

3

Inside BASIC and
Extended BASIC

Ready to try it on your own? All it takes is BASIC logic—
and a few tricks.

TRS-80 BASIC to TI BASIC. 71
APPLESOFT tO TIBASIC. 73
The Secret of Personal Record Keeping. 76
Dynamic Manipulation of Screen Character Graphics. 78

How to Write a BASIC Program that Writes BASIC Programs:
Part 1: A Surprising Discovery with
TI's Programming Aids Il. 85
Part 2: Rules of the MERGE Format

Language Conversion:

TRS-80 BASIC

fo
TI BASIC

hack TRS-80 and a Texas Instruments TI-99/4A.
The half-dozen personal computer magazines I read
each month provide coding and ideas for many new pro-
grams for my TRS-80. I now have a large collection of these
programs and have grown to appreciate greatly the help and
enjoyment this software library provides. Unfortunately, it
just hasn’t been that easy to acquire software for the TI
machine. [But now, with the birth of 99’er Magazine, this
situation will be rapidly remedied.—Ed.] The solution for
me was obvious. I’d convert my TRS-80 programs to TI
BASIC.

At the suggestion of 99’er Magazine’s editor, I read an
article by Harley M. Templeton appearing in the November
1980 issue of Personal Computing magazine. Although the
article highlighted the major differences between the ver-
sions of BASIC used on the two systems, it didn’t point
out which differences matter and which are merely in-
teresting but of little practical importance. As you might
expect, the only way to find out is actually to convert a pro-
gram and learn from the problems that you encounter.

To set up a fair test, I selected TRS-80 programs from
opposite ends of the spectrum: The first was a ‘“‘number
cruncher’’ which I had written to convert the number cor-
rect on a test to a scaled value on a continuum of learning.
(My nine-to-five job involves the management of the stan-
dardized testing programs for the Portland, Oregon, School
District.) The other program was an adaptation of the ideas
behind a slot machine in David Ahl’s Basic Computer
Games—a program with extensive use of graphics.

The first trouble I encountered was in converting the
PRINT AT command available on the TRS-80. The pro-
cedure suggested by Templeton was to set a loop as follows:

40|0] |Alsi=|"|P|R|I|N|T| |T[H|1iS| |S|T|A|R|T|I|N|G| |A[T| |1]0],|2|"
5/010f {C|A|L|L| |C|L|EJAR

6/0/0] |[FOR| |1|=\1| |T|O} [LIEN|(|Al$])

710|0] IN1\=|A|S|CI(|S|EIG|$S|(|A|s!,|I|,[1D])

81010 [CIAL|L| HICHIAR|(I1]0[, (|1+11])], N1

gjelol INEX|T| [1

In theory this works fine, but it is slow if the string length
is long; single characters don’t walk across the screen—
they crawl! Since the program requires a prompt printed
in the middle of the screen to cue the operator to enter the
next five values for the scaling procedure, my final solu-
tion was to use the following coding:

Tcked away in my basement, I have both a Radio
S

Copyright © 1983 Emerald Valley Publishing Co.

100 PRINT “MESSAGE AT THE MIDDLE OF THE
SCREEN”’

200 PRINT : @ @ ;@00
This procedure causes the text prompt to scroll up from the
bottom to the middle of the screen. It is not especially
speedy, but it is fast enough for the data entry in cases where
you don’t need lines that disappear at the top of the screen
as the result of this scrolling action.

The ease with which the ‘‘number crunching’’ code con-
verted was a pleasant surprise. It was important to keep
track of the differences in the line numbers for GOTO’s
and other branches, but that, in fact, presented little pro-
blem. What was more difficult was converting the logic of
IF-THEN-ELSE clauses. TRS-80 (Microsoft) BASIC allows
multiple statements following the THEN- and ELSE-coding
that are difficult to keep straight and re-code. The multiple
line conditionals can be converted, but the conversion re-
quires a clear head and a basic understanding of how the
program works.

Because I had written the TRS-80 program myself (it had
more lines of documentation than coding) and naturally
understood its operation, the conversion was fairly straight-
forward. After I changed nearly all the PRINT and PRINT
AT statements, the program worked the first time (surprise).
To check it out, I made a comparison run on the TI-99/4
and the TRS-80. Surprisingly, they ran the same job in
almost the same time: three minutes for a forty item test.
Finally I spruced up the program a little with CLEAR and
CALL SCREEN commands to take advantage of the col-
or options available on the TI machine.

The second program was a challenge. It had essentially
four main parts: (1) an introductory message, (2) the set-
up graphics of the “‘slot machine,’” (3) the rotation of the
wheels in the slot machine, and (4) the determinaton of the
winnings and losses. The first and easiest part of the pro-
gram to set up was the section which printed the introduc-
tory messages. I couldn’t resist adding the CALL SCREEN
command and sprucing up the comments to make it more
attractive (at least to me). In this instance, the lack of speed
for the HCHAR command was a benefit since it painted
the screen at a leisurely-yet-pleasing pace. Before 1 was
through, I had changed all the code in this section for
aesthetic reasons.

My real conversion problems began in the second sec-
tion. There, I came face-to-face with the significant dif-

The Best of 99’er Volume 1 71

ferences in the way graphics are handled by the two systems.
In moving from a screen of 16 X 64 to one of 24 x 28, I had
to stop and develop a new outline shape for the slot
machine—one that would fit the TI screen. Deciding the
colors to be used in defining the outline of the machine and
the shapes to be matched (cherry, bar, bell, orange, lemon)
took extra time. After some experimentation using dark blue
against a white background, the lemon became a lime (dark
green). To develop a new set of four characters for the
orange, I experimented with CALL CHAR until the figure
finally looked like a circle instead of one of Dali’s explod-
ed watches. Since there isn’t an orange color available, the
orange became a plum (magenta). I was still a character
short, so I used the heart from the back of the user’s manual.

En route to coding this part of the program, I had to
devise the shapes, assigning them to one of the sixteen
character sets. Twice, however, I made the mistake of try-
ing to conserve memory by using one of the character sets
with pre-defined codes. This caused errors in the print
statements using these codes. The moral of that experience:
Whenever possible, stay away from the first eight character
sets when defining new characters. It took a while to work
the kinks out of this section, but the addition of color made
a tremendous diffence, and 1 became hooked on TI
graphics. (I’ll probably never turn the TRS-80 version of
this program again).

At this point, I realized that virtually every line of the
original program had been rewritten in the move to the TI
machine. Since this was to be an article on program con-
version, not programming, I called the editor at 99%er
Magazine to make sure I hadn’t missed the point of the ar-
ticle. Gary, however, wasn’t surprised at all, and encouraged
me to include suggestions on rewriting as well as conversion.

The third section of this program was probably the
toughest to convert. I have been responsible for program-
ming and systems analysis for over ten years on a variety
of large computer systems. This has required establishing
structured programming standards for every program with
which I work. Even though I had personally keyed in the
slot machine program, I had forgotten how poorly it was
documented. This is not a criticism of Ahl’s book, but rather
a realistic comment on what you are likely to encounter

SUMMARY OF COMMANDS

TRS-80 Commands TRS-80 Commands
Not Requiring Conversion That Can Be Ignored

ABS GOSUB
ASC INPUT i
ATN INT -
CHR$ LEN
cos LET " -
DATA Commands Difficult to Convert to TI BASIC
oD : IRs80 TiBAsic
EXP VAL IF..THEN..ELSE IF. THEN. ELSE*
GOTO e refer to line numhers
POINT CALL CHAR SCHAR
TRS-80 Commands POKE (graphics) CALL CHAR 1CHAR
Easily Converted PRINT AT FOR .. ASC ..., ... ACHAR .,
NEXT
IRS80 TLBASIC PRINT .. FOR .. PRINT * ..
cLS CALL CLEAR NEXT
ey INT RESET CALL CHAR CALL HCHAR
: C'\'I\p';'- KEY SET CALL CHAR CALL HCHAR
=1 ! 'T_‘“ * Improved capability with multi-line statements
LEFE3ASN) v N) in Extended BASIC.
Mt . IN2) v IN2)
RA . **ZE Commands Not Available In T1 BASIC**
RIGierapn$,N) e (e)—N+T ERL PEEK STRINGS
SEGH(ASMN) ERR POKE USR
?.%’JN) INTIN*RND+1) ERROR POS VARPTR
TAB v with comma) ON ERROR RESUME PRINT USING
? PRINT **Most of the equivalent commands are avalieble in
REM T1 Extended BASIC

An Example of Code Translation
From TRS-80 BASIC to Tl BASIC

120 FOR I1=1 TO NI

130 IF 1Z(I1)< >0 THEN PRINT “THIS ITEM
DROPPED’’;ID$: GOTO 160

140 IF K$=K1$ THEN IF Ci(I1)=0 GOTO 160
ELSE C2=10*C1(I11)+ 200

150 DX=C3-C2

160 NEXT 11

Translates to:

120 FOR I1=1 TO NI

130 IF 1Z(11)=0 THEN 140

132 PRINT ¢“THIS ITEM DROPPED’’;ID$

134 GOTO 160

140 IF K$< >K1$ THEN 150.

142 IF C1(11)=0 THEN 160

144 C2=10*C1(11) + 200

150 DX=C3-C2

160 NEXT I1

72 The Best of 99'er Volume 1

when converting a program. After an hour of tracing
through a maze of GOSUBs without the benefit of a single
comment, I decided on a total rewrite.

The TRS-80 version had the program determine the coor-
dinates of one of the nine open spots on the slot machine
and then perform a PRINT AT at the location. Using FOR-
NEXT loops, I was able to overprint the nine spots to give

the illusion of a rotating machine wheel. By converting the

PRINT AT commands to HCHAR calls and storing the
four codes for each shape in an array, I simulated this ac-
tion on the TI-99/4. The graphics were fantastic (an un-
biased estimate), but the speed was disappointing. In the
TRS-80 version it was necessary to insert dummy FOR-
NEXT loops to slow down the rotation of the wheels; the
T1 version, on the other hand, was too slow right from the
start.

The single enhancement I had made to the TRS-80 ver-
sion was to have the wheels stop one at a time, to prevent
giving away the final result of the pull during rotation. To
keep the wheels moving at a constant speed on the T1-99/4,
I included dummy counting loops as each wheel was
stopped. In spite of its lack of speed, the richness of the
TI-99/4 graphics made the TI BASIC program a more ap-
pealing simulation of real slot machine action than the
TRS-90 version.

To summarize, if the program you want to convert is a
number cruncher with a few graphics, the conversion should
go smoothly and result in a TI BASIC program which runs
with speed roughly comparable to its TRS-80 cousin. But
if the program involves the heavy use of graphics, expect
to rewrite it. And if the program is poorly documented to
boot, keep a bottle of aspirin handy. Futhermore, because
of the limitations of the TI BASIC IF-THEN-ELSE, and
the lack of a PRINT AT command you can expect nearly
every converted program to increase in length. On the plus
side, however, the extended variable names available in TI
BASIC make it possible to enhance the quality of the
documentation and structure of the rewritten program.

One final note: TI’s Extended BASIC Command Car-
tridge adds the PRINT AT and PRINT USING statements,
has the capability of controlling up to 28 moving objects
simultaneously, has improved IF-THEN-ELSE capability,
and supports true subroutine definition (a significant aid
in structuring programs). Although Extended BASIC pro-
bably won’t alter the need for rewriting graphic programs,
it should make the job a lot easier. E

Copyright © 1983 Emerald Valley Publishing Co.

for a special use and doesn’t treat it as a new line separator.
When converting, always keep this in mind because it pro-
vides a powerful formating tool when converting PRINT
statements. The TAB command is similar in both inter-
preters, but TI machine skips to a new line if a TAB value
is less than the current column location. The APPLE will
ignore the TAB statement in this case.

As part of the print function, APPLESOFT has a com-
mand of the format SPC(N), which is used to print N spaces.
This must be replaced with a string of N spaces in the TI
PRINT statement. APPLESOFT has to be very careful with
spaces because it does not format a number with leading
and trailing spaces the way TI BASIC does. This means that
it is very rare to see something like PRINT J;K in
APPLESOFT—a perfectly acceptable command in TI code
since all numbers are printed with a trailing space.

The APPLE II screen starts off with the cursor at the
top and works its way down to the bottom before scrolling
begins. The APPLE uses HTAB and VTAB statements to
shift the print position horizontally and vertically in order
to print information at different locations on the screen.
TI BASIC uses the colon, instead, to force line feeds. When
converting, either change the print format to use line-feeds
(colons), or use HCHAR to print at an equivalent location.
Note: TI provides a full PRINT AT (using HCHAR) routine
as part of its Programming Aids I package, but it is very
slow. In many cases (where scrolling is acceptable), you are
better off setting up a sequence of PRINT commands us-

HCHAR method of print out, here’s a routine to print string
AS$ at row RO, column CO:

10 FOR X =1 TO LEN(AY)

20 CALL HCHAR
(RO,CO+X—1,ASC(SEG$(AS,X,1)))
30 NEXT X

This routine is much faster but requires you to remember
to begin at column 3 (where TI BASIC begins its PRINT
line) and not to allow A$ to extend past column 30 (where
TI ends its PRINT line).

The prompt for APPLESOFT input is the same as for
TI BASIC except that it uses a semicolon in place of the
colon to separate the prompt from the input variable. For
example:

10 “ENTER A NUMBER’*;Q
VS
10 “ENTER A NUMBER”:Q

The last I/0 difference concerns getting a single character
without using the INPUT statement: APPLE uses the GET
statement, while TI uses the CALL KEY statement.

