s '

s

i

%f*{
e

AE
1*.:;;1;: s
:

-

7

S

.

-
.

7
/ %
/{///// S

fﬁ{{
o .

’;i/

35;,;'5“

.
7
)

S

e e e e HERTEE R it R e
2w
T

NIGHT MISSICN

Book Written By

Craig G, Miller

Program Written By
Mike S. McCue

&
Craig G. Miller

Copyright 1985 by Millers Graphics

The Information contained in.this book is subject to
change without notice.

Millers Graphics shall not be liable for technical or
editorial errors or omissions contained herein; nor
for incidental or consequential damages resulting
from the furnishing, performance, or use of this
material or product described by this manual.

This book contains information protected by
copyright. All rights are reserved. No part of this
manual may be photocopied or reproduced in any form
without prior written consent from Millers Graphics.

Night Mission Software and Associated Book
(Printed in the United States of America)

Copyright 1985
by
Millers Graphics

1475 W. Cypress Ave.
San Dimas, CA 91773

Dedicated to the
menmory of

Patrick McCue

TABLE OF CONTENTS

Loading Night Mission into Your System ...cvevvennces 1
The Game Documentationiviesesssvsssscssassnsnses 4
The Power of AND ...vvivivacasassssnasnsscsssasannsse O
The Characters ..ovvececerosassssccesaservacvecasanss 15
The Variablescceceviioveeivcanssuetasnssssnnsenees 20

The Progran FlOW ..icaesssssenssssssnnsssasansusannne 2F
10 = 210 Start & Title Scoreen ..viecessvacaneas 23

220 = 290 Hestart & Game OVEr ...ciicinvaasanecss 33

300 - BO0 Rockets or Planes Screen (..cvieessaes 35

410 = 560 Enemy chOpper SCreell .cecssssasaarsass 41

570 = 730 Ship SCreeN vveeescsevtsasessnssssnese 47

TUD = 1120 Tank SCPEEIN vivsiitssacsescsaacssnssss 53
1130 = 1170 Laser Fire .vesesensnrasssnnassssssnss BT

Call Peek and Call Load .eeecvcncee fesectntascascennne 68

APPENDIX - Program Listings

- Cassette Joystick ..iiieevesnsnnerrnnennnssas 11
- Disk 'LOAD'EP L A S BN B BT R R A NN Y B B N Y N R N R A) 711
- Disk Keyboard ..eisssnvsessravssntassasssons 12
Disk JOYSEICK wevivesnnosssvesssssensssassss 10
~ B x 8 Character Diagramsscccevseeeassose 81
= 16 x 16 Character Disgrams ...ieriacsarerses 83

g Qe
1

LOADING NIGHT MISSION INTO YOUR SYSTEM

The cassette that comes with the book contains 5 programs on it. Two on the
Cassette side for cassette based systems and three on the Diskette side for
disk based systems. The following pages will guide you through the steps
necessary to load the proper version in your system.

CASSETTE BASED - Joystick version

1. The first program on the Cassette side of your cassette is the
Joystick version of Night Mission. Load the cassette so that the
Cassette side is ready to be played, type in RON "CS1"™ and press
ENTER.

2. Follow the instructions on your sc¢reen for loading the program.

3. The documentation for the game is in the next section of this book.

4, It is recommended that you run this program a few times to get
familiar with it before you read through the "PROGRAM FLOW™ section.

CASSETTE BASED - Keyboard version

1. The Keyboard version of Night Mission is the second program on the
Cassette side of your cassette. You must advance the tape past the
first program, which is the Joystick version, to the start (long
continues tone) of the Keyboard version. You may have to unplug the
PAUSE and EARPHONE jacks form your cassette before you press PLAY in
order to allow you to advance the tape and hear the tones.

2. After you have found the beginning of the Keyboard version (second
program) on the Cassette side plug your PAUSE and EARPHONE jacks back
into your recorder. Now type in RON ™CS31" and press ENTER.

3. DO NOT REWIND THE CASSETTE as it says on the screen just press ENTER.
Now you can follow the rest of the instructions on the screen for
loading the program.

4, Now would be a good time to record a backup copy of this program on a
blank cassette., By doing this you will not have to find the beginning
of the keyboard version each time you load it.

5. The documentation for the game is in the next section of this book.

6. It is recommended that you run this program a few times to get
familiar with it before you read through the "PROGRAM FLOW" secticn.

————————

DISKETTE BASED - Loader, Joystick & Keyboard versions

1.

Install a blank, freshly initialized diskette into disk drive 1 in
your system and then select EXTENDED BASIC.

The Disk based versions of Night Mission are on the Diskette side of
the cassette tape. Thils program was too large to load inte a Disk
based system without Memory Expansion, so we divided it into sections
to allow it to fit into a 16K =ystem. Even if you have Memory
Expansion the program would be in a INT/VAR254 file type instead of a
PROGRAM type and it would take longer to load. The first program on
the Diskette side 1s the Loader program., This program initializes the
characters and screen, displays the title screen and generates a
menu. The menu allows you to select the Joystick or Keyboard version
and then loads and runs that version. Load the cassette so that the
Diskette side is ready to be played, type in OLD CS1 and then press
ENTER.

Follow the instructions on your screen for loading the program.

After the program has been loaded, type in SAVE DSK1.LOAD and press
ENTER. You have now saved the first part of the disk based progran.
By saving this part of the program under the name of LOAD it will
automatically be lcaded and run whenever this diskette is placed into
drive 1 and you select EXTENDED BASIC.

Now we are ready to load the Joystick version of Night Mission. The
disk based version differs from the cassette based version in that
the character definitions have been removed from the main body of the
program &and placed into the LOAD program. By doing this we were able
to free up a lot of RAM and keep the file in a PROGRAM format, which
allows it to be run without Expansion Memory. Type in OLD CS1 and
press ENTER. .

DO NOT REWIND THE CASSETTE as it says on the screen just press ENTER.
Now you can follow the rest of the instructions on the screen for
loading the second part of the disk based program.

After this portion of the program has been loaded type in SAVE
DSK1.NMJOY and press ENTER. It is important that you save this
portion under the name of NMJOY because the LOAD program will search
for a program named BMJOY to load and run from drive 1 when you
select the Joystick version from the menu.

DISKETTE BASED - Continued_

8.

i0.

1.

12.

Now once again type in OLD CS1 and press ENTER to load the Keyboard
version. DO NOT REWIND THE CASSETTE as it says on your screen just
press ENTER. Now you can follow the rest of the instructions for
loading the third and final part of the disk based program.

After this portion of the program has been loaded type in SAVE
DSK1.NMKEY and press ENTER. It is important that you save this
portion under the name of NMKEY because the LOAD program will search
for a program named NMKEY to load and run from drive 1 when you
select the Keyboard version from the menu.

When everything is saved to disk you can type in RUN "DSK1.LOAD™ to
start up the Night Mission Game. You c¢ould also type in BYE and then
select EXTENDED BASIC from the menu and Night Mission will
automatically load and run.

The documentation for the game is in the next section of this book.

It is recommended that you run this program a few times to get
familiar with it before you read through the "PROGRAM FLOW! section.

THE GAME DOCUMENTATION

YOUR MISSION:

To rescue as many men as poasible from the hostile enemy territory
and bring them safely to the ship waiting offshore.

THE HAZARDS:

This is a covert action. You will be working entirely on your own.
If you should get caught we will disallow any knowledge of your
actions. The territory is fully protected by enemy tanks, rockets,
Jet planes and choppers. Your chopper c¢an only hold 5 men at a time
50 you will have to make a number of trips to the ship. The first
trip will be fairly easy but on the following trips they will be
aware of your presence and they will try barder tc stop you. Good
Luck.

TANK SCREEN:

This screen has an enemy tank rolling along the bottom of the screen
Just above the closed missile silos., Your helicopter will come into
play from the left hand edge of the screen, above the hills, on a
starry moonlit night.

When you land on the ground a man will come running out from the
left hand edge of the screen toward the helicopter. When he reaches
your chopper he will ¢limb aboard and your chopper will lift off.
After you have picked up your fifth man you will move on to the next
screen,

Watch out for the enemy's tank since it can shoet down your chopper,
but you can also shoot back to protect yourself and the man on the
ground. When your chopper has landed on the ground don't let it get
too close or it will destroy the chopper and the man.

On this screen, the keyboard version uses the arrows keys (ESDX) to
move your chopper in the appropriate direction and the V key to fire
your lasers while you are in the air. The E or up key will also 1lift
your chopper off the ground after it has landed.

In the joystick version all four directions are active on the number
one joystick and they will move your chopper in the appropriate
direction, The diagonals are also active but they react as a left or
right motion. The fire button will fire your lasers while you are in
the air.

———

LEVELS:
The order in which the other screens come up i= determined by the
number of successful trips you have made. Each time you
successfully deliver five men to the ship the level of difficulty
will increase. The difficulty is increased by adding more screens
for you to go through before reaching the ship and by increasing the
speed of the tank, planes, and rockets. The order of screens on each
level is as follows:
1at Level - Tank screen - Ship screen
2nd Level - Tank screen - Enemy rockets or planes (randomly

chosen) -~ Ship screen
3rd and up - Tank screen - Enemy rockets or planes -
Enemy choppers - Ship screen
SHIP SCREEN:

On this screen there is our offshore ship waiting for you to deliver
the men in your chopper. The ship will be moving at a random speed
from left to right. Your job is to GENTLY land your chopper on the
landing platform on the rear of the ship. If you land toc hard or
land on any other part of the ship it will sink and al] hands will
be lost and so will all the points you have accumulated for the men
you previously delivered. If you touch the water, your helicopter
will sink and you will not receive any points for a safe delivery.
Unlike the First screen in which you have one forward and one
reverse speed for your helicopter, on this screen you have three
forward and three reverse speeds.

{TIP: lower your chopper until it is about level with the landing
platform and then ease into the ship from the rear.)

In the keyboard version the arrow keys (ESDX) are active. E will
make you fly up and X will fly you down. S and D will change your
forward or reverse velocity.

In the joystick version all four directions are active. The
diagonals are also active but they react as a left or right joystick
motion.

ENEMY PLANES:

On this screen a number of enemy planes will come on screen from the
right hand edge and travel from right to left at various speeds.
Your mission is to maneuver around the planes and fly your chopper
from the left hand edge of the screen to the right hand edge. If you
make it safely there you will move on to the next screen.

In the keyboard version the arrow keys (ESDX) are active. E will fly
you upwards and X will fly you down. D will increase your forward
motion slightly and S will bring you to a stop.

In the joystick version up and down will fly you in the appropriate
direction. Right will increase your forward motion slightly and left
will bring you to a stop.

ENEMY ROCEETS:

On this screen the rocket siles will open up and the enemy will
launch a continuous barrage of missiles into the air. Your mission
is to safely fly your chopper through this barrage from the right
hand edge of the screen to the left hand edge. If your mission is a
success you will move on to the next screen.

The *keyboard and joysticks react the same as they do on the Eneny
planes soreen.

ENEMY CHOPPERS:

On this screen your chopper will appear from the top left corner of
the screen and will move in a downward motion. The enemy chopper
will appear from either the top or bottom right hand corner of the
screen and will move to line up with you. Your mission is to destroy
an unknown number (3-9) of the enemy choppers before they destroy
you. In this screen your chopper can move up, down or stay
stationary. You are not allowed to move forward or backwards.

In the keyboard version the arrow keys (ESDX) are active and the V
key will allow you to shoot at the enemy. The E key will fly you up
and the X key will fly you down. The S and D keys will stop your
motion.

In the joystick version all four directions are active. Pushing the
stick up or down will fly you in the appropriate direction. Pushing
the stiek right or left will stop your motion. The fire button will
allow you to shoot at the enemy chopper.

————————

POINTS:

MEN - Each man you safely deliver to the ship will add 500 points to your
score. Total of 2500 points each time you land on the ship.

TANKS - The points for destroying the enemy tanks is determined by your
height above the ground. You will receive 500 points for each tank
you destroy frem the top of the screen and the points will diminish
the closer your chopper is to the ground,

ENEMY - You will receive 250 points for each enemy chopper you destroy.
CHOPPERS

BONUS (Free Plays):

For every 10,000 points you rack up you will receive one extra
helicopter which will be awarded toc you after you have lost your
first five choppers.

SCREEN SCORE DISPLAY:
A BEB cceccececec DDD

Men in your helicopter.

Total men safely delivered to the ship.
Total peints accumulated.

Remaining helicopters. (5 to start)

oo

Good Luck. If you find the game to be too hard you could use the
information contained in "The Program Flow" to help you make it
easier.

THE POWER OF AND

One of the most powerful and versatile functions in Extended Basic and many
other languages is the logical expression of AND. Unfortunately it has also
been one of the least explained functions. In the TI Extended Basic manual
they devote all of two and a half confusing pages to the logical expressions
of AND, OR, XOR and NOT. This is also true for most of the other computer's
basic manuals.

So a few years back we decided to find out all we could on this mysterious
unexplained funetion. After much research and a number of bocks on Boolean
Algebra and Boolean Logic we ended up more confused than when we began since
most of the material did not deal with the subject on a computer level.

Well it was now time to tackle this subject on a purely experimental basis
with Extended Basic. After many weeks of testing, trying, discovering and
failing the answers finally became understandable and explainable in plain
english. So now we would like to share our understanding of the use of AND
on direct numbers with you.

You are all probably familiar with the use of AND with two relational
expressions such as: IF A=1 AND B=2 THEN.,.... 80 we will not discuss this
use. We will instead discuss the many uses of AND on direct numbers such as:
C=C+1 AND 7 or C=C AND 32767 or IF C AND 1 THEN...... Used in this form
AND works fast and usually reduces the amount of code, or bytes, in your
program.

To start with lets look at a few of the possible uses of AND in your
programs:

1. Very good for auto-reset counters that never increment beyond a
certain value,

2. It can be used to easily determine if a number is 0Odd or Even.

3. Excellent for small pseudo random numbers when sprites are in motion
and your program uses CALL POSITION.

3, Very good for conserving on the total number of variables in your
program when you are using the variables as flags or condition
indicators.

5. It can be used to easily round off a floating point number into an
integer.

6. Easily converts Lower case to Upper case or visa versa.

M

Lets look at this function on a Binary level and then we will discuss the
rules and some examples for its use, When you use AND on direct numbers you
are actually comparing bits at the binary level. If a certain bit is on in B
and the same bit is on in C then, when you AND these two (PRINT B AND C)
that bit will be on in the result. If a certain bit is on in B but off in C
it will be off in the result, So the number cne basic rule is:

ON Bits that matech in the two numbers will be ON in the result.
and
OFF Bits in either of the two numbers will be off in the result.

It might help to think of the use of AND as a filter that only allows ON bits
that match up to pass through it for the result.

birary
Examples: 4 AND 7 4 = 00000100
7 = 00000111

4 AND 7 Result 00000100 or 4

00001001
00000111
00000001 or 1

9 AND 7 9

-1
nm unn

g AND 7 Result

From the above example we can see that when a number is ANDed to 7 the result
can never be greater than 7 since the higher value bits are off (xxxxx111).
This is true for any possible ANDed value within the valid range. On the TI
in Extended Basic the Valid range is -32768 through 32767. Lets take a look
at the value of each bit in a 16 bit 2's compliment binary number.

Bit No. 15 14 13 12 " M 9 8 7 & 5 4 3 2 10
Value sgn 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

These values can also be thought of as Binary Powers. If you raise 2 to the
bit number the result is the Value displayed above.

Examples: 20 -1 2V -2 22 =y ceans 212 4096 etc.

so if bits 0,1 & 2 are on (00000111) then the decimal number is: 1+2+4 or 7
If bits 0,2,3 & 5 are on (00101101) then it equals: 1+4+8+32 or U5

When Binary numbers are used in 2's compliment form like in Extended Basic
the highest order bit, or in this case bit 15, is used as the SIGN bit. This
bit tells the computer that the number is a positive value when it is off or
that it is a negative value when it is on. We will talk more about 2's

compliment Binary numbers a little later. So with these items in mind lets
lock a little deeper into this subject.

‘——————

As we saw earlier the decimal value of 7 is 00000111 in binary and this will
mask out any values higher than 7. This is also true for any other value in
the valid range but some value serve this purpose better than others. We have
found the values that best serve this purpose are the ones that are 1 less
than a Binary Power.

Examples: 8-1 =17 16 = 1 = 15 e 1066 - 1 = 4095 ete,
T = 0000000000000111 15 = 0000000000G01111
4095 = 0000171111111 1111

As you can see when you subtract 1 from a Binary power ALL of the lower bits
are turned ON. This allows any value up to this number to pass through the
filter but never a larger number. With this in mind lets look at a few
exanples:

1. Very good for auto-reset counters that never increment beyond a
certain value.

Many times in an Extended Basic program you may need a counter that counts up
to a certain value and resets itself. In normal Extended Basic code this may
look like this:

B=B+1 :: IF B=8 THEN B=0

By using AND with a number that i1s 1 less than a Binary Power we can reduce
the code and speed up the program by using:

B=B+1 AND 7

Since 7 is one less than a Binary Power and since we are using AND in this
statement it will only allow the counter to count to 7. When B+1 becomes 8
the AND function will automatically reset B back to (because higher values
are filtered or masked out. This type of counter can be used with any Binary
Power minus 1 (ie: 1,3,7,15,31 16383 or 32767} and it will never count
past your AND value.

2, It can be used to easily determine if a number is 0Odd or Even.
Using this same principal we can use AND to determine if a number is 0dd or
Even. An 0dd number will ALWAYS have Binary bit 0 set and an Even number will
never have bit 0 set since the bits represent powers of 2. With this in mind
we could replace the following Extended Basic code of:
IF B/2-INT(B/2) THEN the number is odd
with
IF B AND 1 THEN the number is odd

Note: The statement IF B AND 1 returns the same true false condition as

IF B AND 1<>0., This is also the same for IF C or IF C-1 ete. This

type of statement is TRUE whenever the result of the test or variable
IS NOT ZERO.

i e E—

3. Excellent for small pseudo random numbers when sprites are in motion
and your program uses CALL POSITION.

Whenever you have sprites in motion and your program uses CALL POSITION you
can use AND to rapidly generate small pseudo random numbers especially if the
player has control over the sprites movement. Since sprites are only allowed

to have row and column positions from 1 through 256 you can easily AND their

position with any value less than 255 to obtain a pseudo random number.

Example: CALL POSITION(#1,X,Y¥):: IF Y AND t THEN By trying different

AND values you can get a variety of random numbers or decisions from a

sprites position. Here is a little Extended Basic program that displays the

different possible combinations and also shows you some of the value patterns

generated by AND:

100 CALL CLEAR :: INPUT %“Sta
rt at what AND value ":V ::
INPUT "Loop from zero throug
h ®:L

110 FOR V=V TO 255 :: PRINT
s " ¥y=%:;V :: FOR I=0 TO L
1t PRINT USING m™¢## AND ###
= ###":I,V,I AND V

120 CALL KEY(0,K,S):: IF S T
HEN GOSUB 140

130 NEXT I :: NEXT V :: END

140 CALL KEY(0,K,8):: IF S=1
THEN RETURN ELSE 140

After running this program for a little while you should notice that Even
numbers and 0dd numbers that are 1 less than a Binary Power generate nice
regular patterns. Other 0dd numbers also have set patterns within a group of
numbers but they are not as regular and they do not automatically increase as
the value increases.

So by using a value of 1 for AND you can get a random 1 or 0 for any sprite
position. If you use a value of 3 you can get random values of 0,1,2 or 3. A
value of 6 will return random numbers of 0,2,4 or 6 for any sprite position.
The value of 8 returns 0 when the sprite is located in an 0dd numbered
Graphics column (1-32) and 8 when the sprite is in an Even numbered Graphics
column. This method of generating small pseudo random numbers in Extended
Basic is much faster than the REND function.

Note: After playing with AND in the above program change the two references

to AND in line 110 to XOR and then change them to OR to see how these
logical expressions work with direct numbers.

i T ——

4., Very good for conserving on the total number of variables in your
program when you are using the variables as flags or condition
indicators.

When you use variables as Flags or Condition indicators in your program you
can easily replace up to 15 variables with just one Flag variable. A Flag is
a fancy term for a varlable or bit that tells the program a certain condition
exists or doesn't exist (on or off), For example, this condition could be
anything from OUTPUT TO PRIKTER to the fact that a certain For-Nexi Loop was
just executed so the program needs to do scmething else before the loop is
executed again. Lets alsoc say that you are using a flag variable to tell your
program that the user has a Color or B&W monitor. So, for this example lets
say that normally you would set B=1 to send the Output to the printer, you
would set C=1 when something else must be executed before the loop is
executed again and you would set D=1 for a Color monitor. The parts of your
program that may use these Flag variables may look something like this:
160 IF D=1 THEN CALL COLOR(x,x,x) ELSE CALL COLOR(y,y,¥)

230 IF B=1 THEN PRINT #3:A$,B$
240 PRINT A$,BS

400 IF C=1 THEN RETURN
h10 FOR I=1 TO 20 :: ...evevue. 23 NEXT I :: RETURN

As you can see we are using 3 variables as flags in this program example. By
using AND, OR, XOR and NOT you can reduce this to one variable and just test
to see if ceratin bits are On or Off for your flags. This method also allows
you to test multiple conditions or flag bits in one operation,

First lets map out the values of those bits again:

Bit No, 15 14 13 12 1% 10 9 8 7 6 5§ y 3 2 t 0
Value sgn 16384 8192 4096 2048 1024 512 256 128 64 32 16 B 4 2 1
You can turn ON any of the 15 bits (0-14) with the OR funetion without
worrying about the status of the other hits. Example: F=F OR 4. This turns on
bit number 2 without affecting the other bits.

