DOW EDITOR/ASSEMEBEL. ER

(c) 1982 John T. Dow

For the Texas Instruments 99/4A Home Computer
with the Mini Memory Command Module

Requires TI92/4 or TIP?9/4A with cassette cable
and recorder and the Mini Memory Command Module.

Highly recommended: the Editor/Assembler Manual
from Texas Instruments.

Disk drive and printer may be used but are noaot
reguired. : .

Section
Section
Section
Section
Section
Section
Section
Section

Section

Y
b

iy
£

(o § oo CONMNTENTS
Fage

|8

Introduction « « & &« o o & = w

L

Comparison of assemblers . . .

=y

SBYMEax =« « 2 2 = a =w 2 = = = =

un

Commands n = = % = ax & =2 = = &
EDIT mode cdmmands - = e = e 10

Assembler directives . « & o . 15

Initializing the REF/DEF tabile 18

Recommended sequence - . e . 20
Calling +rom Basic “« = & & = =1
Frogram example « = & & a = = 22
Frogram modularity . . o o« o . =27
Error messSages e« « = = = & & « =1

Customizing for your equipment 2

TABLE OF CONTENTS

DOW EDITOR/ASSEMBL.ER Fage 2

INTHRODWLDICT TOm

This manual was written with the assumption
that vyou, the reader, are reasonably familiar
with assembly language on the Home Caomputer.
That is, this manual is not a tutorial, nor is
it a reference manual for the Home Computer.

You should become thoroughly familiar with the
Mini Memory Command Module®s Manual and with
the Editor/Assembler Manual, both from Texas
Instruments, for a technical description of
the computer and its instruction set.

To help you understand how to use the DOW
Editor /Assembler, read first Section 2 of this
manual to put the assembler in proper
perspective, as compared to the two assemblers
from Texas Instruments. Then read Sections 3
through & for an explanation of syntax,
commands, and directives. Sections 7 through
? give instructions for actually writing a
pragram while section 10 presents a complete
example ptrogram. Section 11 discusses how to
handle large programs. Section 12 lists and
explains the error messages. Finally, section
13 describes some minor changes you may wish
to make to customize the DOW Editor/Assembler
to your own Home Computer’®s peripherals.

Section 1: INTRODUCTION

DOW EDITOR/ASSEMBLER _ Fage =

COMFRFARISON OF ASSEMEL ERS

The DOW Editor/Assembler complements the
LLine-by—-Line Assembler and the Editor /s
Assembler praoducts Ffrom Texas Instruments.
Whichever assembler vou usea, you will need
TI"s Editor/Assembler manual as a technical
description of the Home Computer. The
differences between the three ascemblers are,
briefly:

1) The Line-by-Line Assembler uses the Mini
Memory Command Module. It runs in the
Module®s 4K RAM, using roughly 75% aof it.
It will remain in the Mini Memory Command
Module with your assembly 1l anguage
program, if vyvour praogram is small enough.
Iin addition to the manual and module, vou
only need a cassette tape recorder and the
cassette cable (so0 vyou can load the
assembler into the module’s memory.)

2) The DOW Editor/Assembler also uses the
Mini Memory Command Module. lLike the
Line-by—-Line Assembler, vaou only nead a
cassette tape recorder and cable, the
manual, and the module to use it.
However, it is in fact a Basic program,
which means that it executes out of the
16K RAM in the conscle itself. This
leaves all 4K RAM in the module available
for your assembly language program. This
also means that it has more features. For
instance, you can edit your unassembled
pragram, including operations such as
changing statements, deleting statements,
inserting new statements {(evan in the
middle of the praogram), saving the program
on cassette, and listing the program i+f
vyou have a printer. In short, you can
develap a praogram much the same way you do
in Basic, without having to type it in

Section 2: COMPARISON OF ASSEMBLERS

DOW EDITOR/ASSEMBLER Fage 4

again or patch it in hex.

The DOW Editor/Assembler will assemble all
instructions + Q- the Q9/4 or D9 /44

processoar. It also has several assembl ar
directives (DATA, BYTE, TEXT. BTXT, BSS,
ECUY . . It does not recaognize RT (use

B ¥R1l1 instead) or NOF.

=) The Editor//Aassembler does not use the Mini
Memory Command Module but has: its own
module. To use it yvou need the Feripheral
Expansion System with memory and disk
storage: this of Course makes it more
powerful than el ther of the other two
assemblers, but also it reguires
substantially more investment in computer
equipment to use it.

Section 2: COMPARISON OF ASSEMBLERS

DOW EDITOR/ASSEMBLER FPage 5

SwihNTAX

Statements are entered in standard format,
with just a few exceptions noted here.

l.abels are one to three characters: the. first
must be one of the letters A-Z, the others can
be A-Z or O—-9. There can be no more than 40
labels. A colon separates the label from the
statement.

