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Scope of Journal - -

The Journal of Chaos and Graphics publishes
articles, notes, reviews, notices, computational
recipes, and correspondence on the subject of
the graphics of chaos. JCG involves the study
of how complicated behavior and structures can
arise in systems which are based on simple rules.
Topics for the journal include: iteration, cellular
automata, bifurcation maps, Julia sets, Life,
creation of the patterns of nature from simple
rules, phase plane portraits ..., primarily aesthetic
and urmusual graphics derived from mathematics. 1n
addition, a "Potpourri " section will contain short
articles on mathematical curiosities, and inter-
esting equations and their graphs. Contrib-
utions can include good-quality monochrome
graphics with a few-paragraph description on
how the graphics were created.

Information for Contributors

Submissions should be sent to the editor
(CP), along with any graphics which are of suf-
ficient quality to be incorporated into the news-
letter.  Aesthetically intriguing graphics are
definitely desirable. Include a short biograph-
ical sketch and full mailing address. Since the
newsletter will have a varied audience, please
explain all technical terms used. Along with any
graphics, include a description of how figures
are generated, including when possible: the de-
vice used, generating equation and technique,
picture resolution, any novel features of the al-
gorithm or plot, and other relevant parameters.
Authors should send a floppy containing the text
the article when possible.

The editor (CP) reserves the right to edit any
materials submitted to conform with JCG style,
clarity, space considerations, and editorial pol-
icy. The author is urged to include short pieces
of pseudocode, but to write in such a way that the
layperson could grasp the essential ideas being

The Journal of Chaos and Graphics, Vol. 3 (1988)

discussed. Short articles ranging from 1 page to
3 pages are encouraged.

Sometimes references are made to "IBM Re-
search Reports', and these can be obtained
from: IBM Thomas J. Watson Research Cen-
ter, Distribution Services F-11 Stormytown, PO
Box 218, Yorktown Heights, NY 10598. JCG,
Volume 1 (RA number 186) (April 1987) and
Volume 2 (RA number 192) (July 1987) can
be obtained from this address.

About the Cover

To ancient man, Chaos represented the un-
known, the spirit world -- menacing,
nightmarish visions that reflected man’s fear of
the irrational and the need to give shape and
form to his apprehensions. This wolume’s cover
displays gargoyles from the Cathedral at Freiburg
Germany.

Copying

Copying of articles is permitted provided that
the copies are not made or distributed for direct
commercial advantage and credit to the source
is given. Readers are free to use algorithms ap-
pearing in this journal in their publications,
however whenever possible please include a
reference to this work.

Subscriptions
Those interested in subscribing or in sending
submissions should send their address to the

address below. JCG will be published once or
twice a year.

Clifford A. Pickover

Editor, Journal of Chaos and Graphics
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598.
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Journal of Chaos and Graphics - Briefing

Readers may be interested to know that JCG
has been very favorably reviewed in Computer
Pictures (1988, January/February, 88-90) and
the Whole Earth Review (1987, Winter, 57:
36-37). The requests are numerous, and the
readership is growing!

In this issue, we are especially pleased to have
the works of Michael Keith of the David Sarnoff
Research Center at Princeton, Rudy Rucker,
author of numerous books including Infinity and
The Mind (Bantam), and William Benzon,
writer, artist, and musician.

As with the last issue, 1 present readers with
another Halley Map. For more information on
how 10 generate this pattern and some of its
mathematical properties see: Pickover, C.
(1987) Chaos and Halley’s Method (IBM RC
12747). Also be on the look-out for my new
book, Computers, Pattern, Chaos, and Beauty, 1o
be pablished by Springer-Verlag near the end
of 1988. Presented below is a graphical result
on Halley’s method for a one-parameter family
of rational functions in order to gain insight as
to where the method can be relied upon and
where it behaves strangely. The resulting plots
reveal a visually striking and intricate class of
patterns indicating behavior ranging from stable
points to chaos. Iterative approximation meth-
ods such as Halley’s method occur frequently in
science and engineering.

The Journal of Chaos and Graphics, Vol. 3 (1988)
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What is a Sierpinski Gasket? - by Clifford A. Pickover

Number theory -- the study of properties of
integers -- is an ancient discipline. Much mys-
ticism accompanied early treatises (1); however,
today integer arithmetic is important in a wide
spectrum of human activities and has repeatedly
played a crucial role in the evolution of the na-
tural sciences (for a description of the use of
number theory in communications, computer
science, cryptography, physics, biology and art,
see (2)). One of the most famous integer pat-
terns in the history of mathematics is Pascal’s
triangle (PT) (Biaise Pascal was the first to
write a treatise about this progression in 1653
-- although the pattern had been known by
Omar Khayyam as far back as 1100 A.D.). The
first 7 rows of Pascal’s triangle can be repres-
ented as:

1
11
121
1331
14641
15101051
16 1520 15 6 1

The figure on the next page represents Pascal’s
triangle computed with modular arithmetic. It
is Pascal’s triangle, mod(3); i.e., points are
plotted for all numbers divisible by 3.

The resulting shapes are of interest math-
ematically, and they reveal a visually striking
and intricate class of patterns which make up a
family of regular, fractal networks. Fractals are
patterns which have increasing "detail" with
increasing magnification (e.g. the edge of a
coastline). The fractals often of most interest
are ones that are self-similar, for example, if we
Jook at any one of the triangular motifs within
Pascal’s triangle we notice that the same pattern
is found at another place in another size. The
two-dimensional networks are known as
Sierpinski gaskets which share important ge-
ometrical features with percolation problems
and cellular automata. The Sierpinski gasket
consists of triangles nested in one another "like
Chinese boxes or Russian dolls".

given row, n, and column, r.