SCREEN COMMANDS

The APPLE has three modes of processing: Text mode
and two different graphics modes. While in Text mode, the
programmer has a number of commands which provide a
wide range of control over the screen. The APPLE screen,
in this mode, acts like the TI—except it starts at the top
and works its way down to the bottom before scrolling. It
also allows the programmer to set the width of the print
screen (‘‘text window’’) and the length (number of lines)
of the text window, among other things. Some of the most
commonly encountered commands are:

74 The Best of 99’er Volume 1

CALL —936 Clears the screen inside the test window

CALL —912 Scrolls the text window up 1 line

CALL —-868 Clears the current line from the cursor
to the right

HOME Same as TI’s CALL CLEAR

POKE 33, Sets left margin of window to L

POKE 33,W Sets width of window

POKE 34,T Sets top of window

POKE 35,B Sets bottom of screen

FLASH Starts ‘flashing’ output from white let-
ters on black to black letters on white
and back again

INVERSE Reverses output to black letters on white

NORMAL Resets FLASH and INVERSE

POS(N) Gets current horizontal column of the

cursor (i.e., N will have column number
0-39)

To simulate FLASH or INVERSE, use TI BASIC’s CALL
COLOR statement. For Example, CALL COLOR (3,16,2)
gives white numbers from 0 to 7 on a black background.
Changing this to CALL COLOR (3,2,16) will cause the in-
verse of it to appear (black numbers on a white background).

RANDOM NUMBERS

Because APPLESOFT has the ability to retain a random
number for re-use, you cannot always convert the APPLE
RND statement directly to TI1. In APPLESOFT, if the state-
ment is RND(0), APPLESOFT re-uses its last random
number. If the statement is RND(N) where N is positive,
it gives a new random number. If the statement is RND(N)
where N is a negative number, N acts as a ‘seed’ number,
and all other RND statements will follow a standard se-
quence. Note that the value N can be any positive number
in order to give a new random number.

If you see a statement using RND(0), backtrack to the
last statement with RND(N) and save that random number
in place of RND(0). For example:

10 If RND(2)<.5 THEN 500

60 If RND(0)< .75 THEN 600

in APPLESOFT would convert in TI BASIC to:
10 Q=RND
15 IF Q<.5 THEN 500

60 IF Q<.75 THEN 600

MULTISTATEMENT LINES

A key point about APPLESOFT that 1 haven’t yet men-
tioned is that it allows multiple statements on one program
line. Each statement is separated by a colon. This allows
code like:

[0 X=X+Y:Y=Y+1:Z=Z+1
Translating multistatement lines can be a big problem
because there may not be available line nuinbers to assign
to the converted statement lines. For example:

400 A= A+ 1:FOR I=1 TO X:B=I1*A:NEXT I

401 GOSUB 403

402 RETURN

403 REM

404 GOSUB 600

405 A=A+10

406 RETURN

Copyright © 1983 Emerald Valley Pubfishing Co.

The problem here is that there is no room to separate the
multiple statements on line 400.

You can get around this by using a line number transla-
tion: Multiplying all line numbers by 10 allows you space
to insert the extra line of code. The translated code is as
follows:

4000 A=A+1

4002 FOR I=1 TO X
4004 B=1*A

4008 NEXT 1

4010 GOSUB 4030
4020 RETURN

4030 REM

4040 GOSUB 6000
4050 A=A +10

4060 RETURN

IF-THEN-ELSE

APPLESOFT does not require the ELSE feature of an
IF statement because it allows other statements after the
THEN part of the IF statement, as in the following:

10 IF A=X THEN X=X+ 1:.Y=Y +1

20 A=X+Y
If X is equal to A, all statements following THEN are ex-
ecuted. If X isn’t equal to A, the program simply advances
to statement 20. The TI BASIC equivalent is:

10 IF X=A THEN 15 ELSE 20

15 X=X+1

16 Y=Y+1

20 A=X+Y

Because TI BASIC lacks multiple statements per line, it
requires much more coding and a concurrent increase in
memory needed for code. Keep this in mind if you are temp-
ted to enter a program requiring 16K RAM in AP-
PLESOFT; it probably won’t fit in your TI machine. [Of
course, if you have TI Extended BASIC, all this is moot,
since this Command Cartridge allows multiple statement
lines. See “HOW E-X-T-E-N-D-E-D IS EXTENDED
BASIC?”’—Ed.]

LOGICAL EXPRESSIONS

Both interpreters allow logical expressions to be used as
if they were numeric values. APPLESOFT treats true ex-
pressions as if they are equal to 1, while false expressions
are equal to 0. For TI BASIC true expressions are — 1, false
are 0. Whenever converting code from APPLESOFT,just
insert a “—"" in front of the logical expression:

10 X=(0% = ““A”")*5
becomes
10 X=— (0% = ““A”)*5

AND/OR

APPLESOFT allows multiple IF tests to be combined us-
ing the Boolean operators AND and OR. TI BASIC also
allows this using the “*’” and ‘“ 4+’ arithmetic operators,
respectively. For example:

10 IF (A=B) AND (C=D) THEN X=X +1
is replaced with

10 IF (A=B)*(C=D) THEN 15 ELSE. . .

IS X=X+1

In some cases, a straight conversion of the APPLESOFT
IF-THEN will result in wasteful code. It is always a good
idea to understand the purpose of the tests being made, and
if possible, re-code them more efficiently. For example:

Copyright © 1983 Emerald Valley Publishing Co.

10 IF (A=B) AND (C=D) THEN X=X+1
20Y=Y+1
would convert to:
10 IF (A=B)*(C=D) THEN 15 ELSE 20
IS X=X+1
20Y=Y+1
but it would take less code (and therefore less core!) to in-
vert the test:
10 IF (A< >B)+(C< >D) THEN 20
IS5 X=X+1
20Y=Y+1

SPECIAL FUNCTIONS

Each interpreter has special functions oriented toward the
manufacturer’s hardware. Some of these are similar to other
functions available in a different computer. I will list only
the ones most commonly seen in APPLESOFT programs.

CLEAR Initializes all variables. Automatically
done by TI BASIC as part of RUN.

HIMEM Sets highest and lowest memory

LOMEM available to BASIC. No equivalent in
TI BASIC.

FRE(0) Gets amount of available memory left.

PDL(N) GETS joystick input. In TI BASIC,

use CALL JOYST instead. The PDL
function returns with values from 0 to
255. If the value of N is 0 to 3, you
are referencing the joysticks, but values
from 4 to 255 can do weird things.
Luckily, the APPLE joysticks don’t
seem to be used much. Also, the only
way to test for the ‘FIRE’ buttons is
to PEEK(— 16287) through
PEEK(— 16284) for paddles O thru 3.
POP Cancels the last GOSUB. This is most-
ly used in edit subroutines where an
error causes the progam to go to an
error routine instead of RETURNing.
The only way to code an equivalent in
TI BASIC is to have the edit routine
coded in an error switch which is inter-
rogated as soon as the subroutine
RETURN:S.
ON ERR
RESUME This tells APPLESOFT to GOTO a
part of the program if it encounters
certain errors while processing. In TI
BASIC, any errors are either handled
by the BASIC interpreter (e.g.,
dividing by zero), or cause the pro-
gram to end (e.g., reading past the last
DATA statement). The ON ERR is
most often used to trap an error ex-
pected by, or consciously caused by
the programmer.
Jump to a machine language
subroutine.

USR(X)

As you can see from the foregoing, converting most code
from APPLESOFT to TI BASIC is straightforward,with
most of the effort devoted to converting PRINT statements.
Most importantly, don’t get frustrated if your first attempts
don’t succeed the way you intended. After a while, it will
all become second nature. m

The Best of 99°er Volume 1 75

The Secret of

Personal Record Keeping:

Implementing

DISPLAY AT
and
ACCEPT AT

Without Extended BASIC

BASICALLY, HE's
STEALING My
ACT

features of the TI-99/4 that are not described
anywhere but which are nonetheless quite helpful. I
did. . .and what happily resulted was a way to quickly print
text to and accept it from anywhere on the screen without
having to pass through loops or causing the screen to scroll.

Those of you with Extended BASIC already have this
capability with the DISPLAY AT and ACCEPT AT
statements. Now you can have these powerful features in
TI BASIC (the language built into the T1-99/4 and 99/4A
computers), provided the Personal Record Keeping Com-
mand Cartridge is inserted. This cartridge, which is quite
powerful and versatile in itself, will interface with the con-
sole’s BASIC routines and allow you to use two new
statements: CALL D and CALL A. [See ‘‘Personal Record
Keeping: Managing a Mobile Home Park’’ for more infor-
mation on the PRK cartridge. Those of you without the PRK
cartridge but who happen to have the Statistics cartridge
should be able to use that instead.—Ed.]

Before getting into the documentation, I should, of
course, mention that you can also print anywhere on the
screen without CALL D by handling the printing character
by character using the subroutine given in the examples in
your manuals, i.e., ‘‘Character Definition.”” The drawbacks
of that method include lack of speed (the letters appear one
by one), more cumbersome programming and more
memory space taken up.

1. DISPLAY AT — numerical data

CALL D (R, C, L, V)

S ome of you may have accidentally stumbled upon

R = row number of first character of print line
C = column number of first character of print line
L = maximum length of print line; must be > =1
V = variable for the value that is to be printed

R/C— The R(ow) and C(olumn) variables are meaningful
with values between 1 and 24, and 1 and 28, respec-
tively (the print field 24 x 28 is used). Values below
the minimum of 1 (0 and negative numbers) are
treated as the value 1. Values above the maximum

76 The Best of 99’er Volume 1

(24 or 28) are automatically subtracted as many
times as is required to bring the result between I
and 24 or 28; this result is then used as the R and
C value. This is a nice feature that eliminates many
program halts of “BAD VALUE”’ that often result
from careless programming. Data at the end of the
screen line is not printed at the beginning of the
next screen row as is the case with the CALL
HCHAR statement.

L— The L position can be used with a fixed number
(the maximum meaningful number is 28) or as a
variable to which the function can be assigned in
numerical form, like SEG$ in strings.

V— Instead of a numerical variable, you can also put
a number in this position; it will then be printed
on the screen in a positton according to the rules
above.

Example 1
100 CALL CLEAR
110 V=326525
120 CALL D(12, 10, 5, V)
130 GOTO 130

Of course you can explain why this program displays only
3265 in the middie of the screen. (Remember that a sign—
equivalent to a digit—precedes each number, and that plus
signs are suppressed on printing.) How would you have to
change line 120 to give the full 3265257

2. DISPLAY AT - string data

Version 1: CALL D(R, C, L, S$)
Version 2: CALL D(R, C, L, (“PAUL W. KARIS”)
Version 3: CALL DR, C, L, CHRS$(N))

The variables R, C, and L work as described previously
under section 1, above.
Here expecially, L can be put to good use as a built-in SEGS.

Copyright © 1983 Emerald Valley Publishing Co.

Version 1: the string variables S$ 1s printed

Version 2: the string between quotes is printed

Version 3: a complicated way of saying CALL HCHAR(R,
C, N) that is merely mentioned here as illustration of the
possiblities

Example 2
100 CALL CLEAR
110 A$=““THIS IS MID-SCREEN"’
120 CALL D(12, 4, 19, AS)
130 GOTO 130

3. ACCEPT AT - numerical data

The ACCEPT AT statement works like INPUT but can
be formated anywhere on the screen. The input prompt can
be printed in the appropriate place with the technique of
section 2, above. The built-in value checks are an additional
feature.

CALL AR, C, L, F, A, MN, MX)
R, C, and L have been explained in section 1.

function variable
accept variable

= minimum value
= maximum value

F— The numerical variable in this position assumes a
value 1-7 depending on certain function keys be-
ing depressed. The values connected to these func-
tions in this way should not be confused with the
ASCII values of these functions that can be useful
in CALL KEY statements. For completeness, I’ll
also tabulate the ASCII values here.

Function Key CALL A 'value ASCI1 value
(F position)}

T1-99/4A T1-99/4
FCTN 5 SHIFT W — BEGIN 6 14
FCTN 8 SHIFT R — REDO 4 6
FCTN 7 SHIFT A — AID 3 1
FCTN 9 SHIFT Z — BACK 7 15
FCTN 4 SHIFT C — CLEAR 2 2
FCTN 6 SHIFT VvV — PROC'D 5 12

ENTER 1 13

CLEAR will not only give F a value of 2, but it
also clears the input printing field on the screen and
is to be used when typed input is not yet entered
and should be changed. Warning: This means that
if you write a program that continually loops to
a CALL A statement, CLEAR cannot be used to
break the program. Only QUIT or cutting the
power will work then, but it will also erase your
program in the process! The solution to this prob-
lem is to program your escape routine, e.g., IF
F=3 THEN 10000 enabling you to use AID to
bring the program to line 10000 which reads: 10000
END.

A— The variable in the position of A assumes (accepts)
the value you typed in much in the same way as
the input variable does after you depress ENTER.
The F variable, of course, then gets the value 1 since
you have used the function key ENTER. If you
press ENTER when the print/input field contains
no information (only ‘‘space’’), F will take on the

Copyright © 1983 Emerald Valley Publishing Co.

value in the above table if one of the function keys
has previously been pushed.

MN— The numbers or the values of the numerical

MX— variables in the positions MN and MX respectively
determine the minimum and maximum values that
A will accept. A gentle beep when you press the
ENTER warns you if you try to step beyond these
imposed limits. The screen, of course, will accept
any numerical data, provided that the length does
not exceed L(e.g., if L=2 and MX = 10000 you still
cannot get A to become more than 99 since the
screen will not accept more than 2 digits). Since the
plus and minus signs (+ and —) as well as the let-
ter E (scientific notation) are all considered to be
numerical input, they will also be accepted. String
data, however, are not accepted by the screen at
all when you use CALL A in this way.

If MN =MX, A will accept only the MN and the MX value.
If MN>MX, A shouldn’t accept any value at all, but il-
logically, it does accept the MN value.

Example 3
100 CALL CLEAR
110 CALL DQ3, 3, 28, “ENTER 1, 2, OR 3)
120 CALL A(l0, 25, 1, F, B, 2, 3,)
130 CALL CLEAR
140 FOR T=1 TO 500
150 NEXT T
160 CALL D(l5, 3, 28, “YOUR CHOICE WAS”)
170 CALL D15, 20, 2, B)
180 FOR T=1 TO 500
190 NEXT T
200 GOTO 100

4. ACCEPT AT - string data
CALL AR, C, L, F, AY)

R, C, and L are explained in section 1.
F is explained in section 3.
A$ = accept string variable,

A% The variable in the A$ position is filled with the
typed string information when you press ENTER.

