
99/4A DISK PERIPHERAL SOFTWARE OVERVIEW

Colin Hinson

This article was first printed in "International TI Lines" between July and
December 1986.

The article draws upon a 1980 internal TI document called "GPL Interface
Specification for the 99/4 Disk Peripheral".and other documents listed
therein.

The article was reprinted in the magazine of the East Anglia Region 99ers in
October 1988-April 1989.

Here is information about the TI99/4a Disk System- data storage on disk, the
Device Service Routine, and the use of CPU and VDP Ram.

The Device Service Routine (DSR) ROM in the 99/4a Disk peripheral is
designed to give the User access to the disk by means of a system using
three different ’levels', which, with the addition of some utility routines
gives the User complete access to a normally formatted disk without the need
for any knowledge as to how the actual disk controller works.

Each level uses those features implemented at a lower level to add new
features, (a sort of ’bui1ding block’ system).

LEVEL 1 FEATURES

Communication with the FD1771 chip
Record read/write functions
Disk formatting Functions
Soft error corrections

This level is the only level which must know precisely what the disk
hardware is. This allows higher levels to be independent of both the
controller chip type, and the rest of the disk controller hardware. Each of
the higher levels sees the disk simply as a linear storage device, addressed
by disk unit-number, a physical record number, and a read or write
operation.

If the disk controller chip is changed (such as the Myarc card) then it
should only be necessary to replace this part of the software. A11 the
higher levels are designed to be independent of the actual physical disk
structure which this level deals with, except for sector size which is
assumed to be 256 bytes. Smaller sector sizes could easily be supported by
setting up the sectors in such a way that the total adds up to 256 bytes -
for instance, if a sector size of 64 is used, each sector requested from a
higher level would take up 4 sectors at level 1.

LEVEL 2 FEATURES

A11 level 1 features plus:
Creation and deletion of fi1es
File allocation dynamically extendable
Data accessed by filename and physical record displacement
'Mixed hybrid' File format (see below)

The actual 'file' concept is created at this level, with each File being
known by its name and the displacement of the physical record within the
file - a physical record being defined as one disk sector (256 bytes).

On each disk is maintained a directory and bit-map of the sectors. This
allows for file and record management (i.e. deletion and creation). The file
Format available is called the 'mixed hybrid’ Format, and is a mixture of
contiguous and non-contiguous (fragmented) file formats. A lot of overhead
has to be carried by fragmented files in the form of pointers - these
pointers are required in case relative access is required to the file and
point to each data record of the File.

The files on this level are al1ocated in 'clusters' of contiguous records in
order to combine the advantage of the flexible allocation of non-contiguous
files with the low overhead, and the easy access of contiguous files.
Whenever new records are requested, the clusters are expanded if possible,
if a cluster cannot be expanded then a new one is started.

LEVEL 3 FEATURES

A11 level 2 features, plus:
Program and data files
Fixed and variable record formats
Relative and sequential access
Internal and ASCII data types

The disk management software is completed by the addition at this level, of
the relative/sequential access and the fixed/variable record formats. This
level takes care of the ’blocking’ of one or more logical records into a
physical record (as with DIS/VAR format). When relative access is required,
it computes the physical record in which the logical record is to be found,
updates that record and passes the physical record back to the level 2 file
update routines.

UTILITY ROUTINES
As you may have noticed, there are some functions which have not been
catered for, as they are not part of the normal file I/O system. These are
catered for by means of some utility routines. These ’subprograms' are:

Direct level 2 file access
Direct sector (Allocatable unit) access
Modification of file protection
Disk formatting
File rename

Methods of accessing these routines will be described later

99/4a DISK PERIPHERAL - OPERATIONAL INFORMATION

There are three basic methods used to store data on the diskette these are:
 'Program' (Memory Image) format
 Variable format
 Fixed format

Variable and Fixed Format are really ‘variations on a theme', in that each
sector (or AU), contains as many records of either format as it is possible
to write to that sector without overflowing it (i.e. without writing more
than 256 bytes).

Program format is used to store an image of the data in memory on the
diskette byte for byte, each byte in each sector being used (except for the
last sector associated with the particular file, which may not be fully used
due to the length of the file not being exactly divisible by 256).

Methods of access

There are three methods of access, each one being associated with one
particular Format described above. The methods of access are (in order):-
 1/. Physical I/O
 2/. Sequential access
 3/. Relative access

Sequential access

When the data records in a file are accessed strictly in the order of increasing
address on the medium, each record is said to be ’sequential1y’ accessed. This
is the access method used for accessing such things as magnetic and paper tapes
etc, in which all the records up to and including the one required must be read
in order to access the particular record required.

In this mode of access, the parameters for the data transfer do not specify
a physical record number, as it is implied that the logical record currently
indicated by some data transfer pointer is the one which is required.
Restore/rewind operations are either implicitly done or explicitly done
prior to the first data transfer. As each logical record is transferred, the
access pointer moves to the first byte of the next logical record (which in
case of this DSR is usually the length indicator).

Sequential access methods have the advantage that variable record lengths
can be used (such as the well known "VAR 8O") and so the number of records
per sector can be increased by an amount dependent on the length of each
particular record. For instance, ten 24 byte records could be written on a
256 byte sector, whereas if "FIXED 80" were to be used, then only 3 records
(=24O bytes) could be written even though there are still only 24 bytes of
usable data per record.

Variable format (sequential access) sectors are recorded on the disk with an
extra byte added at the start of each record, and a final byte at the end of
the last record of the sector.
The first byte of each record indicates the length of the record in bytes, a
negative number (usually >FF) indicating that there are no more records on
that sector.

The action of the computer when reading the sectors from the data buffer in
VDP RAM is to read the first byte (length of record), then read the required
number of bytes as the record from VDP RAM to a new location, read the next
byte (length of record), etc. etc. until a negative number is found as the
length. At this point another sector is read from the disk to VDP RAM and
the process repeated again until all the data for the appropriate file has
been read.

Relative (Random) access

Relative access allows data in a file recorded in fixed format to be
accessed by logical record number. The records may be accessed in any order
regardless of the order in which they were written or the order in which
they appear in the file.

As the DSR software must be able to locate a record solely by its number,
relative access can only be supported on either Indexed Files or Fixed
Length files. In this DSR, only "Fixed length" files are supported. (Indexed
files are files for which an "Index" is maintained on the diskette through
which a particular record can be located by looking it up in the index.)

Physical I/O
Three possible texts here:
[TI Lines text: With the Physical I/O access, the data on the disk is
considered to be organised in blocks of 256 bytes by the DSR software. Each
byte can be of any value (ie -128 to +127) and no attempt is made to
interpret these at data transfer. The existence of records or files is
completely ignored by this access method. }
[EAR Text instead reads (ie -255 to +256]
[Original TI document reads: In the physical I/O access method, the data
on the disk is considered by the disk software to be organized in blocks of
256 bytes each. Each byte contains any of the 256 possible 8-bit
combinations, with no attempt to interpret at data transfer time.]

