GenREF V1.01

GenRef

v1.01

MDOS Reference guide.

Video Library

(C) Copyright 2004

Beery W. Miller

ALL RIGHTS RESERVED
__
Video - CONTENTS __

4Video Overview

4Video Modes

5Video Registers

7Text Modes

7Text1

7Text2A

8Text2B

8MultiColor

8MultiColor

9Graphic Modes

9Graphic1

9Graphic2

10Graphic3

10Graphic4

11Graphic5

11Graphic6

12Graphic7

13Video Page Conceps

14Video Sprites

14Sprite Mode 1

14Sprite Mode 2

15Video Color Table

16Calling Video Functions

17Set Video Mode

18Get Video Mode

19Set Cursor Position

20Get Cursor Position

21Set Display Page

22Get Display Page

23Scroll Window Up

24Scroll Window Down

25Scroll Window Left

26Scroll Window Right

27Call Screen

28Get Character Color

29Set Border Color

30Set Color Palette

31Set Pixel Color

32Get Pixel Color

33Set Vector Color

34Color Search

35High Speed Block Move

36High Speed Block Copy

38Logical Block Copy

39Block Scroll Up

40Block Scroll Down

41Block Scroll Left

42Block Scroll Right

43Sprite Define

44Delete Sprite

45Locate Sprite

46Sprite Motion

47Sprite Color

48Define Sprite Pattern

49Sprite Magnify

50Sprite Pattern / Distance

51Sprite Coincidence

52Sprite Pattern Define / Get

53Character Pattern Define/Get

54Set Text Window

55Get Text Window

56Write TTY

58Restore Character / Sprite Pattern

59Set Text Color

60Write Character String

61Print Screen

62Horizontal Character / Color (HCHAR)

63Vertical Character / Color (VCHAR)

64Horizontal Character (HCHAR)

65Vertical Character (VCHAR)

66Set Mouse

67Get Mouse

68Get Mouse Release

69Make Sound

70Musical Tone Frequencies

71Sound Status

72VWTR

73VRFR

74Get Tables

75Get Palette Registers (Squashed)

76Get Palette Registers (Expanded)

77Change Edge Color

__
 TC "Video Overview" VIDEO - OVERVIEW __

The video management routines in MDOS are provided to aid a programmer in writing applications requiring video input and output. The V9938 processor contained aboard the Geneve 9640 is upward compatible with the existing TMS9918A used in the TI-99/4A. The V9938 was developed through the joint efforts of ASCII Corporation, Microsoft Inc., and YAMAHA.

The following functions are supported on the V9938.

· Full bit-mapped mode

· 80-column text display

· Access using x- and y- coordinates independent of the screen mode.

· Hardware commands internal the V9938 including AREA MOVE, LINE, SEARCH, RASTER OPERATION, etc.

· More sprites per horizontal line than the TMS9918A.

· Maximum 512 x 424 pixels, 16 colors

· Bit-mapped graphics

· Interfaces the bus mouse

· Maximum 8 sprites per horizontal line

· Logical operation function

· And more

__
 TC "Video Modes” VIDEO MODES __
The video management routines in MDOS support 11 different modes of display. The following table describes those modes and their properties.

	Mode
	Size
	Video Mode

#
	Colors
	Sprite

Mode
	Number of Display Pages

	TEXT1
	40 x 24
	>0000
	2
	N
	32

	TEXT2A
	80 x 24
	>0001
	2
	N
	16

	MULTICOLOR
	64 x 48
	>0002
	16
	1
	32

	GRAPHIC1
	32 x 24
	>0003
	16
	1
	32

	GRAPHIC2
	32 x 24
	>0004
	16
	1
	8

	GRAPHIC3
	32 x 24
	>0005
	16
	2
	8

	GRAPHIC4
	256 x 212
	>0006
	16
	2
	4

	GRAPHIC5
	512 x 212
	>0007
	4
	2
	4

	GRAPHIC6
	512 x 212
	>0008
	16
	2
	2

	GRAPHIC7
	256 x 212
	>0009
	256
	2
	2

	TEXT2B
	80 x 26.5
	>000A
	2
	N
	16

__
 TC "Video Registers" VIDEO REGISTERS __

The V9938 uses 49 internal registers for its screen operations. These registers are referred to as "VDP registers" in this book. VDP registers are classified by function into three groups as described below. The control register group and status register group can be referred to using VDP(n) system variables. By using the MDOS Video XOP functions described later in this manual, we do not need to be concerned with directly accessing these registers. Further information on direct programming of the V9938 can be obtained by obtaining a copy of the V9938 Technical Manual available on ftp.whtech.com as a PDF file or on http://map.tni.nl/ as either a PDF file or HTML document.
Control register group (R#0 to R#23, R#32 to R#46)

This is a read-only 8-bit register group controlling V9938 actions. Registers are expressed using the notation R#n. R#0 to R#23 are used to set the screen mode. R#32 to R#46 are used to execute VDP commands. These VDP commands will be described in detail later. Control registers R#24 to R#31 do not exist. The roles of the different control registers are listed below.

Control register list

__

|
| Corres-
|
|

| R#n
| ponding
| Function
|

|
| VDP(n)
|
|

|----------+-----------+--
|

| R#0
| VDP(0)
| mode register #0
|

| R#1
| VDP(1)
| mode register #1
|

| R#2
| VDP(2)
| pattern name table
|

| R#3
| VDP(3)
| colour table (LOW)
|

| R#4
| VDP(4)
| pattern generator table
|

| R#5
| VDP(5)
| sprite attribute table (LOW)
|

| R#6
| VDP(6)
| sprite pattern generator table
|

| R#7
| VDP(7)
| border colour/character colour at text mode
|

| R#8
| VDP(9)
| mode register #2
|

| R#9
| VDP(10) | mode register #3
|

| R#10
| VDP(11) | colour table (HIGH)
|

| R#11
| VDP(12) | sprite attribute table (HIGH)
|

| R#12
| VDP(13) | character colour at text blinks
|

| R#13
| VDP(14) | blinking period
|

| R#14
| VDP(15) | VRAM access address (HIGH)
|

| R#15
| VDP(16) | indirect specification of S#n
|

| R#16
| VDP(17) | indirect specification of P#n
|

| R#17
| VDP(18) | indirect specification of R#n
|

| R#18
| VDP(19) | screen location adjustment (ADJUST)
|

| R#19
| VDP(20) | scanning line number when the interrupt occurs
|

| R#20
| VDP(21) | colour burst signal 1
|

| R#21
| VDP(22) | colour burst signal 2
|

| R#22
| VDP(23) | colour burst signal 3
|

| R#23
| VDP(24) | screen hard scroll
|

|
| Corres-
|
|

| R#n
| ponding
| Function
|

|
| VDP(n)
|
|

|----------+-----------+--
|

| R#32
| VDP(33)
| SX: X-coordinate to be transferred (LOW)
|

| R#33
| VDP(34)
| SX: X-coordinate to be transferred (HIGH)
|

| R#34
| VDP(35)
| SY: Y-coordinate to be transferred (LOW)
|

| R#35
| VDP(36) | SY: Y-coordinate to be transferred (HIGH)
|

| R#36
| VDP(37) | DX: X-coordinate to be transferred to (LOW)
|

| R#37
| VDP(38) | DX: X-coordinate to be transferred to (HIGH)
|

| R#38
| VDP(39) | DY: Y-coordinate to be transferred to (LOW)
|

| R#39
| VDP(40) | DY: Y-coordinate to be transferred to (HIGH)
|

| R#40
| VDP(41) | NX: num. of dots to be transferred in X direction (LOW)
|

| R#41
| VDP(42) | NX: num. of dots to be transferred in X direction (HIGH)
|

| R#42
| VDP(43) | NY: num. of dots to be transferred in Y direction (LOW)
|

| R#43
| VDP(44) | NY: num. of dots to be transferred in Y direction (HIGH)
|

| R#44
| VDP(45) | CLR: for transferring data to CPU
|

| R#45
| VDP(46) | ARG: bank switching between VRAM and expanded VRAM|

| R#46
| VDP(47)
| CMR: send VDP command
|

Status register (S#0 to S#9)

This is a read-only 8-bit register group which reads data from the V9938. Registers are expressed using the notation S#n. The functions of the registers are listed below.