Example 4
100 CALL CLEAR
110 M$ =“PLEASE ENTER YOUR NAME"”
120 CALL D¢, 3, 26, M$)
130 CALL A(10, 3, 20, F, N§)
140 CALL CLEAR
150 FOR T=1 TO 500
160 NEXT T
170 CALL D(5, 2, 28, “THANKS ** & N§)
180 FOR T=1 TO 500
190 NEXT T
200 GOTO 100

Now you’re on your own: It’s your turn to apply these
two new commands and, perhaps, discover some additional
ones.

[Note: In the event that Texas Instruments gets away from
producing ‘‘hybrid”” Command Cartridges (containing both
BASIC and GPL coding), future releases of Personal
Record Keeping will not offer the capabilities described in
this article.—Ed.]

The Best of 99'er Volume 1 77

be 2. Then STARTPOSITION = 3. Then the pattern-
identifier string created in line 140 will be

TOPPATTERNS = ‘‘000000000000FFFF”’

(as you can see, if you will take the trouble to count this
off, starting at the third position in the master string). The
resulting screen character that is defined in line 150 will be
one with the bottom two rows of pixels turned on. As the
program runs, we want each datum to determine where the
16-space segment will begin. Thus we have used the re-
mainder to calculate STARTPOSITION. By notching back
and forth with STARTPOSITION, the routine will define
any character needed to top off a bar.

With this particular routine there will be a little problem
associated with rounding up to the next higher grid line on
the next higher row. For instance, if the scale used is 1
character = 10 units, we would want 99.9 to appear on the
graph as 100. Another problem (I didn’t say this was too
simple) involves the character to be used for the body of
the bar. This character must have all pixels turned on, but
the routine above will not create such a character for all
values of the data set.

Auto-Top, a program in which these problems are solv-
ed, is given in Listing 3. A routine similar to the one above
starts on line 750. Character 96, which is used for the body
of the bar, is defined earlier in the program. Note that this
master string contains 18 F’s. (If you try this program, you
had better count them carefuliy.) TOPPATTERN = 9 will
pick up the extra F’s at the 17th and 18th positions.

The problem of rounding up to the next higher grid line
(s0 99.9 will show up as 100 as in the earlier example) is
taken care of in lines 820 and 830 where a one-row-on
character is defined and put on the very top of the bar if,
and only if, TOPPATTERN = 9.

A graph with only one bar is not very useful. We can
generate additional bars with a loop. The routine in Listing
4, Three-Bars, plots three bars of different colors. See line
680. (My 13-inch monitor displays a lot of spillover with
most colors—especially with red. There is less spillover with
light or medium green or blue, and with white and yellow.)
As the loops runs, it will shift to succeeding color sets with
the expression 89+ BAR*8 as can be deduced by consider-
ing the statement

CALL CHAR(89+BAR*8, TOPPATTERNS).

When BAR = 1, this statement defines character 97; when
BAR =2, character 105; and when BAR = 3, character 113.
The first character is in color set 9, the second in color set
10, and the third in color set 11, allowing for three bars of
different colors.

The position of the bars is shifted by the expression.
11+ 5=16 is the position of the left edge of the first bar,
and the left edges of all bars are 5 columns apart. These
bars are three columns wide. Figure 4 shows this graph as
photographed on the 13-inch monitor.

This program and the earlier ones here might be a little
longer than if they were written in the standard way.
However, they will not get much longer if the graphics are
made more elaborate. For example, the bar graph program
does not get much longer if more bars are added.

80 The Best of 99’er Volume 1

The bar graph in Figure 5 was made using these tech-
niques. I present it here just to show off the kind of
goodlooking graphics that can be made with the T1-99/4A
and TI BASIC. This program—with its outlining and the
fact that it reads and writes data for eight variables from
files and calculates items such as percentages—is more in-
volved than the listing given here.

This brings up a new problem that has been created: In
many of my programs I run out of characters. I did not
notice this limitation when I was typing in so many CALL
CHAR, CALL HCHAR, and CALL VCHAR statements.
Actually when you think about it, there are not very many
characters available. If you start at the left of the screen
and put a different character in each space, you will run
out of characters in the fifth line if you include punctua-
tion, number, the alphabet, and the eight user-definable sets.

In other words, it takes only about 17% of the screen
to display all available characters. Mathematically, we are
not about to run out of characters since there are 256 dif-
ferent ways to put together just one row of a character. And
the number of characters that can be on the screen in this
graphic mode is 24 rows of 32 columns = 768 spaces.

Since my interest is primarily in graphics, available user-
definable characters are more important to me than
memory. Memory problems can often be avoided. To put
a unique character on every space on the screen would re-
quire 48 character sets—several times more than any home
computer presently has. I do not know if this is
unreasonable. Two years ago the idea of a 48K memory
sounded unreasonable. Perhaps some computer architect
will devise a method of going to a higher resolution with
nested character sets. [For a discussion of the high-resolution
bit-mapped graphics supported by the TI-99/4A, see ¢3—-D
Animation with the TMS9918A Video Chip.””’—Ed.]

Finally, note that for some applications it can be useful
to define random graphics characters. This process,
however, really eats up character sets. In Listing 5, Twinkle,
random characters are defined that also have a certain
amount of shape. Line 240 of this code generates random
numbers from 1 to 16, and lines 480 to 620 convert them
to hexadecimal notation 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
These numbers are assembled into a 16-space string. This
hexadecimal string then goes into a CALL CHAR state-
ment to define a random graphic characher.

Shape is forced on the character in lines 280 to 470 by
rejecting certain numbers generated by the random number
generator. In this particular application, the edges of the
characters are ““rounded off”’ so they will not appear square.

I use such random-patterned screen characters to soften
up the edges of my “‘block graphics” designs. (‘‘Blockhead
graphics?’’) Another application is to create dramatic ef-
fects as is done in Twinkle given in Listing 5.

I also use random characters to induce variations on
things that, as in nature, change with time-shadows or ex-
plosions, for instance. Some video games could undoubtedly
profit from this technique. I get a little tired of aliens that
always blow up the same way. Hmm—come to think of it,
there is that video game with the pigeon in it. . . .

Copyright © 1983 Emerald Valley Publishing Co.

o [-9) -~ - - - < - X . - - oo ~ Mm & n -~ - - o = = S
[S] - ~ © [XS] - -~ - - ©0 - - -~ - - - 0 M < S - - O =) g =
- © e e & WM N e O i~ N) N © - = ! 3
= o - - - - - e N O - - _mo M M = ~ - ™ = o« Y
_ O = O—~ O~— O @ - Y -~ - ol - - - - =M = [72)
=3 - =23 a3 a3 O WO mm AN N - e Mm 0 WL D -~ D e —
-~ _© -~ O -~ -0 -~ o - -~ - -~ » D~ S0 - - B = - - M - [$) [=)
“ -~ D OMOOMO -~ —00 I~ -~ T - - - -8 0 N - AN ~ o X
Z 9 MO MmO M - X) - W - X - ~ o~ -Z o - 0 o A
LO NT = - e s me 0 — -0 e S - O -~ == X -) Y = - [e)
= — -~ - =M - - M ~Nm © - e - e O PO g S s) < m [
ME -0 N - -M - -1 - -~ O - T ~ONI - OONT D —— ~ e = =n~0 = 0 [8) [
_—— — |l ———Qam - - O ~NT - - -~ cee M EOOTCmOe - - -0 AON0An e D =2 -
R o~ NN O -~ D O ~ O 0 M S e - -~ - ~M -~ M S [W) = - o - = [e)
- - -~ - - - - rEm N | = - ~v - e -~ 0 e —M -~ NONTO0O - -m oo - -~ A= R -1 [
MMM ~~MEN | SO~ O LW - ~Om= - O~ -~ 1MW -0 -~ —c 30 -mw -0 - ~e - O = D *« % =
T IMNZT IO~ —] — a2 3 e e] -~ e - -0 - slOe - - v -~ MO EIET- XS o Bl — [eXe)] * * 5
LRl s e =Rl © Rl il ol ol N =) M~ -~ A a3 =~ -0 "8RS - ~ORMNTS - - -0 m -~ D v M = [e) - @ x [
n m mre T R - - ~EIZEDRI— R ~OW -0 - O ~omhhyye - O heve MMy -~ me NN E I T - = [&) (- *]]
INWW -~ -~~~ OCROOODMZTNTOMAAOMNO© ~fQO - - - PN - e v -~ -0 -~ - WU -~ = = -~ — S * Oy [}
-~ - - O™ = -~ - ~OQ~x LOT O -~ OHOWIOMNR—0OMeN -~ -0 "0 -8 - O =m - ~ N0 T S] = = s £ O x [[
MNES -~ " MOZNNNI—~ RNl -~ ~ N -~ s MO -~ O "~ rrerrRdreT ~ SNOD -2 - - - & - = -0 B - * O « = e~
OO <N cENE AN N R D= - ~0 - s e e crre e - - RO ONZ MM - Bl b Bl on g * = x = 1]
((((((-1 ———ZEHO0OLUO0 -~ ~-1f - "= -~ ~OM IO — - -t~ ~O0Om -FoONTI - -~ - - -y SkH—m|a— O - x | = 5
EEmEEE R SA MO N LA —~L OIS = - ~0 -~ =W OO0 - ~cONNMO—~FW - -mOownD e o LS nl - X x [72) =]
=0 0 KGR g = = =0 xS S by T - - ~OW -0 - -~ ETe -~ -0 ~m~~l D F RO ED = —x * = x [Z0-
Moo i i N = MO W s =G e - -0 - -0 - -~ -~o0M -Or - - - O - My — By =1 =3 == D il oo pl =N x> x g x [x] =]
DLDLLLL IDILLDLDLLOXOM [O—=20—10 -0 - -0 ~-=—EHOOr—M -—0 - - Ot | DA -0 AED mm - * e =t
EEE -] ol ok DA W Hed =~ 33 ~a—= 3o i - ~ e JdeeNmamomm B — O -~=p Ao E— bl X UOMS P -9 [&)
-~ = ~© -~ — -~ - -~ 00 ~ - - - - M - (=YW=Y [] = CHeX§) [Tl —
T =] 3 3 3 Zm <MOMLOME ~ =00 -~ NN - <~ S g =0 g LS m= O = A0 —~EHawnm [
AP I E IS A E S e SEOCEHEOEEHWOWE T O T CERCONHE - S oK e e ,TMMWSRAALHXL a EEEEEE e o
G hG RN L RO] e Bl R R I BRI D e BI L -~ - -~ O e ~O R -~ ok mN R - AR e RGP e oG R e Bl -M 0 01 O Bl O Bl st Bl B e b R B Ll fad)) [X]
DLDLDLLLUEDEDLDODEE T AQEEACTFANANTSTA AV IAN— A AT—~AONN - 0N ~- " AcAocmMmcONCra—~aomoL oMz~ N mocomme;o - o
0006000000008 © 06 [S © [} S [[X XX X 5 5558506 © OOS6 m..oooeooo =)
CONMNITIHNOROONO - MT 1 OK) ® © - ~ [(=3 in O ~ o0 o - N MO 0 OSTlN SO aMITILO ™
QO WOVVWODDOVORENRRN ~ NN ™~ ~ o © ©) [X 0 0 0 X O OO O oOHSes &&1111111 -
Ll -4
-
oL NS Tk ® Sk a3 M ke e DS p, om0 - @
= L NS el ®h, M —e S = S~ b & < =
[X] o RS B L 6k o m A AT A [Me. M “Ee O e e = D ©
2] RO X e S e [l [™) - - - - - -~ B~ fay = O [Y] [= o
0~ o= -9 S LS [[=] S S M [=] K- [=] ~ ESE™ ~wn o <
| &) — NS e O) ™ Ko [-] —] [Y™ fay 0 - o M - [X]
[FES - O nSS bk 0O 0k e 0O RS 8 O MO Db = =
ZEHEeMN B8N LS M M| 0 - M;a Shkvk O8O Wk~ O |
a Ow - BSBnmoew L LU L - U U - LS. e MO onm = =
= — Me SNORLOBWE N PO 2 NS OLlLei~ O ~a O Ok~ o e)
=) N2 - SWOOOLS B We Wk pme MmroShhO06 OO0 bk = =
= O LL-LS [L, 00 [) [M.~ LInS L Ly O e 00 ke N E] [X]] — —
[e) MOFmA S0MLOLS MMMM Mm - WM LrSLUME v Dhikeow [T -) o, N e~ — — =
* % % [——— = O VY N VN VY Y 5 [) [V &) - et L OS L DO - O [7) [« OO~ ~
* * %] MDD m o~ -6 - mOEAsN M BN ORS8O MOMEs 0Lk S W o O @~ = | = ~ ~ e s -
* * > —— — — e — I OO NS bkl L W MM LM LML~ = A wWmwe Ao Y Y)
* M x > -~ —~ O~ QB - RO ®BT DMK MM ML 000N M -k kM LW O & mx P L L
* Bl x] R - B .] =B - - - eSOl e O BBl -~ aNM Rl WISk N B N N 0y — [=] = 2 = Oy -
* o« e - R R R R -] Do Fe -F LSRN LOEr BSrLUMMMreIOMOTO L U L, blp - m =X [X] © ~» = =~~~
* B % 0 > ttre N~ AANA = OO0 RAO vt T OOUDTmM oA -p - LACLMLNO o = - ml Mmoo ac
* | = [e T - - N=l-XoXa) -0 -~~~ -o CON —~ S M ZO N M e Dl O [e X&) [=] A=) &L e m e e s
* 1 _x N N BT NS0 | B - AL SMNSOUBUNMO0OLDNNLL —~ RS EE b -k H— 2 wmA O ma oo
* =L & ~ —O Tt ee s A - OO0 0O o SO~ LNT N E R ST ~M b R | [-] O wm BN« ™™ ™
C3-0 (7] B e e e e e o0 = 00 AN e e~ M @ M CTMeErB DM D~ -0 ~M e Bl B M -1 O [Z] DO B e e e e
* PG x ~ tn Bl oo 0o oS o0 Gl kg B S 000 w g [R Y T WO NMIM IO K INT Z 00 = [-5 — [l
* * Do HOO0OO0OO0OOO0CO0HFEmaO I = Mpm -0, S 000U F -0 M0 = e oy Y e -~ D~ = [T)
* * O/ /M3 a1 3 I = MO0 WID A WS M DO DOMMDBHCNDOML TN D "M a R~ by X O = L O = Mo X i N
* * mAa>>000000000<O0DHLBeRUIEEBOAR Hr IrO IB00DTNOMY -0 mMMbLOLOB®OS ~MmAaf@emOANMOERS | DODODODVOD
* x x L KnDODOVDVDVVVALE OB I—OHTYAN A ~-ACMAChRACMM I~ HMIEOMAGALERN IO XL OO0 D | mmmmmmx
= Ve mm - O ~) - ¢0 -® MDD v O - B e = 00D =]]