You can test any bit with the AND function. Example: IF F AND 4 THEN ... bit
number 2 is on.

You can turn OFF a bit with the AND and NOT functions. Example F=F AND NOT 4
{which is the same as F=F AND =5) This turns off bit number 2 without
affecting the other bits.

And, you can turn ON a bit that is OFF and turn OFF a bit that is ON (toggle
the bit to its opposite state without knowing the state) with the XOR
function, Example: F=F XOR 4. This will turn OFF bit 2 if it is ON and it
will turn ON bit 2 if it 1is OFF.

] TEEEE——

With this in mind lets put it to work in the previous example program but
first we will map out our Flag variable F.

QUTPUT = Set equals Output to printer
NOLOOP = Set equals Don't execute loop
COLOR = Set equals Color Monitor
Bit no. 15 === 3 2 1 0
Valug = —=cerew- 'l 2 1

Condition not used COLOR NOLOOP OUTPUT
0ld variable D C B

And now lets apply them to the previous program example but now we only need
cne flag variable.

160 IF F AND 4 THEN CALL COLOR(x,x,x) ELSE CALL COLOR(y,¥y,¥y)

-

230 IF F AND 1 THEN PRINT #3:4%,B$
240 PRINT A4,B$

400 IF F AND 2 THEN RETURN
410 FOR I=1 TO 20 :: «eevecesss $: NEXT I :: RETURN

In your program the IF F AND 4 statement uses the same number of bytes as IF
F=1, However, since we have eliminated 2 other variables (flags C & D) and
replaced B with F we have reduced the running size of the program. Also, the
fewer the variables in your program the faster it runs! If your program had a
few more flag variables in it they too could be eliminated by assigning theilr
flag condition to one of the unused bits in F.

When you want to test for more than one condition at the same time simply add
up the values for the bits you want to test and perform your AND and compare
the result to the total value. Example:
IF F AND 6=6 THEN both the COLOR and NOLOP bits are set
ELSE one or none of the bits are set.

This type of multiple testing replaces the normal code of:
IF D=1 AND C=1 THEN both conditions are set.

To replace the normal code of IF D=1 OR C=1 add up the bits again but do not
compare the result of AND to the total. Example:
IF F AND 6 THEN both or either bit could be set
ELSE neither bit is set.

Mo

5. It can be used to easlly round off a floating peint number into an
integer. '

Since the logical expressions of AND, OR XOR and NOT work on binary integers
you can use AND to round a floatling point number into an integer. Normally
your code to perform this may look like:

B=INT(B+.5)
By using AND you can save 3 bytes and slightly speed up your program by
replacing the above code with:

B=B AND-1
This forces the computer do the rounding internally for you ac it can operate
on an integer. When you use this method your floating point value must be in
the range of =-32768.5000 through 32767.4989.

We used the AND value of -1 because -1 is the same as NOT O or ALL BITS ON.
With all the bits turned on, your AND or filter allows all bits to pass
through it and just return the result of the computer's internal rounding.

Tou can carry this one step further and use it to round for dollars and cents
or any number of decimal places you want. For example, the normal code used
to round to 2 decimal places of:

B=INT{B*100+.5)/100
Could be replaced with:

B=(B*100 AND-1)/100
But this makes the valid range limit ~227.6850 through 327.6749 since we are
multiplying by 100 before the AND is executed. Also, this method only saves 1
byte and with all the other floating point operations in this statement the
time saved is very slight. So, we recommend that you only use this method of
rounding for obtaining integers and not for rounding to decimal places.

6. Easily converts Lower case to Upper case or visa versa,

To convert lower case or uppercase to uppercase value just AND it with 95.
Example: 97 AND 95 returns 6% 65 AND 95 also returns 65.
a A A A

To convert uppercase or lower case to lower case value just OR it with 32.
Example: 65 OR 32 returns 97 97 OR 32 also returns 97,
A a a a

To exchange case, upper to lower & lower to upper, just XOR it with 32.
Example: 65 XOR 32 returns 97 97 XOR 32 returns 65.
A a a A

One practical application for this is with CALL KEY statements. Example:
CALL KEY(0,K,S}:: IF K AND 95=89 THEN Y or y was pressed.

However, on the 99/4A, TI gave us a CALL KEY that only returns uppercase
values so, CALL KEY(3,K,S):: IF K=89 THEN works the same as the above
example and K will equal 89 whether Y or y was pressed.

We hope that the previous pages have helped shed some light on the potential
uses for AND, OR, XOR and NOT, With a little experimentation in your programs
you may find many more areas that these logical expressions can be used to
help speed up your programs and save a few bytes of code.

e

THE CHARACTERS

Character Set 1

32
33
34
35
36
37

38
39

Character Set

ko
41
42

43
By
15
16

LY

Character Set

48
49
50
51
52
53
54

56

Space character

Solid block for foreground

Top of the water

Closed and Open Missile silo

36-39 Tank fire - sprite

LU AR I R B A O
ser e v s

L RN

2

Solid block for hills

(not used)
{not used)
{(not used)
Hill
Hill
Hill

Hill

3

Chars 48 thru 57

are

redefined as slanted

numerals.

Character Colors
Tank R&P Ship

11,1 i1,1 5,1

Sprite Colors

9 — -

Character Colors

Tank R&P Ship

11,1 11,1 1,1

Character Colors

Tank R&P Ship

15,1 15,1 i5,1

EC

1,1

EC

1,1

EC

15,1

e

Character Set 4 Character Colors

56 _EI' 8 Tank R&P Ship EC
57 EI 9 15,1 15,1 15,1 15,1

58 {not used)
59 (not used)

60
61
62
63

60-63 Man running, Planes Sprite Colors
& Rockets, Ship and
Enemy Chopper 2 rnd 16 6
sprites 3-10

60

L
61 Iy
62 'ﬁ, Planes screen

63

60
61
62 . Rockets screen
63 o

60

61
62 h Ship screen
63 ”

60
61
62
63

Enemy Chopper screen

Character Set 5 Sprite Colors

64
65
66
67

64~67 Man running, Ship & Tank R&P Ship EC
Enemy Chopper fire
sprites 2 - 16 7 or 4

64

..I
65
66 Ship screen

67

64
65
66 T Enemy Chopper screen
67

“wv—

16

Character Set 5 Continued _______ Sprite Colors

68 . 68~71 Man running and Tank R&P Ship EC
69 |:'" Ship sprites

70 Iy 2 - 16 -
71 re

68

69 i

70 ’ © Ship screen

71

Character Set 6 ___ ____________ Sprite Colors

T2 72=T5 Man running Tank R&P Ship EC
T3 sprite

T4 L} cicerrasreran P - - e
75 d

76 76-79 Man running Sprite Colors

Tt sprite

78 reeracesaae 2 — - —
79 y e etsrrraanan

Character Set 7 Sprite Colors

80 80-83 Man shot or climbing Tank R&P Ship EC
81 ’ into chopper - sprite

82 ' therr et 2 - - -
83 -

84 84-87 First pattern Sprite Colors

85 S tank or chopper

86 LR explosion - sprite Tank = 2 - 1
87 ersesrsesien Cur Chopper = 16 or rnd 3-10
Character Set 8 Sprite Colors

88 . 88-91 Second pattern Tank R&P Ship EC
89 S tank or chopper

g0 o explosion - sprite see char 814 — 11
91 cersattaiana 15
92 . 92-95 Third pattern Sprite Colors

93 o tank or chopper

94 < explosion - sprite see char 84 -- 1
a5 < Cesraseiaaeen 15

T ——

Character Set 9 Sprite Colors

96 s 96-99 Fourth pattern Tank R&P Ship EC
97 ' " tank or chopper

98) . explosion - sprite see char B84 -- 11
99 * LR I B R N) 15
100 , 100-103 Fifth pattern Sprite Colors

101 - tank or chopper

102) explosion - sprite see char B -- 1
103 - and the Star char (Star char - 15,1 all scrns)
Character Set 10 Character Colors

104 . 104-107 Backwards flight Tank R&P Ship EC
105 Y » chopper - sprite

106 . and the letters End of Game - Letters
107 g PLAY twinkle - 7,9,16,10 on 1
108 ... 108-111 Level flight Sprite Colors

109 ., chopper - sprite

110 d and the letters 13 13 13 13
111 GIN

Character Set 11 Sprite Colors

12 ., 112=115 Forward flight Tank R&P Ship EC
113 k. chopper - sprite

114 , cerearrattaanes 13 13 13 13
115 e DR R R RN R I N Y

116 veepness 116=119 Chopper on the ground Sprite Colors

117 or landed on the ship

18 sprite ..ceee.. 13 13 13 13
119 &4

Character 3Set 12 Character Colors

120 120-123 Moon Tank R&F Ship EC
121 Cescterrreseats e

122 ﬁ 15,1 15,1 15,1 15,1
123 srsesesasanasaas

124 I 124-127 First pattern Sprite Colors

125 man waiving - sprite

126 tE st e T s s TR sl TR 2 - - -
127 tererastedrrrraas

i —

18

Cbharacter Set 13

128

129 /
130
131

128-131 Second pattern
man waiving -~ sprite

[AT B B B BB B I

132 s M (CTRL D) ——MG—

133 tEr

134 — Line

135 —_— Line

Character Set 1%

136 . 136-139
137 o

138 o

139 "t

1430 140-143

me e

143

G (CTRL E)

{(CTRL F)

(CTRL G)

Laser fire - sprite

L R R I I N]

Tank -« sprite

T e 44 A s EL LRl

19

Sprite Colors
Tank R&P Ship

2 - -

Character Colors

12,1 12,1 12,1

Sprite Colors
Tank R&P Ship

7 - -—

Sprite Colors

2 - -

EC

1,1

EC

THE VARIABLES

Permanent String Variables

A$
B$
w$
E$
T$
S$

nn N nun

Lower line of the hills & foreground with missile silos
Image for the DISPLAY AT USING for Score

Water screen for the ship

Eight zeros for CALL CHAR statements

Twelve zeros for CALL CHAR statements

Sixteen zeros for CALL CHAR statements

Permanent Numeric Yariables

B
3C
HP
SP
Z
K
v

LI VI T | AN I T)

Value for bonus (incremented by 10,000's)

Total current Score

Number for men in your chopper (incremented by 1ts)
Total men delivered to the ship {incremented by 5t's)
Remaining number of your choppers (decremented by 1's)
Current level you have reached (incremented by 1ts)
Current column velocity of your chopper

Temporary Numeric Variables

X
Y

Y1

Carries your choppers dot row position.

Carries your choppers dot column position. It is alsc used in
conjunction with the AND function to generate random numbers. ie:
SGN(Y-YY)®#((Y AND 6)+4+K). It is also used in FOR NEXT loops as the
control variable,

Carries the dot column position of the man running to your chopper.
It is also used to carry the random number of enemy choppers for
that screen.

Carries the tanks dot column position. It iz also used for the sound
value on the rockets and planes screen and as the dot row of the
enemy chopper.

The all around catch all, FOR NEXT loops. CALL COINC flag. Chopper
Just coming into play flag. The Key variable from CALL XEY or CALL
JOYST ete.

20

b]
NIGHT MISSION - THE PROGRAM FLOW

There are many ways to pregram the computer to do essentially the same
task. Some ways are faster and/or they use up less RAM than others. What we
hope to accomplish is to show you some ¢f the tricks and methods we have
found that work quite well for reducing program space and improving the
execution speed of your programs,

The Night Mission program took approximately seven months to write with
its' many revisions and improvements. Our main objective with this program
was to write a multiple screen game that would be fun for all ages to play.
It would alsec have to incorporate extensive use of sprites, animation,
graphics, sound effects and of course lots of coler and action., Our challenge
was to do it all in Extended BASIC, without the use of expansion memory, and
to maintain a fast response time to joystick and keyboard inputs. Well we are
proud to say that once again the TI 99/4(A) computer has shown us how
powerful it can be with the right program structure and proper use of its?
built in subprograms! S¢ now lets see how 'THE HOME COMPUTER' reacts to the
various program statements and how it all came together to form an Award
Winning Program.

The following pages contain the documentation for the Night Mission keyboard
version. On the Left hand page you will find the program listings for the
lines that are documented on the right hand page. Some of the lines have a
label in front of them to indicate that there is a GOTO or GOSUB instruction
somewhere else in the program that references that line.

The documentation was set up to matceh each program line so that each new
paragraph starts a new program line. Also all IFs and ELSE IFs have been
indented to make it easier to follow the program flow and, remember IFs
without an ELSE always have an automatic ELSE (or continuation) on the next
program linre.

After you have completed the documentation try changing different things in
the program to see what affect it has, When you are able to make succesaful
changes you know that you fully understand that portion of the program. This
is how we first learned to program since books on programming TI Extended
Basic were nonexistent at the time.

We hope that you find this documentation simple to follow and complete enocugh
to allow you to use different rcoutines and subroutines from Night Mission in
your own programs, And now - On With The Program.

NIGHT MISSION LINE NUMBER MAP

10~ 210 Initialization and title screen.
220~ 29C Restart, Game Over & Bonus play.
300- 40C Rockets and Enemy Planes initialization and game loop.
410- 560 Enemy Choppers initialization and game loop.
570= T30 Ship screen initialization and game loop.
T40- 800 Tank screen initialization.
£10-1020 Tank screen routines.
1030-1120 Tank screen game loop.
1130=1170 Laser fire routine.

N

STARY

START1

10 CALL CLEAR :: CALL MACNIF
Y(3):: CALL SCREEN(2):: GOTO
30 :: A$,B$,Ws,B :: CALL KE
Y :: CALL SCUND :;: CALL PEEK
:: CALL HCHAR :: CALL VCHAR

20 X,Y,Yt,YY,K,V,Z,HP,SP,SC
:: CALL POSITION :: CALL PAT
TERN :: CALL SPRITE :: CALL
DELSPRITE :: CALL COINC :: C
ALL MOTION :: CALL LOCATE

30 E$="00000000" :: T$=E$&"0
000" :: S$=E$&E$:: CALL CHA
R(132,"6152524CCC00000080808
OFF809CBYFCLE$&"FF Y& T$&"FFN
):: FOR T=1 TO 8 :: CALL COL
OR(T,15,1):: NEXT T :: 16P-

40 CALL CHAR(47,"3CL4299A1A19
94i23C", 33, RPT$("FF",8)&"0000
0020 11B3FFFFFFFFFFFFE 17TETES 1
" 112, "A00802103979FDFF1FOTO
1080701 "&E$&"80DOBLCIFOFCF2E.
2E2F2FC9CFAICY)

22

(N
M T 5 HT HMI S S5 I 0H
!!P
M
1 L1
B
- 3 = O - -~ -
MIKE MC CUE & CEAIG MILLEFR
i1 19385
HILLERS GRRAFHICS
1475) CYPREESS AVE
= - = -~ i -y
SHHN DIMARS CH 91773
e v
START Clear the screen, set the sprite magnification to 3 (four
10 regular sized characters per sprite), change the screen color
to black, and GOTO START1 (jump over the following items that
were placed here for a rapid Pre-Scan),
20 These items are also here for a rapid Pre-Scan.
START1 Setup E,T & S strings as eight, twelve and sixteen zeros for
30 the CALL CHARs to follow, define chars 132 (etrl d), 133 (ctrl
e), 134 (ctrl f) and 135 (ctrl g) as the MG logo and
accompanying lines, set the upper case character colors to grey
on transparent and turn off the Pre-Scan (16P-).
4o Define char 47 as the Copyright symbol for the Title screen,

char 33 as a solid foreground character for all screens but the
Enemy Chopper screen, char 34 as the top of the water for the
Ship secreen, char 35 as the closed missile silos for the Tank
screen, and chars 112, 113, 114 and 115 for our forward flying
chopper sprite.

——

23

TITLE_SCRN

50 DISFLAY AT(5,3):"N I G H

T MISSIORN": : : :RPT$
(men, 13)&" 22 ERPTH(27, 13)::
CALL COLOR{13,12,1):: GOSUB
240 :: CALL SPRITE(#1,112,1
3,46,25,0,11)

60 DISPLAY AT(12,14):"BY":
* MIKE MC CUE & CRAIG MILLER
", ¢« ¢+ :TAB(12);"/ 1983%: :n
MILLERS GRAPHICS":®
1475 W CYPRESS AVE":®
SAN DIMAS CA& 91773™

70 CALL CHAR{136,"9048241209
0B02010"&E$&S$&"0B0OU02090482
41209n,96, 710000080 EESEBOY
SE$&P2"&S$&M1040000010000086"
, 100, "0000008"&S$&" 000004 &S
$EN2NETSEOYM)

80 CALL CHAR(120,"030E3F3CTF
F7FFFFFF6FTFTF33360F03E0583C
FBFBESFOBOFOFOFOTOTBES1CFCY,
124, 70008080907 "&RPTS (M0, 1
1 }&"Q00COCOCOEQEOEQEQEQCO4040
404040E0"T)

90 A$=RPT$(™ " ,22):: CALL CH
AR(128,"0202040503"&RPT${ 101
", 11)&"00COCOCOEOEOKOEOEOCOY
0LOUCUOLOED", 140, T$E"C103073
FEAAAAATF"&S$&"BOCOEOFCAAAGA
AFCM)

100 A$=A$&"/ e e

e (- e
e

24

TITLE_SCRN Display the top part of the Title screen with the MG logo, turn
50 on the c¢olors for the MG logo, GOSUB CHOP_SCUND {(generate
the chopper sound), apd bring cut our forward flying chopper.

60 Display the bottom portion of the title screen.

10 Now that there is something on the screen we will let the
computer go on with the rest of the initialization of the
characters and strings. Define chars 136 thru 139 as the laser
fire, chars 96 thru 99 and 100 thru 103 as the fourth and fifth
patterns for the blow_up routires. Note: Char 101 (e) is alsc
used as the stars.

80 Define chars 120 thru 123 as the moon and chars 124 thru 127 as
the first of two patterns that make up the man waving his arm
at cur chopper when we take off and leave hip on the ground.

90 Start setting up A$ as the hills for the Tank screen (it
wouldn't all fit on one program line), define chars 128 thru
131 as the second pattern of the man waving his arm, and define
chars 140 thru 143 as the tank for the Tank screen

100 Finish setting up A$ as the hills for the Tank screen,
(Note: If you use strings, whenever possible, to display your
screens they will display MUCH faster than HCHARs).

-’.‘. E
E -"..:' E l(_
E (- E P & € T
E L{(((~ LELCCE (-
TN ST INE4 42 ees
L= L C-r TECEECCi(d,

Print out of A$ in ASCII form (28 coclumns)

Screen dump of A% in graphics form

i S —

25

110 GOSUB 240 :: B$=RPTH("In
s 28)&RPTS(" 1 1£",9)&RPT$(1",
29):: WH=RPTH(M"nnn 28)&RPT$(
LIRS

120 CALL CHAR(92, "0008000020
000000400000001 "4E$&"BO LESE
n208000002001", 116, "00005501
OF1E183020301E1F0OF 1320300000
5580F078180C040CTBFEFOCBOLOC
")

“/H—

110 GOSUB CHOP_SOQUND (keep the chopper sound going), set wp B$ as
the foreground and missile silos for the tank screen and set up
W¢ as the top of the water and the foreground for the Ship
screen.

N

NEREER
S NS 3
NN

SRR ENRNEREEN
Biigiigiigiig
RERRRRERRANE

._#._

Print out of B$ in ASCII form (28 columns)

Screen dump of B$ in graphics form

L T L T T U £ L U T I L I L T L I O U T O T I |

- ——
. — —

¢ — — —
. t— —
- o — —
 — — —
- — - —

> m—— — —
M i — —
" —— . —
- — r— —

Print cut of W$ in ASCII form (28 columns)

Screen dump of W$ in graphics form

120 Define chars 92 thru 95 as the third pattern for the blow up
routines, and chars 116 thru 119 as our chopper when it has
landed on the ground or on the ship. This is the end of the
characters that can be defined with the Title screen displayed.
The rest of the character definitions and initialization will
effect the characters that are currently displayed on the Title
screen,

Mo

CLEAR_TITLE

130 CALL CLEAR :: FOR T=1 TO
13 :: CALL COLOR(T,1,1):: N
EXT T :: FOR X=1 TO 30 :: RA
NDOMIZE :: CALL PEEK(-31808,
T,¥):: CALL HCHAR(T/18+1,Y%,
12+41,101):: NEXT X

140 GOSUB 240 :: CALL CHAR(S
8, "000004001000000020000008"
&E$&"001"&E$& 4100000040017,
56, "1F1122223E4444F81F21213E
02040408"™)

150 CALL CHAR(48,"iF21214242
8484F801010202040408081F0101
023C2040TE3F0103021COUQ8F8",
52,"1111223E020404081F202040
7CCL08F8102020407E82827C3F01
0204081020U0")

160 CALL CHAR(80,E$&"0003040
1010101010202040600000018F8E
OF8COCOCOTO101018"™, 84, "00000
00200080000100002"&T$&"00200
000082000000821)

170 CALL CHAR(72,"™0000010107
4503010101010102020203C0C0C0
EQEOF8C0OC0C02020101020406") :
: CALL HCBAR(20,1,33,32)

180 CALL CHAR(36,"140A200D14
216414241A0814080800080"&3%,
76, "000001030303030101010100
00070400COCOCOECEQECFOCOCOUO
40COCOAOB0OC™):: CALL BCHAR(2
1,1,33,128)

190 DISPLAY AT(10,1):%"e h i
Jkejl Jjmnekne"™:: CA
LL CHAR(40,RPTS("FF",8),44,n
00008082C2CTFTFF8080COEOELFC
FEFF0103232B7F7FFFFF"&E$&"08
28A9FDN)

CLEAR_TITLE
130

140

150

160

170

180

180

Clear off the Title secreen, turn off the colors for all the
character sets that make up the screen display, and generate 30
randomly placed stars on the screen using the double random
number generator from the Smart Programming Guide for Sprites.
These stars will end up between rows 1 thru 15 and columns 1
thru 32.

