
2
Programming Techniques and Languages

2
Programming Techniques

and languages
How to talk to a computer.

Chatting with Your Micro 	 37

How to Write Your Own Programs 	 41

Livening Up Your Call SOUNDS 	 45

Fun and Games 	 48

Chuck-A-Luck:
Part 1 	 52
Part 2 	 54
Part 3 	 57
Part 4 	 61

Spelling 	Flash 	 65

Pocket Typing Trainer 	 66

What is UCSD Pascal
and Why is Everybody Talking About It 	 67

Figure 1.
"MACHINE LANGUAGE SAMPLE"

0 	0 0 0 0 0 1 0 0 0 0 0 0 0 0 	0
0 	0 0 0 0 0 0 1 0 0 0 0 0 0 0 	0
0 	0 0 0 0 0 1 0 0 0 0 0 0 0 0 	1
0 	0 0 0 0 0 0 0 0 1 0 1 0 0 	0
0 	0 0 0 0 1 0 0 0 0 1 0 0 0 0 	0
0 	0 0 0 0 0 0 0 1 0 0 0 1 0 	0
0 	0 0 0 0 0 1 0 0 0 0 0 0 0 0 	0
0 	0 0 0 0 0 0 1 0 0 1 0 0 0 0 	0
0 	0 0 0 0 0 1 0 0 0 0 0 0 0 0 	1
0 	0 0 0 0 0 0 0 0 0 1 1 0 1 0 	0
0 	0 0 0 0 1 0 0 0 0 1 0 0 0 0 	0
0 	0 0 0 0 0 0 0 1 0 1 0 0 0 0 	0

Languages for
the Home Computer

Chatting
with

Your Micro:

Home Computers are indeed wonderful machines.
They have been carefully designed to allow begin-
ners to do meaningful tasks, act as educational tools,

and provide hours of inexpensive family entertainment.
All of this is made possible by the availability of "user-

friendly" software—Command Cartridges, cassette tapes,
and floppy disks that have been pre-recorded with program-
ming instructions the computer can understand and carry
out.

Users of this software need not concern themselves with
how this programming was actually produced—unless, of
course, they get smitten with that highly contagious human
germ known as "curiosity," and want to understand
something about the process.

"Programming" the Home Computer is not some
mysterious rite that is meant to be practiced by a select few
in secrecy. Rather, it is simply a means of communicating
with a machine in a language that both humans and human-
designed electronic circuits can understand—nothing more
elaborate than basic, down-to-earth communication.

Languages, whether human-to-human or human-to-
machine, differ widely in their complexity. Depending on
the language, varying amounts of memorization and prac-
tice are required before a "speaker" can communicate ef-
fectively. The levels of computer language complexity run
the gamut from conversational English phrases, to the swit-
ching on and off of electric current that the machine
"understands" and transforms into various actions.

Before a user can begin communicating with a computer,
however, one of three conditions must be met: (1) The user
must be able to communicate in the computer's language;
(2) the computer must be able to communicate in the user's
language (i.e., English, German, Spanish, etc.); or (3) some
common intermediate language must be established,
understood, and used by both parties. By definition, the
closer this intermediate language is to the machine's natural
"electrical" language, the lower its level. And conversely,
the closer to the human's language, the higher the level.

Machine Language
First, let's take a look at the lowest level of common in-

termediate language—referred to as "machine language."

Since electricity can either be on or off—one of two pos-
sible conditions—machine language can only be constructed
from two "words." This binary language is often express-
ed by humans with the two digits 1 and 0, with 1 represen-
ting the "on" state (presence of electricity), and 0 represent-
ng the "off" state (absence of electricity). Absolutely shock-
'Lig in its simplicity, isn't it?

Figure 1 represents six machine language "sentences."
It's not easy for a human to understand, is it? Yet when
communicating this way, more explicit control of the
machine is possible, because there can be nothing "lost in
the translation."

TMS9900 Assembly Language
Human difficulty in communicating in a binary language

led to the next step in the evolution of higher-level
languages—an easier-to-remember ("mnemonic") way of
expressing these binary "sentences." This was done by
assigning combinations of alphabetic letters to represent
operations formerly only expressable by binary sequences,
and assigning a full range of characters (including numbers)
to represent the things actually "operated" on.

This easier, alphanumeric way of communicating is call-
ed Assembly Language because these newly created scores
of symbols must eventually be translated back (assembled)
to their binary equivalents for the machine to carry them
out.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	37

Figure 2

LINE 1
LINE 2
LINE 3
BUFFER
LINE 4
GREET

REF
TEXT
TEXT
TEXT
BSS
TEXT
LI
LI
LI
BLWP
LI
LI
BLWP
LI
LI
BLWP
LI
BLWP
LI
LI
BLWP
LI
LI
I3LWP
END

VMBW,INPUT
`HI, I AM THE TI-99/4A'
`HOME COMPUTER '
`WHAT'S YOUR NAME?'
32
`NICE TO MEET YOU, '
R0,0
RI,LINEI
R2,32
@VMBW
R0,64
RI ,LINE2
@VMBW
R0,128
R1,LINE3
@VMBW
RO,BUFFER
@INPUT
R0,256
RI,LINE4
@VMBW
R0,288
RO,BUFFER
@VMBW
GREET

Note: Keep in mind that the use of this and other sample program
segments that follow are for comparison purposes only, and do not in-
dicate the true power of any of the languages. Note also that the reference
to a routine called INPUT doesn't imply the existence of that routine
(as this is only an example).

WORI-11

In Figure 2 we are showing you part of an Assembly
Language program that causes the computer to print several
English language messages on the screen, and allows it to
accept and acknowledge human response via the keyboard.
The screen dialog goes like this:

HI, I AM THE TI-99/4A
HOME COMPUTER
WHAT'S YOUR NAME?

You type in your name

NICE TO MEET YOU,
Your name appears here

Observe in Figure 2, the left to right sequence of symbols
that must be followed if the program is to be assembled cor-
rectly. As an example of the proverbial "before and
after"—Assembly Language lines that have been assembl-
ed back to binary—take a look at the last seven lines of sym-
bols in Figure 2. The machine language that results from
the assembling of these symbols appears as the entire se-
quence of left-to-right binary sentences shown in Figure 1.

Higher-Level Building Blocks
Although some very important programming is still done

at the Assembly Language level, the majority of programs
written are in higher-level languages. These languages are
closer to human languages such as English than to machine
language. To generate these higher-level languages, we must
take ordered groups of Assembly Language statements and
equate each group with a single word of the new, higher-
level language we are generating. Each word of this new
language is much more powerful than any single Assembly
Language symbol: With one new higher-level word, we can
make the computer do several things. This is a powerful
technique, indeed, and has been the basis for all computer
languages that have evolved.

For the computer to understand one of these new English-
like languages, the language must first be translated into
machine language.

Compiling & Interpreting Down
When translation of all the high-level language statements

in a program takes place before the computer acts on the
statements, the language is said to be compiled. The binary
sequences that result from this compilation are then saved
and later used directly any number of times.

On the other hand, the language is said to be interpreted
when the computer acts on each statement immediately after
that statement's translation. Therefore, every time an in-
terpreted language program is "run" (all statements follow-
ed step-by-step to completion), the program must be re-
translated. Because of this basic difference in translation
technique responsible compiled language programs are faster
than interpreted ones.

This is not to say that interpreted languages do not have
compensating advantages. Ease of use is a case in point:

Additional Terms You'll Want to Know
Command Cartridge—A plug in plastic
cartridge from Texas Instruments with in-
tegrated circuits that contain a computer pro-
gram (software).
floppy disk—A mass storage device using
a flexible mylar disk to record information. It
is a more sophisticated alternative (quick ran-
dom access) to cassette tape storage (se-
quential access).
Home Computer—The Texas Instruments
TI-99/4A console with either home television
or TI Color Monitor.

Integrated circuit(IC)—Integ rated circuits
have many individual components packed
together or integrated in a small area. The cir-
cuits of the computer are fabricated on silicon
chips. A chip is typically about 1/4 inch on a
side. Today's chips are so sophisticated that
the basic components of an entire computer
can be fabricated on a single chip.
mnemonic—Assisting or intended to assist
the memory.
screen —The home television or TI monitor
to which the computer outputs information

like numbers/letters/graphs, etc.
Speech Synthesizer —A peripheral device
built by Texas Instruments for use with the
Home Computer and used to reproduce the
human voice electronically.
TMS9900—A very sophisticated integrated
circuit (called a "microprocessor") containing
all the most basic components of an entire
computer. Designed and built by Texas In-
struments, it is the heart of the Home
Computer.

38 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Just as soon as we finish writing the last program statement
in an interpreted language, we can immediately run the
program—without having to go through an additional in-
termediary step such as compilation. The translation in an
interpreted language is therefore invisible or hidden from us.

Furthermore, in many interpreted languages such as the
BASIC language that comes built into your Home Com-
puter, statement misuse or errors of spelling in language
vocabulary are checked for right at the time the statements
are typed in. Appropriate error messages (if needed) will
appear on the screen; the person doing the programming
can then make immediate corrections.

TI BASIC
Because TI BASIC is a high-level and interpreted

language, it is easy to learn and use. The sample program
segment that follows (Figure 3) will cause the computer to
carry on a dialog similar to the one previously shown in
Figure 2. Notice how much easier the TI BASIC version
is to understand.

Figure 3

100 PRINT "HI, I AM THE TI-99/4A"
110 PRINT "HOME COMPUTER"
120 PRINT "WHAT IS YOUR NAME?"
130 INPUT NAMES
140 CALL CLEAR
150 PRINT "NICE TO MEET YOU,"
160 PRINT NAME$
170 END

TI Extended BASIC
TI Extended BASIC, one of the higher-level languages

that you can add to your Home Computer by plugging in
the separate Command Cartridge for the language is similar
to the regular built-in BASIC. It gives you everything that
the regular BASIC does plus many special additional
features such as arcade-style animated graphics (known as
"sprites"), commands to control the Speech Synthesizer,
as well as more precise control of on-screen text messages
(demonstrated in Figure 4).

Figure 4
100 	DISPLAY AT(2,1):"HI, I'M THE TI-99/4 HOME

COMPUTER"
110 	DISPLAY AT(6,1):"WHAT IS YOUR NAME?"
120 	ACCEPT AT(8,5)VALIDATE

(UALPHA)SIZE(15):NAME$
130 	CALL CLEAR : : PRINT "NICE TO MEET YOU,

";NAME$
140 	END

TI LOGO
Another interpreted language very popular with children

and educators is TI's unique implementation of LOGO. It
contains the previously mentioned sprites and features "Tur-
tle Graphics." These line drawings generated by a "pen"
attached to a simulated "turtle" object (that is moved about
the screen with only simple heading and distance commands)
are both enchanting and instructive—contributing to the
wonder of discovery that children experience with the com-
puter. See Figure 5 for a sample TI LOGO program (known
as a procedure).

Tti "0"-iutpLy"h 6t)

Figure 5
TO GREET
CLEARSCREEN
PRINT [HI, I AM THE TI-99/4A]
PRINT [HOME COMPUTER]
PRINT [WHAT IS YOUR NAME?]
CALL READLINE "N
PRINT "HELLO,
PRINT :N
END

TI PILOT
Whereas LOGO is a high-level language with great

depth—i.e., the built-in vocabulary can be "customized"
by the user—TI PILOT, another high-level language, is
much more abbreviated. With a fixed vocabulary of only
15 major commands, the interpreted TI PILOT language
still allows access to sprites, color graphics, and sound. Each
command is represented by one or two letters followed by
a colon. The program segment in Figure 6 illustrates a dialog
in PILOT.

Figure 6
D: R$(15)
T: HI, I AM THE TI-99/4A
T: HOME COMPUTER
T: WHAT IS YOUR NAME?
A: R$
T: HI THERE, R
E:

With PILOT, you can develop effective educational pro-
grams even if you've had little or no programming ex-
perience. For this reason, PILOT is favored by educators
as a language highly suitable for producing computer-
assisted instruction (CAI) courseware.

UCSD Pascal
Currently, the only high-level compiled language available

for the Home Computer is University of California at San
Diego (UCSD) Pascal. This version of Pascal includes func-
tions for accessing all the special Home Computer features.
The language is more appropriate for professional program-
mers or users who wish to delve into more sophisticated pro-
gramming. Although not as difficult as Assembly Language
to master, UCSD Pascal is, nevertheless, much more dif-
ficult than other high-level languages on the Home
Computer.

This compiled language also happens to be highly
structured—i.e., it restricts programs to modular organi-

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	39

zation according to sets of specific construction rules known
as syntax. Because it is both compiled and structured, pro-
grams written in UCSD Pascal are faster and easier to
modify than most other high-level languages. This makes
it a suitable language for large business and scientific pro-
grams. See Figure 7 for a very simple (almost trite!) exam-
ple of our now-familiar man-machine dialog as written in
Pascal.

Figure 7
PROGRAM GREET;
VAR 	NAME: STRING;

BEGIN
WRITE(OUTPUTMLI AM THE TI-99/4A ');
WRITELN(OUTPUT,'HOME COMPUTER.');
WRITELN(OUTPUT,'WHAT IS YOUR NAME?');
READLN(INPUT,NAME);
WRITE(OUTPUT,`NICE TO MEET YOU, ');
WRITELN(OUTPUT,NAME');

END.

ASPIC
Early in this article we implied that higher-level languages

are constructed from other languages. This means that you
have the opportunity to design your own personal languages
for communicating with your Home Computer. You can
do this by defining both the syntax and each word of your
new language in terms of the statements and commands of
an existing Home Computer language. The new ASPIC
language is a case in point. Constructed from TI BASIC,
ASPIC was created to simplify a child's manipulation of
color graphics on the Home Computer. Figure 8 shows an
example of a typical program segment. [See ASPIC article
in this book for a complete discussion of this new
language—Ed.]

Figure 8
10 	CLEAR
20 	MAKE +
30 	MAKE X
40 	COLOR SCREEN RED
50 	COLOR + BLACK
60 	COLOR X GRAY
70 	LET RI = 5
80 	LET Cl = 5
90 	LET R2 = 21
100 	LET C2 = 13
110 	REPEAT 9
120 	DRAW + IN ROW#R1 COLOCI
130 	DRAW X IN ROW#R2 COL#C2
140 	LET Cl = Cl + 1
150 	LET R2 = R2 - 2
160 	END

TI FORTH
If you want to modify a language to fit your own par-

ticular needs, TI FORTH may be for you. FORTH is
much like LOGO, in that the basic language implemen-
tation consists of a small number of built-in primitives
(called definitions) from which you may construct new
definitions. The primitive definitions and the new defini-
tions which you create are entries in FORTH's dictionary.
Once you've entered your new definitions in the dic-
tionary, however, they're a permanent part of your
FORTH implementation. Programmers who feel the need
to simplify their work with custom modifications—
software developers, for instance—will be most interested
in FORTH.
Now it's up to you . . . Go ahead and strike up a conver-
sation with your new-found electronic friend. Who knows?
New respect for and long-lasting Ties with your Home
Computer may be the result.

COMPARISON OF LANGUAGES
FOR THE TI.99/4A HOME COMPUTER

Cost of
Components

To Run
Programs

System 	,
Needed

To Write
Programs

of
Use

(1-10)4

Speed
(./10)4

Graphics
Supported

.
Supported

_
Speed
Turtle

Graphics
Supported

Sr.. 	• 	•ed
:. 	•

ath.boui.al
Synthesizer
peripherals)

Supported

no ASPIC 1.0 1.0 9 1 yes no no no

9900
Assembly

Language

1.3

Note 2

4.7
Note 3

1 10 yes yes no yes yes

1.3
Note 3A

TI BASIC 1.0 1.0 7 3 yes no no no yes

yes TI 	.• 	d
• 	• 	.

1.3 1.3 6 4 yes yes no yes

TI LOGO 2.9
Note 8

2.9
Note 8

8 4 yes yes yes yes yes7

 yes7 UCSD Pascal 3.3
Note 8

7.3 4 7 yes yes no yes

TI PILOT 5.4 7.5 10 5 yes yes no yes yes 7

 yes TI FORTH 1.3 4.7 4 7 yes yes no yes

1. Relative cost ratio with price of a
TI.99/4A taken as unity.
2. Cost for running assembled program
in Mini Memory cartridge.
3. Cost for writing Assembly Language
programs using Editor/Assembler.
3A. Cost for writing very small
Assembly Language sub-routines &
programs using Mini Memory cartridge
and separate Editor/Asembler Manual.
4. Number 1 represents worst case; 10
represents best case. Please note
these values are subjective and are not
based on any laboratory test data.
5. With the proper background and ex-
perience, the user can use this
language to write his own turtle
graphics support routines.
6. If the Speech Editor cartridge or Ter-
minal Emulator II are added to the
system, speech can be supported by
the language.
7. The new TI LOGO II, TI PILOT, and
USCD Pascal have enhanced music
commands.
8. Minimum configuration based on
cassette storage.

Ease Execution Color 	Sprites Speech

40 	The Best of 99'er 	Volume 1
	

Copyright 1983 Emerald Valley Publishing Co.

HOW TO WRITE YOUR OWN
PHONEME

Using Flowcharts
To Outline a Solution.

S itting down in front of your TI-99/4A and running
packaged software may stimulate your desire to try
some programming of your own. If you have taken

courses in computer programming or have had some prac-
tical on-the-job training, you can probably type some lines
and have the computer do what you want. However, if you
haven't had this experience, you may soon find the frustra-
tion of not knowing where to start too much to bear. Well,
take heart! Here we present some basic information on how
you can begin programming on your own.

A Framework for Writing Programs
Computer programming is an exercise in reasoning and

logic. Before programmers develop software to do specific
jobs, they plan their attack on the individual elements that
are inherent to those jobs or problems. It is helpful to have
in mind a general framework for solving each problem.

This general framework could take a number of different
forms. Most will, however, contain similar steps. These steps
can be described as follows.

1. Define the Problem
Initially, it is necessary to have a good understanding of

exactly what you want the program to do. If it is possible,
try to express the problem in a simple thought or sentence
stating the intended outcome of the programming effort.
Defining the problem in this manner may not only save you
time, but may also help focus your efforts.

2. Outline the Solution
This step is the primary purpose of this article. We'll get

back to examine this step in more detail later.
3. Select the Algorithm

Many problems requiring a computer for solution depend
on certain mathematical algorithms that are required in the
calculation of the desired solution. For those who are puz-
zled by the word "algorithm," mathematicians and math
teachers use this word to refer to the specific method of solv-
ing a certain kind of mathematical problem. For example,
you may have been taught to subtract whole numbers by
placing the larger number on top, the smaller on the bot-
tom, and to borrow when necessary. This is but one possi-
ble algorithm for subtraction. In general, you can either
locate those algorithms that are necessary from published
sources, or design your own. In either instance, the simpler
the algorithm, the better.
4. Writing the Program

Many people believe the writing or "coding" of the pro-

gram is what computer programming is all about. Actual-
ly, this is just one in a series of steps. Prior planning (as
detailed in steps 1-3, above) is absolutely essential before
the actual writing of the program can begin. And inherent
in the writing of the program must be a reasonable
understanding of the computer language you will be using.