You will notice that this method of access is a "Level 1" access. The rest
of the disk software (i.e. Levels 2 & 3) reduces all access methods to
physical I/O by converting logical record numbers into physical track and
sector data. This information is used to specify the disk sector that is to
be transferred by the Physical I/O. Physical I/O is not available directly
to the User other than in the form of an assembly language sub- program
within the DSR. (See later For Sub-Programs).

*

 Directory Organisation

The directory organisation implemented within the DSR supports only a single
level directory, that is to say that no FILE can be a directory containing
pointers to other files. This means that each file on the disk can be
readily identified by a single name, E.g.
DSK1.fi1ename which would specify a file called "Filename" on the diskette
in drive 1

This approach to the diskette File organisation prevents access to a
catalogue file as such on the disk, as no such File can physically exist. In
order to overcome this problem, a semi-catalogue file can be created by the
DSR software and accessed by the User. The file which is created (and
remember it is not physically on the disk, so don’t go looking for it with
the Disk Manager!), is of the Fixed format, relative access type. The file
contains 128 records, each containing information about the associated
catalogue entry and is described in detail below. It can be accessed as:-

DSK1. or DSK.volname

as a standard data file but without a name

Please note that not all the file operations have been defined for this
catalogue file, and only the standard OPEN, READ, and CLOSE are supported.
Other operations such as DELETE, EOF etc are considered to be illegal, and
an error will be returned if these operations are used.

Catalogue file access from Basic:

The Catalogue file can be accessed as a read-only file by the Basic User.
The file has no name, and is of the INTERNAL, FIXED format type. The file
can be opened by for examp1e:-

OPEN #1:"DSK.", INPUT, INTERNAL, RELATIVE

The record length will automafically be defaulted by Basic to the correct
value, so this should not be entered. If however the User wants to specify
the length, then it must be specified as 38 - all other lengths will result
in an error message.

The Catalogue File acts as if it is Protected, and as mentioned above, it
will only allow INPUT access.

The File is written in the normal Basic INTERNAL format, and each record
contains four items: one string and three numerics. There are 128 records
in the file, and they are numbered O through to 127.

Record 0

This record contains data about the volume for which the catalogue file was
created. The string gives the name of the disk (up to 10 characters) and the
numerical items are as fo11ows:

 1/. A1ways 0 (for record 0)
 2/. Total number of sectors on the disk
 3/. Total number of Free sectors on the disk

Records 1 through to 127

These records contain information on the corresponding File in the
Catalogue. Non-existent files will give a null string for the first item and
0s (zeros) For the numeric items. Files which exist will give the file name
for the string, and the following numeric items:

A/. = Filetype (if number is negative, File is protected) Value:

 1 = DISPLAY/FIXED datafile
 2 = DISPLAY/VARIABLE datafile
 3 = INTERNAL/FIXED datafile
 4 = INTERNAL/VARIABLE datafile
 5 = Memory Image file (Program File)

B/. = Number of AUs allocated to the File

C/. = Number of bytes per record (0 for type 5 File)

Catalogue file access by application program or User

(Please read the preceding information first)

In order to enable access from assembly language programs, the following
additional information is required:

The Catalogue file contains 128 records of 38 bytes and is output in
INTERNAL format (i.e. a length byte followed by a data item.). Each of the
records contains four of these data items:

i An ASCII string containing up to 10 characters, or a null string
ii Three numeric values in standard 8 byte floating point format

Record O contains information about the volume itself, while records 1
through to 127 contain information about the relevant file for each slot" in
the catalogue.

The information in the records is as follows:

1. An ASCII string of up to 10 characters containing the name of the file in
the specified slot. For record 0 this is the Volume name

2. A floating point value of between -5 and +5. These values represent the
same information as given for Basic.

3. The number of AUs allocated for the file (record 0 = total AUs on the
disk)

4. The number of bytes per logical record - O for Program file.
(record 0 = Free AUs remaining on the disk)

If a catalogue slot is empty, the filename will contain a null string and
the numeric entries will contain floating point zeros.

====== ======= ======

INTERNAL DATA STRUCTURE

Physical device format
The physical device (diskette) is logically subdivided into "Allocatable
Units" (AU’s). An AU is defined as being an integral number of physical
records on the device. The total number of AUs on any device is less than
4096 (ie each AU can be addressed by a 12 bit word). The first AU is
numbered O.

The physical record length is the size of the block of data which can be
read or written to the device at one time. For the Disk Peripheral, the AU
and the Physical Record are equivalent to one disk sector (256 bytes).

Summary of system reserved sectors:

Sector O contains data concerning the volume, such as available (free)
sectors, disk name etc.

Sector 1 contains pointers to other sectors which contain descriptions of
the appropriate file. Normally there is a pointer in sector one for each
file which exists on the disk.

Volume information block (VIB), sector O

This block contains disk configuration data as required by the disk
software. This includes available number of AUs, Volume name, format
information etc. Included in this block is the "Allocation Bit Map":

The allocation bit map is used to indicate to the disk software the
availability of individual sectors on the disk.
A "1" indicates that the sector associated with that "bit" has been
allocated, and a "0" that the sector is available for use.
The first bit in the map is for sector 0, the second is for sector 1 and so
forth.
When the disk is initialised (WITH VERIFY = YES if using DM1000 or similar),
then the bits for bad AUs are set to "1" along with the bits for non-
existent AUs and the 2 system reserved AUs. All the remaining bits are of
course set to zero.

File Descriptor Index Record (FDI), sector 1.

This sector contains alphabetically sorted pointers to each File Descriptor
Record (FDR), and enables the system to keep track of the location of each
FDR on the disk.

NOTE: If either Sector O (VIB) or sector 1 (FDR) are bad or corrupted then
the whole disk is considered bad by the system, as it can no longer keep
track of information stored on the disk.

File Descriptor Record. (FDR) (any sector)

This record is used to map filenames into physical locations of the files on
the disk. Each entry contains information about the file such as type,
record type, data type, size of file etc.

File Control Block (FCB) in VDP RAM

This is a copy of the FDR which is maintained in VDP RAM while the file is
open. It may additionally contain some more up to date information about the
file. One FCB is required for each file which is currently opened. It is the
memory taken by these FCBs which is affected when "CALL FILES" is used in
BASIC.

==============

DETAILED DESCRIPTION OF DISK FORMAT

A single sided diskette used with the T.I. Disk Controller has the following
specifications:-

Diskette type: SA 104 (ANSI standard 5.25“)
Encoding method: FM single density
Capacity: 92160 Bytes per disk
 23O4 Bytes per track
 256 Bytes per sector
 40 Tracks per side
 9 Sectors per track

The capacities given are for a single sided, single density system.
Using double sided will of course double the bytes per disk, using double
density (Myarc type controller) will double the capacity again.

