along
with the actual program, but Basic always knows where the program
contents start and ends by using the load data at the start of the
program.

3. Justasin section 3-5-1, we now are ready to construct the File Direc-
tory contents.

A_.BYTES 0-9, FILE NAME: 7A 20 20 20 20 20 20 20 20 20
We name the file “z” for the same reason we did in 3-5-1.

B. BYTES >A-E, FILE SPECIFICATIONS: 00 00 01 00 00
These values are always the same for program tiles.

C. BYTE >F, NUMBER OF SECTORS IN FILE: 20

Two points to remember: we don't count the sector used by the File
Directory and the count is expressed as a hexadecimal number, not
decimal. Appendix A1 gives you the conversion values.

D. BYTE >10, BYTES USED IN LAST SECTOR: 8C

This is the value we found in step two. Plug in FF if you can't figure out
the exact value.

E. BYTE >11, MAXIMUM RECORD SIZE: 00

Program files do not use records; this will always be zero.

F.BYTE >12, NUMBER OF RECORDS IN FILE: 00

Same reasoning as with byte >11.

G. BYTES >13-18B, FILL WITH 00's: 00 00 00 00 0C 00 00 00 00
H. BYTES >1C-1E, BLOCK LINK: 30 FO O1

This is formed just as in section 3-4-1._ It varies with where the file is
stored on the disk and how many fragments it is made up of.

1. BYTES >1F-21, END OF BLOCK LINKS: 00 00 00

The byte location for this will change with the number of links. It will

follow the last link and, just to be safe, you should zero out the rest of
the sector that tollows the Links.

Page 44

Steps 4 and 5 are identical to section 3-5-1. Write the File Directory to
disk and add its location to the index at sector 1.

6. Power up Tl Basic and seeif itloads with thecommand OLD DSK1.z.
If it doesn’t, check your work again.

With both text and program files, the hardest part of reconstructing
File Directories is locating all of the pieces if the file has been
tragmented. This requires expert sleuthing in extreme cases. If you
know where all the fragments are and what order they go in the restis
not too difficult.

APPENDIX A1
HEX TO DECIMAL CONVERSION

Rather than explain how to convert between these two number sys-
tems, this program will do the conversion for you. I've kept it “no frills”
so that it will be short and easy to type.

When first run, it will ask you to enter a hex nhumber and then will con-
vert it into decimal and request another number. Entering a “0"” for a
requested value will put you in the decimal to hex conversion mode.
Entering another 0" will place you back in hex to decimal
conversions.

100 REM HEXADECIMAL/DECIMAL CONVERSION
110 REM ENTERING A 0 WILL FLIP-FLOP CONVERSION
120 HCR$="0123456789ABCDEF”

130 CALL CLEAR

140 INPUT “ENTER HEX NUMBER":H$

150 IF H$="0" THEN 310

160 N=0

170 LENH=LEN (H$)

180 FOR L=1 TO LENH

190 DIG=ASC [SEG$(HS$,L,1)]

200 IF (DIG>47)*(DIG<58) THEN 240

210 IF (DIG>64)*(DIG<71) THEN 260

220 PRINT H$;* IS NOT A VALID HEX NUMBER"
230 GOTO 140

240 DIG=DIG-48

Page 45

250 GOTO 270
260 DIG =DIG-55
270 N=N+DiG*16'(LENH-L)
280 NEXT L
290 PRINT H$:*=" ;:N
- 300 GOTO 140
310 INPUT “ENTER DECIMAL NUMBER" :D
315 D=ABS(D)
320 IF D=0 THEN 140
330 DIV=0
3490 IF (D/16'DIV) <16 THEN 370
350 DIV=DIV+1
360 GOTO 340
370 D1=D/16'(DIV+1)
380 HNUMS$=""*'
300 FOR L=1 TO DIV+1
400 D1=D1*16
410 D2=INT (D1)
420 HNUMS$ = HNUM$&SEG$(HCH$ D2+1,1)
430 D1=D1-D2
440 NEXT L
450 PRINT D; ”"=";HNUMS$
460 GOTO 310

APPENDIX 2
HOW TO READ THE BIT MAP (SECTOR 0)

The bitmap is an area of sector O thatis used to keep track of what sec-
tors are in use and which are still available. When a newfile is added to
the disk, the bit map is searched for the most efficient arrangement of
seciors that wiil store the file. Then itis altered to show that those sec-
tors are nofonger available. Likewise, when afile is deleted the bit map
is changed to reflect the extra sectors that are now available for

use.