GOSUR CHOP_SOUND (keep the chopper sound going), define chars
88 thru 91 as the second pattern for the blow up routines, and
redefine chars 56 and 57, the 8 and 9 characters, as slanted
numerals.

Redefine chars 48 thru 51 and chars 52 thru 55, the 0 thru 7
characters, as slanted numerals.

Define chars 80 thru B3 as the man when he is climbing into the
chopper or when he is shot by the tank, and chars 84 thru 87 as
the first pattern for the blow up routines.

Define chars 72 thru 75 as the forth pattern for the running
man, and place the top of the water character across the screen
at row 20 to fill the edges of the screen.

Define chars 36 thru 39 as the sprite character that the tank
fires at our chopper, chars 76 thru 79 as the fifth pattern for
the running man, and fill the foreground portion of the screen
with the soiid block character. This HCHAR and the one in the
previcus line are used to fill the edges of the screen that are
not written to with a DISPLAY or PRINT statement.

Place the characters that make up the words "PLAY AGAIK Y N" on
the 10 row of the screen. There are also a few stars (e)
displayed with these characters. The characters are not seen
because their color is turned off. These characters are defined
as the backwards and level flying choppers until the end of the
game. When the game ends they are redefined into the letters
and their color is turned on. Define char 40 as a solid block
for the hills and chars 4% thru 47 as the top of the hills for
the tank screen.

m

200 DISPLAY AT(2,1):RPT$(nzn
,13)&"??"&RPT$(“?",13):: bIs
PLAY AT(3,24):%xz" ;: DISPLA
Y AT(4,28);my{" :: DISPLAY A
T(15,1):A$:B$:: A$=SEG$(4AS,
141,28)4B%

210 GOSUB 240 :: Bj="e # ###
edf#tELE¥EE cff# ™ :: CAL
L DELSPRITE{ALL)}:: CALL COLO
R(3,15,1,4,15,1,9,11,1,2,11,
1,1,11,1,12,15,1,13,12,1)

30

200

210

Now we display the lines with the MG logo to separate the
scoring values from the play area of the screen, next we
display the four characters that make up the moon, and then we
display the hills (A$) and foreground (B$), and lastly we set
A% equal to the last screen line of A$ plus all of B$, for
rapid screen changes in the game.

(Note: once the hills have been displayed we never clear them
off the screen instead we just turn off their color, so we
don't need to retain them in 4$.)

(¢
N
K3
1

- — e e e,
- —

S S
10]
g
AER

;
#
I

- — —

s 1 . CC0,
| [I III
B ! # |14 |
I I ! !tl

- —— —
- — - ——
e R T |
* — — —

Print out of new A$ in ASCII form (28 cclumns)

Screen dump of new A$ in graphics form

Since B$ has been added to the new A$ we can now reuse B$ so we
will assign the USING IMAGE to B$ for our scoring display. This
image alsc contains a few stars (e) along with the #i## signs
for the scoring. Next we delete our chopper that has been
flying across the screen since the Title screen appeared.
Lastly we turn on all the colors for the screen at the same
time. This causes the play screen to appear all at once.

E # #H#E cHHGHBHEHEE cHiH €

RESTART

CHOP_SOUND

GAME_OVER

220 CALL COLOR(10,1,1):: CAL
L CHAR(108,E$&"55000061E1FFF
FFFO0000003"&E$&"55L0EOFBELE
2EtF1FFTC4SFE™)

230 K=1 :; Z=5 :: HP,SP,SC,B
=0 :: CALL CHAR(104,E$&"0104
103001 03CFFFFF786001020820C0
TOTCEZE1E1F3FEFCCSY658E") ;¢
GOTO T40

240 CALL SOUND(=-U4250,-4,1,11
0,30,110,30,200,30):: RETURN

250 CALL KEY(3,T,¥):: Z=INT(
{SC-B)/10000):: FOR T=1 TC Z
+: CALL SOUND(200,770,4,7T7
+6):: DISPLAY AT(1,24):USING
nE#FN:T 21 NEXT T

260 IF Z THEN B=B+Z%¥10000 ::
GOTO 740 ELSE CALL CHAR(108
, "FF8 1BFACAFBG81FFFF81ET1818

E781FFE7B5B5BDEDADADET™)

270 CALL CHAR(104,"FF81BD81B
FAQAOEOEDACAQAOROBF81FFFF81B
DBDB1BDASETETASBDB1ET181818"
):: CALL SPRITE(#1,112,13,87
11,0,12)

280 CALL COLOR(10,7,1,10,9,1
,10,16,1,10,6,1):: CALL KEY(
0,T,T)

290 IF T=89 THEN 220 ELSE IF

T=78 THEN CALL DELSPRITE(AL
L):: CALL VCHAR(1,1,32,768):
: END ELSE 280

RESTART Turn off the colors for the PLAY AGAIN letters, in case the
220 program came here from a game over condition, and define chars
108 thru 111 as the level flying chopper (the game_over routine
defines these characters as the letters GIN for the PLAY AGAIN
Y N message at the end of the game).

230 Set the level (X} to 1, set the number of our choppers
remaining (Z) to 5, clear out the number of men in the chopper
(HP) - the number of men delivered to the ship (SP) - the score
(3C) and the bonus points (B), and define the chars 104 thru
107 as the backwards flight chopper (the game_over routine
defines these characters as the letters PLAY for the PLAY AGAIN
Y N message at the end of the game). GOTO TANK_INIT (set up the
tank screen).

CHOP_SOUND This subroutine is used to keep the chopper sound going during
240 initialization.

GAME_OVER Initialize keyboard for caps only, calculate the number of
250 bonus choppers that should be awarded, if the current score
minus the previous bonus is less than 10000 this calculation
will set Z equal to zero and the following FOR NEXT loop will
not execute, if Z is greater than zero (1,2,3 etc.) the loop
will execute that many times and display the adding of choppers
in the scoring porticn of the screen with a bell sound each
time it increments the display.

260 IF there are bonus choppers (Z<>0) THEN add to the variable
(B) that keeps track of the bonuses awarded so far, and
GOTO TANK_INIT {(set up the tank screen since the game
isn't over yet).
ELSE redefine the characters used for the GIN letters in the
PLAY AGAIN Y N message.

270 Redefine the characters used for the FLAY letters in the PLAY
AGAIN Y N message, bring out our forward flight chopper and
make it fly acreoss the screen.

GETKEY Turn on the colors for the letters and make them twinkle, and
280 scan for a key press,
290 IF a YES key is pressed THEN GOTO RESTART (start the game
over},

ELSE IF a NO key is pressed THEN delete @all the sprites and
wipe off the screen and END the program,
ELSE since no key was pressed Q(0OTO GETKEY (twinkle the
letters and scan for a key).

‘“———

33

R&P_INIT

300 v=8 :: IF K<2 THEN 570 E

LSE IF Y AND 1 THEN 340 ELSE
CALL CHAR(60,"08081C1C1C1CY

C3E7TF1C0008221004080"&34)

310 YY=600 :: CALL DELSPRITE
{ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T,1,T®*17,#T+4,177,T
¥17):: NEXT T

320 CALL SOUND(-350,-7,6,110
+5):: CALL CHAR(35,"FFFFFFFF
8§1000081"):: CALL SOUND(b250
,-8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 :: RAKDOM
IZE :: CALL PEEK(-31880,X):-
CALL SPRITE(#T,60,(X AND 7)
+3,177, T#24-208 ,~X/8~3~K,0) :
: NEXT T :: GOTO 360

34

U i T T0) o
5 e Ll o 5

11
I'.E_:l

R&P_INIT
300

310

320

330

Set V equal to 8 for use with the blow_up_chop subroutine, in
case we get hit, or in case the level is less than 2.
IF the level is less than 2 THEN GOTO SHIP_INIT (set up the

ship screen),.
ELSE IF when our chopper's last position was checked and it

was on an odd dot column ((Y AND 1)<>0) then GOTO
PLANE_INIT (bring out enemy planes).
ELSE Define the rocket characters,

Set YY equal to 600 for the rocket sound, delete all the
sprites, place four invisible sprites at the top and bottom of
the screen (this makes the rockets disappear under the scoring
and reappear at the silos).

Generate the sllo opening sound, define the silo c¢haracter as
open and generate the rockef sound.

Bring out the 9 enemy rockets with random colors and at random
speeds using the level (K) to increase the speeds at higher
levels, and GOTC OUR_CHOP_OUT (bring out our chopper).

o

PLANE TNIT

OUR_CHOP_OQUT

340 CALL CHAR(GD,T$&"01030F7
FOPRE$4TSE"TOGFAB20UFCICICFE
OC"):: YY=1600 :: CALL SOUND
(-4250,-8,6,110,27, 115,28, YY
$30):: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 :: RANDOM
IZE :: CALL PEEK(-31880,X):-
CALL SPRITE(#T,60,(X AND 7)
+3,T%16-120,256,0,-X/8-3-K):
: NEXT T

360 CALL SPRITE(#1,112,13,72
»1,0,3)

(
" 1 e =3
=) e e =
fl.ﬂLu

PLANE_JINIT Define the plane character, set YY equal to 1600 for the plane

340 sound, generate the plane sound, and delete all the sprites.

350 Bring out the 9 enemy planes with random colors and at random
speeds using the level (K) to increase the speeds at higher
levels.

OUR_CHOP_OUT Bring out our forward flight chopper on the left band edge of
360 the screen flying slowly to the right.

i PE——

M

R&P_LOOP 370 CALL SOUND(-999,-8,6,110
227,115,28,YY,30):: CALL COI
NC(ALL,T):: CALL POSITION(#1
»X,¥):: IF T OR X>161 THEN G
0SUB 870 :: GOTO 740

380 IF Y>224 THEN 410 ELSE C
ALL KEY(1,T,T}:: IF T<0 THEN
CALL MOTION(#1,0,2):: GOTO

370

390 IF T=0 THEN T=8 ELSE IF

T=5 THEN T=8%(X>35)ELSE IF T
=3 THEN CALL MOTION(#1,0,4):
: GOTO 370 ELSE CALL MOTION(
#1,0,0):: GOTO 370

END_R&P_LOOP 400 CALL MOTION(#1,T,2):: GO
TO 370

38

R&P_LOOP
370

380

390

Generate rocket or plane socund according to value of YY, check
coincidence between any sprites, and get the position of our
chopper.

IF

IF

ELSE

IF

ELSE

there was a coincidence or our chopper has flown into the
ground THEN GOSUB CRASH_CHOP (blow it up), GOTO TANK_INIT
(go back to the tank screen).

the chopper has made it to the right hand edge of the

screen THEN GOTO EC_INIT (move on to the next screen)

scan for a key press,

IF no key was pressed THEN slow down the chopper and
GOTC R&P_LOOP {start the loop over again}.

the Down arrow key was pressed THEN set T equal to 8§ for

downward motion and continue with end_ré&p_loop.

IF the Up arrow key was pressed THEN set T equal to -8
if our chopper iz is on a dot row greater that 35
else set T egqual to 0 and continue with end_r&p loop

ELSE IF the Right a&arrow key was pressed THEN put our

chopper into a faster forward motion, and GOTO
R&P_LOOP (start the loop over again).

ELSE it must have Dbeern some other key that was
pressed so0 bring our chopper to a stop, and GOTO
R&P_LOOP (start the loop over again).

END_R&P_LOCP Put our chopper into motion according to the value of T (8,-8
or 0), and GOTO R&P_LOOP (start the loop over again),

400

i P

EC_INIT

410 CALL DELSPRITE(#1):: IF
K<3 THEN 570 ELSE Y1=(Y AND
6)=4 :: CALL DELSPRITE(ALL):
: CALL COLOR(2,1,1,1,1,1,13,
1,1)

420 DISPLAY AT(21,1):" e
@ e e

e e e
eﬂ

430 CALL CHAR(60,T$&"AAQ21F2
CHCTF107F™&S$&"A800C1FFE1C09
OE™,64,3$&"00009292"&T$&S$&"
4g94or):: CALL SPRITE(#1,108,
13,40,31,8,0)

4o

EC_INIT
k10

420

430

Delete our chopper
IF the level is
ship screen).
ELSE set Y1 equal to a random number of enemy choppers based on
the last dot column of our chopper, delete all sprites,
and turn off the colors for the hills and the lines with
the MG logo.
(Note: since Y, which comes from the call position statement,
can only have a value between 1 and 256, the ¥ AND 6 function
can only return 0,2,4 or 6 for any value of Y. By subtracting i
from 0,2,4 cr 6, ¥! can only have a value of -4,-2,0 or 2. Each
time our chopper shoots down an enemy chopper we add 1 to Y1
and then test it to see if it is less than 5. If it is less
than & there are more enemy choppers. So the least number of
enemy choppers that must be shot down before you can go on to
the next screen is 3 and the maximum number is 9),

less than 3 THEN GOTO SHIP_INIT (set up the

Display some more stars (e) at the bottom of the screen.

Define the enemy chopper character and the sprite that it fires
at us and we fire at them, and bring out our level flight
chopper at the top left hand edge of the screen moving

r 1 downward.

L1

EC_our

EC_LOOP

END_EC_LOOP

440 CALL SPRITE(#2,60,6,242,
216,(Y AND 1)#80~40,0)

450 CALL SOUND(-L250,~4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#1,X,Y,#2,YY,Y)

460 IF X»180 THEN CALL LOCAT
E{#1,1-(V<0)%180,31)ELSE IF

ABS{X-YY)<T THEN %490 ELSE CA
LL MOTIOK(#2,SGN{X-YY)®*({YY

AND 11)+9),0)

470 CALL KEY(1,T,Y):: IF T=1
3 THEN 510 ELSE IF T=5 THEN
V=-8 ELSE IF T=0 THEN V=8 EL
SE IF Y THEN V=0

480 CALL MOTION(#1,V,0):: GO
TO 450

42

EC_OUT
4540

EC_LOOP

450

460

470

END EC_LOOFP
480

Bring out the enemy chopper, randomly from the top or bottom of
the screen based on our chopper's previous position, or the
missile's position, that we fired at the last enemy chopper,
dot column position (odd or even).

Generate chopper sound, get our chopper's and enemy chopper's
positions (we only need their dot row position since they are
not allowed to change column positions).

IF our chopper is moving off the screen THEN wrap it around
back onto the screen {(determined by the moction direction
according to the value of V),
ELSE IF the enemy chopper is 1lined up with us TEHEN GOTIO
EC_FIRES {enemy shoots us down).
ELSE make the enemy chopper move at a random speed to
align itself with ua.

Scan for a key press,

IF the fire key was pressed THEN GOTO WE_FIRE (shoot at the
enemy chopper),

ELSE IF the Up arrow key was pressed then set V equal to -8

(upward motion) and continue with end_ec_loop.

ELSE 1F the Down arrow key was pressed the set V equal
toc 8 {downward motion) and continue with
end_ec_loop.

ELSE IF any other key was pressed (Y<>0) then set V
equal to 0 (no motion) and continue with
end_ec_loop.

(Note: if no key was pressed the above IFs would not be
executed so the value of V¥V would remain unchanged and the
program flow would drop thru to end_ec_loop)

Put chopper into an upward or downward motion according to the
value of V and GOTO EC_LOOP (start the loop over again).

NLT_T———'

EC_FIRES

WE_FIRE

WHERE1

BLOW_UP_EC

490 CALL SPRITE(#3,64,7,YY,2
09, V+X-YY,-127):: CALL SQUND
(-900,-8,1,110,30,110,30,999
9,30):: T=0

500 CALL POSITION(#3,Y,Y)::
IF Y>50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR{#1
,11):: GOSUB 930 :: CALL DEL
SPRITE(#2):: GOTO T40

510 CALL SOUND(-900,-8,0,110
,30,110,30,300,30):: CALL PO
SITION(#1,X,Y¥):: CALL SPRITE
(#3,64,4,X,36,0,127)

520 CALL POSITION(#3,X,Y)::
IF Y<192 THEN 520 ELSE CALL
DELSPRITE(#3):: CALL COINC{(#
2,X%,220,7,T):: IF T THEN CAL
L SOUND(=~1,=4,9)ELSE 450

530 CALL COLOR(#2,15):: FOR

T=0 TC 2 :: CALL PATTERN{#2,
88+T#Y):: FOR X=5 TO 7 :: CA
LL SOUND{100,-X,T%10):: NEXT
X :: NEXT T

540 CALL DELSPRITE(#2):: Yi=
Y141 :: SC=SC+250 :: DISPLAY
AT(1,12)SIZE(10) :USING "###
HEEE#E4:SC 1 IF Y1<5 THEN

4340

550 CALL POSITION(#1,X,Y)::
IF X%X>185 THEN CALL LOCATE(#1
»35,Y)

560 CALL PATTERN(#1,112):: C
ALL MOTION(#1,0,20)}:: CALL 8
QUND(-4250,-4,1,200,30,200,3
0,200,30)

EC_FIRES
490

500

WE_FIRE
510

WHERE1
520

BLOW_DP_EC
530

540

550

560

Shoot enemy's missile at us, according to the values obtained
from the last position check, generate missile fire sound, and
set T equal to zero. T is used as a flag in the BLOW_UP_CHOF
subroutine to indicate a coincidence between the crashing
chopper and the tank on the Tank screen.

Check the missile'’s position.

IF it has not reached us yet GOTO WHERE (keep checking).

ELSE delete the missile, change our choppers color to light
yellow for a better blow up effect, GOSUB BLOW_UP_CHOP
{(blow up our chopper), delete the enemy chopper and GOTO
TANEK_INIT {(go back to the Tank screen).

Generate missile fire sound, get our chopper's position and
shoot our missile at the enemy from our current position,

Check the misaile's position,

IF it has not reached them yet GOTO WHERE1 (keep checking).

ELSE Delete the missile and check for coincidence between our
missile's last position and the enemy's chopper.

IF we hit them, turn off the missile scund, since the
next sound statements have a pogitive duration, and
continue with BLOW_UP_EC {blow up the enemy chopper).

ELSE GOTG EC_LOCP (start the loop over again).

Since we hit them change their color to grey for a better blow
up effect, and start the blow up routine. Change their pattern
to 88,92 & 96 while the blow up sound is being generated.

Delete the blow up pattern, add 1 to the enemy choppers

destroyed counter (Y1), add 250 points to our score (SC), and

display the new score at the top of the screen.

IF the EC counter is less than five (there are more enemy
choppers to shoot down before we can move on so) THEN GOTO
EC_OQUT {bring ocut the next enemy chopper).

Check our chopper's position.
IF it is too low or off the screen THEN locate it at the
top of the screen at its current dot column.

Change its pattern to forward flight, set it in forward motion,

generate the chopper sound and continue execution with
SHIP_INIT (met up the Ship screen).

45

SHIP_TINIT

570 CALL CHAR(68,3$&"C00000F
FTF1FFEAB"&S4$&"0C0000FFFFFFA
A6D",64 ,E$&"0021F373FFFFFFFF
FFFF972A08103CFFFOFFFFFFFFFF
FFFFFFFFSEAA")

580 ¥1=(Y AND 5)+6 :: GOSUB

800 :: CALL CHAR(60,"0000008
080CUCFEEFFFF5BAAFFFFT722B&T
$&"COOFFEFCF8FOE2C67B3DM) ; ;

CALL COLOR(1,1,1,2,1,1)

590 DISPLAY AT(20,1):W$:: C
ALL COLOR(1,5,1,7,12,1):: FO
R T=1 TO 4 :: CALL LOCATE(#$T
,161,1):: NEXT T :: CALL SPR
ITE(#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1,#11,64,15,143,17,#12,60,
15,143,33):: CALL MOTION(#10
,0,Y1,#11,0,¥Y1,#12,0,¥Y1)

46

ij
L'r-i
LJ"J
Mg
L
-I-

I'l.ﬂ

SHIP_INIT Define the back portion {char 68) and middle portion (char 64)
570 of the ship.
580 Calculate a random value for the ship's speed based on the last

value of Y (dot column tracker), GOSUB INVIS_SUB (delete all
sprites and put invisible sprites at the bottom of the sereen),
define rest of the ship, and turn off the hill colors (in case
we haven't just come from the Enemy Chopper screen.)

590 Display the top of the water at row 20, turn on the water and
the MG logo colors, put U4 more invisible sprites just below the
top of the water for the sinking effect, and bring out our
chopper.

600 Bring out the 3 sprites that make up the ship and put them all
into motion at the same time so the ship doesn't break up.

