Home Computing Journal

_ |__'|£]ournal“)

PRODUCTION NOTE: This printed journal
was produced in camera-ready format with a
deskicp publishing system employing an
Apple Macintosh and LaserWriter system,
and the foliowing sofiware: MacPaint,
MacDraw, and MacWriie from Apple Com-

puter, Inc; PageMaker from Aldus Comora-
tion; Microsoft Word from Microsolt; plus

Deskiop Magic and LaserMagic from World
Class Soltware.

Creative Staif:

Randy Thompson
Roger Wood
Walter Hego

Edhorial Consultast:
Gary M. l(apl_un

2

For guidance in grappling with the gremiins of compister
intelligence, take a gander at this gripping gams...

7 IS-Base Construction Set™
Design and build custornized IS-Base fies with this powerful

13 Never Out Of Sorts™

Confused about the quickest way to whip your data lnfo logical
order? Hera's a collection of the most popular routines o try-
out—just the sort of information you ahways wanied 10 know, but
were afrald to ASCII... S

ple:
opular POKEs

18 Commodore:
BSAVE & BLOAD

19 TI:

Did You Know That...?

20 IBM PC & PCjr

Welcome tos Veolume 4

—Intelligent Software for Personal Computers
in a Home Environment

22 Agple:

yber Abacus
Produce dazzling results with this computer-
age number cruncher,

24 Commodore:

C-64 Flashlight
Put the spotlight on your Commodore 64
cormputer and discover some "hidden” uses for

sprits graphics.

26 IBM PC & PCjr:
Pascal Sorts
Sreaking the BASIC bamigr--Pascal versions
- of the five sorting aigorithens pressnted in our
foature, Never Out OF Sorts. |

28 Texas Instruments:

Pull-Down Menus
Order up some pull-down menus for your

30 HCJONDISK™

Directories

Menu-driven program selection plus
HCJ CodeWorks secrels revealed.

Inclividual vn!umes and anthologies are available. See last page

and for inquire for current pricing and catalog:
Home Computing Journal
P.O. Box 70248 « Eugene, OR 97401
Tel. (503) 342-4013

Home Computing Journal (HCJ) B a
quarterly muiti-media software sub-
scription service containing ready-to-run
productivty, education, entertainment,
and utlity programs on a floppy disk. The
accompanying workbook contains the
required support documentation plus
additional technical notes and
programming aids. For current single-
copy and subscription pricing, pleaso see
last page. HCJ assumes no liability tor
errors in articles, programs, of workbook
materlal

Each separate workbook selection
and software contribution to this Volume
and the Volume as a collective work is
Copyright 1987 by Home Computing
Journal, Ak rights reserved. Visual
elorments and design of all pages Copy-
right 1987 by Home Computing Journal.
All righis reserved. :

Horne Computing Journai is the dwnef
of all rights to ihe computer programe and
software published in this printed work-
book and on its companion disk. To aliow
for converience in the use of this saliware
by the purchaser, HCJ grants fo such

only, the Limited License to

enterthese programs into the purchaser's
computer, place a disk-copy of this soft-
ware on the purchaser's hard-disk drive,
and/or make a reasonable number of
back-up salety copios for the purchaser's
personal use. Any other use, distribution,
sale, of copying of this soltware is ox-
pressly prohiblted and is Inviolation of this
Limited License and the copyright laws.

Al indicated trademarks (TM), uniess
otherwise spaciied, are the property of
Home Computing Joumal.

computer intelligence, take a
gander at this gripping game!

ey

For guidance in grappling

_ with the gremlins of

Figure 1.

This chart demonstrates how

different

values in the GR array indicate the status of
squares on the grid.

2

; Figure 1

Number in
GR(,) array Control of Square

No one (initialized value)
Computer controls
Human controls

Either or both

No one (outside grid)

© HOME COMPUTING JOURNAL 1987

Available to

Either player
Computer only
Human only
No one

No one

Designing and writing a computer game that pits the computer
against a human opponent can be quite challenging. On the lowest
level, there’s the job of just getting the computer to follow the rules,
while assuring that the human adheres to the same rules. Then the real
fun begins: creating a computer opponent that is a worthy adversary for
an intelligent and experienced human player.

The Rules Of Grid Grappler

To demonstrate how to create such a program, we present the game,
Grid Grappler. This is a challenging game of strategy with a decep-
tively simple design: a grid with 25 (53X3), 49 (7X7), or 81 (9X9)
squares which you and the computer take turns claiming. There are
only two rules: (1) neither you nor the computer is allowed to take the
middle square on the first move; and (2) once a square has been
claimed, the other player cannot claim a square either horizontally or
vertically adjacent to it.

The computer keeps track of the available squares. If you have at
least one move left, itlets you take your turn. If youdo nothave amove,
it keeps claiming squares until if runs out of moves. Similarly, if the
computer hasno moves left, itlets you take multiple turns until you run
out. When there are no moves left for either of you, the round is over.

The player who has claimed the most squares is the winner of the
round. The wirner’s point total is calculated as the difference between
the number of squares claimed by each player. For example, if the
winner claimed 10 squares, and the loser claimed 8, the winner would
receive 2 points. The game is over wheneither player’s pointsreach the
number of squares on one side of the grid—e.g., if there are 7 squares
on one side (49 total), then the first one to get 7 points wins.

Atthe end of each round, the computer figures the score and tells you

who won that round. It then computes the
running score for the game and checks to see
~if either player has won. If there is no win-
ner, the computer informs us of the out-
~ come, and asks if we want to play again. In
additiontokeeping track of the scoreof each
; game, a running score is maintained for all
" the.games played since starting up the pro-
gram. This allows you to see how you are
doing against the computer over the course
of several games.

Volume 4

¢ 101011~ :

These rules provide the complete specification for our program.
They dictate that we mustcreate an interactive graphic display for the
grid, and an input routine for the human to select squares. Of course,
the computer must have an intemal method for keeping track of what
moves have been made, and what moves are still available. Addition-
ally, it requires some means of checking when one or both of the
players runs out of legal moves; this naturally requires an end-of-game
routine, with score-keeping and replay options. Although none of
these tasks is trivial, our primary focus here is upon how the computer
is programmed (with different levelsof intelligence), to decide the best
move at any- point in the game. We'll discuss the user interface,
graphics, and other elements only where they relate to how the
computer selects its moves.

Tracking The Game ‘
To understand how the computer makes decisions, you must first

know how the program keeps track of the game board. It is stored as
a two dimensional, numeric array GR(,) with 10 elements in each
dimension. Each element stands for a square on the board——the first
subscript identifying the X coordinate, the second the Y coordinate.
For example, array element GR(1,1) represents the upper-left corner
of the grid. The board is stored in elements with subscripts 1 through
GS, where GS is a variable containing either 5, 7, or 9 depending upon
the the Grid Size chosen by the player at the outset. The program places
values in these variables depending upon the board position. Note that
although the array elements with subscripts of 0 and GS+1 do not
correspond (o any square on the grid, these elements are used 10 help
the computer decide its moves. More on this below.

In the following discussion, be aware of the important distinction
between claiming a square (actually selecting the square so it will be
filled with your color), and controlling a square (occupying a square

either horizontally or vertically adjacent to it). Each time you claim a

square, you automatically control the squares vertically and horizon-
tally adjacent to it, and your opponent cannot claimthose squares. Both
players, however, may control the same square by each claiming
squares adjacent to it. When this occurs, neither player is able to claim
that square.

When a round begins, all active elements in the GR(,) array (that
is, those between 1 and GS) are initialized to 0 (zero). When a square
is claimed by either player, that player’s score is incremented (scores

Ly =) Sy g . - e T
R T e At

are held in variable C1 for the computer, H1 for the human), and a 3
is placed in the corresponding ¢lement of the GR array—indicating
that the square is no longer available for a move. In addition, the four
squares horizontally and vertically adjacent to the square being
claimed are marked to indicate who controls them (see Figure 1). If the
initial value of an adjacent element of the GR(,) array is zero (no one
yet controls the square), then the value of that element is incremented
by 1 if it is the computer’s move, or 2 if it is the human’s move. [f the
opponent already controls the square in question, then its value is
changed to a 3, denoting that the square is controlled by both players.
Thus any square with a 3 in the corresponding element cannot be
claimed because it is either already claimed by cone of the players, or
is controlled by both players. Similarly, any square that is controlled
by the opponent cannot be claimed.

Look at Figure 2, a graphic representation of the GR(,) array fora
game played on the 5X5 grid. The first dimension is labeled across the
top (X), and the second dimension is labeled down the side (Y). The
central 5X3 area is identical to the board as it is displayed on the screen.
The outside row, however, is nof part of the playing area and is,
therefore, not displayed on the screen. This part of the GR(,) array is
there to aid the computer in finding the best move.

In the position depicted in Figure 1, the human has selected the
square directly above the middle square, and the computer has selected
the square just to the left of the middle. The numbers 1n the squares
show how the program has updated the GR(,) array. Both of the
elements corresponding to the claimed squares now contain 3. Like-
wise the squares that both players control—GR(3,3) and GR(2,2)—
contain 3s. The two squares that are controlled solely by the human—
GR(3,1) and GR(4,2) contain 2s, and those controlled exclusively by
the computer—GR(1,3) and GR(2,4)—contain 1s. All other squares
in the grid still hold their initialized value of 0. The squares outside the
grid were arbitrarily given a value—88—outside the range of 0-3. As
you will see later, this could be anything as long as it is not in the range
of 0-3.

How The Computer Chooses A Move

The computer makes its decision according to the algorithm we
endow it with. The logic is straightforward: Upon checking the GR(,)
array element for every square on the board, if the element contains a
3 or a 2, then the square is rejected as a possible move {because it is

=
md+mr T e L] L] LY ram wud +
oy etk 3+ Reremmmememmememmmmememenent P, M — s A /=1 - s o

Ll
A R Y, R R R L R Syt T i S e T Ty ey gy gy e Tyt T Yt T T A s Fo s o R R N, e e T o raa e AT T - Tre
e "'@3'_ T D T e L S e
s 2 R e e .ﬁﬁsﬁ%{éﬁm-;wﬁm s B e e S S

'l L] e -
AR ksl -
RO R R TR o T S Y T R T ey

already occupied or the opponent controls it). If a square is available,
the computer evaluates it in terms of the values of the four adjacent
squares.