The Fforms $+n and $-n are not allowed,
although these are typical forms for jump
instructions with other assemblers. An

example of what is not allowed might be: JIMF
$+20, meaning to jump down 20 bytes in the
program. With the DOW Editor/Assembler, all
jumps must refer to a labeled statement.

Do not use commas: use semicolons instead.
Do not use guotation marks.

Remarks on any statement are allowed,
following at least one blank space.

The assembler works with even byte addresses,
s0 there is an implied EVEN statement
following each BYTE, TEXT, or BTXT statement.

The longest statement allowed is 74
characters.

Section 3: SYNTAX

DOW EDITOR/ASSEMBLER Fage 6

COMFMMMAaD S

The prompt for a command 1is Mo e The
commands are listed and described below. '

———>8TOP

Stops the DOW Editor/Assembler.

>NEW

Initializes for a new praogram. (This need not
be done when the program is first run.)

>0LD
Restores assembly 1anguage 'pragram from
cassette. (It is not necessary to use the NEW

command first, even i1if vou already had a
praogram in memory.) Before the program is read
in, you will be shown the title +or the
program on cassette so you can verify that it
is the coarrect program. See Section 1Z if you
wish to use with a disk drive.

-——08AVE

Saves assembly 1language program on cassette.
The program remains 1in memory. The TITLE
command ies automatically called: see below.
See Section 13 if yvou wish to use with a disk
gdrive.

———=>LI8T

Lists the program and its title at the thermal
printer. The TITLE command 3is automatically
called; see below. See Section 13 if you have
a different printer.

Section 4: COMMANDS

DOW EDITOR/ASSEMBLER | Page 7

————>TITLE

Shows old title, if any, and gives vyou the
option to change it. A title is whatever you
want it to be to help to identify the program
listings. You may wish to put a revision date
-and the name of the cassette on which the
program is stored in the title. The maximum
number of characters in a title is 180.

You will be shown the previous title, if any,
with the 1label "OLD". You are then asked if
it is "OK"; if yvowu do not wish to change it,
enter “"Y'". Ctherwise the prompt "NEW" will
appear to ask you to enter a naw title.

Each LIST or SAVE does the TITLE command for
you automatically.

>L0AD hhhh

Loads the pragram at hex address hhhh.
Example: LOAD 7&00. You will be asked to
confirm the loading address before loading
starts. After the program is loaded, you are
shown the address of the next available mamonr-y
location. Note: EGQU’s at the end of the
praogram are not included when computing the
next available address. Any label errors are
found by this command. The LOAD process can
take ten minutes for a large program, s0 to

et Yy monitor the progress a “." is
displayed for each word (that is, tor every
two bytes) loaded. Bafore the first "." ig

displayed, there is a pause while the pragram
is scanned to assign locations to any labels.

There is no AORG diractive; as there is with

TI"s assemblers. The program is l1oaded
starting at the location specified by the LOAD
command. Make sure vyou gspecify an even
address.

Section 4: CDHMANDB

POW EDITOR/7ASSEMBLER Fage 8

————3 TNK nase

Calls vour assembly language program by means
aof the Basic subroutine LINK, as though vour
program were a subroutine having no arguments.
If you wish to test a program segment before
including it in a larger program, you can pass
data to and from it through specific memory
locations by using the MINI command (sea
below) . You must prepare the User Defined
REF /DEF Table, whiich starts at the location
pointed to by LFAM (701E) and ends at *7TFFF,

before vou call youwr program. (See Section
7.)

If the name specified on the LINK command is
not f ound in the table, the DOW
Assembler/Editor will abort. In that case,
vyou will have to use the Basic RUN command
again. Also, the source version of your

assembly language program will vanish from VDF
RAM, so0 prudence dictates that vyou SAVE and
LIST (i vou have a printer) youwur program
after making major changes, and that you type
the LINK command very carefully. To return
from your program, use the B ¥Ril instruction.
Make sure your program does not alter VDF
memory other than a Basic program would alter
its; this precaution must be observed so that
you can saftfely return to the DOW
Editor/Assembler.

——2>MINI hhhh

Displays or alters memory locations. Specify
the location in hex; eqg, MINI 7FF8. (Al though
- the EASY BUG program development tool
available with the Mini Memory Command Module
also allows you to display or alter memory,
vou have to wipe out the DOW Editor/Assembler
and your program in VDP RAM in order to use
it.) The display shows the location address in

Section 4: COMMANDS

DOW EDITOR/ASSEMBILER : FPage 9

hex, the value at that and the next location
{(also in hex), and prompts For your action
with "2%, You have three choices:

1) enter a period to exit from the MINI
- command.