‘-

47

SHIP_LOOP

END_SHIP LOOP

610 CALL SOUND(~-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,¥):: IF X<35 TH
EN CALL MOTION(#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X>1
40 THEN 690

620 CALL COINC(#9,#11,16,T):
: IF T AND X>13C THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
IF T THEN 710

630 CALL KEY(1,T,T):: IF T<0

THEN CALL PATTERN(#9,3GN{V)
¥44108):: CALL MOTION(#9,3%(
X>35),V):: GOTO 610

640 IF T=3 THEN CALL PATTERN
(#9,112):: V=V-4%(V<12):: GO
TO 670 ELSE IF T=2 THEN CALL
PATTERN(#9,104):: V=V+4%(V>
-12):: GOTO 670

650 IF T=0 THEN CALL PATTERN
(#9,108):: CALL MOTION(#9,8,
¥):: GOTO 610

660 IF T=5 THEN CALL PATTERN
{(#9,108):: CALL POSITION(#9,
X,Y):: IF X<36 THEN CALL LOC
ATE(#9,35,Y)ELSE CALL MOTION
(#9,-8,V):: GOTO 610

670 CALL MOTION(#9,0,V):: GO
TO 610

SHIP_LOOP Generate chopper sound, get chopper's position,
610 IF it is too high THEN adjust its motion to level flight and
bring it down to dot row 35.
ELSE IF it is too low THEN GOTO SINK_CHOP (Sink the chopper).

620 Check coincidence between our chopper and the sprite in the

middle of the ship (see drawing).

IF there is a coincidence GOTO SINK_SHIP {crash the chopper,
sink the ship and sink the chopper).

ELSE check for proper coincidence between our chopper and the
back of the ship (see drawing).
IF there is a coincidence THEN GOTQ LAND _CHOP (land the

chopper on the back of the ship).

ya 5 , IF X>140
Sink Chopper

IF T AND X>130
Sink Ship & Chopper

', III IF T
Land Chopper

630 Scan for a key press,
IF no key wes pressed THEN change pattern to forward or
backward motion chopper according to the value of V,
ad just motion to make our chopper fly slowly up and GOTO
SHIP_LOOP (start the loop over again).

640 IF the Right arrow key was pressed THEN change the choppers
pattern to forward flight, add § to V if V is less than
12, and GOTO END_SHIP_LOOP (change the chopper's motion).
ELSE IF the Left arrow key was pressed THEN change the
chopper's pattern to backward flight, subtract 4 from
¥ if V is greater than -12, and GOTO END_SHIP_LOOP

{set the chopper intc the new motion),

650 IF the Down arrow key was pressed THEN change the chopper's
pattern to level flight, set the chopper into a diagonal
downward motion along with the forward or backward motion
according to the value of V, and GOTO SHIP_LOOP (start the
loop over again).

660 IF The Up arrow key was pressed THEN change the chopper's
pattern to level flight, and get its current position.

IF it is too high THEN bring it back down to dot row 35
at its current dot column, and continue with
end ship loop.

ELSE set the chopper into an upward motion along with the
forward or backward motion according toc the value of
V and GOTQ SHIP_LOOP (start the loop over again).

(Note: If a key was pressed that wasn't one of the 4 arrow keys
the program would not execute any of the previcus IF statements
or change the value of V. It would just drop through and
execute end_ship_loop.)

END_SHIP_LOOP Set the chopper into forward or backward motion according to
670 the value of V, and GOTO SHIP_LOOP (start the loop over again).

e T a—

9

SINK_SHIP

SINK_CHOP

LAND_CHOP

680 CALL MOTION(#9,0,0,#10,2
,u,#11,2,1|,#12,2,’4):: S5C=3C~
SP#*500 :: SP=0

690 CALL MOTION(#9,3,0):: CA
LL SOUND(-2450,-8,6,110,30,1
10,30,9999,30):: CALL PATTER
N{#9,104):: CALL SOUND(1,-4,
9):: HP=0 :: Z=2-1

700 CALL DELSPRITE(#9):: IF
SP THEN T40 ELSE CALL DELSPR
ITE(#10,#11,#12):: GOTC 740

710 CALL POSITION(#10,X,Y)::

CALL SPRITE(#9,116,13,136,Y
,0,Y1):: FOR T=306 TO 122 ST
EP ~6 :: CALL SOUND(-200,-4,
1,T,27,7,30,T,30):: NEXT T

720 FOR T=130 TC 306 STEP 8
*: CALL SOUND(-4250,-4,1,T,3
0,T,30,T,2T):: NEXT T :: CAL
L MOTION(#9,-10,0):: K=K+1 :
: SC=SC+500*HP

730 FOR T=1 TO 300 :: NEXT T
i1 SP=SP+HF :: HP=0

SINK_SHIP
680

SINK_CHOP

Stop our choppers motion and set the ship into a slow diagonal
downward motion to sink it, subtract all the points for the
total number of men that have been delivered to the ship, and
reset the variable for the total men delivered to the ship (SP)
to zero.

Set our chopper inte a slow downward motion, generate the

690 sizzling sound, change our choppers pattern to the backward

700

LAND_CHOP
710

720

730

flight chopper to give it the effect of sinking tail first,
turn off the sizzling =sound, reset the variable for the number
of men in the chopper (HP) to zeroc, and subiract 1 from the
number of our choppers remaining (Z).

Delete our chopper off the screen.

IF there are men on the ship (SP<>0) (we didn't sink the
ship, however, it is possible that we never delivered any
men to the ship, we just sank our chopper) THEN GOTO
TANK_INIT (set up the tank screen)}.

ELSE Delete the ship, because odds are that it is sinking and
we don't want it to wrap around and come floating out of
the top of the screen, and then GOTO TANE_INIT (set up the
Tank screen).

Get the back of the ship's position, set our chopper down there
in the landed pattern using the same motion {velocity) as the
ship, and generate the sound of the chopper engines slowing
down (for a slight time delay to give your joystick or keyboard
hand a rest).

Rest time is over, so rev up the chopper engines, make our
chopper lift off the ship, add 1 to the level (K), and add 500
points for each man in the chopper to the score.

(Note: by using the HP variable here you can easily change the
total number of men required to be picked up on the tank screen
without worrying about adjustments to the scoring).

Generate a slight time delay to allow the chopper to get higher
in the air before going back to the Tank screen, add the number
of men in the chopper (HP) to the total men delivered to the
ship (SP), and reset the number of men in the chopper (HP} to
zero, and continue with tank_init,

51

TANE_INIT

740 DISPLAY AT(1,2):USING B$
:HP,SP,8C,Z :: IF Z THEN CAL
L. DELSPRITE(ALL)ELSE 250

750 CALL CHAR(&0,"000001010F
09090901C101013E200000COCUCY
FCCOCOCOCOC02010080810203")

760 CALL CHAR(64,"G101031F13
1313030303033F20000000808888
B8FE8808080808000008040203")

770 CALL CHAR{68,"™0000010107
0909050101010106181000C0COC2
F4C8COCOCOC02010080810203",3
5, "FFFFFFFF81TETEE1M)

780 DISPLAY AT(20,1):4% :: C
ALL COLOR(2,11,1,1,11,1,13,1
2,1):: GOSUB 800

790 CALL SPRITE(#3,140,2,161
,256,0,-24):: FOR T=%¢ TO 20
:: CALL SPRITE(#T,136,7,200,
1)2: NEXT T :: GOTO 1030

52

My
L:

rlll}-:

TANE_INIT Display the scoring on row 1.
740 IF there are any of our choppers left {Z<>0) THEN delete all
sprites.

ELSE GOTO GAME_OVER (end of game).

750 Define the first pattern of the running man sprite (char 60).
760 Define the second pattern of the running man sprite (char 64).
770 Define the third pattern of the running man sprite (char 68)

and redefine the missile sileo character as closed, in case it
was opened.

780 Display the Tank screen foreground with the missile silos in
case we just came from the Ship or Enemy Chopper screens, turn
on the colors for the hills and the MG logo, and GOSUB
INVIS_SUB (delete all sprites and place 4§ invisible sprites at
the bottom of the screen).

790 Bring ocut the tank from the right hand edge of the screen at a
rapid motion so that it will be near the middle of the screen
when our chopper comes out, set up the sprites used for the
laser fire but place them off the viszible portion of the

'\ ’I screen, and GOTO CHOP_OUT (bring out our chopper).
53

INVIS _SUB

TANK_SHOOTS

MACHINE_GUN

800 CALL DELSPRITE(ALL):: FO
R T=5 TO 8 :: CALL LOCATE(#T
177, T#17):: NEXT T :: RETUR
N

810 IF T<>12 THEN CALL POSIT
ION(#1,X,Y,#3,YY,¥Y}:: IF AB
S{Y-YY)<80 THEN CALL SPRITE(
#4,36,9,157,YY,X-147,28V+ Y=Y
Y)ELSE 1060 ELSE 1060

820 CALL SOUND(-150,-8,3,110
,30,110,30,5010,30):: CALL S
OUND{300,-8,1, 128, 30, 128, 30,
1100,30):: CALL DELSPRITE(#%
):: GOSUB 870 :: GOTO 1030

830 CALL MOTION(#3,0,V/4,#2,
0,0):: CALL PATTERN(#2,80)::
CALL SOUND(-1,-4,9):: IF T=
12 THEN CALL MOTION(#1,0,V)

840 FOR T=1 TO 9 :: CALL SCU
ND(50,~6,1):: NEXT T :: CALL
DELSPRITE(#2):: Y1=0 :: RET
URK

54

W

INVIS_SUB This subroutine deletes all sprites, sets up 4 invisible
800 sprites at the bottom of the screen, and returns.

TANK_SHOOYS IF our chopper is not just coming out (T<>12, the just coming
810 out flag) THEN get our choppers current position and the
tanks current position, we only need the tanks dot column

since its dot row is not allowed to change.

IF they are still in alignment and our chopper has not
flown, wrapped, arcund to the other side of the
screen {ABS(Y-YY)<80) THEN make the tank shoot a
sprite at the chopper from the tanks current position
to the choppers current position and continue with
the next line.

ELSE the chopper must have flown around to the other side
of the screen so just GOTO TANK_LOOP1 (go back into
the tank_loop).

ELSE our chopper is just coming out so give it a chance and

GOTO TANK_LOOP1 (go back into the tank loop),

820 Generate tank shoots sound which we will use in conjunction
with the next positive duration sound statement as a time
delay, generate the hit sound, delete the sprite that was shot
at the chopper, GOSUB CRASH_CHOP (crash or blow up the chopper)
and GOTO OUR_CHOP_OUT (to start the tank loop over),

MACHINE_GUN This subroutine, which can be branched to from the tank_loop or
830 the land_it sections of the program, will change the tanks
motion and move it at 1/4 the speed of our choppers last
velocity (this usually makes the tank move away from the
chopper when it has landed on the ground so that the
blow_up_chop routine doesn't cause the chopper to hit the tank
and blow it up too). Also, in case the man is running, stop his
motion, change the man's pattern in case he is on the screen,
to the bent over figure, stop any previous sound statements
that may be on since the next sound statements have a positive

duration.

IF the chopper is just coming out (T=12, the just coming out
flag) THEN change its motion to level flight so that it
doesn't fly through the ground while the tank machine guns
the man.

840 Generate the machine gun sound, delete the man off the screen,
set the mans dot column variable (Y1) to zero, this tells the
tank_loop that the man is no longer on the screen and it tells
the land it loop to bring out another man, and then return to
the next statement after the GOSUB MACHINE _GUN statement.

Mfe——m

BLOW_UP_TANK

CRASH_CHOP

NEW_COLOR

850 CALL COLOR(#3,2):: FOR T
=0 TO 16 STEP 4 :: CALL SOUN
p(-999,-8,T,120,27,127,28,10
00,30):: CALL PATTERK(#3,84+
T):: NEXT T

860 SC=605-3#Y+SC :: CALL DE
LSPRITE(#3):: CALL SPRITE(#3
,140,2,161,256,0,-24):: RETU
RN

B70 T=0 :: CALL SOUND(~1,-1,
9):: IF Y AND 1 THEN CALL PA
TTERN{#1,112):: CALL MOTION(
#1,9,V)ELSE CALL COLOR(#1,16
Y GOTO 930

880 CALL COLOR(#1,RND®*7+3)::

FOR T=1 TO 26 STEP 5 :: CAL
L SOUND(T®*40+200,~8,T,110,30
,110,30,1100~T,30)

890 CALL POSITION(#1,X,Y)::
IF X>155 THEN CALL MOTION{#1
»0,0):: GOTC 910 ELSE IF X A
ND 2 THEN 880

900 NEXT T :: GOTO 880

BLOW_UP_TANK This subroutine will change the tanks color back to black since
850 the laser fire routine changes it to white, start the blow up
routine by generating the blow up sound while changing the tank

pattern into expanding fragments.

860 Calculate and add a number of points to our score {the higher
the chopper is in the air the greater the points, X 1s the
choppers dot row position, so if the chopper is low, dot row
160, this will add 125 points and if the chopper is at the top
of the screen, dot row 35 this will add 500 points to our
score), delete the blown up tank sprite, bring out a new tank
from the right hand edge of the screen, and return,

CRASH _CHOP This Subroutine Has 2 entry points. The First one randomly
870 decides to either crash the chopper into the ground or to just
blow it up in the air. The second entry point at BLOW_UP_CHOP
blows up the chopper wherever it is. So, by letting CRASH_CHOP
fall through to BLOW _UP_CHOP we can crash the chopper into the
ground and then blow it up. First we clear the COINC flag (T=0)
in case we hop right inte BLOW_UP_CHOP. Next we turn off any
previous sounds that may be on since the next sound statements
have a positive duration.

IF Our choppers 1last checked position was on an odd dot
column (Y AND 1) THEN we will get ready to crash it into
the ground by changing its pattern to the forward flight
chopper, and setting it into a diagonally downward motion
according to the value of V.,

ELSE We will get ready to blow it up in the sky by changing its
color to white and then we will GOTO BLOW_UP_CHOP.

NEW_COLOR This 1s part of the loop that crashes the chopper into the
880 ground. First change its color to a randomly selected color
between 3 and 10, Next we start up a For-Next locop that may or
may not be completed but it is used to generate a sound like

the choppers engines are in trouble.

890 Now we check our choppers position,

iF we are close to the ground (X>155) THEN stop our choppers
motion and GOTO CHK _COINC (this leaves the For-Next loop
and the crash loop). .
ELSE IF our choppers last dot row position has the binary bit
for the value of 2 turned on, then gotc NEW_COLOR.
This will not allow the entire For-Next loop to
execute so the sound will not have a regular pattern.
(the X AND 2 is a simple random test since the

chopper 1s constantly changing its position)

900 Since the X AND 2 test returned 0 or false then execute NEXT T.
When the For-Next loop is finished GOTQ NEW_COLOR and start the
loop over again. The only way out of the loop is when the
choppers dot row is greater than 155.

N]F__W——

CHE_COINC

BLOW_UP_CHOP

LAND_IT

MAN_OUT

910 CALL COINC(#1,#2,16,T)::
IF T THEN CALL DELSPRITE{#2
)

920 CALL COINC(#1,#3,17,T)::

CALL COLOR(#1,2):: IF T THE
N CALL SOUND{(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR(#3,7)

930 FOR ¥=0 TO 16 STEP 4 ::
CALL SOUND(-999,-8,Y,120,27,
127,28,1100,30):: CALL PATTE
RN(#1,84+Y):: NEXT Y

940 CALL DELSPRITE(#1):: Z=Z
-1 3: HP=0 ::; IF T THEN GOSU
B 850 :: RETURN ELSE RETURN

950 CALL MOTION(#1,0,V):: CA
LL COINC(#1,#2,12,YY):: IF Y
Y THEN CALL SOUND(-500,-8,1,
110,30, 110,30,840,28) :: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,-4,1,14
0,30,140,30,140,30):: CALL P
OSITION(#1,X,Y,#2,Y1,Y1):: C
ALL SPRITE(#1,116,13,160,Y,0
,0)

970 CALL MOTION(#2,0,4%SGN(Y
-Y1)}):: IF Y1=0 THEN CALL SP
RITE(#2,76,2,163,256)

CHK_COINC When the program flow comes here our chopper is near the ground

910 (X»>155) so check to see if it has crashed on top of the man,
IF it has crashed on top of the man THEN delete him off the
screen,
920 Next check to see if our chopper has c¢rashed on top of the

tank and change our choppers color to black since it was

changed to random colors in the crash loop.)

IF it has crashed on top of the tank THEN generate a noise
that sounds like the choppers blades hitting the tank and
change the tank's color to red.

BLOW_UP_CHOP Now we will execute a For-Next loop to generate the blow up
Q30 sound while it changes the blow up pattern for our chopper.

g40 Next we delete our blown up chopper off the screen, subtract 1
from the number of our choppers remaining (Z=Z-1) and clear out
the variable that contains the number of men currently in our
chopper (HP=0).

IF our chopper crashed into the tank (T<>0) THEN GOSUB
BLOW_UP_TANK and RETURN.

ELSE just RETURN to the statement after gosub crash _chop or
blow_up_chop.

LAND IT This routine, which makes cur chopper land on the ground, 1s
950 branched to from the TANK_LOOP when our chopper's dot row is
greater than 151. First we stop its downward motion but we keep
its forward motion going so it can slide in for a landing. Then
we check to see if we landed the chopper on top of the man.
IF we have landed on top of the man (YY<>Q) THEN generate a
sound and delete the man off the screen.

g60 Next generate a slightly different sound for the chopper while
its on the ground, check the position of ocur chopper and the
man so we can set the man intc motion toward our chopper and
then set our chopper on the ground in the landed pattern with
all velocities at 0 or bring it to a stop.

MAN_OUT Now put the man into motion toward our chopper. Note: Since we
970 used CALL DELSPRITE(#2) instead of CALL DELSPRITE(ALL)} the
sprite i=s not actually deleted it is just moved off the screen.
IF the man is not on the screen (Y1=0 when the sprite is
deleted and its position is checked} THEN bring him out on
the extreme right hand edge of the screen. The previocus
CALL MOTION will put him into motion towards the chopper
80 he will smoothly come out on the left hand edge of the
acreen.

—

59

KEY_LOOP

TAKE OFF

980 CALL KEY(1,T,T}:: IF T=5
THEN 1020 ELSE YY=Y¥YY~} :: I
F Y¥<60 THEN YY=T6

990 CALL PATTERN{#2,¥Y):: CA
LL COINC{#1,#3,32,T):: IF T

THEN GOSUB 830 :: GOSUB 870

s GOTO 1030

1000 CALL COINC(#2,#3,24,T):
: IF T THEN GOSUB 830 :: GOT
0 970 ELSE CALL COINC(#1,#2,
11,T):: IF T THEN CALL PATTE
RN(#2,80)ELSE 980

1010 CALL SOUND{-200,220,7,2
23,8,226,9):: HP=HP+1 :: DIS
PLAY AT(1,3)SIZE(2):HP :: CA
LL DELSPRITE{#2)

1020 CALL SOUND(-4000,-4,1,1
10,30,110,30,320,30):: CALL

MOTION(#1,=17,V/2,#2,0,0)::

CALL PATTERN(#2,128):: IF HP
=5 THEN 300 ELSE 1050

60

KEY_LOOP
980

990

1000

1010

TAKE OFF
1020

Scan the left hand keyboard, we don't care about the status so
we can reuse the T variable here for faster operation.
IF the up arrow key was pressed THEN goto TAKE_OFF.
ELSE subtract 4 from the pattern variable for our animated
running man.
IF the pattern variable is 1less than 60 we are at the
end of the running man patterns so THEN reset it back
to 76.

Change the running man's pattern and then check to see if the

tank is within 32 pixels of our chopper.

IF it is (T<>0) THEN GOSUB MACHINE_GUN to shoot the tank and
man, GOSUB CRASH_CHOP to blow up our chopper and GOTO
QUR_CHOP_OUT to start the Tank Loop all over again.

Since the tank was not close to our chopper check to see if

just the man is close to the tank.

IF he is THEN GOSUB MACHINE GUN to shoot the man and GOTO
MAN_OUT to bring out another man and continue with the
key_loop.

ELSE Since the man was not close to the tank check to see if he
is close to our chopper 3¢ he can climb aboard.

IF he is then change his pattern and make him bend down
to elimb in and continue with the next line.

ELSE since he is not close enough to our chopper yet GOTO
KEY LOOP and start this loop over again.

Since he was close enough to climb aboard generate the beep
sound to indicate that he made it, add 1 to the variable that
contains the total number of men in our chopper, diaplay the
total number of men in our chopper at the top of the screen and
delete the man of the screen.

Generate the take off sound for our chopper, put our chopper

into a diagonally upwards motion according to the value of V

and stop the running man and change his pattern to the waving

man in case we came to this part of the routine directly from

key_loop and left him on the ground.

IF we have 5 men in the chopper THEN goto R&P_INIT to check
the level and see which screen we should goto next,

ELSE go back to the TANK_LOOP to continue playing on the Tank
Screen since we don't have enough men in the chopper yet.