5. Debugging
Once you have typed the program into the computer, it

is necessary to run it to determine if and what difficulties
exist. You will seldom write an error-free program on the
first draft. Trying to locate and correct those "bugs" can
be frustrating. This is where some of the 99/4A's built-in
features help tremendously.
6. Validating the Program

In this step, you intentionally try to locate situations in
which the program yields inaccurate or undefined solutions.
7. Documentation

It is a good idea to record the characteristics of the pro-
gram such as its intent, algorithms, and specifications. Some
day, in the future, when you decide to modify this program
you will be very happy that this documentation exists. In-
cidentally, when buying a program, the author's documen-
tation (or lack thereof) can often be a good indication of
the quality of the program.

Outlining the Solution
The development of an adequate outline (Step 1 above)

is the most critical step in writing a program. Many of us
dabblers in the art of programming seem to fail in develop-
ing an adequate outline. My intention here is to demonstrate
to you some elementary outlining techniques—in the hopes
that we, the dabblers, may be able to improve our lot in
the somewhat puzzling world of bits, bytes, and bugs.
Flowcharting

There are a number of methods available for outlining
a solution to a problem. Of those used in computer pro-
gramming, flowcharting is one of the simplest and easiest.

To introduce you to the flowcharting method, let's first
look at some of the symbols used.
1. START and END symbol

This symbol is used to indicate both the beginning and the
end of a program.
2. INPUT — OUTPUT symbol

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	41

The input-output symbol is used to indicate where the user
of the program will need to supply a piece of data or where
a calculation will be printed out for the user.
3. COMPUTATION or ASSIGNMENT symbol

I 	I
This symbol is used to indicate where computations or
assignments of values to variables will occur.
4. DECISION symbol

This decision symbol is used to indicate where a "yes" or
"no" or "true" or "false" decision point is located.
5. STOP symbol

This symbol is used in some programs to indicate a termina-
tion point if this point is different from the end point of
the program.

There are other symbols that can be used according to
your needs. Also, remember that no rules exist to stop you
from developing your own symbols.

Toward a Workable Technique
The outline strategy that works best for me is to start off

simple and then increase the complexity of my outline until
it does what I want it to do. My approach includes: (1)
writing a sentence that defines the problem I want to solve,
(2) preparing an informal outline, (3) developing a more
complex flowchart, and then (4) writing the program. To
demonstrate how this approach leads you to developing a
better program, let's take a look at some examples.

EXAMPLE 1

For our first example, let's write a program that will add
two numbers together and print their sum. We will design
the program so that we may input two numbers from the
console. This is called an interactive program, in that the
user must input the values to be assigned to the variables.
Following the approach presented, we first define the
problem:
Step I. Definition of the Problem:

The program will take two numbers being input from the
console, add them together and print the sum.

Step 2. Informal Outline:
1. Start
2. Input two numbers, A and B
3. Add A and B
4. Output the sum of the numbers

Step 3. Flowcharting:
Using the flowcharting symbols, the solution is further

developed:

Explanation of the flowchart
The "flow" is evident in the continous line running from

the initial start symbol to the final end symbol. The input

symbol shows that the two values are requested, with the
first input value being assigned to the variable A and the
second to B. The addition of the two numbers and the
assignment of their sum to a variable occurs inside the com-
putation symbol. The value of the sum is then output, and
the program ends. The algorithm necessary for the solu-
tion is shown.

Now that the problem has been outlined, we proceed to
write or code the program.

Step 4. Coding:

100 REM **ADDITION PROGRAM**
110 INPUT A,B
120 LET S = A + B
130 PRINT S
140 END

Explanation of the program.

The program shows how the original intent is followed.
Line 100 contains a REM statement allowing us a means

of identifying the program.
Line 110 allows the user to type in the two numbers to

be added.
Line 120 assigns the value of A plus B to the variable S.
Line 130 prints the value of S.
Line 140 ends the program.
Since my primary intent here is to explain how an outline

is developed and used, I will not explain the TI BASIC com-
mand statements but assume that readers of this article have
already read most of the TI Beginner's BASIC, the book
that came with their computer.

EXAMPLE 2

For a more complex example, let's develop a program
that will select and print the larger of two input values.

Step I. Defining the Problem.
Given two numbers, the program will select the larger of

the two and print it.

Step 2. Informal Outline:
1. Start.
2. Input two numbers, A and B from the console.
3. Compare number A with B. If A is larger than B, print

A. If A is not larger than B, print B.
4. End.

Step 3. Flowcharting:

Explanation of the flowchart.

The flowchart begins with the start symbol. The two
values are then input. In the decision box, a comparison
of the value A with B takes place. If the statement A> B
is true, the computer is instructed to bypass the output B
box, and output the value of A. If the statement is false,
the computer continues down the chart to output the value
assigned to B. The program then ends.

42 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co

Step 4. Coding:

100 REM **PRINTS LARGER OF TWO NUMBERS**
110 INPUT A,B
120 If A> B THEN 150
130 PRINT B
140 GOTO 160
150 PRINT A
160 END

Explanation of the program.

Line 100 is a REM statement used to identify the
program.

Line 110 allows the user to input the two numbers to be
compared.

Line 120 is used to compare the two numbers. If the state-
ment A is greater (>) than B is true, the computer is then
instructed to go to line number 150 to print A. If the state-
ment in line 120 is false the computer continues to the next
line.

Line 130 prints the value of B, as it must be the larger.
Line 140 is used to direct the computer to go to line 160.

Without this line, the computer would print the value of
B, then the value of A. This is, of course, not what we
wanted.

One difficulty exists with this program. If A and B are
equal, the program will not be able to distinguish the two.
(If this arises, B will be printed.) This difficulty could be
corrected for this situation by allowing another step where
value A and value B could be displayed.

EXAMPLE 3

Let's take a look at one more simple example. This time
we'll try writing all the squares of the integers between 1
and 99, inclusive of the two boundaries.

Step 1. Defining the Problem:
The program will make a list of all the squares of the

integers between 1 and 99, inclusive.

Step 2. Informal Outline:
1. Start.
2. Let N be a variable whose initial value is 1.
3. Compute the value of N 2, and let the result be the

value of S.
4. Print N and S on one line of the screen.
5. If the value of N is 99, then end the program. Other-

wise go to step 6.
6. Add 1 to the value of N and then go back to step 3.

Step 3. Flowcharting:

Explanation of the flow chart.

After the program starts, the variable N is increased by
1. As the TI BASIC will automatically set the initial value
of N to zero, using the statement N= N + 1 will set the first
value of N to 1. Next, the square is calculated. Both the
integer and its square are then printed. The next step checks
to see if N is equal to the upper boundary of 99. If N is
equal to 99, the computer is instructed to end the program.
If N is not equal to 99, the program loops back to add 1
to the value of N and continues.

Step 4. Coding:

100 REM **SQUARES**
110 LET N=N+ 1
120 LET S = N A2
130 PRINT N,S
140 IF N < 99 THEN 110
150 END

Explanation of the program.

Line 100 is the REM statement.
Line 110 adds 1 to the variable N.
Line 120 computes the square.
Line 130 prints the integer N and its square S.
Line 140 determines if the value of N is 99. If N is equal

to 99, the computer goes to line 150 and ends the program.
If N is not equal to 99, the computer returns to line 110.

Line 150 ends the program.

Now that we have seen the use of the outlining tech-
nique in some rather elementary program examples, let's
get serious and try something more challenging.

EXAMPLE 4

Let's try writing a program to test our recall of a series
of digits. With each correct matching of a digit, we'll in-
struct the computer to add another digit to the series.

Step 1. Defining the problem:
The program will display a series of digits of increasing

length and ask the user to recall the correct order of the
digits.

(It might be helpful to place some limits on the program
to further qualify what we want it to do. This can be done
in the informal outline.)

Step 2. Informal Outline:

1. Start.
2. Have the computer select a random digit.
3. Display the series of digits for a short time.
4. Clear the screen.
5. Ask for a response from the user.
6. Compare the response to the series of digits.

7A. If the response is correct, congratulate and ask if the
user wants to continue.

7B. If the response is incorrect, show the correct series
of digits and ask if the user wants to continue.

8. If the user wants to continue, have the computer select
another digit and add it to the end of the previous
series.

9. If the user does not want to continue, end the
program.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	43

Step 3. Flowcharting:

CONTINUE') NO

YES

Explanation of the flowchart.
After the program starts, a random digit is selected. The

series of digits is displayed, and the screen is cleared. The
user is then asked to respond. If the response is correct, the
computer offers congratulations with a GOT IT! message,
then asks if the user wants to continue. If the response is
incorrect, the computer says SORRY!, then displays the cor-
rect response. The user is then asked if he wants to con-
tinue. If the answer is yes, the computer loops back to the
random digit selection box, tacks on an extra digit to the
string, and continues. If the answer is no, the program ends.

Step 4. Coding:
In coding the program, we'll use the RANDOMIZE and

RND statments from TI BASIC to get a better selection of
digits. Take the number returned by RND, multiply it by
10, then take the integer portion: The algorithm is
INT(RND*10). In order to display, compare and add digits
to the series, we'll translate them into a string using the STR$
function.

Explanation of the program.
Lines 100-170 are REM statements.
Line 180 is the RANDOMIZE statement.
Line 190 begins the selection of the random digit. With

this statement, the computer will display a series of digits
starting with a single digit and extending to an upper limit
of 25 digits maximum.

Line 200 is the algorithm for selecting the random digit
and assigning its value to the variable A.

Line 210 translates the digit selected to a numeric string.
The line will also function in adding each digit selected to
the end of the previous series of digits.

Line 220 clears the screen.
Lines 230-250 present the series of digits and tell you how

much time you are allowed to study the series.
Lines 260-270 time the digits being displayed. Going

through the FOR. . .NEXT loop takes about five seconds.
Line 280 clears the screen.
Line 290 directs the computer to jump to line 320. The

line is intended to get us out of the FOR I. . .NEXT I loop
without disrupting it.

Line 300 continues the FOR I. . .NEXT I loop.

Line 310 ends the program.
Lines 320-330 prompt the user to respond.
Line 340 compares the response to the series of digits.

If the response is incorrect, the THEN condition directs the
computer to line 380, which is the SORRY! comment. I f
the response is correct, the computer goes to the next line
(line 350).

Line 350 clears the screen.
Line 360 congratulates the user.
Line 370 directs the computer to go to line 390, bypass-

ing the SORRY! comment.
Line 390 asks if the user wants to continue.
Lines 400-410 check to see if the user is interested in

continuing.
Line 420 returns the computer back into the FOR

I. . .NEXT I loop.
Line 430 ends the program.
1 0

2
3
4
5
6

1 7
1 8

0
0
0
0
0
0
0
0
0

E
E
E
E
E
E
E
E
AN DO

*

E

N U

* *****

B E ATCH

1 9 0 OR 1=1 TO 2 5
2 0 0 E T A=1 N T(RN D*101
2 1 0 E T SG SG $ 8/STR$(A)
2 2 0 A L L CL E AR
2 3 0 R N T H ER E IS THE NUMBE R
2 4 0 N T M S G$
2 5 0 R N T Y OU H AVE FIVE SEC 0 N D S T 0

TU D Y T
2 6 0 OR D EL A Y= 1 TO 1500
2 7 0 EX T DE L AY
2 8 0 AL L CL E AR
2 9 0 OS UB 3 2 0
3 0 0 EX T
3 1 0 OT 0 43 0
3 2 0 RI NT " T YP E THE NUMBER
3 3 0 NP UT R E S$
3 4 0 F HESS >M SG $ THEN 380
3 5 AL L CL E AR
3 6 0 RI NT " G OT T!
3 7 0 OT 0 39 0
3 8 0 RI NT " S OR RY ! THE NUI BER WA S S G

3 9 0 RI NT D 0 YO U WANT TO CO N T N U E
0

4 0 0 NP UT A N S
4 0 F ANS Y THEN 430
4 2 0 ET URN
4 3 0 	E ND

FINAL COMMENTS
Once you've had a chance to use this approach—defining

the problem, doing an informal outline, flowcharting, and
then coding—in a project of your own, programming your
computer will no longer be as forbidding and mysterious
as you first thought.

Before attempting programs of your own, you may want
to try a little exercise. Add the following features to the
previous program:

(1)Allow the user to choose how much time the digits are
displayed on the screen.

(2)1 f the response is correct, play a 3-note chord.
(3)If the response is incorrect, play one note of noise and

print a screen message that tells how many digits were con-
tained in the largest number correctly guessed.

44 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

LIVENING UP YOUR
Ca\

o DI D)o

The CALL SOUND subprogram in TI BASIC com-
mands an amazing integrated circuit in your TI-99/4A
called the SN76489 Sound Generation Controller. On

a single chip, TI has squeezed in three programmable fre-
quency dividers, a programmable noise generator, four pro-
grammable attenuators (volume controls), and eight registers
to hold the data that control the tones, noise, and their
volume levels. In effect, the tones and noise are synthesized
to your specifications from a frequency of 3.58 megahertz;
this is also the frequency that carries the color information
from your computer to your color monitor or video
modulator.

If you have used CALL SOUND only to produce
miscellaneous beeps, noise, and music, read on. I'm going
to give you some "mini programs" that demonstrate the
variety of other sounds your Home Computer is capable
of producing.

For the first example, let us try to re-create the sound
of a door bell of the type associated with the once popular
"Avon Calling" commercial. This is an example of an ob-
ject that is struck a sharp blow and allowed to vibrate at
its resonant frequencies. The following characteristics are
needed to recreate this sound: 1) the fundamental frequen-
cies of the two tones, 2) the overtone frequencies, and 3)
a gradually decaying volume. Those of you with a sense of
absolute pitch would immediately recognize the two fun-
damental frequencies, but in my case, I actually measured
the dimensions of the sounding bars and their points of sup-
port and determined with a magnet that the bars were prob-
ably steel. From a textbook, Acoustical Engineering by
Harry F. Olson, I obtained the formula and values of the
constants needed to calculate the resonant frequencies of
the bars. The calculated frequencies came out to be very
close to 698 and 554 cycles per second (F and C# above high
C). The book also told me that the two closest overtones
were 2.756 and 5.404 times the fundamental frequency. The
bars were supported on rubber mounts close to the
theoretical nodes (points of minimum vibration) for the fun-
damental and the first overtones, but were located near
points of maximum vibration for the second overtone. I
therefore assumed that the second overtone would be
dampened out, so I omitted it from the CALL SOUND
specification for each tone. The decaying volumes for the
tones were obtained by including each CALL SOUND in
a FOR — NEXT loop as follows:

100 REM DOOR CHIMES
110 FOR A = 0 TO 30 STEP 5
120 CALL SOUND(— 99,698,A,1924,A)
130 NEXT A
140 FOR A = 0 TO 30 STEP 5
150 CALL SOUND(— 99,554,A,1527,A)
160 NEXT A

If you are wondering about the significance of the 99 for
the durations, it is simply an easily keyed number larger than
the 50 milliseconds needed to make the steps sound con-
tinuous. The minus sign indicates that the sound generator
will be updated as soon as the new value for A is determined;
the duration specified need only be long enough to cover
the time between updates.

Next, let us try a sound in which the frequency varies with
time. A siren is an example which can be characterized by
a slowly rising and falling frequency. Apparently, this is a
sufficient clue to the brain for us to recognize it as a siren.
Try varying the frequency range step in the following pro-
gram to see how far it can be varied and still be recognizable
as a siren.

170 REM SIREN
180 N = 1
190 FOR F = 700 TO 900 STEP 5
200 CALL SOUND(— 99,F,0)
210 NEXT F
220 FOR F = 900 TO 700 STEP — 8
230 CALL SOUND(— 99,F,0)

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	45

240 NEXT F
250 N = N + 1
260 IF N = 4 THEN 270 ELSE 190
270 END

N = 4 on line 260 limits the siren to 3 up-down frequency
sweeps.

In the next example, let us vary both the frequency and
the volume as a function of time. Imagine a large "killer"
bee buzzing around you, with the frequency of the buzz pro-
portional to the rate of the beating wings, and the volume
proportional to the closeness of the bee.

Next, imagine that the
radio of the previous
example is now tuned
to a "pre-ASCII"
teleprinter signal which
uses an 850 cycle-per-
second frequency shift
to differentiate bet-
ween a mark and a
space.

280 REM BEE
290 N = 1
300 CALL SOUND(– 99 ,RND*8 + 110,RND*10)
310 N=N+ 1
320 IF N = 75 THEN 330 ELSE 300
330 END

Unlike the previous examples, where the variations in fre-
quency and volume were obtained by using a FOR-NEXT
loop, the variations in this case were obtained by using the
RND statement. It is interesting to note that this routine
will not sound the same in TI Extended BASIC—the bee
sounds very sluggish. This is one case in which the TI BASIC
runs faster than the Extended version.

For the next sound, imagine that you are tuning a short-
wave radio receiver. The background static is simulated with
the noise type (– 8), and the random signal is simulated with
frequency #3. The random volume on frequency #3
simulates varying signal levels with the noise volume for-
mulated to be high when the signal level is low and vice
versa.

340 REM SHORTWAVE RECEIVER
350 N=1
360 F = RND*15000 + 110
370 A = RND*30
380 CALL SOUND(– 99,111,30,111,30,F,A, – 8,30 – A)
390 N=N+ 1
400 IF N =100 THEN 410 ELSE 360
410 END

Frequencies #1 and #2 are "do nothing frequencies" since
their volumes are set to the minimum and are inserted so
the program will recognize frequency #3, from which noise
type – 8 is derived. The 111's therefore were picked for the
ease of inputting.

420 REM RADIO TELEPRINTER
430 N = 1
440 CALL SOUND(22,2975,0)
450 FOR D = 1 TO 5
460 S = 850*INT(RND*2)
470 CALL SOUND(22,2125 + S,0)
480 NEXT D
490 CALL SOUND(31,2125,0)
500 N = N + 1
510 IF N = 30 THEN 520 ELSE 440
520 END

One character consists of a 22 millisecond (ms) start pulse,
followed by a five-bit code for the character with each bit
22 ms long, and a 31 ms stop pulse. Line 440 generates the
start pulse, which is always a space. The FOR – NEXT loop
in lines 450-480 randomly generates a mark or space pulse
for the five data bits, and line 490 generates the stop pulse,
which is always a mark. Line 510 limits the number of
characters generated to 29. Like the "bee" sound, this will
not come out well in Extended BASIC. In general, data
communications signals are easy to imitate because they are
well defined by standards.