2) just press ENTER to move down two
locations.

I enter a new value in hex or positive ar
negative decimal to replace the wvalue in
mMemory. In this case, the same two
locations are shown to you again S0 you
tan verity that the coaorrect change was
made.

You can use the MINI command to convert a
decimal value to hex. Just put the value into
some location in memory which you know can be
changed without harm.

Example: to convert 4029 to hex, do this...

————3>MINI 7200 (Assuming 7200 is frea)
27200 >hhhh 74029 (hhhh is current wvaluea)
*7200 20FBD 7. (FBD is hex equivalent)
————2EDIT

Enters edit mode, which allows yaou to enter or
change vour program’s source statements. in
edit mode, the prompt is "E->'". There are
sevei-al commands in edit mode. They are

described in the next section of this manual.

Section 43 COMMANDS

DOW EDITOR/ASSEMBLER Fage 10

EIDI T MODE COMMMAaNID S

After typing the EDIT command, you can use one
of the following commands.

1) .Y Typing a period causes Yyoul to leave

EDIT mode.

2) Fositioning and verifying commands. (The
commands are underlined below.)?

Z2a) "T" Typing a "T" repositions at location

STy sm—

QOO .,

2b) “Thhh* Typing a T followed by a
hexadecimal rnumber repositions at that
location. Example: TSE repositions at
OSE.

2c) “u" Typing'a “U" repoaositions up one line.

2d) "Un" Typing a "U" followed by a decimal
number repositions up that many
statements.

2a) "D Typing a "D repositions down one

line.

2 “Dn*” Typing a "D" followed by a decimal

number repositions down that many
statements.

2g) "V" Typing a "V" verifies the cuwrent line
by displaying it at your monitor. (The
current line is always verified after all

commands except T, U, D, and V.)
- 2h) “ya'" Typing a "V" followed by a decimal

number wverifies that many statements. The
last statement shown is the current line.

Section S: EDIT MODE COMMANDS

DOW EDITOR/ASSEMBLER : FPage 11

As a matter of convenience, two or more of
these commands may be joined together.
Any blanks between them ara usualiy
ignored. - For instance, vyou could type
"TZ2E" and "Vé&" as "“TZE V&". To determine
the last instruction in the program, type
YTFFF V*. As another example, having just
made several changes to your program, you

might want ¢to review that part with
"USY vio“.
Except for' the "T" command, the space

between commands is not necessary. i+ you
wish to Ffollow the "T" command with the
HCcHy, "D"y or "E' tomand, you must put a
AV A or a space between them because the
letters C, D, and E would otherwise not be
treated as commands but as part of the

hexadecimal number following the - "T"
command. Example: use "T18 C", ot
“"T18C". _ _

3) "X* Typing an "X" deletes the current
statement. In S0 daing, any following
statements are automatically shifted wup in
Memory.

4) ue" Typing a gquestion mark computes the
space remaining. I+ your program is large, do
this periodically. I+ the number of bvytes
remaining free goes negative, you will

probably lose your program when trylng to SAVE
it or to LOAD it. :

Section 5: EDIT MODE COMMANDS

DOW EDITOR/ASSEMBLER FPage 12

5) MC" Typing a "C" allows you to change the
current instruction. You will first be asked
for the part to be changed, then you will he

asked to indicate what shouwld replace it. in
this example, the "7 of “7&6" is changed to
"10" to make "106".

o8aA A - S | RY?; 76 R=# OF SHIFS

"E—->C (Change command.)

FR:7 - ("From" string.)

TGOz 10O ("To" string.?

08A A sL.I R?: 106 Re=# 0OF SHIFS

I+ the statement has an arror after the change
is made, the statement is restored to its
original +orm. If the change is made and the
number of locations used by the instruction
changes, any following instructions are
automatically moved up or down in Memoiry.
When entering a “"from' or "to" string that
begins or ends with one or more blanks, you
have to enclose the string in quotation marks
because2 Basic trims blanks off either end of a
string. For example, do this to put the label
TOF on a statement which does not have a

label:

FR: " " (four blanks)

TO:=TOP: {new 1label)

I+¥ you enter a null string for FR:, the TO:
string will be put ’ in front of the
instruction. If you enter a null string for

TOz, the FR: string will be deleted.

