6 Advanced Software Technigues

Shared Data File (Workspace Registers) Linkage Techniques

The simplest subroutine call procedure uses the same set of processor registers and data
addresses so that a shared data set occurs. This has the advantage of automatic parameter
passing from the calling to the called procedure, but it has the disadvantage of limiting
what the called procedure may do with the existing data so as not to destroy information
vital to the calling procedure. In the 9900 family, the Branch and Link (BL} subroutine
branch saves the return value for the program counter in register 11 of the workspace
registers and both called and calling procedures use the same workspace. Most of the
examples of the previous chapter used the BL call for simplicity. However, if a BL called
subroutine must, in turn, call another subroutine with a BL instruction, the return
linkage in register 11 is destroyed by the nested call. This problem was avoided in the
previous chapter by saving the return linkage in another register prior to the second BL
Instruction. Typically, in a subroutine that contains a BL instruction, the contents of
register 11 (the primary return linkage) are saved in register 13 prior to the execution of
the BLinstruction. Then, register 11 is used for the secondary (nested subroutine) return
linkage, and register 13 is used for the primary returnlinkage. The return to the original
calling procedure is performed with a B *13 instruction instead of the usual B *11
instruction. This is an example of a more general approach of saving return linkages ina
return stack.

Return Linkage Stacks

The basic concept is shown in Figure 6.10. As each subroutine is entered, the content of
register 11 is saved in an area of RAM whose address is contained in a stack pointer.
(Assume register 10 is assigned the stack pointer function.) The stack pointer is then
decremented by two to move to the address of the next empty word location in the
stack. This is called pushing the return linkage to the stack. Thus, to push register 11 to
the stack requires

MOV 11.*10  Save R11 contents in stack
DECT 10 Decrement Stack Pointer

This is used in any subroutine that calls other subroutines with the BL procedure.
Pushing the return linkage to the stack is accomplished by the first two instructions in
each subroutine. At the last of each subroutine, before the B *11 return instruction
occurs, the contents of register 11 must be restored from the stack by popping the stack.
This requires incrementing the stack pointer (R10) to get back to alocation holding a link
address; and then moving the contents of the memory location addressed by register 10
to register 11: '

INCT 10
MOV - *¥10,11
B *11
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Figure 6.10 Use of a Stack to Save Subroutine Return Linkages

The stack is a last-in-first-out or LIFQ memory organization and can be used for saving
data or program linkage. Many microprocessors save program linkage automatically this
way. Such units have a stack pointer register on the processor chip. In such units the
return from a subroutine is effected by popping the stack to the program counter. The
number of levels to which subroutines and/or data storage can occur in 2 nested fashion
depends on the number of words 6f memory allocated to the stack function. The stack
can be thought of as a temporary memory for saving important data or linkage informa-
tion so that subroutine data storage requirements will not destroy information vital to the
calling subprogram.

Independent Register File (Workspace Register) Linkage Techniques

Another approach to avoiding the subroutines damaging main or calling program infor-
mation is to provide the subroutine with its own workspace that is totally independent of
the calling program’s workspace. This is possible in the 9900 family, since the BLWP
subroutine call allows the programmer to establish a different workspace pointer value
for the subroutine than was used by the calling sequence. The programmer also has the
option of using the same workspace pointer for 2 shared workspace situation. Alterna-
tively, by choosing a workspace pointer value that is within 32 of the calling procedure
“workspace pointer value, the subroutine workspace will overlap the calling procedure
- workspace for a partially shared workspace situation.
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When an independent or overlapping workspace is used with the BLWP subroutine call
in the 9900 family, the calling program registers are available to the called subroutine
because register 13 of the called subprogram’s workspace contains the workspace pointer
value of the calling procedure. Thus, by referring to the new register 13, the address of
the old register 0 is available. By using indexed addressing with the new register 13 as the
index register, any of the old workspace registers are available for use by the called
subroutine. For example, to gain access to the calling program’s register 3, areference in
the operand field of the form: (See Figure 6.11)