Let’s consider for a moment what moves would be more offensively
or defensively onented: If the adjacent square contains a 0 (no one
controls 1it), this move would be more of an offensive move. On the
other hand, if the space contains a 2 (the human controls it), then
moving next to it would tend to be more of a defensive move. Both of
these moves would definitely advance our board position, and should
therefore be given a positive weighting in our final decision.

But what if the adjacent square contains 3? To move in next to such
a square would not change the status of that square at all. We must
either already share control of it with our opponent, or occupy it
ourselves. In short, moving into asquare with a3 adjacent to it does not
help extend our control at all. This move should be discouraged.

What if the adjacent square contains a 1 indicating that we already
control it? Although moving next to this square would not hurt our
position, it would not be as good a move as one where we extend our
control (if it contains a 0) or limit our opponent (if it contains a 2). This

Figure 2.

move, therefore, should be weighted somewhere between the good
moves (next to a 0 or 2) and the bad moves (next to a 3).

Here we see how the values stored in the GR(,)
array correspond to the state of the playing grid.

_ Square Qutside Grid
— (Cannot Be Controlled)

3 = Computer's Square
= Human's Square

EI = Computer Controlled Square

EI = Human Conirolled Square

IEI = Square Controlied By Both

© HOME COMPUTING JOURNAL 1987 Volume 4 3

Figure 4.

This BASIC code in Listing 1 shows how the W{()
array variables are initialized to the correct
weighting values. Then, in Listing 2, we use this
weighting to calculate the relative strength of each
possible move. Note that we employ pseudo line
nignbers,; refer to the Program Legend 1o find the
actual line numbers used for your computer.

Figure 3.

This chart details the weighting values that
we've assigned (o the elements of the W()
array. By changing these array values at the
beginning of the program, you will alter the
computer's playing strategy.

4 © HOME COMPUTING JOURNAL 1987

Figure 4.

Program Listing Examples

Listing 1:
XX00 REM INITIALIZE PROGRAM
XX10 DIM W(2) :W(0)=1.5:W(1)=2:W(2)==2

Listing 2:

YY10 XY=GR{C-1,D) :TS=TS-W(0)} * (X¥=0) W (1) * (X¥=2)-W ({2} * (X¥=3)
YY20 XY=GR(C+l, D)} :TS=TS-W(0) * (XY=0)-—W (1) * (XY¥=2)-W(2) * (X¥=3)
YY30 XY=GR(C,D~1) :TS=TS—W(0) * (XY=0)-W(1) * (XY=2)-W(2) * (X¥Y=3)
YY40 XY=GR(C,D+1) : TS=TS-W(0) * (XY=0) =W (1) * (XY=2) -W(2) * (X¥=3)

Pseudo Line #
XX00

YY10
YY20
YY30

Program Legend

T1-99/4A
170
210-240
108C-1090
1100-1110
1120-1130

YY40

Figure 3.

Moving
Next To

Weighting
Given

Assigned
Variable

1.5 W(0)
W(1)
W(2)
None

This brings us to the elements on the outside edge—i.e., an adjacent
clement of the array without a corresponding square on the grid.
(Remember, this element was arbitrarily given a value of 88.) Moving
next to one of these is quite similar to moving next to a square we
already control—itneitheradds to nor detracts from our position in any
appreciable way. We thus want this move to be given equal weighting
{0 a move that is next to a square we already control (i.e., with a value
of 1).

Turning our analysis of good and bad moves into a mathematical
value is accomplished by first providing a weight to each of the four
squares adjacent to a move, and then adding up the weight of the four

Volume 4

1140-1150

squares to get arelative value for the move. To illustrate, let’s evaluate
some possible moves the computer might make given the position
depicted in Figure 2. We will give these moves the following weight—
thus establishing a slight edge for a defensive move:

{1) Moving next to a 0 is a good offensive move, and we give it a

value of 1.5.

(2) Moving next to a 2 is a good defensive move, and we give it a

value of 2.

(3) Moving next to a 3 is an inferior move, so we give it a (negative)

value of -2.

(4) Moving nextto a 1 or an 88 is a neutral move, so we give it a value

of zero (see Figure 3).

Although these values would be assigned more or less arbitrarily
while developing the program, we are using the values that we finally
settled upon after testing the algorithm in the actual game.

Let's now evaluate three possible moves—i.e., GR(4,1), GR(4,3),
and GR(4,4).

Square R(4,1) is a very defensive move, taking sole control of
squares GR(3,1) and GR(4,2) away from the human. By our weight-
ing algorithm, this square is given the value of 4 [2+2+0+0].

- W Y R O O A BN O B B A A

Special Note Te Commoders 64 Users:

To best take advantage of the graphic power of the C-64, Grid
Grappler was written using the Programmers’ BASIC Toolkit—a
special programming package from EPYX. This product allows for
direct access to bit-map graphics within a more-or-less BASIC
language environment. To allow you to execute this program,
we've inciuded three files on your HCJ Voiume 4 disk: GRID, GRB.
and C. If you wish to make a backup of the program, you must
ensure that all three files are on the backup disk.The program C
can be copied by simply LOADing and SAVEing, but GRID and
GRB must be copied using a utility like HCJ Duplicator. [See Home
Computing Joumnal, Volume 3, for the HCJ Duplicatorprogram and
complete instructions on using it. This is an excellent utility for
backing up your HCJ disks—Ed.]

The file GRID, is a program that should always be loaded using
this command: LOAD"GRID".8,1 because it must load into a part
of memory different from the normal BASIC default area at 2049
(3801). When you enter this command with your HCJ Volume 4
disk in the drive, the computer automatically loads the file GRB,
which wedges in the proper machine language routines, and then
runs the program C, the actual Grid Grappler program.

This is the only way you can use the program if you do not have

Moving to square GR(4,3) will be a more offensive move because
of the weight given 10 squares GR(5,3) and GR(4,4). The negative
value of moving next to square GR(3,3), however, gives this move the
value of 3 [1.5+1.5+2+(-2)].

Taking square GR(4,4) is an offensive move because it results in
control of four uncontrolled squares—GR(4,3), GR(5,4), GR(4,5),
and GR(3,4). According to our rules above, this square is given the
value of 6 [1.5+1.5+1.5+1.5]. If you check out every square on the
board using the rules we’ve defined for weighting moves, you will find
that this is definitely the “best” move.

Turning The Idea Into Code

Given this very limited testing, our initial algorithm seems to
produce a reasonable response to the position. Let's see how this idea
was turned onto BASIC code. First, we DIMension a small array, W(),
o hold the various Weights. Although we have distinguished 4
different classes of squares, we only need 3 elements in our Weight
array because one class (those with values of 1 and 88) are given a
weight of zero. The W(0) variable will hold the weight for our
offensive move, the W(1) variable the weight for the defensive move,

the Programmers' BASIC Toolkit disk. You can't, however, modify or
even LIST the program when it is loaded this way. But, you can make
the modifications described in this article, if you follow the following
procedure:

1. Reset your C-84 system by tuming the power off and on.

2. LOAD the C program using the LOAD"C",8 BASIC command.

3. LIST only the lines you wish to change. There are certain lines in
the program that cannot be LISTed (e.g., if you try to LIST line 200 you
will get a SYNTAX ERROR? message). In addition, because the
language redefines certain BASIC tokens, certain lines will contain
nonsense BASIC commands which will be redefined when RUN under
the Programmers’ BASIC Toolkit environment. Therefore, do nottry to
change these lines.

4. Make any changes just as you wouid any BASIC program. For
example, to give moves a heavier weighting, making the computer play
even more defensively, LIST line 2100 ard change the variable W(1)
to equal 3. Then SAVE the program as C. Note: You must scratch the
original program C either by using the SAVE with replace option
(SAVE"@Q:C",8) or through OPENing the command channel and
scratching the C file (OPEN15,8,15,"S@:C":CLOSE 15) before saving

{SAVE"C",8).

and W(2) for our bad moves (see Figure 3). These are initialized in the
code of Listing 1 of Figure 4.

(Note: The line numbers in Figure 4 are pseudo line numbers repre-
senting the actual ones used in the different versions of the program.
See the Program Legend of Figure 4 for the actual line numbers that
apply to your particular computer.)

Coding the Computer’s Move

Having declared and initialized these variables, we will now inves-
tigate how the computer actually selects its move. Because the center
square is considered the most advantageous position, the computer
always claims it, if possible. If it cannot, either because it is the first
move, the square is already occupied, or it is controlled by the
opponent, the computer then goes zhead implementing the algorithm
described above.

By employing two FOR-NEXT loops, every element in the GR(,)
array with a corresponding square is checked. Specifically, the FOR-
NEXT loop counters, C and D, go from 1 to GS, and the element
GR(C,D) is evaluated in turn. If a square contains either a 2 or 3, the
computer cannot occupy it, and so the next element is checked. If the

© HOME COMPUTING JOURNAL 1687

[E4

Note: The Programmers’ BASIC Toolkit is a
trademark of Epyx, Inc. Copyright © 1985

Epyx, Inc. The suggested retail value of the
product is $19.95. To obtain the package,
contact either your local dealer of C-64
software or write

Softmail

2985 Woodside Road
Suite 400-383
Woaodside, CA 94062
(408) 848-3042

Volume 4

5

6

@ HOME COMPUTING JOURNAL 1987

computer can occupy a square, a temporary variable (TS) is initialized
to zero and the code in Listing 2 (see Figure 4) is executed.

The lines in Listing 2 analyze the squares adjacent to the square in
question, and set TS equal to relative strength of the move according
to the rules set forth above. XY is set, in turn, to the value of each of
the squares adjacent to the square represented by GR(C,D). After these
four lines have been completed, the square’s relative value is contained
in the TS variable. As each square’s TS value is obtained, it is
compared with a variable SC. This is initially set to —100. If TS is
greater than SC, then SC’s value is changed to that of TS. After all
squares are evaluated, SC will be equal to highest value of TS, and thus
the best available move. If TS is discovered to be equal to SC, then the
computer randomly chooses one of the two locations.