Section S5: EDIT MODE COMMANDS

DOW ERITUR/ASSEMBLER ” - Fage 153

&) MEY Typing an E puts the editor into enter

mode. This mode is used to enter (or insert)
new statements i1into your program. I+ no
statements have been entered already, it will
start at location 000. If some statements
have already been entered, the new
statement(s) will go immediately atter ,the
lagst one displayed on the monitaor. Thus, you

may enter either in the middle of the program
or at the end (but not before the first
statement). As you enter statements, any that
fOllow will be avtomatically shifted down in
MEMOE Y . |

For example:

E->E ("Enter" mode)
LOC LEL:0OFCD OFPERAND(S) (Column alignment aid.)
OSE X ' (Your pirompt)

(The » marks the position of the cursor.)

Your prompt is the three digit hexadecimal
number which is the location the instruction
will have. Each statement is always loaded at
an even address, so the number displaved is
always even.

The calumn alignment aid is a line printed to
show you in which columns you should enter the
various fields within the statement. The
"L.BL:=" shows the columns in which you put a
label and the colon which must follow it.
Enter four spaces if you do not want a label.
Under "OFPCD" you enter the operation code,
then space over to "OPERAND(S)" to type any
operands. You may enter a remark after the
operand(s), providing that vyvou leave at least
one space before it. I+ the instruction has
no operand, start the remark under or to the
right of the "“F" of “"OFERANDI(3)". Note that
vou must not use a comma or quotation marks,

Section 5: EDIT MODE COMMANDS

DOW EDITOR/ASSEMBLER Fage 14

since your input is yead as a string by the
Basic interpreter. I¥ the instruction has two
opaerands, use a semicolon for the separator.

Ta exit from enter mode, simply type a null
line. You will return to the normal edit mode
and be prompted with "E-2>",

7) YR" Typing an "RY" replaces the current
statement with one vyou type in. If the new
statement has an error and does not assemble,
the original statement is not replaced. I it
is replaced and the number of locations used
by the new instruction is different, any
following instructions are automatically moved
up or down in memory.

Section S5: EDIT MODE COMMANDS

POW EDITOR/ASSEMBLER Fage 15

aSSEMEBELLER D IRECT INVESS

These directives are entered and edited the
same way that instructions are. iL.abels and
remarks may be used.

DATA

This directive loads data into memory. Values
can be hexadecimal, positive decimal, or
negative decimal. More than one value can be
specified. Example:

DATA 2000 MASK
X :DATA >F942;—-203 1000

BYTE

This is similar to DATA except that the values
are single byte values. Example:

BYTE »FD;17

Negative decimal values are not permitted; use
the single byte hex equivalent instead. Notes
even though an odd number of bytes may be
specified, the next instruction will be at an
even address (relative to the address
specified when the program or program segment
is LOADed).

TEXT

A string of characters is loaded. The string
is set off by a beginning and ending break
character. Use any character you want.
Example:

TEXT /7HELLO/ THIS IS A REMARK
TEXT .GOOD—-BYE.

Section &: ASSEMBLER DIRECTIVES

DOW EDITOR/ASSEMEBLER Fage 16

Just as with BYTE, the next statement will
astart at an even location even if an odd
number of bytes is spéecified.

BTXT

If your program is to be called from Basic (eg
ies called wvia the LINK command), any text
characters have to be biased by >»60. The BTXT
directive is identical to the TEXT command
except that each character is biased by +&HO.,
For instance, = blank will generate >80
instead of >20.

You can reserve up tao S12 bytes of space in
yvour program with BSS. For example. to
reserve 2 words, or 4 bytes:

BSS 4

The values already in these locations are not
changed when the program is loaded.

Suggestion: for large areas of memory, Simply
decide on an area of memory and use EGU
directives to refer to it; make sure that you
do not let such data areas overlap with vyour
program or other data areas.

This directive allows vyou to use a label to
refer to an address. For instance, to load Ri
wi th the address of a particular region o+f
memory’ (say 7C00): ' '

LI R1; BUF

(other instructions here)
BUF : EQU =70C00 TEMF SCREEN IMAGE TAEBLE

Section &: ASSEMBLER DIRECTIVES

DOW EDITOR/ASSEMBLER Page 17

As another example, to call VDF Multi Byte
Write (VMBW?: :

BLWF MBW
(other instructions here)
MBW: EQU 56028 VMBW

Some advantages of using ERQU’s are:

1) There can be several references in a
program to the same value but it need anly
be defined once. This makes it easy to
change.

2) It is easier to key in the label than the
4 digit wvalue.

3) I+ you group all the EGQU’s at the end

 together, it is easy when reading the

program to see how it interacts with the

rest of the system. For instance. you can

see which utilities it uses, which regions

of memory you have defined, or which of
your own routines it uses.

4) It is easier to put a remark on one ERQU
statement to identify its wvalue than it
would be to identify the value each time
it is used.