Status register list

|
| Corres-
|
|

| S#n
| ponding
| Function
|

|
| VDP(n)
|
|

|----------+-----------+--
|

| S#0
| VDP(8)
| interrupt information
|

| S#1
| VDP(-1)
| interrupt information
|

| S#2
| VDP(-2)
| DP command control information/etc.
|

| S#3
| VDP(-3)
| coordinate detected (LOW)
|

| S#4
| VDP(-4)
| coordinate detected (HIGH)
|

| S#5
| VDP(-5)
| coordinate detected (LOW)
|

| S#6
| VDP(-6)
| coordinate detected (HIGH)
|

| S#7
| VDP(-7)
| data obtained by VDP command
|

| S#8
| VDP(-8)
| X-coordinate obtained by search command (LOW)
|

| S#9
| VDP(-9)
| X-coordinate obtained by search command (HIGH)
|

Colour palette register group (P#0 to P#15)

These registers are used to set the colour palette. Registers are expressed using the notation P#n where 'n' is the palette number which represents one of 512 colours. Each palette register has 9 bits allowing three bits to be used for each RGB colour (red, green, and blue).

 TC "Text Modes" Text Modes

	 TC "Text1"\l 2 Video Mode – TEXT1

Characteristics
Pattern Size

6 dots (w) x 8 dots (h)

Patterns

256 types

Screen pattern count
40 (w) x 24 (h) patterns

Pattern colors

Two colors out of 512 colors (per screen)

VRAM area per screen
4K

Controls
Pattern font
VRAM pattern generator table

Screen pattern location
VRAM pattern name table

Pattern color code 1
High-order four bits of R#7

Pattern color code 0
Low-order four bits of R#7

Background color code
Low-order four bits of R#7

The area in which character fonts are stored is called the pattern generator table. This table is located in VRAM, and, although the font is defined by using 8 bytes for each character from the top of the table, the 2 low order bits of each byte representing the right two columns are not displayed on the screen. Thus, the size of one character is 6 x 8 pixels. Each character font set contains 256 different characters numbered from 0 to 255.

	 TC "Text2A"\l 2 Video Mode – TEXT2A

Characteristics
Pattern Size

6 dots (w) x 8 dots (h)

Patterns

256 types

Screen pattern count
80 (w) x 24 (h) patterns

Pattern blinking

Possible for each character

Pattern colors

Two colors out of 512 colors (per screen)

Four if using blinking

VRAM area per screen
8K

Controls
Pattern font
VRAM pattern generator table

Screen pattern location
VRAM pattern name table

Blink attributes
VRAM color table

Pattern color code 1
High-order four bits of R#7

Pattern color code 0
Low-order four bits of R#7

Background color code
Low-order four bits of R#7

Pattern color code 1
High-order four bits of R#12

 (Used for blinking)

Pattern color code 0
Low-order four bits of R#12

 (Used for blinking)

The area in which character fonts are stored is called the pattern generator table. This table is located in VRAM, and, although the font is defined by using 8 bytes for each character from the top of the table, the 2 low order bits of each byte representing the right two columns are not displayed on the screen. Thus, the size of one character is 6 x 8 pixels. Each character font set contains 256 different characters numbered from 0 to 255.

	 TC "Text2B"\l 2 Video Mode – TEXT2B

Characteristics
Pattern Size

6 dots (w) x 8 dots (h)

Patterns

256 types

Screen pattern count
80 (w) x 26.5 (h) patterns

Pattern blinking

Possible for each character

Pattern colors

Two colors out of 512 colors (per screen)

Four if using blinking

VRAM area per screen
8K

Controls
Pattern font
VRAM pattern generator table

Screen pattern location
VRAM pattern name table

Blink attributes
VRAM color table

Pattern color code 1
High-order four bits of R#7

Pattern color code 0
Low-order four bits of R#7

Background color code
Low-order four bits of R#7

Pattern color code 1
High-order four bits of R#12

 (Used for blinking)

Pattern color code 0
Low-order four bits of R#12

 (Used for blinking)

The area in which character fonts are stored is called the pattern generator table. This table is located in VRAM, and, although the font is defined by using 8 bytes for each character from the top of the table, the 2 low order bits of each byte representing the right two columns are not displayed on the screen. Thus, the size of one character is 6 x 8 pixels. Each character font set contains 256 different characters numbered from 0 to 255.

 TC "MultiColor" MultiColor Mode

	 TC "MultiColor"\l 2 Video Mode – MULTICOLOR

Characteristics
Screen composition

64 (w) x 48 (h) color blocks

Color blocks

16 colors out of 512 colors

Sprite mode

Sprite Mode 1

VRAM area per screen
4K bytes

Controls
Color block color code
VRAM pattern generator table

Color block location
VRAM pattern name table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table

VRAM sprite pattern table

The pattern generator table is an area that stores the colors of the color blocks. Each pattern is made up of four color blocks. These patterns are approximately 8 x 8 when the dots available for the screen display area is 256 x 192 dots. In MULTICOLOR mode, two bytes are used for each pattern, and each pattern includes four color blocks.

 TC "Graphic Modes" Graphic Modes

	 TC "Graphic1"\l 2 Video Mode – GRAPHIC1

Characteristics
Pattern Size

8 dots (w) x 8 dots (h)

Patterns

256 types

Screen pattern count
32 (w) x 24 (h) patterns

Pattern colors

16 colors out of 512 colors (per screen)

Sprite mode

Sprite Mode 1

VRAM area per screen
4K

Controls
Pattern font
VRAM pattern generator table

Screen pattern location
VRAM pattern name table

Pattern color codes 1 & 0
Can be specified as a group for each

8-pattern set, in the VRAM color table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern generator table is an area that stores the pattern fonts. Each pattern has a number from 0 to 255. The font for each pattern is constructed from 8 bytes. The pattern name table is composed of one byte for each screen pattern. Each byte specifies a unique pattern.

	 TC "Graphic2"\l 2 Video Mode – GRAPHIC2

Characteristics
Pattern Size

8 dots (w) x 8 dots (h)

Patterns

768 types

Screen pattern count
32 (w) x 24 (h) patterns

Pattern colors

16 colors out of 512 colors (per screen)

Sprite mode

Sprite Mode 1

VRAM area per screen
16K

Controls
Pattern font
VRAM pattern generator table

Screen pattern location
VRAM pattern name table

Pattern color codes 1 & 0
Can be specified as a group for each

raster, in the VRAM color table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern generator table is an area that stores the pattern fonts. Each pattern group has a number from 0 to 255; and since each group may have three members, 768 patterns may be specified. The font for each pattern is constructed from 8 bytes.

	 TC "Graphic3"\l 2 Video Mode – GRAPHIC3

Characteristics
Pattern Size

8 dots (w) x 8 dots (h)

Patterns

768 types

Screen pattern count
32 (w) x 24 (h) patterns

Pattern colors

16 colors out of 512 colors (per screen)

Sprite mode

Sprite Mode 2

VRAM area per screen
16K

Controls
Pattern font
VRAM pattern generator table

Screen pattern location
VRAM pattern name table

Pattern color codes 1 & 0
Can be specified as a group for each

raster, in the VRAM color table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern generator table is an area that stores the pattern fonts. Each pattern group has a number from 0 to 255; and since each group may have three members, 768 patterns may be specified. The font for each pattern is constructed from 8 bytes.