61

OUR_CHOP_OUT

TARK_SCORE

TANK_LOOP

TANK_LOOP1

1030 IF Z THEN CALL SPRITE(#
1,112,13,20,1,20,35):: T,V=1
2

1040 DISPLAY AT(1,2):USING B
$:HP,SP,S8C,Z :: IF Z=0 THEN
250

1050 CALL SOUND(-999,-4,1,11
0,30,110,30,200,30):: CALL P
OSITION(#1,X,Y,#2,Y1,Y1,#3,Y
Y,¥Y):: IF ABS(YY-Y¥)<5 THEN
810 ELSE IF Y1 THEN CALL PAT
TERN(#2, 124)

1060 CALL MOTION(#3,0,SGN(Y~
YY)*((Y AND 6)+8+K)):: IF X<
35 THEN CALL MOTION(#1,0,V):
: CALL LOCATE(#1,35,Y)ELSE T
F X>151 THER 950

1070 IF Y1 THEN CALL PATTERN
(#2,128):: IF ABS{YY-Y1)<26
THEN GOSUB 830

e S ——

OUR_CHOP_OUT 1IF there are any choppers left (Z<>0) THEN bring out our

1030

TANESCORE
1040

TAKK_L0OOP
1050

TANK_LOOP1
1060

1070

chopper from the upper left hand corner of the screen
moving diagonally down and forward, initialize the
chopper's velocity variable (V) and set the chopper just
coming out flag (T) with the same value.

Display the scoring on row 1.
IF there aren't any choppers left (Z=0) THEN GOTO GAME_OVER
(end of game).

Generate chopper sound, get the chopper's (sprite #1), the

running man's (sprite #2) and the tank's (sprite #3) positions

{Note: we need the dot row and dot column for our chopper but

we only need the dot column for the man and the tank since they

are always on the same dot row).

IF the tank is lined up within 4 dot column pixels of the
flying chopper {(ABS(YY=-Y)}<5) THEN GOTO TANK_SHOOTS (tank
shoots at the Flying chopper).

ELSE IF the man i1s on the screen (Yi<>0) THEN change his

pattern to make his arm wave,

Make the tank move towards the chopper {SGN(Y-YY) at a random
speed based on our choppers last dot column position ({Y AND
6)+4) adding some extra speed for the current level (+K).

IF our chopper is too high on the screen (X<35)} THEN change
its motion into level flight in the current direction it
is heading (V), and relocate it back down to dot row 35 at
it current dot column position.

ELSE IF our chopper 1s near the ground (X>151) THEN GOTO

LAND_IT (land it on the ground},.

IF the man is on the screen (Y1<>0) THEN change his pattern
to make his arm wave and,
IF the tank is within 25 dot column pixels of him
{4BS(YY=-Y1)<26 THEN GOSUB MACHINE_GUN (make the tank
shoot the man).

63

ERD_TANE_LOOP

1080 CALL KEY(1,T,T):: IF T=
13 THEN 1130 ELSE IF T<0 THE
N CALL PATTERN(#1,V/3+108)::
CALL MOTION(#1,3%(X>35),V):
: GOTO 1050

1090 IF T=3 THEN CALL PATTER
K(#1,112):: V=12 :: GOTO 112
0 ELSE IF T=2 THEN CALL PATT
ERN(#1,104):: V==12 :: GOTO
1120

1100 IF T=0 THEN CALL PATTER
N{#1,108):: CALL MOTION(#1,8
,V}:: GOTO 1050

1110 IF T=5 THEN CALL PATTER
N(#1,108):: CALL POSITION(#1
,X,¥):: IF X<36 THEN CALL LO
CATE(#1,35,Y)ELSE CALL MOTIO
N(#1,-12,V)}:: GOTO 1050

1120 CALL MOTION(#1,0,V):: G
0TO 1050

m

1080 Scan the left hand side of the keyboard for a key press (we
don't need the status).

IF the fire key was pressed (T=13) THEN GOTO LASER_FIRE

(shoot at the tank),

ELSE IF no key was pressed (T<C or T=-1) THEN set the
choppers pattern according to the velocity (V), the
pattern equals 104 (backwarda) when V=-12 and it
equals 112 (forwards) when V=12, set the chopper into
a slightly upward diagonal motion (forward or
backward according to V) if it is not above or at dot
row 35, and then GOTO TANK_LOOP (start the over loop
again).

1090 IF the Right arrow key was pressed THEN change the choppers
pattern to forward flight (char 112), set the velocity
variable (V) equal to 12, and GOTO END_TANK_LOOP (ad just
our choppers motion).

ELSE IF the Left arrow key was pressed THEN change the
choppers pattern to backward flight (char 104), set
the veloeity variable (V) equal to -12, and GOTO
END_TANK_LOOP (adjust choppers motion).

1100 IF the Down arrow key was pressed THEN change the choppers
pattern to level flight, set it into a diagonally downward
motion (forward or backward according to V), and GOTO
TANK_LOOP.

1110 IF the Up arrow key was pressed THEN change the choppers

pattern to level flight, check its current position and,

IF it is too high (X<36) THEN locate it back down to dot
row 35, if it was on dot row 35 this locate statement
won't have any visual effect on the screen, and
continue with end_tank loop.

ELSE set it into a diagonally upward motion (forward or
backward according to the value of V), and GOTO
TANK_LOOF (start the loop over again).

(Note: if an invalid key was pressed then none of the above IF
statements would be executed and the value for V will remain
unchanged and the program will drop through to end_tank_loop)

END TANE_LOOP Adjust our chopper's motion according to the value of V and
1120 GOTO TANK_LOOP (start the loop over again).

65

LASER_FIRE

1130 CALL SOUND{-499,-8,3,12
8,30,128,30,999,30):: CALL M
OTION(#1,0,V):: CALL POSITIO
N(#1,%X,Y):: Y=V/2+4Y :: IF ¥<
1 THEN ¥=1

1140 FOR T=X+16 TO 175 STEP
13 :: ¥=Y+13 :: IF Y>255 THE
N Y=1

1150 CALL LOCATE(#T/13+7,T,Y
J:: NEXT T :: IF Y1 THEN CAL
L COINC(#2,160,Y,18,T):: IF
T THEN CALL DELSPRITE(#2)

1160 CALL SOUND(-999,-8,3,12
8,30,128,30,500,30):: CALL C
OING(ALL,T):: CALL DELSPRITE
(#9,#10,#11,#12,#13, #14, #15,
#16,#17,#18,#19,#20)

1170 IF T THEN CALL COLOR(#3
,16):: GOSUB 850 :: GOTC 104
0 ELSE 1050

LASER_FIRE Generate the Laser Fire sound, change our chopper's motion to
1130 level flight V and check its position. Next adjust the dot
column variable slightly to compensate for our chopper's level
flight motion. This allows the laser to always start underneath

the chopper no matter which direction it is moving in.
IF alfter the adjustment, we are left with a value less than
1, because our chopper i= moving backwards and on the left

hand edge of the screen, THEN change it to 1.

1140 Start the laser fire For-Next 1loop 16 pixels lower than our
choppers position. This also determines how many laser 3prites
to bring out., The closer our chopper is to the ground the fewer
the sprites we need to display. This loop increments in units
of 13 to compensate for the double line laser pattern. If you
lock in the appendix for the definition of character number
136, laser fire, you will notice that only 13 pixel rows were
used, If you use a single line laser you can use all 16 pixel
rows without worrying about sprite pixel overlap. The end of
the loop at 175 assures that the laser will be displayed all
the way down to the 4 invisible sprites at the bottom of the
screen, which have a lower number than the laser sprites. This
automatically ends the laser at the same position on the ground
no matter where ocur chopper is in the air since any part of the
laser that resides in the same dot rows will not be seen. On
each loop we also add 13 to Y (the dot column) to make the
laser come out diagonally.

IF Y 1is greater than 255 we need to wrap the laser around to
the other side of the screen.

1150 Bring out a laser fire sprite. At the end of the TANK_INIT
routine we placed sprite numbers 9 through 20 off the bottom of
the screen for the laser fire. This was done because a CALL
LOCATE works MUCH faster than a CALL SPRITE, so now with them
defined and off the screen we can just use a CALL LOCATE to
display them. Keep looping until the For-Next loop is done.

IF our man 1s on the screen (Y1<>0), THEN check the
colncidence between him and the last laser sprites
position from the For-Next loop (Y).

IF we hit him THEN delete him off the screen. Note: You
could make the game much harder here by clearing out
the total score if you shoot one of our men or you
could penalize the player by blowing up the chopper
Ol.ve...? its up to you.

1160 Generate the end of the laser fire sound and check for any
coincidence (we already checked to see if we hit the man so if
there is a colnecidence it must be the tank) and delete the
laser fire off the screen. By using CALL DELSPRITE(#x) instead
of (ALL) we will not actually delste the laser sprites we will
Jjust move them off the visible portion of the screen. This
method works faster than a For-Next loop to delete the sprites.

1170 IF we hit the tank THEN change its coleor to white, GOSUB
BLOW_UP_TANK and GOTO TANK_SCORE to display the score and
start the tank_loop cver again.

ELSE since we didn't hit the tank there's no need to display
the score sco just goto TANK_LOOP to start it over again.

M

67

MORE CALL PEEKs & CALL LOADs

Listed below are some new CALL PEEKs and CALL LOADs. Along with these you
will also find the CALL PEEKs and CALL LOADs that were in the Smart
Programming Guide for S3prites and the Smart Programmer newsletter.

CALL PEEK (Extended Basic)

CALL PEEK(-286T2,A)::IF A=0 OR A=12T7 The speech synthesizer is NOT attached
RANDOMIZE :: CALL PEEK(-31880,4) Random Integers 0~99

RANDOMIZE :: CALL PEEK(-31808,A,B) Double Random Integers 0-255

CALL PEEK(-3187%9) VDP Interrupt Timer
CALL PEEK(-31878) Highest # Sprite in Autc-Motion
CALL PEEK(=-31877) VDP Status Register
CALL PEEK(8198,A,B)::IF A/B=2 THEN CALL INIT has been executed

or IF A%256+B=43605

or IF A=170 AND B=85
CALL PEEK(8194,A4,B,C,D)::(C-A)¥256+D-B = Free Space in Low Memory after CALL
INIT or CALL LOAD{"DSKEX.xxxxxx")

H

CALL PEEK(~-31974,A,B) :: A%#256+B-2487

Running free space in VDP Ram. Note:
FOR - NEXT LOOPs, GO3SUBs etc. use
running space, garbage collection
recovers it. This PEEK will not
ALWAYs return EXACT amount of free
VDP Space unless Garbage collection
has JUST been accomplished. (SIZE
performs garbage collection before
reporting STACK Free Space)

CALL PEEK(=-31936,A,B) :: A%#256+B-2487 Exact amount of Free Stack space
while the program is running. Does
not count the garbage collecticn
area as used,

CALL PEEK(~31866,A,B) :: A%256+B-41023 = Free Program space in High Memory

CALL PEEK(-31952,A,B) :: A®256+B Start of Line number Table - Without
Mem~Expansion this points into VDP
Ram, With Mem-Expansion this points

into High Mem-Expansion.

CALL PEEK(-31950,A,B) :: A®256+B

End of Line Number Table - points to
the last byte of the line number
table.

CALL PEEE(~31954,A,B) :: A¥256+B = The memory address of the pointer to

p 1 the current line being executed.

68

X

CALL PEEK (Extended Basic) Continued

CALL PEEK(-31954,A,B) ::
CALL PEEK(A%#256+B-65536,C,D):: C#256+D = Start address of current program
line being executed.

CALL PEEK(-31954,4,B) ::
CALL PEEK{A®256+B-65538,C,D):: C#2564D

13

Current line number being executed.

CALL PEEK(~31952,A) :: IF A=55 THEN No Memory Expansion

CALL LOAD (Extended Basic)

CALL LOAD(-31962,0,32) Execute Power Up Routine - Go To Title Screen
does not close open files.

CALL LOAD(-31962,33,111) Hop directly into TI Basic

CALL LOAD(-31962,99,114) Restart Extended Basic - try to relcoad DSK1.LOAD

CALL LOAD{(-31962,101,190) Execute LIST command - from command mode only

CALL LOAD(-31962,100,155) Execute RUN command

CALL LOAD(-31962,100,124) Execute NEW command

CALL LOAD{-31962,100,126) Execute CONTINUE command - from command mode only

CALL LOAPR{-31962,100,128) Another LIST command - from command mode only

CALL LOAD{-31962,100,130) Execute EYE command (closes all open files)

CALL LOAD{=-31962,100,132) Execute default NUM command -~ when running
program ends, Line 100 contains garbage so just
place a REM there.

CALL LOAD(-31962,100,136) Execute default RESEQUENCE command

CALL LOAD{-31962,160,000) Generates colorful Title Screen

CALL LOAD(-31962,160,04) Execute RUN without Pre-Scan {Faster than having
a RUN command in your program to restart it,)

CALL LOAD({=-31806,128) Disables Auto Sprite motion, Auto Sound and the
QUIT Key
CALL LOAD{-31806,64) Disables Auto Sprite motion - brings ALL moving

Sprites teo an immediate stop.

CALL LOAD(-31878,0) Brings ALL moving Sprites to an immediate stop -
placing a value in here between 1 and 28 allows
only the sprite numbers that are equal to or leas

p 1 than that number to be in auto motion.
6

9

CALL LOAD (Extended Basic) Continued

CALL LOAD(-31806,32)

CALL LOAD(-31806,16)

CALL LOAD(-31806,0)

CALL LOAD(-31744,%,x,x,x)

CALL LOAD(-27648,x,x,x)

CALL LOAD(-31868,0,0)::
RUN "DSEKx.xxxx"

CALL LOAD{-31868,255,231)::
RUN "DSKx.xxxx"™

Disables Auto Sound processing - leaves the socund
on forever.

Disables the QUIT key

Enables Auto Sprite motiocn, Auto sound processing
and the QUIT key.

Sound c¢hip locatien, different values turn on
different sounds.
Speech chip location

Turns OFF Memory Expansion

Turns ON Memory Expansion

APPENDIX - A

10 CALL CLEAR :: CALL MAGNTIF
Y(3):: CALL SCREEN(2):: GOTO
30 :1: A$,B§,W$,B CALL KE
Y :: CALL JOY¥ST CALL SOUN
D :: CALL PEEK CALL HCHAR
CALL VCHAR

20 X,Y,¥t{,YY,X,v,Z,HP,5P,58C
tr CALL POSITION CALL FAT
TERN :: CALL SPRITE :: CALL
DELSPRITE :: CALL COINC :: C
ALL MOTION CALL LOCATE

30 E4$=v00000000" T$=E$&"D
000" :: S$=E$4E$:: CALL CHA
R(132,"6152524CCCO0000080808
OFFS80YCBUFCMAES$E"FF & T$AFF"

J:: FOR T=1 TO 8 CALL CoL
OR(T,15,1):: NEXT T :: |6F-
35 FOR T=0 TO 27 STEP 3 :: D

ISPLAY AT(12,2):;"RELEASE THE

ALPHA LOCEK KEY" CALL S0D
ND(-340,550,T,557,F):: DISPL
AY AT(12,1):: NEXT T

40 CALL CHAR(47,7"3C4299A1819
9423C",33,RPTS("FF",8)&"0000
002011B3FFFFFFFFFFFF81TETES
", 112,"A00802103979FDFF1FCT0
1080701"&E$L"BODOBLUCIFQFCF2E
2E2F2FC9CFAICT)

50 DISPLAY AT{5,3)}:"N I G H
T MW ISSTIOUNE': : : :RPTS
(™ m,13}&" F"ERPT$(" *",13)::
CALL CCOLOR(13,12,1):: GOSUB
240 :: CALL SPRITE(#21,112,1
3,46,25,0,11)

60 DISPLAY AT(12,1%):mBY":
" MIKE MC CUE & CRAIG MILLER
Wy o+ 2 :TAB{t2);m/ 1983"r: v
MILLERS GRAPHIGS®:™
1475 W CYPRESS AVE®:"
SAN DIMAS CA 91773"

70 CALL CHAR(136,"9048241209
OH02010"&E$&S$L" 080402090882
412097,96,"1C000CU0LES&TE0N
SE$&"2mASSLT10L000001000008"
,100,m0000008"&3$4M000008 &S
$&2n8THEM04N)

80 CALL CHAR(120,"03CE3F3CTF
FTFFFFFF6FTFTF33360FC3E0583C
FBFOESFORBOFOFOFQOTOTBEBICFLY,
124,"000808090T"&RFTH("CIM, 1
1)&"GOCOCOCOECEOECEQEOCOBOLO
4O40QU0EDT)

90 A$=RPTS&("™ ™,22)}:: CALL CH
AR(128,70202040503"&RPT4("0
", 11}&*00COCOCOEOEQOEDEQEQCOY
oUONOUGHOED®, 140, T$E%0103073
FEAAAAATF"AS$4YBOCOEOFCAAAQA
AFC™)

100 A$=A%L"/ e e /!,
e - e (-

@ fo ({0, e e L(({(

- A= VA SR ¢

(e COLCCL0Cl- 0=, 000t

(=7 0000 ececl,n

110 GOSUB 240 :: B$=RPT$(™1"

J2BYERPTS{ ™ 114", 0)&RPTH(" 1",
29):: WEsRPTE(rmnom 28)4RPTH{
nyn, 84}

CASSETTE JOISTICK VERSION

120 CALL CHAR(92,"000800002C
OCO000NOO00000 I *EES&YBO EESE
"zo8000002001™,116,"00005501
OF1E183020301E1FOF132030000C
5580F07B180COLOCTEFBFOCBOUOC
"

130 CALL CLEAR FOR T=1 TO
13 :: CALL COLOR(T,1,1):: N
EXT T :: FOF X=1 TO 30 :: RA

NDOMIZE :: CALL PEEK({-31808,
T,Y):: CALL HCHAR(T/18+1,Y%,
12+1,101):: NEXT X

140 GOSUB 240 :: CALL CHAR(8
8,m0C00040010000000200000C8"
4E$&"CO1"&E$&" 4100000040017,
56,"1F1122223E444UF81F21213E
02040408")

150 CALL CHAR(#8,"1F21214242
83E84F801010202040408061F0101
023C20407E3FCG103021COLGBFE",
52,"1111223E020404081F202040
TCO40BFE102020407E82827TC3F01
az2cko081c20%0m)

160 CALL CHAR(80,E$&"0003040
1010101010202040600000018FBE
QF8COCOCOTO1010187,684,100000
00200080000100002"&T$&%00200
00008200000082"%)

170 CALL CHAR(T72,7"0000070107

0503010101016102020203C0COCO

EOEOFBCOCOCO02020101020506"):
CALL HCHAR{20,1,3%,32)

180 CALL CHAR(36,"140A200D14A
21641A24140814080800080"45%,
76,"000001030303030101010100
000TO4OO0CBCOCOECEQECFOCOCONO
4C0COCOAOB0CT"} 1 CALL HCHAR(Z
1,1,33,128}

190 DISPLAY AT(10,71):%e h i

jkeli jmnekne®™ :: CA
LL CHAR(4O,RPT${"FFr 8, L4,
00008082C2CTFTFFB0B0COEDENFC
FEFFO103232B7FTFFFFF"&E$&"08
Z8A9FD")

200 DISPLAY AT(2,1):RPT$(" »
,13)&" "&RPT$("™ ™,13):: DIS
PLAY AT{3,24):"xz* :: DISPLA
Y ATCH, 20} :nyin DISPLAY A
T(15,1):44:B$ A$=SEG$(AS,
141,28) 4B¢

210 GOSUB 240 Bé="e # #i¢
&+ efddERENd edd#d e" :: CAL
L DELSPRITE(ALLJ:: CALL COLO
R(3,15,1,4,15,1,9,11,1,2,11,
141,11,1,12,15,1,13,12,1)

220 CALL COLOR(10,1,1):: CAL
L CHAR(108,E$&"55000061E1FFF
FFFOO00O003"AE$&"55L0ECFBEAE

ZEV1FAFFTCUSFEM)
230 Kzt :: Z=5 HP,SP,5C,B
=0 :: CALL CHAR(104,E$L"0104

104G0103CFFFFFT786001020820C0
TRTCEZE1E1F3FEFCC54658E") 12
GOTO T40

240 CALL SOGND(-4250,-4,1,11
0,30,110,30,200,30):: RETURN

71

250 CALL KEY(3,T,¥):: Z=INT(
{SC-B)}/10000):: FOR T=1 TO 2

CALL SOUND{200,770,4,777
+6)r: DISPLAY AT(1,24):USING
nEEET NEXT T

260 IF Z THEN B=B+ZI®10000 ::
GOTO 740 ELSE CALL CHAR(108
y"FF81BFAOAFBYB1FFFFB1ET1818

ET81FFETB5BSBDBDADADET ™)

270 CALL CHAR(104,"FFR1BDR1B
FAGAGECEOAOAGAOAOBFB1FFFFB1B
DBD81BDASETETASBDS1ET181618"
):: CALL SPRITE(#1,112,13,87
2 1,0,12)

280 GALL COLOR({10,7,1,10,%,1
,10,16,1,10,6,1):: CALL EEY(
$,T,Y¥1):: CALL KEY(0,T,T)

290 IF T=89 CR Y1 THEN 220 E
LSE IF T=78 THEN CALL DELSPR
ITE(ALL):: CALL VCHAR(1,1,32
,768):: END ELSE 280

300 V=8 IF K<2 THEN 570 E
LSE IF Y AND 1 THEN 340 ELSE
CALL CHAR(60,m080&1C1C1C1C
C3ETFI1C0008221008080"45%)

310 ¥YY=600 :: CALL DELSPRITE
(ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T,3,T"17,#T+4,177,T
#17):: NEXT T

320 CALL SOUND(-359,-7,6,110
,5}:: CALL CHAR{35,"FFFFFFFF
B10O00BI™):: CALL SOUND(¥250
,=8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 :: RANDOM
IZE :: CALL PEER{-31880,%)::
CALL SPRITE(4#T,60,{X AND 7)
+3,117,T¥*24-208,-X/8-3-K,0}:
NEXT T GOTO 360