Note that an EQU appears to occupy two bytes
of memory in your program. However, the LOAD
command does not load anything inta the Mini
Memory Command Module Ffor those two bytes.
Furthermore, if the EOU comes at the end of
the program, the LDAD process will not include
the bytes in its computation of the next
available memary location. For these reasons,
the best place for EQU's is at the end of your
program.

Section &: QSSEMBLER DIRECTIVES

DOW EDITOR/ASSEMBLER FPage 18

T HE REF "DEF T ~AaBEL =

To be able to call & program, its name must bhe
loaded into the User Deftined REF/DEF Table.
See the Mini Memory Command Madule Manual for
a description of the table.

In the two examples below, the name of the
proagram is "DEMO ", it is the only program in
the table, and the program is loaded at 73500.

Before keying in the program, if you know what
ite entry point will be you can create its
entry in the User Defined REF/DEF Table as
follows:

———3MINT 7O1E (Set LFAM to 7FF8)

*701E >hhhh 7?>7FF8 (hhhh is current value)
>70lE >7FFg8 7.

—————sEDIT

E-—>E :

LOE LBL:OPCD OFERAND(S) :

Q00 TEXT /DEMO / {(Name is DEMO)

00& DATA >7500 (EF at 7500)

008 (Just press ENTER)

00s DATA >73500 (Shows last entry)

E->. (Exit from edit mode.?

—--———2xL0AD 7FF8
ADDR = >7FF8 0OK7?Y
NEXT = >8000
——=——>NEW

————2>EDIT

E—->E

Section 7:

{L.Load into table now.)

{Get ready to enter)
(Now enter the program)

INITIALIZING THE REF/DEF TABLE

POW EDITOR/ASSEMBLER ' Fage 19

The above technique cannot be used if you have
already keyed in your program (unless you SAVE
it Ffirst). The method below may be used if
vyou do not wish to destroy your program.

The drawback with this second method is that
it requires you to know the name of your
program in hex.

~eem 2MINI 7O1E (Set LFAM to 7FF8)
>701E >hhhh 7>7FF8 (hhhh is current value)
>701E >7FF8 ~.
————>MINI 7FFB

*7FF8 Fhhhh ?7:444%5 (This loads "DE")
>7FF8 >4445 7 {(Just press ENTER)
»7FFa >*hhhh 7 >4D4F {This loads "“MO")
*7FFA F4D4AF 7? {Just press ENTER)
*7FFC >hhhh 722020 (This loads 2 blanks)
>7FFEC 2020 7 {(Just press ENTER)
*»7FFE >hhhh ?2>7300 (75000 is program’s
#7FFE >7500 72?. entry point)

Section 7: INITIALIZING THE REF/DEF TABLE

DOW EDITOR/ASSEMELER : Page 20

RECOMMFENDED SEGIUIIENTCE

Below is a sequence of instructions you might
want to follow when working on a program.
First, follow the examples in Section 7 to
make an entry in the REF/DEF table. Then
proceed as below:

) 0OLD You would do this only it your
program had been saved earlier.

B) EDIT Ta enter or change your praogram.

ey 1f vyour program is large, use this
edit command often to see how much
memory is still free. If not

enough, do rnot continue since you
may lose your program. Cut down on
remarks to gain more free space.

D} LOAD There are two reasons +for lcading
before SAVE, LIST, or LINK.
1) It might find a label error.
2 Do it right away so you do not
farget to do it later.

E) SAVE In case something goes wrong with
L INK. Pe especially careful to do
this after making many changes.

F) LIST This is always a good idea, i+f v Ou
have a ptrinter. Az with the SAVE,

do this especially after making many
changes.

G) LINK Now give it a try.

H) Go back to step B to make any changes.

Section 8: RECOMMENDED SERUENCE

DOW EDITOR/ASSEMBLER ' FPage 21

el LI NG FROMFM EBEAaDS X O

Several things must be remembered for your
program to return successfully to a Basic
program. This includes the DOW
Editor/Assembler when your program 1is «called
with the LINE command.

Make sure interrupts are turned off. That is,
if you enabled them with the LIMI 2
instruction, dissnable them with LIMI O,

Return with a B ¥R11l instructiaon. However,
if you wish to wuse register 11 in your program
(perhaps to call subroutines within vyour
program), you should Ffirst move the return
address tao some other register (or location)
and return via that register (or location).

Make sure you clear location }835C, the STATUS

bvte, befare returning. This is set by
various calls to GFLLNEK.

Section 9: CALLING FROM BASIC .

DOW EDITOR/ASSEMBLER Fage 22

FROGRaAaMM EXAMRFLE

This program demonstrates the use of Assambly
Language and the DOW Editor/Assembler to talk
to a user at the console. As such it is
representative oFf part of a larger program,
which presumably would perform computations or
elaborate graphics or sound sffects. Al though
what it does is not flashy, it shows you some
important techniques you will need to know.