Ay 3 3 22 T 33 = 22 3 3 -] NS L -~ -~xtmMmegMm MO A= M A = -~ -~k -~ AR ~x O — [AX DO 3 =] T
= = EEN A3 32 A SRMEMOEHLME - LT ZORNDEZO 06 m e LA AT -~ OSSN 3 == ed
[CHCET] M~ e e e o L L L L W RO N L O KB ~ MO O KO &G -5 ul v =M G oL eC Bl O A e O O KT pl kG b e el KG KD RCORG R

ol] LEAQADLDLDLDLDLLDLDLLEL DM ALONABABLAJIAE - O "~ BAE ~-AGMALAN ~—QLkA/O EE L EWm—=000DZ 0D DOL0DLDUDD
Dcooooot oco6bc666666 6 (=) e o e o =) [=) [5 6 ©o BOOS 5600000000080 00
LEoramaone rooBramImon~n_ ®) S <« ~__™ =3 [[~ © O © NI O R0 S oM INO 00O
1&1111111 CrTrraNaNNaNNaNaNN o~ o~ (=]) [(2] [t (2] 2] (2] La2]) < < T T TN NN WD N N DL N LD O
-

8l

Volume 1

The Best of 99'er

Copyright © 1983 Emerald Valley Publishing Co.

| &) > (&) [] =g m
- i . [. R Lk ® = 005
= = [= S w (=S =) [=)
—_ o [-% (%] =0 X3 =] - = ©
[— [W =] S = [&) [<t
—~ - & fand o O oS, - [2]
©“ = — Q a. - S ™~ = [=
= Q w2 [X] ©“ 9O > = [&) [%]
fa — o] a2 [= ST L [e) = w5 =
-~ = —~ ~ - L) a @) = [O ©6 L @ [e) 25 = >
[) 2 M [l G — + [=] [e] —_ k-1 O — "G — g P —

b - - - - 7 B L] (2] E= B OO v b by kI b fe = 2} “© 3 0~
(-] - o~ 2] [I — QO i = . [O O . © 3 B Ll — O [= a. - | —
(=) (=) =) [=) S v Z a = vz O Qo = O 0o~ mUAN - O - [7) - -
- e e e O m - 5 M= © o e O T O MO MmN w0 mm e~ | e

- - - - - - 3 =) = o~ [*] e OO n® i~ = A [[a) S ul 6 =
©W © © O vv] = > >~ w ——O B - O S 0 = m = AvEe- -~ m
- = e — O —~0Q * x x M o pd 3 : O L ZrC-NT LS @@ @ m © —~ W Sk =~ - W

= = - = PR = m O * * = = o) [22] - T ZROOOS L OO 00 o -~ m [=N-% [N -— =
> > > > >~ < - x 0. x) S = E=] (=] M NG B R - - B G B BB B [e) < 5 Z - MmUUewe - O

| 1 1] | | wvams - W * Q * 0 > 6 J o~ — ALV LS Q [o XS] =] =l -3 - = o
- - - - -S -o i —= 0 = * < % o 2= N == 00 -~ O =Z— ~pnOOonOoaoAn] = — = [=) O=NO O]
o~ o~ o~ o~ o~ N X = B o * | = n =g || O 23] o — O ML~ XM - Al Wl f [=3 —~ O v BN @)
— — — — —_— - oYM — — * O = - [= Z W AN OS > MO = — Wl [SXS) G — - =
e m m mEe s — R e * = x = 9 <o W S ok - DL EEmEE ZEZSROEEe M — e Emme;m O
4 = =4 g G <G — 2 2 ~— G —_ * D x D v s o oxG n oo LX) WmOO0O~ =S @A 33 ~bo Gl Bl b3 —_N =m0 o e (D KGO K =) =)

SISO INe oS nm > Kk —~ 1 Om®m w * wg x O il 3 1l g = -~ = -~ o 3 =3 by PG BT = kG S R -0 U2 U2 U2 [Bl Wl W kG @ G KGO <G = -~

NORONONONODOM w1 & W O o * * Mmoo oeg > 3] il e i K- VOO WOMmEOU <G 0T bl Wl A E=-N=-Tal AT OFO0O0 I Il oo

oOomoOmoOToOOnoOE O O @ = = [* x = LoD O e = A = NOOUALFU~FSaa @ ;e e N O~ OO0 O w MmO T & e =

1] Qs Bl = — k3 e S ade S Mme =] = -« [%) Qo -] 1] o S0 = M

O 0000 A3awm [e Bl o =] =W I DDWiiDDDas Z L O ~g G = Qa0 0 W e N

B ol o B B 3 B a3 3 (e e W i) EE s sEEs s i mEdnmE INASIIE SO~ MM F oo - HFA XS = d;maxME

O OO GO MO T L, Z Ol O R) 3 MWW WU WO OO0 O OO = v =0 wC bl Bl d &G 5~ %G 22 <G G G e WM OMEMBROONMMWMWMW OO0 O

VOV OUODD —~mk 3000 =m Moo rm >0 I 0000 —~000xme=An - O~ 0000000 EEMLEM—00DZCEORO=IXOD

0000000000000 9S ©9 D600 660006006066000060005606 _© S 0006006 0000 0000000006686

OO NMITINONOONO - NM =tun E e raM TN O RO AMITINONNOO M < 1 OR00 OvraMNM SO0 - NMSn O~

888899999999990000 -] ﬂ111111111122222222223533 N [a2) MM NN T < T T S S ST Y ST SN AN LN AN LN N LN LN D

- e - - —

-
o [06 O6 I -) —)
[+) =X X1 [= [-
e =g S — X - ™) =] —~ S
%] =] [-X-] -~ - oS b [= (] [0] n N
= [3) X [- Y™ [- — - 0
(o) - [X-X™ o o = S B fae 3 [X] + -
<% L S T~ - - =) | =] = = < = —
] = OO0 =Z= 0O0n h © (ST =] 0 «—

) [o - SO 00 Z w6 [™ [=) (=] =] —_] =] « 00

) = o R X - X v O e L © o > = =3 M~ — —~ @ -

B =5 o = - OO [A2 L - P) =g T — — — oG — B B > <) — —~ = =
=] =] e O | WHoInLme Hhkh © o W = o~ n_ | b0 &= - -~ -~ Ao M M »
= - B0 d OO unxXmOLES bbb B o A B« | ©— — | = — —n =M =S - - - -
[«) N o — 1 OO - 0y — oot B - [T (9 - [e) w - - — [oX: — [—_ 65 — n O ~ [(2]

(<) o [- X e - e — = [[=) » [$) o — T o o A, o) === [= = «— L oo O [=2]) [22)

~_ M == 06« - ZOoLLe o |6 = A Me A |SOwmoe = -3 — e) W B - - 0, g -~ - -~ - -

= [—_—— 0D) L O - S f (=) T O =]] A e -~ m o~ x = - m= mONRNOO WO W © v o

> = - 00 LN xg 2 R TN 00—~ 6O - - | O S — (7] = W =— -nnsx %] oOne > ~ L0 UererBHmiUMe « @« @«

"t [e]) o -~ XXX [N - o B md b Q4 - B /m =] [N - w - - = - M Qe =t =~ e - ~— o - - - -

= = [=) M NGO e - ce MmN e S nZ=Zn O = = = - MO e - - [e] M —= - fad B fad D D Do T - D > > >

] o~ —~ = -~ PS) O - - kX -k - -O [e X&) (=] %] [- o, - I O = mrmm | | | =+ | | i [

v =5 0 -0 -- = -~ b © b, — -) [= [EN= OomNOO [%] o X -W-- [e) HFEmOENNNMZ I T v

[&) [%] [e) — [e o [- o WIS [e = O o2 O N B o wn - =S — e MO NN — O N o~ o o~

— [= o — B K s I D OO B - = -~ LS e — [*] 0O "y ~— 2 — [— g il A — — — = || B - — — — —

= = [=) [=) [N Y- ¥ K- I Z 0 -2 0O [L — = o O m e il m S x Dm0z ® K o 3 [

o g fad noeo o6 MO0~ UA MW 0006 Ik S MWl N = [$] el e (D KGN G =] S NS S K [SRR e N -k - M] < =g

=R - O - S ma-mOm AR OO0 Ok e |k KW O GG ARG | R EO L || N O NET IN MR LIRS L0 TO NS No

> |l i =1l ([ad OO0 m e & KO | OO0 00 W - MmO e molnn O e O 001 lrO=2mi 00 UmADDOMEA ~ORORORND

MO = “a M= n OO o] =5 | MO0 6 v MAXRQO—=XIFTOOO v mOE K w = >0 5 v = MO~ — e WML OO MO R

=] e = M d e S M = = 00 O i =) Qo Al 1] o — O = M @D s m By e — G O™~

A M DDM (DD -] G O SO S b -] =g = Am OO W -] LR R Zm DD = e EEEEEEE) A0 1000

.anLBWLSBWLSP.LLLMMEMTEIMT@OT@FFTGMTMSR-A - = O A P S o - b M Y =N M w2 3PS o — 1 =3 =1 o o 3 B el B e B sed

CAAOOOAOOONAAAEETEAVTEAOO.ADFFAIEAEEOERFO.DAEEEAOAEAOOOAOOAOOAEEA__EA.AAEONOAOAO.AOA

MO MmO AamOO —~D0LOEEOA -~ ~KASS N T L AN E AR E WL B~ 00 ZE RO Z IO B 00 ZEAa D00 OVTOTOYO

OO0 ©S XS =) S 0000006 60000000000 006608606060008 0000060 S8 60

8901234567890123 -] W0 ™~ 00 (2] S NMS I 678901234567890125456789012345678 OGN M LN

NN NNNNNaNNNMM MMM (LX) M)) STy T I T I AN ININW OO OO OOOWOONNRRMNMNNRNRNNNRD ™~ 00 00 00 00 00 ©0

Copyright © 1983 Emerald Valley Publishing Co.