For ease of description, the following information assumes that the diskette
is addressed as a 'linear' medium, that is to say, sector O is the first
sector of track zero, sector 1 is the second and so on -- sector 359 being
the last sector of track 39. It should be noted that this is not strictly
correct as the sectors are in fact 'interleaved' on each track to obtain
faster access when reading. If a double sided set up is being used then the
physical layout of the second side is the reverse of the first side, that is
to say, sector 360 is physically on the opposite side of the disk to sector
359, and sector 719 is opposite sector O.

VOLUME INFORMATION BLOCK LAYOUT

0 DISK VOLUME NAME 1

2 The volume name can be any combination of ten 3

4 ASCII characters except for space, '.' or NULL. 5

6 It is space filled to the right and must have 7

8 at least one none-space character 9

================

>A TOTAL NUMBER OF AUs >B

===================

>C SECTORS PER TRACK | 'D' >D

>E 'S' | 'K' >F

>10 PROTECTION | NUMBER TRACKS PER SIDE >11

>12 QTY FORMATTED SIDES | DENSITY >13

>14 RESERVED >15

 vvvv vvvv
>36 >37

======

>38 ALLOCATION BIT MAP >39
 vvvvv vvvvv
>FE >FF

Bytes >A - >B show the total number of allocation units on the volume. This
information should match the Allocation Bit Map data.

Bytes >D - >F contain the ASCII letters ’DSK’. These letters are checked by
the T.I. disk managers to see if the disk hasbeen initialised.

Byte >1O Contains the ASCII ’P’ if the disk is Proprietary Protected. This
byte will normally otherwise be an ASCII space.

Bytes >12 - >37 are reserved for what were intended to be future expansion.
This could be date and time of creation etc. The T.I. controller will set
all these to zero.

Bytes >3B - >FF contain the allocation bit map. The map can control up to
1600 256-byte sectors (=400K bytes) - this will allow double sided, double
density diskettes without modification to the map layout. Each bit in the
map represents one sector on the disk. A logical one in the bit map means
that the corresponding sector has been allocated, a logical zero means that
the sector is available for use.

The Volume name can be used as an alternative to the drive name - that is to
say the User can specify a disk drive in either of the following ways:

DSK.vo1name.fi1ename or DSK1.fi1ename

If the volume name is specified, then the system will look at each drive in
sequence until it finds the specified volume. If more that one drive
contains a volume with that name, then the lowest drive number will be
assigned.

FILE DESCRIPTOR INDEX RECORD. (Sector 1)

This sector contains up to 127 two byte entries. Each of these points to a
File Descriptor Record, and are alphabetically sorted according to the file
name in the File Descriptor Record. The list starts at the beginning of the
block, and ends with a zero entry.

As the file descriptors are alphabetically sorted, a binary search can be
used to find any given filename. This limits the maximum number of searches
to 7 if more than 63 files are defined. Generally if between 2^(N-1) and 2^N
files are defined, a file search will take at the most N disk searches. To
obtain faster directory response times, data blocks are normally allocated
in the area above sector >22, the area below this being used for File
descriptors and only used for file data when there are no more sectors
available above >22.

File Descriptor Records
-
The File Descriptor Record (FDR) contains the general information for its
associated file. In order for the system to function, all the information to
access and update the file must be contained within this record.

Layout of an FDR is as follows

0 FILE NAME 1
2 The file name can be up to ten characters in 3
4 length. 5
6 7
8 9

>A Reserved >B

>C File status flags | Number records per AU >D

>E Number of Level 2 records currently allocated >F

>1O End of file offset | Logical record size >11

>12 Number of Level 3 records currently allocated >13

>14 >15
>16 RESERVED >17
VVVVV VVVVVV
>1A >1B

>1C >1D
>1E Data chain pointer blocks. >1F
VVVVV VVVVVV
>FE >FF

Bytes >A and >B were reserved for an extension of the number of data chain
pointers. As this was never implemented, these bytes are always 0.

Byte >C. The file status flags are as follows, where bit 0 is the LSB:

 Bit No Description
 0 File type indicator
 0 = Data file
 1 = Program file

 1 Data type indicator
 0 = ASCII data (DISPLAY file)
 1 = Binary data (INTERNAL or PROGRAM file)

 2 This bit was reserved for expansion of the data
 type indicator

 3 PROTECT flag
 0 = NOT protected
 1 = Protected

 4,5,6 These bits were reserved for expansion of ????

 7 Fixed/variable flag
 0 = Fixed record lengths
 1 = Variable record lengths

Bytes >E & >F The number of 256 byte records allocated on level 2.

Byte >10 Contains the EOF offset within the highest physical AU for variable
length records and program files.

Byte >11 Contains the logical record size in bytes.
 For variable length records this byte contains the maximum
permissible record size.

Bytes >12 & >13 Contain the number of records allocated on level 3.
 For variable length records these bytes will contain the number of
level 2 records actually used.
 NOTE! these bytes are in the reverse order.

Bytes >14 to >1B These bytes were reserved For future expansion
 and will always be 0
.

Bytes >1C to >FF Contain blocks of three bytes which indicate the clusters
which have been allocated for the file

12 bits of each 3 byte block indicate the address of the first AU in the
cluster, and the remaining 12 bits indicate the highest logical record
offset in the cluster of contiguous records.
 (This method of indication reduces the computation required for relative
record file access).

The layout of the data within the 3 byte blocks is shown below:

 BYTE 1 BYTE 2 BYTE 3
 A2 A1 L1 A3 L3 L2

Where
A3 = AU’s times >1OO
A2 = AU's times >1O
A1 = AU’s times 1

L3 = offset times >1OO
L2 = offset times >10
L1 = offset times 1

ALLOCATION OF DATA FILES

A Data file is built of clusters of contiguous data records, each data file
can contain up to 76 of these data record clusters, with each cluster
containing at least one data record.
The DSR software will allocate as many contiguous records as possible upon
request, - if a new record is requested and no more records can be added to
the current cluster, then a new cluster of contiguous records is started.
If 76 clusters have been allocated and a new cluster is requested then the
write operation will be aborted.
This will only occur when the data records on the disk have become too
scattered (i.e. the file is badly segmented) - the problem can be corrected
by copying the disk with the Disk Manager (or with DM1000 in file mode),
which will cause the records for the files to be allocated in 1 (or at the
most 2) clusters on the new disk.
Note that at worst case this scheme still allows for 19k bytes per file (76
* 256 bytes).

Because of the system used, each physical record within the file can be
accessed at random, without any need for large areas of contiguous disk
space. This means that as long as the logical records within a file have a
fixed length, the file can be accessed either at random or sequentially and
therefore the disk software does not have to distinguish between relative
record and sequential Files.

This has some implication for sequential fixed length record access, as now
the record number is being used, rather than the current record number and
offset.

For variable length records, the length of the logical record is stored at
the start of the record itself. The result of this is that since a record
cannot cross an AU (sector) boundary, the maximum record length for variable
length records is limited to 254 bytes, as the ’end of records on this
sector’ (>FF) has to be written too.