For a change of pace, try the following sound:

530 REM FOOTSTEPS
540 N = 1
550 X = INT(RND*5)
560 IF X = 2 THEN 620
570 CALL SOUND(5, – 3,5)
580 CALL SOUND(30, – 7,20)
590 CALL SOUND(500, – 7,30)
600 N=N+ 1
610 IF N = 30 THEN 640 ELSE 550
620 CALL SOUND(60, – 7,20)
630 GOTO 590
640 END

The CALL SOUND on line 570 is the heel contacting the
floor, followed by the sole contact on line 580. The CALL
SOUND on line 590 is the delay between steps. Lines 550,
560, and 620 add a shuffle about once every 4 steps to make
the footsteps sound a little more natural. Changing the noise
type on line 580 from – 7 to – 5 will make the shoes squeak.

The sound of a sword fight can be re-created by recogniz-
ing that the sword blade is a resonator like the door chimes,
except that instead of being essentially free, it is clamped
at the handle—thus creating overtones at different ratios
than the chime bars. Also, the amplitude decays faster, since
the collision of the two blades would have a dampening
effect.

46 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

650 REM SWORD FIGHT
660 N = 1
670 FOR A = 0 TO 30 STEP 15
680 CALL SOUND(— 99,1000,A,3250,A,6750,A)
690 NEXT A
700 FOR D = 1 TO RND*200
710 NEXT D
720 N = N + 1
730 IF N = 30 THEN 740 ELSE 670
740 END

Lines 700 and 710 add a random delay between sword
clashes.

For the final example, let us try to simulate the sound
of an internal combustion engine starting, accelerating, and
then decelerating to a stop.

750 REM ENGINE
760 FOR N = 1 TO 8
770 CALL SOUND(60,220,8, — 5,0)
780 CALL SOUND(60,220,8, — 5,5)
790 NEXT N
800 CALL SOUND(80,220,8, — 5,0)
810 FOR F = 1000 TO 5000 STEP 20
820 CALL SOUND(— 99,111,30,111,30,F,30, — 8,0)
830 NEXT F
840 FOR F = 4000 TO 800 STEP — 50
850 CALL SOUND(— 99,111,30,111,30,F,30, — 8,0)
860 NEXT F
870 END

Lines 760 through 800 simulate an electric starter motor.
The accelerating and decelerating engine sound is made by
sweeping noise — 8 up and down in a FOR — NEXT loop.

Now that you're convinced that your computer can pro-
duce a wide variety of sounds, you are probably wonder-
ing how one uses these sounds. If you are an adventure game
programmer, suppose that the player is confronted with a
door with a knocker and a bell button. Wouldn't it be more
interesting if the player heard the bell upon pressing the bell
button—before getting the usual textual message? Or if you
are dynamically simulating a race car, you could use line
820 in the engine sound example in a CALL KEY loop
where the F parameter would depend on the accelerator
pedal setting. The duration in the CALL SOUND would
have to be increased if you are updating other parameters
in the loop for the sound to be continuous.

One nice thing about sounds is that the listener will make
up the visual image that fits, which is why the radio pro-
grams of years past were so effective. The bee sound, for
instance, immediately conveys the situation, whereas a
screenful of color graphics would be hard-pressed to evoke
the same feeling. Thus, for the programmer of interactive
fiction, sound should be a very effective way to make a story
come alive. If you could collect enough sounds, you could
even write a sound effects program where a given sound
could be accessed on cue for stage plays.

Hopefully, this article has opened your ears to the sound-
making capabilities of your TI-99/4A
and has given you some insight into
how to create and use your own
sounds. So sound off!—and
have fun doing it.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	47

psst! I've got a little secret for you, gang: Designing
and programming your own game can be just as much
fun as playing games produced by others. And best

of all, it's really not as hard as you might think. . . .

Pick an Idea
You can have a maze, a game using dice, a card game,

a memory-type game, a board game, a popular sport, a
game involving logic, a game using skills or reaction time,
some form of hide-and-seek, an adventure, or a myriad of
space and shooting games. Still don't have a game plan?
Walk through a video arcade to get some ideas.

Use the Computer
Now this sounds silly, doesn't it, since we're talking about

writing computer games. Let me explain. If you write a game
of tic-tac-toe or Othello for two players, you're really only
utilizing graphics—the game could just as well be played
on paper or on the board. But, if you write the game for
one person against the computer, then you are using the
computer to help go through a logic process. Another use
of the computer is doing anything with random numbers.

Write Your Program
Of course, you may just sit at the console and begin pro-

gramming your game and hope you can remember all the
logic. Some programmers like to draw a flowchart. On logic
games you may like "tree diagrams"—i.e., if the player does
one option you branch one way; then depending on the next
choice, you branch again and so forth. Other programmers
prefer a structured approach—each process of the game is
in a subroutine and the main program calls the subroutines
in order. This type of program is easy to evaluate and easier
for other programmers to follow than a program that has
GOTO statements all over the place.

Include Instructions
Many players are anxious to play the game and won't

read anything that comes with the game program, so it is
wise to include simple instructions within your program.
Players who are playing the game a second time, however,
won't want instructions, so you must try to satisfy everyone.
One method is to print the instructions on one screen with
"PRESS ANY KEY TO START" at the bottom of the
screen. The player can then look at the screen as long as
he wants or immediately press any key to start the game.

100 PRINT "PRESS ARROW KEYS TO GO"
110 PRINT "LEFT OR RIGHT."

120 PRINT "PRESS 'F' TO SHOOT."
130 PRINT :::"PRESS ANY KEY TO START."
140 CALL KEY(0,K,S)
150 IF S < 1 THEN 140
160 Program continues for game.

Another method is to ask the player if he needs instructions:

100 PRINT "NEED INSTRUCTIONS? (Y/N)"
110 CALL KEY(0,K,S)
120 IF K = 78 THEN 150
130 IF K < > 89 THEN 110
140 Program prints instructions.
150 Program continues for game.

If the player presses Y, instructions will be printed; if he
presses N, the game starts. Any other key pressed is ignored.

Be sure the instructions are as clear and concise as possi-
ble. Use enough blank lines to make the instructions easy
to read. Make sure words are not divided at the ends of
lines, be sure to spell correctly, and use correct grammar.

"Dummy -Proof" Your Game
A nicer way of saying this is make your program "user-

friendly." This means consider all possibilities of input. You
never know what some other player will try to do. If he has
to answer "yes" or "no," can he just press Y or N, or does
he need to spell out and ENTER the answer? Pressing one
key makes for less chance of error than using INPUT. What
if the game asks for a number, and a letter is pressed? What
if the game asks for a choice of 1 through 4, and the number
7 is pressed? If the player needs to use the arrow keys, is
there a default value if he hits the wrong key, or is that key
ignored—or worse yet, does the program crash?

Check for Speed and Captivation
You don't want the player to fall asleep between moves.

If you have moving objects in your game, he wants them
to be as fast as possible. The main hints here are to make
the moving object just one character and to minimize the
logic between moves. Remember, the more objects you have
to move, the longer it will take. And if you don't need to
worry about scrolling (lines moving up the screen), PRINT-
ing characters is faster than CALL HCHAR or VCHAR.

Look Through your Listing
If you use the same group of lines several times, use a

GOSUB and place the subroutine near the beginning of the
program. For example, a subroutine to print a message M$
on Row X starting in Column 1 is

180 FOR J = 1 TO LEN(M$)
190 CALL HCHAR(X, J,ASC(SEG(M$(J,1)))
200 NEXT J
210 RETURN

48 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Within the program, the message and row numbers are
defined, then the subroutine called:

1740 M$ = "BLUE WINS THIS TIME."
1750 X = 22
1760 GOSUB 180

Check for unnecessary statements. I have seen a few
listings that contain some coding that can never be executed
or is superfluous, or a subroutine that is never called. Other
cases may occur because of editing. For example:

900 GOTO 920
910 X = 25
920 GOTO 980

Or:

900 GOTO 910
910 Z=Z+ 1

Or:

900 IF X = A THEN 700 ELSE 910
910 GOTO 980

Test Your Game
Again, check all possibilities. If you say your spaceship

can move to the right and to the left, be sure to check both
directions. Make sure positive and negative numbers work
correctly in your calculations (you may want to use the AB-
Solute function). Check the scoring to see if it is adding cor-
rectly. Test the possibility of hitting the wrong key. Test
moving objects at the edges of the screen.

Specific Game Coding

Random Numbers
Be sure to use the statement RANDOMIZE before us-

ing RND so each game played will be different. If random
numbers are computed in several different places, consider
using RANDOMIZE before each RND to ensure total ran-
domization throughout the game. Sometimes a single RAN-
DOMIZE statement at the beginning of the program does
not work.

A simulation of rolling the dice would need a random
number between 1 and 6:

100 RANDOMIZE
110 D1 = INT(RND*6) + 1

In a space program or skill-type game you may want to
place obstacles at random positions. If you have several ob-
jects, DEFine a few functions at the beginning of the pro-
gram, so they can be used more easily in the coding later:

100 DEF RX = INT(RND*24) + 1
110 DEF RY = INT (RND*29)+ 2
120 CALL CLEAR
130 RANDOMIZE
140 FOR I = 1 TO 5
150 CALL HCHAR(RX,RY,65)
160 NEXT I
170 CALL VCHAR (RX,RY,66)
180 STOP

The DEFinition statements must be numbered lower than
the statements in which the functions are used. Lines 140-170
place five A's and one B in random X and Y positions for
X from 1 to 24 and Y from 2 to 30.

Another use of random numbers is choosing a random
message or procedure. For example,

500 PRINT AS(INT(RND*9) + 1)

chooses one of nine messages previously stored in the AS
array. For random subroutines, the coding would be

510 ON INT(RND*5) + 1 GOSUB 220,250,300,350,400

Games using a deck of cards may use an array to keep
track of which cards are dealt. You may use C$(52) for the
52 cards or a two-dimensional array C(13,4) where the first
parameter is the number chosen and the second is the suit.
An example for choosing ten cards follows. The values in
the card array are initially zero. As a card is chosen, the
corresponding C element is set equal to 1. In the following
example I printed the card values, but you really should use
the TI graphics to draw the cards.

0 0 E M C A D S
1 0 C A L L C L E A

1 2 0 D M C(1 3 4 A$ 1 3)
3 0 D A T A A C 2 3 4 5 6 7 	8 9 1 0 A C K Q

U E E N ,K N
4 F 0 1= 0 1 3

1 5 0 E A D A)

6 0 N E X T
1 7 S U T 1) H E A R T S
1 8 0 S U T $ 2) C L U B S

9 0 S U T 3) D A 0 N D S
2 S U T 4 S P AD E S
2 1 P N E N C AR D S H 0 S E N
2 2 0 A N D 0 E
2 3 0 F 0 I= 1 T 0 1 0
2 4 0 N N T(1 3 N D) + 1
2 5 0 S N T(4 N D +1
2 6 0 F C (N S) 1 TH E N 2 4 0
2 7 0 B N A B 6 LE N A N) A N A B

7 OF A B 10 S U 1 S
2 8 0 C S) 1
2 9 0 N E X
3 0 S T 0 P

One more use of RND is for choosing random sounds.
The CALL SOUND statement requires a frequency between
110 and 44733. Of course, most people cannot hear frequen-
cies above 15,000; however, your dog may enjoy the higher
frequencies. This statement plays a sound frequency bet-
ween 110 and 2109:

300 CALL SOUND (200,INT(RND*2000) + 110,0)

You may wish to use random sounds while you're placing
objects randomly on the screen.

Sound and Noise
A lot of the fun in programming games is choosing the

sound effects to fit your game. The following is a program
that demonstrates the "noises" available on the TI-99/4A:

100 REM NOISE
110 FOR I = — 1 to — 8 STEP — 1
120 CALL SOUND(4000,I,0)
130 CALL CLEAR
140 CALL SCREEN(ABS(I) + 2)
150 PRINT "NOISE NUMBER";I
160 NEXT I
170 GOTO 110
180 STOP

Listen to these noises and choose what you need for your
game. You can make crashing noises, explosions, airplane

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	49

or car motors, splats, bounces, rocket boosters, missile fire,
or whatever you need. The noises may be varied by adding
another set of sound frequencies and loudnesses.

Time
Since the 99/4A does not have an accessible real-time

clock, time may be simulated by placing a counter in the
CALL KEY routine or another loop that is executed regular-
ly. The following example shows a counter as you move
the asterisk up and down with the up and down arrows (E
and X) keys. After a time of 100, the number of moves you
have made is printed. You will notice that if you press a
key, the counter moves more slowly than if no key is pressed,
so the counter is not as even as a metronome but good
enough for games.

100
110
120
130

REl
CALL
X=12
CALL

TIMING
CLEAR

HCHAR(X,15,42)
140 TI E=0
150 CALL KEY(0,K,S
160 TIME=TI E+1
170 FOR 1=1 TO LEN(STRS(TI E))
180 CALL HCHAR(22,I+3,ASC(SEWSTRS(TI

E),I,1)))
190 NEXT I
200 IF TI E=100 THEN 350
210 IF K<>69 THEN 240
220 DX= 1
230 GOTO 260
240 IF K<>88 THEN 150
250 DX=1
260 CALL HCHAR(X,15,32
270 X=X+DX
280 IF X>0 THEN 300
290 X=24
300 IF X<25 THEN 320
310 X=1
320 CALL HCHAR(X,15,42)
330 I OVES= OVES+1
340 GOTO 150
350 PRINT OVES= , OVES
360 STOP

Following is another example of a way to time a
process—in this case, typing your name.

100 RE SPEED TEST
110 CALL CLEAR
120 TI l E=0
130 PRINT "TYPE NAPE THEN PRESS ENTER

140 FOR Y=3 TO 28
150 CALL KEY(0,K S)
160 TIP E=TIME+1
170 IF S<1 THEN 50
180 IF K=13 THEN 21 0
190 CALL H HAR(2 Y K)
200 NEXT Y
210 PRINT "TIME= T E
220 STOP

An accui ate way to de ay for a specific length of time
in your program is to use CALL SOUND for the number
of milliseconds you need. Use 30 for the volume level and
a very high frequency if you don't want to hear anything.
While the CALL SOUND statement is being executed you
may also be doing graphics of calculations. To end your
timing device you will need another sound statement with
a duration of 1. The following example illustrates how the
CALL SOUND statements may be used for a rocket
countdown.

100 FOR I = 10 TO 1 STEP — 1
110 CALL SOUND (1000,44000,30)

120 PRINT I
130 NEXT I
140 CALL SOUND (1,44000,30)
150 Program continues for rocket blastoff.

Arrow Keys
In games where you move a character up, down, left, or

right, you may wish to have the player press the arrow keys.
The arrows are on the keys E, D, X, and S. A CALL KEY
statement is used to receive the player's input; then the pro-
gram branches, depending on which arrow is pressed. Any
other key pressed should be ignored so your program doesn't
crash with bad values.

The following routine will draw a trail of asterisks as you
press the arrow keys. Remember, you must consider the
edges of the screen or you will get a "BAD VALUE"
message. Lines 270-340 test for the edge values and will keep
the asterisk at the edge position.

1 0 0 E M M A K E A R A L
0 C A L L C L E A

2 0 X 2
3 0 Y 5

1 4 0 C A L L H H A R 2 1 5 4 2
5 0 C A L L K E Y 0 K S

1 6 0 F K 6 9 E N 9 0
7 0 X X 1
8 0 G 0 T 0 2 7 0
9 0 F K 6 8 T H E N 2 2 0

2 0 0 Y Y 1
2 	0 G 0 0 2 7 0
2 2 0 F K 8 8 H E N 2 50
2 3 0 X X 1
2 4 0 G 0 T 0 2 7 0
2 5 0 F K 8 3 T H EN 1 5 0
2 6 0 Y Y 1
2 7 0 F X > T H E N 2 9 0
2 8 0 X
2 9 0 F X 2 4 T H EN 3 1 0
3 0 0 X 2 4
3 1 0 F Y 1 H E N 3 3 0
3 2 0 Y
3 3 0 F Y 3 2 H EN 3 5 0
3 4 0 Y 3 2
3 5 0 C A L H H A X , Y 4 2
3 6 0 G 0 T 0 5 0
3 7 0 S T 0 P

Remember that there are many ways of coding to get the
same result, and the examples presented here are just that—
examples. The following routine illustrates another way to
use the arrow keys to move a character. This time the
previous character is deleted. Also, lines 330-410 will make
the asterisk scroll to the other side of the screen instead of
staying at the edge.

100
110
120
130
140
150

RE
CALL
X=12
Y=15
C ALL
CALL

MOVE
CLEAR

KEY(0,K,S)

A

HCHAR(X,Y,42)

STAR

160 IF K<>69 THEN 200
170 DX=-1
180 DY=0
190 GOTO 310
200 IF K<>68 THEN 240
210 DX=0
220 DY=1
230 GOTO 310
240 IF K<>88 THEN 280
250 DX=1
260 DY=0
270 GOTO 310
280 IF K<>83 THEN 150
290 DX=0

50 	The Best of 99'er 	Volume 1
	

Copyright ©1983 Emerald Valley Publishing Co.

3 0 0 D Y
3 	0 C A L L H C H A R X Y 3 2
3 2 0 X X D X
3 3 0 F X 0 T H E N 3 5 0
3 4 0 X 2 4
3 5 0 F X 2 5 T H E N 3 7 0
3 6 0 X 1
3 7 0 Y Y D Y
3 8 0 F Y 0 H E N 4 0 0
3 9 0 Y 3 2
4 0 0 F Y 3 3 H E N 4 2 0
4 1 0 Y 1
4 2 0 C A L L H C H A R x Y 4 2
4 3 0 G 0 T 0 1 5 0
4 4 0 S T 0 P

A more compact approach to automatic scrolling is to
replace lines 330-360 and 380-410 with these two lines:

330 X = INT(24*((X — 1)/24-INT((X — 1)/24))) + 1
380 Y = INT(32*((Y — 1)/32-INT((Y — 1)/32))) + 1

Split Keyboard
A split keyboard is used when two competing players or

teams are interacting with moving objects on the screen. In-
stead of CALL KEY(0, KEY, STATUS), you will need to
recieve input with CALL KEY (1, KEY 1, STATUS I) and
CALL KEY(2, KEY2, STATUS2). You may wish to use
a Video Games 1 Command Cartridge overlay for the ar-
row keys. You'll notice the arrow keys for the right side
of the keyboard are keys I, J, K, and M. The key codes
returned in CALL KEY are 5 for up, 2 for left, 3 for right,
and 0 for down for both sides of the split keyboard. Note:
There is a slight problem in testing for zero on the 99/4A
console, so use logic such as IF KEY2 + 1 < > 1 instead
of IF KEY2 < > 0. It also seems wise to avoid using SHIFT,
ENTER, G, B, slash, semi-colon, comma, periods, and the
space bar for key input (such as firing a missile) because
the key codes for these keys are different on the 99/4 and
99/4A. You will want your game to work on both consoles
so you can share with others.