/* Compute Pascal's Triangle using Modular Arithmetic */
Variables: ¢ has the modular value of the Pascal triangle for a

p(*)=0;c(*)=0;
don =1 to 255;
dor =2 to n;
c(r)=mod(p(r)+p(r-1),imod);

/¥*¥ initialize ¢ and p arrays */
/* 255 rows */
/* generate the entries in a row */
/* imod = modulus index chosen */

if c(r)= 0 then PLOTDOT(n,r); /* place dot at position (n,r) */
end;
p(*)=c(*); /* update p array for next row */
end;
2.  Schroeder, M. (1984) Number Theory in
Science and Communication. Springer-
Verlag: New York.
For Further Reading 3. Pickover, C. (1986) Exotic symmetries in
. Sierpinski gaskets formed from large
1. Spencer, D. (1982) Computers in Number Pascal’s triangles, (IBM Watson Lab, RC
Theory. Computer Science  Press: 12106).
Maryland.
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4.  Mandelbrot, B. B., The Fractal Geometry
of Nature, Freeman, San Francisco (1983).
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Logical Chaos - by Michael Keith

Michael Keith is a member of technical staff at
the David Sarnoff Research Center. He is cur-
rently working on computer graphics software de-
velopment, and is also interest in computer art,
fractals, realistic image synthesis, and computer
music. He can be reached at the David Sarnoff
Research Center, Princeton, NJ.

This article describes beautiful and intricate ge-
ometric shapes produced by mathematical feed-
back. In the world of mathematics, feedback is
often referred to as “iteration” or “‘recursion”.

In particular, the accompanying figures show
the results of iterating simple functions over the
complex numbers, but with an additional twist:
the functions contain, in addition to arithmetic
operations, Boolean logic operations.

Since it may not be obvious what it means to do
a Boolean logic operation on a complex number,
a bit of explanation is in order. Suppose we
have a complex number z = a + bi. We convert
both a and b to binary with a fixed number of
binary digits after the decimal point (I have used
16 in all these examples). We then operate on
both a and b using the equations

a=a 0P vall
and
b=b OP val2

where OP is a boolean logic operation (AND,
OR, XOR, etc.), and vall and val2 are two bi-
nary values. The operations are understood to
be bit-by-bit operations (i.e., 01 OR 10 is 11,
not 1). Finally, after operating on a and b using
this procedure, we convert them back into real
numbers (with, of course, some loss of precision
because of the intermediate conversion to
fixed-length binary).

We will represent this operation, on a given
complex number z, by

z OP (vali,val2)

As illustrated by the three figures, these func-
tions (in combination with other functions such
as polynomials or trig functions) add another
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dimension of complexity and beauty to the al-
ready large space of possibilities in iterated
functions over C. Aside from producing inter-
esting pictures, logic functions have the advan-
tage of being readily accessible and having fast
execution speed on even the smallest of com-
puters.

The figures were all obtained from slight vari-
ations on the function associated with the
Mandelbrot set, namely

z=22+c.

Specifically, they were produced from the fol-
lowing data (values are listed in hexadecimal):

Fig. Function

1 -z**2 XOR (1.0000,0) + ¢
2 z**2 XOR (.F000,0) + c

3 z**2 AND (F.OFFF,0) + c

The plot centers for Figures 1, 2, and 3 are:
(-.82,0), (-.7,.3), and (-.9, 0), respectively.
These pictures, as with most chaotic system
pictures, are quite striking. Figure 1 is quite
reminiscent of C. Pickover’s "'biomorph"; par-
ticularly since in the middle of the largest
biomorph form there is an almost perfectly
shaped "heart'"! The other two figures illustrate
the other delicate effects that can appear.

There is clearly much room left for further
study. I have not tried any functions where val2
<> 0, nor any other logic functions besides
XOR and AND. These possibilities are left for
your experimentation.

For Further Reading

1. Pickover, C. (1987) Biomorphs: computer
displays of biological forms generated from
mathematical feed back loops. Computer
Graphics Forum 5(4): 313-316.

2. Sorenson, P. (1984) Fractals. Byte. Sept.
9: 157-172 (a fascinating introduction to
the subject).
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Efficient Computation of Dynamical Maps - by Michael Keith

Michael Keith is a member of technical staff at
the David Sarnoff Research Center, Princeton,
NJ (see previous article for biographical informa-
tion).

This article suggests methods for improving the
speed of computation for iterated systems in-
volving complex numbers. For example, sup-
pose we wish to construct images of an iterated
dynamical system over the complex numbers C.
Such images are constructed by the following
well-known algorithm: For each point of the
image, initialize the complex number z to some
specific initial value, and then iterate the func-
tion z’ = f(z) until either (a) the value of z goes
outside the radius-2 circle centered at the origin
(which means that the point is being attracted
to infinity) or (b) the number of iterations ex-
ceeds some arbitrary limit N (in which case we
assume that the point is being attracted to 0).
The point is then colored based on which
attractor it belongs to, and also, usually, its ve-
locity.

As one quickly discovers the first time one
writes a program to produce such pictures, these
computations can take a long time - minutes to
hours, depending upon the computer and soft-
ware used. This is because a nice image requires
at least several-hundred pixel resolution in each
of X and Y, and the value of N must be at least
50 or so. Thus we are looking at several million
computations of f(z) just to create one image.
This is exacerbated by the fact that the closer
we want to zoom into the complex plane
(and/or the closer we are to the boundary be-
tween the two regions of attraction), the larger
the value of N must be to show sufficient detail.

This article presents a few tips and tricks for
improving the speed (decreasing the run-time)
of such programs.