The only time SC remains at —100 is when all squares contain a 2
or 3; the computer, therefore, no longer has a move. Before this
condition exists, however, as successively higher values of TS are
found, the location of the current best move is saved by placing the
values of C and D into the variables A and B, respectively. Therefore,
GR(A,B) contains the location of the best move when the FOR-NEXT

loops are complete.

Altering The Computer’s Logic

We’ve made it easy for you to alter the computer’s primary algo-
rithm for determining its move. You only have to alter the values in the
W() array. For example, because the W(0) element is the weightof a
more defensive move, increasing its value will tend to make the
computer play more defensively. Similarly, raising the value of W(1),
will make the computer search for squares that no one controls, and it
will thus tend to play a more offensive game. Needless to say, we have
tried 1o create an ali-around good player, so the weights of these
variables in the programs have been determined through a good deal
of trial and error, testing against a variety of opponents.

If you find that the computer is just too good, try changing the value
of W(2) from negative to positive. This will make the compuler
consider certain very poor moves 1o be good ones.

Although altering the W() array is the easiest way to modify the
computer’s game, you could try making more extensive changes.
Instead of just looking at the horizontally and vertically adjacent
squares, you could expand your search to look at squares diagonally
adjacent to each square. This would be accomplished by writing code
that alters the value of TS by indexing the GR(,) array with (C-1,
D-1), (C+1,D-1), (C-1,D+1), (C+1,D+1) in addition to the squares
already being checked. Furthermore, you could even look two squares
away, for example (C+2,D). But this change would require some range
checking, or you could exceed the DIMed size of the GR(,) array.

So, there you have it—an algorithmic approach to providing a
computer with intelligence. With some relatively minor alterations,

Volume 4

this same approach can be employed in a variety of gaming environ-
ments. The next time you're trying to computerize a logic puzzle,
remember that mathematically weighting various alternatives allows
the computer to quickly draw conclusions about the relative value of its
options. Come to think of it, if we humans weren’t so influenced by our
emotions, this is the way we foo would be making “perfect” decisions.
But—as Mr. Spock would observe—this “flaw” is what makes humans
sO interesting...

:E:ﬁ':': . P X 'y L L] bt P o

s P m et +___,:,::i‘: . St 5 y y AT e N e e A e A T bt g
S] o L AVES E fa s B 6 N e e
el N T St N e e By L g, - --.*.E?__.d.:';;;:;:-:-.a:-.-:a:-:-:+:-:-:-:+:+:d:+:+:-ﬂ:-:-1-:-:-:;:-¢:;:-:-:-
. = Ty ol O T e g
ey eyt on

S R

e e] '.:1-:1-:-.:1-'1.'-."'-.'-"'-.‘-' "'.'.".f. [R e e ko T R N N R R S R N N RN L

s M-.-.-:I- M] o LT RN, % o Al L e e a e e e

e 'f-."f::‘-" o +:-p:-:-::::+":.'."“ ‘:"- e o i iy - i e : - "“."‘.{l‘rdi_.l.l'.‘ﬂ‘l{*l L -;- -’-‘:‘:"‘:‘."’-’-" ::.::F":‘..
5, e

- e ‘+l-- -.--f' 4 - - - .- L]
e S aa S W~
S ‘4:-:+:-:::=':"‘=5:'-:5;:f" e ek

T T o A AL

Variable Function
GH(,) Grid array

MD Middle of Grid
C1 Number of squares claimed by computer

H1 Number of squares claimed by human
X Currently selected horizontal position

Y Currently selected vertical position
CD Loop counters for evaluating moves

XY Temporary variable to hold GR(,) value of square
currently being considered

sSC Mathematical value of best square thus far considered
Mathematical value of square currently being

- .+ - - - T
e o
. e et et e DT ST
e e R
et e e e '-$-ﬁ:':

"'lf:':"“ .‘:‘-3}:::"} i '

Key Function

Move to left on grid
Move to right on grid
Move up on grid
Move down on grid
Select current square

Cursor Left

Cursor Right
Cursor Up

Cursor Down
Space Bar*

* T1-99/4 A users: The A key is used for selecting the current
square on the T1-99/4A instead of the Space Bar.

e " ! Wy n; o Y
G S o e Sl
- = o ;'F Ry l.:" ."lF o ! " I'F l‘:.;. l"':l.' :Jl Ja -'#:’-l ; gy ‘n:: ‘J’: - n ey

There are basically two types of database users: There are those wino
like to dump all avatlable information into one gigantic file, and therre
are those who like to place information in several small neatlly
segregated files. While both techniques have their merits, neither -i8
necessarily superior.

Our IS-Base program presented in Volume 3 was designed to womk
well with both types of users: the “stuff-it-all-in-one-file” mentalitry,
and the "a-file-for-every-type-of-information” mindset. For thosse
who wish to alter their style of data storage, however, IS-Base is a beit
less accommodating. It lacks the ability to break up a large file intio
several smaller files, or merge several smaller files into one large filse.

To fill this crucial information-access gap, we now present /S-Basse
Construction Set.

What Does The Program Do?

1S-Base Contruction Set performs two basic operations: (1) it builds
new IS-Base files using selected information from pre-existing filess;
and (2) it merges selected information from one or more IS-Base filezs
with other pre-existing files.

When you build a file, information is selectively pulled from one I'S-
Base file and stored as a new file on a separate disk. The original fille
is unaffected by this procedure. Through the use of the Build Fille
operation, you can “filter” your IS-Base files, creating new, more
specialized files of information.

When you merge files, information is selectively pulled fromone [$ -
Base file and combined with another file on a separate disk. The
original file is unaffected by this procedure. Through the use of thie
Merge File operation, you can “glue” several files together, creatin:g
one master file of information.

Search parameters are used to specify the information to be merge-d
or built. (For more information on search parameters, refer to the
originat /S-Base documentation in Volume 3.) Only information that
matches the search parameters is used in a build or merge operatiora.

Because a separate disk is required for each IS-Base file, this
program requires disk swapping on single-drive computer systems.
The number of disk swaps depends on the file size and memory

L) L.
e L e P A
"l - Ill: I:I:l:l.‘
- K T |
[] l‘. A LN N

capacity of the computer. This program can be set for either single or
dual-drive operation.

The Menu
1S-Base Contruction Set offers the following menu options:

1} Change Search Parameters
2} Change Target Drive

3) View Source File

4) Build File

5} Merge File

6} Exit Program

1) Change Search Parameters

This option allows you to change the search parameters. The current
search parameters are shown at the bottom of the screen, below the
menu. When you first boot IS-Base Construction Set, the search para-
meters default to the asterisk (*) wild card. If you use the wild card
search parameter, all information found in the original source file is
built or merged into the new file. Any search parameter available in [S-
Base can be used in IS-Base Construction Sel.

Here's a review of the five search parameter formats. The <...>
symbol represents the particular piece or pieces of informationthat you
are looking for.

Formatl: <...> I8 <...>

This format imdicates a search for information on both sides of the
IS command. This command is useful when searching for one specific

IS-Base entry.
Format 2: <...>

When you enter only a part of a record without any other command
word, such as IS, then only the left side of the IS command is searched.

Format3: WHO IS <...>OorwWHAT IS <...>

This format allows you to search only the right side of the IS
statement. Note that the words WHO or WHAT are interchangeable.

@ HOME COMPUTING JOURNAL 1987

: ﬁﬂﬁéf?f{gﬁgﬁi:ﬁjﬂ@:
b osness

S
s
o
oo

e i

.«-.-:-:E'Jfﬂ;"’ T

Design and build customized
IS-Base files with this
powerful database accessory.

Volume 4 7

8

ik
—
—

-—

Renaming Files ©n The Apple

The bestway to rename files on an Apple || family computer using the
ProDOS operating system is to employ the FILER program which is
provided on your HCJ Volume 4 disk. To use this program, just boot
your system with the HCJ disk in the main drive, and select the RUN
PRODOS FILER PROGRAM option from the startup menu. Also, if you
are not running a program, after having booted with ProDOS, place your
HCJ disk in Drive 1, and type — FILER at the Applesoft prompt (>} to run
the program.

Once this program has run, select the FILE COMMANDS option by
typing an F, and then select R (RENAME FILES). When renaming files
on your HCJ Disk, we recommend that you use a backup so you do not
inadvertently alter or delete a file from your only copy.

Note that you must enter a compiete PATHNAME when selecting
both the old and new file names. By using the Set Prefix (P) command
from the File Commands menu, you can save some lyping in this
process. For more information, just type a ? from the File Commands
menu.

© HOME COMPUTING JOUARNAL 1987

Format 4: ALL <...>

This format enables you to search both the left and the right sides of
the IS command for the particular piece of information you supply.

Format 5: ALL RELATED TO<«...>

This variation on the ALL command (Format 4) also searches both
sides of the IS command. When a matching item is found, however, it
forces the search to a deeper level. For each entry that matches, the
program searches for the item found on the other side of the IS
command as well, and then finds all entries that match that newly found
item. For example, let's say you enter the search parameter ALL
RELATED TO A BUSINESS ASSOCIATE and your IS-Base file
contains the entry JOHN PARKER IS A BUSINESS ASSOCIATE.
Not only will this particular entry be found, but all entries with JOHN
PARKER on either side of the [S command will also be found.

2) Change Target Drive

Here you may select single and dual-drive operation. Choosing this
option toggles the target drive (the drive in which the file thatis merged
or builtis placed) between your first and second drive. The source disk
(the disk containing the original information) always goes into your
first drive. (When we refer to first drives, this means drive 1 on the
Apple, device 8 on the C-64, drive A on the IBM, and DSK1 on the T1-

Volume 4

99/4 A Second drives are drive 2 onthe Apple, device 9 onthe C-
64, drive B on the IBM, and DSK2 on the TI-99/4A.)

Whenever the target drive is set to your second drive, the
program is in dual-drive mode—transferring data from the first
drive to the second. If you do not own a second drive, do not try
to use dual-drive mode. If you do own two drives, dual-drive
mode saves you from swapping disks in and out of the firstdrive.
The current source and target drive settings are displayed at the
bottom of the screen.

3) View Source File

Before you commit yourself to a Build File or Merge File
operation, you may want to view your source file. To do this,
simply place an IS-Base data disk into the source drive and select
this option. Notice that only the information matching the current
search parameters is listed. This way, you see exactly what
information will be used when you Build or Merge a file. If you
want to view the entire file, just change your search parameters
to an asterisk prior to selecting this option. This option is not
limited to viewing source files alone: Any IS-Base data disk
placed into the source drive will be listed.