Volume 1

The Best of 99’er

82

— ™ —~® ¢ © — -) e © © [
> [[* * wn w0 * [* - @ —
[- (% M oM ;5) -] o m = [=)
Ls] — 1) [CC]]] + B — g S o] - o]
= o~ B — ;x 2] ~ — =) S ~ Al — o,
— % m+ + + o = = + [=) + -~ - & e} [22)
= > [7 o [-+] [-+] * = xh [~ K-2) (=] S ” — [nd "
(%] - (S w0 o o = | e [XK= e o —H0 w»n 72]
L+ —~ — 0 b = - - - W= wn = - [=] - B — [e} [
[> [— =™ m [T n =W — =X n m = o o) [$)
— = - — — — wg B — * * * = » g x [X * g + []
7] =] — 0 «— I~ w | m e -] —= o om0 @ a e =
[=) = 0, m - | « —~ 1 =~ [=) Bl el kG kg G] o e = — 0 i > <
[e) -] w g - - - Om — S 1 —m m M| = e Om =) m = B = [A E+]
[&) =] — = S O e [(2] [eX =) = i+ -+ + W B 2 = + [= -+ [= [T [&)
A [[} - [K -2) = -~ — [} =K [$) = o~ () 05 Ay g - & - - 1 @ [=] [
= e -~ Ay~ -~ @ o B xS - K- [72) el - - — 0O = 0 «— ~ 0 - -1 - > —=
M s 2 e = - wm X7 -1 %) =) ~ -0 - - - — e — x - * - Qwm—~0 m © O
2] =Y (2] — mEM - = - = — =X -) —~ = > > [o> o > = m e | * _x % g Y=}
= = - B > Oee - O M- —= - [=) CIm > > v Z N e At D —~ < - * * < e =
D mm o, - -~ = A - 1 O 2 wme mxom |]] — @ | V e] N Iz * [x o= —~vx
= mAa O~ mNOO W MeX-X-- O o mM—oeN N N + = +v- =+ © -0 I —=0 = * 3 x W= 0 K %)
0~ [RNe) w2) 0O N B~ G [— 0 —] =) O —m e o~ o~ «— O 1 [X [=K-) (] £ = e (o) * M x [Se) — = =
] [SX &) - g — — M — eN® = = =P mMM~ ~ ~ f—» ©~— Mmoo — - QUM — = * = % A =Z—A
= g — = — "o e [e) e |l = X1 [] ~ = =2 — & B — [+ S — [x — % — [[eXe)
O mmmEem O e E] S N[O S K O = — = o e o o— N - — @ e — — * = % DA KO A
W - o = TN MmN m=E s (| mmm = AR - -~ 66 > B — o m [z x = % O maxnN
o NN O e OO0l TOOZTm i OO CLALEY—A0D O O =0=®0®ITL amXm O W nwno O * x MmO OOm~—~v©8
MO WY TOXmme =X >0 = w= MM O Ml — X > > > = o e Om a O £) O m -] x x %] nowns It |l
] il [0~ -1 = M LD = m W B M B OB kG - [o) il -~ -] O — —
[N Y= = - R == Z DDA e b R T - Y- T Y == B w1 — 1 — 2 = (bl w1 — f= 5D el) (=}
e T N TR R R N - - o W I = w3 — D4 0w O B MG e RN T
L OO MM ~ WML O WL OOO OO OO M bl W e O > > L G > OO — b L LMW Z0mO NI [[[[[B3 B o3 G kG B kG O O
— VDO ZEOAMBEOLODZ A ROV OLE T OU0OZTEESwbmMErmD -0 -0 -~ F0NnEEHOD ~—0nl -~ ZO—HMLaDO0 =@ W memmmm e OO M o b b
OO0 0000000000000 OO0 © © OO0 66 606 6 66600006068 ©°5 M.VOGOGGOO XX
CFEANMTINOR®O OO rOMTNOR0OBDCCMTNON OO M T O~ 00 B N MINnO~N0OHS « o m B rNMTING N~ TN
TS YRRy NN DWW WNLWIWOWOOOOOO OO ~ ~ NS ~~ 0 0 o 00 00 060 €0 €0 0 00 [N 1&1111111 el s Bl
-
— — b — |6 Ll g (290 il b By By G =)
= w E n - = = [N L) =] =
= - b o - = =] o B b O [=)
(U] + B Y = — [e) . L] SO m) <] =
— —~ b = [At — w LS S« - < e | &) ==}
[Z] €0 b = b —~ -~ e — - 00 L © Lo]
o+ * =« [=) " = — [=) w3 S~ - LD w1 [
") | &= [[=Ne) [= o6 -~ B Baa =] wg [5)
—~ %] < B = wn [=) Bme— O a. O -6 o O = L
-) [=™ o - ~ 06 m E~ o [e) — 00« -)) ©n1 O =
ol o] — o~~~ Y [@ ~ S —~ g - -+ [=)) 0O — =3
1 | WO = > —] =M 0e m R [- X = M -0 W e o
~ 1 = —~ —w = - - - e W m - e - e i SR - Xk -] CNO W W — [5)
- [e X5 —~ M~ o0 =o L LN =0 =0 = [2X6) L~ 00 v kv Ea00 -
- M T« oo Mo A O MO o m - = N © WM, OO bbb —mikn e
B —m [=2] () = - -~ RS R x4 = ~TSe - — & f=] x K X | =l o —_ =~ 200 by = = = 1 3 =
o Bk F - _ mE TmONR®0O0-—6 0= =906 0 = * * =~ — 0~ D= - 6 LMo [=Xe)
D NS D 2] 5 O [CE S il il e ~— T S — Om—~0 x 2 x M >4 —~ 00 - =N [WK] oo o o —
- = - Mo —~— - - - o * »» n O - ~meead * o o ™ = 0 - -~CHMWOOe wkre 0000 a v«
"N — - MM - R Z0 N0 O> A8 >~ <@ - > < = ® o= "M N A - s LM s bbb O =
= 1 O = Mm@ | | |~ [T = | V= | ®n e Sm= * @ % © > e — - - -G NS [P] [e) ov
oo ~x O FmUEmeNNNm@+e =wn e 2 -0 - i ——=0 = x | = - = e e 0 - Be-ND MZ— - Lz AAQAAA A e
- =S — =] L O —~ NN - S O ™~ NS00 N M = e o [e) x 3 x [TS — O = - - -) By [y — B [[I [
— SN — HSmmea——— || e —® O—me — -Z oV m-— — * Bl x > — B — — — MW -~ bl B> MO —w
e e =] SDliimilEmEmOZS [— e — S, — Bl — x % = 02 G oo kG o B B B oo Z e 0 = =
MO O = oo e e e Bl RS s — G B — I B~ 2 — x4 — * X % =X AL OOOO0—~=FmA [%) [[Ed R —~ M | =
TR RSN - = e B G I I R |l s va B — kD G kG D D B — lOox w2 % fm x O M ~MO -Gl = - B (e — kg [v [Fd)
OZm | 000U mADODDME wic O =IO axEOMm W e O [e) * x Mmoo > MO OOO0OO0O0OMWO EX O [Bl (3 [[[N =-Y=N=]
TOEvZ TmEO——Zb>obUuEmLAECr-rOEROEMG Om<in o= * x LD I Z— e OOV ALDO— e Lk -~ mEmE AG0 ~ &
mP S Em Bl — WG 6D b B G - [} 1] o B[l == — O > i Il e [wvn 00 =
= 2D D e A] Qb G R Z M W =l — e D [e e e e RS G B b MO RG e G Ll A Ay
ERIMLLLMPSFBPOLL = [~ RN~ R R R A L e e o R K NN o B R S 0 e -
L O O OO W il kg [B KG G kG B O K b = O WG G i MG MGG e = O WO A B] G0 B3) L B f] O Qe — — - e kG kG KG KGR BT B B g B B O) KD B G WG kg g g B R B O B
O e DV Zrm> MO SLNEEDD D00 — WM TOD0ZL YT EECEEEE>NOAXIPIOOODDETEDA -~ » Sk ONOADEEL KW
SO OO0 0 600060000060 66 0060660060066 66 D occ00000606666606066606_© =) SO0 006006
O T NN ONONDS M N O ~ OO AN MTINONDOOS — ™ -m O NMTLNONOI S NMTTNONONS - o~ M T LD O ~NOO OB
NMOOWOOOOOOOORNRNRANNRRN AN RO NNDOONSD _ O ..&111111111122222222223)) MMM PSS
-

83

Volume 1

The Best of 99’er

Copyright © 1983 Emerald Valley Publishing Co.

n
©
-
i~
) — =
o o +
- -~ — [X] © —in
~ = = = ¥ zZ=o
~ + + — — + -
- n —~ 7] — © w3 a 1z
o~ [— <t =] = o =
L2 -+ = - - - - = -2
- - - 310 + © - = = * v = wa
“ o~ + O o [N o~ = = —~+ = O
> I 00 -0 - o -) =) e —-X &)
X} = a i - = - gy . F O | =)
T) ZN0 = 0O - S [eXe) - OzZOoON © 2«
-~ —© oM« - - - O W KOM 1n -
— =~ [K s B —= 1 > - -~ = © x -~ - Ownc
+ (=) =] - L) OOt e~ <t o~] N o -
©“ n > M O A0« v« = 4+ ke = - - = —_— - = N =
[¢] -] X) 0= 4+ — — a — — = — " — — — — F — — @ -m
=& = Ak -0 oK _©eEmmr —meOlM—m;m = Hem;c T em
= 3 o LN 00 <G M O | =C =g -] KGN B B RS = = | =g = —
CE) i -NW .Sl x mmE - m = O . - ©
< v W T 00 —_N crd 1 — D0 SO0 OmWmew OO I —00 10 W e 10
T oM E—00W: —~AWMD oO—EmmOO —> >m oo | e = om Z—mnn Mmoo
e Bt 1] ~ (SN o B Q- = = = - A A
T Ownw H A0 @B - Zel A Em A s D DZ A3+ 0 a0
i = 1l 5C 52 v Fo DA D = - @ v o o0 — o3+ A DG G — »d wd D4 =+ T VD PG K od oI LA X @ o — 3 0D 3 [RE=)
P OV MM OMMMCO WO ([= xCO | MWt OO =Ml O | ==t || = O
Do mzoonzc ORLZO0O0ZLZODOZc OO0 ERDLDZDOO0—~0O—~OMW
OO0 O000 OO0 006600000586666606
FN M TN ONO0OEer NMUTINONOOS T NS NONO0S AN INON0OS M
X Y o o o L e R o R X X o o N - - XX)
T
[X] =g M - Nn=S =
w = < S =~ - [
=) —_ -® = > -
%] = oM — W <G S
m — - - [[]
a e =)
[[%] - = OO -
~ S M 2 = — S
=] o o - = e ~
m [n S O = = [
= - O~ © -
= [%) S [EKe) (oK)
= = & - wn S e o= own
o= me = — o —O ==)
= + = e [e) < <r o~ T [e] [T
[e) — = S < ~ [72) ~ [72] ~ [ZASYX] w0 &
A _Am o - = == = == = M am
= = Mn e = [e) ~ m [e) ~— 3 QO =~ =K,
)) o) -3 ® = m ® N X -
3 r z o e O ©® < = e ® o = = D— o6
=) o - — & [X)) s o~ — o< o~ — = O
] -0 NS o~ < <] | © = o | &) AR
=) + © = ~ =< |l [T = el 1 O —
G S X o = == = Bl ~ = 8l ~ NO = O
e | Owvnik -~ W [ZE=] & W m=] o= B = N DY
[*] n ~x0OS ES] o <] =l 3 <] [el e)
ZAC-rHELnO0 AHOHRFOAFRD HHOAHS HEHOBXK - =0 e © © 6 ©
=N i -Xe) o < = O N KX O ZEZTHO=Z0 < < < < -3
Dt —A e SR dO00NNMMTeemDPDANMAS M NSLD OO) ©0: ©: ©O: O
=) O +em N [THT N N E= O N 1l = > —e A | 4) (&) a m
© = O—=® -~ ZO0O=Z=ZO0O ZOoO=Zmw O ZOo0O=Z=Zwm O FezxZ®& * O O:= O: O: O
E —F <SoF =~ HE B D BE e wm He = [)
HZE (M mE ML OMEOMLOLOLOMWOLPLOMMEGLE _w0O0w0«w0w0O«wD
EMZE 00N -~ O -0~ U — -0 —-0—m—-gax0 ~—080000000000
e 06 © 0060006060600 000606 6 S5 6000606006066
M _ ogn_ © NOOBrCraAMITINONOOOG M DO~ 068 T M INON0OS
™~ o~ o™ [~ NNNMMMBMMMMNMMNMMNM MM S S S o o o o) I L L X)

Copyright © 1983 Emerald Valley Publishing Co.

Volume 1

The Best of 99’er

84

number 80, the first step involves representing the base 10
number in binary. Two bytes (8 bits each) are available for
this representation. Next, the base 10 representation of each
byte is determined and the corresponding ASCII symbol
produced. In this case, the character with an ASCII code
of 80 is “P”’. Applying this process to the number 9020 gives
the ASCII representation “‘#<’’,

Table 1
ASCII Coding of Line Numbers

Line Number 80
1,01 a2
Binary (s war 100 { "1 Q0
Base 10 v ou
ASCII P
Line Number 9020
Byte 1 Byte 2
Binary 00100011 00111100
Base 10 35 60
ASCII # <
Table 2
Sample Cross Reference Qutput
MUSIC 2/1
PROGRAM UNIT (MAIN)
STRING ARRAYS BASIC KEYWORDS REM
NS { } CALL 220
100 130 RETURN
120 230 260
140 240 STOP
250 210
NUMERIC ARRAYS DATA
NT () 190 BASIC FUNCTIONS
100 200 &
120 DiM 140
240 100
FOR SUIRPROGRAMS
NUMERIC VARIABLES 110 Clein
1 150 e
110 GOSUB SOUND
120 160 230
140 NEXT 240
180 170 250
240 180
J PRINT LINE REFERENCES
150 140 220
170 READ 160

In condensed code format, when the left-most bit of a
byte is “‘on,” the software which reconstructs a program
from the code is signaled that some special action will be
required in the reconstruction process. In the case of line
numbers, this principle applies to the first bit of the first
of the two line-number bytes. When all bits except the left-
most one are ‘“‘on’’ in both bytes, the number represented
in base 10 is 32767 (in binary, O1111111 11111111), the
highest allowable line number in a program. When the left-
most bit is added, the two-byte combination becomes an
end-of-file mark. Thus the first two bytes of the last con-
densed format record must be CHR$(255)&CHRS$(255),
equivalent to 65535 in base 10.

With this information, you should be able to understand
the basic operation of the EDITOR program. The program
to be edited is first saved with the MERGE option, and then
the EDITOR program is loaded and run. Upon entry of
the “OLD” command provided, EDITOR inputs each
record in the condensed format file and constructs the line
number from the ASCII codes of the first two bytes. Pro-
gram line numbers thus obtained are stored in an array, with
array position corresponding to record number. After the
user has altered these numbers using the DELETE (DEL)
and RESEQUENCE (RES) commands provided, the SAVE
command initiates the process in which altered numbers are
reassigned to records in the file. As each record is read a
second time, the corresponding line number in the array is
translated into two ASCII characters which are substituted
for those on the record, and the new record is written to
a new file (after making the necessary changes to any line
references). At the end of this process, the end-of-file mark

86 The Best of 99°'er Volume 1

is written as the last record on the new file. After initializ-
ing program memory with the NEW command, all you need
to do is load the new file with the MERGE command. The
program will then be reconstructed and can be SAVEd in
the usual way.

CROSS REFERENCE

The remaining three programs (LINPUT, CREF, and
CREFPRINT) are used to produce a complete tabulation
of all lines in which each variable, array keyword, function,
and line number reference occurs. An independent tabula-
tion is provided for each subprogram. The cross reference
table will give you detailed documentation for use in pro-
gram development, and would also seem to be a useful tool
in analyzing a poorly documented program. (See Table 2)

As in the case of the EDITOR program, the first step
involves saving the program to be cross referenced by us-
ing the MERGE option. The LINPUT program converts
the DISPLAY records of the merged file to INTERNAL
code, presumably to speed subsequent execution. The CREF
program then reads in each record of the file and analyzes
its contents for the presence of all keywords, functions, etc.,
which occur in TI Extended BASIC, as well as in the user’s
variable names, arrays, line references, and subprograms.
The output, a list of the line numbers in which each ele-
ment is found, is written to a disk file. The file is then printed
by the CREFPRINT program.

The instructions recommend that the CREF program be
run in TI BASIC, rather than Extended BASIC, to speed
execution. Even with this advantage, however, the cross
referencing of a large program should be planned so that
you can be doing something else—like taking a trip to
Switzerland. Actually, it doesn’t take quite that long: Cross-
referencing a program of moderate size (270 lines) takes 35
minutes.

HOW CREF Works.

Although a detailed analysis of the cross reference pro-
gram is beyond the scope of this article, generalization of
the principles involved presumes an understanding of the
structure of condensed code. As mentioned previously, the
method used to signal the reconstruction software that it
is encountering an ‘‘instruction’” byte involves an ““on’’con-
dition in the left-most bit. In contrast to line numbers, most
‘“‘instructions’” in condensed code consist of a single byte.
When the left-most bit is ““on’’ (i.e., 10000000) the base 10
representation is 128. Instructions thus begin with the
number 10000001 or 129

ASCII byte codes used by the reconstruction software to
generate BASIC keywords, punctuation, etc., are
translatable with the program Condensed Format Code
Table. This program generates a file called
DSKI1.FILENAME which is in condensed format. Each
record in the file contains a single byte in the third position
beginning with ASCII 129 and ending with ASCII 254. This
byte will be interpreted as an ‘‘instruction’ by the
reconstruction software. Preceeding the byte, a two-byte line
number is written; following it is an end-of-line mark, ASCII
0. Line numbers have been set equal to the ASCII code for
ease in subsequent interpretation of the results.