An example of the logic for two players and a split key-
board is shown in lines 910-1510 from the game Maze Race
in the section "Computer Gaming."

Joysticks
Enter the sample programs that come with your TI Wired

Remote Controllers to get an idea how to program move-
ment with one or two joysticks. Keep in mind that CALL
JOYST (KU, X, Y) returns X and Y values of 0 and plus
or minus 4, depending on the position of the lever. By the
way, don't get these X and Y values confused with X- and
Y-coordinate values for HCHAR and VCHAR.

Following is a sample program that allows the player to
move the asterisk with either the arrow keys or a joystick.
Line 150 is a CALL KEY statement. If no key on the
keyboard is pressed, all the arrow key logic is skipped and
CALL JOYST (line 330) is executed. If a key has been
pressed, then the joystick logic statements (lines 330-350)
are skipped. (Remember: ALPHA LOCK up for joysticks,
down for arrow keys.)

0 0 REM 0 Y S C K S
0 CAL L C L E A

2 0 X=1 2
1 3 0 Y=1 5

4 0 CAL L H C H A X Y 4 2
5 0 CAL L K E Y 0 K S
6 0 I F S 0 H E N 3 3 0
7 0 I F K 6 9 T H E N 2 1 0
8 0 DX= 1
9 0 DY= 0

2 0 0 GOT 0 3 6 0
2 	0 I F K 6 8 T H E N 2 5 0
2 2 0 DX= 0
2 3 0 DY= 1
2 4 0 GOT 0 3 6 0
2 5 0 I F K 8 8 T H E N 2 9 0
2 6 0 DX= 1
2 7 0 DY= 0
2 8 0 GOT 0 3 6 0
2 9 0 I F K 8 3 T H N 5 0
3 0 0 DX= 0
3 1 0 DY= 1
3 2 0 GOT 0 3 6 0
3 3 0 C AL L 0 Y S T A B
3 4 0 DX= B 4
3 5 0 DY= A 4
3 6 0 C AL L H H A Y 3 2
3 7 0 X=X D X
3 8 0 Y=Y D Y
3 9 0 X=1 N T 2 4 1 2 4 N T 2 4

+1
4 0 0 Y=1 N T 3 2 Y 1 3 N T Y 3 2

+1
4 1 0 CAL L H H A Y 4 2
4 2 0 GOT 0 1 5 0
4 3 0 S TO P

Detect' rig a Crash
Probably the most common way of determining if your

moving object hit some obstacle in position X, Y is by us-
ing CALL GCHAR(X ,Y ,C). The C value returned is the
character number occupying positon X, Y on the screen.
For example, you may then test if C = 32 (space); if so, the
program could continue. But if C = 96 (one type of object),
the program would branch one way, and if C = 99 (another
object) the program would branch another way—with the
appropriate sounds and graphics.

Another method of determining the character in a cer-
tain position is to have the screen positions in an array and
have each array element contain information about the
character in that position. For example, you may have an
array A(24,32) for the 24 rows and 32 columns of the screen.
Each element of A could be zero for a space and 1 for a
block in a maze. Your testing statement would look like

200 IF A(X,Y) = I THEN 240

This means if the position X ,Y is a block, then branch to
line 240 where a crashing noise is made and appropriate ac-
tion takes place. Note that by using OPTION BASE 1, you
will eliminate Row 0 and Column 0 and save memory space.

Do It!
I've presented some fundamental hints and ideas for pro-

gramming; now it's your turn to put on your thinking cap,
turn on the computer, and have fun writing your own
games!

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	51

CHUCK
-A-

LUCK
HOW PROS PROGRAM

PART 1: "A bad beginning makes a bad ending"

Have you ever LISTed a program that you bought,
and after looking at the listing thought, "That's not
so hard. . ."?

Actually, you're quite correct in believing that writing a
good program is not really so difficult. But when begin-
ning programmers sit down to translate this belief into a
finished program, many wind up confused and frustrated.
This can most often be attributed to their accompanying
belief that writing a program is just a matter of sitting down
at a keyboard and banging away at it—a procedure that
is destined to fail.

To explain an alternate approach—one that all experienced
programmers use—I'll list the sequence of events that I
go through whenever I want to write a program.

First, I sit down and decide what the program is going
to do. If it's a game, I write down all the rules (even if
I'm making the game up). If it's a business-oriented pro-
gram, I decide what features it has to have—i.e., sorting,
saving data, or printer output. Without this initial plan-
ning, I wouldn't have a goal in mind when I reached
subsequent stages.

Second, I design the program. A design is a plan show-
ing the functions (the "whats") that a program contains.
For example, a program that plays the game of Chuck-
A-Luck would contain the following functions: (1) ex-
plaining the rules, (2) rolling dice, (3) accepting bets, (4)
paying off (or collecting) money, and (5) checking for
the final win/loss condition. (See Figure 1 for the rules
of the Chuck-A-Luck game that I'll be using as an ex-
ample.) I don't figure out how I'll do these things at this
time; I just figure out what the program has to do.

Third, I group together any "whats" that I feel are
different parts of the same top-level module or function.
For example, giving the rules, generating the dice
characters, and getting player names are all part of in-
itialization; so at first I put them together under the top-
level function name of START-UP. Now, I'll write these
functions down in a list. For this simple game of Chuck-
A-Luck, my list of top-level modules looks like this:
START-UP, DICE-ROLLS, and END-GAME.

Next, I look closely at each function (or module) and
list everything I need to do in each of these modules. For

example, the START-UP function will also have to in-
clude things like DIMensioning data, asking if rules are
needed, asking the number of players, and initializing
data fields. The DICE-ROLLS module will have to take
bets for each roll, roll the dice (and display them), decide
the winners and losers, and recompute new cash balances
for each player. The END-GAME routine will have to
print an appropriate message after all players go broke
or a winner is determined, ask if any player wants to try
again, and restart the game.

Notice that all I have done so far is write down the
"whats" of the program. I haven't looked at the "hows"
yet. The technique I have been using is called top-down
design and consists of breaking a problem or program
into its component modules. These new modules are
themselves broken down into even smaller ones until you
finally arrive at reasonably sized, easily codable low-level
modules.

Sometimes, as you break modules into smaller and
smaller routines, you may find at the lowest levels that
some modules are duplicated. That means that the same
module can belong to (or be used by) more than one
higher level module. This kind of routine is called a
subroutine. A good example of a subroutine that you
would code in TI BASIC would be a routine to display
messages on the screen using CALL HCHAR. It would

Figure 1. 	CHUCK-A-LUCK Rules
1. Each player starts with $500.
2. Each player bets an amount of money from $10 to $50

on a dice value from one to six.
3. Three dice are rolled.
4. If no die has a value equal to the value selected by a

player, he loses his bet.
5. If one die has a value equal to the value selected by a

player, that player receives an amount equal to the
amount that he bet.

6. If two dice have that value, the player receives twice
the amount he bet.

7. If three dice have that value, the player receives three
times the amount he bet.

8. A player who goes bankrupt is out of the game.
9. The game ends when only one player remains. The re-

maining player is the winner.
10. If all the remianing players go bankrupt at the same

time, there is no winner.

52 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

DIMENSION CREATE D CE

ASK IF NEEDED I DISPLAY RULES

be called by other routines in your program (using the
GOSUB statement) whenever they wanted a message
displayed on the screen.

But when do we stop designing and actually start
writing the program? There's a different answer for each
program and programmer. The idea here is to stop at a
point where you feel that you can picture in your mind
what the code should look like. For advanced program-
mers, this may mean that there are fewer modules in a
design, and each module will have a lot of lines of code
in it. For beginners, I would recommend stopping when
each module is self-explanatory to you—usually this re-
quires about 10-20 lines of BASIC code.

As I am doing my design, I keep track of the modules
by drawing a structured design chart which shows which
lower-level modules belong to (are to be part of) each top-
level module. After going over all of my top-level
modules, my structured design looks like Figure 2, below.
Figure 2 	Structured design furl CHUCK— A—LUCK

I STARTUP I DICE_ROLLS

DICE ROLL PAY/COLL C

EDIT AMOUNT

FIBp][

Take a look at the START-UP module. It includes a
lbw-level function called GET NAME. Now look at
DICE-ROLLS. It includes a low-level module called
EDIT AMOUNT. These routines demonstrate two rules
I always follow when I design programs: First, whenever
possible, I try to make the program "user-friendly." This
includes things like displaying understandable error
messages (instead of a cryptic "NOT POSSIBLE"), us-
ing player names (instead of numbers), and giving
prompts that explain what action is required. Too many
people write programs that call you PLAYER #1 and tell
you to do something by saying things like "CODE?".
It takes only a little longer to write a program that says
"OK, MIKE, HOW MUCH WILL YOU BET THIS
TIME?" And the results are well worth the effort.

Of course, in a business-oriented program, you don't
usually ask for people's names. But such a program can
become user-friendly just by judicious use of self-
explanatory prompts and error messages. Of course, be-
ing user-friendly makes for longer and larger programs.
I personally don't worry about how much extra memory
it requires at first. After all, I can always remove those
wonderful messages and replace them with a "NOT
POSSIBLE" message if I have to!

By the way, if you stop to think about it, the TI BASIC
and Extended BASIC that you work with is very user-
friendly. It does things like prompt you for cassette tape
I/O and give you meaningful error messages when you
are in EDIT or COMMAND mode.

The second rule that I always follow is that any data
that is input into a program must be fully edited—i.e.,
it must be checked to make sure it is the proper type and
in the proper form. Always! Always! Always! I said it
three times because this is one of the major differences
between a professional program (which can be used by
anyone without "blowing up"—especially when en-
countering some strange input from an unfamiliar user)

and a program which is usable only by the person who
wrote it.

Some of the rules that I always like to follow include:
1. Make sure that numeric data really is numeric (of
course this is something the TI BASIC does for you
automatically).
2. Make sure that integers really are integers (and not
decimals or scientific notation).
3. Make sure that the data itself is realistic (always test
for maximums and minimums—e.g., making sure
nobody bets more money than he has!).

I'm now finished with my design as far as what
modules are needed. The fifth step in creating a program
is to decide what information I need to communicate be-
tween these modules. The information that is passed from
one module to another is called a variable. And deciding
on what variables are needed before you sit down to write
program code is just as important as deciding what
modules you need. If you make a mistake in your design
variables, the last phase of programming (called debug-
ging) will take twice as long as it needs to be. This is
because whenever you realize that you need a new
variable, you have to make coding changes in modules
(that have already been coded) in order to handle them.
And changing code is what destroys well-written
programs!

Programs will also need variables that are used only
within a module (i.e., things like loop counters), but you
don't have to worry about them during your design. As
long as a variable that is only used within a module has
a unique name (not used again in another module), then
no problems should arise when debugging. Of course, if
the variable name will be used again in another module
(which is a bad idea unless memory is, tight), then it is
just as important as a regular variable's.

The variables that I need to communicate between my
Chuck-A-Luck modules are
The number of players
The player names
The cash each player has on hand
The amount bet by each player
The dice value on which each player bets
The value of each die

Choosing the names for these variables is equally im-
portant. A poorly chosen name is asking for trouble when
you get down to writing and debugging your code. A
good variable name has the following three attributes:
It is long enough to say what it is and what it's for.
It is short enough so as not to slow down the program.
It does not look too similar to any other variable.

For the Chuck-A-Luck game, I'll use NO PLAYERS,
PLAYER NAME, PLAYER CASH, PLAYER
BET, PLAYER DICE, and DICE VALUE as my
variable names. And, I won't re-use variables that are
used within a module.

Now my design is finally complete, and I'm ready to
start coding. I have done everything that I could to in-
sure that the program will do its job and am ready for
the sixth step in creating a good program—planning the
code. As we have just learned, the first rule of good pro-
gramming is PLAN, PLAN, PLAN!

END_GAMEI

I ASK FOR RESTARTI

DISPLAY WINNER I

ASK NUMBER START BALA C ROLL DICE DISPLA

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	53

CHUCK-A-LUCK
	

PART 2: "Make no little plans. . . ."

B uilding a good program is a lot like building a house.
First, you need a good design. Then, you need good
tools, good materials, and good work habits to use

them all properly. We have discussed a way to develop a
good design by using a techinque commmonly called struc-
tured design or top-down design. Now we'll talk a little
about how to get the necessary tools and materials and
cultivate the habits that we need.

After completing our design effort, you might expect the
next step to be coding the program. But this, in fact, is not
the case. Just having a good design doesn't mean that the
code in your program will be correct or that you will write
the best code for the job. In every task, there are two things
to remember: The first is that you want to do the right job.
The second is that you want to do the job right. To do the
right job means that your code has to follow the design that
you came up with. To do the job right, you have to create
the best code for the job. And like anything else, these both
require planning. That's right! We still have some plan-
ning to do. Only this time, we must plan our code.

The first thing to do is refresh your memory on the design
we came up with to play Chuck-a-Luck. Notice how we
developed the modules that tell us what to do, but not how
to do it. The purpose of planning our code is to figure out
how we want to do it in the best possible way. At the same
time, we want the "hows" that we develop to be easily coded
and debugged, to execute quickly, and to be easily
modifiable so that we can make future improvements.
Starting UP with START-UP

Let's start with the module called START-UP. One of
its top-level components was DIMENSION. That module
is needed to set up the dimensioning of any arrays needed
in the program. Although it is not absolutely necessary to
code the DIMension statement at the very beginning of your
program, I have found that it is always best to put it right
up front. So, when I plan my code, the DIMENSION
module will be my very first line of code. Another good
coding habit to get into is to start your programs at line
100, which leaves you room in the front of your program
in case you have to add an extra statement to start off your
program. I will reserve lines 100-140 for any dimensioning
of data that I will need. But before 1 go on with the remain-
ing design of the code, I think that we had better take time
out to talk about the DIM statement and what it is used for.

When I was doing the design, I knew from my original
plan that the program was going to have to handle 4 players.
That meant that every time I did something concerning a
player, I would have to know which player I was dealing
with. For example, if each player was going to make a bet
and win or lose, the program would keep track of these
things (called variables) for each player. There are two ways
of doing this. The first way is to give a different name to
each one of these variables for each player. That is, I could
keep track of each player's bet by having one variable called
BET_I and another variable called BET 2, and so on.
This way, I would know at a glance what was contained
inside the variable. The only problem with this way of do-
ing things is that the program needs separate code for each
player. This means that you would have to key in more lines
of code. It means more chances for data entry errors. It
also means the possibility that you could accidentally write

the code for each player a little bit differently, which in turn
means that you would need to debug your code for each
player.

Suppose, however, that you did not need to give each
player a different variable name. Suppose that you could
just call the variable by the single name of BET. Then the
code for each player would be the same. As a matter of
fact, you would have to code the logic only once, because
it could be re-used for each player. As you can see, this
would be a great improvement. You still have more than
one player so you would have to be able to say which
player's BET you wanted to deal with. Well, the way that
the BASIC language handles this is to allow you to set up
an array called BET. This array has only one name but con-
tains multiple slots. Imagine an apartment building called
BET containing only one floor with a lot of rooms in it.
The room numbers start with 0 and increment by one. The
computer can put the betting information for player 1 into
room number 1, the information for player number 2 into
room number 2, and so on. Now, in order to look at the
bet of player number 3, all we have to do is tell the com-
puter to look at room number 3 of BET. We do this by
saying BET(). The value 3 is called a subscript of the ar-
ray called BET.

This is an improvement over saying BET _3 but not
much. But if the computer can be told which subscript
(room number) to use via another variable, then you can
realize a great improvement. Suppose all you had to do was
tell the computer to look at something called X, and that
X had the value of the subscript in it. Now you just put
the room number inside X and tell the computer to look
at BET(X). How do you put the room number into X? The
same way you put any number inside any variable. You can
say things like X = 3 or X = A + B or set X to a range of
values in a FOR-NEXT loop. The important thing is that
you do not have to know in advance what is in X before
you execute the code. By the way, I used the name X just
as an example of my subscript name. We could have called
it PLAYER—NUMBER, or I, or any other legal variable
name. Also, just because a variable is being used as a
subscript in one part of your program, it doesn't mean that
the variable can only be used as a subscript. Any variable
can be used as a subscript. It is also possible for two (or
more) variables to be used as subscripts for the very same
array, depending on what you are trying to do.
"Roomy" Arrays in TI BASIC

Now, two questions should be running through your
head. The first question should be, "How many rooms can
TI BASIC build for a given array?" The answer is that it
depends on what (if anything) you tell it to do. If you don't
tell it anything, it will automatically set aside 8 rooms (slots)
for any array it may meet in your code. It will do this the
first time it sees the array. If you need more than 8, you
may not want to waste space on unused slots. In either
case—less than 8 or more than 8 with no waste space—you
tell it how many slots you need by using the DIM statement.

The second question should be, "What about room 0?"
In my game, it is always empty. In some programs, however,
room 0 may very well be used. If room 0 is not going to
be used at all, you can tell this to TI BASIC so that it won't
waste computer memory with a room 0. This is done by

54 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

putting a statement with OPTION BASE 1 in front of the
DIM statement.

Of course, just as an apartment building can have rooms
on more than one floor, an array can have more than one
level of slots. But since we don't need multiple levels in our
program, we'll leave a discussion of this to a later time. For
now, let's look at our variable list and see what variables
are going to be arrays so that we will put them in our DIM
statement. We will need to keep track of information for
1 to 4 players. In addition, there will be 3 dice and each
die will have a value. Look at line 100, of the TI BASIC
listing that starts on page 59, to see how I coded the DIM
statement for these arrays. Notice that you cannot use a "-"
as part of a name in TI BASIC. You can make variable
names with several words in them by using the underline
character (" ") to connect the words. For instance, I coded
the array as DICE VALUE in this program.
Leaving Out the Difficult is Easier

We are not ready to begin planning the code for the rest
of the START-UP module. Because (by definition) this code
will only be used once for each game, I like to keep it up
far away from the main logic of my program. For this
reason, I usually begin coding these one-shot modules at
line number 20000 to give myself a lot of leeway in case
I leave out a line of code or have to add another line during
debugging. I always increment my statement numbers by
10 or more. In addition, I also make sure that there are plen-
ty of unused statement numbers between the end of one
module and the start of another.

The first module to be coded in START-UP is responsi-
ble for creating the graphics for the dice. Naturally, you
now expect me to give you the code. But I won't! You see,
it's not really important that I do this right away; I can
always create the dice later after I am sure that the rest of
the program is working correctly. This is one of the impor-
tant advantanges of designing and planning your program.