To halt a listing, press [ESC] (back-arrow on the C-64,
[FCTN] 9 on the TI-99/4A).

4) Build File

Here is where you create new files using an existing file’s in-
formation. Make sure to set the search parameters prior to
selecting this option. You can test the search parameters by
viewing the file with the View Source File option.

When you select the Build File option, the computer prompts
you to insert your source disk. If you are in dual-drive mode, you
are requested to insert your target disk as well. Once you have
inserted the proper disks, press the space bar.

As the source disk is searched, any information matching the
search parameters is echoed to the screen. When the entire source
file has been searched, or the computer's memory is full, the in-
formation found is used to build the new file. If you are operating
in single-drive mode, you will be required to remove your source
disk and put the target disk in its place.

If the target disk already contains an IS-Basedata file on it, you
are given the option to erase the current data file, replacing it with
the newly found information, or abort the entire procedure. If all
goes well, and you do not abort the procedure, then a new IS-Base
file is created on the target disk. Single-drive owners may be

required to swap disks more than once in order to complete the Build
File operation.

The Build File operation comes in handy when creating a new file
from a single file. If, however, you wish to filter out the same type of
information from several files, Build File is only the first step: After
you Build the specialized file, you must Merge the information from
the other files, one-by-one, into your newly built file. The next section
describes the merging of files.

3) Merge File

Merge File allows you to combine two [5-Base files together. By
performing several Merge operations, you can combine several files.
Again, make sure that the search parameters are properly set before you
select this option.

When you select the Merge File option, the computer prompts you
to insert your source disk. If you are in dual-drive mode, you are
requested to insert you target disk as well. Once you have inserted the
proper disks, press the space bar.

As the source disk is searched, any information matching the search
parameters is echoed to the screen. When the entire source file has been
searched, or the computer’s memory is full, the information found is
merged with the target file. If you are operating in single-drive mode,
you will be required to remove your source disk and put the target disk
in its place.

If the target disk does not contain an IS-Base file for merging, an
error message isdisplayed and the Merge procedure aborts. [f the target
disk does contain an IS-Base data file, the information found on the
source disk 1s added to the target disk’s file. Single-drive users may be
required to swap disks more than once in order to complete the Merge
File operation.

6) Exit Program
When you are through with your merging and building yournew IS-
Base files, select this option to quit.

Building Kiles With IS-Base Construction Set

To get you started, we’ve included three new files on your HCJ
Volume 4 disk: THOMPSON, BECK, and RODGERS. These IS-Base
files are quite similar to the MADONNA file included on your HCJ
Volume 3 disk. They list information about albums by the Thompson
Twins (Here’s To Future Days), Jeff Beck (Flash), and Nile Rodgers
(B-Movie Matinee). We chose these files for a special reason: In all of
them, and Madonna’s album Like A Virgin, Nile Rodgers played a
prominentrole in recording and production. (For those of you who may

Renaming Files On The C-64 E'

The Commodore 64 operating system allows the renaming of files by
accessing what is called the command channel—channei 15. The com-
mand to open this channe! is the BASIC OPEN command:

OPEN15,8,15

Once this command has been executed, you use PRINT#15 to access
any particular command channel function. Here is the format for a rename
command:

PRINT#15,”ROQ:new name=old name”

where new name is the new file name, and old name is the file name you
wish fo change. You then close the command channel by executing the
CLOSE command:

CLOSE1S

For example, to change the file RODGERS to IS-BASE.DAT enter

OPEN15,8,1:PRINT#15,”RO:IS-BASE.DAT=RODGERS":CLOSE 15

Be sure that the name you wish to use for the new file name does not
already exist on the disk, or the command will not be completed. The only
indication you will get that the command was not completed correctly is that
the disk drive light will flash.

When renaming files on your HCJ Disk, we recommend that you use a
backup so you do not inadvertently alter or delete a file from your only copy.
By the way, the HCJ Duplicator program, available in HCJ Volume 3,

provides an easy way to backup your disks.

not follow popular music closely, Nile Rodgers is an extremely
talented and sought-after producer/musician/songwriter.) And be-
cause of this "information overlap” between files, we have suitable
material upon which to demonstrate the power of IS-Base Construc-
tion Set.

We'll start by showing you, step-by-step, how to create new IS-Base
files from existing ones. Before beginning, you should have a few
freshly initialized disks available, so you can freely create new [S-Base
files without merging or deleting a file you may wish to keep.
Remember, because all IS-Base files must be called IS-BASE.DAT
(ISBASE.DAT on the Apple 11, and IS-BASE DT on the TI-99/4A),
only one accessible IS-Base file can be on a disk at a time. Of course,
you can store several IS-Base files on the same disk under different
names, but to access any particular file, it must have the IS-
BASE.DAT file name. For specific information on renaming files on
your system, see the appropriate instruction box, Renaming Files On
The ...

© HOME COMPUTING JOURNAL 1387

Volume 4

Figure 1.

This Flow Chart is an easy-to-follow giade for
creating the Nile Rodgers 1S-Base file described in
the text. If you follow these instructions, you will
extract all the information relating to Nde Rodgers
from four IS-Base files: MADONNA (on HCJ
Volume 3 disk), ROGERS, THOMPSON, and
BECK (on HCJ Volume 4 disk). You will then be
able to create a new IS-Base file containing the
specialized, related information.

10 © HOME COMPUTING JOURNAL 1987

Volume 4

Merge-=Flle Flow Ghart

Be Sure That Al Sowrce Fles
Are Avalabie On Disk,
And That Disks Are idenfified So
Al Files Can Be Easily Located

Rename Source Fie As IS-BASE.DAT

(Appie ISBASE DAT
T-05/4A \S-BASE_DT)

LOAD & RUN IS-Base Construcion S

Sat Search Paramalors To:

with Source Fie Renamed
IS-BASE DAT

(Appie ISBASE.D

Solect Manu Opton 3} View Source File
To Verity That Some Pertnent Records Exist

Enture That Target Disk With The |5-Base File

Baing Buit Or Merged is Ready

(¥ Uging 2-Orive System, Piace Disk In Drive 2.

If Using 1-Drive Systemn, Be Roady To Place Disk in
Deive Whan Prompied)

Seiect 4) Buld File If This s First File In List

Or

Seloct 5} Meorge File If Not First File In List

Are There Any Moro Files
Containing Recorde
To Be Added?

No

ALL *NILE RODGERS" Ingort Disk in Main Drive

AT Or T1-994A IS-BASE_DT)

Yos

IS-Base Construction Set permits two distinct types of file manipu-
lation: Build File and Merge File. The Build File option allows the
creation of a brand new file with parts (or all) of an existing one. For
example, let’s say you want a file that contains a list of only the people
who played guitar on the three Madonna albums. First, you run the
program IS-Base Construction Set. When the menu appears, place a
disk containg the Madonna file (renamed IS-BASE.DAT, of course)
in the source disk drive. Next, select menu option 1) Change Search
Parameters. The default selection is an asterisk (*), indicating that all
records in your IS-Base file will be found during a search. Now, replace
the asterisk with

WHO IS *PLAYING GUITARX

Now the program will find all records that contain the words
PLAYING GUITAR on the right side of the IS statement. To verify
this, selectoption 3) View Source File. A list of all the records with the
words PLAYING GUITAR will now appear on the screen. To create
this new file, select the 4) Build File option. If you have two disk drives
and wish to speed up program operation by using both of them, be sure
to change the target drive using menu option 2) Change Target Drive,
before starting to Build the file. You will now be prompted 1o insert,
in turn, your source and target disks atthe proper time; the new /5-Base
file containing all the guitar players on Madonna’s three albums is then
constructed on the target disk. If you already have an IS-BASE.DAT
file on the target disk, you will be asked if you wish to replace the
existing file. Only respond Yes if you are sure you want to replace this
IS-Base file.

Similarly, you can create files of keyboardists, background vocal-
ists, etc. by using similar techniques with these same data files. All you
would have to do is change the search parameters to look for the
particular type of data you want to place into a file. Remember that al
the search parameter formats available to you in the IS-Base program
can be used to build files with IS-Base Construction Set.

It is important to realize that how you originally entered data
determines how easy or difficult building new files will be. When we
created the Madonna file for your HCJ Volume 3 disk, we made sure
that a similar format was maintained for similar types of data—thus
making a search for a particular data type as easy as possible.

Merging Files With IS-Base Construction Set

Now that you have had some experience with building new files out
of old IS-Base files, we will explain the Merge File option. This option
is particularly handy if you have several IS-Base files, each containing
data that you would like merged into a separate file. For an example of
this process, we are going to show you how to create a file of all of Nile

Rodgers’s contributions to the various albums documented in your
four IS-Base files. The files containing this information are MA-
DONNA on your HCY Volume 3 disk, and the filesnamed RODGERS,
BECK, and THOMPSON on your HCJ Volume 4 disk.

To follow along with the Merge process that we are about to
describe, you will need 3 disks: The first two are for backup copies of
Volume 3 and 4 HCJ program disks. We don’t recommend using the
originals for tworeasons: (1) they are write-protected so renaming files
is not possible, and (2) even if you could rename files, you should
always work with backup disks to avoid destroying data on your
original disks. You also will need anew IS-Base data disk that you can
build and merge your new IS-Base file on to. Be sure to 1abel the disks
so you can find each of the four files named above.

The basic process goes like this:

1. Rename the data file that you are going to use as the source, IS-
BASE.DAT (Apple ISBASE.DAT or TI-99/4A IS-BASE _DT). If you
have any questions as to how to rename files on your compulter system,
see our appropriate instructional box explaining the process in detail.

2. Run IS-Base Construction Set.

3. Set the Search Parameters to ALL *NILE RODGERSH*

4. Select the View Source File Option to ensure that there are
pertinent records to be extracted from the Source file. Note: Be sure the
correct disk is in the drive when you select this option. The disk must
contain the file, and the file must be named correctly.

5. If you have two disk drives available, select option 2 until the
target drive is identified on screen as the second drive.

Then be sure the new IS-Base data disk in this second drive. If you
only have one disk drive, have your data disk ready and place it in the
drive when prompted to insert the target disk in the drive. You may be
prompted to insert the source disk as necessary.

