

q
LOGO

A learning environment on your Home Computer.

The History of LOGO. 97
The Lamplighter LOGO Project. 99
Who is LOGO for?. 103

LOGO’'s Powerful Surprises:
Part 1: An Overview of Language

Structure and Syntax..................... 107

Part 2: Construction of A Dynaturtle. 109
Extending LOGO. 111
The LOGO Poet. 113
Avoiding Turtle Traps. 116
Flyaway with the Joy Commands of TILOGO. 121

Problem Solving with LOGO......................... 124

keyboard: FORWARD 100, BACK 50, RIGHT 90, LEFT
45, etc. FORWARD 100 moves the turtle forward ‘100 tur-
tle steps,”” drawing a line on the TV screen in the process.
LEFT 45 makes the turtle rotate 45 degrees to its own left.
People learning LOGO find it natural to “‘identify’” with
the turtle, imagining themselves going through its motions
as it carries out a particular task. At the same time, con-
trolling the turtle becomes a metaphor for controlling the
computer itself: Like the turtle, the computer responds to
an ordered series of command, and ““TO’’ procedures that
are defined as series of commands.

The ways in which the actions of the turtle can lead to
geometric designs, as well as the method used to define pro-
cedures, is illustrated in the following simple examples. The
turtle can draw a square by repeating the commands FOR-
WARD 100 RIGHT 90 four times. A procedure can be
defined by choosing a name (BOX, for example) and typ-
ing in a series of commands in order.

|Tblmbm

F WAE]D| (510
RIGHT (99
SORWARD| (50
RiGHT (90
FLawaz| (510
EI3HT {910

| F2 EWARD] 15/0
hGHlT| (90

To execute BOX enter the following:
TELL TURTLE
BOX

When the new command, BOX, is typed, the turtle im-
mediately draws the shape shown in the figure. (The small
triangle shown in the figure represents the turtle by show-
ing its position and heading). A similar procedure, TRI, can
be defined as follows:

R% 3D (5l
Gilr 11120
MARD| (5@
waus e
F-2R%ABID| {5/0
“g TGHT) (11200

N
|
To execute TRI enter the following:
TELL TURTLE
TRI

A student who has defined procedures such as BOX and
TRI is beginning to ‘‘teach the computer’’ his or her own
private language. BOX and TRI can now be used in the
same way as other LOGO commands. They can be used
to create other drawings such as a simple “‘house’ or an
abstract geometric ‘“‘flower.”

This approach to geometry and programming provides
the basis for a rich universe of activities known as Turtle
Geometry, which includes cartoon drawings (simple and
complex), geometric designs, mathematical theory building,
and computer games. Extensions of Turtle Geometry have
proven fruitful when used with advanced high school
students or MIT undergraduates. The universe of Turtle
Geometry provides a conceptual framework for such aspects
of mathematics as the relation between shapes and angles,
coordinate systems, positive and negative numbers, the use
of variables, symmetry and similarity, and even calculus and
differential geometry. The computer programming involved
in beginning LOGO activities can include procedures and
subprocedures, the naming of procedures and variables, pro-

98 The Best of 99’er Volume 1

cedural hierachy, recursion and iteration, the use of condi-
tional logic, and the development of problem-solving
strategies.

Within the universe of Turtle Geometry, there is room
for different students working individually to create their
own sub-universes or microworlds. They can do this with
their own limited (but expandable) sets of concepts and
related activities and projects. To teach LOGO is really to
help learners create, explore, and extend their own

microworlds.

®

_/ L

O 0O

I have used turtle geometry as an example of what can
be done with LOGO because it is easy for a reader to
visualize the commands and to see how they lead to pro-
cedures that produce the results in the pictures—just as it
is for young children. Children learning LOGO have ac-
tually carried out many other types of projects as well: mov-
ing turtles, finding their way around race-tracks or mazes,
animated cartoons, interactive computer games such as Nim
or Tic-Tac-Toe, programs which generate sentences or
poetry (or even play Mad-Libs), and programs to translate
English into Morse Code, or vice-versa. As LOGO becomes
available to owners of TI-99/4A computers, I hope that
these pages can be a forum for describing your LOGO pro-
jects. Since there will soon be more LOGO users than ever
before, we can expect more and different LOGO projects
to emerge. One of the best ways to build the culture of
LOGO is for users to share project ideas through the pages
of books such as this or magazines such as 99°er Home
Computer Magazine.