Page 46

Each sector is represented by a single bit. If the bitis a “1”, then that
gector has been used. If it is a “0’, the sector is available.

The bit map begins at byte >38 of sector 0. Since a byte contains eight
bits, eight sectors are controljed by each byte. Here is adiagram of the byte
> 38 to show how this works. Bits are numbered 0 to 7 from the left to
the right:

BIT MAP BYTE >38

BIT 01234567
CONTROLS 76543210
SECTOR

A table could be constructed for every byte to show exactly what sec-
tors it controls, but this would be a waste of time and paper since all
bytes function the same. Each byte in the bit map has a group of eight

sectors it controls. To find the first sector controlled by a byte we can
use the formula:

FIRST SECTOR = (BYTE NUMBER ->38) *8

The highest sector controlled by a particular byte is found by adding
seven to the number of the first sector.

Exampie : We need to find an unused sector on a disk. We knowthata
value of 00 in the map indicates a block of eight consecutive unused
sectors. To find out what those sectors are, we use the above formula.

In this example the byte with the 00 value is number >60. Plugging this
into the formula we get:

FIRST SECTOR = (>60->38) *8
| =>28*8
=>140
SECTORS CONTROLLED BY BYTE >60->140 to >147

It hexadecimal arithmetic makes you queasy, you can convert all the
numbers to decimal, perform the calculation and then turn the decimal

numbers for the sectors back to hex. Again using byte >60 as an
example:

>60=96 >38 =156
FIRST SECTOR =(96 - 56) *8
=40* 8
= 320
. SECTORS CONTROLLED BY BYTE >60: 320-327

Page 47

A bit map value of 00 means all the sectorsin that group are unused. A
value of > FF means all eight sectors are in use. Values falling between
00 and >FFtells usthat some sectors are used and some are still avail-
able. Here’s how to tell which are which:

Example: Bit map byte >3A contains the value >0D. First we find the
first sector controlled by that byte using the formula given above. The
first sector works out to be > 10, theretore some sectors between > 10
and > 17 are used and some are unused.

Next, we change the value >0D into binary and get 00001101. The
three “1's” show us three sectors are used. Likewise, each of the five
“0's” represents an empty sector. Going from right to left, we can chart
this section of the bit map:

USED SECTORS : >10,>12,>13
UNUSED SECTOR : >11,>14,>15,>16,>17

If you wanted to use sector >11 and wished to prevent it from being
destroyed when more files were added to the disk, you would alter the
Othatrepresentsthatsectortoa 1, changethe binary numberbacktoa
hex number and then use Disk Fixer to alter byte >3A tothe newvalue.
Let's do it: :

WITH SECTOR >11 UNUSED : 00001101=>0D
WITH SECTOR >11 USED: 00001111=>0F

Change byte >3A to >0F and sector >11 will be protected.

What if you want to figure out what part of the bit map controls a
specific sector, say sector number >227 We divide the sector number
by 8 to get a whole number and a remainder. The whole number plus
>38 tells us the number of the bit map byte that controls that sector.
The remainder, which will be between 0 and seven, tells us the
exact bit:

>22/8=4 with a remainder of 2
4+4+>38=>3C

REMAINDER 76543210
BYTE >3C coobo0*00

The asterisk (*) shows the bit in byte >3C that controls sector >22 . if
we take a blank disk and save a one line Basic program to it, byte >3C
of sector 0 will change from 00 to 04 to show that sector >22 is now
in use.

Page 48

APPENDIX 3

The information contained in this appendix may not be factual. The
actual formats of data recorded on diskettes is not published by Texas
Instruments and therefore not available for public use. The formats
described here are simply an interpreiation of the actual format andmay
not be accurate. It is however, information which you may find helpful
when using Disk Fixer to locate and recover lost data from diskettes.

Several conventions apply to the directory information.
1. All addresses and other number values are in hexadecimal.
2. A byte is an eigbt bit field and nibble is a four bit field.

3. The term ‘low order’ refers to therightmost (least significant) bit, nib-
ble, or byte in a field. The leftmost {(most significant) bit, nlbble or byte
is the ‘high order’.

4. Within a byte or nibble the bits are numbered from right to left with
the rightmost bitdesignated as bit0 and leftmostbitdesignated as bit7
(for a byte) or bit 3 (for a nibble}.