6. If this is the first file you are extracting records from, select Build
File. If it is the second, third or fourth file, select Merge File.

7. Repeat the process until all data has been extracted.

In our example here, you first rename the MADONNA file to IS-
BASE.DAT (ISBASE.DAT on the Apple or IS-BASE DT on the TI-
99/4A) and extract the proper records into your new file. Then you
likewise rename RODGERS, extract information, rename BECK,
extract information, and finally rename THOMPSON and extract the
records from there as well. To help guide you in the process, see the
Merge File Flow Chart (Figure 1).

Once you have done the Merge process a few times, you will
discover that it is relatively simple, and you should have no trouble
using it with any of your own /5-Base files.

Renaming Flles On The IBM PC

To rename files on an 1BM PC, PCjr, Tandy 1000, or other IBM PC
compatible computer, use the DOS RENAME command. The format for
this command is simply

REN {space] old name [space] new name

where old name is the name you wish to change (e.g., RODGERS),
and new name is the new file name {e.g., IS-BASE.DAT). Note, that it
the name you use for the new name already exists, or the name you use
for the old name is noton the diskin drive A:, then you will geta Duplicate
file name or File not found error.

When renaming files on your HCJ Disk, we recommend that you use
a backup so you do not inadvertently alter or delete a file from your only

copy.

Further File Honing
After you go through the process outlined above, you will have

extraced every reference to Nile Rodgers in the four files that were
supplied on your HCJ Volume 3 and 4 disks. But, what if this is more
information than you wish to have in one file. Through the judicious
use of search parameters, it is easy to zero in on exactly what you wish
to isolate. In the example above, you used the parameter ALL *NILE
RODGERS* to ensure that you extracted all references to Nile Rodgers.
If you had desired only references to Nile Rodgers as a song writer or
a guitar player, you could have simply used more specific search
parameters when searching.

It may prove more efficient, and certainly easier to verify our
choices, however, if you first extract information using the general
search parameter as we did above, and then Build smaller files out of
this one. Let’s say that you want a file containing the songs that Nile
Rodgers wrote. If you run IS-Base Construction Set and place the disk
containing our newly created IS-Base file in the source drive, you can
set the Search Parameter o

WHAT IS WRITTEN BY *NILE RODGERS*

If you wish to limit your selection to songs written solely by Nile
Rodgers, you would leave off the wild cards {*), and thus create a file
that omits the song PLAN-9 written by Jimmy Bralower and Nile
Rodgers. In a similar fashion, you can easily create individual files
listing albums on which Nile Rodgers plays guitar (WHO IS PLAY-
ING GUITAR™), or produces (WHO IS *PRODUCER?*), eic.

If you actually wish to try this operation, you must use a target disk
that does not contain an IS-Base file with the IS-BASE.DAT file name.

© HOME COMPUTING JOURNAL 1987

Volume 4 11

Excluding Data From Files

There is one more procedure for file manipulation which deserves
special notice. We have shown you how to create files where you look
for a particular type of data, but what if you want everything that’s in
a file except some particular type of data, Here, you use a combination
of IS-Base Construction Set and your original IS-Base program (of
Volume 3} to create the new file.

For example, what if you want an /S-Base file that includes all of the
information about Nile Rodgers, except the songs he wrote. You begin
by following the process outlined above to create our new Nile

The program will find all songs written by Nile Rodgers and will ask
if you wish to forget them. By responding Yes; you will create afile that
contains all the information about Nile Rodgers excluding any refer-
ence {o songs he has written.

Be sure to experiment liberally with these sample files. You’ll gain
good working knowledge of how to get maximum use of IS-Base and
IS-Base Construction Set. Then try the procedures and techniques on
your own IS-Base files. In no time at all, you're sure to become a
Wizard of IS...

Rodgers IS-Base file. Then, you run IS-Base, and place the disk
containing our new /S-Base file in the main disk drive and type
FORGET WHAT IS WRITTEN RY ANILE RODGERSH

El Renaming Files On The TI-99/4A

The easiest way to rename files on the T1-99/4A computer is to use
the Disk Manager Command Moduile that came with your Disk Drive
system. With the power off, insert the module in the computer, tur on
the power to your disk system and Peripheral Expansion Box, then tum
on the power to your computer. Next, press any key, and select option
2 Disk Manager from the main menu. Then, choose 1 File Commands,
and finally, 2 Rename File. Now, with the disk containing the fife you
wish to rename in drive 1, select 1 as your master disk. When prompted,
enter the name of the file you wish to change (e.g., RODGERS), and
then the new file name (e.g., IS-BASE_DT). To enact the name change,
press [FCTN] 6 (Proc'd).

When renaming files on your HCJ Disk, we recommend that you use
a backup so you do not inadvertently alter or delete a file from your only

copy.

12 © HOME COMPUTING JOURNAL 1987 Volume 4

H c _O_Ul:l_‘l_al"* ﬂng

-

T L e
- o o
= Sy
T T 't v .
'? __r"::.:"::::. _.':..:.H{.:‘_ T e em -
A il :
'l :

Rt
e
.r.':r.-:::r:f:‘:r..u.-::,

e
o

.{f e :
e Py g ol e el e e A,

S
%ﬁﬂ%ﬁ' e e@#ﬁﬁﬂ* e

--

AR

One of the most useful functions of the personal computer is its
ability to collate, sort, and alphabetize information. For a computer to
perform a function, such as sorting in ascending or descending order,
it must have a precise, unambiguous procedure to apply to this
problem. Such a procedure is called an algorithm,

An algorithm describes a sequence of operations that will, when
applied to given information, produce a desired result. In other words,
it is simply a recipe or a set of directions. We use algorithms unknow-
mgly every day. Rules for playing a game, road maps, instructions for
using your computer, and recipes for cooking are all examples of
algorithms.

Directional Algorithms

In order to be useful, an algorithm must be clear, precisely defined,
and effective. To 1llustrate, let’s look at good and bad algorithms for
locating the drugstore. A clear, precise algorithm would read: “Go
west for 3 blocks, then turn right at the traffic light onto Robie Street.
Travei on Robie until you come to North Street. Turn left onto North
Street, and the drugstore will be immediately on your right, at 111
North Street.” An unclear algorithm would sound like this: “Go west
for a while. Then turn right for several blocks. The drugstore is just
around the comer of North Street.” Thus, to be effective, an algorithm
must precisely specify the sequential procedure to follow in order to
accomplish a stated task.

Our purpose here is to consider algorithms (sequences of
operations) that will allow the computer to arrange information sys-
tematically. Of course, there are all kinds of sorting routines for
arranging data (some even in assembly language, which are obviously
faster). But for now, we will evaluate 3 routines written in BASIC that
will provide you with some practical examples for your own program-
ming efforts. They are the selection sort, bubble sort, Shell sort, heap
sort and quick sort. These algorithms range from very simple to quite
complex, and from relatively slow to moderately fast. To look at the
listings, one might think that the short, simple routines are faster, but
in fact, 1t 1s the long, complicated listings that are generally the betier
and faster algorithms.

c

A e e
Sl

e i)

-

S
e

e g . N
i

a'n - .
ot L, =
' +. F-l- 'I'I -.'I]
e e e e e A TR _..+.':*.='*.-:3§' !!E:' ;

e i)
oo ":':'.:;:"':::..*:' P o o

sE

Selection Sort
The selection sort is a simple, straightforward routine. It consists of

a pair of nested FOR-NEXT loops—an outer loop, FOR I=1 to N-1,
and an inner loop, FOR J=I+1 to N (see Listing 1). The outer loop
takes the firstitem, and using the inner loop, compares it to every other
item in the list, switching each time it finds a lesser value. After
completing the inner loop, the outer lcop chooses the second item in
the list and repeats the sequence until each item has been compared
with every other one.

Though it is a simple algorithm, it makes repeated, unnecessary
comparisons. This sort always goes through the complete number of
passes set in the FOR-NEXT loops, regardless of the state of the list.
So an already sorted list will still be put through the entire routine as
though it were not sorted.

The selection sort is adequate and even preferable for small lists of
items because it is so easy to program. But as you can imagine, this sort
takes an unbearably long time with lengthy lists (see Tables 1 through
5). But even though it is not efficient for long lists, you will notice that
the selection sort serves very well for programs with small data entry.

Bubble Sort

The bubble sort is a very popular routine because it is simple to
understand and implement. Unlike the selection sort, it compares only
adjacentitems, placing themin ascending order. The procedure begins
by comparing the first two items in the sequence. If they are out of
order, they are exchanged. The procedure continues, comparing the
second item with the third, then the third with the fourth, and so on until
the sequence is completed. In general, the lower item 18 moved upward
until it is in the correct position. This is called the bubble sort because
items which are too low in the sequence will “bubble up” to reach their
correct positions.

A flag is used to determine whether any items were exchanged
during a pass through the sequence (see Listing 2). At the beginning,
FLAG is initialized to 0. If an exchange is made during the sequence,
then FLAG is setto 1. This causes the sequence to be repeated until no
exchanges are made, at which point the sorting is completed. The

© HOME COMPUTING JOURNAL 1987

- - * » ", mprmm w - "": .'-'."'". -------------------- e -"':'J:“'-"ﬁ"' --'----------r:'-'-r ":' =y . e N Il S i
e e et e ﬁﬂ_ﬁﬂf M;Wﬁ@ﬂ e R A S s
e -*ﬁ e e e e e R a8
e ;ﬁﬁ'ﬁ%‘ﬁf‘-ﬁ? = T e o N S 2

e

it

.:‘.-'. :-.

wrmtata
e
A _-l-'.

Tt

1§

]
........ S

"+__|l_:'+.-|l'

P

e mateey

Confused about the quickest
way to whip your data into
logical order? Here's a
collection of the most popular
routines to try out—just the
sort of information you
always wanted to know, but

were afraid to ASCII. ..

13

Volume 4

Figure 1.

The following diagramrepresents the comparisons in
one cycle of the heap sort algorithm. The compari-
sons follow the numbered order, and the tnler-
changes—if necessary—always move the larger
value to the array element with the smaller subscript.
For example, if A(6) contains 8 and A(3) contains 4,
the algorithm puts 8 in A(3) and 4 in A(6). When the
largest value reaches A(l), it is exchanged with the
value in A(6). Then A(6) is removed from the tree,and
the algorithm begins another cycle with A(J).