The Floating Point Problem

Since a complex number is really just an ordered
pair of real numbers, the obvious way to imple-
ment calculation of f(z) is with real (i.e., float-
ing point) arithmetic. This is particularly true if
one uses the built-in math functions of the
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computer language the program is written in.
Such built-in functions almost invariably use
floating-point arithmetic. However, there is an
alternative way of doing real arithmetic that is
considerably faster on most machines (although
it has its limitations - see below). This method
is fixed-point arithmetic. It essentially reduces
a floating-point computation to one or more
integer-arithmetic computations.

For example, suppose one wishes to multiply
two real numbers. Further suppose the word
size of our machine is 32 bits (i.e., an integer is
this size, and we have available a machine in-
struction to multiply two integers). We can
represent a real number within these 32 bits by
using the upper 16 bits as the "integer part" and
the lower 16 bits as the "fractional part" of the
number. Then, to multiply two such numbers,
we just multiply the two integers and then shift
the result down (toward the LSB) by 16 bits
(being careful to do a sign-extend shift). If we
only had a 16x16 multiply available (instead of
a 32x32), we could still accomplish the same
result by using 4 16x16 multiplies and adding
up the cross-products appropriately. Such
arithmetic is called fixed point because numbers
are represented with the 'binary point” in a
fixed location within the binary word.

Using fixed-point arithmetic can easily speed up
image generation by a factor of 3 to 10, de-
pending on the machine and software being
used. The drawback is that you cannot zoom
into the complex plane as far as you can with
floating-point arithmetic, since the precision of
fixed-point arithmetic is limited by the relatively
small binary word size used. In the above ex-
ample, for instance, we can only go down to a
resolution of 1/65536 (=.000015) in the com-
plex plane. This is not really much of a limita-
tion for many pictures, however. At the very
least, one could use it in a program adaptively:
If the zoom factor is moderate, use fixed-point
arithmetic to generate the image quickly; other-
wise, use full floating-point arithmetic.

Look-up Tables .

As well as avoiding floating-point arithmetic, it
is always good to avoid computation of
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transcendental functions. One simple trick that
can sometimes be used (depending on the func-
tions involved) is to simply store a pre-
calculated lookup table of all possible values of
the function (to a certain precision). This works
particularly well for trigonometric functions or
other functions that are periodic. Only the val-
ues within one period of the function need to
be pre-calculated and stored.

Simplifying Complex Powers

Many dynamical systems that we wish to draw
pictures of involve an f(z) that is (or includes)
a polynomial function. For example, the classic
Mandelbrot set is f(z) = z**2 + u. On many
machines (practically all microprocessors, and
some bigger machines), a multiply takes much
longer than an add; therefore, the time to cal-
culate the polynomial is approximately equal to
the number of multiplies.

Suppose we have two complex numbers z = a
+ bi,and w = ¢ + di. Then z*w = (ac - bd) +
(bc + ad)i. Thus, one complex multiply is
equivalent to 4 real multiplies. However, in
computing a power, we are not multiplying ar-
bitrary numbers; we are multiplying the same
number by itself! Thus, since z**2 = (a**2 -
b**2) + (2ab)i, we can reduce this from 4
multiplies to 3. But, factoring, we can get

z**2 = (a-b)*(a+b) + (ab + ab)i

which only requires 2 multiplies! This gives us
a factor-of-two speed-up over the simple
method of using a general complex-multiply
routine.

This also works for higher powers. Straightfor-
ward calculation of z3 requires 8 multiplies, but
by algebraic manipulation we can obtain the
expression
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z**3 = a((a**2 - b**2) - b**2 - b**2) +
b((a**2 - b**2) + a**2 + a**2)i

which only requires 4 multiplies: compute a**2
and b**2 once (2 multiplies), then add up the
terms in the brackets, then multiply by a and b.
Thus we once again have a factor of two im-
provement. As an interesting exercise, you
might want to see how good you can do with 4th
or higher powers. Does the factor of two con-
tinue? '

Simplifying the Divergence Test

Each time we iterate the function f(z), we have
to test for divergence; i.e., is the complex num-
ber outside the circle of radius 2? This is
equivalent to asking if magnitude(z) > 2, which
is in turn equivalent to (a**2 + b**2) > 4.
Thus, we have to do two more multiplies. In the
case of the Mandelbrot set (f(z) = z**2 + u),
where the optimization of the last section re-
duces the f(z) computation to just 2 multiplies,
this effectively doubles the time per iteration.

If we only care about the image of the zero
attractor (the Mandelbrot Set itself, for in-
stance), then we can eliminate these two multi-
plies by instead testing for (ld + [b) > 4. If a
point is outside a square of radius 2, then it is
certainly outside the inscribed circle of radius
2. Thus, points will still be correctly classified
as to divergence or convergence.

Even when creating traditional images where
points outside the Mandelbrot set are colored
according to velocity, this approximation is not
unacceptable. The affect that it has is to add
circular arcs (sort of "epicycles') to the contour
lines separating the regions. The visual effect is
interesting. Try it; you may like it!
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Order and Disorder in Computer Art - by William Benzon

Dr. William Benzon is a writer, artist, and musi-
cian. He is currently working on a popular book
(Visualization) on computer graphics and scientific
imaging for Harry Abrams, Inc. and an article
on 'Visual Thinking" for the Encyclopedia of
Computer Science and Technology (Marcel
Dekker). He has published articles on cognitive
networks and literary semantics. An essay on
“The Principles and Development of Natural In-
telligence", which he wrote with David Hays, is
scheduled for publication in the Journal of Social
and Biological Structures.  His address is:
William L. Benzon, 161 Second St, Troy NY
12180.

It is becoming increasing clear that artists
should use and study the myriad images from
both the scientific and mathematical world —
not just dynamic systems images, or cellular
automata, but the whole range of images such
as electron micrographs, molecular structures,
galaxies, etc. In my opinion, the art world has
been somewhat stagnant since the middle 60s.
I am uncertain on how to address the problem,
but certainly new graphic reservoirs will help.
Science is an obvious source of such material.
And computer graphics is an obvious route to
such images, especially since computer graphics
is gradually becoming recognized as a legitimate
art medium.