PROGRAM FILE ALLOCATION

Program file allocation is identical to data file allocation. The Program
file (segment) is split into 256 byte records which are stored as a standard
data file. As the disk software marks the file as a program file it can
prevent data access to program Files (and vice versa).

In order to prevent problems with VDP ram ‘wrap round' (i.e. continuing to
write to VDP ram after address >3FFF will write to >OOOO) the DSR software
notes the actual number of bytes used in the last data record and will
return exactly as many bytes as were originally written to the disk, even
though this may not be a multiple of 256.

When accessing the disk from a high level (i.e. using file access as opposed
to sector access), current information about the disk and fi1e(s) etc are
held in VDP RAM so as to avoid having to re-access the relevant sectors on
the disk each time a sector is read from a file.
In addition to this data space is also required to buffer the data being
read from the disk. The memory used for this is at the high end of VDP RAM
and is permanently allocated by the power up routine within the DSR ROM of
the disk controller, and as a consequence cannot be used by application
programs, although its size can be changed by a (GPL) utility routine.

The allocated VDP memory is roughly sub-divided into three categories:

1. Drive Control information
2. File allocation information
3. Data buffering

Each of these is discussed below

DRIVE CONTROL INFORMATION

In order to control the Disk hardware, the software needs to know the
current status of each drive before it can access it. A11 this information
is readily available (some through checking the actual current status of the
drive directly).

The power up routines take care of the FD1771 register intialisation

FILE ALLOCATION INFORMATION

File allocation information is held in the File Control Blocks (FCBs), each
open file having an FCB associated with it.

 The information contained in the FCB is identical to the File Descriptor
Record (FDR) data held on the disk for each file, with the addition of 6
bytes of dynamic information about each file.
These six bytes are stored in front of the FDR informat1on (i.e. the FDR
starts at FDB byte 6).
As the length of the FDR is 256 bytes and there is a data buffer for each
file of 256 bytes, the total length of an FDB is therefore 256 + 256 + 6 =
518 bytes.

The format of the 6 byte extension of the FDR is:
Bytes -6 and -5 = Current logical Record offset on Level 2
Bytes -4 and -3 = Physical Record location of the FDR
Byte -2 = Logical Record offset
Byte -1 = Drive ID

The meanings of these entries are as follows

Drive ID

Contains the Drive number on which the associated file resides. If the
highest bit of this byte is set, then the current data block has been
modified and it will have to be written back to the drive before the file is
closed or a new data block is accessed.

Logical Record offset

Contains the offset of the next logical record in the current physical
record. If during a READ operation this points to a byte entry of >FF then
this indicates an end of record for the current physical record.

Note that this entry is used only for variable length records. For fixed
length records, the actual AU and the position within that AU is computed
before each I/O operation, and therefore the logical record offset byte is
irrelevant.

During WRITE operations, this offset points to the first free byte in the
physical record. If the next logical record would leave less than one byte
in the current record, a byte count of >FF will be written, and the logical
record will be located in the next physical record.
The first logical record in a physical record can never cause the physical
record to overflow as the maximum logical record length is 254 and the
physical record length is 256

Physical location of the FDR:
Points to the physical sector on the disk where the FDR resides for the
associated file, and is used when it is necessary to re-write the FDR to the
disk. It is maintained on read only accesses even though it is not required.

Current Logical Record Offset on Level 2:
Contains the physical record offset of the most recently processed physical
record and is independant of READ or WRITE operations.
Always contains the logical offset for Level 2 of the datablock which is
currently in memory.

It should be noted that this system causes fixed length sequential files to
be accessed as relative access files on Level 2.

DATA BUFFERING

In order to buffer the data to and from the disk, a 256 byte buffer is
maintained for each OPEN File. The buffer is located immediately above the
fCB memory area.

One of the VDP RAM buffers is permanently assigned for processing VIBs
(Volume Information Blocks - see previous information. If more than one
drive is used in WRITE mode, then the bit maps are moved in and out of this
area as required. This buffer is accessed for each access to the disk VIB.

Every Level 3 WRITE operation to a file will eventually be passed on to
Level 2 as a physical sector WRITE. To keep the number of disk accesses to a
minimum, a flag (the MS bit of the Drive ID) to indicate that the current
data buffer has been modified. The data buffer is only written to the disk
if the next physical record access involves another physical record. If the
file is closed then the last data buffer is written onto the disk if
required (this is the reason why the ends of files go missing if you forget
to close them!).

VDP MEMORY LAYOUT

The memory layout is outlined in the diagram (such as it is!) below. This
block of memory is reserved by the power up routine in the Disk DSR ROM. The
size of the area from then on depends upon the number of files which are
allowed to be open at the same time, and is initially set to 3. This number
can be varied between one and 16 by calling a subprogram (through CALL FILES
from BASIC). Each extra File will of course take up 518 bytes.

As for each peripheral, the disk peripheral identifies its reserved area
through its CRU address (unique for each peripheral). The area is
'validated’ by an >AA byte, followed by the address of the previous top
of memory. As the disk peripheral has the highest priority on power up, this
entry will always point to the actual top of memory. The disk system does
not use this however, and so will work equally well on other CRU locations.

The First entry after the CRU ID contains the number of Files for which the
area is reserved, and directly determines the length of the reserved area.
After this entry come the areas reserved for the FCBs and the associated
buffers for each file. In order to simp1ify(?) the buffer allocation buffers
are not allocated on demand, but as soon as a file is opened. The FCB and
buffer are associated with the file for its entire 'open' life.

 3FFF | Name Compare
 3FF5 | Buffer Current Track 3
 Current Track 2
 3FF4 | Volume Information Current Track 1
 3FF3 | Block Current Disk No
 VVVV VVVV
 3EF5 |

 3EF4 | Additional Info
 3EEF |

 3EEE | Disk Status Info Data Buffer N
 3EEB |
 File Control Block
 3EEA |
 VV VV
 3DEB | VDP Stack Space VV VV

 3DEA | Data Buffer 1
 | Data and File
 | Buffer Space File Control
 VVVV VVVV Block 1
3DEB-N*518 |

3DEA-N*518 | Max No of Files (N)

3DE9-N*518 | CRU ID

3DE8-N*518 | Next Buffer (>3FFF)

3DE6-N*518 | Validity Code (>AA)

3DE5-N*518 |

The VDP Stack area is used to simulate a stack based machine with the TMS
9900, giving the programmer the advantage of being able to use the
multilevel stack oriented CALL/RETURN system, rather than the single
level BL system used by the 9900 series processors. The stack can of course
also be used to PUSH and POP registers and data to and From it

The disk status information area is used to save the current track numbers
of the (3) drives, and the most recently accessed drive number.

The additional information area is no longer used (by the 99/A)

The Volume Information Block buffer is described above.