14 © HOME COMPUTING JOURNAL 1987

bubble sort, therefore, takes only as many passes as it needs. An
already sorted list would require one pass to determine that no
exchanges were made,

The bubble and selection sorts are quite simple to understand, but
they are slow to use with long lists. The next three sorts to be considered
are more complicated algorithms, but they execute at moderately fast

speeds.

Shell Sort

The Sheli sort, named after its originator D.L. Shell, is similar to the
bubble sort but consists of a somewhat more complicated algorithm.
Initially a “gap” size is determined at approximately 3/4 of N, where
N is the number of items contained in the list. Instead of comparing just
the adjacent items, as the bubble sort does, the Shell sort compares
iterns separated by the gap size, exchanging them when necessary.
After a complete pass, the size of the gap is cut in half and the process
continues. The Shell sort is a considerably faster routine than the
bubble or selection sorts because it requires fewer comparisons and
exchanges.

Heap Sort

The heap sort is an even more compiicated algorithm which 1n-
volves the use of a binary tree (See Figure 1). The larger items are
worked up a “branch,” one by one, until they reach the top. When the
largest element has reached the top, it is placed in the last element of
the array. That branch is then cut off the tree and the algonthm repeats.

Binary Tree

Volume 4

Quick Sort
The quick sort is generally one of the fastest ways to sort data. It

achieves order by first choosing the item on the left end (or bottom) of
the list and placing it in its proper place relative to the other items in
the list. Then, all the items of lesser value are placed to its left and items
of greater value are placed to the right. The list has now been divided
into right and left lists. These two lists are repeatedly divided with
items being exchanged until the entire array is sorted. Though it is
somewhat complicated, the quick sort is a very efficient routine.

Sort Comparisons
Usually one of the major concerns in determining the efficiency of

a sorting algorithm is the speed of the sort. Other factors can also be
considered, such as the number of comparisons the sort makes and the
number of exchanges executed. But for cur purposes, we felt a
comparison of the sorting speeds would be of most interest and value
to the reader. To test them, we generated repeated lists of random
numbers, timing the sorting sequence with a stopwatch. The results
were averaged and placed in Tables 1 through 4. Note that if lists are
nearly in order, the comparitive performance of the algorithms is
significantly different. Specifically, the bubble sort is the fastest
algorithm if it works on a list that is already in order, because it makes
only one pass. All the other sort algorithms make severalunnecessarry
comparisons and swaps on lists that are nearly sorted at the outset.

In our tests on randomly generated lists, the more complex algo-
rithms were, for the most part, significantly faster. It was interesting to
note that the simpler routines were nearly as efficient as the others for
very small lists of items. But the greater the length of the lists, the more
efficient the complex routines became. Sorting 100 items resulted in
an 8 to 1 ratio in sort time between the fastest {quick sort) and the
slowest (bubble sort). It's important to note that although these pro-
grams sort numbers, the same program logic can also be used to sort
alphabetically. All you need to do is to change the appropriate
variables to string variables.

Programs On Disk

We have provided these five sort routines on your HCJ Volume 4
disk under the file names SELECT, BUBBLE, SHELL, HEAP, and
QUICK. Each of these programs begins by randomly selecting 100
items and printing them on the screen (program lines 100-190). Next,
the appropriate sort routine is called and the sorted numbers are output
to the screen (lines 200-280). These are the actual sort routines we used
to compile the benchmarks shown in Tables 1-5.

In each of these programs, the actual sort routines ar¢ stored as
subroutines starting at line number 1000, and these subroutines are
shown in Listings 1-5. If you wish to use any of these routines in your
own programs, you only need to use the subroutine starting at line

1000, and do a GOSUB to the routine with the list of items to be sorted
in the A() array, and the number of items to be sorted in the variable
N. Once completed, the routine will return with the items sorted— the
smalicst value in element A(1) and the largest value in element A{N).

One final note: These routines were written so they could run using
any of the BASIC languages of the computers we cover. You may find
ways of streamlining the code to best suit your computer’s BASIC.
Take care, however, that in making modifications you do not alter the
function of an underlying algorithm.

Listing 1
Selection Sort

1000 REM **SELECTION SQRT**
1010 FOR I=1 TO N-1

1020 FOR J=I+1 TO N

1030 IF A{I)<=A(J) THEN 1070
1040 CHANGE=A({TI)

10530 A(I)=A(J)

1060 A {J}=CHANGE

1070 NEXT J

1080 NEXT I

1090 RETURN

Listing 2
Bubble Sort

1000 REM **BUBBLE SORT**
1010 FLAG=0

1020 FOR I=1 TO N-1

1030 IF A(I)<=A(I+1) THEN 1080
1040 CHANGE=A(I)

1050 A(I)=A(I+1)

1060 A({I+1)=CHANGE

1070 FLAG=1

1080 NEXT I

1020 IF FLAG=1 THEN 1010
1100 RETURN

Listing 3
Shell Sort

1000
1010
1020
1030
1040

1050
1060
1070
1080
1090
1100
1110

REM **SHELL SORT**
GAP=N*1.5

=INT {GAP /2)
IF GAP=0 THEN 1150
FOR I=1 TO N-GAP
J=1
K=J+GAP
IF A(J)<=A{K) THEN 1130
CHANGE=A (J)
A(J) =A(K)
A {K) =CHANGE
J=J-GCAP

Listing 4

Heap Sort

10080
1010
1020
1030
1040
1050
1060
1070
1680
109C
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

REM **HEAP SCORT**
K=N

L=INT (N/2} +1

IF I.=1 THEN 1070
I=L-1

S=A(L)

GOTO 1130

S=2 {K)

A(K)=A{1l)

K=K-1

IF K>»=1 THEN 1130
A(I)=5

GOTO 1270

J=1

I=J

J=J+J

IF J<=K THEN 1190
A{I)=5

GOTO 1030

IF J>=K THEN 1220
IF A{J}>=A{J+1) THEN 1220
J=J+1

IF S<A{Jy THEN 1250
A{I)=S

GOTO 1030

A(T)=A(J)

GOTO 1140

RETURN

Listing 5
Quick Sort

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1330
1360
1370
1380
1390
1400
1410

REM **QUICK SORT**
pP=1

L(P)=1

R{P)=N

IF P<=0 THEN 1410
LB=L{P)

RB=R {P)

P=P-1

IF RB<=LB THEN 1040
I=1B

J=RB

T=A(I)

IF J<1 THEN 11¢&0
IF T>=A{J) THEN 1160
J=J-1

GOTC 1120

IF J>I THEN 1190
A(I)=T

GOTO 1310
A{L)=A{J)

I=I+1

IF I>N THEN 1250
IF A(I)>=T THEN 1250
I=T+1

GOTC 1210

IF J<=I THEN 1290
AJ)=A(I)

J=J-1

GOTO 1130

a(J)=T

I=J

P=P+1

IF I-1LB>=RB-I THEN 137(

L{P)=I+1
R{P)=RB
RB=I-1
GOTC 1080
L({P)=LB
R(P)=I-1
LB=T+1
GOTO 1080
RETURN

Note: See the following page for Tables
1-5 which compare the execution times of
the various sort routines.

© HOME COMPUTING JOURNAL 1987 Voilume 4

15

Tables 1-5.

These tables show the relative performance in seconds of the routines shown
in Listings 1-5. Use these as a general guide when trying to determine which
sort would be most suitable for your own program. Also, 4 is important 1o
realize that the lists used for these benchmarks were all generated randomiy.
If the lists were already sorled the comparative performance will undoubt-
edly differ. For example, if a test list had just one owt-of-place item, some of
the routines that appear inefficient here may actually complete this simple
sorting lask more quickly than one of the "more efficient” sorts.

Table 1:

Apple i
List Size

10

Quick
001.3

Selection

000.8 000.7
004.7 002.7 | 004.2
017.5 0069 | 0105 007.1

Heap
001.3

50
100

forget it

Table 2:
C-64

Shell
000.8 . 000.6

004.8 009.0 002.7
018.1 030.2 007.0

071.0 017.8

e [oo

001.3 001.3
004.1
010.1
023.1
156.8

List Size § Selection

2
006.9

015.3
100.7

© HOME COMPUTING JOURNAL 1987 Volume 4

Table 3:
IBM PC

e [wez
oo | o1 | oes | wme
oot | ows [o2
ogan | Togern | o020

List Size

004.9

50
100

076.8

Tabile 4:

IBM PCjr

e
8

oot | ogot | a7 | a5

XN

Table 5:
TI-99 4A

oot

XN
o -

EZAED

10
20
100

-— s " U D EE I O B S O O O N e

.