Although TI LOGO is a recent entry to the LOGO
World, a prototype version has already been tested with hun-
dreds of students between the ages of three and nine at the
Lamplighter School in Dallas, Texas, and by students in fif-
teen elementary and junior high schools in New York City.
Using the Sprites World of animated graphics activities,
these students are busily creating a new universe of LOGO
activities to delight and educate a new generation of com-
puter users. In an age in which computers are omnipresent
in society, and in which universal computer literacy is a
pressing national need, computer-based learning en-
vironments like LOGO have become essential to the pro-
cess of growing up literate in the last decades of the twen-
tieth century. @

Copyright © 1983 Emerald Valley Publishing Co.

Sharing among peers is the overwhelming response of
Lamplighter students to new LOGO information. Pupils
eagerly and proudly explain their accomplishments in
LOGO. At first, however, there were a few exceptions. A
couple of students were secretive about some LOGO infor-
mation and effects. One student made the screen’s
background color black so that no one could read what he
typed; another tried to sell LOGO programs to his
classmates! Afer they discovered that other students could
find different ways to achieve the same effects and were will-
ing to share, they started sharing as well.

In at least one case, LOGO seems to be responsible for
a major behavioral change. Late last year, a fourth grader
who had not been performing well academically, and who
had been somewhat disruptive in class, started programming
in LOGO. As he played on the computer, his typing became
very fast (QWERTY keyboards are quite properly regard-
ed by the Lamplighter children as a stupid arrangement with
which they reluctantly work), and his program became
sophisticated. He was heard to remark, ‘I can’t believe how
fast my fingers are typing.”” He also could not believe how
much fun school had become. Not only did he do well with
LOGO, but he also became an attentive, productive student.

Figure 1.

Tlol laiz)y|g

Ft =" D| |4

R - 10

Tikjo) I m(EJAID|ING] = (@
1F|F| [LIBlziY(g

F|C|R[W" 4

L|EIF|T ’1io|

ENID

CO

TELL TURTLE
LAZYS

Comment:
TEST checks the heading of the Turtle. If it’s not 0 (North), the Turtle
continues to draw the LAZYS.

After finishing the right-hand circle, the heading becomes 0 and the left-
hand circle is drawn.

To really understand why the left-hand circle ever gets completed, you have
1o know something about microprocessors and stack operations. In keep-
ing with the scope of this section, however, a simple anthropomorpic ex-
planation will have to suffice at this time. Other sections will take an in-
depth look at the technical aspect of the language.

Think of the job of drawing the LAZY8 as being given to a group of little
workmen inside the computer. The first workman carries out the first lour
lines then decides he needs a rest before continuing. Notice that in his in-
itial contract TO LAZYS8 he has agreed to eventually carry out the FOR-
WARD 4 and LEFT 10 specifications. The work must go on while he rests,
so he subcontracts out the next stage to another little man. This workman
also carries out the first four lines, then he too decides to rest. So before
he gets to the FORWARD 4 LEFT 10asks, he decides to subcontract out
the balance of the work on the right-hand circle. This process goes on with
enough little workmen (36 in this case) until HEADING = 0. At that titne,
the last little man carries out his FORWARD 4 and LEFT 10 tasks, and
gives the job responsibility back to the next-to-last workman who also car-
ries out his remaining FORWARD 4 and LEFT 10 tasks. This reverse pro-
cess of finishing the last two tasks and relinquishing responsibility goes on
until the original contractor finishes his original job with a single FOR-
WARD 4 and LEFT 10, thus completing the left-hand circle in the
LAZYS8—Ed.

Copyright © 1983 Emerald Valley Publishing Co.

At present, most of the third and fourth graders—and
even some of the first and second graders—are writing
LOGO programs. And this includes some fairly
sophisticated programs which use recursion and the con-
cept of state transparency. A few children even acquired
the skill of using subprocedures—i.e., breaking a complex
program down into its several component parts. This is one
of the most important features of procedural languages such
as LOGO. Most students had discovered recursive program-
ming, or ‘“‘cursives’’ as a few called it. In recursive programs,
one of the program lines calls for a new stack to execute
the program again. You do this by including the name of
the program within the program itself. All the recursive pro-
grams written by the students, however, had the recursive
step in the last line. [When the recursive step occurs in the
last line before END, the procedure is said to have ‘‘tail-
end recursion.”” For an example of somewhat more
sophisticated usage, see the LAZY8 procedure in Figure
1—Ed.]