Sector 0 contains the diskette name in bytes 0-9. Bytes A and B taken
as a full word, contain the value for the total number of sectors on the
diskette. Byte C contains the value for the number of sectors per track.
Bytes D-F contain the ASCli value “DSK”. Bytes 10-13 contain the hex-
adecimal value X’20280101’ on every diskette | have examined so far.
It may be some kind of identifier. The sector bit map., which begins at
address X'38' in sector 0, is a byte oriented table where a one bit
indicates sectorinuse and a zero bitafree sector. Each byteinthemap
represents eight sectors with the low order bit representing the first
sectorinthegroupand the high order bitrepresenting thelast sectorin
the group. For example, in byte 38 bit 0 represents sector 0 and bit 7
represents sector 7. in byte 38 bit 0 represents sector 8 and bt 7 sep-
resents sector F. Therefore, when we look at the first word at the bit
map (bytes 38, 39) the bits represent, fromlefttoright, sectors 7,6, 5, 4,
3,2,1,0,F.E,D,C,B,A,9,8,. Each following word takes the same for-
mat for its group of sectors.

Page 49

Each directory entry has the foliowing format:

Bytes 0-9
Bytes A,B
Byte C

Byte D

Bytes E, F

Byte 10

Byte 11

Byte 12

Byte 13

File Name

Unknown - | hare Seen them in use.

Bit O - on = program file, off = data file

Bit 1 - on = internal format, off = display format
Bit 2 - unused

Bit 3 - on = write protected, off = not write protected
Bit 4 - unused

Bit 5 - unused
Bit 6 - unused

Bit 7 - on = variable length records, off = fixed length
records

Number of records per sector. Used onily for datafiles.
For fixed length records it is the actual number of
complete records in each sector. For variable length
records it is always 1.

Number of sectors in the file. This word value is always
one less than the file size indicated by the Disk Manager
because the Disk Manager includes the sector con-
taining the directory entry in the size.

Number of sectors used in the last sector of the file.
This byte is present only for program files and data
files having variable length records. An end sentinel is
found at the position in the last sector pointed 1o by
this value. For program files the end sentinel is X’ AA”;
for data files it is X’ FF’.

Maximum number of bytes allowed inarecord. This is
used by all data files.

For variable data files - number of sectors used for the
file (low order byte, equal to byte F).

For fixed data files - number of records in the file {low
order byte). :

Not used for program files.
For variable data files - number of sector used for the
file (high order byte, equal to byte E.)

For fixed data files - number of records in the file {high
order byte).

Not used for program files.
Page 50

Bytes 1C-1F

First byte
Second byte

Third byte

First file segment entry. Since the sectors of a file may
occupy one or more separate areas on the diskette,
each group of contiguous sectorsis represented by
the three byte file segment entry. Each file segment
entry has the following format:

-Low order byte of sector number of first in the segment.
-High order nibble (bits 4-7) = low order nibble of
number of sectors (-1) in this segment added to this
number of segments in all previous segments.

Low order nibble {bijts 0-3) = high order portion (for

sectors above X’ FF’) of sector number of first sector
in this segment.
-High order nibble {bits 4-7) = high order nibble ot
number of sectors (-1} in this segment added to the
number of segments in all previous segments. This
nibble is used only if the number of sectors exceeds
X' FF'.

Low order nibbie (bits 0-3) = middlie nibble of num-
ber of sectors (-1) in this segment added to the num-
ber of segments in afl previous segments.

The tollowing examples should make clear how this information
applies to the directory entries.

1.

4155 544F 4ACAT 4144 2020 O00C G100 0006 1700

0000 0000 0000 0000 0000 4851 0000 - This is a pro-
gram file named AUTO-LOAD.

It occupies 6 sectors, the end sentinel is X'17’ bytes into
the last sector and the tile begins at sector 148,
4120 2020 2020 2020 2020 0000 0803 0002 0050

0600 0000 DOOO D000 2210 0000 - This is a write pro-
tected data file named A. It is organized as a display for-
mat file with fixed length records of 80 bytes. ltoccupies 2
sectors with 3 records per seclor; there are a total of &
records in the file. The file starts at sector X'22°.

5649 5441 4D49 4E20 2020 0000 0202 0024 0080

4700 0000 0000 0000 0000 5030 0200 -Thisis adata
file named VITAMIN. Itis organized as an internal format
file with fixed length records of 128 bytes. It occupies 36

Page 51

NAVARONE

|

[__ %

%

I "R
. h]
L R
X L
9 "
... .
... T

Navarone Industries, Inc.
510} Lawrence Expressway, #5800
Sunnyvale, CA 94086