In order to view the reconstruction of each potential
BASIC element, you first initialize program memory with

Copyright © 1983 Emerald Valley Publishing Co.

the NEW command, then load the output file with the
MERGE command, as if it were a program, i.e., MERGE
DSKI1.FILENAME. The result is given in Table 3. For
example:

CHR$(129) is reconstructed as ELSE

CHRS$(130) as : :
CHR$(166) as WARNING

101|0| |IRE e || e k[ok k[e [k e e

11]@| [RE * *

1(21e| [RIE * |CIOND|EN/S[ED| |FIORMAT| [*

113i0| |RE * C|OID\E| |T)|AB|L|E *

1(4/0] |RE * *

11510} |R|E BRI I E A L AR R AT

1/6l0{ |RIE

1|7/0| [RIE]

1/8(0] |RIE

1/9(0] |RIE

21010| IR/E (e[[o Tk | ok (k| ok o | [k | [([

2\1(0| |RE

212/0] |IREM: OPEN| |(OUT/PUT| {FII|LIE

2/3/0| [RE " DIS|K1|. |F{LILIEIN|AME|"

2/4/0| |REE U|S|{I NG| PARAMETERS, OF

2/5/0| |RE MER|GEE|D| |F|ILIE| F/ORMAT

2/6@| {RIE

2i710| IRIE ek [|k ok e | ek Lk [ek

2|80| |RE

2/9/8{ {O|PIE(N| |#|1]:|"|D|S|K[1{. |F|I|L|E|N|AMIE|"|, D[1\S|P|LIA|Y] |, O]
U|T|P[U|T|, |VIAR|1|A|BILIE| |116(3

3/0(0| |RIE

310 REM Kk ek e e | e k[

3|2|0] |RIE

3|3/01 |[REE BIE|G|I|N| (CIOUIN|T|TI|NIG| |(|1})

3|a/e(|REE 1|T/R| H{1|GH| IB[I|T| ON

3/5/0] |RIEM F E 112/9) |1/3/0 254

3:6/0| IRIE

3(7/0] IR|E el |k || de i | R [de e ||k

3|80 |REE

3|9.8(|FIOR| |1}=1|2/9| |T|O| |2/5|4

400t |RIE

4104 |RIE ek [|| de | |k K[k|| |||k R

42/0| |REE

4|3|0] |REM CAA|LIC/U|LIA|TIE| |VIA|L|UIE|S| |FIOR

4/4/0| |[REM | |F|1|RiS|T TMO B|Y|TE[S| {T|O

45|0] |R|E RIE\PRE|SE[NT| |L|IN|E| |N[O|.|S

4/6/0 RE& Sio| THA|T| IL{I|NE| NO] WI|L|L

4/7/0| {R|E EQUUA|L| |AlS[CII|I| |CIOD|E

4.80] [RIEM

4/9/8] IRIEM| de [|k Lo | e Lo | o e e [[[e[e | & e [|

5|0/0| |RIEM

511(0| [LINBY|TEEA=INT|(|1/|25/6])

5|210] |L|N|B|Y|T|E|2|=|1|—2|5,6|*|LN{B|Y|T/E\1

5/3(0] |RiE

5/4/@] 1R|E (e[| e[| |k [([k|| R

55/0] [RIE

| |5/6/@] |R|E MRITE RE|CIORD

5|710}) |REE

5(8/0¢ |R|E B|Y|TE|#[1\&|2}=|L|I [NJE| [N|UMBER

5/9/0| |R|E B|Y|T|E[#3|=CIOD|ED| |B|A|S|I|C

6/0/0] |R|E B|Y|T|E{#|4/=|EN|D| |OF| [L|I[N|E

611(@| |RIE

6(20] IRIE B I L I A A e L 2

6/3|0f [REE

6/4|0] [PIR|I|NT| |#|1):|CHR($|{|L|N!B|Y|T|E[1|) & CH|R|$|(|LIN[B|Y|TE
2!) |&|C/H|RI$|([1]) 1&/CHRI$|(|0])

6/5/0| |R|E

6/6/01 IRIE e [[de || e ||| o[| [o e [[|k [

6(710] JRIE

6/8/0| |RIE RIE\P\EAT| [LIO|O/P] |FIOR| IN|EX|T

6/9/0) |RIE A|S|C|1|I| |CIOD|E

7l0/0] |RE

711108| IR|E de (o [ok [|| e | [| o e[[e [

712i0] |R[E

Copyright © 1983 Emerald Valley Publishing Co.

7|30] INIE[X|T| [I
7401 IR
7/568] IR e[| o e o e e || | e [%
7'6/0| |R
7170 |R RI1|TiE| [END| (oF| [FtL[e| | | []]]!
7/80] IR M[ARK| |=/ [L{I|N|E| NJUM|B/ER
7/9/0] IR OF| (6/5/535
800l |r
816 IR s | (o (o ok e || e [| e [
8/2|0| (R
8|3|0[|P/R|I|N|T| |#[1]|:|C|H|R[$|([2]5|5|) |&|CIH|R|$|(|2|55]}
slaloe| IR
38l4(0
8(5/0| IR ([ok o [k ko o (e |||k
8/6/0| |R
8/710{ IR C|LiOIS|E| [F|I|L|E| |A{NID| S|TIO|P
8i8/0| |R
890! |-t | [|de e[| (e e [ok e [de ok [ki ek
990 |nzit
91110] |C|L|O|S|E| |#[1
912|0| [S{TIOP
Table 3
Condensed Format Code Table
129 ELSE 171 207 213 LEN
130 :: 172 7 214 rure
1311 173 77 215
132 IF 174 777 216
133 GO 175 217
134 GOTO 176 THEN 218 vAL
135 GOSUB 177 TO 219 STR$
136 “ETHRN 178 STEP 220 ASC
137 179, 221 o©
138 wii 180 ; 222
139 END 181 : 223 *
140 FOR 182) 224 v %
41 1 183 (225
142 184 & 226 ¢¢r
143 K 185 7727 227 7?
144 186 ne 228 2
145 <E 187 229 7?7
146 188 230 72
147 189 231 77
148 3E 190 = 232 NUMERIC
189 . . MIZE 191 < 233 DIGIT
150N = 192 > 234 UALPHA
151 REA 193 + 235 SIZE
152 STOP 194 — 236
153 OELETE 195 * 237 s
154 REM 196 / 238
155 ON 197 A 239 Lol
156 PRINT 198 777 240 AT
157 CALL 199 2722 241 BASE
158 OPTION 200 227 242 77
159 OPEN 201 ?22? 243 VARIABLE
160 202 £nE 244 - VE
161 203 245 0 num
162 Yy 204 246 L
163 205 247
164 206 A 248
165« 207 INT 249 -
166 = Wi 208 LOG 250 -+
167 . 209 SGN 251 1% NENT
168 " 210 SIN 252 .o
169 211 SQR 253 # (files)
170 e JT 212 TAN 254 VALIDATE
Table 4
Condensed Record Structure
OPEN #1:“DSK1.BASIC”,INPUT,DISPLAY VARIABLE 163
ASCII CODE FOR LINE 100
3 159* 23 179*
4 253* 24 162*
5 200* 25 179*
6 1 26 243*
7 49 1 27 200*
8 181* 28 3
9 199* 29 491
10 10 30 54 6
11 68 D 31 513
12 83 § 32 0
13 75 K
14 49 1
15 46 .,
16 66 B
17 65 A
18 83 8
19 731
20 67 C
21 179>
22 146* PRESS ANY KEY TO CONTINUE

At the same time, several codes are reconstructed into
things which can’t be understood directly (e.g., 171-175, 185,
and 198-201). It is apparent that some of the ASCII codes
are used for purposes other than direct translation to
BASIC. Some might be used as descriptors of subsequent
bytes (e.g., for purposes of identifying trailing bytes as

The Best of 99'er Volume 1 87

numeric data, line numbers references, string data, etc.)
while other of these ASCIII codes may not be assigned at all.

Putting this question aside for the moment, let us see how
we could write a program that would remove all REM
statements from another program. The ASCII code for
REMARK (REM) is found in Table 3 to be 154. If we
assume that the ASCII character with code 154 will be found
in the third position of a REM statement in condensed for-
mat (following the line-number bytes), we can write a REM
Remover program very simply. Such a program would need
to read a record from a program file saved with the MERGE
option, seeif the third byte is CHRS$(154), and if not, print
the record in a second file. That is what the following pro-
gram does. To use it with the ‘“‘Condensed Format Code
Table’’ program, save that program with the MERGE op-
tion (SAVE DSKI1.CODE,MERGE), run the REM
Remover, and load the output file, DSK1.REMFREE, with
the MERGE command (MERGE DSKI1.REMFREE).
Presto, Chango! LISTing the program shows it to be
‘“‘REMless,”” and this version may now be saved in the usual
way under a new file name.

to easily identify them as *‘instruction’’ codes. Codes which
are between 32 and 94 are followed by their corresponding
ASCII character representations.

110/0] IR|E t**nt**L;[***I;aa*****wa

111(0| |IR|E * RIEM| REMO|V|ER *

1(218] |R(E R A e A I A Y

1/3(0] |R|E

1/418| |REE

1|5/0| |RE

1/6/0] |R|E

11710 |P:R|I|N|T| |"|E|N|TE|R| F|I|L|E] |N|AMIE|"

118\0] |I|NIP[U|T| |“|' [D|S|K[1|. X|Y|Z|"|—|"|: [X|$

1190 |O|PIE|N| (#[1:[X|$],[D|1{S|P|L|A]Y| |, |IIN[P[U|T| |,|V|AIR|I|A[B|L
E| 163

2|/0/0| [OP[E|N| (#[2|:|"IDiS|K[1|. |RIEM|F[RIE[E|"|, D|I|S|P|L[A]Y| |, OU
T(P|U|T|, VIAR|I|AB|LIE| |1/6]3

2/1|0(|EOF|$|=|C/H{R|S|(|2|5/5|) &[C|H[R|$|(|2|5|5)

22100 ILIIINPUIT| [#11]: X][$

2|30 J1|F| [S[EIG|$|([XI$],[1],[2]) =|EOF|$| [THEEIN| [2|7(0

21410| [1|F| [S[EG|S|(X$|, (3], 1) =[CIH[R|$|(|15/8]} TH[EN| [2|6/0

2(5/0] |PR|IINT| |#]2(: [X|$

2(6/0f [colTo| 220

2(7|0] [P[R|IN|T| [#]2|: CHIR|$|([2(5(5|) & CH[RS|(|25/5)

2/810] [CILIOS[E| |#]1

219(0] ICILIO[S[E| |#[2

31010 |S[TIO]P

Of course, more complex applications require a more
detailed knowledge of condensed format structure. The
Condensed Record Structure program listed below will allow
you to examine the condensed structure of every line in any
BASIC program. With such a representation and the list
of codes in Table 3, a great deal of additional information
can be deduced.

For purposes of illustration, let us treat the ‘“Record
Structure’” program itself as the program to be analyzed.
First enter the program without the REM statements, and
then save it as DSK1.BASIC,MERGE. Now enter RUN to
display the code structure of each line. The display for the
first line is shown in Table 4.

The first column in each pair of columns shows the posi-
tion of the byte code. The first position displayed is 3
because 1 and 2 are used for the line number. An asterisk
has been placed beside all ASCII codes which exceed 128

88 The Best of 99'er Volume 1

1(0(0] IR|E | (e [|de [de (e | (o | [[| e o | ok ok e |

1/1/0] |RE * *

1)2(0| |RIE *| |COINDIENS|ED| R[E[CIOIRID; |*

1(3/0| |RIE * S|TR|U|C|T|URIE *

1/4/0(|RIE * *

1/5/0| |RIE LR A e A A A L)

1/60| [RIE

1|70 JRIE

180JHE

1/910] |RE

2/0|0| |OPEIN| !#|1]:|"D[SK[1|. B/AIS|I/Ci/, [T1/N/P[UIT] |,IDII|S|P|LIA
Y| |, V|A[R|I|A|B|LiE| |1/6}3

2\110] |L|I[N{P[U(T| |#[1]:[X|$

21210| |B[Y|T|E|1|=|A|S|C|(|S[E|G|S|(|X|$|, 1],]

2|3|0| |B|Y|T|E|2|=|AlS|C|(|SIEIG|S|(X|$|, (2], (1]} |}

24| |L|1|N|EN[UM=B|Y|T|E|1|*|2|5|6+B|Y|T|E|2

25/0| |I|F| |L|I|N|E|N|JUM=|6(5/53i5| [T|H|E|N| |4/3|0

2|6(0| |Dj1iS|P|L|AlY AF(1,3)ERA§E AILIL|:|"(A|S[C|I|I| |ClO
DIE| |[FIOR| ILITINIE| |"|&|S|T|R|$|(|L|IINIEINUM|)

2|70] |COlLi=11] |:):] |]i=l0@

2|8(0| |FIOR| {1={3] [TIO] LIE|N|(|X|$])

2/9/0 IFMI>62 TIH[E|N| |4/0|0

31010{ {RIOW|=|1|—|2|*|(|ClO|L|~{1])

3100 [1i=11+1

3/2|0| (D(1|S|P|L|A]Y| |A|T|([R|OW],[C|OIL|)!|:|S|T[RISI(|I|)

330 Y=ASC(SEG$(XSHI,1))

3(4/0| |D|I|S[P|L|A[Y| |A|T|(|RIOW],|CIOILI+I3])|:(S|TIRI$!([Y])

3|50 |I|F| |Y|>|1(2|8| |THIEIN| |D{I|S|P|LIA]Y AT(HOM,COL+5
1HEEK

3/6/0[|I|F| [Y|>3]1] |AIND| [Y|<{9(1| |T|H|E|N| D|1[S|P|L|AIY| |AIT|(|R
OW), CIO|Li+(6|}|:|CIHR|${(]Y])

31710 |I|F| |J|<|2@] |TH[EIN| (3/9(@

3180 |COIL=/CIO|L|+[110| |:|:| [Ti=[1

3/90f INEX|T| |1

400 D|1|s|P|L|AY| |A|T|(]2]8],{2|) B|E[E|P|:|"|P|R|E|S|S| |AIN|Y| KK|E
Y| |T|O| [C|O|N|T|I|NIUE|"

41|0] [CIAL|L| [K|E|Y{(|O],|K|,[S]) I|IF| |Si=|@| |THEN| (4110

42i0| |cojTo] [2(1]0 !

a/3|0) |s|Tjojp |

Since it is known that the first line of the program is
OPEN #1;“DSK1.BASIC”’, INPUT, DISPLAY,
VARIABLE 163, let us see what sense can be made of the
corresponding condensed code. Codes 159 and 253 corres-
pond to OPEN and #. Although the meaning of code 200
is not known, in looking ahead to colums 6 and 7 we might
hypothesize that 200 means ‘‘A number is about to be en-
countered, and the next byte will give the number of bytes
used to represent that number.”’