At the top of memory, an 11-byte buffer is reserved which is used for name
comparison. Every high level entry point automatically saves the drive
number and the 10 character file name in this entry. If less than 10
characters are available, the buffer is padded with spaces

DISK PERIPHERAL D. S. R. SUBPROGRAMS

LEVEL 1 SUBRDUTINES

The lowest routines in the disk DSR are called level 1 subroutines. These
routines make the higher levels independent of the physical disk medium,
e.g. changing the disk software for a double density disk would only involve
changing the routines on this level provided the physical sector size
remains at 256 bytes.

There are two Sub-programs available on this level:

 1 Sector Read/Write
 2 Format disk

The following paragraphs contain a description of the subprograms and their
call requirements. A11 parameters are transferred through the FAC block in
CPU RAM. This block is located at a relative position of >4A (which for the
99/4A is >834A).

A11 the subprogvams are called by a 'BLWP @DSRLNK' followed by a data
statement: ’DATA >A’. (Note that the Editor Assembler manual is WRONG - it
gives >1O for the data on the third line of the first paragraph on page
262).
Before calling any of the subprograms, location >8356 (name length pointer)
must be set up to point at the location in VRAM where the name length and
the subprogram number have been written.

e.g. If subprogram >14 is called then a location in VRAM (say >1000) must
contain 2 bytes, the first of which is >O1 (the name length), and the second
of which is the subprogram number >14. Location >8356 in CPU RAM points to
the first of these bytes - i.e. contains >1000.

Error codes are returned in >8350

SECTOR READ/WRITE - SUBPROGRAM >10

The transfer block for this subprogram:
>834A (Sector Number)
>834C Unit # | READ/WRITE
>834E VDP Buffer start address
>8350 Sector number

The meaning of each entry is:

Unit Number: - Indicates the disk drive on which the operation is to
 be performed. For a T.I. controller, this has to be
 either 1, 2, or 3
READ/WRITE - Indicates the direction of data flow:
 0 = WRITE
 NOT 0 = READ

VDP buffer start address. - Indicates the start of VDP buffer for
 data transfer. The number of bytes transferred will
 always be 256

Sector number - Number of the sector to be written or read. Sectors are
addressed as logical sectors (O-359 for a single sided single density disk),
rather than as a track and sector number, which would require a knowledge of
the physical layout of the floppy disk. The sector number has to be given in
CPU RAM locations >8350 and >8351, and will be returned in CPU RAM locations
>834A and >834B

 .
DISK FORMATTING - SUBPROGRAM >11

The transfer block for this subprogram:
 >834A (# of sectors/disk)
 >834C DSR ver | Unit #1 | # of tracks
 >834E VDP Buffer start address
 >8350 Density | # of sides

The meaning of each entry is:

of sectors/disk - Is returned by the routine to provide compatibility
 between the normal controller and double density or SA200 systems.

DSR Version (This is the Most Significant nibble)
 O indicates the format reAuires nothing special and can be done
 on any version of the DSR
 1 indicates the format requires the 2nd version of the DSR for
 one of two reasons. It may be because a double sided format
 is requested, or it may be because a # of sectors other than
 35 or 4O is requested (but see below!)

Unit Number: - Indicates the disk drive on which the operation is to
 be performed. For a T.I. Controller, this has to be either 1, 2, or
3. This is the Least Significant nibble.

of tracks: - Indicates the number of tracks to be formatted. In the only
versions released, this entry has to be either 35 or 4O!!! Upon return,
this entry contains the number of sectors per track.

VDP buffer start address - Indicates the start address of the VDP buffer
that can be used by the disk controller to write tracks The amount of memory
used depends on the disk format. For a single density format, the buffer
memory used is a nominal 3125 bytes. This can vary with disk motor speed to
a maximum of 3300 bytes. To be compatible with double density versions of
the controller (such as MYARC), the minimum buffer size must be 8K bytes.

Density - O = single

% of sides - Indicates the number of sides to format.
 The above subprogram will format the entire disk on the given unit
unless the disk in the unit has been hardware write protected. It can use
any VDP memory starting at the location given in the transfer block.

LEVEL. 2 SUBROUTINES

The Level 2 subroutines use the "file" concept, rather than the "logical
sector number". Note that the file concept on this level is limited to an
abstract type of file which has NO properties such as "program file" or
"data file". A file on this level is merely a collection of data, stored in
logical blocks of 256 bytes each.

The logical blocks on this level are accessed by filename and logical block
offset. This offset starts with block 0 and ends with block N-1 for a file
with a length of N blocks.

MODIFY FILE PROTECTION - SUBPROGRAM >12

The transfer block for this subp*ogr‘avn is

>834C UNIT # | Protect Code
>834E Pointer to file name

The protect bit For the indicated file will be set or reset according to the
information given in CPU RAM location >4D:

0 -Reset the file protect bit. The file is no longer protected against
modification or deletion

1 -Set the file file protect bit. Disallow SAVE and OPEN for OUTPUT, APPEND,
or UPDATE mode.

The pointer to the file name must point to the VDP RAM location of the
first character of the file name. The name must be left adjusted in a 10
character field, right filled with spaces. No checks are made to ensure the
legality of the file name.

FILE RENAME ROUTINE - SUBPROGRAM >13

The transfer block for this subprogram is
 >834C UNIT # | Unused
 >834E Pointer to new name
 >8350 Pointer to old name

Both pointers to the File names must point to the VDP RAM location of the
first character of a file name. Each name must be left adjusted in a 10
character field, right filled with spaces. No checks are made to ensure the
legality of the file names.

Since the rename has to be done on the same disk, only one unit number entry
is required

Error codes are returned, as usual, at location >835O. The error codes
returned are identical to the standard file management error codes, i.e.
only the upper three bits of the error byte are significant

* Subprograms 14 and 15 deal with Direct File Access and can be found after
Subprogram 16 data. This reflects the order the article was printed in TI
Lines.

BUFFER ALLOCATION ROUTINE - SUBPROGRAM >16

The transfer block for this subprogram is:
 >834C ZERO
 >834E # of files | ZERO
 >8350 ZERO

The "argument" for this subprogram is the number of file buffers to be
allocated. whilst it is not actually necessary to clear >834C, & >8350,
experience has shown that strange results sometimes occur if you don’t.

The effect of this routine is that an attempt is made to allocate enough VDP
RAM space for disk usage to facilitate the simultaneous opening of the given
nuumber of files. This number has to be between 1 and 16.

The disk software automatically relocates all buffer areas that have deem
linked in the following manner (see also previous text VDP RAM a11ocation):-

Byte 1 - Validation code
Bytes 2 & 3 - Top of memory before allocation of this buffer
Byte 4 - High byte of CRU address for given buffer area. For programs this
byte is 0

The linkage to the first buffer area is made through the current top of
memory, given in CPU RAM location >837O

The top of memory is also automatically updated after successful completion
of this subprogram

A check is made that the current request leaves at least >8OO bytes of VDP
RAM space for screen and data storage. If this is not the case or if the
total number of buffers is zero or greater than 16, the request is ignored
and an error code will be indicated in CPU RAM location >835O.