340 CALL CHAR(G60,T$&"C1030F7
FO"&EETE“TO9FAB20UFC3ICICFF
pcr}:: YY=1600 CALL SOUND
(-4250,-8,6,110,27,115,28, ¥Y
430}:: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 :: RANDOM
IZE :: CALL PEEK(=-31880,X)::
CALL SPRITE(#T,60,(X AND 7)
+3,T#16-120,256,0,-k/8-3-K):
: NEXT T

360 CALL SPRITE(#1,112,13,72
I1$0’3)

37¢ CALL 300RD(-999,-8,6,110
,27,115,28,YY,30):: CALL COI
NC(ALL,T):: CALL POSITION{#1
yX,¥3:: IF T OR X>161 THEN G
0SUB 870 :: GOTO 740

380 IF¥ Y>224 THEN 410 ELSE €
ALL JOYST(1,T,¥1):¢ IF Y1 TH
EN CALL PATTERN(#1,108):: Ch
LL MOTZON(#1,{X-2%¥1>30)%2%Y
1,2):: GOTO 3760

390 CALL PATTERN(#1,112}:: C
ALL MOTIOK{#1,0,T/2+2):: GOT
0 370

L
CASSETTE JOYSTICK VERSION Continued

410 CALL DELSPRITE(#1)}:: IF
K<3 THEN 570 ELSE Y1=(Y AND
6)-4 :: CALL DELSPRITE(ALL):
: CALL COLOR{(2,1,1,1,1,1,13,
1,1}

420 DISPLAY AT(21,1):" e
e e e
e e e
el

430 CALL CHAR(60,T$&"AAO21F2
CUCTFI10TF"&S$&"AB00CIFFEICD9
QE™,64,S$2"00000292"8T42S4e"
4o49™}:: CALL SPRITE(#1,108,
13,%40,31,8,0)

440 CALL SPRITE{#2,60,6,242,
216,(Y AND 1)®#80-30,0)

450 CALL SOUND(-%250,-4,1,20
¢,30,200,30,200,30):: CALL P
OSITION(#1,X,Y,#2,YY,¥)

460 IF X>180 THEN CALL LOCAT
E{#1,1-(V<0)®180,31}ELSE IF
ABS(X-YY)}<T THEN 490 ELSE CA
LL MCTION(#2,SGN({X-YY)*((YY
AND 11}+9),0)

470 CALL KEY{1,T,Y¥):: IF ¥ T
HEN 510 ELSE CALL JOYST(1,¥,
T):: IF T THEN V=-2%T ELSE I
F Y THEN V=0 ELSE 450

480 CALL MOTION(#1,V,0):: GO
TO 450

490 CALL SPRITE(#3,64,7,YY,2
09,V+4X=YY,=727)¢: CALL SOUND
{~900,=-8,1,110,30,110,30,999
9,30):: T=0

500 CALL POSITION(#3,Y,Y)::
IF ¥>»5¢ THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR(#1
,11):: GOSUB 930 CALL DEL
SPRITE(#2):: GOTO 740

510 CALL SOUND{-900,-8,0,110
,30,110,30,300,30):: CALL PO
SITION(#1,X,¥):: CALL SPRITE
(#3,64,4,%,36,0,127)

520 CALL POSITION(#3,X,Y)}::

IF ¥<192 THEN 520 ELSE CALL

DELSPRITE(#3}:: CALL COINC(#
2,X,220,7,T):: IF T THEN CAL
L SOUND(-1,-4,9)ELSE 450

530 CALL CCLOR(#2,15):: FOR
T=0 TO 2 : CALL PATTERN{#2z,
E8+T#4):: FOR X=5 TO 7 :: CA
LL SOUKD(100,-X,T#10):; NEXT
X :: NEXT T

540 CALL DELSPRITE(#2):: ¥1=
Y1+¢1 :: SC=SC+250 :: DISPLAY
AT(1,12)SIZE(10)}:USING 7"###
###F#£47:83C s IF Y145 THEN
byo

550 CALL POSITION(#1,X,¥)::
IF X>185 THEN CALL LOCATE(#1
+35,Y)

560 CALL PATTERN{#1,1%2):: C
ALL MOTIION(#1,0,20):: CALL S
QUND(-H250,-4,1,200,30,200,3
0,200,30)

570 CALL CHAR(68,3$&"000000F
FTF1FFEABY&S$&"000000FFFFFFA
A6D", 64 ,E$4"0021F373FFFFFFFF
FFFF972A08103CFFFOFFFFFRFFFF
FFFFFFFFSEAA®)

580 ¥1=(Y AND 5)+6 :: GOSUB

800G :: CALL CHAR(60,m0000008
0BCCLCFEEFFFFSBAAFFFFT22BM&T
$Z"COOFFEFCF8FDE2C6TEB3IDT) ¢ ¢

CALL COLOR(1,1,%,2,1,1)

590 DISPLAY AT(20,1):W¢$:: C
ALL COLOR(1,5,1,7,12,1):: FO
R T=1 TO & CALL LOCATE(#T
y161,1):: NEXT T CALL SPR
ITE(#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1, #11,64,15,143,17,4#12,60,
15,143,33):: CALL MOTION(#1(¢
J0,Y1,#11,0,¥1,#12,0,11)

610 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#%,X,Y):: IF X<35 TH
EF¥ CALL MOTION($#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X>t
Lo THEN 690

620 CALL COING(#9,#11,16,T):

IF T AND X>130 THEN 680 EL
SE CALL COINC{#9,#%0,9,T)::
IF T THEN 716

630 CALL JOYST(1,Y,T):: IF Y

THEN CALL PATTERN{#9,Y+108)
11 V=V-Y®(ABS(Y+V}<16):: CAL
L MOTION(#%9,0,V):: GOTO 610

640 IF T THEN CALL PATTERN(#
9,108):: CALL MOTION(#9,2%T*
(X=-T>35),V):: GOTO 610

650 CALL PATTERN(#9,SGN{V)*4
+108):: CALL MOTION(#9,(X>35
Y#3,¥}:; GOTO 610

680 CALL MOTION(#9,0,0,#10,2
Ja,#11,2,48,#12,2,4):: SC=5C-
SP*500 ::; SP=0

690 CALL MOTION(#9,3,0):: Cai
Li SOUND(-2450,-8,6,110,30,1
10,30,9999,30):; CALL PATTER
N(#9,104):: CALL SOUND{1,-4,
)it BP=0 11 Z=I-1

700 CALL DELSPRITE(#6):: IF
5P THEN T4Q ELSE CALL DELSPR
ITE(#10,#11,#12):: GOTQ T40

710 CALL POSITION{#10,X,Y)::

CALL SPRITE(#9,116,13,136,Y
,0,¥1):: FOR T=306 TO 122 ST
EP =6 :: CALL SOUND(-20D,-4,
1,7,27,7,30,T,30):: NEXT T

720 $#OR T=130 TC 306 STEP 6
CALL SOUND(~-4250C,-4,1,T7,3
4,T,30,T,27):: KEXT T :: CAL
L MOTION(#9,-10,0):: K=K+1
SC=8C+500*HF
730 FOR T=1 TO 300 NEXT T
1t 3P=SP+HP :: HP=Q

72

740 DISPLAY AT(1,2):USING B$
tHP,SP,SC,Z t: IF Z THEN CAL
L DELSPRITE(ALL)ELSE 250 111

750 CALL CHAR(60,™00C007010F
£090909010101013E200000C0CLCY
FCCOCOCOC0C02010080G810203")

760 CALL CHAR(64,"0101031F13
1313030303033F20000000808888
8BFHB0OBOBDOB0OBODOOCBOL0203™)

770 CALL CHAR(68,"0000010107
090%05Q10101C106181000€0COC2
F4c8cocococozoico8o8i0203",3
5,"FFFFFFFF81TETE81M)

780 DISPLAY AT(20,1):4% :: C
ALL COLOR(2,11,1,1,11,1,13,1
2,1):: GOSUEB 8&0C

790 CALL SPRITE(#3,140,2,161

,256,0,-24):: FOR T=9 TO 20
CALL SPRITE{#T,136,7,200,

1):: NEXT T :: GOTC 1030

800 CALL DELSPFRITE{ALL):: FQ
R T=5 TO & ::1 CALL LOCATE(#T
y1T7,T®17):: NEXT T :: RETUR
N

8§10 IF T<>12 THEN CALL PCSIT
ION(#1,X,Y,#3,YY,YY):: IF 4B
S{Y-YY}<BO THEN CALL SPRITE(
#4,36,9,157,YY,X-147,2%V+Y-V
Y)ELSE 1060 ELSE 1060

820 CALL SOUND(-150,-8,3,110
,30,110,30,5010,30):: CALL S
OUND{300,-8,1,128,30,128,30,
1100,30):: CALL DELSPRITE(#3
}:1: GOSUB 870 GOTO 1030

830 CALL MOTION(#3,0,V/4,#2,
0,0):: CALL PATTERN(#2,80)::
CALL SOUNDR{-1,-4,9):: IF T=
12 THEN CALL MOTIOQR(#1,0,V)

840 FOR T=1 TO ¢ :: CALL SOU
ND(50,-6,1):: NEXT T :: CALL
DELSPRITE(#2):: Y120 :: RET
URN

B850 CALL COLOR(#3,2):: FOR T
=0 TOQ %6 STEP 4 :: CALL SOUN
p(-999,-8,T,120,27,127,28,10
00,30):: CALL PATTERN(#3,84+
T):: NEXT ¥

860 SC=605-3¥K+S5C :: CALL DE
LSPRITE(#3):: CALL SPRITE(#3
,140,2,161,256,0,-24):: RETU
RN

870 T=0 :: CALL SOUND(-1,-4,
§):: IF Y AND T THEN CALL PaA
TTERN(#1,112):: CALL MOTION(
#1,9,V}ELSE CALL COLCR(#1,16
Yi: GOTOD 930

880 CALL COLOR(#1,RND®7+3})::

FOR T=1 TO 26 STEP 5 :: CAL
L SOUND{T®*40+200,~8,T,110,30
,110,30,1100-T,30)

890 CALL POSITION(#%,X,Y)::
IF X>155 THEN CALL MOTION{#1
,0,0):: GOTC 910 ELSE IF X A
ND 2 THEN 880

CASSETTE JOYSTICK VERSION Continued

900 KEXT T GOTC 880
910 CALL COINC(#1,22,16,T)::
IF T THEN CALL DELSPRITE(#2

920 CALL COINC(#1,#3,17,T})::

CALL COLCR(#1,2):: IF T THE
N CALL SODND{(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR{#3,7)

930 FOR ¥=0 TO 16 STEP 1
CaLL SOUND(-999,-8,Y,120,27,
127,28,1100,30}:: CALL PATTE
RN(#1,84+Y):: NEXT Y

940 CALL DELSPRITE(#1)}:: Z=Z
=1 :: HP=0G :: IF T THEN GO3U
B 850 :: RETURN ELSE RETURN

950 CALL MOTICN(#1,0,V):: CA
LL COINC(#1,$#2,12,YY):: IF Y
Y THEN CALL SOUND(-500,-8,1,
110,30,110,30,840,28):: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,-3,1,1%4
0,30,14%0,30,140,30):; CALL P
OSITION(#1,X,Y,#2,Y1,11):: C
ALL SPRITE(#1,116,13,160,Y,0
,0)

§70 CALL MOTION{#2,0,4%SGN(Y
~¥1}):: IF ¥Y1=0 THEN CALL SP
RITE(#2,76,2,163,256)

980 CALL JOYST{t,T,¥1}:: IF
¥Y1>0 THEN 1020 ELSE YY=-Y¥-4
IF YY<60 THEN YY=T6

990 CALL PATTERN(#2,YY):: CA
LL COING{#1,#3,32,T):: IF T

THEN GOSUB 830 :: GO3UB BTO

t: GOTO 1030

1000 CALL COINC(#2,#3,24,T):
IF T THEN GOSUB 830 :: GOT
0 970 ELSE CALL COINC(#1,#2,
11,T):: IF T THEN CALL PATTE
RN(#2,B0)ELSE 980

1010 CALL SOUND{-200,220,7,2
23,8,226,9):: HP=HEP+1 :: DIS
PLAY AT(1,3)SIZE(2):HP :: CA
LL DELSPRITE(#2)

1020 CALL SOUND{-4000,-4,1,1
10,30,110,30,320,30):: CALL
MOTION(#1,-17,V/2,#2,0,0)::
CALL PATTERN(#2,128):: IF HP
=5 THEN 300 ELSE 1050

73

1030 IF Z THEN CALL SPRITE(#
1,112,13,20,1,20,35):: T,V=1
2

1040 PISPLAY AT(1,2):U3ING B
$:¥P,5P,8C,Z :: IF Z=D THEN
250

1050 CALL SOUND(=-999,-4,1,11
0,30,110,30,200,30):: CALL P
OSITION(#1,X,Y,#2,Y1,¥1,#3,Y
Y,¥¥):: IF ABS{(YY-Y)}<5 THEN
810 ELSE IF Y1 THEN CALL PAT
TERK{#2,124)

1060 CALL MOTICN(#3,0,SGN(Y~-
YY)®((Y AND 6}+U4+4K}):: IF X<
35 THEN CALL MOTION{#1,0,V):

CALL LOCATE(#1,35,Y)ELSE I
F X>151 THEN 950

1070 IF X1 THEN CALL PATTERN
(#2,128):: IF ABS{YIY-Y1)<26
THEN GOSUB 830

1080 CALL KEY(1,YY,T):: IF ?
THEN 1130 ELSE CALL JOYST()
,T,I¥)z: IF T OR YY THEN CAL

L PATTERN(#1,108+T)ELSE CALL
PKTTERN(#I,V/3+IDB):: CALL

MOTION(#1,39(X>35),¥):: GOTC
1050

1090 IF T THEN V=T%3 ;:;; CALL
MOTION(#1,0,V):: GOTO 1050
ELSE CALL MOTION(#1,YY®2#(X.

Y¥>31),¥):: GOTO 1050

1130 CALL SOUND(-999,-8,3,12
8,30,128,30,599,30):: CALL M
OTION(#1,0,V}:: €ALL POSITIO
H(#1,X,¥):: Y=V/2+Y :: IF ¥<
1 THEN Y=1

1140 FOR T=X+16 TO 175 STEP
13 1: ¥Y=Y+13 :: IF ¥>255 THE
N Y=13

1950 CALL LOCATE(#T/13+7,T,XY
)i: NEXT T IF Y1 THEN CAL
L COINC(#2,160,Y,18,T):: IF
T THEN CALL DELSPRITE(#2)

1160 CALL S0UND(-999,-8,3,12
8,30,128,30,500,30):: CALL ¢
OINC(ALL,T):: CALL DELSPRITE
(49,210,811, 412,813,414, 15,
$16,#17,#18,#19,#20)

1170 IF T THEN CALL COLCR(#3
,16):: GOSUB 850 GOTO 104
0 ELSE 1050

10 CALL CLEAR :: CALL MAGNIF
Y{3):: CALL SCREEN(2):: GOTO
30 :: YY,X,Y

20 A% :: CALL KEY :: CALL PE
EE :: CALL HCHAR :: CALL SPR
ITE ::; CALL S0QUND :: CALL DE
LSPRITE

30 E$="00000000" :: T$=E3$&™0
000" :: S$=E$&ES$:: CALL CHA

R{132,"6152524CCCO0000C80808
DFFB0OGCELFCNEES& "FF & TSL "FF"
y:: FOR T=1 TO 8 :: CALL COCL
CH(T,15,1}:: HEXT T :: |6éP-

40 CALL CHAR{47,%3C4299A1219
g4%23Cn,33,RET4("FF®,B)&"0000
0020 11B3FFFFFFFFFFFFB17ETES
" 112,m"A00802103%79FDFF1F0T0
1080701 "4E$L"BODOBUCIFOFCF2E
2E2F2FCYCFAIC™)

50 DISPLAY AT(5,3):"N I G H
T MI S SIONT: @ : :RPTS
(* »,13)&m TARPTH("™ ",13)::
CALL COLOR{13,12,1):: GOSUB
290 :: CALL SPRITE(#1,%112,1
3,46,25,0,11)

60 DISPLAY AT(14,1):" PRESS
T0 USE®: : ™ 1 THE KU
MBER 1 JOYSTICER"™: : :" 2T
HE ARROW KEYS (ESDX)®": :"
AND ¥ TO FIRE"

70 ¥=X+1 :: CALL KEY{(0,YY¥,T)
11 IF T=0 THEN IF X<90 THEN
70 ELSE GOSUB 290 :: GOTOD 70

80 IF YY<49 OR YY>50 THEN DI
SPLAY AT{14,1):: CALL SOUND{
-100,200,4,208,6):: X=90
GOTC 60 ELSE IF YY-49 THENW 1
00

90 FOR X=0 TO 27 STEP 3 :: ¢
ALL SOUND(=-140,550,X,557, x)
: DISPLAY AT(1M ty: s 3o

: DISPLAY AT(16 2
): "RELEASE THE ALPHA LOCK KE
I" :: NEXT X

100 GOSUB 290 :: DISPLAY AT(
12,14):"BY": ;™ MIKE MC CUE
& CRAIG MILLER™: : : :TRAB(12
Y;®/ 1985%: ¢ MILLERS
GRAPHICSP: ™ . 1475 W CYPRE
88 AVE™:" SAN DIMAS CA& 9
1773"

110 CALL CHAR(136,7904824120
90402010 "LESES$A"0B0U0209048
251209",96,"10000040"&E$&"E0
RAESEN2NLSSETI04000001000008
" 100,m0000008"43547000004"E
S$ETM2NATEETOLY)

120 CALL CHAR(120,"030E3F3C7
FFTFFFFFF6FTFTF33360F03E0563
CFAFSE&FOBOFOFOFOTOTBES1CFC"
,12L,"GO0B0B0OYOT"&RPTE(01T,
11)&"00COCOCCEOEQEQEQEQCO40Y
04OU404CED")

130 CALL CHAR(128,"02020L050
3"LRPTH("0%",11)&"00COCOCOED
EOEQEQEOCO404040UQUCED™, 140,
T$&"0103CT3FEAAALATFES$EME0
CCEOFCAAAQAAFCT™)

DISK LOADer

e e

APPENDIX - B

140 CALL CHAR($2,"0008000020
Q0000040000000 "EESLE"E0 EESS
n208000002001%,116,"00005501
OF1E183020301E1FOF1320300000
5580F078180C0O40CTBFBFOCE0L4OC
")

150 A$="e e
e e
e
8 L]
160 CALL CLEAR :: FOR T=1 TO
8 :: CALL COLOR(T,1,1}:: NE

XT T :: GOSUB 280

170 DISPLAY AT(3,2h):mxz" ::

DISPLAY AT(4,24):my{m :: Ca
LL COLOR(%2,9,1,13,1,1):: C4
LL HCHAR(20,1,34,32)

180 CALL HCHAR(21,1,33,128)}:
: FOR X=1 TC 30 :: RANDOMIZE
:: CALL PEEK(-31808,7T,Y¥)::
IF T»>26 AND T<64 AND Y>204 A

NI Y<221 THEN T=T+uQ

190 CALL HCHAR(T/18+1,Y%.12+
1,709):: NEXT X

200 DISPLAY AT(10,1):"e h i
jkejl Jnmnneknem®

210 DISPLAY AT(2,1):RPT#(" ¥
,13)8" "ERPTS${" "»,13):: DIS
PLAY AT(15,1):A$%A%$&A3% :: CA
LL CCLOR(12,15,1,9,11,1}

220 GOSUB 290 :: CALL CHAR(S
§,"0000040010060000200000C8"
4E$&"001T&E$&™410000004001 ",
56,%1F1122223E4444F81F21213E
02040408")

230 CALL CHAR(48,"1F21214242
8484FB010102C2040808061F0101
G23C20407E3F0103021COL0BFEY,
52,"1111223E020404084F202040
FCOLDBFE102020407E82827C3F0Y
020408102040")

240 CALL CHAR(B0,E$&%*0003040
1010101010202040600000018FBE
OF8COCGCOTOT01018",84,"00000
¢0200080000100002MET4&™00200
pooc8z200000082")

250 CALL CHAR(T2,"0000010107
050301CG101010102020203C0C0CO0
EOEQFBCOCOC0O20207101020406M)

260 CALL CHAR{36,"1L40A200D14
2160 1A241A0814080800080"45%,
76,%00000103030303010101C1C0
DCOT7ON00CCCOCOEOEQECFOCOCOLD
JococoaoBecn;

270 CALL CHAR(40,RPT${"FF",8
},44,"00008082C2CTFTFFB0B0CO
EOEUFCFEFFO0103232B7FTFFFFFT&
E$&n0828AGFD")

280 GOSUB 290 :: CALL DELSPR
ITE(ALL):: IF YY=49 THERNR RUN

"DSK1.NMJOY® ELSE RUN "DSK1
.NMEKEY®

790 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: X=0 1::
RETURN

APPENDIX - C

10 CALL MAGNIFY(3):: CALL SC

REEN(2):: GOTO 30 :: CALL KE

Y :: CALL SOUND :: CALL PEEK
CALL HCEAR :: CALL VCHAR

20 X,Y,¥1,YY,V,T CALL POS

ITION :: CALL PATTERN :: CAL

L SPRITE CALL DELSPRITE

CALL COINC CALI, MOTION
CALL LOCATE

30 E$=mpQocoQoO0" T4$=E$&"0

000" ::; S$HSEFRES

90 A$=RPT$(" n,22)

100 A$=A$&"/ e e /.

e (- e L=

e Jo (UL, e e L({((

- A= A S S

(, e (O0C0UEE(= U=, 00K

({=7 CCCL00eeeed,

110 GOSUB 240 B$=RPT§("mI"
;2B)&RPTH("VI#7,9)&RPTH("L ",
29):; W$=RPTH(mnwrm, 28)2RPTH(
LERPR: LY

200 DISPLAY AT{15,1):48%:B%
A$=SECG$(A$,1481,28)&88

210 GOSUB 240 B$="e & #4¢
f efftfd¢Fdd4d edfd o :: CAL
L DELSPRITE(ALL):: CALL COLO
R(3,15,1,4,15,1,9,11,1,2,11,
1,1,11,1,12,15,1,13,12,1}