1 TI I L] 1T]
-;,;;-:-:w.f:::- D R R S S R A e Banamys ll . o i?*':;. ,. e #:I:H: i
%Mwwmmw 2 R R R ”"’“‘fﬁi#ﬁ ﬂ”ﬁ*’*’i"“w"f” *fi—%?:’i“f’?f L . %év“"ﬂ”*‘%"""
Did You Know That...?
Did you know that you can use Extended BASIC's ACCEPT This feature works the same with the DISPLAY command as it
= command to input up to 255 characters? Mostpeople don’'tknow does with the PRINT command.
it, but it is possible to input more than just one screen line with -
the TI's versatile ACCEPT command. As long as you do not use Did you know that you can use TI BASIC’s INPUT command
the AT or SIZE options, the ACCEPT command inputs up to 255 without producing the question-mark prompt? In fact, the INPUT : 1
a characters. Try it! command ailows you to supply your own prompt, be it a null
: string, a single character, or a an entire sentence. Here are three & HH
Did you know that arrays do not always have to be DIMen- such examples: j—'lI a
sioned? If your program uses an array with 10 or less elements, 10 INPUT “~:S§ HHHH
= it does not have to be initialized with the DIM command—even 10 INPUT “>”:8§ -
. if it is an array of more than one dimension (i.e., A(10,10)). 10 INPUT “ENTER YOUR AGE: “:S5% A
Of course, you can always let the INPUT command provide a i"-d:!:"
- Did you know that the Tl has a built in word-wrap feature? question mark for you using the standard format shown below. C
. Word wrap is when a word that does not fit at the end of a screen 10 PRINT “HOW OLD ARE YOU”; WREEsa |
. line is printed on the next line to avoid breaking the word into two 20 INPUT S$ uom -
4: ' mnas parts. Both Tl BASIC's PRINT command and Ti Extended HH
, :F‘ r BASIC's DISPLAY command have this ability. Before printing, Did you know that you can quickly and easily clear specific
ERamnam the length of all variables and string literals (anything placed screen lines using Extended BASIC’s DISPLAY AT command? - H
! inside quotes) is checked. If the item being printed does not it By using the DISPLAY AT command atone (without supplying ! -E'JI;E$ BEerssusnn
T SHHT entirely on the specified line, it will be printed on the following line the command with anything to print}, the computer simply clears =
.]:J£ ﬁf_ H instead. To experience this feature firsthand, type inandrun the the desired screen line. For example, the following code clears ansa E%%:"‘tﬁf-"
: - following code: the TI's third screen line: mem ; 1] :E
. mames 10 INPUT “ENTER ANYTHING: “:S$ 10 DISPLAY AT(3,1) H—'ﬂ% Eunns
. = . 20 PRINT “THIS IS WHAT YOU ENTERED: *“;S$ With this knowledge, it is easy o see how one might clear TH HHHH
THRHE 30 IF S$<“” THEN 10 several lines at once. This code clears screen lines 10 through E
H - Unless you enter something that is two charactersorless in = 15; s
T . % length, 53 is automatically printed on the line following the string 10 DISPLAY AT(10,1): : : : : : : -
' - literal “THIS IS WHAT YOU ENTERED: “. if you would like to Note that each colon is separated by a space.
usuna avoid this wrapping feature, use ampersands (&) in place of mEan; s u
: 4 C semicolons (;) when separating the items that you are printing. Did you know that you can leam more about the TI-99/4A nam
- T For instance, try replacing the semicolon in line 20 of the with each Volume of Home Computing Journal? It's atact ... so
previous example and re-run the program. See the difference? don't forget to order any back volumes you may have missed. |
- -!-!---!- 1 . Ll |
RN ra - :l:ﬂ:l::& : 1
$ E : ﬁ_ . Ll : u a "
: siidities | H g
© HOME COMPUTING JOURNAL 1987 Volume 4 19

HC yournal zocus

Sy e T L

..... o A
...... -"'J,.;ﬁ-_.:.,-;._,;ﬁ,-f

i S .--:-:-.-’:'? T
SnCial hniares
ﬁm«f.@fi’#ﬁﬂ-&?ﬁw

i f@wﬁw *—*ﬁ Z

More and more computer software esmploys puil-down menus to
simplify the interface between user and ¢ computer. Computers such as
the Apple Macintosh, Commodore Amuiga, and Atari ST have made
pull-down menus an integral part of theirx operating systems. Although
pull-down menus are not a standard featwire on the T1-99/4 A computer,
they can be added with relative ease——that is, when you use the
accompanying program—I7{ Menus.

TI Menus is a package of subroutines : that add pull-down menus to
any Extended BASIC program. With the=:se subroutines, you can define
menus and their options, display the mmenu bar (a list of available
menus), and most importantly, allow the= user to pull down (display) a
ment and select an option. T Menus is suupplied on your HCJ Volume
4 disk under the file name of MENU MEZRGE. This is a Merge file that
you can merge into memory with the fo.dllowing command: MERGE
DSK1.MENU MERGE

Order up some pull-down
menus for your TI computer
—the perfect choice for
byte-conscious gourmets...

Oh Waliter, Could 1 Have A Menu Pleease?

To define your menus, you must emmater certain information into
DATA statements. Look at lines 30290 ts:0 30340 of T Merus to see an
example. Here we have entered some sample data. Refer to these
DATA statements while reading the exgplanation of their format.

The first piece of data specifies the nurnberof menus that will appear
on the menu bar. The data that followws provides the actual menu

Figure 1.

Hereisane le demonstrating the way meniu-
setup information could be stored as DATA state-
menis in a program using our pull-down menu
routines. These DATA statements wowldd allow the
rowtine to create 4 menus called File, Edi,
Search, and Special—with the number of options
and option names following each of the menu

titles.

——Number of rmenus
Menu name=
Number of coptions
Option nam: es

1000 DATA 4

1010 DATA File, 5, New, Open, Save, | Print, Quit
1020 DATA Edit, 3, Cut, Copy, Paste

1030 DATA Search, 2, Find, Change

1040 DATA Special, 3, Font, Erase, DOOS

28 © HOME COMPUTING JOURNAL 1987 Volume 4

: .-'=-' _,:.- o
"'.-:-s:-j.'-i:-’?’
Pu l-Down Menus]
e _,:.-f s Sy e T
2 "-"-".-"’ -;-:.'f':l":-' et .-:5'.-5;:!: ﬁ:%%
.l!:"'

el f..-:-{-r
e e .-:::::-.eﬁ_-."

Wwwﬁﬁ@%ﬁﬁfm

.-'5'* S .;. e
w,-,_::,@ﬂ-:—'.-w;

R

.-:-'-*.-'-"-'-*.r"f o
’_,.-:*:.:':;2-' ‘—5"-*%—'."?.’?5" P ﬁ

S e

B e

information. This data consists of the menu name, the number of
options in the menu, and then the option names. This information
repeats for each menu. Figure 1 summarizes the menu data format.

With the DATA statements all set up, you’re ready to install pull-
down menus in a program. There are three main subroutines in T7
Menus. These subroutines should be called in the order in which they
are listed here. The first subroutine (GOSUB 30080) initializes the
pull-down menus by loading the machine-code file GETPUT _O,
reading the menu data, and setting up some key variables. You must
make sure that the computer’s DATA pointer is RESTOREA to your
menu data when you call this subroutine.

The second subroutine (GOSUB 30350) simply displays the menu
bar at the top of the screen.

The third subroutine (GOSUB 30540) operates the pull-down
menus. When catled, the user is allowed to pull down any of the menus
and select an option. There are two variables that are passed back from
this last routine—the variables MENU and OPT. MENU is set equal
to the number of the menu from which a selection was made. This
number corresponds to the position of the menu on the menu bar. OPT
is set equal to the number of the option that was selected. This number
corresponds to the position of the option within the menu. If the user
did not select an option, OPT will equal zero. See Figure 2 for a list of
these GOSUBs and their function.

TI Menus uses the commands GETSTR and PUTSTR (published
in the TI Tech Note for HCJ Volume 3) to create pull-down menus. 77
Menus must load the file GETPUT O in order {o install these two
commands. If the file GETPUT O is not in DSK1 when the program
is run, you will get an error message. (GETPUT O is included on your
HCJ Volume 4 disk.) So, GETPUT O should be placed on all disks
containing programs that makes use of 71 Menus.

I’m Ready To Order Now

Making selections from the menu is easy. When the menus are made
operative (via a GOSUB 30540), the first menu on the menu bar is
automatically pulled down and made active. To select an option, use
the [FCTN] E and [FCTN] X keys. To move from one menu to the
next, use the [FCTN] S and [FCTN] D keys. As you move from menu
to menuy, the old menu will close as the new one is pulled down. Note
that any screen information that is covered up by a menu is restored
when the menu is closed. Pressing [ENTER] makes your menu
selection final. If you decide not to choose any of the options, press
[FCTN]9.

Considering The Menu’s Right-Hand Column

As with most things in life, there is a price you have to pay when
using T/ Menus. Fortunately, the price is small—only about 3K. TI
Menu's code and variables take up approximately 3K of the BASIC
workspace (depending on the number and size of menus defined). This
is not a major chunk, but something to consider when using 77 Menus
within a large program.,

The menu bar takes up the top two lines on the computer screen, $0
avoid placing any text there. Also, please take into account the width
of the screen when defining your pull-down menus. If you define 100
many menus, or use names that are too long to fit on the screen, 77
Menus will not work properly.

TI Menus uses 12 variables (see Key Variables). Avoid using
varjables of the same name in your host program. One more thing to
consider: TI Menus is contained in line numbers 30000 to 30670, If
your program uses these line numbers, you must renumber I Menus.

Today’s Special
On your HCJ Volume 4 disk is a program called Number Reversal.

It is saved under the file name of REVERSAL,; the program’s Coatrol
Capsule appears on this page. This program takes advantage of the
pull-down menus provided by 77 Menus. It is 8 good example of how
to use T/ Menus in a program. Line 230 initializes the menus, line 240
displays the menu bar, and line 370 activates the menus whenever
[CTRL]) M is pressed.

l:',_ S a2 S : a2y l:.___ :
Ly E_ - -:
Ti Menus
Varlable Function
NUMMENU Number of menus
NUMOPT(} Number of options for each menu
MENUBARS String of menu names
MENU$ String of menu option names
MENUX() Horizontal position of each menu
CPTLEN() Length of option names for each menu
SCREENS String to hold screen data
MENU Menu from which selection was made
OPT Option that was selected
LINES Multi-purpose string variable
MM Current menu showing
MO Current option highlighted

Number Reversal is a game of logic in
which you are presented with a series of digits.

SPECIAL GAME LEVEL

You goal is torearrange the digits into numeric

order, This may seem like a menial undertak-

New |} = =

ing at first, but wait until you play the game... - =

To reorder the numbers you must reverse the

order of selected digits. To choose the number
of digits to reverse, select one of the digits. .
Once selected, all digits to the left of, and e

including the selected digit are reversed. Rnnaed: 5

Sound confusing? Don'’t worry—it’s sup-
posed to be! Just run the program and experi- S
ment. If you’re persistent, you'll get it, B

Figure 2.