Successful completion is indicated by a 0 byte in CPU RAM location >8350. A
non-zero byte indicates unsuccessful completion

DIRECT FILE ACCESS ROUTINES

The direct File access routines can be used for accessing disk files without
paying attention to the type of disk File (PROGRAM or DATA). The level of
access is equivalent to the level 2 disk software, which means that access
is performed on the basis of straight AUs. However, Level 3 information can
be passed at file open time.

Since the input and output direct access subprograms can be used together to
copy files, the user has to be very careful with the information returned by
the input File subprogram, since some of this information may be used by the
output file subprogram.

Direct File Input - Subprogram >14

The transfer block for the subprogram is:
 >834C Unit # | Access code
 >834E Pointer to file name
 >8350 (X) Additional info

The meaning of each entry is:

Unit # - Indicates the disk drive on which the operation is to be performed.
This entry has to be either 1, 2 or 3.

Access code - An access code is used to indicate which Function is to be
performed, since this subprogram combines multiple functions. The following
codes are used!

 0 Transfer file parameters. This will transfer Level 2 parameters to
the additional information area (six bytes). It also passes the number of
AUs allocated for the file.

 N when N is not equal to zero, this indicates the number of AUs to be
read from the given file, starting at the AU indicated in the additional
information block.

After the READ is complete, this entry contains the actual number of AUs
read. If all AUs have been read the entry will be zero.

Pointer to file name. - Contains a pointer to the first character of a 10
character filename, possibly padded to the right with spaces. The filename
is NOT checked by the disk software.

Additional information - Points to a 10 byte location in CPU ram containing
additional information for direct disk access:

 X VDP Buffer Start Address
 X+2 # of first AU
 X+4 Status flags | # records/AU
 X+6 EOF offset | logical rec Size
 X+8 # of Level 3 rec's allocated

The VDP Buffer start address indicates where the information read from the
disk can be stored. The buffer has to be able to store at least N * 256
bytes, in which N is the access code
The # of first AU entry indicates the AU number at which the read should
begin. If the access code = 0 (parameter passing) the total number of AUs
allocated for the File will be returned.

The remaining six bytes are explained previously when giving information
about the the File Descriptor records (Sector 1 on the disk).

The user must be very careful when changing these bytes, since they directly
affect Level 3 operation. If the information in these 6 bytes is not
modified consistently then unpredictable results may (WILL if you don’t want
them to!) occur.

Error codes are returned at location >835O in CPU RAM

Direct File Output - Subprogram >15

The transfer block for the subprogram is:

 >834C Unit # | Access code
 >834E Pointer to file name
 >8350 (x) Additional info

The meaning of each entry is:

Unit # - Indicates the disk drive on which the operation is to be performed.
This entry has to be either 1, 2, or 3

Access code - An access code is used to indicate which function is to be
performed, since this subprogram combines multiple functions. The following
codes are used:

 0 - Create file and copy Level 3 parameters from the additional
information area

 N - when N is not equal to zero, this indicates the number of AUs to be
written to the given file, starting at the AU indicated in the additional
information block

 Pointer to file name. - Contains a pointer to the first character of a
10 character filename, possibly padded to the right with spaces. The
filename is NOT checked by the disk software.

 Additional information - Points to a 10 bytes location in CPU ram
containing additional information For
 direct disk access:

 X VDP Buffer Start Address
 X+2 # of first AU
 X+4 Status flags | # records/AU
 X+6 EOF offset | logical recd Size
 X+8 # of Level 3 records allocated

The VDP Buffer start address indicates where the information to be written
to the disk is stored. The buffer must of course contain at least N * 256
bytes, in which N is the access code

The # of first AU entry indicates the AU number at which the write should
begin. If the access code = 0 (parameter passing) the total number of AUs
allocated for the file has to be indicated. (automatically passed if a read
has been done first).

The remaining six bytes are explained in a previous section giving
information about the the File Descriptor records (Sector 1 on the disk).

The user must be very careful when changing these bytes, since they directly
affect Level 3 operation. If the information in these 6 bytes is not
modified consistently then unpredictable results may (WILL if you don’t want
them to!) occur.

Error codes are returned at location >835O in CPU RAM

======= end ============

Supplemental information from the Editor Assembler Manual:

Section 18: File Management - page 291 onwards:

18.1 FILE CHARACTERISTICS

A file consists of a collection of data groupings called logical records.
These records do not necessarily correspond with the the physical divisions
of the data in the file.
For example, a logical record often does not correspond to a sector on a
diskette.
File input and output (I/O) are done on a logical record basis. Manipulation
of physical records is handled by the DSR.

The records on sequential files can only be read from, or written to, in
seAuential order. This is appropriate for printers, modems, cassettes, and
some kinds of data files. The records on sequential files can be of either
fixed or variable length.

The records on relative files can be read from, or written to, in either
sequential order or in random order. You can only use relative files on
diskettes. The records on relative files are of fixed length.

Each record on a file has a number from zero up to one less than the number
of records in the file. You use these record numbers to specify which record
to access on relative files.

When a file is created, its characteristics must be defined. Most of these
characteristics cannot be changed later in the file's existence. The
characteristics of files are discussed below.

18.1.1 File Type--DISPLAY or INTERNAL

The file type attribute specifies the format of the data in the file.

 DISPLAY sets the file type to contain displayable or printable character
strings. Each data record corresponds to one print line.
 INTERNAL sets the file type to contain data in internal machine format.

The file type attribute is not significant to the DSR. It is merely passed
without affecting the actual data stored.

18.1.2 Mode of Operation--INPUT, OUTPUT, UPDATE, or APPEND

A file is opened for a specific mode of operation.

 INPUT specifies that the contents of the file can be read from but not
written to.
 OUTPUT specifies that the file is being created. Its contents can be
written to but not read from.
 UPDATE specifies that the contents of the file can be both written to and
 read from.
 APPEND specifies that data can be added to the end of the file but data
 cannot be read.

The DSR determines whether a specific mode for an I/O operation can be
accepted by the given device. For example, the TI Thermal Printer can only
be opened in OUTPUT mode.

18.2 PERIPHERAL ACCESS BLOCK (PAB) DEFINITION

DSRs are accessed through a Peripheral Access Block (PAB). The format of the
PAB is the same for every peripheral. In a program that you write, the only
difference between peripherals is that some of them do not allow every
option provided for in the PAB. An example of using a PAB is given in
Section 18.3.

The PABs are in VDP RAM. They are created before an OPEN statement and are
not released until the I/O for their corresponding peripheral has been
closed.

The following describes the bytes which make up a PAB.