Although 181 is a ““:”’, 199 is another unknown. Look-
ing ahead at positions 10-20, we might again hypothesize
that 199 is used for strings, in the way that 200 is used for
numbers. The ‘10" in position 10 is consistent with this
hypothesis since DSK1.BASIC is 10 characters long. Next,
we encountered the codes for INPUT, DISPLAY,
VARIABLE. In position 27 another 200 is encountered, and
the hypothesis applied earlier to the 200 in position $ is con-
sistent with what follows—a *3”* in position 28 followed
by the 3 numbers ““163”". Finally, a 0 is encountered that
indicates end-of-line. By writing program lines specifically
for the purpose, you can use the Condensed Record Struc-
ture program to deduce additional information about con-
densed format, @

Copyright © 1983 Emcrald Valley Publishing Co.

MERGE Format Code

This brings us to the question of what to put between
the line number and end-of-line mark and before the end-
of-file mark, viz., the coded BASIC statements. Many
elements which comprise Extended BASIC statements are
listed in Table 3 together with their ASCII character
tokens. In MERGE format, the BASIC elements listed
are represented by a single ASCII character. For instance,
CHR$(156) represents PRINT, CHR3(130) the statement
separator, CHR$(213) the LEN function, etc. In order
to prepare BASIC statements in MERGE format,
however, one must also know how to represent variable
names, numeric and string constants, and line numbers
occurring within statements.

The easiest of these to represent is the variable name;
the normal ASCII representation for each character of
the name is used. Consider the line:

10 PRINT XYZ

The MERGE format record used to represent this line
would be:

CHR$(0)&CHRS$(10)&CHR $(156)& “XYZ* &CHR $(0)

That is, seven bytes would be concatenated in a string
and written in the appropriate disk file record. The first
two bytes represent the line number; the next, the
keyword PRINT; the next three, the variable name; and
the last, the end-of-line mark. Assuming that the com-
plete file corresponds to the requirements of MERGE for-
mat in other respects, when loaded into program memory
with the MERGE command LISTing, the program will
show it to contain the line intended.

Numeric constants and unquoted string constants are
handled differently from variable names: Each number
of unquoted string must be preceded by two identifying
bytes. The first is CHR$(200), the character which signals
the beginning of an unquoted string. Following
CHR$(200), a byte must be included to indicate the
number of subsequent characters in the string or number.
This byte is simply the character with the code equal to
the length of the string—i.e., if the string were five
characters long, CHRS$(5) must be included; if 12
characters, CHR$(12). For example, consider the
statement,

10 PRINT X +345

The statement would be represented in MERGE format
with 11 bytes as follows:

CHRS$(0)&CHRS$(10)&CHRS$(156)&“X**& CHR$(193)
&CHRS$(200)&CHR$(3)& ‘345’ &CHR$(0)

Here, CHR$(200)&CHR$(3)&‘¢345"’ first indicates that
an unquoted string is to be encountered, then indicates
how long that string is, and finally gives the string.
Quoted strings are handled in much the same way, ex-
cept that CHR$(199) is used instead of CHR$(200):

10 RUN “DSK.1.FILENAME”
would be represented as

CHRS$(0)&CHR$(10)&CHR$(169)&CHR$(199)&
CHR$(13)&“DSK1.FILENAME”’&CHR$(0)

90 The Best of 99’er Volume 1

Notice that quote marks are not explicity included in the
string representation. They are automatically provided
for by the use of CHR$(199).

Finally, line numbers included in program statements
such as GOTO and GOSUB must consist of two bytes
coded in the same way as the line number bytes which
begin each record. Moreover, these two bytes must be
preceded by CHR$(201) to indicate that they are to be
interpreted as a line number. The statement:

10 GOTO 200
would be represented as follows:

CHR$(0)&CHR$(10)&CHR$(134)&CHR$(201)
&CHR$(0)&CHR$(200)&CHR$(0)

Program Generation

Although MERGE format programs can be generated
with the above technique, its use would be
cumbersome—to say the least. The following method
simplifies the process considerably.

For the moment, let’s put aside the question of
generating the portion of the character string associated
with the BASIC statement. Assume that this string is
generated and assigned to the string variable LINES. Each
time a LINES string is constructed, two line number bytes
must be added to the beginning, an end-of-line byte to
the end, and the whole thing must then be written as a
record in the MERGE format file. The easiest way to han-
dle the operations which follow the construction of
LINES is to use a subroutine. Given a starting line
number, LN, the following subroutine constructs the two-
byte ASCII line number representation and writes the file
record. It then increments the line number by 10.

9000 PRINT #1: CHR3(INT(LN/256))&CHRS$
(LN —256*INT(LN/256))&LINES&CHRS$(0) ::
LN=LN+10 :: RETURN

After the BASIC statement portion of the record is
assigned to LINES, a simple GOSUB 9000 takes care of
all the rest.

The construction of LINES strings can be simplified
by assigning ASCII character codes to string variables
with easy to remember names. For instance:

100 REM$ = CHR$(154)::FOR$ = CHR$(140)::NEXT$
= CHRS$(150)::IF$ = CHR$(132):: THENS$ = CHR$(176)
::TO$ = CHR$(177)

Some string functions are followed by a “‘$’” and are
reserved words. But in TI BASIC, they can be embedd-
ed in a variable name so that one could use variable names
like @SEGS, @STRS, etc., for storage of the appropriate
ASCII character. Punctuation, arithmetic operators, and
characters 199-201 also must be assigned ‘‘creative’’ string
variable names: Q$ for quoted string, UQ$ for unquoted
string, CM$ for comma, etc.—whatever will be easiest
for you to remember.

The next level of simplification involves user-defined
functions to include more than one byte whenever possi-
ble. For example, it is clear that CALL will always be
followed by an unquoted string; CALL COLOR, CALL
SPRITE, CALL SOUND, etc. For that matter, the un-
quoted string token will always be followed by a byte in-
dicating string length. Construction of strings which in-

Copyright © 1983 Emerald Valley Publishing Co.

clude the call keyword can therefore be simplified by
defining function appropriately:

110 DEF UQ$(X) = CHR$(200)&CHR(X):: CALL$(X)
= CHRS$(157)&UQS$(X)

A statement like CALL SCREEN (2) can then be written:

120 LINE$ = CALLS$(6)& ‘SCREEN" &LP$&UQS$(1)&
¢2”’&RP$::GOSUB 9000

(if CHR$(183), the left parenthesis, had previously been
assigned to LP$ and 182, the right parenthesis, to RP$)

By making the function definitions a little more complex,
the statement can be even further simplified:

110 DEF UQ$(X$) = CHR$(200)&CHRS$(LEN(X$))&X$
120 DEF CALLS$(X$)=CHR$(157)&UQ$(X$)

makes it possible to write CALL SCREEN (2) like this:

130 LINE$ = CALL$(*““SCREEN"")&LPS&UQS$(‘2"")&
RP$::GOSUB 9000

It’s beginning to look a lot like BASIC.
Built-in functions can similarly be defined to facilitate
construcion of MERGE format strings. For instance,

140 DEF INT$(X$)=CHRS$(207)&LP$&X$&RPS
allows one to write X=INT(Y/256) as

150 LINES$ = “X” &EQS&INTS (Y’ &DIVS&UQ$
(““256°"))::GOSUB 9000

(if CHR$(190) had been previously assigned to EQ$ and
CHR$(196) TO DIVY)

Similarly, line numbers occurring within statements,
such as GOTO or GOSUB, can be simplified with the
following function:

160 DEF LN$(X)=CHR$(201)&CHRS$(INT(LN/256))
&CHRS$(LN - 256*INT(LLN/256))

so that the statement GOTO 200 can be written simply as

170 LINE$ = GOTOS$&LNS$(200) :: GOSUB 9000
(if GOTOS$ had previously been assigned CHR$(134))

Using string variable names and user-defined string
functions, you can create your own custom ‘‘language’’
for use in writing MERGE format records.

The following program may help to tie up the concepts
presented; it is a trivial example of a music program
generator. The program writes CALL SOUND
statements in the MERGE format file ‘‘DSK1.BASIC”’
as the user presses a single key. @

Copyright © 1983 Emerald Valley Publishing Co.

00
10
210
3|0
4i0
50
6|0

T Y Y i

7,0
8|0
90
00

AN = = -

10
200
30
40
50
60
7|0
8|0
90
0/0
10
2j0

NWWNNDNDNNONNONMNMOMNONNON

NN WNW
NoO s
XS

N
=]
[=]

FE-E-E- X7
NN - O

LR R K-
NS
XXX XXX

-
O 00
QS

viuvianiarivivi g

MMmm—tmmm || S mmmmmm

FEEEREEELEEEFEEES-FEE Y- -]

o =

R E RN

EFEEEDRREEREEDNRY T el TN N

T o~ MM 0 MmN O 5 e — vm b

WO O -
w

[l
=

— 71 71 M m =
nEE eSS ERENTNTMERcOvIis= = =
=3

m
R - H VORI rNME RSN rS 22 Own< =

RO Ime 2= 80—

mawyV me

o
m
=

o= O w =

[
*

= O
[e]
o =X
o
(=]
—

o =

=
o=
=<
<=
—
=N
N

R m
B E-X- Y

-
—
o]
=
m
3
Y

l_.
= m
<
=
Om

o=
[=]
=
[EE

e a8 O
Q

=0 o~
w2
[=]
]

FELED
1

OC 9 —

e —
=

m = g —

SHwEm o= O
R]

The Best of 99’er

(=]
=
™
<
w2
—
o
—
K=}

)

e
*

N

>

=Y

~

]
[e]
=)
=
=
(32}
=)
[7]
(]
[
—
)
3

-
(@]
]
E]
@
N
[
(3
5

AR|S
=CHRI${([183]) R(P
UIN|C{T|I|OINIS
0)) |&CH[R|S|(|LIEN (|X|$])
}=|CIH[R{$1([1/5]7} |&[UIQ
NIEINIO
,|V|AR|IAB|L|E| [1|6]3
T|IO|NS
E| [A|L|L]:{"ITO| ENTER
F|THIE| |FO|L|LIOW I NG
B| |C| |D| |E| |F| G"
PIRIES(S| [P| [TIO] |S|TIO

m

—
—~ 0O

O m
<
)

Volume 1

=Y

91

XTeENDE]D

IS EXTENDED BASIC?

othing caused as much excitement and anticipa-
Ntion in the TI-99/4A community as the announce-

ment (which now seems like an eternity ago) that
Extended BASIC would be forthcoming. Well, now that
the new programming language is being gobbled up by
hungry Home Computer users, the question on
everyone’s mind is, naturally enough, ‘“Was it worth
waiting for?”’

For the answer to this, and to help put the new soft-
ware in proper perspective, we should first examine T1’s
claims for the language (in the introduction to the
reference manual): ‘‘Texas Instruments Extended
BASIC. . .has the features expected from a high level
language plus additional features not available in many
other languages, including those designed for use with
large, expensive computers.’’ The key words here are ‘‘ex-
pected’’ and ‘‘not available.”” Features such as DISPLAY
AT, ACCEPT AT, PRINT. . .USING, IMAGE, ON
ERROR, multiple statement lines, expanded IF-THEN-
ELSE statements, PEEK, Boolean operators, and
assembly language subroutine calls are indeed ‘‘ex-
pected.”” Unfortunately, they were expected in the or-
dinary Tl BASIC, since they’re standard features of
various Microsoft BASICs found in other machines. But
just as plain, old, ordinary TI BASIC has its share of
surprises that aren’t commonly found in other BASICs
(e.g., CALL SAY, RESEQUENCE, complete EDIT,
TRACE, and BREAK utilities, plus its marvelously sim-
ple character definition and color assignment facilities),
TI Extended BASIC also has its own unique bag of tricks
not found on other machines. And this bag of tricks in-
cludes some mighty impressive feats of computing magic.

But before we get into these extended features, let’s
examine some of the obvious changes from TI BASIC.
First, there’s the matter of a slight reduction in usable
RAM. The maximum program size in Extended BASIC
is 864 bytes smaller than in TI BASIC. Although this
represents only about a 6% reduction, any reduction in
user memory is significant if it prevents certain applica-
tions from being RUN. And, in fact, as little as 500 bytes
is frequently the critical amount of extra memory need-
ed. (Witness the several programs in this volume that can-
not be loaded or RUN with the disk controller’s power
on—even with the CALL FILES(1) command that frees
all but the 500 bytes for the disk system.) So program-
mers without the 32K RAM expansion should try
wherever possible to make up the loss with Extended
BASIC’s built-in memory saving features: multiple state-

92 The Best of 99'er Volume 1

ment lines (with more allowable characters per line), ex-
panded IF-THEN-ELSE statements, multiple variable
assignments, trailer comments that immediately follow
statements (instead of separate REMs), repetition of
strings with the RPT$ function, and the use of MIN and
MAX functions.