Subroutine Function

GOSUB 30080 initialize menu routines
GOSUB 30350 Display menu bar
GOSUB 30540 Operate pull-down menus

Quit L

L e

Number Reversal

Kay Function
0 through 9 Select digit to reverse

CTRL M Use pull-down menus
Using Pull-Down Menus

FCTN S | Move to the menu on the left
FCTND Move to the menu on the right

FCTNE Select previous option
FCTN X Selact next option

ENTER Make meny selection final
FCTN O E xit pull-down menus without

making selection

® HOME COMPUTING JOURNAL 1387

Velume 4

29

IBM PC, PCjr, and Tandy 1000

Procedures For Using The IBM PC, PCjr,
Or Tandy 1000

To make use of the HCJ Director menu program on your HCJ disk
you need to backup your disk. Use the following procedures to
produce an autoboot backup of your HCJ disk:

if you have & dual-drive system you may start with step 1,
otherwise read this paragraph first:

FFor those of you with a single disk drive, you may still use the
commands as listed betow, though you will need to pay very close
attention to the prompts on the screen instructing you to swap disks
from time to time. The computer will tell you to place the appropriate
disk in drive B;. What it means, however, is to remove the disk from
drive A: and insert the disk which would have gone in drive B:. Using
a single drive may mean having to swap disks guite a few times. For
those who are patient though, the rewards are worth the added work.
if you have further questions consult your DOS manual on the
FORMAT and COPY procedures for a single-drive system.

1. Place your DOS master disk (hereafter refered o as the DOS disk)
in drive A; and turn on the power to your system.

2. Enter the command FORMAT B: /S /¥

3. The computer will ask you to place a blank disk into drive B: to be
formatted. Ensure that the blark disk is in the drive and then press
[Enter]. After formatting, you will be asked for a volume name. Enter
HCJOURNALN where n is the Volume number. Then, you will be
asked ifyouwantto format another. Respond No to this promptwhich
returns you back to DOS.

4. If you wish to use a color monitor enter the command

COPY A:MODE.CCM B:

5. Enter the command COPY A:BASIC*.* B:BASIC.*

If you have an IBM compatible whose BASIC does not start with the
word BASIC, then make adjustments in the command above for your
version. In any case, the file on your new boot disk should always be
named BASIC even if it was originally named BASICA.

6. After BASIC is copied to the new disk in drive B:, remove the DOS
disk from drive A: and place the HCJ disk in drive A:

7. Enter the command COPY A:*.* B:

8. After the last file has been copied, remove both disks from the
system. Label the new disk as HCJ ON DISK BACKUP Yolume n,
where n is the Volume number, and place the original disk in a safe
place.

8. The new disk you have created can now be used to boot your
system (start from a power off condition) and will automnatically bring
up a menu of programs from which you may select.

1
d

"l
1:".|Il
ﬁ.‘i

You may also use the HCJ disk without backing it up if you:
1. Start from DOS 2.1 or later.
2. |f you wish to run a program with a BAT, COM, or EXE extension,
simply type the file name from the DOS A= prompt.
3. It you wish to run & BASIC program, you must first enter the
appropriate version of BASIC, then LOAD and RUN the program.
Note: If you have an IBM PC and the program requires a color
monitor, you must enable the monitor using the appropriate DOS
MODE command before running the program.

Program Name File Name Language

HCJ Director HCJDIR . COM* Turbo Pascal
AUTOEXEC. BAT -batch file-

CodeWorks CODEWORK . COM* Turbo Pascal

iS-Base Construction Set ISCconNsT.COM {-64 BASIC
BECK -data fig-
RODGERS ~-data file-
THOMPSON -data file-

Grid Grappler GRID.BASH* BASICA

Naver Out Of Sorts SELECT .BAS** BASICA
BUBBLE . RAS* * BASICA
SHELL.BAS** BASICA
HEAP .BASH» BASICA
QUICK.BASA Y BASICA

Pascal Sorts SELECT.PAS Turbo Pascal Source
SELECT.COM Turbo Paseal
BUBBLE .PAS Turbo Pascal Source
BUBBLE . COM Turba Pascal
SHELL.PAS Turba Fascal Source
SHELL.CCM Turbe Pascal
HEAP .PAS Turbo Pascal Source
HEAP , COM Turbo Pascal
QUICK.PAS Turbo Pascal Source
GUICK.COM Turbo Pascal

Basic Batch Processor BATCH.BAS#* BASICA
KEYS.TXT -data file-
SCREEN.TXT -data lile-

"Program requires: DOS 2.1 or later.

*“*Program requires: DOS 2.1 & either Cartridge BASIC on PCir or
BASICA on PC, or GW BASIC on Tandy 1000,

:r.::r:'- : L .:.:.:“ﬂ-".. ; "f > ..: :‘:.: ... :.-.. ':'E:. ... l. '.:
A L R
B! o _,:.-:5.*‘.*_ '5’***5‘.-*? e e
e = i et

o e
e S R

" --E:I-i

"l-
Aol
oyt _.,-.',.

!
: P e
’;::v_ e

TI-99/4A

Procedures For Loading The TI-93/4A
With Extended BASIC

1. Ensure the Peripheral Box is properly connected to the console.
Tum on the Peripheral Box.

2. Place the Extended Basic module securely in the machine.

3. Turn on the TI-88/4A computer.

4, Insert the HCJ disk into drive *.

5. Strike any key to bring up the first menu, then select Extended
BASIC, and The HCJ Director program wili automatically RUN.

&. Select the number of the program you wish to run, then press
[ENTER] and the program will load and RUN automaticaily.

Procedures For Loading The Ti-99/4A With 7! BASIC

1. Ensure the Peripheral Box is properly connected to the console.
Turm on the Peripheral Box.

2. Turn on your computer and insert the HCJ disk in drive 1.

3. Strike any key to bring up the first menu, then select BASIC.

4. To load the BASIC program you wish to use, type OLD DSK1. file
name where file name is the file name of the program. For example,
if you wish to use Perfect Puppy type OLD DSK1.PERFECT and
press [ENTER]. Now, type RUN and press [ENTER].

Pragram Name File Narme Language

HCGJ Cirsctor LOAD Extended BASIC

Codeworks CODEWORK Extended BASIC

|S-Basa Construction Set ISCONST* Extended BASIC
BECK -data file-
RODGERS -gata fite-
THOME SON -data file-

Nevar Qut Cf Sorts SELECT Extended BASIC
BUBBLE Extended BASIC
SHELL Extended BASIC
HEAP Extended BASIC
QUICK Extended BASIC

Grid Grappler GRID Extended BASIC

Full-Down Menus MENU MERGE* Extended BASIC
GETPUT O* TM3 9800 object file
REVERSAL* Extended BASIC

‘Requires 32K Memory expansion.

© HOME COMPUTING JOURNAL 1987 Volume 4

31

HC journal

..
--

Home Computing Joumal (HCJ} is a quarterly multi-media software sub-

scription service containing ready-to-run productivity, education,
entertainment. and utility programs on a tloppy disk. The accompanying
workbook contains the required support documentation plus additional
technical notes and programming aids.

Artificial intelligence, database management, high-powered program-
ming aids, realistic simulations, and specialized software for personal
investing, task-specific report writing, computer-assisted design, desktop
publishing, personal communications, plus entertaining math and logic
excursions are just some of the projects already on our planning board.

; YES, Please accept my order for
Home Computing Journal:

L_,| Renewal purchaser

[] New purchaser

[] HCJ Anthology: $75 postpaid U.S
(Volumes 1-4) U.S. $89in Canada
D Single-Volume Price: $25 postpaid U.S.

U.S. $30in Canada

Each quarterdy Volume of HCJ includes the printed Journal plus the
companion disk for your computer choice indicated below.

DISK VERSION

Plaase indicate D D D
Volurne Nos. Ordered

Each Volume is nurrbered
sequencially—i.e., Volume 1,

Volume 2, Volume 3...

* Only Atari back-Volumes 1-3 available

Don't Miss A Single Velums

— Subscribe/RenewW ToelEY s
«.ANd Don't Forget
To Tell Your Frisndst

TOTAL ORDER:

D Chack or Monay Order Enclosed
MUST BE IN US. FUNDS DRAWN ON A U.8. BANK

visa [Mastercard

Charge my.

Aocaaant e

DATE EXPIRES SIGNATURE

PLEASE PRINT ALL INFORMATION BELOW

STATE Fal

Prices Subject ToChange Without Notice.

Mail with check, money order, or credit card information to:

Home Computing Journal
P.O. Box 70248 . Eugene, OR 97401

MC/VISA orders may also be placed by telephone.

Tel. (503) 342-4013
Waest Coast Tirme (Normal Business Hours)

If you prefer not to cut this copy of your Journal, you may photocopy this form to send in with your order.

-——_————_———_-—-————_-—ﬂ—_—ll-—-———ﬂll-———l-————Il_—-ll———-_—_—_“-

Don’t Miss A Single Volurme

Home Computing Jourmnal (HCJ) is a quarterly multi-media software sub-
scription service containing ready-to-run productivity, education,
entertainment, and utility programs on a floppy disk. The accompanying
workbook contains the required support documentation pius additional
technical notes and programming aids.

Artificial intelligence, database management, high-powered program-
ming aids, realistic simulations, and specialized software for personal
investing, task-specific report writing, computer-assisted design, desktop
publishing, personal communications, plus entertaining math and logic

gxcursions are just some of the projects already on our planning board.
YES, Please accept my order for
Home Computing Journal:

D New purchaser

|:] HCJ Anthology: $75 postpaid U.S
(Volumes 1-4) U.S. $89 in Canada

[] Single-Volume Price: $25 postpaid U.S.
U.S.$30in Canada

Each quarterly Volume of HCJ includes the printed Journal plus the
companion disk for your computer choice indicated below.

DISK VERSION

D Renewal purchaser

Flaase ingicate

Volume Nos. Ordered D D D

Tl Each Volume s numbeared

I saquencially—i.a., Volume 1,

Volume 2, Volume J...
N U S
* Only Atari back-Volumes 1-3 available

1BM
PCir

— Subsecribe/RenewW Toda ..
../ANE Don't Forget
To Tell Your Friencs!

TOTAL ORDER:

D Check or Money Order Enciosed
MUST BE IN U.8 FUNDS DRAWN ON A US. BANK

Charge my: D VISA D MasterCard
Aceounl No, '—l
DATE EXPIRES SKINATURE

PLEASE PRINT ALL INFORMATION BELOW

STATE ZIP

Prices Subject To Change Without Notice.

Mail with check, money order, or credit card information to:

Home Computing Journal
P.O. Box 70248 « Eugene, OR 97401

MC/VISA orders may also ba piaced by telephone:
Tel. (503) 342-4013

Weet Coast Time (Normal Business Hours)

If you prefer not to cut this copy of your Journal, you may photocopy this form 1o send in with your order.