In particular, it is culturally important for artists
to begin to use scientific images. This is a way
of beginning to close the gap between science
and technology, and society. Thus I think it
very important that people in computer graphics
attempt to make their images available to artists.
Much of the computer graphics produced purely
as science or engineering has more aesthetic
potential than the computer graphics produced
as art.

The figures which accompany this article were
created with MacPaint running on an ancient
128K Macintosh with Imagewriter output at 72
dpi. 1 have tried to use the computer medium
without trying to imitate the work 1 have done
in traditional media (primarily ink drawings and
paintings done with oils or acrylics). On the
negative side, the image is limited to a relatively
coarse 8 inch by 10 inch grid of black (actually,

The Journal of Chaos and Graphics, Vol. 3 (1988)

dark gray) dots or white dots, no gray scale.
When one considers the range of line, shade and
texture possible with pen, brush, and black ink,
this limitation is very severe. On the positive
side, there are two points: 1) the drawing and
image manipulation tools which MacPaint pro-
vides, and 2) memory, which allows one to save
the image at any point in its development. I find
these two advantages so stimulating that I no
longer worry much about the limitations imposed
by the Imagewriter output.

All art involves tension between order and disor-
der. If there is too much order, then the result
is decorative pattern. If there is too much dis-
order, then the result is, well, . . . there just isn’t
anything you can grab or see. Possibilities for
both order and disorder are inherent in
MacPaint. The relatively coarse raster pattern
which is the basis of Macintosh graphics im-
poses a relentless rectilinearity on the image
space and on many of the MacPaint drawing
tools. That is one source of order. Another
source of order comes from the editing tools,
which make it very easily precisely to copy and
repeat image fragments.

The major source of disorder comes from the
fact that the various MacPaint tools can be used
rapidly. For drawing tools, this means that you
can create lines and forms so rapidly that you
can’t control precise placement. For manipu-
lation and editing tools, this means that you
don’t really know how a specific operation will
modify an image until you execute the opera-
tion. Thus I have found it easy to adopt an op-
erating style which allows the image to get away
from me, to surprise me. I use such a style to
create textures and abstract patterns.

Finally, computer painting tools have changed
my notion of what art is, or can be, about. With
traditional media there is a clear distinction be-
tween the creative process and the final result.
You start with a blank piece of paper, or canvas,
and work on the image until it is done. Deter-
mining just when it is done is often tricky, but,
once that decision is made, there is a clear dis-
tinction between all of the intermediate images
and the final image. The intermediate images
have all been subsumed in the final image,
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which is all that remains. This is not true for all
of work I have been doing with MacPaint.
While 1 began saving intermediate versions as a
precautionary measure, I soon realized that
many of the intermediates were as interesting
as the final versions. The distinction between
intermediate and final became blurred and I
began thinking in terms of exploring visual
spaces, each characterized by certain kinds of
images created by certain techniques of using
MacPaint tools. Each image is simply one ex-
ample of what exists in a particular visual world,
with no particular distinction between interme-
-diate and final images. Thus the images tend to
become the means of indicating a certain crea-
tive process rather than the process being a way
of creating a individual images.

The Intersection of the Worlds: This picture is
a rendering of an image I originally created in
oils. That painting is brightly colored, relatively
untextured, and measures 2 feet by 3 feet, con-
siderably larger than the MacPaint image. For
the MacPaint version I used just about every
technique I knew. The frame is developed from
the a half-size version of the picture itself (this
frame is not a part of the original oil painting).
This is most easily seen by looking at the upper
righthand corner. The large curve stretching
around the corner is simply the arch which
dominates the main picture space. By starting

The Journal of Chaos and Graphics, Vol. 3 (1988)

from this arch you should be able to match
motifs in the frame with their sources in the
picture.

What'’s are Whose Best Friend? For both im-
ages I started by first filling the screen with
widely-spaced diagonal lines ("'order"). A few
lines perpendicular to the diagonals were then
drawn across the space. Then I rapidly, and in
no particular order, filled these narrow spaces
with various patterns ("'disorder"). Next, I used
an editing tool to cut a rectangular piece from
the pattern. I produced the each final image by
copying the seed and rotating the copies and
joining them to create an overall pattern with
both horizontal and vertical symmetries ("or-
der").

Deathlock the Demolisher: 1 created the back-
ground by first drawing a highly rectilinear pat-
tern of small figures. This is easy to do, but hard
to describe. It involves the rapid use of 3 or 4
MacPaint tools. Then I went over this pattern
with some spray paint. Finally I painted the
totally black areas. The lower image is a slightly
enlarged version of the material used in the up-
per image. Deathlock was the title character of
a short-lived comic book which Marvel Comics
published in the middle 70s.
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Benzon’s Art
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Benzon’s Art
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Benzon’s Art
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Simple Structures - by Russell Hoffman

Russell Hoffman is interested in computer graph-
ics and algorithms. He can be reached at: Pl1
Enterprises, PO Box 5185, Bridgeport, CT
06610. )

I have concentrated on algorithms which uti-
lize certain basic primitive patterns. They also
allow the computer to randomly pick colors,
positions, and sizes of objects so that each re-
sultant drawing is different. Below are several
samples. I have let the computer produce
15,000 of these to date. The pictures are drawn
directly by a Panasonic VP6801-P30 digital
plotter driven by an NEC 8201A Laptop port-
able using its ROM BASIC. Ranges for the
random numbers controlling various aspects of
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the pictures can be entered. There are no com-
plex mathematical formulas involved, but the
basic idea is useful in industry. For example,
housing developments could contain different
and unique houses, if designed with computers
using programs that incorporate this controlled
randomness.