When you plan your code, don't rush right into figuring
out how the code in all your modules will look. First, decide
what modules or parts of modules can be left out without
affecting the program logic. For example, the code to display
instructions can be added as the very last part of your pro-
gramming effort. A program usually will contain whole
modules requiring complex code that can be replaced by easy
code the first time through. After you are sure that the pro-
gram as a whole is working correctly, you can gradually
replace the easy code with the complex code. Why? Because
it's easier to find your mistakes in an easy program! So an
important "rule of thumb" is to always start out with an
easy version of your program. Then, as you add the dif-
ficult pieces, you at least know where to look if you hit a
snag in your debugging.

So, if I leave out all the graphics for now, what can I
substitute in their place? I can simply display the number
of each die instead of graphically showing the dice
themselves. After the program is running, I will go back
and add the graphics as well as any sound routines. Look
at what I am trying to accomplish this way:

1. By leaving out unnecessary code, I can get the pro-
gram up and running faster. This means that I can begin
debugging my program earlier. This in turn means easier
debugging because there is less code to go through.

2. By using easy code in place of complex code in some
modules, I make it easier to debug the "guts" of my pro-

gram. After knowing that the program runs correctly, 1 can
begin replacing the easy code with the hard parts a little at
a time. Then I will test only one or two new parts at a time.
This means easier debugging because any problems will
probably be due to the new code.

3. After ensuring that the main portions are running cor-
rectly, I can "fool around" with the hard portions without
worrying that 1 will hurt the program's logic. For example,
after I know that the program is running correctly by
displaying the dice numbers, I can now experiment with how
I want the dice themselves to be displayed. I can even come
up with two versions—one for TI BASIC and a different
one for Extended BASIC using sprites! I won't have to
worry that adding different versions of this code will destroy
my program.

4. By getting a version up early, I can see if my program
is worth continuing. After seeing it in action, I may decide
that it just isn't worth the effort to continue with the coding.

So for right now, I won't code the CREATE DICE
routine but I will set aside lines 20000-20500 for the code
later. The next module is called RULES and will be respon-
sible for giving the rules when asked. One part asks if the
rules are wanted; another displays them. Like the CREATE
DICE module, the entire code for this module isn't needed
now. But if I do code in the part asking if the rules are
wanted, I can test this part of the logic. If the program you
are writing is large enough, you may decide to leave both
of these parts out on your very first try.

Since I have decided to code part of this module, I will
lay it out in lines 21000-22000. The first thing I want to do
is clear the screen. This will attract the players' attention
and remove any "clutter" that may be on the screen from
any previous program. It's always a good idea to start out
your program with a CALL CLEAR statement. Notice that
in my code in lines 21010-21050, I am asking the players
for information and telling them in what form I expect the
answer to be! Too often, a programmer will code his pro-
gram so that he is expecting a particular answer, but never
tell the person using his program what form the answer
should be in. There is nothing more frustrating to a user
than trying to figure out what the person who coded the
program means when the program displays a message like
CODE?, and what the valid values of the input are. You
should try to develop the habit of explaining what data you
are looking for and what legal values the program will allow
as part of your code for an INPUT statement.

The next thing the module does is make sure that only
the first character is going to be looked at. This is done by
using the SEG$ function to strip off the rest of A$. One
of my programming "rules of thumb" is to minimize the
chance of a program user entering bad data. If I am only
expecting a Y or N, I want to look at only the first character
of the input. If the wrong answer is given, an appropriate
message is displayed and the original question is asked again.
The code to display the message will be eventually located
in lines 21000-21990, but I'll just put in a REM statement
to show where the code will be added later.

The next module (called PLAYERS in our design) is very
important and easy to code, so I will code it in full the first
time out. This is done in lines 22000-22330. Notice that it
prompts the player for the required data in each case, and
edits the input to insure that only valid data gets in. One
of the main differences between a well written program and
a poorly written one is the amount of editing done on in-

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	55

put. The "hows" of an edit for an alphanumeric field should
always include a test for an empty field (called a null string).
TI BASIC allows a null string to be entered in response to
an input statement. This kind of string data can cause a
number of problems in your program, expecially if you want
to display the data on the screen. I always test for an empty
field whenever I INPUT a string variable. That is what I
am doing in line 22140.

It may also be necessary to limit the size of an
alphanumeric field depending on how you want to display
it on the screen. For example, you may want to limit the
size of a player's name so that it fits on the same line as
his cash balance. The best way to handle this is to check
its length (using the LEN function) as part of your edit. If
the player enters a name that is too long, you can tell him
so, and ask that he enter a shortened version of his name.
There is also, however, another way: You may shorten the
field yourself by using the SEG$ function—as I do in line
22250.

When numeric fields are entered into your program, there
are always four things you must edit for. First, you have
to make sure that numeric data was entered. Luckily, TI
BASIC will do this for you automatically so you don't have
to write any code to test for this. You should get in the habit
of immediately testing your input as follows: (1) check to
make sure it isn't too large, (2) check to make
sure it isn't too small, and (3) especially check to make sure
it is a whole number (if that's what you are expecting). Look
at my code in statements 22020-22030 to see what I mean.
Also note that if the answer is illegal, I ask for the item to
be re-entered. If you don't make it obvious that you want
the data entered again, it is possible that the person using
your program may not even know that he or she made a
mistake and get confused on what to enter next.

The main portion of our design is called DICE-ROLLS;
it is responsible for actually playing the game. First, it gets
the bets from each player. Then it rolls the dice. Finally,
it makes the payments to or collects the losings from each
player who is still in the game. Since this code is executed
often, I will place it in front of my program. The three main
components are called GET BETS, DICE ROLL and
PAY/COLLECT. The first two components will be coded
as subroutines called from DICE-ROLLS. Line 210 calls
GET BETS and line 230 calls DICE ROLL. The third
module, PAY/COLLECT, will be coded as part of the
DICE-ROLLS module.

Save the Unimportant for Mafiana.
Why did I set the modules up this way? The answer to

this question requires a little background in the style of
coding that I have adopted. As you know by now, I have
a number of set methods that I follow. One of these rules
of thumb is that if I get a module that I will be expanding
or replacing later, I set it up as a subroutine to be coded
later. I just code in a GOSUB statement and keep going.
If it is a module that has to be coded fully the first time
around, I usually code it right then—unless it looks like
something that is hard to code. In that case, I code in the
GOSUB statement and hold off coding it in until I have
to. I write my programs this way because I never want to
tackle any code that will destroy my train of thought. After
all, one of the reasons we did a design in the first place was
to make sure that nothing important would be left out. So

if I keep coding, I won't get sidetracked into worrying about
the hard parts until I absolutely have to.

Lines 530-560 are used to figure out how many "hits"
a player has after the dice are rolled. Notice that this is done
using two FOR-NEXT loops, one inside the other. The in-
side loop in lines 530-560 checks to see if a player bet any
of the dice numbers that came up. The outer loop from
statements 250-760 controls which player we are looking at.
For now, I won't code the full CHECK FOR BANKRUPT-
CY module. I will instead code a short module (statements
740-750) to check for bankruptcy and STOP the program
if there's a loser. Notice how the use of arrays has made
this code simple to write. Try to imagine what it would look
like if I had to name each variable separately!

The module called END-GAME is also not very impor-
tant to the main logic of the program, so I'll ignore it for
now. This means that the only modules I haven't
looked at are GET BETS and DICE ROLL. I coded them
in lines 1200-1900 and 2000-2990 respectively. I am leaving
a lot of room in the DICE ROLL routine because I still
don't know exactly how I am going to do all of it. Oh, I
know how to roll the dice, but I haven't gotten around to
figuring out what the graphic display of the dice and the
design of the screen will look like. . .and until I do, I can't
really figure out all of the "hows" of this module. For now,
I will code the DISPLAY routine to just show what the dice
are.

In order to simulate rolling the dice, I will have to create
three random numbers between 1 and 6. This is done using
the RND function in statement 2110. Remember that RND
is really random only when you start your program with
a RANDOMIZE statement. We will eventually put this in
statement 140. But until I have fully debugged my program,
I will leave the RANDOMIZE statement out. Without it,
the dice rolls will not be truly random. They will always
follow the same pattern from the start of the program. This
allows me to replay a game exactly the same way each time,
so that if I find a bug and have to correct my code, I can
test the corrected code under the same conditions that caused
the bug in the first place. With the RANDOMIZE state-
ment in my program, I may never hit the same conditions
that caused the bug and won't be sure that I made the right
correction.

After coding in these statements, you can find the result
in Listing 1. Let's briefly review just what this program can
and cannot do. First, it does play the game according to
the rules of Chuck-a-Luck. It will handle the bets of up to
4 players. It will keep track of cash held by each player and
declare a loser. Once I have this program debugged, I then
have to plan what pieces I want to add next. The program
is missing three important features: First, it stops as soon
as one player goes bankrupt and it cannot be restarted
without rerunning the program. Second, it cannot display
the rules. Third, it is boring because it doesn't have any of
the graphics and sound features that the TI-99/4 can add
to a program to make it interesting.

Once I have written enough code to run at least a
"stripped-down" version of the program, I should turn my
efforts to debugging it. Only after I was reasonably sure
that this version of the program was working properly,
would I begin to add more code. I then would add one
module at a time and retest. And that will be the subject
of Chuck-a-Luck, Part 3.

56 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

CHUCK-A-LUCK 	PART 3: "I never make misteaks"

Don't laugh. All too often you find programs with
errors as glaring as that in my first sentence. So let's
correct it: I never make mistakes! Now, doesn't that

sound egotistical? Nobody would have the nerve to say it
out loud. But some people who write programs act like they
never make a mistake while programming! The best pro-
grammers that I have met not only admit that they make
coding errors, but they have also developed quick and effi-
cient ways to find these inevitable mistakes—called bugs by
programmers. As with everything else, we need a good
plan—a "debugging" plan—to catch them.

In the last section, we wrote a large percentage of the code
required to play the full game. As a matter of fact, the only
important module not coded was the graphics routine. So
obviously, it's time to bring on the bugs! WHOA! First we
have to figure out how to test for the various bugs I KNOW
are in there. Before we do this, let's stop and talk about
the different types of bugs found infesting even the best
programs.

The first bug that must be eradicated is the "Baddus Plan-
nus." This bug hits programs that do everything (according
to the design) correctly but don't achieve the desired result
or implement all the rules that you originally laid out. For
example, as soon as I began testing my original code for
Chuck-A-Luck, I hit a situation that I had not planned for
and which was outside the scope of the rules of the game.
In my original list of rules, I said that a player's bet could
be from $10 to $50. As soon as I began debugging my pro-
gram, however, I immediately saw a flaw in the whole idea!
If a player bets in anything other than $10 units, he may
eventually wind up with less than $10 in his bankroll. In
that case, he can't make a minimum $10 bet and yet he isn't
bankrupt. When that happens, the player is in limbo and
the whole idea of the game falls apart. A major disaster?
No, not necessarily. You see, when you have a good design,
these kinds of problems can usually be overcome. I could
have changed the logic to allow a player to bet only multiples
of $10; instead, I just changed the rules so that bets of less
than $10 are allowed. You may have noticed that this change
is already in the code found in the last section.

Note that I am not ashamed to admit this error. Indeed
I expect something of the sort to happen whenever I write
a program. So when I set up my debugging plan, the first
few items on my list are tests of the rules. These items don't
have to be the first things actually tested, but they must be
tested by the time we finish debugging.

The second bug that creeps inside programs is the very
evil "Baddus Designus." This guy shows up when the code
almost does what you want. A sure sign that your program
has this problem is that it doesn't do everything that you
wanted it to. It may mean that you left out some modules
needed to get the program running correctly. It could also
mean that a piece of code needs more information (or
variables) to do its job. In other words, you forgot (or
missed) some facts when you were designing your code. This
kind of bug is uncovered by making sure that each routine
is thoroughly tested and also by ensuring that each routine
is tested using different values in the variables.

The third bug is "Baddus Codus." This means that a
piece of code doesn't work even though it has all the infor-

mation it needs. There are a number of reasons for this kind
of bug, but they all boil down to three major ones:

1. You didn't write code that TI BASIC or Extended
BASIC understands (for example, you typed in misspelled
keywords).

2. You don't really know how a particular feature of
BASIC works. You expect it to do something that it just
won't do. This can hit your code unless you are prepared
to check the reference manual for the usage of BASIC
statements that you are not thoroughly familiar with.

3. You wrote code that doesn't do the job. The code may
be in the wrong sequence (i.e., you are zeroing out a number
just before printing it out on the screen), or a piece of code
line is missing, or you typed in the wrong variable name,
or even keyed in the wrong variable letter. It all boils down
to normal human error.

Bug Catching
If you are lucky, TI BASIC or Extended BASIC will catch

some of your errors for you. But don't rely on it. The only
good way to check for a case of "Baddus Codus" is to look
over your code before running it and then carefully watch
how your program behaves when you run it.

Since a test plan for each program depends on the par-
ticular code and therefore is unique, the best that I can do
for you is list some rules to follow when making up your
test plan and debugging your programs.

A. List the program and visually check the code. Review
your code for incorrect spelling of variables, mis-
coded statements (i.e., missing double colons between
statements in Extended BASIC), and incorrect CALL
names. Fix any errors you find immediately. After you have
done this, do it again. Then save this copy of your program
to disk or tape before you run the program. This will pro-
tect your hard-earned code if your computer decides to
"eat" your program on the very first test. Label this Ver-
sion 1.

B. Write down the function of each major module. Under
each module, list the range of valid variables. This should
be done so that when you begin debugging, you can set up
your tests using both the largest and smallest values possi-
ble for each module.

C. Set up a test for each major module. Write down what
values you will input and what you expect the output values
to be. If you don't write it down before you begin your test,
you won't really know if a module is working correctly while
you are debugging.

D. Decide whether or not you can use the BREAK com-
mand to test the module. In many cases, a routine or module
can be tested locally. By that, I mean that the module uses
only a few variables and that you can set some values for
these variables at the start of the module and BREAK at
the end. Then you can check to make sure that the results
are correct by PRINTing them on the screen when the com-
puter stops at the BREAK point. For example, suppose a
routine starts at line 1000 and uses the variables X and Y
as input. The routine is supposed to use these values to
calculate the variable Z using some formula. You can test

Copyright 0 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	57

this routine locally by adding the following code in the front
and back:

1000 BREAK (replaces the REM statement at the start
of the routine)

routine
code is
here

1100 BREAK

Now RUN your program and make X and Y whatever
values you want them to be when the program initially stops
at line 1000. When you type in CON, the machine will ex-
ecute your routine and and stop at the second BREAK state-
ment at line 1100. When your program stops, type in PRINT
Z so you can look at Z's value. In fact, you may want to
add the following program statement after the second
BREAK: 1110 GOTO 1000. In this way, the routine will
continually repeat so that you can test your code using a
number of input variables without the trouble of having to
execute the rest of the program each time. That's why I call
it a local test. Just make sure you remove that extra GOTO
statement as soon as you finish testing that module!

Of course this technique isn't possible with all routines,
and in some cases, it's not worth the effort. Just keep in
mind that it's one debugging tool that you can use. It also
shows a good reason to get into the habit of writing very
straightforward code. In a routine, you should try to
minimize GOTO statements which take the program out-
side the routine. If the routine above had GOTO statements
that jumped outside the routine, it would be almost impossi-
ble to test the routine locally, because you could never be
sure that your program would reach statement_ 1100.
Although program size limitations may force you to reuse
code, write all your routines with only one entry point and
one exit point if possible.

E. Begin your tests. Carefully note any time that a routine
does not give a correct result. Don't stop the program (using
the Shift C or FCTN4 keys) each time you notice a pro-
blem. Just note the nature of the problem and what the pro-
gram was doing at the time. For example, if you notice a
problem in a routine only when the second player is bet-
ting, or if the dice roll is a 6, this is very important infor-
mation and you should make sure that you write it down.
Wait until you have uncovered a number of problems or
until the computer stops with a BASIC error message.

F. Check each routine where an error occurred. Mental-
ly "walk" through the code by doing each instruction or
calculation on a piece of paper. Usually, you will find your
errors this way quite easily. When you locate the error, write
down the line number and the solution but don't key it in!
This is because as soon as you change any of the code in
a program statement, BASIC will reset all of the variables
to 0 (for numbers) or empty (for strings). This may make
it impossible to debug some other routine during the same
test run. If you cannot find the bug by walking through the
code, look at any intermediate results that may be available
by PRINTing any intermediate variables. You may be able
to find your mistake this way. This works especially well
in complex code with a lot of intermediate totals.

G. If you get to a very difficult spot where the code
looks OK, but you are sure it contains an error, don't panic!
Use the BREAK xxx command, where xxx is an actual line
number. This allows you to stop the program every two or
three lines. At every BREAK, PRINT the important
variables, and write them down along the line number of
the BREAK. Then type in another BREAK xxx command,
using a line number two or three lines further along. Type
in CON and wait for the program to stop again. You can
usually narrow the problem down to a single line this way.
If you can't find a misspelling or other typographical er-
ror, re-enter the program line very carefully when you have
finished this round of debugging. This will likely fix the er-
ror (as long as the code you are entering is good code).

H. When you have gone as far as you can in this test,
fix all the bugs that you have discovered. Check off any
of the tests that have successfully been concluded.

I. Save this new version of your program to disk or tape.
I usually have a version number in a REM statement in the
front of my programs. I increase this version number every
time I change my code. This allows me to know what ver-
sion of the program I have read into the machine when I
begin my tests the next day. If you are saving to cassette
tape, make sure you label the tape with the new version
number. If you are using a disk, you may want to add the
version number as part of the program name (i.e., SAVE
DSKI.CHUCKV3). Making the version number part of
your SAVE routine can save you some agonizing problems.
There is nothing worse than realizing that you are debug-
ging the same code that you fixed the day before.

J. As your program runs, review its actions against the
rules and requirements that you originally set up when you
began your plan. See if the results are what you expected.
If they aren't, immediately stop testing and try to figure out
why. You may have to change the rules. You may even have
to redesign part of your program. It isn't worth testing any
more until you fix this kind of problem.

K. If you get an idea to improve your program, write it
down. Don't stop testing to make minor improvements. You
may overlook a major flaw while adding a small feature.
Add all of these improvements at one time, and revise your
test plan to retest the old code as well as test the changes.
After my initial debugging, I began to add some of the

modules that I left out the first time. The first routine I add-
ed checked to see if the game was over. This feature was
added in lines 750, 770-890, and 5000-5400. I do this by
checking each player's cash balance. If a player has a balance
greater than zero, I increase a counter which tells me how
many players are still in the game. I also save that player's
number. That way, if only one player is left at the end of
a round, I know who it is. If the game is over, I check to
see if a replay is wanted. I also added the code at
21100-21500 which displayed the rules. I then retested the
program to check both that the new modules worked and
that they did not cause any damage to the old code in the
rest of the program.