A number of programs produced exciting video scenes.
In EXPLODE, 32 differently colored balls splay out from
the center of the screen before repeating the entire procedure.
One third grader saw how he could place a program which
printed a message inside EXPLODE, and thus combined
recursion and subprocedures. RAINBOW had one or more
sprites continuously change colors for an attractive visual
effect. There were also programs which had the TV monitor
take on a series of sixteen colors, and programs which
changed the background of the screen to black and created
unusual perceptual illusions by shooting light-colored shapes
across the screen. Some even had jets, rockets, or airplanes
spouting fires from their engines.

Other children wrote programs
which put shapes together to create
scenes, such as a home with a car
driving down the street in front of
the home. Most students had writ-
ten utilitarian programs like
VANISH (Figure 2) which caused
the sprites to move off screen, take
on the clear color, carry an empty
shape, and which caused all the
printing to be cleared from the
screen.

After spring break, several things happened which caus-
ed a quantum leap in the computer work of the students.
First, the children were shown how to save their programs
and shapes on cassette tape. Until then, the students had
to write in their computer notebooks anything they wanted
to save. That meant that any elaborate shape had to be
reproduced on a grid in an arduous manner, and long pro-
grams or complex programs required a very long time typ-
ing. (Remember these children are elementary pupils with
little typing experience before computers!).

Students had not used much of their work as founda-
tions for future work simply because loading the old material
took so much of their time. Now, with the recorders, they
could use and improve each session’s programs just by tap-
ing and playing back a cassette. Also, they could design and
SAVE complex shapes instead of seeing them lost when the
computers were shut off.

The children were also shown the TELL TURTLE mode.
This opened up all of the turtle geometry features of LOGO.

Figure 2.

N

I
A

0
o

SiH)
LIL

T
T
C|

¢
E
A

\i

L
R

A

L

RIRIY

R| |0
- 0
1 NG (@
Ll

niH
N

5
E

1

D

The Best of 99’er Volume 1 101

(Turtle geometry is such a powerful idea that some Pascal
systems have adopted it.) This newly acquired mode, coupl-
ed with the previously learned SPRITE MODE, allowed the
students to produce many interesting programs and visual
effects. As aresult of these new developments, many of the
students soon exhibited a feeling of mastery over the
computers.

In the final eight weeks of school there was an exponen-
tial explosion in the complexity of the students’ programs
and in their ease with the machines. They quickly learned
to use variables as inputs, and consequently ‘‘discovered”’
the famous turtle geometry POLYgon program which can
generate any regular polygon. (See Figure 3.) Then one stu-
dent found that changing the angle of the turn on each recur-
sion could produce beautiful patterns—including a striking
nested curl in a star pattern. Many students now began put-
ting programs together in subordinate and superordinate
structures. Programs contained the unique LOGO controls
of TEST, IFT, and IFF, as well as the conditionals IF-
THEN-ELSE, plus BOTH and EITHER for conjunctive
and disjunctive branching. One of the third graders wrote
a CAI (Computer-Assisted Instruction) program to quiz his
first grade friends on addition facts using these control com-
mands! He then added visual displays of the addends, and
encouraging remarks when a student made a mistake, or
a colorful scene as a reward for the correct answer.

launched the shuttle with flames shooting from the engines,
jettisoned the auxiliary tanks, orbited the shuttle among
planets in outer space, returned the shuttle to a dry lake-
bed runway, taxied it to the end of the runway, and stopped
it for a perfect landing. His programs are shown here in
Figure 4

Figure 3

o sesse §>£7

1ol n VTngISTEA’NCjE “AN‘GL;IE >%2/ \K

Foi~ - f:pfts|tiamice| | 1] N

B|T [y AINK ’ k k

plojL[Y| |:p[1}s| == .|E| |:|ajNGIL]E

ENP 1] ; i
TELL TURTLE
POLY 90 150

Using combinations of several user-drawn shapes,
students began constructing very elaborate composite pic-
tures. One third grade student also discovered how to change
the characters associated with each console key [by redesign-
ing the characters on a grid *‘tile’’ with the MAKECHAR
primitive—Ed.], and decided to tease the teacher. She
replaced the 3 with a 2, and then called a teacher for a
demonstration. While instructing the computer to print 3
+ 3 (which now looked like a request for the sum of 2 +
2), she remarked to the teacher: “Look how dumb this com-
puter is. . .it doesn’t know 2 + 2.