	 TC "Graphic4"\l 2 Video Mode – GRAPHIC4

Characteristics
Bit-mapped Graphics Mode

Screen Size

256 (w) x 212 (h) dots

256 (w) x 192 (h) dots

Screen colors

16 colors out of 512 colors (per screen)

Sprite mode

Sprite Mode 2

VRAM area per screen
32K

Controls
Graphics
VRAM pattern name table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern name table is composed of one byte for every two dots on the screen. A color can be assigned for each dot from a selection of 16 colors out of 512 colors.

	 TC "Graphic5"\l 2 Video Mode – GRAPHIC5

Characteristics
Bit-mapped Graphics Mode

Screen Size

512 (w) x 212 (h) dots

512 (w) x 192 (h) dots

Screen colors

4 colors out of 512 colors (per screen)

Sprite mode

Sprite Mode 2

VRAM area per screen
32K

Controls
Graphics
VRAM pattern name table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern name table is composed of one byte for every four dots on the screen. A color can be assigned for each dot from a selection of 4 colors out of 512 colors. A hardware tiling function processes the sprite and background colors. For these colors, you can specify four bits; however, of these four bits, the higher-order two bits specify the color code of the even dots, and the lower-order two bits specify the color code of the odd dots of the x-coordinate (0 to 511). The size of one dot of a sprite is approximately twice that of a graphic dot; however, when this tiling function is used, one dot of a sprite may be displayed in two colors. The even and odd dots of the background color may also be specified in the same manner.

	 TC "Graphic6"\l 2 Video Mode – GRAPHIC6

Characteristics
Bit-mapped Graphics Mode

Screen Size

512 (w) x 212 (h) dots

512 (w) x 192 (h) dots

Screen colors

16 colors out of 512 colors (per screen)

Sprite mode

Sprite Mode 2

VRAM area per screen
128K (Two screens)

Controls
Graphics
VRAM pattern name table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern name table is composed of one byte for every two dots on the screen. A color can be assigned for each dot from a selection of 16 colors out of 512 colors. .

	 TC "Graphic7"\l 2 Video Mode – GRAPHIC7

Characteristics
Bit-mapped Graphics Mode

Screen Size

256 (w) x 212 (h) dots

256 (w) x 192 (h) dots

Screen colors

256 colors (per screen)

Sprite mode

Sprite Mode 2

VRAM area per screen
128K (Two screens)

Controls
Graphics
VRAM pattern name table

Background color code
Low-order four bits of R#7

Sprites
VRAM sprite attribute table, VRAM sprite

Pattern table

The pattern name table is composed of one byte for every dot on the screen. A color can be assigned for each dot from a selection of 256 colors. .

	 TC "Video Page Conceps" VIDEO PAGE CONCEPTS

The parameters used for the V9938 are all x-y coordinates. In other words, the internal command processor of the V9938 accesses the entire VRAM area as x-y coordinates of the display mode.

When a screen is to be displayed, 212 lines of the same page are displayed. Use the Set Display Page Video Opcode >04 to select the page. The display modes and their relationships to the coordinates are shown in the table below.

 GRAPHIC4 GRAPHIC5

	(0,0)
	
	(255,0)
	
	(0,0)
	
	(511,0)

	
	Page 0
	
	
	
	Page 0
	

	(0,255)
	
	(255,255)
	
	(0,255)
	
	(511,255)

	(0,256)
	
	(255,256)
	
	(0,256)
	
	(511,256)

	
	Page 1
	
	
	
	Page 1
	

	(0,511)
	
	(255,511)
	
	(0,511)
	
	(511,511)

	(0,512)
	
	(255,512)
	
	(0,512)
	
	(511,512)

	
	Page 2
	
	
	
	Page 2
	

	(0,767)
	
	(255,767)
	
	(0,767)
	
	(511,767)

	(0,768)
	
	(255,768)
	
	(0,768)
	
	(511,768)

	
	Page 3
	
	
	
	Page 3
	

	(0,1023)
	
	(255,1023)
	
	(0,1023)
	
	(511,1023)

 GRAPHIC7 GRAPHIC6

	(0,0)
	
	(255,0)
	
	(0,0)
	
	(511,0)

	
	Page 0
	
	
	
	Page 0
	

	(0,255)
	
	(255,255)
	
	(0,255)
	
	(511,255)

	(0,256)
	
	(255,256)
	
	(0,256)
	
	(511,256)

	
	Page 1
	
	
	
	Page 1
	

	(0,511)
	
	(255,511)
	
	(0,511)
	
	(511,511)

 TC "Video Sprites" Video Sprites

	VIDEO SPRITE MODES

 TC "Sprite Mode 1"\l 2 Sprite Mode 1
In SPRITE MODE 1, there are 32 sprites, numbered >00 to >1F. The sprites assigned the lower numbers have a higher priority. On a single CRT horizontal line, up to 4 sprites with the highest priority are displayed, and the overlapping portions of sprites with lower priorities are not displayed.

When two sprites collide (their pattern color 1 portions have overlapped), this condition can be detected.

Characteristics
Sprite size

8 x 8 dots (normal)

16 x 16 dots (magnified)

Number of sprites
32 sprites

 TC "Sprite Mode 2"\l 2 Sprite Mode 2
In SPRITE MODE 2, there are 32 sprites, numbered >00 to >1F. The sprites assigned the lower numbers have a higher priority. On a single CRT horizontal line, up to 8 sprites with the highest priority are displayed, and the overlapping portions of sprites with lower priorities are not displayed.

When two sprites collide (their pattern color 1 portions have overlapped), this condition can be detected.

The colors of the sprite may be specified for each horizontal line.

Characteristics
Sprite size

8 x 8 dots (normal)

16 x 16 dots (magnified)

Number of sprites
32 sprites

	 TC "Video Color Table" VIDEO COLOR TABLE

Color Name Code Pallette Register Settings

 Red
Green
Blue

Transparent
>00
0
0
0

Black
>01
0
0
0

Medium Green
>02
1
6
1

Light Green
>03
3
7
3

Dark Blue
>04
1
1
7

Light Blue
>05
2
3
7

Dark Red
>06
5
1
1

Cyan
>07
2
6
7

Medium Red
>08
7
1
1

Light Red
>09
7
3
3

Dark Yellow
>0A
6
6
1

Light Yellow
>0B
6
6
4

Dark Green
>0C
1
4
1

Magenta
>0D
6
2
5

Gray
>0E
5
5
5

White
>0F
7
7
7

__
 TC "Calling Video Functions" CALLING VIDEO FUNCTIONS
__
The MDOS Video Library must be called from within a machine code program running as a task under MDOS. You pass arguments to the Video Library via the calling registers.

The MDOS Video Library is invoked from a machine code program when software trap number zero (XOP 0) is called with a library number of 6. The calling program's R0 must contain the 16-bit subprogram at the time of the XOP. The following code fragment will set the video mode to 80 x 24 column text mode and write “This is a sample text string <CR/LF>” to the screen before exiting back to the prompt.

LI
R0,>0000
Set Video Mode

LI
R1,>0001
Text 2 mode

XOP
@SIX,0
Access subprogram

LI
R0,>0027
Write Text Routine

LI
R1,STR1
String to write

CLR
R2
Null terminated string

XOP
@SIX,0
Access subprogram

BLWP
@0
Exit

SIX
DATA
>0006

STR1
TEXT
“This is a sample text string”

BYTE
>0D,>0A,0
CR/LF/Null terminated

EVEN
In the preceding example, three hidden assumptions were made. First it is assumed that STR1 is located on a page which is currently mapped into a memory page which has the same 16-bit address page number as its Virtual address page number (read the section on Memory Management.) The second assumption is that SIX is actually at the virtual address SIX, not in some overlay segment with a different virtual address.