220 CALL COLOR({10,1,%):: CAL
L CHAR(108,E$&"55000661E1FFF
FFFOOOC00C3MEES&PSEU0EQFSELE
PE1F1FF7C45FE")

230 K=1 :: Z=5 HP,SP,8C,B
=0 :: CALL CHAR(104% ,E$&"0104
10400103CFFFFFTH86001020820C0
TOTCE2E1E1F3FEFCCS4658EY) ::
GOTO T4O :: [€P=-

240 CALL SOUND(-4250,-4,1,11%
0,30,110,30,200,30%:: RETURN

250 CALL XEY¥(3,T,Y¥):: Z=INT(

(3C~B)/10000}:: FOR T=1 TO 2
1 CALL SOUND{200,770,4,777

,6}:: DISPLAY AT(1,24):USING
THEETT NEXIT T

260 IF Z THEN B=B+Z%®10000 ::
GOTO 740 ELSE CALL CHAR(108
,"FFB1BFAQOAFE98YFFFFBI1ET1818

E781FFE7B5B5BDBDADADET ")

270 CALL CHAR(104,"FF81BD81B
FAOAOECEQOAOACAQOAOBF81FFFFB1B
DBDE1BDASETETASBDS1ET181818"
J:: CALL SPRITE(#%,112,13,87
+1,0,12)

280 CALL COLOR(10,7,1,10,9,%
310,16,1,10,6,1}:: CALL KEX(
¢,T,T)

290 IF T=89% THEN 220 ELSE IF
T=78 THEN CALL DELSPRITE(AL

LY:: CALL VCHAR(1,1,32,768):
END ELSE 280

DISKETTE KEYBOARD VERSION

300 v=8 IF K<Z THEN 570 E
LSE IF Y AND t THEN 340 ELSE
CALL CHAR(6C,™08081C1£1C1C1
C3ETF1CC008221004080"458%)

310 YY=600 CALL DELSFRITE
(ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T,1,T*17, #T+4,177,T
¥17):: NEXT T

320 CALL SOUND(=-35G,-7,6,110
+5)i; CALL CHAR(35,"FFFFFFFF
Bip00081"):: CALL SCUND(4250
y»8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 RANDOM

IZE :: CALL PEEK(-31880,X)::

CALL SPRITE(#7,60,{X AND 7)

+3,177,T7%24-208,-X/8~3-K,0):
NEXT T :: GOTO 360

340 CALL CHAR(60,T$&"01030F7
FOMLELT&"TO9FAS204FC3CI1CFFR
0C"):: YY¥=1600 CALL SQUKD
(-4250,«8,6,110,27,115,28,YY
,30):: CALL DELSPRITE({ALL)

350 FOR T=1¢ TO 18 RANDOM

IZE :: CALL PEEK{-31880,X)::

CALL SPRITE(#T,60,(X AND 7)

+3,T®*16-120,256,0,~X/8-3-K):
NEXT T

360 CALL SPRITE(#1,112,13,72
21.0,3)

370 CALL SOUND(-99%,-8,6,110
,27,115,28,YY,30):: CALL COI
NC(ALL,T):: CALL POSITION(#1
,X,¥):: IF T OR X>7161 THEN C
0SUB 870 GOTO TiQ

380 IF Y>224 THEN 410 ELSE ¢
ALL KE¥(1,T,T):: IF T<0 THEN
CALL MOTION{#1,0,2)}:: GOTD

370

390 IF T=0 THEN T=8 ELSE 1IF
T=5 THEN T=8%(X>35)ELSE IF 7T
=3 THEN CALL MOTION(#1,0,4):

GOTO 370 ELSE CALL MOTION(
#1,0,0):: GOTO 370

400 CALL MOTION{#%,T,2):: GO
TO 370

410 CALL DELSPRITE(#1):: IF
K<3 THEN 570 ELSE Y1=(Y AND
6)-4 :: CALL DELSPRITE(ALL):

CALL COLOR(Z,1,1,1,1,%,13,
1,1)

420 DISPLAY AT{21,1):" e
€ €]
€ e . e
e L}

430 CALL CHAR(BO,T$&"AACZ21F2
CHCTFI10TF"4S$&"A8B00C1FFEICCY
OE",564,3$4&8mM00009292 4T $ASSE"
4549™):: CALL SPRITE(#1,108,
13, 40%,31,8,0)

440 CALL SPRITE(#2,60,6,242,
216,(Y AND 1)%80-40,0)

450 CALL SOUND(-425¢,-4,1,20

0,30,200,30,200,30):: CALL P
OSITION(#1,X,Y,#2,YY,Y)

75

460 IF X>180 THEN CALL LOCAT
E(#1,1=-(V<Q)®*180,31}ELSE IF

ABS(X-YY}<7 THEN 490 ELSE CA
LL MOTION(#2,SGN(X-YY)®((YY

AND 11)+9),0)

47¢ CALL XKEY{1,T,¥}:: IF T=t
3 THEN 510 ELSE IF T=5 THEN
V=-8 ELSE IF T=0 THEN V=8 EL
SE IF Y THEN V=0

48C CALL MOTION(#7,V,0):: GO
TC 450

490 CALL SPRITE(#3,64,7,YY,2
09,V+X-¥Y,=~127):: CALL SOUND
(*9003'8r11110130|1101301999
9,30):: T=0

500 CALL POSITION{(#3,Y,Y)::
IF Y>50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLGR(#3
,1%}:: GOSUBR %30 CALL DEL
SPRITE(#2):: GOTO 740

510 CALL SCUND(-900,-8,0,110
»30,110,306,300,30):: CALL PO
SITION(#1,¥,Y):: CALL SPRITE
(#3,64,4,x%,36,0,127)

520 CALL PCSITION(#3,X,Y)::
IF Y<192 THEN 520 ELSE CALL
DELSPRITE(#3):: CALL GOINC(#
2,X,220,7,T):i: IF T THEN CAL
L SOUND(-1,-%,9)ELSE u50

530 CALL COLOR(#2,15):: FOR
T=0 TO 2 CALL PATTERN(#2,
88+T*U):: FOR X=5 TO 7 :: CA
LL SQUND(100,-X,T#10):: KEXT
X :: NEXT T

540 CALL DELSPRITE(#2):: ¥Y1=
Y1+1 :: SC=SC+250 DISPLAY
AT(1,12)SIZE(1Q):USING "4
###42#47:5C 12 IF Y1<5 THEN
440

550 CALL POSITION(#1,X,Y)::
iF ¥>185 THEN CALL LOCATE{#1
»35,Y)

560 CALL PATTERN(#1,112):: C
ALL MOTION{#1,0,20):; CALL 5
QURD(-4250,-4,1,200,30,200,3
0,200,30)

570 CALL CHAR(68,58&"000000F
FTF1FFEAB"ES$&"0000C0FFFFFFA
ABD",64,E$8"0021F373FFFFFFFF
FFFF9T72A08103CFFFOFFFFFFFFFF
FFFFFFFFSEAA™)

580 Y1=(Y AND 5)+6 :: GOSUB

800 :: CALL CHAR{60,"0000008
O80CHCFEEFFFFSBAAFFFFT722B7&T
$&"COOFFEFCFBFOE2CHTB3D") ¢ ¢

CALL COLCR(1,1,1,2,1,1)

590 DISPLAY AT{20,1):W$:: C
ALL COLCR(1,5,1,7,12,1):: FO
R T=t1 TO &4 CALL LOCATE(#7T
21671,1):: NEXT T CALL SPR
ITE(#9,112,13,15,1,20,35)

600 GALL SPRITE(#1GC,68,15,14
3,1,#11,64,15,103,17,#12,60,
15,143,33)i: CALL MOTION{#10
,0,Y1,411,0,¥1,#12,0,¥1)

N

DISKETTE KEYBOARD VERSION Continued

610 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,¥):: IF X<35 TH
EN CALL MOTION(#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X>1
40 THEN 690

620 CALL COINC{#9,#11,16,T):
: IF T AND X>130 THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
IF T THEN 710

630 CALL KEY¥(1,T,T):: IF T<O

THER CALL PATTERN{#%,SGN(V)
$44+108):: CALL MOTION{#9,3%(
X>35),V):: GOTO 610

640 IF T=3 THEN CALL PATTERN
($#9,112):: V=V-4R(V<12):: GO
TC 670 ELSE IF T=2 THEN CALL
PATTERN(#9,10U4):: V=V+48(V>
-12):: GOTO 670

650 IF T=0 THEN CALL PATTERRN
{(#9,108):: CALL MOTION(#9,8,
¥):: GOTO 610

660 IF T=% THEN CALL PATTERN
(#9,108):: CALL POSITION(#9,
X,¥):: IF X<36 THEN CALL LOC
ATE(#9,35,Y)ELSE CALL MOTION
(#9,=-8,V}:: GOTO 610

670 CALL MOTION({#9,0,V):: GO
T0 610

680 CALL MOTICN(#9,0,0,#10,2
L4, #11,2,4,812,2,4):: S5C=5C-
SP¥#500 :: 3P=0

6590 CALL MOTION{#9,3,0):: CA
LL SOUND(-2450,-8,6,110,30,1
10,30,9999,30):: CALL PATTER
N(#9,7108);: CALL SOUND(1,-4,
9}:: HP=0Q :: Z=Z-1

700 CALL DELSPRITE{#9):: IF
SP THEN 740 ELSE CALL DELSPR
ITE(#1C,#11,#12):: GOTO T4

710 CALL POSITION(£10,%,¥)::
“CALL SPRITE(#9,116,13,136,Y
,0,¥1):: FOR T=306 TO 122 ST
EP =6 :: CALL SOUND(-200,-4%,
1,T,2?.T,30,T,30J:: NEXT T

720 FOR T=130 TC 306 STEP 8

1 CALL SOUND(-3250,-4,1,T,3

0,T,30,7,27):: NEXT T :: CAL

L MOTION(#9,=-10,0):: K=K+1
BC=SC+500%HP

730 FOR T=1 TO 300
t: SP=3P+HP :: HP=0

NEXT T

T40 DISPLAY AT(1,2):USING B$
:HP,S8P,S5C,2Z IF Z THEN CAL
L DELSPRITE{ALL)ELSE 250 I!1

750 CALL CHAR{(60,"0000Q1010F
090909070101013E200000CCCHUCH
FCCOCOCOCOCD2010080810203™)

760 CALL CHAR(6%,"G101031F13
1313030303633F20060000808888
B&FBB0B080B0E0000080LC203")

770 CALL CHAR{68,"0000010107
0909050101010106181000C0C0C2
FhcBcocCoOCOCO201008087¢0203",3
5, "FFFFFFFFB1TETES1™)

780 DISPLAY AT({20,1):4% :: C
ALL COLOR{2,11,1,1,11,1,13,1
2,1):: GOSUB 800

790 CALL SPRITE(#3,140,2,161
,256,0,-24):: FOR T=9 TO 20
:: CALL SPRITE(#T,136,7T,200,
1):: NEXT T GOTC 1030

800 CALL DELSPRITE(ALL}:: FO

R T=5 TC 8 CALL LOCATE(#T
LIT7, T¥17):: NEXT T :: RETUER
N

810 IF T<>»12 THEN CALL POSIT
ICN(#1,X,Y,#3,¥Y,Y¥):: IF AB
S{Y-¥Y)<B0 THEN CALL SPRITE{
#4,36,9,157,YY,X-147,2%8V+Y=Y
Y)ELSE 1060 ELSE 1060

820 CALL SOUND(-150,-8,3,110
,30,110,30,5010,30):: CALL S
pUND(300,-8,1,128,30,128,30,
1100,30):: CALL DELSPRITE(#}
):: GOSUB B7O GOTC 1030

830 CALL MOTION(#3,0,Y/%4,82,
0,0):: CALL PATTERN(#2,80}::
CALL SOUND(=1,=4,9):: IF T=
12 THEN CALL MOTION(#1,0,V}

&40 FOR T=%t TO 9 :: CALL 300
HD({50,=6,1):: NEXT T :: CALL
DELSPRITE(#2):: Y1=0 :: RET
URN

850 CALL COCLOWN(#3,2):: FOR T
=0 TC 16 STEP & CALL S0UN
p(-999,-8,T,120,27,127,28,10
00,30):: CALL PATTERN(#3,84+
T):: NEXT 7T

B6C SC=605-3%X+5C CALL DE
LSPRITE{#3):: CALL SPRITE{#3
,140,2,161,256,0,-24):: RETU
EN

8§70 T=40 CALL SOQOUND(-1,-L4,
9):: IF ¥ AND t THEN CALL PA
TTERK(#1,112):: CALL MOTION(
#1,9,V)ELSE CALL COLOR(#1,16
J:: GOQTO 930

880 CALL COLOR(#1,RND®7+3)::

FOR T=1 TO 26 STEP 5 :: CAL
L SOUND(T#40+200,-8,T,110,30
,110,30,1106-T,30)

890 CALL POSITION(#1,X,Y)::
IF X»155 THEN CALL MOTION(#1
,0,0):: GOTO 91¢ ELSE IF X A
ND 2 THEN B&0
900 NEXT T GOTOD 880
910 CALL COINC(#1,#2,16,T}::
IF T THEK CALL DELSPRITE(#2
}

76

920 CALL COINC(#1,#3,17,T)::

CALL COLOR{#1,2):: IF T THE
N CALL S$SOGND(-300,-8,1,110,3
0,110,30,3000,30):: CALEL CCL
OR(#3,7)

930 FOR Y=0 TQ 36 STEP ¥
CALL SOUND(-999,-8,¥,120,27,
127,28,1100,30):: CALL PATTE
RE(#1,84+Y):: NEXT Y

940 CALL DELSPRITE(#1):: Z=L
-1 :: HP=D :: IF T THEN GOSU
B B850 :: RETURN ELSE RETURN

950 CALL MOTICON(#1,0,V}:: CA
LL ¢OINC{#1,#2,12,YY):: IF ¥
Y THER CALL SOUND({-500,-8,1,
110,30,110,30,840,28):: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,-4,1,14
0,30,150,30,140,30):: CALL P
O0SITION(#1,X,Y,#2,¥1,Y1):: C
ALL SPRITE{#1,116,13,16D,Y,0
L0

970 CALL MOTION(#2,C,U4*SGN{Y
-¥1)):: IF Y1=0 THEN CALL SP
RITE(#2,76,2,163,256)

980 CALL XEY(1,T,T):: IF T=5
THEN 102¢ ELSE Y¥=YY¥-4 :: I
F YY<6C THEN YY=zTé

990 CALL PATTERN(#2,YY):: CA

LL COINC(#1,#3,32,T):: IF T

THEN GOSUB 830 GOSUB 870
GOTO 1030

3000 CALL COINC(#2,#3,24,T):
: IF T THEN GOSUB 830 :: GOT
0 970 ELSE CALL COINC(#1,42,
1%,T):: IF T THEN CALL PATTE
RN(#2,80)ELSE §B0

1010 CALL SOUND(=-200,220,7,2
23,8,226,%):: HP=HP+1 :: DIS
PLAY AT{1,3)SIZE{Z):HP :: CA
Ll DELSPRITE(#2)

1020 CALL SOUND{-4000,-4,1,1
16,30,110,30,320,30):¢ CALL

MOTION(#1,-17,V/2,#2,0,0):

CALL PATTERN(#2,128):: IF HP
=5 THEN 300 ELSE 1050

1030 IF 2 THEN CALL SPRITE(#
1,112,13,20,1,20,35):: T,V=1
2

1040 DISPLAY AT(1,2):USING B
$:HP,SPF,SC,2Z IF Z=0 THEN
250

1050 CALL SOUND(-9%9,-4,1,11
0,30,1%0,30,200,30):: CALL P
OSITIOR(#1,X,Y,42,Y1,¥1,43,Y
Y,¥7):: IF ABS(YY-Y}<5 THEN
810 ELSE IF Y1 THEN CALL PAT
TERN(#2,124)

1060 CALL MOTIONM(#3,0,SGN{¥-
YY)®{(Y AND &)+b8+X)):: IF %<
35 THEN CALL MQTION(#1,0,V):

CALL LOCATE(#%,35,Y)ELSE I
F X>151 THEN 950

S
DISKETTE KEYBOARD VERSION Continued

1070 IF Y1 THEN CALL PATTERN
(#2,128):: IF ABS(YY-Y1)<26
THEN GOSUB 830

1080 CALL EKEY(1,T,T):: IF T=

13 THEN 1130 ELSE IF T<0 THE

N CALL PATTERN(#1,V/3+108)::

CALL MOTION(#1,3%(X>35),V):
GOTO 1050

1090 IF T=3 THEN CALL PATTER

N(#1,112):: V=12 :: GOTO 112
0 ELSE IF T=2 THEN CALL PATT
ERN(#1,104):: V=12 :: GOTO
1120

1100 IF T=0 THEN CALL PATTER
N(#1,108):: CALL MOTION(#1,8
,¥):: GOTC 1050

1110 IF T=5 THEN CALL PATTER
N(#1,108):: CALL POSITION{(#1
,X,¥):: IF X<36 THEN CALL LO
CATE(#1,35,Y)ELSE CALL MOTIO
N(#1,~12,V):: GOTO 1050

1420 CALL MOTION(#1,0,V):: G
aTC 1050

1130 CALL SOUND(-999,-8,3,12
8,30,128,30,999,30):: CALL M
OTION(#1,0,V):: GCALL POSITIO
HC#1,%,¥):: Ysv/2+Y :: IF ¥«
1 THEN Y=1

1140 FOR T=X+16 TO 175 STEP
13 :: ¥=Y+13 :: IF ¥>255 THE
N ¥=1

1150 CALL LOCATE(#T/13+7,T,Y
Y:: NEXT T :: IF Y1 THEN CAL
L COIKC(4#2,1606,%,18,T):: IF

T THEN CALL DELSPRITE(#2)

3160 CALL SOUND{-999,-8,3,12
8,30,128,30,500,30):: CALL C
OINC(ALL,T):: CALL DELSPRITE
(#9,#10,#11,#12,#13,#14,#15,
#16,#17,#18,#19,#20)

1170 IF T THEN CALL COLCR(#3

,16):: GOSUB 850 :: GOTO 104
0 ELSE 1050

T7

APPENDIX - D

10 CALL MAGNIFY(3):: CALL SC

REEN{(2):: GOTO 30 CALL KE

Y :: CALL JOYST CALL SOUN

D :: CALL PEEK CALL HCHAR
CALL VCHAR

20 X,Y,¥Y1,YY,Vv,T CALL POS

ITION :: CALL PATTERN :: CAL
L SPRITE CALL DELSPRITE
CALL COINC CALL MOTION
CALL LOCATE

30 E$="0000C000Y
000" :: S$=E$RES$

T$=E$L"0

90 A$=RPTS(" ",22}

[-4

——

. oell
(=/.0(
110 GOSUB 240 B$=RPT4{"I"
J2BYARPTS(™114" , 9Y4RPTH(L™,

29):i: WE=RPTH("""",28)&RPTH(
Tiw, 84}

200 DISPLAY AT(15,1):4%:B$:
A$=SEG$(A$,151,28)4B8

210 Bé="e & #OFF ed PSRRI IMS
eéfs em CALL COLOR(3,15,
1, 8,15,1.,9,11,1,2,11,1,1,11,
1,12,15,1,13,12,1)

220 CALL COLOR(10,1,1):: CAL
L CHAR(1D8,E$&"55000061E1FFF
FFFOOOO0D03"&E$&"5540E0F8ELE
2EtF1FF7CA5FE")

230 K=1 :+ Z=% :: HP,5P,3C,B
=0 :: CALL CHAR(10H4,E$&"0104
1040C103CFFFFF786001020820C0
TO0TCE2ETETF3FEFCCSU658EM}
GOTO THO :: 18P-

240 CALL SOUND(-4250,-%,1,1%
6,30,110,30,200,30):: RETURN

250 CALL KEY(3,T,¥):: Z=INT{
(SC=B}/10000):: FOR T=1 TC 2
CALL SOQUND(20Q,770,4,777
,6):: DISPLAY AT{1,24):USING
nEFEN:T NEXT T

260 IF Z THEMN B=B+Z%10000

GOTO 740 ELSE CALL CHAR(108

,"FF61BFAOAFBOBtFFFFE1ET1818
ET81FFETBSBSBDBDADADET ")

270 CALL CHAR(104,"FFB81BD81B
FAOAOEOEOACAOAQAOBFEIFFFF81E
DBD81BDASETETASBDS1ET181818"
Y:: CALL SPRITE{#1,112,13,87
,1,0,12)