@B013)

adds 6 to the contents of register 13 to determine the address of old register 3. If each
subroutine’s workspace is independent of all other workspaces, there is no problem in
losing vital data for one subprogram through the operations of another. However, each
subroutine must use some form of indexed addressing using register 13 to obtain access
to the data of another subprogram when that is required. Also, this may require an
excessive amount of memory for workspace storage. The advantage of the independent
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Figure 6.11 Procedure for Locating Old Workspace Register Values After a BLWP Call
with Independent Workspaces
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workspace approach is that subroutines can be nested without destroying return link-
ages. However, if the BLWP approach is used with the shared subroutine approach, the
contents of the last three workspace registers must be pushed to a stack at the first of each
subroutine, and popped from the stack at the last of each subroutine to allow subroutine
nesting. This could require an excessive amount of program overhead to avoid de-
stroying return linkages. If the stack pointer is decremented before saving (pushing)
information to the stack area and incremented after restoring (popping) informa-
tion from the stack, the following sequence is used to save the contents of registers 13
through 15:

DECT 10O Cecrement pointer to next empty word
MOV  13,*10  PushR13to stack
DECT 10 Decrement pointer to next empty word
MOV 14,10  Push R14 to stack
DECT 10 Decrement pointer to next empty word

MOV 15,%10 Push R15to stack

This sequence is placed at the first of a subroutine, before the next BLWP instruction. At
the end of the subroutine the following sequence restores the return linakge and returns
to the original calling sequence:

MOV #10+,15 Pop stack to R15, Change pointer
MOV  *10+,14 Pop stack to R14, Change pointer
MOV *10+,13 Pop stack to R13, Change poinier

This popping sequence is the reverse of the pushing sequence. Following this sequence is
the RTWP instruction.

A limited amount of subroutine nesting with BLWP calls can be provided by having each
successive subroutine’s workspace located three words back from the previous work-
space, as shown in Figure 6.12, With this approach, the return linkage is never destroyed
by subroutine operations, and each workspace will pass ten data words to the next
subroutine. As the returns from the subroutines are performed, data from previous
subroutines is available through the workspace pointer of the main program and the
proper index value. Thus, the contents of register 0 of subroutine 2, which is register 3 of
subroutine 3, is six words back from the address of register 0 of the main program. This
register is addressed by the main program workspace pointer, which is stored in register
10 of the main program workspace and in register 13 of subroutine 1 workspace. This
storage occurs when subroutine 0 calls subroutine 1. Thus, once subroutine 1 has been
called, register 0 of subroutine 2 can be referred to, using the indexed addressing
operand of:

@-12013)

The approach of Figure 6.12 does avoid the need for a stack, but it requires much more+
thought on the part of the programmer to keep track of the location of the system data
and program linkages at any given time.
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Figure 6.12 Data Structure for Qverlapping Workspaces

Parameter Passing Techniques

Shared, independent, and overlapping workspace approaches all provide a technique for
passing of data variables and control codes from the calling subprogram to the called
subprogram. The XOP subroutine procedure of the 9900 family provides a different
form of parameter passing. There, the calling argument in the XOP coding is stored in
register 11 of the subroutine’s workspace. Figure 6.13 reviews this procedure using direct
addressing. In this case, the data or code in location PARAM is saved in register 11 of the
XOP’s workspace. The subroutine can then refer to register 11 to locate data that is
accessed by both the main and called programs. For example, the address or data in
register 11 of the new workspace could represent a single data variable, or it could be the
first of a string of data and control codes stored in memory. In the latier case, the list
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forms a first-in-first-out or FIFO memory passed to the subroutine. The list is con-
structed in memory by the calling procedure. It sets up the data by the subroutine in
order, beginning at the address to be passed to the XOP in register 11. Then, the XOF can
sequence through this list beginning at that address, to obtain the data to be processed.
The memory organization of the list could also be a LIFO file (last-in-first-out). To do
this, the calling procedure accumulates the data in reverse use order, with the last data
assembled at the address passed to the XOP. Then, the XOP works through the data,
starting at this address.