Video Mode Library

	 TC "Set Video Mode"\l 2 Set Video Mode

Function
Sets video mode and returns the current border color. For bitmap modes, the background color will be the border color in effect at time of call. This subprogram enables you to select the graphics or text mode that offers you the combination of text and/or graphics capabilities that best suits the particular needs of your program.

When you call the subprogram, the following occurs:

· Clears the entire screen

· Restores the default character definitions of all characters

· Restores the default foreground color and background color of all characters.

· Restores the default screen color.

· Deletes all sprites.

· Resets all sprites.

· Resets the sprite magnification level to 1

· Restores the default current position (X=0, Y=0)

Parameters
R0x = >0000

R1x =
Video Mode

Results
None
Parameter Description

Video Mode

	Mode
	Size
	Video Mode

#

	TEXT1
	40 x 24
	>0000

	TEXT2A
	80 x 24
	>0001

	MULTICOLOR
	64 x 48
	>0002

	GRAPHIC1
	32 x 24
	>0003

	GRAPHIC2
	32 x 24
	>0004

	GRAPHIC3
	256 x 212
	>0005

	GRAPHIC4
	512 x 212
	>0006

	GRAPHIC5
	512 x 212
	>0007

	GRAPHIC6
	512 x 212
	>0008

	GRAPHIC7
	256 x 212
	>0009

	TEXT2B
	80 x 26.5
	>000A

	 TC "Get Video Mode"\l 2 Get Video Mode

Function
Returns the video mode presently and parameters of the video mode.

Parameters
R0x = >0001

Results
R0x = Returned video mode

R1x = Number of columns

R2x = Number of rows

R3x = Number of Graphic columns (pixels)

R4x = Number of Graphical rows (pixels)

R5x = Current page offset (in pixel rows, use for chip commands)

R6x = Color of screen border

R7h = Foreground color of text

R7l = Background color of text

Parameter Description

	 TC "Set Cursor Position"\l 2 Set Cursor Position

Function
Sets the current cursor position to the designated location on the display screen.

Parameters
R0x = >0002

R1x = Row Number

R2x = Column Number

Results
None

Parameter Description

	 TC "Get Cursor Position"\l 2 Get Cursor Position

Function
Gets the current position of the cursor on the display screen.

Parameters
R0x = >0003

Results
R0x = Returned row number

R1x = Returned column number

Parameter Description

	 TC "Set Display Page"\l 2 Set Display Page

Function
Set’s the current display page for the video mode presently being used.

Parameters
R0x = >0004

R1x = Page number

Results
None

Parameter Description

	 TC "Get Display Page"\l 2 Get Display Page

Function
Returns the current display page number.

Parameters
R0x = >0005

Results
R0x = Display page number

Parameter Description

	 TC "Scroll Window Up"\l 2 Scroll Window Up

Function
Scrolls the currently defined window up a defined number of lines.

Parameters
R0x = >0006

R1x = Number of lines to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Character value for blank lines

R7h = Foreground color for blank lines

R7l = Background color for blank lines

Results
None

Parameter Description

	 TC "Scroll Window Down"\l 2 Scroll Window Down

Function
Scrolls the currently defined window down a defined number of lines.

Parameters
R0x = >0007

R1x = Number of lines to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Character value for blank lines

R7h = Foreground color for blank lines

R7l = Background color for blank lines

Results
None

Parameter Description

	 TC "Scroll Window Left"\l 2 Scroll Window Left

Function
Scrolls the currently defined window left a defined number of lines.

Parameters
R0x = >0008

R1x = Number of lines to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Character value for blank lines

R7h = Foreground color for blank lines

R7l = Background color for blank lines

Results
None

Parameter Description

	 TC "Scroll Window Right"\l 2 Scroll Window Right

Function
Scrolls the currently defined window right a defined number of lines.

Parameters
R0x = >0009

R1x = Number of lines to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Character value for blank lines

R7h = Foreground color for blank lines

R7l = Background color for blank lines

Results
None

Parameter Description

	 TC "Call Screen"\l 2 Call Screen

Function
Set’s the background and foreground color of the currently displayed screen. The screen color is the color of the border and the color displayed when transparent is specified as the foreground or background color of a character or pixel.

Parameters
R0x = >000A

R1h = Foreground color (if R3 = 0)

R1l = Background color

R2x = Character Set # (if mode 3)

R3x = Flag (0 is change foreground, !0 is leave it alone)

Results
None

Parameter Description

Background color
A numeric expression whose value specifies a screen color from among the 16 available colors.

Foreground color
A numeric expression whose value specifies a screen color from among the 16 available colors.

	 TC "Get Character Color"\l 2 Get Character Color

Function
Returns the character and the foreground and background color from a defined position on the screen.

Parameters
R0x = >000B

R1x = Row

R2x = Column

Results
R0x = ASCII character read from screen

R1h = Foreground color for character

R1l = Background color for character
Parameter Description

	 TC "Set Border Color"\l 2 Set Border Color

Function
Set’s the border color for the screen

Parameters
R0x = >000C

R1x = Color to render border

Results
None

Parameter Description

	 TC "Set Color Palette"\l 2 Set Color Palette

Function
Set’s the color Palette

Parameters
R0x = >000D

R1x = Palette register number

R2x = Color to put into palette register

R2: = xxxx | xGGG | xBBB | xRRR as a 16 bit word

Results
None

Parameter Description

	 TC "Set Pixel Color"\l 2 Set Pixel Color

Function
Set Pixel Color of a point on a graphic mode screen with a logical operation done on the data of the dot tht is already dislayed.

Parameters
R0x = >000E

R1x = X coordinate of pixel

R2x = Y coordinate of pixel

R3h = Foreground color to render pixel

R3l = Background color to render pixel in graphics mode 2 and 3.

R4h = Logic operation to be performed

Results
None

Parameter Description

Logic Operation

 Summary of Logical Operations

	Name
	Operation
	A3
	A2
	A1
	A0

	IMP
	DC = SC
	0
	0
	0
	0

	AND
	DC = SC*DC
	0
	0
	0
	1

	OR
	DC = SC+DC
	0
	0
	1
	0

	EOR
	DC = !SC*DC +SC*!DC
	0
	0
	1
	1

	NOT
	DC = !SC
	0
	1
	0
	0

	0
	1
	0
	1

	0
	1
	1
	0

	0
	1
	1
	1

	TIMP
	If SC=0 then DC=DC else DC=SC
	1
	0
	0
	0

	TAND
	If SC=0 then DC=DC else DC=SC*DC
	1
	0
	0
	1

	TOR
	If SC=0 then DC=DC else DC=SC+DC
	1
	0
	1
	0

	TEOR
	If SC=0 then DC=DC else DC=!SC*DC +SC*!DC
	1
	0
	1
	1

	TNOT
	If SC=0 then DC=DC else DC=!SC
	1
	1
	0
	0

	1
	1
	0
	1

	1
	1
	1
	0

	1
	1
	1
	1

* SC = Source Color code

* DC = Destination Color code

* EOR = Exclusive OR

	 TC "Get Pixel Color"\l 2 Get Pixel Color

Function
Returns the pixel color for the defined location.

Parameters
R0x = >000F

R1x = X coordinate of pixel

R2x = Y coordinate of pixel

Results
R0h = Returned foreground color of pixel

R0l = Returned background color of pixel in graphics mode 2 & 3

Parameter Description

	 TC "Set Vector Color"\l 2 Set Vector Color

Function
The LINE command or Set Vector command draws a straight line between two points with a logical operation. The line drawn is the hypotenuse that results after the long and short sides of a triangle are defined. The two sides are defined as distances from a single point.