 Byte Bit Contents Meaninq
 0 All I / O Op-code The op-code for the current I/O
 call. See Section 18.2.1 for a
 description of the op-codes.
 1 All Flag/Status All information the system needs
 about the file type, mode of operation,
 and data type. The meaning of the bits
 is described below.
 0-2 Error code No error is 0 Other errors are
 indicated in combination with the I/O
 op-code. The error codes are discussed
 in Section 18.2.2.
 3 Record type "Fixed length records" are 0 and "variable
 length records" are 1 .
 4 Datatype DISPLAY is 0 and INTERNAL is 1
 5,6 Mode of UPDATE is 00, OUTPUT is 01, INPUT is 10, and
 operation APPEND is 11
 7 File type "Sequential file" is 0 and "relative file"
 is 1.

 2,3 All Data Buffer The address of the data buffer that the
 data Address must be written to or read
 from in VDP memory.
 4 All Logical Record The logical record length for fixed
 Length length records or the maximum length
 for a variable length record.
 5 All Character The number of characters to be
 Count transferred for a WRITE op-code or the
 number of bytes actually read for a
 READ op-code.
 6,7 All Record Number (Only required for a relative record
 type file.) The record number on which
 the current I/O operation is performed.
 The most-significant bit is ignored,
 so this number can be from 0 through
 32767.
 8 All Screen Offset The offset of the screen characters
 with respect to their normal ASCII
 value. This is used only by the
 cassette interface, which must put
 prompts on the screen.
 9 All Name Length The length of the file descriptor,
 which starts in byte 10
 10+ All File The device name and, if required, the
 Descriptor filename and options. The length of
 this descriptor is given in bytes.

 .
The following figure summarizes the bytes which make up a PAB.

 0 I/O Opcode | Flag/Status 1
 2 Data Buffer Address 3
 4 Logical Record Length | Character Count 5
 6 Record Number 7
 8 Screen Offset | Name Length 9
 >A.... File Descriptor....

Errors that occur in input/output calls are returned in byte 1 (Flag/Status)
of the PAB.

18.2.1 Input/Output Op-codes

The following describes the op-codes which can be used in byte 0 (I/O Op-
code) of
the PAB.

18.2.1.1 OPEN--0

The OPEN operation must be performed before any data-transfer operation
except those performed with LOAD or SAVE. The file remains open until a
CLOSE operation is performed. The mode of operation must be given in byte 1
(Flag/Status) of the PAB. Changing the mode of operation after an OPEN
causes unpredictable results.

 If a record length of 0 is given in byte 4 (Logical Record Length) of the
PAB, the assigned record length (which depends on the peripheral) is
returned in byte 4. If a non-zero record length is given, it is used after
being checked for correctness with the given peripheral.

18.2.1.2 CLOSE--1

The CLOSE operation closes the file. If the file was opened in OUTPUT or
APPEND mode, an End of File (EOF) record is written to the device or file
before closing the file.

After the CLOSE operation, you can use the space allocated for the PAB for
other purposes.

18.2.1.3 READ--2

The READ operation reads a record from the selected device and copies the
bytes into the buffer specified in bytes 2 and 3 (Data Buffer Address) of
the PAB. The size of the buffer is specified in byte 4 (Logical Record
Length) of the PAB. The actual number of bytes stored is specified in byte 5
(Character Count) of the PAB.
If the length of the input record exceeds the buffer size, the remaining
characters are discarded.

18.2.1.4 WRITE--3

The WRITE operation writes a record from the buffer specified in bytes 2 and
3 (Data Buffer Address) of the PAB. The number of bytes to be written is
specified in byte 5 (Character Count) of the PAB.

18.2.1.5. RESTORE/REWIND--4

The RESTOREIREWIND operation repositions the file read/write pointer to the
beginning of the file or, in the case of a relative record file, to the
record specified in bytes 6 and 7 (Record Number) of the PAB.

The RESTORE/REWIND operation can only be used if the file was opened in
INPUT or UPDATE mode. For relative record files, you can simulate a RESTORE
in any mode by specifying the record at which the file is to be positioned
in bytes 6 and 7 (Record Number) of the PAB. The next operation then uses
the indicated record.

18.2.1.6. LOAD--5

The LOAD operation loads a memory image of a file from an external device or
file into VDP RAM. The LOAD operation is used without a previous OPEN
operation.
N o t e that the LOAD operation requires as much buffer in VDP RAM as the
file occupies on the diskette or other device.

For a LOAD operation, the PAB needs the op-code in byte 0 (I/O Op-code), the
starting address of the VDP RAM memory area into which the file is to be
copied in bytes 2 and 3 (Data Buffer Address), the maximum number of bytes
to be loaded in bytes 6 and 7 (Record Number), the name length in byte 9
(Name Length), and the file descriptor information in bytes 10+ (File
Descriptor).

For related information, see the explanation of the RUN PROGRAMFILE option
from the Editor/Assembler selection list in Section 2.5.(refer to full
Editor Assembler Manual)

18.2.1.7 SAVE--6

The SAVE operation writes a file from VDP RAM to a peripheral. The SAVE
operation is used without a previous OPEN operation. Note that the SAVE
operation copies the entire memory image from the buffer in VDP RAM to the
diskette or other device.

For a SAVE operation, the PAB needs the op-code in byte 0 (I/O Op-code), the
starting address of the VDP RAM memory area from which the file is to be
copied in bytes 2 and 3 (Data Buffer Address), the number of bytes to be
saved in bytes 6 and 7 (Record Number), the name length in byte 9 (Name
Length), and the file descriptor information in bytes 10+ (File Descriptor).

For related information, see the explanation of the SAVE utility in Section
24.5.

18.2.1.8 DELETE--7

The DELETE operation deletes the file from the peripheral. The operation
also performs a CLOSE.

18.2.1.9 SCRATCH RECORD-8

The SCRATCH RECORD operation removes the record specified in bytes 6 and 7
(Record Number) from the specified relative record file. This operation
causes an error for peripherals opened as sequential files.

The status is in byte 8 (Screen Offset) of the PAB. The status byte returns
the status of a peripheral and can be examined at any time. All of the bits
have meaning if the file is currently open. Bits 6 and 7 only have meaning
for files that are currently open. Otherwise, they are reset. The bits
return the information shown below.

 Bit Information
 0 If set, the file does not exist. If reset, the file does exist. On
 some devices, such as a printer, this bit is never set since any file
 could exist.
 1 If set, the file i s protected against modification. If reset, the
 file is not protected.
 2 Reserved for possible future use. Fixed to 0 by the current
 peripherals.
 3 If set, the data type is INTERNAL. If reset, the data type is
 DISPLAY or the file is a program file.
 4 If set, the file is a program file. If reset, the file is a data
 file.
 5 If set, the record length is VARIABLE. If reset, the record length is
 FIXED.
 6 If set, the file is at the physical end of the peripheral and no more
 data can be written.
 7 If set, the file is at the end of its previously created contents.
 You can still write to the file (if it was opened in APPEND, OUTPUT,
 or UPDATE mode), but any attempt to read data from the file causes
 an error.

18.2.2. Error Codes

Errors are indicated in bits 0 through 2 of byte 1 (Flag/Status) of the PAB. An
error code of 0 indicates that no error has occurred. However, an error code of
0 with the COND bit (bit 2) set in the STATUS byte at address >837C indicates a
bad device name.