Some of the techniques discussed thus far can only be used in processors that offer
multiple sets of register files like those in the memory-to-memory architecture of the
9900 family of processors. Other processors rely on stack operations to store inactive
register values in protected locations while the subroutine uses the registers for its own
operations. Then, after the subroutine operations have been completed, the old values
can be retrieved from the stack. Further, during the subroutine operations, the old data is
available to the subroutine by referring to the stack pointer and adding or subtracting an
appropriate offset value, using some form of indexed addressing.

There is another approach that can be used by all processors to pass parameter valuestoa
subroutine. This approach involves placing the values just after the call instruction, as
shown in Figure 6.14. This approach may be useful for passing control constants to the
subroutine if the program is stored in read-only memory. If the program is stored in
read-write memory, the parameters could be constants or variables as needed. The idea
behind the approach is that the addresses of the parameters are available through the
return program counter value which is saved on the return stack in a typical microproces-
sor. In 9900-based systems, it is saved in register 11 after a BL subroutine jump, or in
register 14 after a BLWP subroutine jump. The parameter list can thus be sequentially
accessed by using this program counter value as an indirect address, and then increment-
ing the value after each access to move to the address of the next value. After all values
in the list have been accessed, the program counter value must be incremented once
more, It then contains the correct address of the instruction to return to when the
subroutine ends. As an example, the following coding illustrates a subroutine call that
passes two parameters to the subroutine ANG, which may use one or both parameters in
its execution:

BL @ANG Call subroutine Ang
DATA >2000 Parametar 1is 200044
DATA >0D00 Parameter 2is 00005

Remaining instructions of calling
. procedurs
AORG =>2B60 Establish starting address of ANG at 260
ANG MOV *11+.3 Move parameter into register 3
c 3,2 Compare parameter to cantents of R2
JEQ ABS If equal, go to ABS instruction
MOV *11+,4  Ifnotcopy 2nd parameter ints R4 and
change R11 value to return address
B *11 and return
ABS MOV *11+,4 |If R2 contents equal to 1st parameter,
copy second parameter intc R4, update
NEG 4 and negate contents of R4
B *M1 and return
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Figure 6.14 Parameter Passing Using the Old Program Counter Value

The subroutine autoincrements the address in register 11 through the two parameters
and to the address of the instruction immediately after the second parameter. While this
example involved only two parameters, there is no limit to the number of parameters that
can be passed in this way. The number could be variable, with the first parameter
continuing the number of parameters in the list, or the last parameter’s being a list
termination code. In any case, the programmer must write the subroutine so that the
proper return linkage (back to the next instruction of the calling sequence after the
parameter list) is established before the subroutine return instruction is executed.

The form of parameter passing and data file organization used in a given programming
situation depends on the requirements of the programs and the characteristics of the
subroutines involved. The type of subroutine call used and the methods required to
maintain return linkages also depend on the characteristics of the subroutines involved,
as well as on the number of subroutines that may be nested at any given time. In order to
use the parameter passing and data file control techniques discussed in this section, the
programmer must analyze each programming requirement in terms of the more general
system principles of modularity and structured design.
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Such an allocation would require only 28 words of RAM, which may be less RAM storage
than would be required by a shared workspace-stack file scheme. In fact, such a shared
workspace scheme requires 16 words for registers and 3 words of stack for each level of
BLWP call. Four levels of BLWP calls require a stack of only 12 words, for a total RAM
commitment of 28 words. This situation is equivalent to using the allocation scheme of
Figure 6.12 for four levels of calls.

Generally, the preservation of linkage, passing of data, provision of a sufficient number
of working registers, and allocation of workspace and memory data locations to a module
structure can be arranged fairly easily if the modules call only other modules. The
situation is complicated if a module should have to call itself, or if a module can be
entered before it has completed its operations. Modules like these are called recursive
modules and re-¢ntrant modules, and they sometimes occur in complicated soft-
ware situations.