Readers may write to me about software to
create these forms, as well as others such as a’
galloping horse logo. Free samples of these
kinds of drawings, in color, are available. The
program, P11, is used in hospitals, factories,
laboratories, and by consultants and hobbyists
to write animated educational tutorials.
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Iteration Maps - by David Scruton

David Scruton can be reached at 7818
Manchester Ave 6, Venice CA 90291.

This short note presents an image derived
from complex dynamics (see also the article in
this issue, "Logical Chaos"). In particular, the
picture below of a complex variable recursion

was produced by iterating z =24 u forty
times. Diverging points whose magnitude is

between 2 and 3 are plotted. The picture was
computed on a u VAX and plotted on a Talaris
laser printer.
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Cellular Patterns - by Rob Cave

Rob Cave is interested in computer graphics and
algorithms. He can be reached at: PO Box 928,
Princeton, TX 75077.

The following pictures were created on a
Tandy 1000SX and CM-11 color monitor (ori-
ginal pictures were color). The algorithms use

The Journal of Chaos and Graphics, Vol. 3 (1988)

eight nested FOR loops and were coded in
GW-BASIC. Note that every time the program
runs, different patterns are generated as a result
of a random number generator. For more in-
formation on the algorithms used, contact the
author.
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Complex Curves from Simple Math - by Rastislav Telgarsky

Rastislay Telgarsky is a Visiting Professor in the Department of Mathematical Sciences at the University
of Texas, El Paso, TX 79968. He has worked in the area of topology and game theory. His interests
include recursive curves, fractals, mosaics, and other graphics patterns arising in mathematics and art.

Below is pseudocode which creates complicated structures from quite simple formula. 1 hope the
readers of JCG will find them of interest.

Program Graph;
VAR i,j integer;
Function c(a,b,:real):integer;
Begin .
c:= round(a*sqrt(a*b));
End;
Begin
GraphMode; Palette(2);
For i := 1 to 150 Do
For j := 1 to 150 Do
P1ot(70+i,30+j,1+ (c(5+i/7,5+j/7) mod 3));
END;
END;
END;

The 70+i and 30+j terms in the plot function can be adjusted to suit the users screen size. The third
term of the Plot function controls the color. 1 had only four colors including black (hence mod 3),
however the reader may use other settings, for example mod 2 for black and white or mod 16 for 16
colors.
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Analytic Computer Art - by Joe Jacobson

Joe Jacobson has written numerous articles for
"Creative Computing". His interests include ap-
plied physics and computer art. He has a BSEE
degree from Drexel Universiry. He can be reached
ar: Apt. 1009, 675 E. Streer Rd., Warminster,
PA 18974

This article describes a facet of "analytic com-
puter art' consisting of geometrical designs
based on explicit mathematical functions. A
common motif in analytical computer art is the
polar coordinate curve. This has the form
R=f(A) where R is radius, f is a mathematical
function, and A is the angle. The angle param-
eter, A, is swept through some range of values,
the radius R is calculated, and the computer
polar coordinate points (R,A) are converted to
rectangular coordinates and plotted. The re-

REM FLUTED SCALLOP
PRCE SCALLOPS

RINDOL . 563,501, -5
-s0} -501,501
UIEWPORT 15,115, 0,100

PRINT “ENTER L"
INPUT L
PAGE

e
S
[:]
1
2
3
-
0 FOR B=100 TO 400 STEP 1@
Q FOR A=8 T0 360 STEP S
"] B 180
S IF A>0 THEN 150
6 MOVE X,Y
? GO TO 168
0 DRAN Xy Y
@ NEXT A
Q NEXT B
T

L] +8,238ABS(SINCLERY )
0 X=R3COS(A)
0 Y=RESINCA)
L

N= 0 L-1 STEP 1

2 R=100
3
4
S
é
4

TeN2(180/L)
XsR2COS(T)
YSREISIN(T)
MOVE Xx,Y
XsR2C0S(T+18Q)
8 YSRISINC(T+1BR)
9 DRAN ¥,Y

0 NEXT W

1 END
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sulting curves frequently (but not always) ex-
hibit angular symmetry; that is, they look the
same after being rotated through a suitable an-
gles. What's special here is that simple polar
coordinate curves are swept through the interval
0 to 360 degrees and incremented by a fixed
amount between sweeps. The pictures were
generated on a Tektronix 4052 intelligent ter-
minal.

For Further Reading

J. Jacobson, "Analytic computer art". Proc.
2nd Symp. on Small Computers in the Arts. pp
47-60 (1982).

2B,
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A Noah’s Ark Program - by Rudy Rucker

Dr. Rudy Rucker is author of Infinity and the
Mind (Bantam: New York, 1982). He is also the
author of The 57th Franz Kafka, Software,
White Light, and Spacetime Donuts (published
by Ace Books). He can be reached at the Dept.
of Mathematics and Computer Science, San Jose
Sate University 95192.

Today, there are several scientific fields de-
voted to the study of how complicated behavior
can arise in systems from simple rules and how
minute changes in the input of a nonlinear sys-
tem can lead to large differences in the output;
such fields include chaos and cellular automata
theory. 'Cellular automata" are a class of sim-
ple mathematical systems which are becoming
important as models for a variety of physical
processes. Usually cellular automata consist of
a grid of cells -- and the cells’ life or death is
determined by a mathematical analysis of the
occupancy of neighbor cells. One popular set
or rules is set forth in what has become known
as the game of "LIFE". Though the rules gov-
erning the creation of cellular automata are
simple, the patterns they produce are very com-
plicated and sometimes seem almost random,
like a turbulent fluid flow or the output of a
cryptographic system.

The figure on the next page is is a screen
dump of some output from a simple assembly
language program which runs one-dimensional
cellular automata.