Parameters
R0x = >10

R1x = X coordinate of first pixel

R2x = Y coordinate of first pixel

R3x = X coordinate of second pixel

R4x = Y coordinate of second pixel

R5h = Foreground color to render vector

R5l = Background color to render vector in graphic modes 2 & 3

R6l = Logic operation to be performed

Results
None

Parameter Description

Logic Operation

 Summary of Logical Operations

	Name
	Operation
	A3
	A2
	A1
	A0

	IMP
	DC = SC
	0
	0
	0
	0

	AND
	DC = SC*DC
	0
	0
	0
	1

	OR
	DC = SC+DC
	0
	0
	1
	0

	EOR
	DC = !SC*DC +SC*!DC
	0
	0
	1
	1

	NOT
	DC = !SC
	0
	1
	0
	0

	0
	1
	0
	1

	0
	1
	1
	0

	0
	1
	1
	1

	TIMP
	If SC=0 then DC=DC else DC=SC
	1
	0
	0
	0

	TAND
	If SC=0 then DC=DC else DC=SC*DC
	1
	0
	0
	1

	TOR
	If SC=0 then DC=DC else DC=SC+DC
	1
	0
	1
	0

	TEOR
	If SC=0 then DC=DC else DC=!SC*DC +SC*!DC
	1
	0
	1
	1

	TNOT
	If SC=0 then DC=DC else DC=!SC
	1
	1
	0
	0

	1
	1
	0
	1

	1
	1
	1
	0

	1
	1
	1
	1

* SC = Source Color code

* DC = Destination Color code

* EOR = Exclusive OR

	 TC "Color Search"\l 2 Color Search

Function
The SEARCH command searches for a border color in the Video RAM to the right or left of a basic point.

Parameters
R0x = >0011

R1x = X coordinate of source point

R2x = Y coordinate of source point

R3l = Color for search

R3h = Direction for search (>00 = LEFT, >FF = RIGHT)

Results
EQ status

R0x = X coordinate of location where color was found

R1x = Y coordinate of location where color was found

Parameter Description

EQ Status
The equal status bit will be set if the function was valid and found the color, allowing you to perform a “JEQ Function$ok” right after the software trap.

	 TC "High Speed Block Move"\l 2 High-Speed Block Move

Function
Move a portion of the screen contents from one destination to a second destination with VRAM. Since the data to be transferred is done in units of one byte, there is a limitation, according to the display mode, on the value of X.

Parameters
R0x = >0012

R1x = Row number of upper left corner of source

R2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination

R4x = Column number of upper left corner of destination

R5x = Number of rows

R6x = Number of columns

R7l = Pixel color for blank pixels

Results
None

Parameter Description

Note: In Graphics Mode 4 & Graphics Mode 6, the lower one bit, and in Graphics 5 mode, the lower two bits, are lost.

	 TC "High Speed Block Copy"\l 2 High-Speed Block Copy

Function
Copies a portion of the screen contents from one destination to a second destination with VRAM. Since the data to be transferred is done in units of one byte, there is a limitation, according to the display mode, on the value of X.

Parameters
R0x = >0013

R1x = Row number of upper left corner of source

R2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination

R4x = Column number of upper left corner of destination

R5x = Number of rows

R6x = Number of columns

Results
None

Parameter Description

Note: In Graphics Mode 4 & Graphics Mode 6, the lower one bit, and in Graphics 5 mode, the lower two bits, are lost.

	 TC ""Logical Block Move\l 2 Logical Block Move

Function
Move a block of video from a source point to a destination point. Since the data to be transferred is done in units of dots, logical operations may be done on the destination data.

Parameters
R0x = >0014

R1x = Row number of upper left corner of source

R2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination

R4x = Column number of upper left corner of destination

R5x = Number of rows

R6x = Number of columns

R7l = Pixel color for blank pixels

R7h = Logic operation to be performed on destination

Results
None

Parameter Description

Logic Operation

 Summary of Logical Operations

	Name
	Operation
	A3
	A2
	A1
	A0

	IMP
	DC = SC
	0
	0
	0
	0

	AND
	DC = SC*DC
	0
	0
	0
	1

	OR
	DC = SC+DC
	0
	0
	1
	0

	EOR
	DC = !SC*DC +SC*!DC
	0
	0
	1
	1

	NOT
	DC = !SC
	0
	1
	0
	0

	0
	1
	0
	1

	0
	1
	1
	0

	0
	1
	1
	1

	TIMP
	If SC=0 then DC=DC else DC=SC
	1
	0
	0
	0

	TAND
	If SC=0 then DC=DC else DC=SC*DC
	1
	0
	0
	1

	TOR
	If SC=0 then DC=DC else DC=SC+DC
	1
	0
	1
	0

	TEOR
	If SC=0 then DC=DC else DC=!SC*DC +SC*!DC
	1
	0
	1
	1

	TNOT
	If SC=0 then DC=DC else DC=!SC
	1
	1
	0
	0

	1
	1
	0
	1

	1
	1
	1
	0

	1
	1
	1
	1

* SC = Source Color code

* DC = Destination Color code

* EOR = Exclusive OR

	 TC "Logical Block Copy"\l 2 Logical Block Copy

Function
Copy a block of video from a source point to a destination point. Since the data to be transferred is done in units of dots, logical operations may be done on the destination data.

Parameters
R0x = >0015

R1x = Row number of upper left corner of source

R2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination

R4x = Column number of upper left corner of destination

R5x = Number of rows

R6x = Number of columns

R7h = Logic operation to be performed on destination

Results
None

Parameter Description

Logic Operation

 Summary of Logical Operations

	Name
	Operation
	A3
	A2
	A1
	A0

	IMP
	DC = SC
	0
	0
	0
	0

	AND
	DC = SC*DC
	0
	0
	0
	1

	OR
	DC = SC+DC
	0
	0
	1
	0

	EOR
	DC = !SC*DC +SC*!DC
	0
	0
	1
	1

	NOT
	DC = !SC
	0
	1
	0
	0

	0
	1
	0
	1

	0
	1
	1
	0

	0
	1
	1
	1

	TIMP
	If SC=0 then DC=DC else DC=SC
	1
	0
	0
	0

	TAND
	If SC=0 then DC=DC else DC=SC*DC
	1
	0
	0
	1

	TOR
	If SC=0 then DC=DC else DC=SC+DC
	1
	0
	1
	0

	TEOR
	If SC=0 then DC=DC else DC=!SC*DC +SC*!DC
	1
	0
	1
	1

	TNOT
	If SC=0 then DC=DC else DC=!SC
	1
	1
	0
	0

	1
	1
	0
	1

	1
	1
	1
	0

	1
	1
	1
	1

* SC = Source Color code

* DC = Destination Color code

* EOR = Exclusive OR

	 TC "Block Scroll Up"\l 2 Block Scroll Up

Function
Scroll a block of video on the screen up.

Parameters
R0x = >0016

R1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Pixel color for blank lines

Results
None

Parameter Description

	 TC "Block Scroll Down"\l 2 Block Scroll Down

Function
Scroll a block of video on the screen down.

Parameters
R0x = >0017

R1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Pixel color for blank lines

Results
None

Parameter Description

	 TC "Block Scroll Left"\l 2 Block Scroll Left

Function
Scroll a block of video on the screen left.

Parameters
R0x = >0018

R1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Pixel color for blank lines

Results
None

Parameter Description

	 TC "Block Scroll Right"\l 2 Block Scroll Right

Function
Scroll a block of video on the screen right.

Parameters
R0x = >0019

R1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner

R4x = Row number of lower right corner

R5x = Column number of lower right corner

R6x = Pixel color for blank lines

Results
None

Parameter Description

	 TC "Sprite Define"\l 2 Sprite Define

Function
Sprites are graphics that can be assigned any valid color and placed anywhere on the screen. Sprites treat the screen as a grid 256 pixels high and 256 pixels wide. However, only the first 192 pixels are visible on the screen.

You can create up to 32 sprites in all GRAPHICS modes except TEXT modes, which do not allow sprites.