Recursive and Re-entrant Modules

A recursive module is one that can call itself. It can occur in certain mathematical
manipulations {the factorial function 1s a commonly used example) or in certain list-
processing schemes. The basic idea is that in the process of executing a certain function,
an identical type of function is required. The programmer’s alternatives in this situation
are to provide as many copies of the function module as there are levels of nested use, or
to design a single copy of the module so that it can call itself. The latter approach is to
make the module recursive.

A re-entrant module is one that can be entered a second time before it has completed
execution resulting from a first entry. In microcomputer systems, this situation is more
likely to occur than is the recursive module situation. The re-entrance occurs most often
in an interrupt driven system, in which a given interrupt-related subprogram requires
the use of a module that is also used by the non-interrupt system software. The basic
situation is illustrated in Figure 6.16. The main program sequence may use module A, and
an interrupt sequence may also require module A. Since interrupts can occur at any time,
it is possible that an interrupt will occur when the system is executing module A. In this
case, a subroutine jump will be made out of module A (before it has completely executed)
into the interrupt sequence, which, in turn, will cause the system to enter module A.
Unless module A is designed to be re-entrant, the second entry into module A will likely
destroy data and program linkage that existed when the interrupt sequence called the
module. Thus, the programmer must either make module A re-entrant, or the interrupt
sequence that uses module A must be disabled until the execution of module A by the
main system program has been completed. The latter approach is the simplest strategy,
but it is feasible only when the response time to the interrupt sequence is not critical. If it
is possible that incoming information or cutgoing control will be lost by locking out the
interrupt sequence during the execution of module A by the main program, this
approach is not acceptable, and module A must be designed to be re-entrant.
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Figure 6.16 Inlerrupt Requiring Re-entrant Programming

In order for a program module to be re-entrant, it must have the following features:

1. The subroutine must not alter data that is common to all calling procedures. That
is, subroutine data common to all calling procedures must be read-only data.

2. Data that is related to a calling procedure must be stored in register file and
memory data locations that are not used by other calling procedures.

3. The subroutine must not perform operations that will alter its instruction or
data codes.

A simple example will illustrate some of these features by comparing a re-entrant and a
nonre-entrant version of a commonly used subroutine. The module in this example is
one that maintains the filling of a data buffer by the following sequence. In register 1, the
module receives from the calling procedure the data to be sent to the buffer. It receives
the address of the location within the buffer to receive the data in register 2, and the last
address of the buffer in register 3. If, after the data is sent to the butfer and after two
is added to the register 1 address, the value in register 1 exceeds the value in register 2,
the subroutine sets register 4 to all 1I's. This signals the calling sequence of a buffer
full condition. If the buffer is not full, register 4 will be cleared before a return to the
calling procedure.

Figures 6.17a and 6.17b show the calling sequence used to access the subroutine BUFF by
both the main program and an interrupt sequence. For a geneéral case, the calling
procedure is a BLWP subrouting call. Figure 6.17¢ shows a possible program version of
the subroutine BUFF. In this example, the subroutine is re-entrant only if the workspace
defined by the interrupt context switch is different from the workspace defined by the
main program context switch. In fact, each interrupt sequence that can call BUFF must
use an independent workspace from the one used by main program calls and from the
workspaces used by all other interrupt calls (assuming one interrupt sequence can be
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interrupted by another interrupt sequence). The reason for this can be understood by
considering the consequences of using the same workspace in the interrupt sequence call
as was used in the main program call. In the first place, the return linkage of the main
program will be overwritten by the return linkage produced by the interrupt call. Even if
this were prevented by saving the linkage on a stack at the first part of BUFF, if the
interrupt occurs at any time prior to the RTWP execution, the data or status flags will be
incorrectly processed for the main program. For example, if the interrupt occurs during
the MOV 1,#2 instruction, that instruction will be executed properly but the INCT 2
instruction will not be executed until the interrupt call loads register 2 with a new address
value. After the interrupt sequence has executed properly and the return is made back to
the original INCT 2 instruction, the address being incremented will be the interrupt
buffer address value left over from the interrupt sequence execution of BUFF, and not
the address value for the main program sequence. From that point on, the subroutine will
not properly provide the buffer filling operations for the main program. On the other
hand, if the transfer vectors of Figure 6.17 are used, both the main program and the
interrupt sequence specify the BUFF location as the program counter value. When the
BUFF subroutine is called, the main program uses 3305 as the workspace pointer value,
but the interrupt sequence uses 3006 as a workspace pointer value. Thus, registers 1, 2,
3, and 4 for the interrupt call are not the same as registers 1, 2, 3, and 4 for the main
program call. The operations of BUFF when re-entered due to the interrupt will not
© affect the values of registers | through 4 used by the main program. I[n fact, one of the
main advantages of the memory-to-memory architecture and the context switch sub-
routine procedure is the possibility of endless sets of register (workspace) files, which, in
turn, make re-entrant programming a relatively simple matter.