Remember that vou will have to refer to both
Texas Instruments manuals to be able to
understand this program. These manuals are
the one supplied with the Mini Memory Command
Module and the Editor/Assembler manual, sold

separatel y.

After clearing the screen, the program prompts
the user for an input number with "DATA:" and
by beeping. If characters other than digits
are entered, the bad response tone is given.
Once the ENTER key is pressed, the wvalue is
stored in location >7200 and the program
returns to the Basic program which called ikt.
(You can use MINI 7200 to check what it did.)
Betore entering the program, read Section 7
for two easy methods of preparing the REF/DEF

table.

The pPrrogram is listed in parts below.
Following each part is a paragraph or more of
explanation.

DEMO PROGRAM — INFUT AND DISPLAY
INTEGER VALUE (LOAD AT 7500)

000 - LI R13766 CLEAR SCREEN
Q04 LI R2; >8080 (BLANKS)
Q08 TOFP:MOV R2;3;32BUF (R1)

QoC DECT R1

O0E JOC TOFP

010 CLR RO WRITE

Section 10: PROGRAM EXAMPLE

DOW EDITOR/ASSEMBLER | Fage 23

012 LI R1i;BUF BLANKS
016 LI R23 768 TO

O1A BLWP DMBW SCREEN.

The first two lines printed are the program
title. The program should be loaded at >73500,
as the title indicates.

The first nine instructions blank out the
screen by filling VDP locations O through 767
with blanks (>80Q). Note: >80, not >20, is a
blank because when Basic is running all
display characters must be biased by >&60. The
768 blanks are First loaded into CFU RAM,
starting at location »7200, They are then
written into VDF RAM.

The JOC operation is useful in conjunction
with DEC or DECT i+f a 1oop should continue
until less than O. To stop at 0O, use JBGT.

The «¢all “"BLWF dW" (at 010 thirough 01A) uses
VMBW ta write the 768 blanks to the screen to
clear it.

0O1E LI RO; 392 WRITE PROMPT
022 LI R1;PRO TO

026 -1 R23 5 SCREEN.

O2A BLWP DMBW

OZE LI RO; 397 INFUT POS.
032 CLR R2 R2=NUMEER.
034 MOVB R23;MOD MODE O.

038 BLWF 2GPL . ACCEPT

O30 DATA >34 TONE.

lLocations O1E to OZ2A write "DATA:" to the
screen at position 392. At O2E, RO is set to
point to the input position, which is
immediately to the right of the prompt message
on the screen. Register 2 is cleared to
accumulate the number to be entered. The o
now inm R2 is used to set the mode to O for the

Section 10: PROGRAM EXAMPLE

DOW EDITOR/ASSEMBLER Fage 24

cali to KSCAaN which follows below. At

O3ZI8-03C, the accept tone is started.

OFE LF sLIMI 2 ALLOW INTER-

042 LIMI O RUFTS ERIEFLY.

045 BLWF KEY CALL KSCAN.

04A MOVEB 3S8STAsR1 CHECK STATUS

Q4E CoOC aMSkE;R1 FOR NEW EKEY.

L 1 D JNE LF NOT YET.

The input loop starts at label LF. First,
interrupts are allowed bDriefly. This is

necessary so a tone can be generated. Then
KSCAN is called. The status byte is moved to
Ri =0 bit 2 can be tested. If it is set, a

key has been pressed. I not set., loop back
to LF. '

0S54 CLR R1 YES. .

056 MOVE R1:;2STA CILLR STATUS.

QO5A MOVE 2INF;R1 LOOEK AT IT.

OSE - SWFEB R1

O&HO (I | R1s >D ENTER?T

064 JE& END GO IF DONE.

R1 is cleared so the status byte can be reset
to O. Then the value for the key which was
pressead is moverd into R1 and swapped ta the
right., or low order, byte. At &0, a check is
made to see if the ENTER key (>D) was presseds
go to END if so.

066 AT R13;—48 NO. CHECK
O6A JLT ERR FOR DIGIT.
0&C CI R139

070 JGT ERR

072 MPY @Vi03;RZ 0K. COMFUTE
076 MOV R3I;R2 NUMBER

078 A R1;R2 IN R2.

If not ENTER, continue by subtracting >Z0 to
turn the key code into its value, if it is a

Section 10: PROGRAM EXAMPLE

DOW EDITOR/ASSEMELER | ' Fage 23

digit. (Subtract >3O0 by adding immedi ate
-48.) I+ the result is less than 0 or greater
than 9, go to ERR because it was not a digit.
If a digit, multiply the number so far {(in R2)
by 10. This puts a product in registers 22 and
3. Move the low order half of it, in R3, back
to RZ2. Then add the latest digit, in K1, to
the total, in R2Z2.