Sprites can be set in motion in any direction at a variety of speeds. A sprite continues its motion until it is specifically changed by the program. Because sprites move from pixel to pixel, their motion can be smoother than that of characters, which can be moved only one character position (6 or 8 pixels) at a time.

Sprites “pass over” characters on the screen. When two or more sprites are coincident (occupying the same screen pixel position), the sprite with the lowest sprite-number covers the other sprite(s).

Parameters
R0x = >001A

R1x = Pointer to sprite data

R2x = Number of sprites to define

Results
None

Parameter Description

Sprite Data Mode 1
1st word in list is Sprite # (Base 0)

2nd word in list is Character Code 0-255

3rd word in list is Position

4th word in list is X-Velocity

5th word in list is Y-Velocity

6th word in list is Color

Sprite Data Mode 2
1st word in list is Sprite # (Base 0)

2nd word in list is Character Code 0-255

3rd word in list is Position

4th word in list is X-Velocity

5th word in list is Y-Velocity

Next 16 words in list are colors

Character code
A numeric expression with a value from 0 to 255, specifying the character that defines the sprite pattern. If you magnify the change the sprite’s size, sprite definition includes the character specified by the character code and three additional characters.

	 TC "Delete Sprite"\l 2 Delete Sprite

Function
The DELSPRITE subprogram enables you to delete one or more sprites.

Parameters
R0x = >001B

R1x = Pointer to list of sprite #’s

R2x = Number of sprites to delete (>FFFF for all)

Results
None

Parameter Description

	 TC "Locate Sprite"\l 2 Locate Sprite

Function
The LOCATE subprogram enables you to change the location of one or more sprites. This subprogram can cause a sprite that has been deleted to reappear.

Parameters
R0x = >001C

R1x = Pointer to location data

R2x = Number of sprites to locate

Results
None

Parameter Description

	 TC "Sprite Motion"\l 2 Sprite Motion

Function
Place a sprite in motion. The MOTION subprogram is used to specify the row-velocity and column​-velocity of a sprite. If both the row- and column-velocities are zero, the sprite is stationary. A positive row-velocity moves the sprite down and a negative value moves it up. A positive column-velocity moves the sprite to the right and a negative value moves it to the left. If both row-velocity and column-​velocity are nonzero, the sprite moves smoothly at an angle in a direction determined by the actual values.

When a moving sprite reaches an edge of the screen, it disappears. The sprite reappears in the corresponding position at the opposite edge of the screen.

Parameters
R0x = >001D

R1x = Pointer to motion data

R2x = Number of sprites to put in motion

Results
None

Parameter Description

	 TC "Sprite Color"\l 2 Sprite Color

Function
Define sprite color

Parameters
R0x = >001E

R1x = Pointer to color data

R2x = Number of sprites to color

Results
None

Parameter Description

	 TC "Define Sprite Pattern"\l 2 Define Sprite Pattern

Function
Define sprite pattern. The SPRITE subprogram creates sprites. Sprites are graphics which have a color and a location anywhere on the screen. They can be set in motion in any direction at a variety of speeds, and continue their motion until it is changed by the program or the program stops. They move more smoothly than the usual character which jumps from one screen position to another.
Parameters
R0x = >001F

R1x = Pointer to pattern # data.

R2x = Number of sprites to pattern

Results
None

Parameter Description

Sprite-number
It is a numeric expression from 1 to 28. If the value is that of a sprite that is already defined, the old sprite is deleted and replaced by the new sprite. If the old sprite has a row- or column-velocity, and no new one is specified, the new sprite retains the old velocities.

Sprites pass over fixed characters on the screen. When two or more sprites are coincident, the sprite with the lowest sprite number covers the other sprites. While five or more sprites are on the same screen row, the one(s) with the highest sprite number(s) disappear.

	 TC "Sprite Magnify"\l 2 Sprite Magnify

Function
Magnify a sprite’s size on the screen

Parameters
R0x = >0020

R1x = Magnification factor (1-4, just like extended basic)

Results
None

Parameter Description

Magnification Factor 1
A magnification-factor of 1 causes all sprites to be single size and unmagnified. This means that each sprite is defined only by the character specified when the sprite was created and takes up just one character position on the screen.

Magnification Factor 2
A magnification-factor of 2 causes all sprites to be single size and magnified. This means that each sprite is defined only by the character specified when it was created, but takes up four character positions on the screen. Each dot position in the character specified expands to occupy four dot positions on the screen. The expansion from a magnification-factor of 1 is down and to the right.

Magnification Factor 3
A magnification-factor of 3 causes all sprites to be double size and unmagnified. This means that each sprite is defined by four character positions that include the character specified. The first character is the one specified when the sprite was created if its number is evenly divisible by four. or the next smallest number that is evenly divisible by four. That character is the upper left quarter of the sprite. The next character is the lower left quarter of the sprite. The next character is the upper right quarter of the sprite. The final character is the lower right quarter of the sprite. The character specified when the sprite was created is one of the four that makes up the sprite. The sprite occupies four character positions on the screen.

Magnification Factor 4
A magnification-factor of 4 causes all sprites to be double size and magnified. This means that each sprite is defined by four character positions that include the character specified. The first character is the one specified when the sprite was created if its number is evenly divisible by four, or the next smallest number that is evenly divisible by four. That character is the upper left quarter of the sprite. The next character is the lower left quarter of the sprite. The next character is the upper right quarter of the sprite. The final character is the lower right quarter of the sprite. The character specified when the sprite was created is one of the four that makes up the sprite. The sprite occupies sixteen character positions on the screen. The expansion from a magnification-factor of 3 is down and to the right.
	 TC "Sprite Pattern / Distance"\l 2 Sprite Position and Sprite Distance

Function
Returns the square of the distance between two sprites. The POSITION subprogram returns the position of the specified sprite(s) in the given dot-row(s) and dot-column(s) as numbers from 1 to 256. If the square of the distance is greater than 32,767, the number returned is 32,767.

The distance between two sprites is considered to be the distance between the upper-left corners of the sprite. The number returned is the square of the distance.

The distance between a sprite and a screen pixel is considered to be the distance between the upper-left corner of the sprite and the specified pixel. The number returned is the square of the distance.

Parameters
R0x = >0021

R1x = Number of sprite to get position data

R2x = Type of Distance, 0 for none, 1 for Sprite, 2 for location

R3x = Number of second sprite (type 1), or Pixel row (type 2)

R4x = Pixel column (type 2)

Results
R0x = Returned row of sprite

R1x = Returned column of sprite

R2x = Distance (if second sprite number was given)

Parameter Description

	 TC "Sprite Coincidence"\l 2 Sprite Coincidence

Function
The COINCIDENCE subprogram enables you to ascertain if sprites are coincident (in conjunction) with each other or a specified screen pixel.

The exact conditions that constitute a coincidence vary depending on whether you are testing for the coincidence of two sprites, a sprite and a screen pixel, or all sprites.

If the sprites are moving very quickly, it may occasionally fail to detect a coincidence.

Two sprites are considered to be coincident if the upper-left corners of the sprites are within a specified number of pixels (coincidence checks) of each other. A coincidence exists if the distance between the pixels in the upper-left corners of the two sprites is less than or equal to the value of the coincidence checks.

A sprite is considered to be coincident with a screen pixel if the upper-left corner of the sprite is within a specified number of pixels (coincidence checks) of the screen pixel or if any pixel in the sprite occupies the screen pixel location.

Parameters
R0x = >0022

R1x = Type (0 = sprites, 1=locations, 2 = any two sprites)

R2x = Number of coincidence checks

R3x = Pointer to test field

R4x = Pointer to result field

Results
R0x = Number of coincidences detected

Parameter Description

	 TC "Sprite Pattern Define / Get"\l 2 Sprite Pattern Define or Get

Function
Define or Get Sprite pattern definitions

Parameters
R0x = >0023

R1x = CPU address of sprite pattern definitions

R2x = Number of sprite patterns to define or get

R3x = Starting pattern number

R4x = 0 if Define, >FFFF if Get

Results
None

Parameter Description

Sprites are created by turning some dots "on" and leaving others "off". The space character (ASCII code 32) is a character with all the dots turned "off". Turning all the dots "on" produces a solid block. The color of the on dots is the foreground color. The color of the off dots is the background color.