The activity among the third grade students was exciting
to witness. One began programming dramas in which text
was printed at the bottom of the screen while the story was
enacted in SPRITE and TELL TURTLE modes at the top
of the screen. One other third grader was so intrigued by
the space shuttle’s landing that on the same afternoon of
the landing, he began working on a shuttle program. First,
he used MAKESHAPE to construct a faithful replica of
the shuttle, complete with USA monogram, black-and-white
coloring, and auxiliary rocket engines. Then he worked for
part of the afternoon and a little of the next morning to
write and debug his programs. His final superprocedure

102 The Best of 99'er Volume 1

Figure 4
Note:
BG = BACKGROUND
FD = FORWARD
SC = SETCOLOR
SH = SETHEADING
SS = SETSPEED
T/o| |Fi1{R|E
TIE|LIL] 14
A|1|T| 3]0
sic| |0
&lL|T| 1|5
5
RIE
E|ND
TIO| |T|AINK
TELL| (1| [ClARR(Y| [2[0| |s|c| [1|5| {HlOME
S |9je| Flp| |16 E
TELL| (2] [CARRIY [2]1| Is|c| 1/5] [HOME
TIEIL|L| |3] [C|A] 2/2} |s[c| {1/5' [HIOME
SH| [2/7/0| F[D| 316
TIE|LL] [8| [C/ARRIY| [2(3| |s|c| |6] HloME
SHH| |2(7/0| [Fip| [3]2
E/N{D
TO| |S[H|UITITILIE
TIAN[K
P|L|A|N|E
FlIRIE 1 1 ol
END| ! | o proh e
i B 1 . H
TI0| [P|LAINIE /} i } !)
TEL|L| [5] [clafmfaly| [2!a] |s'c| [1]5 momJl-l
i (0] |Fp| 16| |slu| ‘g'e| Flp| i1i6! R
TIE[LIL| |6 CPHHY 25 |S(Ci [1|5| {HOME
SiH| |o| iFp| 11ls
TIEL[L| 17 b=, Y| 28] [s|c| [1]5] [HlOMIE
S[H| (0| [F[pt & Is[Hi [2{7/0] |FID| (116
TIEILIL| (8] b= E=[Y| 2|7 Isic] [1I5| HiOMIE
SiH (0| [FD| 3z SW 2.70| [FD| 1:6, | |
TE[LL| |9 |clAR(R]Y! 4] islc| 1|1 WhWW
siH| |1/8e| [Fip| 14|7| is[E| |sje| [Fip! -2
TELL| [1]0| [claRR]Y| |4} [s|c| |8 o
sl @ 'FD| |aj5| s 270! D' v
TELL (1] 2 b aj 5] 6] 7 18 1
SiH| (910([S(S| (2/@ (11 i
TIELIL| [BiG| [slc| [1 \ \ ~\
| E[ND

[Note: Listings of Tl LOGO procedures are just that—listings of pro-
cedures. There’s no way to print out a transcription of the dala needed
to MAKESHAPE and MAKECHAR as can be done with the HEX Codes in
Ti BASIC and Extended BASIC. The only way to show the graphics that
a program contains is to show it as drawn on a series of “’tiles’”” on the
grids that appear on screen when the shapes and characters are first
designed. This is similar to CHARDEF routine in Programming Aids 1. The
listing of the Space Shuttle pragram was included (without the tiles) in
this article to demonstrate the simplicity of the language structure.—Ed.]