The rule depicted is what is called Rule 46 ac-
cording to the notation in the appendices of
Steven Wolfram (Theory and Applications of
Cellular Automata). Instead of using graphics
capability, my program produces images
"typographically", using blanks for zeros and
solid squares (ASCII code DBh) for ones. The
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patter starts with a line of zeros with a single
one.

In general, a r-2, n-2,1-D CA pattern like this
is updated according to a rule where a cell C
looks at its let neighbor L and right neighbor R
to get a three -digit binary number LCR. LCR
can range through the eight values v from 000
to 111. The rule depicted is based on the lookup
table 00101110, where the update for value v
is the vth lookup value from the right. In deci-
mal, the lookup table is the number 46.

What makes this picture interesting is the
handling of the boundary conditions. As is
customary, we use 'cyclic boundary condi-
tions'", meaning that the rightmost cell is re-
garded as the cell left of the leftmost cell. Bun
in this run, I set the leftmost cell always to O.
In effect, the space is like a tin-can that has a
seam running down it.

The seam acts as a generator that pulses out
alternating leopards and elephants. The neat
thing is that these animals then shuffle and
mutate to produce giraffes, dinosaurs, etc.

For Further Reading

1. Peterson, 1. (1987) Forest fires, barnacles,
and trickling oil. Science News. 132:
220-221.

2. Poundstone, W. (1985) The Recursive
Universe. William Morrow and Company,
New York.

3. Wolfram, S. (1983) Statistical mechanics
of cellular automata. Rev. Modern Phys-
ics. 55,601-644.
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Output of the Noah’s Ark Program

C:\ASSEMBLY >
C:\ASSEMBLY > Noah's Ark . Rudy Rucker 87
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Iteration of Algebraic Transformations - by Ian Entwistle

Ian Entwistle is a master of high-resolution
fractal images. He can be reached ar 44
Woodside Gardens, Stittingbourne, Kent, En-
gland. . .

To create the figure in this article, I start with
an array of complex values (z) and have the
computer follow the outcome of the process
defined by z = (z2 + p)? + p and then checking
to see if z(real) < 0. p=(09,-0.1). The
picture boundaries are ( —2,2, — 2,2). The re-
solution is 1150 x 1484 pixels. Once the initial
points are selected, each iteration represents a

step along a path that hops from one complex
number z to the next. The collection of all such
points along a path constitutes an orbit. The
basic goal is to understand the ultimate fate of
all orbits for a given system.

For Further Reading

Peitgen, H. and Richter, P. (1986) The Beauty
of Fractals. Springer: Berlin.; Mandelbrot, B.
B., The Fractal Geometry of Nature, Freeman,
San Francisco (1983).
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Is Music Fractal? - by Stephanie Schneider

Stephanie Schneider is a high school student and
can be reached at 80-17 264th St. Floral Park,
N.Y. 11004.

Fractals are irregular shapes with interesting
visual and mathematical properties. In my re-
search, music was converted to fractal curves
and fractal curves were converted to music.

Rather than going into detail here, I simply
summarize the results of my work and welcome
questions from interested readers. Graphs were
constructed by plotting the duration of the note
on the x axis and the pitch on the y axis. Fractal

curves, especially those resembling simple land-
scapes, were found in the treble portions of
nocturnes and in the bass portions of ragtimes
(no deep mathematical characterizations were
done -- I used only visual inspection). Also,
landscape fractal curves can be mapped into
pleasing music, with the melodic lines of a
nocturn and the syncopation of a ragtime.

For further reading

1. Peterson, 1. Making music fractally, Sci-
ence News, March, 117(12):187-190.

2. Pierce, J. (1983) The Science of Musical
Sound. Scien. Amer. Library: New York.
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Video and Chaos - by Gustavo Chaux

The figures below are excerpted from a video
Gustavo Chaux’s main activity is in community entitled '"Territorios" (Territories) using chaos-
development work and alternate knowledge tools. based procedures. The original figures are in
Gustavo Chaux can be reached at Gustavo vivid color. Those interested in learning more
Wilches - Chaux, Apartado Aero 1280, Popayan about the formation of the structures in these
- Cauca, Columbia, South America. examples may contact the author.
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Randomness and Design - by Michael Eckersley

Michael Eckersely is an assistant professor in the
Department of Design at the University of
Maryland. His primary interest is the psycholog-
ical study of design behavior. Professor Eckersley
can be reached at the University of Maryland,
College Park Campus, Dept of Housing and De-
sign, Room 1401, Marie Mount Hall, College
Park, Maryland 20742.

There exists among some artists and design
theoreticians a particular fascination with ran-

dom process as a kind of respite from formally
contrived structures. Some aspects of my work
examines the modern concept of randomness,
and its potential for creative use in foundation
design instruction. Students might understand
the nature of formal design principles (e.g. har-
mony, balance, variety, structure...) by means
of an introduction to the theory and process of
randomization. For color slides and additional
information, contact the author. Below are
rules for the relatively simple design shown.

Rule 1: If odd

Rule 2: 1f odd

Rule 3: if odd

Rule 4: if cdo

The Journal of Chaos and Graphics, Vol. 3 (1988)
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Ray Tracing - by Art Stein

Art Stein can be reached at the IBM Waison Re-
search Lab, Yorktown His, NY 10598.

Creating realistic images on a computer re-
quires simulating the physics of illumination on
every object in the scene. Ray rracing in com-
puter graphics allows the computer to generate
a believable image given a collection of three-
dimensional objects and a collection of light
sources. Below is an example of a ray-traced
picture, and the reader is referred to the refer-

ences for more information on this type of ap-
proach.