07/ Al R1; >0 NOW WRITE

O7E SWFEB R1 DIGIT TO

080 BLWF 25BW SCREEN.

Bias the digit by >60 s it can be displayed
and by >30 = 48 (because it was subtracted out
above) . In other words., add >0 to it. Then

swap it to the left byte and use VSBW to write
it to the screen.

o84 INC RO
ogse JMF LF GO FOR NEXT.

Increment the screen position pointer and loop
for another digit.

088 END:MOV R2Z3;329>7200 STORE R2.
0gCc B *R11 BACK TO BASIC.

Terminate by returning to Basic. The
accumul ated value is first stored at >7200.
It is safe to return because we cleared the
status byte aftar the last KSCAN. (I+ the
byte is not cleared, a false error can be
reported.)

O8F ERR: BLWP 36GPL ERRDK.
Q92 DATA >36 EAD TONE.
094 JMF LP

At ERR, the bad response tone is generated.

Section 10: PROGRAM EXAMPLE

DOW EDITOR/ASSEMBLER Page 2&

0926 FRO:BTXT /DATAz/

a9C MSK:DATA >2000 | MASK.

O9E V10:DATA 10 - VALUE TEN.
OAC MOD: EQU >8374 MODE.

OAZ BUF: E&GU > 7200 BUFFER.
0A4 KEY:ERQU >6020 KSCAN.

OAL STA: EGU >837C STATUS.
0A8 INFP:EGU 8375 KEY FRESSED.
OAA GFL:ER >6018 GPLLNK.
OAC SBW: ELU >6024 VSEW.

OAE MEBW: &ECU 6028 VMBW.

Finally, data and equates end the program.
The BTXT directive is used because the program
is called +From Basic. The EQU s come at the
end of the program; the next available address
reported to the programmer by the LOAD command
will be 735A0.

After entering the program (and correcting any

errors), use LOAD 7500 and LINE DEMO to run
it. {But first, SAVE and LIST.)

Section 10: FROGRAM EXAMFPLE

DOW EDITOR/ASSEMELER o FPage 27

FROGRA&ar MO AR I T Y

A restriction of the DOW Editor/Assembler is
that your ‘program must fit into 512 byte
segments. I -it is small enaugh to fit
entirely into 312 bytes, there is no problem.
That is of course 206 words, or due to the
fact that many instructions are two or more
words in length, about 150 instructions.

When you are editing your program, statements
area identified in the left margin hy theivr
relative location within the program segment.
This value can range from 000 to 1FE. This is
the 512 byte limit.

If you break a large praogram into segments,
YyOou may find it convenient to 1load the
segments at nice, even addresses, such as
7200, 7300, 7400, and =so forth. This will
make it easier to change and reload a segment,
because you simply bhave to make sure that the
last address to be loaded in each segment does
not exceeaed OFE. I+ you wish, you may allow
each segment to grow to the full size of 1FEs;
in that case, load the segments at 7200, 7400,
7600, and so on. By using these addresses it
is easy to inspect or patch the program since
the computation of the actual address (known
as the absolute address) consists of adding a.
value such as 7200 to a two or three digit
relative hex address such as >1Bé.

Each time vyou l1lbad a segment into the Mini
Memory Command Module’s 4K RAM, it will stay
there indefinitely. This means that you can
load the segments as you write and test them,
even if this process is spread cut over hours,
days, or weaeks. ' ' |

In order for this type of program writing to
wor k aell, vou have to design your large

Section 11: FPROGRAM MODULARITY

pDOW EDITOR/ASSEMBLER Fage 28

program sa that it consists of meaningful
modul es. (Here the, term "module" refers not
to "Command Modules” but to software modules.
or program segments.) It is important that
each module make sense by itself. That is, do
not simply divide a large program into chunks
of approximately 512 bytes each.

The various modules of your program are like
building blocks. Each should be strong.
Strength means that everything in the module
belongs tagether for logical reasons.

it is also important that the links between
the modules are not strong. Modul es are
weakened when things which should be together
in a module are distributed throughout more
than one. They are also weakened by having to
share too much data. Ideally, when one module
calls another, as little information as
possible should be passed because this makes
each module easier to understand, to write,
and to test by itself.

Data may be passed (or shared) between modules
by uwusing E@QU's to define the same areas in
memory, but try to keep the number of
locations to a minimum and use each location
consistently in all modules. Try to pass all
information through registers if possible.

Above all., do not have one module “know" how
another works. Each should be treated as a
"black box" which performs according to
external specifications. You shouwld be able
to write and test your modules independently.