	BLOCKS
	Binary Code

0=Off: 1=On
	Hexadecimal

Code

	
	
	
	
	0000
	0

	
	
	
	
	0001
	1

	
	
	
	
	0010
	2

	
	
	
	
	0011
	3

	
	
	
	
	0100
	4

	
	
	
	
	0101
	5

	
	
	
	
	0110
	6

	
	
	
	
	0111
	7

	
	
	
	
	1000
	8

	
	
	
	
	1001
	9

	
	
	
	
	1010
	A

	
	
	
	
	1011
	B

	
	
	
	
	1100
	C

	
	
	
	
	1101
	D

	
	
	
	
	1110
	E

	
	
	
	
	1111
	F

	 TC "Character Pattern Define/Get"\l 2 Character Pattern Define or Get

Function
Define or get a character pattern definition. The CHAR subprogram allows you to define special graphics characters. You can redefine all 0 through 255 character definitions.
Parameters
R0x = >0024

R1x = CPU address of character pattern definitions

R2x = Number of patterns to define or get

R3x = Starting pattern number

R4x = 0 if Define, >FFFF if get

Results
None

Parameter Description

Characters are created by turning some dots "on" and leaving others "off". The space character (ASCII code 32) is a character with all the dots turned "off". Turning all the dots "on" produces a solid block. The color of the on dots is the foreground color. The color of the off dots is the background color.

	BLOCKS
	Binary Code

0=Off: 1=On
	Hexadecimal

Code

	
	
	
	
	0000
	0

	
	
	
	
	0001
	1

	
	
	
	
	0010
	2

	
	
	
	
	0011
	3

	
	
	
	
	0100
	4

	
	
	
	
	0101
	5

	
	
	
	
	0110
	6

	
	
	
	
	0111
	7

	
	
	
	
	1000
	8

	
	
	
	
	1001
	9

	
	
	
	
	1010
	A

	
	
	
	
	1011
	B

	
	
	
	
	1100
	C

	
	
	
	
	1101
	D

	
	
	
	
	1110
	E

	
	
	
	
	1111
	F

	 TC "Set Text Window"\l 2 Set Text Window

Function
Define a text window on the screen enabling you to define screen margins. The margins you specify define a screen window that affects the operation of several instructions.

The margins cannot “overlap”; that is, the position of the top margin must be higher on the screen than the bottom margin, and the position of the left margin must be farther left on the screen than the right margin.

The valid range for margin location varies according to the graphic mode you are in. In all modes, the margins can extend to the edges of the screen.

Parameters
R0x = >0025

R1x = Top row

R2x = Left column

R3x = Bottom row

R4x = Right column

Results
None

Parameter Description

	 TC "Get Text Window"\l 2 Get Text Window

Function
Get the text window screen definitions

Parameters
R0x = >0026

Results

R0x = Top row

R1x = Left column

R2x = Bottom row

R3x = Right column None

Parameter Description

	 TC "Write TTY"\l 2 Write TTY

Function
Write characters or strings to the screen.

Parameters
R0x = >0027

R1x = CPU address of string

R2x = Number of characters in string (0 = null terminated string)

Results
None

Parameter Description

Special Characters

>1B,>43,>2f,>2b
Control sequence to set color foreground (f) and background (b) colors.

>1B,>3D,>2r,>2c
Control sequence to set row (r) and column (c) position.

>0D

Carriage return

>01

Home cursor position

>08

Backspace

>09

Tab (8 characters)

>0A or >0B

Linefeed

>0C or >1A

Clear Screen

ASCII Codes
The following predefined characters may be printed or displayed on the screen.

	30
	(cursor)
	63
	? (question mark)

	31
	(edge character)
	64
	@ (at sign)

	32
	(space)
	65
	A

	33
	! (exclamation point)
	66
	B

	34
	" (quote)
	67
	C

	35
	# (number or pound sign)
	68
	D

	36
	$ (dollar)
	69
	E

	37
	% (percent)
	70
	F

	38
	& (ampersand)
	71
	G

	39
	‘ (apostrophe)
	72
	H

	40
	((open parenthesis)
	73
	I

	41
) (close parenthesis)
	74
	J

	42
	* (asterisk)
	75
	K

	43
	+ (plus)
	76
	L

	44
	, (comma)
	77
	M

	45
	- (minus)
	78
	N

	46
	. (period)
	79
	O

	47
	/ (slash)
	80
	P

	48
	0
	81
	Q

	49
	1
	82
	R

	50
	2
	83
	S

	51
	3
	84
	T

	52
	4
	85
	U

	53
	5
	86
	V

	54
	6
	87
	W

	55
	7
	88
	X

	56
	8
	89
	Y

	57
	9
	90
	Z

	58
	: (colon)
	91
	[(open bracket)

	59
	; (semicolon)
	92
	\ (reverse slash)

	60
	< (less than)
	93
] (close bracket)

	61
	= (equals)
	94
	^ (exponentiation)

	62
	> (greater than)
	95
	_ (underline)

	96
	` (accent grave)
	112
	p

	97
	a
	113
	q

	98
	b
	114
	r

	99
	c
	115
	s

	100
	d
	116
	t

	101
	e
	117
	u

	102
	f
	118
	v

	103
	g
	119
	w

	104
	h
	120
	x

	105
	i
	121
	y

	106
	j
	122
	z

	107
	k
	123
	{ (left brace)

	108
	l
	124
	| (vertical bar)

	109
	m
	125
	} (right brace)

	110
	n
	126
	~ (tilde)

	111
	o
	127
	DEL (appears as blank)

	 TC "Restore Character / Sprite Pattern"\l 2 Restore Character or Sprite Pattern

Function
Restore Character or Sprite Pattern to it’s original definition.

Parameters
R0x = >0028

R1x = Flag (0 Sprite, <>0 Character)

Results
None

Parameter Description

	 TC "Set Text Color"\l 2 Set Text Color

Function
The COLOR subprogram enables you to specify the colors of characters. In general, each character has two colors. The color of the pixels that make up the character itself is the foreground-color; the color of the pixels that occupy the rest of the character position on the screen is the background-color. If a color is transparent, the color actually displayed is the color specified by the SCREEN subprogram (>000A).

Parameters
R0x = >0029

R1h = Foreground color for text

R1l = Background color for text

Results
None

Parameter Description

	 TC "Write Character String"\l 2 Write Character String

Function
Write character string

Parameters
R0x = >002A

R1x = Address of string

R2x = Number of characters in string

R3x = 0 if change cursor position, >FFFF if leave cursor at beginning

Results
None

Parameter Description

	 TC "Print Screen"\l 2 Print Screen

Function
Print screen to defined printer.