For Further Reading

1. Glassner, A. (1987) Ray tracing in com-
puter graphics. Computers in Science.
Sept./Oct. 18-25.

2. Heckbert, P. (1988) Ray tracing Jello-O
brand gelatin. Commun. ACM.
32(2):131-135.
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Order and Disorder in Art - by William Rowe

William Rowe is a master of pen and ink drawings which often contain ordered arrays with small disor-
dered perturbations. This drawing is from his book "Flora and Fauna Design Fantasies' (Dover Publi-
cations). His book often displays nature’s life forms in stariling combinations: giant moths under the
moon, repeating patterns of bats, fish spines with flowers ...
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Cellular Automata Machines - Reviewed by David Chess

Dave Chess is a programmer in the Advanced
Workstation Projects group at Yorktown Re-
search, working on host-workstation cooperative
applications. His interests include computer me-
diated communications (he ran the internal
IBMPC conference for five years), philosophy (he
has an AB degree in Philosophy, Princeton 1981),
fractals, cellular automata, and computer-resident
realities in general. He has a cellular-automaton
package on PCTOOLS (DCCELAUT PACK-
AGE), and some fractal landscapes on IBMPIX.
Mr. Chess can be reached at IBM T. J. Watson
Research Center, Yorktown Heights, NY 10598.

Cellular Automata Machines: A New
Environment  for Modelling by
Tommaso Toffoli and Norman
Margolus MIT Press (Cambridge,
Mass), 1987 250 or so pages

This book from MIT Press, should be of con-
siderable interest to folks working in the
cellular-automaton field (especially to those of
us who have dreamed of having a box that could
run interesting two-dimensional automata in
real-time!), and to people in the physics com-
munity who have heard about cellular-
automaton models, and want some concrete
examples.

The book has two primary, interrelated, themes.
The more theoretical one concerns various in-
teresting classes of cellular automata, and how
they may be used to model in significant ways
various physical phenomena, including gas dif-
fusion, growth processes, the heat equation,
Ising models of magnetization and phase transi-
tions and such, various noise phenomena, sound
waves, the hydrodynamics of flow, spin glasses,
and so forth; as well as interesting processes
related to computation (especially in the area
of energy-loss and information processing).

The other theme, which is used throughout to
give actual examples of interesting automata,
concerns a family of highly-parallel special-
purpose processors which the authors have de-
veloped (are developing), called "Cellular
Automata Machines" or CAMs. A CAM is
specifically designed to allow extremely fast ex-
ecution of reasonable-sized worlds running un-
der user-specified cell-updating rules. The
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examples in the book are programs (in a variant
of the FORTH language) written for the
CAMS, a device of which several actually exist.

The book is basically a practical introduction
and guide to using the CAM6 and cellular
automata to model various computational and
physical processes. The emphasis is on pro-
grams rather than equations, and implementa-
tion rather than theory (although theory is by
no means ignored, and there is a differential
equation or two; but readers not fond of diffeq’s
can skip them without much loss). Even with-
out ready access to a CAM of one’s own, the
book is very interesting reading, and many of
the concepts are sufficiently general to allow
implementation and exploration on boring se-
quential computers.

1 liked the book, and would recommended it to
anyone with encugh slack in the personal or
departmental budget (it’s a hardcover from MIT
Press, and I think it was $30 or so). There are
fifteen color plates of automata states, and good
halftone black-and-white illustrations through-
out. For those unfamiliar with FORTH, there
is a good small tutorial in an appendix that
should enable anyone to read the examples in
the text. Hardware fans will also find an ap-
pendix on the CAM architecture; I'm not
enough of a hardware person to tell how com-
plete or informative it is! My only criticisms,
and they are mild, are that I would have liked
more color plates, and that the book occa-
sionally discusses CAMG6-specific issues in more
detail than CAMless readers might want. This
probably makes it of more use, on the other
hand, to readers with CAMs!

CAMG itself is a board that plugs into an IBM
PC, and communicates via the PC’s keyboard
and displays. It supports a 256x256-cell world
(or, in some sense, four different 256x256-cell
worlds), and its output is a 256x256 pattern on
a standard color display. I've had one demo’d
to me at the MIT CS Lab, and it really flies!
The standard Conway’s LIFE algorithm moves
fast enough to make individual cell-events in-
visible; it normally runs (I believe) one gener-
ation per screen-refresh (with provision, of
course, for slowing it down at user command).
It supports various notions of "neighborhood",
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and various ways of using its four bit planes to
produce cell-update rules. For more details,
read the book! One thing that isn’t mentioned
is how to get a CAM of one’s own; to quote the
book

"This machine was originally developed at the
MIT Laboratory for Computer Science. It is
currently produced by SYSTEMS CONCEPTS
(San Francisco, CA), from which it was com-
missioned with the explicit intention that, after
fulfilling MIT’s internal needs, further output
of the production line would be made available
to the scientific community at large, as
inexpensively as possible."

Last time I talked to any of the CAM people,
MIT’s internal needs were not yet fulfilled, and
there was no firm pricing or availability data,
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although I'd-expect it to be in the $1-2,000
range (this is an order-of-magnitude-type
guess).

A closing quote, from the book'’s introduction:

"A cellular automata machine is a
universe synthesizer. Like an organ,
it has keys and stops by which the
resources of the instrument can be
called into action, combined, and re-
configured. Its color screen is a win-
dow through which one can watch the
universe that is being ’played’. This
book, then, is an introductory har-
mony and orchestration manual for
‘composers’ of cellular-automaton
universes."
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Potpourri

- a section containing short articles on mathematical curiosities, and interesting equations and their graphs.

A. Equation of the Month - Spirals

- a section on unusual equations with interesting
behavior, submitted by readers.