In the next section I'll explain how I added the graphics
for both the TI BASIC and Extended BASIC versions. For
now, you can study and type in the complete TI BASIC
game listing that follows.

58 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

6 0 RE C H U K A L U C K * 1 2 6 PRIN 0
7 0 RE T B A S C 2 7 GOTO 1 3 5 0
8 0
9 0

RE
RE

2 8
2 9

PRIN
GOTO 1 3

A
5

1 0 0 DI D C E V A L U E 3 P L A Y ER N A E 4 3 PAIN URN
PLA Y E R C A S H 4 P L A Y E BE T 4) P L A Y E 3 5 PRIN A NA (I
R D C E 4 3 6 PRIN 0 VE PL A A

1 1 0 DI D C E P 1 P 9 9 L 0 C X (2 7 L 0 C Y DOLL A

4 0
27)
RAN DOM IZE 1

3 7
3 8

IF
PAIN

P A AS H(I 2 1 3 9 0

6 0 GOS UB 2000 0 3 9 PRIN "WH AT' YO
7 0 RE BE TT IN G L 0 0 P 4 INPU A ER BET

2 0 0 RE GE T BE T 4 IF P A BEi (I) 1 1 4 5
2 0 GOS UB 1200 4 2 IF P A BET (I) LA A
2 2 0 REM TH ROW D E N 14 5 0
2
2

3 0
4 0 RE

GOS UB
UP

2000
DATE C A S H B AL A N C E 1

4 3
4 4

IF
IF

P
I

A YE
(P A YER

BET (I
BE

) 5
I)

1
A

4 5 0

2 5 0 FOR I= 1 TO P L A Y E S)THE 14 7
2 6 0 IF PLA TER C A S H 1 =0 T H EN 7 60 4 5 PAIN A NO PO
2 8 0 PRI NT " :P L A Y E N AM E $ I) Y 0 U B E 4 6 GOTO 1 23

T 0 N"; PLAY E D C E (1 FO P L A Y E R 4 7 PRIN A 0 0
BET (I) ;"DO L L A R

2 9 0 IF PLY ER_B E T 1 2 T H E N 3 1 0 4 8 INPU A D I C I)
3 0 0 PRI NT "S": 4 9 IF I A _DI (I A
3 0 PRI NT E(I) 1 5 2 0
5 2 0 WIN =0 5 IF P A (I 1 5 2
5 3 0 FOR =1 TO 3 5 IF P A (I 7 5 4
5 4 0 IF PL AYER_D E D C E V A LU E H 5 2 PRIN A A IN

EN 56 0 5 3 GOTO 4 7 0
5 5 0 WIN IN+1 5 4 NEXT
5 6 0 NEX 1 5 5 RET
5 7 0 IF N=0 TH E N 6 9 0 0 REM
5 8 0 WI N=W IN*PLA Y E B E T 0 CALL LE A
5 9 0 PR INT "YOU W N W N D 0 LL A 0 2 CALL SCR (10)
6
6
0 0
0 PR

IF WI
INT

N<2
"S";

TH E 6 2 0 0 3
0 3 2 	IF

FOR I=1
P LAYE

0
PA IS'ilr(2 3 7 0

6 2 0 PR INT 0 3 5 	GOS B 28
6 3 0 PL AYE R_CASH (I) P L A Y E CA S H (1 +W N 0 4 ROW= (I-1 5 +1
6 4 0 PR INT "YOU NOW H A V E P LA Y E R_ AS H 0 5 COL= 15

1; DO LLAR ; 0 6 MSGS =PLA NA E$(1)
6 5 0 IF PL AYER C ASH 2 H EN 6 70 0 7 GOSU B 49
6 6 0 PR INT "S"; ROW= ROW+
6 7 0 PR INT COL= 15
6 8 0 GO TO 760 2 MSG$ = BE
6 9 0 PR INT "YOU LO S T P L A Y E R B E T(DO 3 GOSU B 49

LL AR" 5 COL= 20
7 0 0 IF PL A Y ER B E T 2 T H E N 7 2 0 6 MSG$ = s" (PL A
7 0 PR INT S" 7 GOSU B 49
7 2 0 PR INT 2 ROW= ROW+
7 3 0 PL AYE R CA S H P L A Y E CA S H P L A Y 2 COL= 15

ER BE T I) 2 2 MSG$ = CA
7 4 0 IF PL A Y ER C A S H 0 H EN 6 40 2 3 GOSU B 49
7 5 0 PR INT YO U A E B A N K R U P TI 2 5 COL= 20
7 6 0 NE XT 2 6 MSG$ = s" (PL A A
7 7 0 RE H E C K F 0 R E N D 0 F G A E 2 7 GOSU B 49
7 8 0 GOS U B 5 0 0 0 3 ROW= ROW+
7 9 0 IF N 0 L E F T 1 T H E N 9 7 0 3 COL= 15
8 0 0 INP U T W A N T 0 P L A Y AG AI N (Y N 3 2 MSG$ = DI

A$ 3 3 GOSU B 49
8 1 0 A$= S E G $ A 1 3 4 COL= 21
8 2 0 IF A Y T H E N 8 5 0 3 5 MSGS =STA A TER
8 3 0 GOS U B 2 2 0 0 0 3 6 GOSU B 49
8 4 0 GOT 0 2 0 0 3 7 NEXT
8
8

5 0
6 0

IF
PRI

A
N

$
T

>
T
N
H A

T
N K

H E
Y
N
0 U

8 8
F
0
0 P LA Y NG 5

FOR
DICE

1
V A

3
=IN 6 1

5 2 NEXT
8 7 0 S TO P 6 REM A ICE
8 8 0 P RI N T P L 6 FOR 1 3
8 9 0 G OT 0 8 0 0 6 2 CHAR 0 VAL
9 7 0 F OR T 0 600 6 3 IF A THE 2 7 4
9 8 0 N EX T 6 4 IF A 4 THE 2 7 4
9 9 0 G OT 0 2 0 0 6 5 0 	IF A 5 THE 2 7 4
2 0 0 C AL L L E A R 6 6 IF R 5 N 2 7 4 0

1 2 0 F OR 1 T 0 PLA Y E R S 6 7 IF A 0 2 TH 2 7 0
2 2 0 F 	P L A Y E R C ASH 0 H EN 50 0 6 8 CHAR 0 = 7
2 3 0 0 N N T N D 4+1 G O 0 1 2 40 26 0 1 2 8 0 6 9 GOTO 2 7 4

13 0 0 7 IF C A 0 6 THE 2 7 3 0
2 4 0 P RI N T N 0 W 7 CHAR 0 8
2 5 0 G OT 0 1 3 5 0 7 2 GOTO 2 7 4 0

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	59

2
2

7 3 0
7 4 0

CHAR
REM

NO=9
DISPLAY A DIE

21120 PRINT
SFROM $1

"EVERY
TO $

T U
5 0

RN,
ON

E A
A

C H
D

P L AY
E

E
V A

B ET
L UE

2 7 5 0 FOR J =1 TO 9 FROM 1 TO 6. T HRE E"
2
2

7 6 0
7 8 0 CALL

K=(1-1)*9+1
H HAR(LOC_X(K) LOC_Y(K),96+DI

21130 PRINT
PLAY ER

"DICE
WILL

A R E
T H

TH
EN

EN
RE C

0 L
E 	V

L E D.
E 	AN

EACH
Amop N

CE PIP(HAR_NO,J)) T EQU AL TO TH S BE T"
2 7 9 0 NEXT J 21140 PRINT MULTIP L ED BY T H E N UI B E 0 F

2 8 0 0 CALL SOUND(20,1111,0,1166,0,1221,1 TI E S THE VA L U E H E S E L E C T ED C A
UP. I F NO DIE H AS TH E

2 9 9 0 NEXT I 2 1 1 5 0 PRINT "VALUE S E LEC TE D T HE P L A YER
3 8 0 0 FOR 1=1 TO 400 LOSE S HIS BE T A PL A Y E WH • G OES
3 8 	0 NEXT I BANKR UPT IS 0 U T OF T H E
3 9 0 0 CALL SCREEN(4) 2 1 1 6 0 PRINT "GAME. T H E G A E S OVE WH N
3 9 	0 CALL CLEAR ONLY 1 PLAYE RE A N S IF N 0 ONE
3 9 2 0 RETURN El AIN S, THERE S N 0
4 9 0 0 FOR Z=1 TO LEN(MSG$) 2 7 0 PRINT WINNER
4 9 	0 CALL HCHAR(ROW, 0L+Z+1,ASC(SEG$(S 2 	5 0 0 FOR I =1 TO 10 0 0

G$,Z,1))) 2 	5 0 NEXT 1
4 9 2 0 NEXT Z 2 	0 0 0 INPUT "HOW I 	A N Y PL AY E S 2 —4
4 9 3 0 RETURN LAYER S
4 9 9 0 REM CHECK FOR A WINNER 2 	0 0 IF PL AY E S <2 H N 22 0 6 0
5 0 0 0 NO LEFT=0 2 	0 2 0 IF PL AY E R S >4 T H E N 22 0 6 0
5 0 	0 FOR I=1 TO PLAYERS 2 	0 3 0 IF IN T(P L A YER S PL AY E R S T H EN 2 2 1 0 0
5 0 2 0 IF PLAYER_CASH(I)=0 THEN 5050 2 	0 6 0 PRINT P L
5 0 3 0 NO LEFT=NO LEFT+1 2 	0 7 0 GOTO 22 0 0 0
5 0 4 0 LAiT_PLAYER=I 2 0 0 FOR I =1 T 0 PL A Y E R S
5 0 5 0 NEXT I 2 0 PRINT L A YER N U M B ER E N YO U
5 0 6 0 IF NO_LEFT>0 THEN 5200 R"
5 0 PRINT "NO ONE IS LEFT. : THE GATE 2 2 0 INPUT N A M E P L A Y ER N A E

ENDS IN A TIE. 2 4 0 IF PL AY E R NA E $) < > T H E N 2 225 0
5 2 0 GOTO 5400 2 7 0 PRINT P L
5 2 0 0 IF NO_LEFT>1 THEN 5400 2 8 0 GOTO 22 0
5 3 0 0 PRINT PLAYER_NAMES(LAST PLAYER); 2 	2 5 0 PLAYE R_ N A M E) S E G$ LA Y E R N A E S

WINS!" I),1, 10)
5 4 0 0 RETURN 2 	3 0 PLAYE R_ A S H (I 5 0 0
0 0 0 0 PL$= PLEASE ANSWER THE QUESTION 2 	3 2 0 NEXT
0 0 1 0 CALL CHAR(96,"0000000000000000 2 	3 3 0 RETUR N
0 0 2 0 CALL CHAR(97,"0000001818000000 2 	0 0 0 DATA 0 0 0 , 0 , 0 0 ,0 0
0 0 3 0 CALL COLOR(9,2,16) 2 	0 0 DATA 1, 0 0 ,0, 0 0 0 , 0
0
0

0 5 0
0 9 0

CALL
ROW=12

CLEAR 2 	0
2 	0

2 0
3 0

DATA
DATA ' 1,

0
0

0 , 0 ,
, 0 , 0

0
0

0 , 0
,0

0
0

0 0
1 0

FOR
FOR

I=1
1=1

TO
TO

9
9

2 	0
2 	0

4 0
5 0

DATA
DATA

,
1,

0
1 , 0 ,

,0,
0

0
0

,0
, 1

0 2 0 READ DICE_PIP(I,J) 2 	0 6 0 DATA 0 , 0 , 0 , 0 0 , 0 0
0 3 0 NEXT 2 	0 7 0 DATA 0 , 0 ,0, 0 , 0 0
0 4 0 IF INT(I/2)=I/2 THEN 20170 2 	0 8 0 DATA 1, 0 ,1, 0 , 0
0 5 0 MSG$="CHUCK—A—LUCK 2 	0 9 0 DATA X
0 6 0 GOTO 20180 2 	0 0 0 T2=70 0
0 7 0 MSG$=" 2 	0 0 5 T=120
0 8 0 COL=10 2 	0 0 CALL SO U N D (T, 3 9 2 1)
0 9 0 GOSUB 4900 2 	0 2 0 CALL SO U N D (T, 5 2 3
0 2 0 0 NEXT I 2 	0 3 0 CALL SO U N D (T, 6 5 9
0 3 0 0 CNT =0 2 	0 4 0 CALL SO U N D (T, 7 8 4)
0 3 	0 FOR 1 =1 TO 3 2 	0 5 0 CALL SO U N D (T, 7 8 4)
0 3 2 0 FOR J =1 TO 3 2 	0 6 0 CALL SO U N D (T, 7 8 4)
0 3 3 0 FOR K=1 T • 3 0 7 0 CALL S U N D (T, 6 5 9)
0 3 4 0 CNT =CNT +1 0 8 0 CALL S • U N D (T, 6 5 9)
0 3 5 0 LOC_Y(CNT)=1+1*4 0 9 0 CALL S • U N D (T, 6 5 9
0 3 7 0 LOC X(CNT)=K+2 1 0 0 CALL SO U N D (T, 5 2 3)
0 4 0 0 NEXT K 2 0 CALL SO U N D (T, 6 5 9)
0 4 	0 NEXT 1 2 2 0 CALL SO U N D (T, 5 2 3)
0 4 2 0 NEXT I 3 0 CALL U N D (T2 3 9 2 1)
0 0 0
0 	0

CALL
INPUT

CLEAR
"NEED INSTRUCTIONS (Y/N)?

1 4 0
5 0

CALL
CALL

SO
S

U N
U N

D (1,
D (T2

3 9
3

9 9
9 2

9 ,3
1)

0)

A$ 6 0 CALL S • U N D (T, 5 2 3 1)
2 0 2 0 A$=SEWA$,1,1) 7 0 CALL S • U N D (T, 6 5 9)
2 1 0 3 0 IF A$= Y" THEN 21100 8 0 CALL SO U N D (T, 7 8 4)
2 0 4 0 IF A$= N' THEN 22000 9 0 CALL SO U N D (T, 7 8 4)
2 0 5 0 PRINT PL$ 2 0 0 CALL S U N D (T, 7 8 4)
2
2 1

0 6 0
1 0 0

GOTO
PRINT :

21010
"': " ": "WELC01 E TO THE GAP E

2
2

0
2 0

CALL
CALL

S •
S

U N
U N

D (T,
D (T,

6 5
6 5

9
9

)
)

OF":" CHUCK —A—LUCK!:" 2 3 0 CALL S • U N D (T, 6 5 9)
2 0 PRINT "THIS GAME CAN BE PLAYED BY" 2 4 0 CALL U N D (T, 3 9 2)

:"2 TO 4 PLAYERS. EACH PLAYER STAR 2 5 0 CALL U N D (T, 3 9 2)
TS OUT WITH $500. FOR 2 6 0 CA LL • U N D (T, 3 9 2)

2 7 0 CA LL SO U N D (T2 5 2 3)
2 8 0 RE TU R N

60 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co

B efore me was the task I had been putting off from
the beginning: to plan the graphics for the DICE-
ROLL routine.

Because the program had been coded in TI BASIC all
along, I coded this routine using HCHAR and VCHAR
graphics. It occurred to me however, that the Extended
BASIC graphics ability (i.e., sprites) would add a lot to this
program. Then I saw that it could be done both ways.

The only problem was that I am not very graphics-
oriented. Oh, I do all right, but I am no world-beater at
eye-boggling displays. That left me one option: I called for
HELP!! and turned to my "Guru of Graphics," Ron
Binkowski. You may have seen his name on some fine pro-
grams he has written for 99'er Magazine.

I asked Ron to develop a graphics routine to display dice
rolling inside a Chuck-A-Luck wheel. About two weeks
later, he called me back with the bad news, "No dice." (Par-
don the pun—I just couldn't resist it). Rolling the dice was
just too complicated for this program, but Ron did come
up with an idea to move them graphically.

Starting to Roll
I reworked Ron's routine so that it could support both

SPRITE graphics for inclusion in the Extended BASIC ver-
sion and HCHAR graphics for TI BASIC. The design in-
dicated that DICE-ROLL needed an initializing routine (to
set up some variables) as well as the actual graphics roll itself.
I added another module to display each player's name, cash
balance, amount bet, and dice value bet.

The DICE-ROLL routine needed three new arrays. Each
die can be thought of as a formation 3 pieces high and 3
pieces wide. Each character can have either a dot (pip) or
be blank. Since there are three dice and each needs 9
characters, we will have to keep track of the locations of
27 characters. The 9 characters for the first die will be
numbered 1-9; for the 2nd die, 10-18; and 19-27 for the third
die. The array called LOC_X keeps track of the x-
coordinates (the horizontal rows) of these characters while
LOC_Y keeps track of the y-coordinates (the columns).
This means that both of these arrays must be DIMensioned
with 27 entries.

The array called DICE_PIP tells whether characters are
blank or have a pip for each possible value of the dice. Since
there are six possible dice values, each to contain informa-
tion on nine characters, we will need a two-dimensional ar-
ray composed of 9 entries for each of 6 possible dice-values.

Arrays are Like Buildings
Remember our discussion about arrays? I said that you

can envision an array as a building with a number of rooms
on each floor. Well, in a two-dimensional array, the first
variable can be thought of as the floor number. The second
number is the room on the floor. For example, you can think
of DICE PIP(2,4) as the value located in the 4th room
of the second floor of a building called DICE_PIP. For
our program it will contain the information about the 4th
character (middle row on the left) needed to display a dice
roll of 2.

To make the display more interesting, Ron added 3 more
dice values. He realized that, depending on how a die fell,
the values of 2, 3, and 6 could be portrayed two different
ways. The three extra "floors" in DICE PIP are alter-

r r

nate displays for the values of 2, 3, and 6. This meant the
DICE_PIP had to be DIMensioned as (9,9). I added this
at line 110. In addition, for the SPRITE version of the
routine in Extended BASIC, Ron needed an array to keep
track of particular pieces of the die, to determine if they
were in position. He called this array LOC, and since there
are 27 different pieces, I DIMensioned it at 27 in line 120.

I then added the code in lines 20010-20420 (see Extended
BASIC listing starting on page 63) to fill in the data needed
for the new arrays. Lines 20100-20200 are used
to read in the data for DICE_PIP. Each DATA line
(in 25000-25080) describes whether a character of a dice
value is supposed to be blank (= 0) or have a pip (= 1). Each
line gives the information needed for the 9 characters mak-
ing up the dice value. Line 25090 is an extra DATA line.
TI BASIC usually slows down when it reads the last DATA
line in a program, but with an extra DATA statement, it
never reads the last line, and never slows down.