The loss of user-definable characters in the character
sets 15 and 16 is another departure from the TI BASIC
standard. These custom characters are no longer available
to programmers since the memory area is needed to keep
track of sprites. Therefore, a TI BASIC program that
doesn’t use these character sets is supposed to RUN in
Extended BASIC in most circumstances—unless, of
course, you’ve done something that will obviously cause
trouble, such as accidentally using a TI Extended BASIC
keyword as a variable in your TI BASIC program (e.g.,
DIGIT, ERASE, ERROR, IMAGE, MERGE, MAX,
MIN, SIZE, WARNING, etc.) [See the July/August 1981
issue of 99’er Magazine for an analysis of what is and
isn’t interchangeable.—Ed.]

Now, let’s take a peek (no pun intended) into the ‘‘bag
of tricks”’ I mentioned earlier. A good place to start is
with Extended BASIC’s exciting new graphics
capabilities. Nine new subprograms (plus 2 redesigned
ones) provide the ability to create and thoroughly con-
trol the shape, color, and motion of smoothly-moving,
high-resolution graphics. These are the true sprites—
graphics that can be displayed and moved at any of 49,152
positions (192 rows X 256 columns) rather than the 768
positions (24 rows X 32 columns) CALLed by the
VCHAR and HCHAR statements of T1 BASIC. But
that’s only the beginning. Sprites can be set in motion
with simple X and Y velocity components and will con-
tinue their motion without further control; they can grow
and shrink at will, be relocated or ‘‘hidden’’, and even
pass over and blot out fixed objects and other sprites to
give the illusion of depth and 3-D animation. [This is a
function of the three-dozen stacked image planes of the
Home Computer’s video display processor chip—a uni-
que graphics display explained more fully in ‘‘3-D Anima-
tion.””—Ed.]

Although games aficionados and educators have every
right to be overjoyed with the new sprites capability,
TI-99/4A users who are more interested in business,
scientific and professional applications will be drawn to
other Extended BASIC features. First on the list is the
impressive subprogram capability. Several options exist
for passing values (and entire arrays) between main and

Copyright © 1983 Emerald Valley Publishing Co.

subprograms. There’s also built-in protection to prevent
subprogram’s local variables from affecting the main
variables. Additionally, commonly used subprograms
may be SAVEd on a separate disk, and later MERGEd.
This will allow programmers to build up a library of
“‘universal’’ subprograms that can be called upon to
supply the appropriate cartridges for new programming
tasks—without time-consuming re-coding and debugging.

If this new subprogram flexibility is not enough for
your most demanding tasks, how about ‘“‘program chain-
ing,”” where one program can load and RUN another pro-
gram from a disk. This means that multi-part programs
of almost unlimited size can now RUN on the TI-99/4A
if they are broken into pieces and each segment is allowed
to RUN the next. And at any point in this chain, a
““menu’’ may be inserted, allowing the user to choose with
a single keystroke the particular program to be RUN. Im-
agine the possiblities!

Those of you with a speech synthesizer, or thinking of
purchasing one, will be happy to learn that Extended
BASIC includes a speech editor. You will no longer need
the separate Command Cartridge (with a retail price of
about $45). What’s more, with the combination of CALL
SPGET, the capability of subroutine MERGEs, and the
data for the code patterns (that TI supplies in the appen-
dix of the reference manual), you can now easily add the
suffixes ING, S, and ED to the roots of words in the resi-
dent vocabulary. And if TI ever supplies users with their
master file of coded speech patterns and rules for com-
bining them, it will be possible to create your own new
words. As of now, TI provides only one cryptic state-
ment: ‘‘Because making new words is a complex process,
it is not discussed in this manual.”

Incidentally, this capability of having the computer say
what you want it to say rather than being limited to a
fixed vocabulary will, in fact, be implemented through
arelated approach. I’m referring to the ‘‘text-to-speech’’
capability of the forthcoming Terminal Emulator II Com-
mand Cartridge, which is programmable in TI BASIC.
Since only one Command Cartridge at a time can be at-
tached to the TI-99/4A, text-to-speech cannot be used
with the Extended BASIC Command Cartridge. [See
‘“Text to Speech on the Home Computer.’”’—Ed.]

The final two features I’m going to cover in this over-
view provide a fair degree of software protection and
open the door to additional language capabilities. Con-
sequently, these are the particular features that may have
the most profound impact on the entire TI-99/4A
community—ultimately determining the quality and
quantity of most of the commercial software for this
machine.

Copyright © 1983 Emerald Valley Publishing Co.

Extended BASIC programs can be SAVEd in a PRO-
TECTed form to guard against software piracy. This ir-
reversible feature allows a program to be RUN or load-
ed into memory only with an OLD command. A program
thus PROTECTed cannot be LISTed, EDITed, or SAV-
Ed. If the program was originally SAVEd and PRO-
TECTed on a disk, you must still use the protect feature
of the Disk Manager Command Cartridge to completely
“lock up”’ the software by preventing it from being
copied as well.

Extended BASIC has the capability to CALL and RUN
assembly language programs if the 32K RAM expansion
peripheral is attached to the computer. Since Assembly
Language has a much faster execution speed than BASIC,
many applications programs that are unfeasible to write
in either TI BASIC or TI Extended BASIC (and Extend-
ed BASIC is not significantly faster than its predecessor)
can now be written in TMS9900 Assembly Language,
LOADed into the expansion memory peripheral, and
RUN on a TI-99/4A. This paves the way for some fairly
sophisticated applications programs that can now be
targeted for TI-99/4A users. [See the related assembly
language sections in this book.—Ed.]

Even though a TI-99/4A with Extended BASIC and
the memory expansion peripheral can CALL and RUN
Assembly Language programs and subroutines, it can-
not be used to write them at present. And instead of a
direct implementation of the POKE command, TI gave
users an indirect implementation. To load data directly
into memory locations, they can use CALL LOAD with
the optional fields specifying a starting address followed
by data bytes. The TMS9900 Assembler, available on the
Editor/Assembler Command Cartridge and its accom-
panying diskettes, allows Home Computer owners to
write their own Assembly Language programs and call
them up through Extended BASIC. Besides this obvious
use of an assembler, it opens up other exciting
possibilities: More exotic languages can be written in
TMS9900 Assembly Language especially for TI-99/4A
implementations. FORTH, for instance, is now available.

The bottom line is more software tools for developers
and more economic incentive for them to produce
valuable programs that can be protected against most
piracy. This means that the TI-99/4A user community
will be seeing a lot more useful software enter the market.
Being able to run this software should more than justify
the $100 (retail) price for this filled-to-capacity 36K byte
TI Extended BASIC Command Cartridge with accom-
panying 224-page reference manual. Therefore, the
answer to the title’s rhetorical question, ‘‘How Extend-
ed is Extended BASIC?”’ is apparently, ‘‘Extended

"

enough. . . . @

The Best of 99'er Volume 1 93

POCKET
TOWER
OF
HANOI

ou are in an ancient temple at the center of the

earth where three diamond needles bear eighty

golden rings of graduated sizes. At the beginning
of time the rings were all on one needle; but now the tem-
ple monks are transferring the rings, one at a time, from
needle to needle, never setting a ring on a smaller ring.
When they have moved all eighty rings to one of the other
two needles, the world will end . . .

Possibly you have seen a children’s toy along these
lines—four or five disks of various colors and sizes,
drilled to fit on three wooden pegs. The object is to start
with the disks on one peg, and by moving one at a time—
and never setting a disk on a smaller one—transfer the
entire pile to another peg. If you don’t have one of these
in your closet, here is a pocket program of the puzzle for
you and your friends.

When the program is run, four ‘‘rings’’ (they will
actually look more like short bars) will appear on the left
of the screen. There is room on the screen for three piles
of rings. (To make the game pocket-sized, the pegs were
left out.) To move a ring from one pile to another, press
key 1, 2, or 3 to designate which pile (left, center, or right)
to take the ring from, and then press 1, 2, or 3 to
designate which pile to move the ring to. That’s all there
is to it.

The program works this way: rings are represented by
the numerals 1, 3, 5, and 7. Peg (1), Peg (2), and Peg
(3) are variables in which the presence of rings on the three
pegs (or piles) are recorded. Thus in line 200, which is
part of the initial setup portion of the program, Peg (1)
is given the value 1.357 corresponding to the presence of
all four rings on the first peg. The leftmost numeral is
the one on top.

At the beginning, pegs #2 and #3 are empty. When a
ring is moved from one peg to another, the values of the
“‘peg()’’ variables change accordingly. For example, if
our first move is to place the top ring from peg #1 onto
peg #2, then Peg (1) changes from 1.357 to 3.57 and Peg
(2) changes from 0 to 1.

These changes are performed in line 450 (where the
“‘size’’ of the ring being moved is figured out) and in lines
500 and 510 where the values of the ‘‘peg()’’s are actually
changed. “‘From’’ and ‘‘too’’ identify the pegs. They are
given values when the keys 1, 2, or 3 are pressed. The
three ‘‘top()’ variables are strictly for the graphic
display; they record the positions of the tops of the piles
on the screen. Conveniently, the rings are 1, 3, 5, and
7 characters wide.

94 The Best of 99’er Volume 1

1/0/0] IR|E e[[(o (e ek | i

1/1|0} |R|E * TO% OF| HANOI| |* 1 ‘ l }

1(210] IR|E de [t [t [Aok || d |k [k k(e k ok (kK o

1(3|0| |RIE

1|4|0] IR|E

1/50| |RIE

1/6/0| |RE

1(710] {D|1 PIEIG|(|3]){,|TIOP|(]3])

1/8/0] ICIA[L|L| |CIOILIOR|(|7],]1],|1])

1/9/0| |CIAILIL| |CIOL|OR|(|8],|2],{2])

210\0f [PEEG|(|1))|=[1{.[3/5/7

211/0| [p[ElG!([2]) [=]0 |

2i210| |PIE|G|(|3]) =0

23101 [TIOP|(|1]) |=11|0

2410 |TIO[P|(|2]) =114

2(5(01 [TIOP|(|3]) =114

26|0] [CA|L|L| [C|L\EAR ‘

2(7/0| |CIA|L|L| {HIC|H|AR(|1/0],]6/,(B[8], 1)) \ i‘f

2180 IclAlLlL| [B/clH|AR|(|1[1],i5],/8/8],]3])] | |

2(910] [CIALIL| |HICHIAIR|(|1]2|, 4], 8|8, |5}

30/0| |CALIL| BICH|AR|(|1/3],!3],88,|7])

31110y \ICIA|L|L| [K[E[Y|(|3|, {F/RIOM, |SITRITIU|S|)

3i2/0| [1{F| IS|TIA|T|U|S|=[0 THEN 3|0

3(3/0| |ICIAILIL| KE\Y|(|3|, DUMM]Y|, S|T/AT{U|S])

3|4(0) |1|F| |S|T|A|T|U|S|=|—(1] |T|HE|N| |3i3|0

3|5/0 FROM=FRO%—48

36(0| IC|A|L|L| |S|O|UN|D|(|1/00],|111(0],3])

37(0] ICIAILIL (KIE{Y|(}3!,|T|O[O}, |S|TIA{T[U|S|)

3(8|0| [I1|F| |S|TA|TU|S|=/0] [T[HIEN| 3|70 !

3190} [C|AL|L| |K[E|Y[(|3]|, [DlUMMY], |S|TIAIT[U|S|)

4:0/0{ |1|F| |S|T|A|T|U|S|=|-|1| |TH|EIN| |3/9/0

410 |T/0[0}={T|O[0|-{4|8

4/2(0| |CIALIL] |S|OUND|([1]@|0],|2(6]2|,|2})

4(310f [1|F| |(|FIRIOM|<1])[+{({FROM>|3|) + (|T|O[O|>|3|} [+ ({TIOOI<
1)) |THIEIN| |3[110

44101 |1|F| |(|PE|G|(|F|RIOM)|=(@|) 4| (|({P|EG|(|TIO/0]) |<i>|0{)[*|(|P
EG(FROP)>PEG(TOO)))THEN 31|0

4/5/0| |S|1|Z(El={1IN|T|([P|E|G|(|F|RlOM)|)

4(6/0| [T|O|P|(IT|O|O|) |=|T(O|P[(|TIO[O]) |1

4|70] |CIA|L|L| [H|C[HA|R|(|TO|P|(|F[RIOM|)|, 3+ (|F|RIOM—|1])[* 9+
.5*(7-SlZE),87,SIZF)

48|0] |T|O[P|(|F(R|OM]) =|T|O[P|(|FRIOM|) +1

4190} {C|A[L|L| |H|C|H|AIR|(|TIO[P|({T|OO|)|, |3+ (|TIOO-|1})|*|9|+.|5
*(|71-|S|1|Z|E|)|,|8i8|,|S|1|ZE])

5/0(0| |P|E(G|{|F|RIOM|) |=1/@)%|(|P[E|G|(|F|RIOM]) |—|S|1|Z|E|)

5110] |PIEIG|(|T0l0|) |=|.|1*|P|EG|(|T|O/O|) [+S|1|Z|E

520 |alolTlo| [3|1]e RIRRERRR

“‘Status’’ is used as part of the “’call key’’ routine to
tell the machine when a key has been released so that the
program can go ahead. Now read through the program
and see if you can follow what is happening.

Stacks

The piles of rings in this program are particularly
graphic illustrations of the stack, a ubiquitous and very
important idea in practically every kind of software. Like
the rings in these piles, things stored on software stacks
(subroutine return addresses, interrupts, whatever . . .)
come off the stacks in reverse order to the way they went
on. Because the items stored on our pegs are only single
numerals, we are able to use a simple “’trick”’! to repre-
sent each of our three stacks. We just construct a number
for each digit we want to represent. The 99/4A employs
numbers accurate to 13 decimal places using a radix-100
representation, so we can push and pop numerals onto
and off the left end of these with abandon, multiplying
and dividing by 10 without fear of a roundoff error.

Ly you find an application for this “‘trick”’ in a program of your own, you wi
be entitled to call it a ““method.” (A ‘‘method” is a trick used twice).

Copyright © 1983 Emerald Valley Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26