The table below shows the possible error codes and their meanings.

 Error
 Code Meaninq
 0 Bad device name.
 1 Device is write protected.
 2 Bad open attribute such as incorrect file type, incorrect record
 length, incorrect I/O mode, or no records in a relative record
 file.
 3 Illegal operation; i.e., an operation not supported on the
 peripheral or a conflict with the OPEN attributes.
 4 Out of table or buffer space on the device.
 5 Attempt to read past the end of file. When this error occurs, the
 file is closed. Also given for non-extant records in a relative
 record file.
 6 Device error. Covers all hard device errors such as parity and
 bad medium errors.
 7 File error such a s program/data file mismatch, non-existing file
 opened in INPUT mode, etc.

18.2.3. Device Service Routine Operations

Device Service Routines (DSRs) react in specific ways to various operations and
conditions. These reactions are described in the following sections.

18.2.3.1 Error Conditions

If a non-existent DSR is called, the File Management System returns with the
COND bit (bit 2) set in the STATUS byte at address >837C.

If the DSR detects an error, it indicates the error in bits 0 through 2 of byte
1 of the PAB. Therefore, your assembly language program must clear these bits
before every I/O operation and check them after every I/O operation.

18.2.3.2 Special Input/Output Modes

The DSR uses only the first part of the file descriptor in its search for the
requested peripheral. The remainder of the descriptor can be used to indicate
special device-related functions such as transmission rate , print width, etc.
The DSR ignores descriptor portions that it does not recognize.

An example of a special I/O mode descriptor that sets values for the RS232
Interface is:
 RS232.BAUDRATE=1200.DATABITS=7.CHECKPARITY.PARITY=ODD

18.2.3.3. Default Handling

The DSR has certain defaults that are used if no values are specified.
The following shows these defaults.

 Possibilities Default
 Sequential or relative Sequential.
 UPDATE, OUTPUT , INPUT, or APPEND UPDATE.
 DISPLAY or INTERAL DISPLAY.
 Fixed or variable length Fixed if relative and variable if
 sequential.
 Logical record length Depends on the specific
 peripheral.

18.2.4 Memory Requirements

The DSR uses Registers 0 through 10 of the calling Workspace and addresses
>834Athrough >836D. If the DSR is calle d in a non-interrupt driven mode
(for example , through a standard DSR entry) , addresses >83DA through
>83DF are used. Also used are PAD (See Section 24.3.1) and VDP RAM .

18.2.5 Linkage to TI BASIC

When using TI BASIC, the PAB is modified by the addition of four bytes at
the beginning of the PAB. The list below describes the bytes which make up
a PAB when it is called from TI BASIC.

Byte Contents Meaning
0,1 Link to next PAB The address of the next P A B in the chain of PABs used
 by T I BASIC. The last P A B in the chain has a value
 of >0000 in these bytes.
2 File Number The number assigned to the file by T I BASIC.
3 Internal Offset If 0, there is no effect. If non-zero, it is the value
 to be added to the start address of the data buffer
 before the next PRINT or INPUT operation. This is only
 used if the previous PRINT operation ended in a
 semicolon(;) or comma (,) or if the previous INPUT
 operation ended in a comma (,).
4 I/O Op-code Same as byte 0 in the P A B described in Section 18.2.
5 Flag/Status Same as byte 1 in the P A B described in Section 18.2.
6,7 Data Buffer Same as bytes 2,3 in the P A B described in Section 18.2
 Address ..
8 Logical Record Same as byte 4 i n the P A B described in Section
 Length 18.2.
9 Character Count Same as byte 5 in the P A B described in Section 18.2.
10,ll Record Number Same as bytes 6,7 in the P A B described in Section
 18.2
12 Screen Offset Same as byte 8 in the P A B described in Section 18.2.
13 Name Length Same as byte9 in the P A B described in Section 18.2.
14+ File Descriptor Same as bytes 10+ in the P A B described in Section
 18.2.

The following figure summarizes the bytes which make up a PAB.
 +---
 0,l
 Link to next PAB
 +---
 2 3
 File Number Internal Offset
 +---+
 4 5
 I/O Op-code Flag/Status
 +---+
 6,7
 Data Buffer Address
 +---
 8 9
 Logical Record Length Character Count
 +---+
 10,ll
 Record Number
 +---+
 12 13
 Screen Offset Name Length
 +---+
 14+

 File Descriptor

The following shows how three PABs might be linked in T I BASIC.

< CPU RAM ---- > <---- VDP RAM ------------------------->

>833C >0FAB >0E27 >0D1A

0FAB ---> 0E27 ---> 0D1A ---> >0000

 04 | -- 01 | -- ZA | --

 PAB #1 PAB #2 PAB #3

==

18.3 EXAMPLE OF FILE ACCESS
The following program opens a fixed 80 file called DSK1.DATA, reads a record
from it, waits for you to press a key, closes the file, and returns to the
calling program.
 DEF DSR
 REF DSRLNK,VMBW,VMBR,VSBW,KSCAN
 PABBUF EQU >1000
 PAB EQU >F80
 *
 STATUS EQU >837C
 PNTR EQU >8356
 *
 SAVRTN DATA 0
 PDATA DATA >0004,PABBUF,>5000,>0000,>0009
 TEXT 'DSK1.DATA'
 EVEN
 READ BYTE >02
 CLOSE BYTE >01
 *
 MYREG BSS >02
 BUFFER BSS 80
 *
 MOV R11,@SAVRTN Save return address.
 LWPI MYREG Load own registers.
 LI R0,PAB
 LI R1,PDATA
 LI R2,>20
 BLWP @VMBW Move PAB data into PAB in VDP RAM.
 LI R6,PAB+9 Pointer to name length.
 MOV R6,@PNTR Store pointer to name length in
 >8356.
 BLWP @DSRLNK Open file.
 DATA 8
 MOVB @READ,Rl
 LI R0,PAB
 BLWP @VSBW Change I/O op-code to read.

 MOV R6,@PNTR Restore pointer to name.
 BLWP @DSRLNK Read one record.
 DATA 8
 LI R0,PABBUF
 LI R1,BUFFER
 LI R2,80
 BLWP @VMBR Move to C P U buffer.
 LI R0,>102 Specify beginning screen location.
 LI R1,BUFFER
 LI R2,80
 BLWP @VMBW Move line to screen.
*
LOOP
 BLWP @KSCAN Wait for key press.
 MOVB @STATUS,RO
 JEQ LOOP
*
OVER MOVE @CLOSE,Rl
 LI R0,PAB
 BLWP @VSBW Change I/O op-code to close.
 MOV R6,@PNTR Restore pointer to name.
 BLWP @DSRLNK Close file.
 DATA 8
 CLR RO
 MOVB RO,@STATUS So that no error is reported.
 MOV @SAVRTN,Rll Saved return address.
 RT Return to calling routine.
 END

==================END===================