MOV @DT.1 LI 12,INBS
MOV @5SC,2 LDOCAH 1,0
MOV @EA,3 MOV @!C.2
BLWP @BUFVEC BLWP  @IEND,3
MOV 2,@30 BLWP @IBFVEC
MOV 4,@FG MOV 2.@IC
MOV 4, @FLG
RTWP
BUFVEC DATA >330 iBFVEC DATA =300
DATA =200 DATA >200
a. Maln Program b, Interrupt Program
AORG =200
BUFF MOV 1,%2
INCT 2
Cc 2,3
JGT FUL
CLR 4
RTWP
FUL SETO 4
RTWP

. Subroutine BUFF

Figure 6.17 Subrouting BUFF and Calling Sequences lo Access It
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When the commonly used subroutine is very short, as is the case of the BUFF subroutine
of Figure 6.17 the programmer may decide to use one copy of the subroutine in the main
stream of activity and another copy in the interrupt stream of activity. In this example,
this adds eight words to the system program storage requirements. However, even with
this short program it is more efficient to use a shared BUFF module that is re-entrant
with overlapping workspaces. This saves the extra eight words of program storage, and
adds only four words of RAM workspace requirements, assuming the new interrupt
workspace register 15 is the same as the old workspace register 11. This provides for
independent registers 1 through 4 for each calling procedure, and provides for separate
linkage registers 13 through 15 for each calling procedure.

Even with context switching, it is possible to set up a nonre-entrant version of the BUFF
program if the programmer is not careful. An example of sucha nonre-entrant version is
shown in Figure 6.18. The only differences between the coding of Figure 6.17 and the
coding of Figure 6.18 is that the buffer full status flag is stored in register 4 in Figure 6.17,
and in a direct address location FLAG in Figure 6.18. All aspects of both versions work
properly with independent registers 1 through 4 and 13 through 15 under a re-entrant
condition, except for the establishment of the flag conditions of Figure 6.18. For example,
if the main program called BUFF, and the CLR @FLAG was executed just before the
interrupt, the buffer is not full for the main program. However, if the interrupt called
BUFF and encounters a full buffer, it sets the contents of FLAG to all I’s. The FLAG will
then contain all 1’s when the return to the main program occurs, erroneously indicating a
full buffer for the main program. The error in the version of Figure 6.18 is that the
programmer has neglected to establish independent call-oriented storage locations for
all variabJes that can be changed by the program operation. Generally, the programmer
must analyze each re-entrant module coding to make sure that all the conditions required
for re-entrance are met. Such efforts can pay off in reduced program storage in
" large systems. '

Much of the discussion of this chapter has dealt with the module level of program
development, both in terms of interrupt service modules and the general characteristics
and considerations in the design of all program modules. The programmer must also be
careful to make sure that the overall system program uses these modules in the proper
sequence to provide the required system behavior. Some of the characteristics of system
programming will be considered in the next section.

ADRG =200

BUFF MOV 1,42+
C 2.3
JGT FUL
CLR @FLAG
RTWP

FUL SETO0 @FLAG
RTWP

Figure 6.18 Non-Reentrant Version of BUFF
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