Parameters
R0x = >002B

R1x = 0 for shades, 1 for outline

R2x = 0 for normal density (double), 1 for hi density (quad)

Results
None

Parameter Description

	 TC "Horizontal Character / Color (HCHAR)"\l 2 Horizontal Character Color

Function
Write characters to screen horizontally. The HCHAR subprogram displays a character anywhere on the display screen and optionally repeats it horizontally. The character with the ASCII value of character-code is placed in the position described by row and column and is repeated horizontally repetition times.
Parameters
R0x = >002C

R1x = Row

R2x = Column

R3x = ASCII character to write to screen

R4x = Number of times to write character and color

R5h = Foreground color for character

R5l = Background color for character

Results
None

Parameter Description

None

	 TC "Vertical Character / Color (VCHAR)"\l 2 Vertical Character Color

Function
Write characters to screen vertically. The VCHAR subprogram displays a character anywhere on the display screen and optionally repeats it vertically. The character with the ASCII value of character-code is placed in the position described by row and column and is repeated vertically repetition times.
Parameters
R0x = >002D

R1x = Row

R2x = Column

R3x = ASCII character to write to screen

R4x = Number of times to write character and color

R5h = Foreground color for character

R5l = Background color for character

Results
None

Parameter Description

None

	 TC "Horizontal Character (HCHAR)"\l 2 Horizontal Character

Function
Write characters to screen horizontally. The HCHAR subprogram displays a character anywhere on the display screen and optionally repeats it horizontally. The character with the ASCII value of character-code is placed in the position described by row and column and is repeated horizontally repetition times.
Parameters
R0x = >002E

R1x = Row

R2x = Column

R3x = ASCII character to write to screen

R4x = Number of times to write character and color

Results
None

Parameter Description

None

	 TC "Vertical Character (VCHAR)"\l 2 Vertical Character

Function
Write characters to screen vertically. The VCHAR subprogram displays a character anywhere on the display screen and optionally repeats it horizontally. The character with the ASCII value of character-code is placed in the position described by row and column and is repeated horizontally repetition times.
Parameters
R0x = >002F

R1x = Row

R2x = Column

R3x = ASCII character to write to screen

R4x = Number of times to write character and color

Results
None

Parameter Description

None

	 TC "Set Mouse"\l 2 Set Mouse

Function
Set mouse speed and position

Parameters
R0x = >0030

R1x = New X position for mouse

R2x = New Y position for mouse

R3x = Scale factor for mouse speed (0 to 7) 0 = fastest

Results
None

Parameter Description

	 TC "Get Mouse"\l 2 Get Mouse Speed

Function
Set mouse speed and position

Parameters
R0x = >0031

R1x = Returned X position for mouse

R2x = Returned Y position for mouse

R3x = b1 b2 b3 0 xxxx xxxx xxxx (highest bits)

b1 = left
1 = down

b2 = middle
1 = down

b3 = right
1 = down

Results
None

Parameter Description

	 TC "Get Mouse Release"\l 2 Get Mouse Release

Function
Get Mouse release data.

Parameters
R0x = >0032

Results

R1x = Returned X displacement since last call to opcode >31 or >32

R2x = Returned Y displacement since last call to opcode >31 or >32

R3x = b1 b2 b3 0 xxxx xxxx xxxx (highest bits)

b1 = left
1 = down

b2 = middle
1 = down

b3 = right
1 = down

Parameter Description

	 TC "Make Sound"\l 2 Make Sound

Function
Make a sound through the sound generator chip on the Geneve 9640.

Parameters
R0x = >0033

R1x = Generator 1 frequency in Hz

R2x = Generator 2 frequency in Hz

R3x = Generator 3 frequency in Hz

R4h = Attenuation for Generator 1 (0 to 15)

R4l = Attenuation for Generator 2 (0 to 15)

R5h = Attenuation for Generator 3 (0 to 15)

R6h = Control for noise generator: bits = 0000 0xyz

x = 0 for periodic noise

x = 1 for white noise

yz = 00 = 6991 Hz

yz = 01 = 3496 Hz

yz = 10 = 1738 Hz

yz = 11 = Same Hz as Generator 3

R6l = Attenuation for Noise Generator

R7x = Duration of noise in 60th seconds.

Results
None

Parameter Description

The SOUND subprogram tells the computer to produce tones or noise. The values given control three aspects of the sound: Duration; frequency; and volume.

	Value
	Range
	Description

	Duration
	1 to 4250

-1 to -4250
	The length of the sound in thousandths of a second

	Frequency
	(Tone) 110 to 44733

(Noise) -1 to -8
	What sound is played

Duration is from .001 to 4.250 seconds, although it may vary up to 1/60th of a second. The computer continues performing program statements while a sound is being played. When you call the SOUND subprogram, the computer waits until the previous sound has been completed before performing the new CALL SOUND. However, if a negative duration is specified, the previous sound is stopped and the new one is begun immediately.

Frequency specifies the frequency of the note to be played with a value from 110 to 44733. (NOTE: This range goes higher than the range of human hearing. People vary in their ability to hear high notes, but generally the highest is approximately a value of 10000.) The actual frequency produced by the computer may vary up to 10 percent. The table below lists lists the frequencies of some musical tones.common notes.
 TC "Musical Tone Frequencies"\l 3 Musical Tone Frequencies

The following table gives the frequencies (rounded to integers) of four octaves of the tempered scale (one half step between notes). While this list does not represent the entire range of tones that the computer can produce, it can be helpful for programming music.

	Frequency
	Note
	Frequency
	Note

	110
	A
	440
	A (Above Middle C)

	117
	A#
	466
	A#

	123
	B
	494
	B

	131
	C
	523
	C (High C)

	 139
	C#
	554
	C#

	147
	D
	587
	D

	156
	D#
	622
	D#

	165
	E
	659
	E

	175
	F
	698
	F

	185
	F#
	740
	F#

	196
	G
	784
	G

	208
	G#
	831
	G#

	220
	A
	880
	A (Above High C)

	233
	A#
	932
	A#

	247
	B
	988
	B

	262
	C (Middle C)
	1047
	C

	277
	C#
	1109
	C#

	294
	D
	1175
	D

	311
	D#
	1245
	D#

	330
	E
	1319
	E

	349
	F
	1397
	F

	370
	F#
	1480
	F#

	392
	G
	1568
	G

	415
	G#
	1661
	G#

	440
	A (Above Middle C)
	1760
	A

	 TC "Sound Status"\l 2 Sound Status

Function
Determine status of the sound generator

Parameters
R0x = >0034

Results
EQ bit set if no sound is in progress.

Parameter Description

	 TC "VWTR"\l 2 VWTR

Function
Video Write to Register command with register save.

Parameters
R0x = >0035

R1x = VDP Register #

R2l = Value to put into VDP register

Results
None

Parameter Description

.

	 TC "VRFR"\l 2 VRFR

Function
Video Read From Register, actually a read from stored values.

Parameters
R0x = >0036

R1x = VDP register #

Results
R0l = Value read from register

Parameter Description

	 TC "Get Tables"\l 2 Get Tables

Function
Get Tables

Parameters
R0x = >0037

R1x = Pointer to user data to put copy of tables (24 bytes)

Results
None

Parameter Description

Tables

CTABLE
Data
0,0

PTABLE
Data
0,0

SCRIMG
Data
0,0

SPRATT
Data
0,0

SPRPAT
Data
0,0

SPRCOL
Data
0,0

	 TC "Get Palette Registers (Squashed)"\l 2 Get Palette Registers (Squashed)

Function
Get Pallette Registers (Squashed format)

Parameters
R0x = >0038

R1x = Pointer in user data, to put copy of Palette registers (32 bytes)

Results
None

Parameter Description

	 TC "Get Palette Registers (Expanded)"\l 2 Get Palette Registers (Expanded)

Function
Get Palette Registers as defined in the V9938 manual.

Parameters
R0x = >0039

R1x = Pointer in user data, to put copy of Palette registers (32 bytes)

Results
None

Parameter Description

Default Palette registers on the initial boot or a hardware reset are as follows:

 Palette Register #

Value

>00

>0000

>01

>0000

>02

>0611

>03

>0733

>04

>0117

>05

>0327

>06

>0151

>07

>0627

>08

>0171

>09

>0373

>0A

>0661

>0B

>0664

>0C

>0411

>0D

>0265

>0E

>0555

>0F

>0777

	 TC "Change Edge Color"\l 2 Change Edge Color

Function
Change Edge Color for graphic modes 4, 5, 6, or 7.

Parameters
R0x = >003A

R1l = New edge color (Graphic Mode 4, 5, 6, 7 only)

Results
None

Parameter Description

PAGE
3