A large program that is written by this type
of modular approach is much more apt to work
than if it is developed as one very large and
very complicated program. '

Section 11: PROGRAM MODULARITY

DOW EDITOR/ASSEMELER Fage 29

When a large program is broken into modules,
you have to specify how to get from one to the
other. A good overall scheme is to think of
one of the modules as a main program. The
main program contains the overall 1logic and
makes it happen by calling uwpon subprogram
modules, using the BL instruction. Thus, by
reading just the main program you can check
the sequence of major events in your program.
Use the EQRU directive to enable the main
program to refer to the subprograms. The
subprograms should be loaded at nice locations
(such as 7400) with the very first location of
each being the entry point. In this way the
EOU*s in the main program will have wvalues
such as 7400, 7600, etc.

In addition to a main program and subprograms
(each of which may only be called once from
the main program), you might want to write a
number of functions or subroutines. Usually
these are rather small and well defined
routines that are used a number aof tiames.
Examples would be generating a seguaence of
tones or clearing the screen. You could put a
number of these together into one module — a
subroutine library. This reduces the number
of cassette tapes needed to save them. it
also makes it easy to pack them into a block
of memory. To do this neatly, you should
build a “transfer vector" into the front of
the library module.

Section 11: FPROGRAM MODULARITY

DOW EDITDR/QSSEHBLER _ FPage 30

The example below shows the outline for a
module haviing several library subroutines
(SIN, C0OS, and TAN):

JMF SIN (This is the
JMF cos transfer
JME TAN vector.)
SINz.u. (Do SIN hetre)
BL ¥R1i1 (Retwn)
COSz... . (Do COS here)
BL. ¥R11 (Return)
TAMZ o = « (Do TAN here)

BL XR11 (Retuirn)

Let us assume that this module has been loaded
at 7000, A program needing to use SIN, £0s,
or TAN would equate them as follows:

SIN:EQU 7C00
COs:EQU 7C02
TAN: EGU 7C04

Because the Mini Memory Command Module will
hold your subroutine library indefinitely, you
can build it and test it, then use it again
and again within one program. You can
continue to use it even if vou write different
programs at different times, as long as you do
not reuse the same memory space.

Section 11: PROGRAM MODULARITY

DOW EDITOR/ASSEMBLER "FPage 31

ERROR MESSAGES
A "bad response” tone is given for all errors.

1) Commands and instructions. You will see
YERROR" displaved. AN P arrow nesw is
displayed under the point where the etrror was
discovered. This is usually at or immediately

to the right of the offending character.

2) A BSS statement that implies an address

past the 312 bvyte program liamit is indicated
with a """ after the byte count vou entered.

3} If the break_character is not found for

TEXT or BTXT, the """ is displayed under the
first break character.

41} OVERFLOW You get this when editing and you
try to enter bevyond location 1FF. You also
get it by entering or changing an instruction
which would cause the last instruction to go

past 1FF.

=) When using the "C* command in edit mode, i+
the "from"” string is not found, you will be

told ®NOT_FOUND".

&) When loading, either an undefined 1label or

a multiply defined label is reported by:
Z“.ERR{ _LBL xxx AT hhh” '

where xxx is the label and hhh is the relative

location where the error was discovered. The

load process stops when the error is

discovered.

7) A statement that is longer than 7&6
characters on entry (or after being changed)
is reported as "TOO LONG".

Section 12: ERROR MESSAGES

DOW EDITOR/ASSEMBLER FPage 32

CUSTOMMI ZIRNG

You can use a printer other than the Texas
Instruments Thermal Printer (TF). For
example, i+ vyou have the Texas Instruments
Impact Frinter, change the TP in statement
1650 to RS2Z2.BA=4800 (assuming that you have
the baud rate set at the recommended 4800).

If vyou have a disk drive and wish to load the
DOW Editor/Assembler from disk, be sure always
to type in the following statements before
loading it:

CALL FILES(1)
NEW

Al so, to use with a disk drive., yvou must
change the value 3300 in statement 1510 to be
22503 this reflects the loss of memocry due to
having the disk drive on. You will see this
loss when vyowu use the "M command in edit
mode.

If vou wish to save and load your assembly
language programs on disk, insert these two
statements:

2219 INPUT “FILE=":FILES$
2369 INFPUT "FILE=":FILES$

Then change il =5 B {(including the qquotation
marks) to FILE® in statements 2220 and 23I70.

To list to a disk file (so you can read it
with the editor in TI’s Editor/Assembler),
change "TF" in statement 1650 to FILES and

insert:

1649 INPUT "“FILE=":FILES

Section 13: CUSTOMIZING FOR YOUR EQUIPMENT