280 CALL COLOR(10,7,1,10,9,1
,10,16,1,10,6,1):: CALL KEY({
1,7,Y1}:: CALL KEY{0,T,T)

290 IF T=89 OR Y1 THEN 220 E
LSE IF T=78 THEN CALL DELSPR
ITE(ALL):: CALL VCHAR{(1,1,32
,768):: END ELSE 280

DISKETTE JOYSTICK VERSION

300 V=8 :: IF K<2 THEX 570 E

LSE IF Y ANP 1 THEK 340 ELSE
CALL CHAR(60,"0B8081C1C1CIC1

C3ETF1C0008221004080"&5%)

310 YY=600 CALL DELSPRITE
(ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T,1,T%17,#T+4,177,T
®*1T7):: NEXT T

320 CALL SOOND{-350,-7,6,110
46):: CALL CHAR(35,"FFFFFFFF
81000081"):: CALL SOUND(4250
y~8,4,110,27,115,28,¥YY,30)

330 FOR T=10 TO 18 RANDOM

IZE :: CALL PEEK(=-31880,X)::
CALL SPRITE(#T,60G,(X AND 7)

+3,177,T*24-208,-X/8-3-K,0}:
BEXT T :: GOTO 360

340 CALL CHAR(60,T$&7"01030F7
FOP&E$ETHL"TO9FAB20UFC3ICICFF
OC"):: Y¥=1600 :: CALL SOUND
{(-4250,-8,6,110,27,115,28, Y
,30):: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 RANDGM

TIZFE :: CALL PEEK(-31880,X¥)::
CALL SPRITE{#T,60,(X AND T)

+3,T#16~120,256,0,-X/8-3-K}:
NEXT T

360 CALL SPRITE(#1,112,13,72
11,0,3)

370 CALL SOUND(-999,-8,6,110
,27,%115,28,¥Y,30):: CALL COl
NC{ALL,T):: CALL POSITION(#1
yX,¥}:: IF T OR X>161 TEEN ¢
QsSUB 870 :: GOTO 740

380 1F Y»224 THEN 410 ELSE C
ALL JOYST(t,T,¥1):: IF Y1 TH
EN CALL PATTERN{#1,708):: CA
LL MOTION{,(X-2%Y1>30)#2%y
T,2):: GOTO 370

390 CALL PATTERN(#1,112):: C
ALL MOTION(#1,0,T/2+2):: GOT
0 370

410 CALL DELSPRITE(#1):: IF
K<3 THEN 570 ELSE Yi=(Y AND
6)-U :; CALL DELSPRITE(ALLY:

CALL COLOR(2Z2,%,1,1,1,1,13,
1,12

420 DISPLAY AT{(21,1):" e
€ e e

e e e
g"

430 CALL CHAR{60,T$&T"AA021F2
CHCTFI07F"&S$&TABOOCIFFEICOG
DE",64,3$&"00009262 4TH&S 64"
4949%):; CALL SPRITE(#1,108,
13,40,31,8,0)

440 CALL SPRITE(4#2,60,6,242,
216,(Y AND 1)%80-40,0)

450 CALL SODND(~4250,-4,1,20

0,30,200,3%0,200,30):: CALL P
OSITION(#%,X,¥,42,¥Y,Y)

78

460 IF X>180 THEN CALL LOCAT
E(#1,1-(V<0)¥%160,31)ELSE IF
ABS{X-YY)<7 THEN 490 ELSE CA
LL MOTION(#2,3GN{X-YY)®((YY
AND 11}+9},03)

470 CALL KEY(1,T,¥):: IF ¥ T
HEN 510 ELSE CALL JOYST(1,Y,
T}:: IF T THEN Vs=-2%T ELSE I
F Y THEN V=0 FL3E Uus50

480 CALL MOTION(#1,V,0):: GO
TG 450

490 CALL SPRITE(#3,64,7,YY,2
09,V+X-YY,=-127):: CALL SOUND
(-900,-8,1,110,30,110,30,999
9,30):: T=0

500 CALL POSITION(#3,Y,¥}::
IF Y>50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR(#1
,11):: GOSUB 930 CALL DEL
SPEITE(#2):: GOTO T4O

510 CALL SOUNL(-900,-8,0,110
,30,110,30,300,30):: CALL PO
SITION{#1,X,¥):: CALL SPRITE
(#3,68,4,X,36,0,127}

520 CALL POSITION{#3,X,Y)::
IF ¥Y<192 THEN 520 ELSE CALL
DELSPRITE(#3):: CALL COINC(#
2,%,220,7,T):: 1IF T THEN CAL
L SOUND(-1,-4,9)ELSE .50

£E30 CALL COLCOR(#2,15):: FCR

T=0 T0 2 CALL PATTERN(#2,
88+T®b):: FOR X=5 TO 7 :: C&
LL SOUND(7100,-X,T®#10):: NEXT
X :: NEXT T

540 CALL DELSFRITE(#2):: Yi=
¥Y1+1 11 85Ce8C+250 DISPLAY
AT(1,12)SIZE(10):USING "#44
SRR 5C IF ¥1<5 THER
440

550 CALL PCSITION(#1,X,Y)::
IF ¥>185 THEN CALL LOCATE({#1
135, 1)

560G CALL PATTERN(#1,112}:: C
SLL MOTION(#7,0,20):: CALL 8
QUND{-14256,-4,1,200,30,20C,3
0,200,30}

570 CALL CHAR(68,3$&"0C00C0F
FTF1FFEAB"&S5$&"CO0000FFFFFFA
AGD" 64, E$&"CO21F3T73FFFFFFFF
FFFFO72A08103CFFFOFFFFFFFFIF
FFFFFFFFSEAA")

580 Y1=(Y AND 5}+6 :: GOSUB

800 :: CALL CHAR(60,"00000GB
O8CCUCFEEFFFF5BAAFFFFT22B"AT
$&"COOFFEFCF8FDE2CHTB3ID ") :

CALL COLOR(1,1,1,2,1,1)

590 DISPLAY AT{(20,1):W$:: €
ALL COLOR(1,5,1,7,12,1):: FO
R T=1 TO 4 :: CALL LOCATE(#7
,161,1):: NEXT T CALL SPR
ITE{#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1,#11,64,15,143,17,4#12,60,
15,143,33}):: CALL MOTIGN(#10
,0,Y1,#11,0,Y1,412,0,¥1)

DISEETTE JOYSTICK VERSION Continued

610 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,Y):: IF X<35 TH
EN CALL MOTION(#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X>1
40 THEN 6%0

620 CALL COINC(#9,#11,16,7):
: IF T AND X>130 THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
IF T THEN 710

630 CALL JOYST(t1,Y,T):: IF Y

THEN CALL PATTERN(#9,Y+108)
V=V-Y#(ABS(Y+V)<16):: CAL

L MOTIOK{#9,0,¥)z: GOTO 610

640 IF T THEN CALL PATTERN(#
9,108):: CALL MOTION(#9,2%T#®
(X-T>»35),¥}:: GOTO 610

650 CALL PATTERN(#9,SGN(V)#*4
+108):: CALL MOTION(#9,(X>35
J#3,V):: GOTO 610

680 CALL MOTION(#9,0,0,#10,2
JU#11,2,8,#12,2,10);5 SC=SC=-
SP*500 :: SP=0

690 CALL MOTION(#%,3,0):: CA
LL SOUND(-2b50,=-8,6,110,30,1
10,30,9999,30):: CALL PATTER
K(#9,104):: CALL SOUND(1,-4,
9):: HP=0 :: Z=2Z-1%

700 CALL DELSPRITE(#9}:: IF
5P THEM 740 ELSE CALL DELSPR
ITE(#10,#11,#12):: GOTD 740

710 CALL POSITION{#10,X,Y¥)::

CALL SPRITE(#9,116,13,136,Y
,0,¥1):: FOR T=306 TO 122 ST
EP -6 :: CALL SCUND(-200,-4,
4,7,27,T,30,F,30):: NEXT T

720 FOR T=130 TO 306 STEF B
CALL SCUND(-%25G,-4,1,7,3
0,T,30,T,27):: NEXT T :: CAL
L MOTION(#9,-10,D0):: K=K+1 :
SC=5C+500%HP
T30 FOR T=1 TO 300 NEXT T
1: 3P=SP+HP :: HP=0O

740 DISPLAY AT(1,2):USIKG Bj$
:HP,SP,SC, IF Z THEN CAL
L DELSPRITE(ALL)ELSE 250 11}

750 CALL CHAR{60,"000001010F
090909%010101013E200000C0CHCH
FCCOCOCOCOC02010080810203%)

760 CALL CHAR(64,"0101031F13
1313030303033F20000000808888
BAFBE08080808000008040203M)

770 CALL CHAR{68,70000010107
0909050101010106181000C0C0C2
F4CBCOCOCOCO2010080810203%,3
5, "FFFFFFFFB1TETES1")

7860 DISPLAY AT(20,1):4¢ :: C
ALL COLOR(2,41,1,1,11,1,13,1
2,1):: GOSUB 80O

790 CALL SPRITE(#3,140,2,161
,256,0,-28):: FOR T=9 TO 20
:: CALL SPRITE(#T,136,7,200,
1):: NEXT T :: GOTO 1030

800 CALL DELSPRITE(ALL):: FGC
R T=5 TO 8§ :: CALL LOCATE(#T
2177, T®#17}:: NEXT T :: RETUR
N

810 IF T<>12 THEN CALL POSIT
IONC#1,X,Y,#3,YY,¥¥):: IF AB
S(Y-¥Y)<B0O THEN CALL SPRITE(
#4,36,9,157,YY,X-147,2%V4Y-Y
Y)ELSE 1060 ELSE 10660

820 CALL SOUND(-150,-8,3,110
,30,110,30,5010,30):: CALL S
OUND(300,-8,1,128,30,128, 30,
1100,30):: CALL DELSPRITE(#3
Y:: GO3UB 870 GOTD 1030

830 CALL MOTION(#3,0,V/k%,#2,
0,0):: CALL PATTERK{#2,80)::
CALL SOUND(-t,-4,9):: IF Tz
12 THEN CALL MOTICN(#1,0,V)

840 FOR T=1 T0Q 9 CALL 50U
ND(50,-6,1):: NEXT T :: CALL
DELSPRITE(#2):: Y1=0 :: RET

URN

B50 CALL COLOR{#3,2}:: FOR T
=0 TO 16 STEP 4 CALL SOUN
D(-999,-8,T,120,27,127,28,10
00,30):: CALL PATTERN(#3,8b4+
T):: NEXT T

B60 SC=6G5~-3%X+3C CALL DE
LSPRITE(#3):: CALL SPRITE(#3
,140,2,161,256,0,-24):: RETU
RN

870 T=z0 : CALL SOUND(-t,-4,
9):: IF Y AND 1 THEN CALL PA
TTERN(#1,112):: CALL MOTIOR(
#1,9,V)ELSE CALL COLOR{#1,16
y:: GOTO 930

880 CALL COLOR{#1,RND®T+3);::

FOR T=1 TO 26 STEP 5 :: CAL
L SOUND(T®40+200,-8,T,110,30
,110,30,1300-T,30)

890 CALL POSITION(#1,X,¥)::
IF X»155 THEN CALL MOTION(#1
,0,0):: GOTC 910 ELSE IF X% A
KD 2 THEN 880
906 NEXT T GOTO B&¢

910 CALL COINC(#1,#2,16,T)::
IF T THEN CALL DELSPRITE{#2
}

920 CALL COINC(#1,#3,17,T)::

CALL COLOR(§1,2):: IF T THE
¥ CALL SCUND(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR(#3,7)

93¢ FOR Y=0 TO 1€ STEP U ::
CALL S0VKD(-999,-8,Y,120,27,
127,28,1100,30):: CALL PATTE
RN(#1,844Y):: NEXT Y

79

940 CALL DELSPRITE(#1):: Z=Z
=1 :: HP=0 1F T THEN GOSU
B B50 :: RETURN ELSE RETURN

$50 CALL MOTICON(#1,0,V}:: CA
LL COINC(#3%,#2,12,¥¥}:: IF Y
Y THEN CBLL SOUND{-500,-8,1,
110,30,110,30,830,28):: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,-4,1,1%
0,30,140,30,140,30):: CALL P
OSITIONCHT,X, ¥, #2,¥1,¥1):: €
ALL SPRITE(#1,116,13,160,Y,0
:0)

¢70 CALL MOTION(#2,0,4%SCGN(Y
-=Y1)):: IF Y1=C THEF¥ CALL 3P
RITE(#2,76,2,163,256)

¢80 CALL JOYST(1,T,Y1):: IF
Y150 THEN 1020 ELSE ¥Y=YY-U
IF YY<60 THEN YY=T%

390 CALL PATTERN(#2,YY):: CA

LL CQINC(#1,#3,32,T):: IF T

THEN GOSUB 830 GOSUB 870
GOTO 1030

1000 CALL COINC(#2,#3,24,1):
: IF T THEN GOSUB 836G :: GOT
0 970 ELSE CALL COINC(#t,#2,
11,T):: IF T THEN CALL PATTE
EN(#2,80)ELSE 980

1010 CALL SOUND(-200,220,7,2
23,8,226,9):: HP=HP+1 :: DIS
PLAY AT(1,3)SIZE{2):KP :: CA
LL DELSPRITE(#2}

1020 CALL SOUND{-4000,-4,1,1
10,30,110,30,320,30):: CALL

MOTION(#1,-17,V/2,#2,0,0)::

CALL PATTERN(#2,12B):;: IF HP
=5 THEN 300 ELSE 1050

1030 IF Z THEN CALL SPRITE(#
1,112,13,20,%,20,35):: T,¥=%
2

1040 DISPLAY AT(1,2):USING B
$:HP,5P,5C,2Z IF Z=0 THEN
250

1050 CALL SOUND(-999,-4%,1,11
0,30,110,30,200,30):: CALL P
OSITION(£1,X,Y,#2,Y1,Y1,#3,7
Y, YY):: IF ABS(YY-Y)<5 THEN
810 ELSE IF Y1 THEN CALL PAT
TERN{#2,124)

1060 CALL MOTICON(#3,0,SGN{Y~
YY)®#{(Y AND 6)+U4+K}}:: IF X<
35 THEN CHLL MOTIONM{#1,0,V}:

CALL LOCATE(#1,35,Y)ELSE T
F X>15% THEN 950

1070 IF ¥1 THEN CALL PATTERN
(#2,128):: IF ABS(YY-Y1)<26
THEN GOSUB B30

1080 CALL EKEY(1,¥Y,T):: IF T
THEN 1130 ELSE CALL JOYST{1
,T,I¥):: IF T OR YY THEN CAL

L PATTERN(#1,108+T)ELSE CALL
PATTERN(#1,V/3+108):: CALL

MOTION(#1,3%(X>35),¥):: GOTO
10650

-
DISKETTE JOYSTICK VERSION Continued

1090 IF T THEN V=T#3 :: CALL
MOTICON(#1,0,V):: GOTO 1050
ELSE CALL MOTION(#1,YY®2#(%-

YY>»31),V}:: GOTC 1050

1130 CALL SOUND{-999,-8,3,12
$,30,128,30,999,30):: CALL M
OTION(#1,0,V¥):: CALL POSITIOQ
N{#1,X,Y}:: ¥=V/2+Y :: IF 1<
1 THEN Y=1

1140 FOR T=X+16 TO 175 STEP
13 :: Y=¥+13 :: IF ¥>255 THE
N Y=1

1150 CALL LOCATE(#T/13+7,T,Y
Yi: NEXT T :: IF Y1 THEN CAL
L COINC(#2,160,Y,18,T):: IF

T THEN CALL DELSPRITE(#2)

1160 CALL SCUND(-999,-8,3,12
8,30,128,30,500,30):: CALL €
OINC(ALL,T):: CALL DELSPRITE
(#9,#10,#11,#12, 813,814,415,
#16,#17,#18,#19,#20)

1170 IF T THEN CALL COLOR(#3

;16):: GOSUB 850 :: GOTC 104
0 ELSE 105¢0

80

FFFFFFFFFFFFFFFF

33 -

35 - FFFFFFFFE81000081

45 - S0BOCOEOELFCFEFF

51 - 3F0103021C0408F8

8 x 8 CHARACTER DIAGRAMS

i B

H BN Em
HEEERENN
EREERRNN

34 - 0000002011B3FFFF

46 - 0103232BTFTFFFFF

81

35 - FFFFFFFFE17ETEST

34 - 00008082C2CTFTFF

bl 2

4t - 000000000828A9FD

50 - 1F0101023C2040TE

54 - 102020407E8282?C

104 - FF81BD81BFAOAOE0

_HER
H N

R
B B

106 - FF81BDBDE1BDASET 107 - E?ASBD81E?181818

109 - FFB81E71818ET81FF 110 - E7B5BSBDBDADADET 132 - 6152524CCCO00000
-] B o
= IR
N _L!l . . HRRENNEEN
ENEERNRE
B !ll o e
133 - 8080B0FFB09CBLFC 134 ~ Q00O0000FFO00000 135 - 000OOCFFO0000000

e H—

16 x 16 CHARACTER DIAGRAMS

APPENDIX - F

L

|
RN B

36 ~ 140A200D1A216414

60 - 000001010F090909

2414A081408080008 010101013E200000
00Q0000000000000 COCACUFCCOCOCOCO
0000000000000000 €020100808102030

68 -~ 0000010107090905

64 - 0101031F13131303

0303033F20000000 0101010106181000
80888888F8808080 COCOC2F4C8COCOCh
B0B0O000CBO402030 €020100808102030

i T EEEE—

T

72 = 0000010107050301
£1061010102020203
COCOCOECEQF&C0COo
C020201010204060

76 - 0000010303030301
0101010000070400
COCOCOEOEQEQFOCO
C04040COC0ACBOCO

80 - 0000000000030"01
0101010102020406
(000000 18FBEQF8CO
CGCO701610180000

84 - 0000000200080000

1000020000000000
0000200000082000
0008200000000000

Mo—————

88 - 0000040010000000

2000000800000000
0010000000041000
000u001000000000

92 - 0008000020000000

3000000010000000
0800000000020800
0002001000000000

E T m
. SR

96 - 10000CG4000000000

Mo

8000000000200000
0000300000010400
0061000008000000

100 - 00006008000000000

0000000000004000
0000000000000200
0000000000040000

104 - 0000000001041040
0103CFFFFF786001
020820C070TCE2E1
E1F3FEFCC5U658E0

108 - 0000000055000061
E1FFFFFF0G000003
000000005540E0F8
EME2E1F1FFTCHSFE

1F0T7010807010000
000080D08UCT1FOFC
F2E2E2F2FCSCFAIC

EEENERRNN

_HEER .

| | | mam
T EE [mEm

o,

112 - AQ08021039T9FDFF

116 - 000055010F1E1830
20301E1FOF132030
00005580F0T78180C
C40CT8FEFOCBOLOC

————————

86

120 -~ 030E3F3CTFFTFFFF 124 - 0008080907010101

FF6FTFTF33360F03 0101010101010101
E0583CF8FSESFOB0 00COCOCQEQOEQEQED
FOFOFOTOTBEBICFC EOCO4040M0M0N0ED

128 - 0202040503010101 136 - 9048241209040201

0101010101010101 0000000000000000
00COCOCOEQEOEQEQ 0000000000804020
EOCO4040404040E0 9048241209000000

—————

87

1406 ~ 0000000000000103 60 - 00000080BOCUCFEE

O0T3F6AARAATFOCC0 FFFF5BAAFFFFT22B
0060000000008GC0 0006000000000C0O0F
EOFCAAA9AAFCOOCO FEFCF8FQE2C6TB3D

FFFFFFFFEFFF9T72A O00000FFT7F1FFEAB
08103CFFFOFFFFFF 0000000000000000
FFFFFFFFFFFFOEAA 00Q0000FFFFFFAAGD

—

88

60 - 0000000000000103

OFTF000000000000C
000000000709FA82
O4FC3C1CFFOC0000

60 - 08081C1CI1CI1CIC3E
TF1C000822100408
0000000000000000
0000000000000000

58 BN BE-

60 - 000000000000AA02

1F2C4CTF10TFO000
0000000000004800
C1FFE1C0O90EQ0C00

9

64 - 0000000000000000
0000929200000000
0000000000000000
0000494900000000

Yo

MILLERS GRAPHICS -~ LIMITED WARRANRTY

Millers Graphics warrants the Night Mission program and Book, which it
manufactures, to be free from defects in materials and workmanship for a
period of 90 days from the date of purchase.

During the 90 day warranty period Millers Graphics will replace any defective
products at no additional charge, provided the product is returned, shipping
prepaid to Millers Graphics. The Purchaser is responsible for insuring any
product so returned and assumes the risk of loss during shipping.

L
Ship to:
Millers Graphics
~ _1875 W. Cypress Ave,
San Dimas, California 91773

WARRANTY COVERAGE

The NIGHT MISSION Cassette and Book are warranted against defective material
and workmanship. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY
ACCIDENT, UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR OTHER
CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING, BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD. MILLERS
GRAPHICS. SHALL NOT BE LIABLE FOR LOSS OR USE OF THE SOFTWARE OR BOOK, OR
OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USE.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, S0 the above limitations or exclusion may not apply to
you in those states.

LEGAL HEMEDIES

This warranty gives you specific legal rights, and you may also have othér
rights that vary from state to state.

‘———————

90

5

55 SR i 3
2 B
i e

BHBY,

R

o B Y
G
7 55 WS
e e
AR A
R
"
e iz
S Lt

it S E R e e e
G2
i

A
LA e
e % G
R O e
PR £

-

AR 5 5
i
z