In order to simulate the DISPLAY AT function, available
only in Extended BASIC, I added a routine to the TI BASIC
version in statements 4900-4930 to print whatever was in
MSG$ beginning at COL on the row contained in ROW.
It runs much faster than the code given in TI's Program-
ming Aids I software package because it is restricted to a
single row and does no preliminary editing of the message
area. In lines 20300-20420, I added the codes to show where
each of the 9 characters for each die are to be displayed.
In the TI BASIC version, these are actual row and column
numbers. In the Extended BASIC version, these contain the
dot row and dot column values needed for sprites.

I then coded lines 2000-2370 to display the information
about each player on the screen. The new code in 2600-3920
displays the three dice values graphically. Lines 2630-2740
give a 50-50 chance that a dice value of 2, 3, or 6 will be
displayed in its alternate format. The 9 characters making
up the die are then displayed in the loop in lines 2750-2990
in the TI BASIC version, and lines 2750-3020 in the Ex-
tended BASIC version. For TI BASIC, this consists of a
simple loop which displays at LOC_X and LOC_Y the
appropriate DICE_ PIP for each of the nine pieces. After
the character on the last die is displayed, I wait a little while
and then leave the routine.

Notice that in order to highlight the dice roll routine, I
changed the color of the screen and added a little music.
My "music jar" of melody listings borrowed from other
programs gave up only one piece that remotely matched up
with gambling, the "Call to the Post" tune played at the
track just before a race. Perhaps you have a more fitting
musical phrase.

The sprite version of the display routine is more com-
plex than the HCHAR version. I will go through it very
carefully because Ron has some great ideas about control-
ling sprites. Note that this routine was written with multi-
ple statements on each line. This has to be done to make
your BASIC code run as fast as possible when handling
sprites. Slow code at this point could make it very difficult
to handle them smoothly.

Graphic Routines
If you have an interest in designing Extended BASIC pro-

grams with sprites, tracing through the following program
will put you well on your way toward your own creative

CHUCK-A-LUCK PART 4: "The Die is Cast

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	61

endeavors. All line numbers from this point on will refer
to the Extended BASIC version only.

2750-2820 This code figures out the sprite number for
each character of the die being displayed and starts it out
as a sprite with a random motion. Note that this motion
can be either positive or negative so that we get them flying
in all directions. We also set the LOC value for that
character to zero, to show that we haven't yet moved
the character back to its final location.

2840-2920 This routine uses a variable called CNT to keep
track of the number of characters moved back to their start-
ing locations. If this number is low enough, we will ran-
domly choose the character we work on. If CNT is 21 or
greater, however, we won't choose the character random-
ly. We'll just look through the LOC array sequentially to
find the first character that we haven't yet moved
back to its location (i.e., its LOC has a zero in it).

Why is Ron going through the trouble of doing it this
way? The answer requires a little thought. Suppose we just
randomly kept choosing a figure. By the time 20 or so
characters have been reset to the final location, the odds
on randomly selecting a good character will then be 7/27
or 26 070. The odds on the next selection being a good
character will then be 6/27 and they keep getting smaller
and smaller. With one character left, the odds on hitting
it randomly are 1/27 or less than 4 010. As you can see, it
is very unlikely that you will hit a good character when on-
ly a few are left. To prevent a long wait until the computer
randomly locates a good character, Ron set up his code so
that the last 7 or so sprites will not be randomly chosen.
Of course, he is also checking CNT to see if he has finished
with all 27 characters.

2930-2980 This part of the routine takes the selected
character, changes its color to black (to highlight it on the
screen while we play with it), and freezes it momentarily.
That is what the CALL MOTION(#I,0,0) is for. The ma-
jor problem in sprite handling is that they keep moving at
a pretty high speed, while BASIC keeps plodding along with
old data. Ron prevents this problem by freezing the sprite
before finding its location. This means that he gets accurate
data via the CALL POSITION code.

After locating the sprite, he computes the velocities needed
to move it back to its original (and final) location. The Ex-
tended BASIC reference manual talks about row velocities
and column velocities, but it doesn't explicitly tell you that
you can control the direction of the sprite. For example,
if you want to move a sprite at a 45 degree angle, both the
row and column velocities must be equal. To move at a 30
degree angle, just make the column velocity equal to twice
the row velocity. Ron is using this fact in statement 2960
to figure out how far the sprite is, vertically and horizon-
tally, from where it is supposed to go. He calculates this
in MY and MX respectively. He then adds the two to get
a value called TOT. The distances can be positive or negative
depending on the sprite's location relative to its final
position—left or right, above or below.

In order to get a good value of TOT, we have to ignore
the signs of the distances. In other words, we don't care
if the number is positive or negative, as long as we know
its absolute value. We find it with the ABS function. By
making the row and column velocities a function of both

the distance the sprite it has to go (MY or MX) and the TOT
value, we can direct the sprite to travel in the right direc-
tion. Take a look at the last statement in line 2960. It uses
the MAX function available in Extended BASIC. TOT must
be a reasonably-sized number because we will divide MY
and MX by TOT to get our velocities. Since it is possible
for the sprite to be right where it should be, TOT can be
zero. If you divide by 0, however, your program will stop
with an error. To make sure that TOT has a value of at
least one, you would normally code in something like this:

xxxxx TOT = ABS(MX) + ABS(MY)
yyyyy IF TOT < 1 THEN TOT = 1
zzzzz

This can be done just as easily with the MAX function,
which gives the larger of the two alternatives. In this case,
if 1 is greater than the result of the addition, it will return
1. On the other hand, if the result of the addition is greater
than 1, it will return that number. Using the MAX func-
tion eliminates the need for an IF statement right in the mid-
dle of my code. MAX (along with its cousin, the MIN func-
tion) is a handy feature of Extended BASIC that can save
you a lot of coding trouble. We now use the values that
we just computed to set the sprite moving again using a
CALL MOTION.

2990-3010 I have also set a new variable (my, we are col-
lecting a whole slew of them now!) called CHK to be equal
to zero. This counter will be used to make sure that we don't
try the next lines of code more than 10 times before we give
up and refigure a new MOTION command. If we haven't
tried it more than 10 times, we do a CALL COINC to see
if the sprite has reached its goal. If not (HIT = 0) we go back
and do it again. If the sprite has reached its final location,
Ron stops it with a CALL MOTION, and does a CALL
LOCATE to make sure it is being stopped exactly where
he wants it. This is necessary because a sprite that keeps
moving between the CALL COINC and the final CALL
MOTION may no longer be in the right spot. He changes
the color back to white.

3020-3920 This code checks to see if we finished all the
characters and restarts the process if we haven't. It then
changes the screen back to green. It also issues a CALL
DELSPRITE which clears the sprite characters from the
screen.

Protection and Improvement
We have now finished the Extended BASIC version of

the code. Our game gets a final debugging and is ready to
go! The next step is just some administrative work to make
sure that your effort will not be in vain. First, change the
REM statement at the beginning of the program so that it
says FINAL VERSION as well as the version number. Next,
save it on cassette tape or disk. Label the tape or disk with
the name of the program, the date, and the version number
along with the words FINAL VERSION. Make two copies.
If you are saving on tape, make one copy on each side and
verify both. Then make another copy on a backup tape.
You should always have a backup tape kept separately from
your original master copies. Remove the tabs in the back
of the tape to prevent accidental erasures. For disks, add
the write-protect tab. Make a backup disk. Keep it separate
from your regular disks. Then enjoy the fruits of your labor!

62 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

6 0 REM 'C H K A L U C K *** 12 50 GOTO 1 3 51
7 0 REM E X E N D E D B A S 12 60 PRINT OK
8 0 REM 12 70 GOTO 13 50
9 0 RE 1 2 8 PRINT LR IG HT

1 0 0 DIM D C E 	V A L U E 3 	P L A Y E R NAME $ 4 1 2 9 0 0 1 3 5
PLAYE R C A S H 	4 P L A Y E R B E T (4), P L A Y E 3 0 0
R _ DI C E 4 3 5 A A $(1);

1 0 DI D C E 	P P 9 9 	L 0 C X 2 7),L 0 C Y 3 6 0 A V PLAYER_ ASH(1); D
27) A

2 0 DI L 0 (27 3 7 A AS <2 THEN 1390
3 0 RANDO ZE 1 3 8
6 0 GOSUB 2 000 0 3 9 WH A YOUR BET?
7 0 RE B E T TIN G 	L 0 0 P 1 4 0 A I)

2 0 0 RE G E T BE T 4 A Ei 1 THEN 1450
2 0 GOSUB 1 200 1 4 2 A ET PLAYER ASH(I)THE
2 2 0 RE T H OW D 	C E 1 4 5 0
2 3 0 GOSUB 2 000 4 3 A YE 50 THEN 1450
2 4 0 RE U P D ATE C A S H B A L A N C 4 4 (P A (I))=PLAYER_BET(I
2 5 0 FOR I 1 TO P L A E 	S 14 7 0
2 6 0 IF P L A Y ER C A S H 0 T H EN 7 6 0 4 5 A 0 POSSIBLE
2 8 0 PRINT L A Y E A M E Y 0 U B E 4 6 0 1 23

T 	ON" P LAY E R D E FO P L A Y E R 4 7 A II WILL YOU BET ON
BET (I " DO L L A R

90 IF PL A Y ER_ B E T 2 T H E N 3 1 0 48 A (I)
00 PRINT S"; 49 A E(I))<>PLAYER_DIC
10 PRINT 1 5 2 0
20 WIp=0 50 A <1 THEN 1520
30 FOIR I =1 T 0 3 51 A <7 THEN 1540
4 0 	IF PL AY E R D 	C E D C E V A L U E) T H 52 A A

EN 56 0 1 53 0 1 4 7 0
5 0 	IN=W IN 1 54 X
6 0 	NEXT 55
7 0 	IF WI N 0 	T HE N 6 9 0 2 00
8 0 	IN=W N *P L AY E R_ B E T (I) 2 0 10 LL A
9 0 	PRINT YO U "W N 	;WI N D 0 L L A R 2 0 20 LL
0 0 	IF WI N 2 	T HE 6 2 0 2 0 3 1 0 	A
0 	PRINT S" 2 0 3 5 SU 2 8 0 0

2 0 	PRINT 2 0 4 W= 1
3 0 	PLAYE R C A S H 11= P L A Y E CA S H +W N 2 0 6 SP A o W LAYER_NAMES(I)
4 0 	PRINT 0 U N OW H A V E P LA Y E R C AS H 2 	6 0 SP A OW+ 5)

);"DO L LA R LA I))
5 0 	IF PL A YE R A S H 2 T H EN 6 7 0 2 2 6 0 SP A OW+ 2 5)
6 0 	PRINT ; LA A 	(1)
7 0 	PRINT 2 3 5 0 SP A OW+ 3 5)
8 0 GOTO 7 60 LA (I)
9 0 	PRINT 0 U L 0 S T P L A Y E R_ B E T DO 2 3 7 XT

LLAR" 2 5 1 0 	3
0 0 	IF PL A Y E R 	B E T 2 	T H E N 7 2 0 2 5 1 CE A RN D*61+1
0 	PRINT S 2 5 2 XT

2 0 	PRINT 2 6 A
3 0 	PLAYE R A S H 1 P L A Y E CA S H P L A Y 2 6 1 3

ER_BE T 2 6 2 AR 0 V A (I
4 0 	IF PL A Y E A S H 0 T H EN 6 4 0 2 6 3 1 27 4
5 0 	PRINT Y 0 U A R E B A N K U P TI 2 6 4 4 27 4
6 0 	NEXT 2 6 5 5 27 4
7 0 	REl C H E C K 	F 0 R 	E N D 0 F G A E 2 6 6 • 	5 2 7 4
8 0 	GOSUB 5 0 0 0 2 6 7 0 	2 2 7 0 0
9 0 	IF NO L E F T T H E N 	9 7 0 2 6 8 AR 0 7
0 0 	INPUT A N T T 0 P L A Y A G A N Y N) 2 6 9 TO 7 4

AS 2 7 0 	6 27 3 0
1 0 	A$=S EG AS 1 2 7 AR 0 8
2 0 	IF A $< T H E N 8 5 0 2 7 2 TO 7 4
3 0 GOSU B 2. 2 00 0 2 7 3 AR 0 9
4 0 GOTO 2 0 0 2 7 4 A 	A
5 0 	IF A $< T H E N 8 8 0 2 7 1 0 	9
6 0 	PAIN T T HA N K 	Y 0 U 	F 0 P LA Y N G 2 7 6 (I

2 7 8 LL 9 6 A 0
7 0 	S TO P 1 1 2 6
8 0 	P RI N T P L RN 1 2
9 0 G OT 0 8 0 0 2 8 C(0
7 0 	F OR T 0 6 0 0 2 8 2 XT
8 0 	N EX T 2 8 3 XT
9 0 G OT 0 2 0 0 2 8 4 T= 0
0 0 	C AL L C L E A R 2 8 5 2 1 HEN 2900

1 0 	F OR T 0 P L A Y E R S 2 8 6 1 0 	27 : IF 0 0
2 0 	F P L A Y E R A S H 0 T H EN 5 0 0 20
3 0 0 N N T R N D 4 	1 G 0 T 0 1 2 40 2 6 0 1 2 8 0 2 8 7 XT OTO 3800

13 0 0 2 9 IN 2 7)+1
4 0 	P RI N T N OW 2 9 1 0 1 	THEN 290 0

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	63

2 9 2 0 LOC(I)=1 C N T= NT+ 1 2 1 1 3 0 P R N T "DIC E A EN OL EACH
2 9 3 0 CALL COLOR(#1 2) : C A LL S 0 U N D 1 	1 P L A Y R WI L RE I V A A OU

10,0,165,1,22 0 ,2 T E Q U A L TO
2 9 4 0 CALL OTION(# , 0 0): CH K 0 2 1 1 4 0 P N T MUL BY HE ER 0
2 9 5 0 CALL POSITION #1 Y,X M E S THE V A LE A
2 9 6 0 MY=LOC Y(I)—Y MX= L OC_ X) X U F NO A TH

TOT= Ai(1,ABS MY +AB S 	(X)) 2 1 1 5 0 P N T VAL TE HE AYE
2 9 8 0 CALL OTION(# ,M Y *50 TOT M X * 5 0 /T 0 T 0 S E S HIS A PL A ER WH GOE

B N K U PT I 0 0
2 9 9 0 CHK=CHK+ 1 F C H K> 1 0 T H E N 2 9 40 2 1 1 6 0 P N GAM AM 0 V
3 0 0 0 CALL COI NC 1# L 0 C Y(),L 0 C X 1 , 2 0 N L Y 1 PL A AI 0 ONE

,HIT):: IF H T 0 T HE 29 9 0 A N S 	, TH 0"
3 0 	0 CALL i OT 10 N(0 0): CA L L L 0 C AT E 2 7 0 N T WIN

#1,LOC_Y (I , L 0 X 1) A L L C OL 0 2 5 0 0 1 TO 1
(#I,16): CA L L S 0 U ND -1, 1 0) 2 5 	0 X

3 0 2 0 IF CNT<2 7 TH E N 2 8 5 0 2 2 0 0 0 U H OW A A 2 4 : 	P
3 8 0 0 FOR 1=1 4 0 0 Y E S
3 8 	0 NEXT I 2 2 0 	0 L A Y E S 2 2 2 6
3 9 0 0 CALL SCR EE N(4 2 2 0 2 0 L A Y E S 4 2 2 6
3 9 	0 CALL DEL SP RI T E A L L 	1: CA L L C L E AR 2 2 0 3 0 N L A A 2 2 1 0 0
3 9 2 0 RETURN 2 2 0 6 0 N P L
4 9 9 0 REM CHEC K F R A W NN E R 2 2 0 7 0 T 0 2 2 0 0 0
5 0 0 0 NO LEFT= 0 2 2 1 0 0 R 1 0 A
5 0 	0 FOR I=1 TO P L A Y E R S 2 2 0 N P L A ER 0
5 0 2 0 IF PLAYE R_ CA S H 0 T HEN 5 0 5 0
5 0 3 0 NO_ LEFT= L E F 1 2 2 1 2 0 N A M A A
5 0 4 0 LAiT_PLA YE R= 2 2 4 0 L Y E A 2 2 2 5 0
5 0 5 0 NEXT I 2 2 7 0 P L
5 0 6 0 IF NO_LE FT >0 T H E N 52 0 0 2 2 8 0 2 1 1 0
5 0 0 PRINT "N 0 ON E 1 S L EF T T H E G A E 2 2 2 5 0 E N A M LA A

ENDS IN A TI E 0
5 1 GOTO 540 0 2 3 1 0 E A S
5 2 0 IF NO_LE FT >1 T H E N 54 0 0 2 3 2 0
5 3 0 PRINT PL AY ER N A M E (L A ST P L A Y E 2 3 3 0

5 4 0
WINS!
RETURN

5
5
0 0 0
0 	0

0
0

2 0 0 0 PL$="PLE AS E A N S WE T H U E S T 0 N 5 0 2 0 0
2 0 0 CALL CHA R(96 F FF F FF F FFF F F F F F F 5 0 3 0 1
0 0 2 CALL CHA RI 97 F FF F FF E 7E7 F F F F F F 5 0 4 0 1 1

2 0 0 3 CALL COL OR (9 2 16 5 0 5 0 1 1
2 0 0 5 CALL CLE AR 0 6 0
2 0
2 0
0

0 9
0

1 1

ROW=12
FOR
FOR

1=1
j=1

TO
TO

9
9

5
5
5

0 7 0
0 8 0
0 9 0

2 0 2 READ DIC P P 8 0 0 0 0 2
2 0 3 NEXT j 8 0 	0 0 N D 3 9 2
2 0 4 IF INT(I /2 2 T H EN 201 7 0 802 0 0 N D 5 2 3 1
2 0 5 MSGS="CH UC K A L U C K 803 0 0 N D 6 9
2 0 6 GOTO 201 80 804 0 0 N D 7 8 4 1
2 0
2 0

7
1 8

MSG$=
DISPLAY AT (R 0 W 1 4 S G

805
806

0
0

0
0

N
N
D
D

7 8
7 8

4
4

2 0 2 0 NEXT I 807 0 0 N D 6 5 9
2 0 3 0 CNT=0 808 0 0 N D 6 9
2 0 3 FOR 1=1 TO 3 809 0 0 N D 65 9
2 0 3 2 FOR j=1 TO 3 28 10 0 N D 52 3
2 0 3 3 FOR K=1 TO 3 2 8 1 1 0 0 N D 6 9
2 0
2 0
2 0

3 4
3 5
3 7

LO
LO

CNT=CNT+
_Y(CN
_X(CN

1
T)
T)

=
= K 2

4
8

8
2 8
2 8
2 8

1 2 0
3 0

1 4 0

0
0
0

N
N
N

D
D
D

2
1

2
3

3 9

3
9 2
9 9 3 0

0 4 0 NEXT K 2 8 5 0 0 N D 2 3 2
0 4 NEXT I 2 8 6 0 0 N D 2 3

2 0 4 2 NEXT I 2 8 7 0 0 N D 6 5 9
2
2 1

0 0
0 1

CALL
INPUT

CLE
"N

AR
EE D N S T U CT 0 N S Y N

2 8
2 8

8 0
9 0

0
0

N
N
D
D

7 8
7 8

4
4

A$ 2 8 2 0 0 0 N D 7 8 4
2 0 2 0 AS=SEGS(A$,1 1 2 8 2 1 0 0 N D 6 5 9
2 0 3 0 IF A$ = "Y TH E N 2 1 00 2 8 2 2 0 0 N D 6 5 9

0 4 0 IF A$ = "N TH E N 2 2 0 00 2 8 2 3 0 0 N D 6 5 9 1
0 5 0 PRINT PL 2 8 2 4 0 0 N D 3 9 2

2 0 6 0 GOTO 210 10 2 8 2 5 0 0 N D 3 9 2
2 0 0 PRINT :" "W E L C 0 TO THE GA E 2 8 2 6 0 0 N D 3 9 2

OF": CH UC K -A L U CK 2 8 2 7 0 0 N D 2 5 2 3
2 0 PRINT "T HI S G AM E C AN B E 	PLAYED BY" 2 8 2 8 0

:"2 TO 4 P LA Y ER S EA C H 	PLAYER STAR
TS OUT W IT H 50 0 R

1 1 2 0 PRINT "E VE RY TU R N E A C H 	PLAYER BET
SFRO $1 T 0 50 0 N A D ICE VALUE
FRO 1 TO 6 T HR E E

64 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

TI
BASIC

S pelling Flash will help students review their spelling
periodically. This program does not use the Texas
Instruments Speech Synthesizer.