Generally, plane curve spirals are of the form
r=f(6)

in polar coordinates (where f is monotonic), and
they possess a simple beauty which humans
have copied in their arts and tools, and nature
has used in the creation of many structures of
life. All the mathematical forms presented in
this section were first discovered in the seven-
teenth and eighteenth centuries, except for the
simplest form, the Archimedes spiral which was
first discussed by Archimedes in 225 BC. The
Archimedes spiral is expressed by the equation

r=af

The most commonly observed spirals are of the
Archimedian type: tightly wound springs, edges
of rolled-up rugs and sheets of paper, and
decorative spirals on jewelry. Practical uses of
the Archimedes spiral include the transforma-
tion of rotary to linear motion in sewing ma-
chines (Gardner, 1969).

The logarithmic spiral (also known as the
equiangular spiral or Bernoulli spiral ) can be
expressed as

r = ke*

This spiral was first discussed by Descartes in
1638. The angle between the straight line, 8 =
constant, and the tangent to the curve is con-
stant. Other more exotic spirals include the
hyperbolic spiral (or reciprocal spiral), which is
of the form

- (%)

A littus has the form

rl=a
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A Cornu spiral (or clothoid or Euler’s spiral) has
a parametric representation:

2
x=a\/v_f(;cos(-%)dt

y=a\/ﬂ_f",sin(—ﬂz!2—)dt

This curve was discovered by Euler in 1744, and
M.A. Cornu later used this curve in the repre-
sentation of optical diffraction.

Some of these families of spiral curves can per-
haps be more simply defined by

rm=amf

which includes the Archimedes spiral (m = 1),
Fermat’s spiral (m =2) (first discussed by
Fermat in 1636), the hyperbolic spiral
(m = — 1) (first discussed by Pierre Varignon
in 1704) and the littus (m = — 2) (originated
by Cotes in 1722).

The involute of a circle with parametric
equations

x =a(cos ¢ + ¢ sin ¢)
y=a(sin ¢ — ¢ cos ¢)

was first taken into account by Huygens when
he was formulating his ideas for clocks without
pendulums which might be of service on
seagoing vessels. This is the curve described by
the endpoint of a string as it unwinds from a
circle of radius a while held taut. The curves
traced by all points along the plank of a seesaw
or the path of a goat tied to a cylindrical post
as it winds tightly around it are both involutes
of a circle.

Finally, the cochleoid (or snail form) is given by

r-a( sin 8 )
- ]

Apart from their mathematic differences, and
also the varied natural forms these spirals help
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to describe, many of these spirals are quite dif-
ferent visually. For example, perhaps the most
exotic looking of the group is Euler’s spiral,
which consists of two spirals connected to-
gether, giving it the appearance of a mustache
with two curled ends. The only other spiral of
the group with more than one center is the
Cochleoid which contains two directly adjacent
spirals. Fermat’s spiral is the only member that
consists of two concentric lines, and it resembles
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the paths of two tracks of a stereo record
groove. Finally, the /inus is the only spiral of
the group with a long, almost-linear section: it
looks like a fern tendril with a very long stem.
For more details, see Pickover, C. (198R%)
Mathematics and Beauty 1II:  Spirals and
"Strange" Spirals in civilization, nature, science,
and art., Leonardo 21(2). Below are both tradi-
tional and exotic spirals from mathematics.

Euler's Spiral
a=1
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B. Armstrong Numbers

One hundred fifty three is interesting because

153 = 13 4 5% 4 31

Numbers such as this are called Armstrong numbers. Any N digit number is an Armstrong number
if the sum of the Nth power of the digits is equal to the original number. Another example is 370 (370
= 27 + 343 4 0). The following program prints all three-digit Armstrong numbers:

Print all Three-Digit Armstrong Numbers

For n = 100 to 999
a = int(n/100) |
b= int{n/10)-10%a
c =n-100"a - 107b

if n <> a**3 4+ p**3 4 c**3 then goto next
print (""Armstrong number'',n)
print ("equals“,a**3,"+“,b**3,"+",c**3)
next: Next n
End

For Further Reading

Spencer, D. (1982) Computers in Number Theory. Computer Science Press: Maryland.
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C. References of the Month

~ a section on interesting references sent in by readers.

1. AMYGDALILA, a fascinating newsletter on
the Mandelbrot set. Write to 6.
AMYGDALA, Box 219, San Cristobal,
NM 87564 for more information.

2. ART MATRIX, creator of postcards of 7.
beautiful mathematical shapes. Write to
ART MATRIX, PO Box 880, Ithaca, NY
for more information.

3. Recreational and Educational Computing
Newsletter. Write to Dr. M. Ecker, 129
Carol Drive, Clarks Summit, PA 18411,
for more information on this interesting 9.
newsletter.

4. The Dynamic Newsletter, Aerial Press,

Inc. Santa Cruz, CA 95061-1360. (Ralph 10.

Abraham, Ed).

5. Barnsley, M. and Sloan, A. (1987) Chaotic
compression (a new twist on fractal theory
speeds complex image transmission to
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video rates). Computer Graphics World.
November. 107-108.

Braden, B. (1985) Design of an oscillating
sprinkler. Mathematics Magazine 58:°
29-33.

Casey, S. (1987) Formulating fractals.
Computer Lang. 4(4): 28-38.

Dunham, D., Lindgram, J. and Witte, D.
(1981) Creating repeating hyperbolic pat-
terns. ACM SIGGRAPH Computer
Graphics 15(3): 215-220.

Donnini, R. (1986) The visualization of
music: symmetry and asymmetry. Comp.
and Maths. with Appls. 12B: 435-463.

Pickover, C. (1988) Pattern formation and
chaos in networks, Communications of the
ACM , February 31(2), 136-151.
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Final Light Thoughts - Carol Grafton

This month’s "Final Light Thoughts' are from Carol Grafion’s book Bizarre and Ornamenial Al-
phabets (Dover, 1981).

"Chaos"'
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