Its design incorporates one of the simplest, yet most
elemental programming structures: the loop. One of the
most valuable features of computers is their ability to
repeat any task many times over. Spelling Flash uses a
GOTO statement to form the loop. The program begins,
reads a word from its data, presents it to the student, ac-
cepts the response, prints a message to the student and then
repeats the process. Line 330, GOTO 200, simply sends
the program back to line 200, where the process begins
again. In this case, the loop (and in Spelling Flash, the pro-
gram) ends when it reads the non-word "ZZZ." Line 210
checks for this flag; if the spelling "word" is "ZZZ," it
ends the program.

In order to use this program, the spelling words have
to be typed into the program as DATA statements. The
accompanying listing has a selection of spelling words, star-
ting in line 380, but you can put in words of your choice,
of course. If you use more words than are in the listing
shown, and in the process generate more DATA statements
with more line numbers, you will have to alter the value
after THEN in line 210 to reflect the new line number of
the END statement.

The words will be read as string variables. They may be
entered with separate statements for each word, or several
words may be listed in each statement, as long as they are
separated by commas. "Words" in this context may, of
course, also consist of phrases or names with embedded
spaces or other special characters. Such phrases must be
enclosed in quotes. ZZZ must be the last word in the list
of words; if it isn't, the computer will return a data error
when it tries to read data that's not there.

When the program runs, the screen is first cleared and
a spelling word is flashed on the screen. After a short delay,
the word is cleared and the student is asked to type in the
spelling word. The subroutine in lines 340-370 cause the
delay; if it seems too long or too short, the value in line
340 can be changed. The student signals that he's finished

spelling the word by pressing the ENTER key. The pro-
gram gives some positive reinforcement with some sounds
and the message, "YOU SPELLED IT RIGHT!!" If the
word is incorrectly spelled, the student must try again un-
til it is correct.

This section of the program is also a loop. An incorrect
spelling sends the program from line 280 back to line 220
until the student gives the correct spelling. After the stu-
dent has spelled the word correctly, the screen is cleared
again and the next word flashes on the screen.

0 0 E * * *

0 E
2 0 E * SP E L L N G F L A S H

1 3 0 E
1 4 0 E * * * * * * * * * * * *

5 0 E
6 0 E

1 7 0 E
8 0 ALL CL E AR
9 0 RIN T S PE L L N G F L A S H

2 0 0 EAD 0 D$
2 	0 F ORD $ T H E N 4 	0
2 2 0 RIN T S PE L L w 0 R D
2 3 0 OSU B 3 4 0
2 4 0 RIN T S PE L L N G w 0 R D
2 5 0 NPU T
2 6 0 F ORD = $ T H E N 2 9 0
2 7 0 R I N T . "SO R Y P L E A S E 	TRY AGAIN
2 8 0 OT 0 22 0
2 9 0 AL L SO U ND(5 0 0 2
3 0 0 AL L SO ND(5 0 0 2 2
3 	0 R I N T : "YO U S P E L L E D IT R IGHT ! 	!
3 2 0 OS U B 3 4 0
3 3 0 OT 0 20 0
3 4 0 OR DEL A Y=1 T 0 8 0 0
3 5 0 EX T DE L AY
3 6 0 AL L CL E AR
3 7 0 ET U RN
3 8 0 AT A T I G ER B E H A V E B EG N 0 H N A D A

3 9 0 AT A TO ORR 0 w 0 0 N E , S P G G 0 0 S E
4 0 0 AT A CRE A C 0 V E A R 0 A A B A T E
4 1 0 ND

Th's program may be saved on cassette tape for the
students' daily use. Each week, you can alter the list of
spelling words by changing the DATA statements. GID

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	65

Pocket Typing Trainer

without^ 3:
RND

.99

.75

P 1 50

.25
This much
of RND's .00
range ...

Diagram 1.

LETTERS

LL

< ., corresponds
to the 3rd
character

with "3: 	 Diagram 2.

RND RND
3
 LETTERS

CO 	
. maps

into 	first
character

.90

.80

.62
See how
much of
RND

.00

hi .99
U_ L.

}125

.50

125

.00

Pocket Typing Trainer
Here is a pocket-sized program for the TI-99/4A—small

enough to fit on a 3 x 5 card—that is not only quick to key
in, but is also educational, illustrates a powerful technique
with random numbers and is fun for all ages. The Pocket
Typing Trainer asks which characters the user would like
to practice, and then plays back an endless series of ran-
dom five-character groups for him to copy. Two tones ris-
ing at the end of the typist's response say "Correct;" two
tones descending here mean "Oops." Try it! If you are a
beginning typist, start with characters ASDF, the home keys
of the left hand. Stop the program with a FCTN 4 (or
SHIFT C on the 99/4) keystroke when you can type those
four consistently without looking at them, and RUN the
program again with ASDFJKL, and so forth If you
are already a typist and you want to practice some of the
unusual features of the TI-99/4A keyboard, as well as some
of the characters important in BASIC (but not usually part
of the typist's repertoire), try the characters "$()* + -.

You are unlikely to notice it, but the Pocket Typing
Trainer tends to focus on the characters which the typist
is getting wrong—a remarkably sophisticated feature to find
in a pocket-sized program—and one which brings me to my
next point.

1 0 0 RE P 0 C K E T T Y P N G A N E
0 RE

1 2 0 RE
1 3 0 DIS P L A Y T Y E N T H L E T T E S Y 0 U

ANT T 0 P A C T C E T 0 D
1 4 0 INP U T L E T T E

5 0 LEN G H L E N L E T E
1 6 0 OUT N U L $

7 0 FOR T 0 5
1 8 0 OUT 0 U T S E G L E T T E N T L E N G T H

RND A 3

E
A Y

1 9 0 NEX T
2 0 0 DIS P L A Y 0 U
2 1 0 INP U T N
2 2 0 IF 0 U T N T H E N 3 2 0
2 3 0 FOR 1 T 0 5
2 4 0 L$= S E G 0 U T 1)

2 5 0 IF L S E G N 1) T H E N 2 8 0
2 6 0 N=P 0 S L E T T E L 1
2 7 0 LET T E R L $ S E L E T E 1 N S E G

$(L E T E N L E N G H N
2 8 0 NEX T
2 9 0 C A L L S 0 U N D 1 0 0 3 1 3)
3 0 0 C A L S 0 U N D 1 0 0 1 0 3
3 1 0 G 0 T 0 1 6 0
3 2 0 C A L L S 0 U N D 0 0 1 0 3)
3 3 0 C A L L S 0 U N D 0 0 2 6 2 2)
3 4 0 G 0 T 0 1 6 0

Skewing the Distribution
Line 180 is where OUT$, the random character string,

is manufactured a character at a time. It might have been

written without theA3, in which case equal segments of the
interval from zero to one would be assigned to the characters
given by the typist. (Since the 99/4's built-in random
generator, RND, generates "uniform random" numbers,
every character would have the same chance of being
chosen.) With A3, the random numbers are cubed before
a character is chosen. Since the numbers are less than 1,
they get smaller as they are cubed; this results in many more
RND's corresponding to characters at the left end of the
LETTER$ string. For example, suppose that LETTER$,
the string of characters which the typist wants to practice,
has four characters. If RND turns out to be .50001, then
the character a bit more than half way down LETTERS (i.e.,
the third character) would be the one chosen. But if we cube
RND, the result is .12500, which is well within the first
quarter of the range from 0 to 1; and the first character is
chosen. Perhaps Diagrams 1 and 2 would help to illustrate
this more clearly. The Pocket Typing Trainer takes advan-
tage of this by moving missed letters to the beginning of
LETTERS$ (Line 270).

The lesson here is that uniform random numbers like
those provided by RND are a perfectly satisfactory foun-
dation for any sort of randomness one could desire. This
includes the statisticians' favorites: Gaussian, binomial,
gamma, and so on. One simply needs to apply the proper
transformations.

Homework
Tailoring and embellishing programs to suit users' per-

sonalities is at least half the fun of computing. The Pocket
Typing Trainer can be extended in many directions. Here
are some of the options:

Problem #1 (simple): Modify the program to allow the
typist to choose how many random characters he'd like on
the line.

Problem #2 (moderate): Change the program to heighten
the emphasis on characters which the typist is getting wrong
whenever the error rate is high.

Problem #3 (sound and graphics practice): Keep score,
and periodically (say every 25 lines) treat the typist to a col-
orful and melodic display, one whose elaborateness is
greatest for a perfect score.

66 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

WHAT IS

And Why Is Everybody Talking About It?

you can hardly pick up a computer publication, or at-
tend a computer conference or fair these days without
being inundated with discussion of UCSD Pascal. To

understand what all the fuss is about, you must first know
something of what is meant by portability and understand
the concept of pseudocode and its relation to the
pseudomachine.

Portability, Pseudocode, and P -machine
Let's start by assuming that you already know that Pascal

is a structured, high-level, compiled language (just as TI
BASIC is a high-level interpreted language). In this article
we won't go into the theory of compilers, interpreters, or
the structure of Pascal as a computer language; we'll save
that for a future time. For right now, let's imagine that your
friend has written a really great Pascal compiler and
operating system in his native 6502 Assembly Language for
his Apple computer. You'd like to move it to your fully-
configured TI-99/4 which has a TMS9900 microprocessor.
What are your options? Sure, you could always recode the
Pascal system for your TMS9900 (assuming you had a
TMS9900 assembler), but it would probably be almost as
much work as starting from scratch. How about first writing
a 6502 simulation program for your TMS9900 and letting
it re-write all the 6502 code? But even if you do this, the
extra layer in between will result in a loss of speed and a
greater memory overhead. This is what the microcomputer
community has been up against—virtually no portability in
moving languages or applications software from one system
to another without a major re-working of the code.

Now let's design a hypothetical processor to provide a
convenient "home" for Pascal. We'll give it built-in instruc-
tions for doing the type of things that the Pascal language
likes to do. Let's call this pseudomachine a p-machine for
short, and configure it to be a simple, idealized stack com-
puter that uses pseudocode, or p-code—the native language
or machine code for the p-machine.

Great, but where do we go from here? What's the use
of a p-machine, and how does it contribute to software port-
ability? Must we throw out all existing hardware and soft-
ware and start over by giving everyone p-machines?
Obviously not. Rather, consider what would happen if we
could eliminate the differences between the instruction reper-
toires of specific microprocessors, so that they all execute

an identical p-code. If a p-machine emulator for each CPU
were written (in its native assembly language), one of the
largest obstacles to portability would be overcome: Soft-
ware could be written on different computers in a high-level
language such as Pascal, then compiled to p-code, and final-
ly "interpreted" for each specific CPU. Since the p-code
would be universal, in theory a program written on, say,
an Apple could be run without modification on a TI-99/4,
if the program consisted entirely of p-code. Score one for
portability!

This is, in effect, what has been done in the UCSD Soft-
ware System. All high-level languages in the system—only
one of which is Pascal—are compiled into p-code. One way
of looking at it is that the system software is not portable
at all, because it is always executed on a p-machine. The
portability is provided by a p-machine emulator for each
host. So when you think of a TMS9900-based system run-
ning Pascal, it is really running a simulation of a computer
which is running Pascal object programs.

Speed vs. Space: A Tradeoff
What price do we pay for the benefit of portability? The

detour through a p-machine often produces slower execu-
tion than would native code. But raw execution speed is
often overshadowed because p-code is considerably smaller
than the corresponding native code—allowing the available
memory to store a more capable program. If a program can
be represented with p-code that fits entirely into available
memory, and using native code requires extensive overlay-
ing, then the p-code version will actually run faster!

For best performance, it is desirable to optimize some por-
tions of a program for space and others for speed. Since
the UCSD Pascal System provides communication between
an assembly language routine and a Pascal host program,
it is possible (with some reduction in portability) to code
time-critical routines (usually less then 10% of a program)
directly in assembly language. The low-level assembly
routine can request access to host program global variables
and constants, and can also allocate its own global storage
space.

A project is underway at SofTech Microsystems (the firm
responsible for the licensing and maintenance of the UCSD
Pascal System) to alleviate many of the performance
drawbacks of p-code (e.g., speed) without sacrificing port-

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	67

ability. Code generators will translate time-critical pro-
cedures into native code through an optional step in the com-
pilation process. A code generator will take a complete p-
code program as input, and produce, as output, a mixture
of unmodified p-code and translated native code procedures.
Programs can then be written and maintained entirely in
Pascal, with the p-code object version still completely port-
able. A prototype code generator for the TMS9900
demonstrated that improvement in execution performance
compared to interpretive execution has been around a fac-
tor of 15! And if we take into account that translated native
code for the TMS9900 is about 50% larger then the cor-
responding p-code, the improvement is indeed significant.

The Operating System
UCSD Pascal is not only a language compiler, but a com-

plete operating system with utilities and libraries. In addi-
tion to the Compiler, you have a screen-oriented Editor and
a File Manager (or Filer). The design philosophy behind
UCSD Pascal was to keep users continually informed about
the state of the system and the options available in that state.
This is done with a prompt line that allows users to select
options by typing single-character commands.

The screen orientation of the Editor means that you'll
be doing lots of paging instead of scrolling. The editor posi-
tions a cursor into the text file being edited and surrounds
it with a "window" into that area of the file. When you
look at the display screen, you are peering into this win-
dow. To modify text, you simply move the cursor to the
place where the change is desired and indicate the change.
Commands are provided for moving cursor, finding and
replacing patterns of text, making insertions and deletions,
and copying text from elsewhere and moving it to any posi-
tion indicated by the cursor. In addition to the powerful
text editing commands, special facilities are provided for
processing documents—e.g., user-specified left and right
margins and auto-indenting to encourage the writing of
structured programs. In microcomputer systems without an
80-column display, horizontal scrolling allows users to move
the text window left and right to view the entire Pascal page.

When you enter the Filer, you have access to another
complete set of commands: (1) housekeeping commands
such as listing directories, compressing files on a disk, and
testing disks for bad sectors; plus (2) program execution and
file manipulation commands for executing named object
programs, invoking (with shortcuts) important system pro-
grams, designating files for removal, and renaming or
transferring among on-line devices.

The Pascal Compiler translates Pascal programs from a
humanly readable text form (source code saved
on disk by the Editor) into p-code form (object code) which
is saved on disks for future execution. The Compiler is
designed to translate the entire contents of a text file in one
pass. But unlike the Editor and Filer, it has hardly any in-
teractive commands. You can, however, change certain con-
trols (directives) which govern the way in which the Com-
piler does its work.

Error Handling
A big difference between an interpreted language (such

as BASIC) and a compiled language (such as Pascal) is

demonstrated in the way syntax and run-time errors are
handled: If the Compiler finds a syntax error, it halts and
displays an error message (if you've set it to return to the
Editor automatically), or prints on the screen a progress
display containing copies of the line (and previous line)
where the program error was found, as well as the coded
number of the syntax error. You can fix the error by return-
ing to the Editor or attempt to compile the rest of the pro-
gram. In some less drastic conditions, the program will, in
fact, compile all the way to the end without the Compiler
losing its way.

Run-time (execution) errors also cause all the action to
stop. A three-line error message tells you the type of error,
the segment and block where it occurred, and how far it
is from the beginning of the block (which you convert to
the actual line of code). In simple cases, this will be all the
help that's needed to pinpoint the error; in more complex
cases, you'll have to insert WRITELN statements (the
equivalent of PRINT) to determine the values of variables
before the program blew up. (There's no convenient
BREAK statement as in TI BASIC.)

Additional Language Support
The UCSD Pascal System does, in fact, support addi-

tional compiled languages. At present, the FORTRAN-77
and BASIC Compiler are supported directly
by SofTech Microsystems (MicroFocus CIS COBOL is also
presently running under the UCSD p-System). SofTech also
has a Cross-Assemblers Package (a complete set of cross-
assemblers generating native code for the Z80, 8080, Z8,
PDP-11/LSI-11, 6502, 6800, 6809, and 9900
microprocessors) that allows programming on the host
machine of your choice, for the object machine of your
choice. Think of the possibilities. . . .

UCSD Pascal and the TI -99/4 Community
Texas Instruments has implemenfed UCSD Pascal in a

P-Code Card for the TI Peripheral Expansion System. The
P-Code Card contains an operating system called the UCSD
p-System and allows access to a variety of languages in ad-
dition to Pascal. Besides being a powerful tool for software
developers, UCSD Pascal in TI's version is also of great
importance to software users: Users won't have to buy all
the software and hardware that software developers need
in order to write and debug programs. The simplest con-
figuration for software users requires the TI Home Com-
puter, a monitor or TV set, the TI Peripheral Expansion
System, the Memory Expansion Card, the P-Code Card and
a cassette drive; software developers will need the Disk
Memory System (the Disk Drive Controller and up to three
disk drives) as well. Under this two-tier system, a TI-99/4A
user will be able to run some very sophisticated and power-
ful applications software with only a minimal investment
in the system hardware and software.

68 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