The gains made by the Lamplighter children with LOGO
have indeed been impressive. They confirm Papert’s dic-
tum [Mindstorms, Seymour Papert, Basic Books 1980] that
children should program computers and not vice-versa. It’s
obvious that LOGO has indeed furthered Lamplighter’s goal
of igniting the imaginations and intellects of its children.
But more importantly, LOGO has the potential to fire up
imaginations everywhere. @

Copyright © 1983 Emerald Valley Publishing Co.

and alter GAME:

T GAME
" PDILEE

OUNICIE]2
E
D

A
N

There is still a small bug left in PADDLE: The computer
will wait at line 1 of GAME until a key is touched (to satisfy
the command CALL RC ““A, it needs an RC). The com-
puter needs to skip PADDLE if no key is touched. You can
accomplish this by using TEST and the operation RC? (RC?
answers “TRUE when a key is touched and ‘“‘FALSE if no
keys are touched).

lT‘O‘ IG;.M T
TIEISIT| 25"
I3 Fﬁ”:LE
BT

At last the programs are all bug-free and working. The
final tasks consist of linking the ball-bounce off the right
to hitting the paddle, keeping score, and making the flight
of the ball a little more eccentric. Again these are complex
problems, so each should be tackled separately.

The second line causes the bounce off the right-hand bound-
ary. If that TEST were altered so that it answered “TRUE
only when the ball is near the paddle or a new program were
designed to check the relationship of the ball to the pad-
dle’s Y coordinates when the ball is to the right of X coor-
dinate 85, then the problem could be solved. The paddle
is always at X coordinate 100; since the ball is in motion,
the TEST at 85 is reasonable: When the ball passes through
XCOR = 85, it will approach XCOR = 100 by the time
the computer has completed all of the Y coordinate tests.
The paddle begins the game (through SETUP) with the ex-
tremes of its Y coordinates between — 16 and 16; each time
the E key is typed, the paddle advances 16 along the Y coor-
dinate, and each time that X is typed, it backs up 16 on
the Y coordinate. Therefore, some PADDLETOUCH
operation is needed that can compare the Y coordinate of
the ball and that of the paddle:

]
G
E

[¥

The BOUNCE?2 program now reads:

T/O| (P|A{D|D|LIEITQUICH

TE[LL} |0
TE|SIT| [E(LIT|HIE|R] |YICO[R| |<! [¢| |:[Y] |- |312] |
Y(CIOR(| [>] |:]Y]

I|F|T| [QU|T\P|U|T| |"|F|A|L{S|E
O[U|T{P|U\T| |"|T(R|V|E
END

This program will answer ‘“TRUE whenever the ball (car-
ried by sprite 0) is between :Y and (:Y —32) on the Y coor-
dinate. If the PADDLE program is altered, not just to move
the paddle but also to keep track of the Y coordinates of
the paddle through :Y, then PADDLETOUCH will func-
tion nicely:

Copyright © 1983 Emerald Valley Publishing Co.

(11 [2[|} [FIORWARD

6| I°|Y

LIL| L[| (2] |1| [B{ACK| [1]6
Y

Unfortunately, this doesn’t quite work as intended because
it introduces a new bug: The CALL command CALL Y
+ 16 “Yand CALL :Y — 16 ¢‘Y will not work unless there
is an initial value specified for :Y. Recall that the beginning
value for the top of the paddle on the Y coordinate is 16
(as achieved in SETUP). Since this happens just once, it
belongs in SETUP:

< IB|L|UIE ‘
90

=

d

— o

=
[X - Xl

Next, it is trivial both to tie PADDLETOUCH into the
GAME program and to make the flight of the ball less
predictable. First of all, PADDLETOUCH is added to the
BOUNCE?2 program:

Tlo| I8 UPFFz

TE[LIL| |0

T[ES|T| [+ .. | | 85

1[F|T] ECK

E[ND [

Tjo| |clH|E|C]X|

TIE(L[L| {0

T[E[S|T} [PJAID|L . - . O{UIC[H!
1[F|T| [S[E{T|H[t *. [NiG| [2[7|0

Then BOUNCE?2 gets changed to test for the edges of
the screen. Now, if the sprite reaches the top of the screen,
it bounces back down instead of ‘‘wrapping’ to the bot-
tom. If it reaches the bottom of the screen, it bounces back
up, and when it hits the left-hand boundary, it bounces at
a 70-degree heading instead of a 90-degree heading.

>| 185
| -1 18(5
IDp wL (7@
- >l =2
D" 1|3(5
<| - 185
*[D|IINIG| (4|5

This leaves just the problem of keeping score. Besides
keeping score, it would be nice to generate different noises
when the player scores and when the computer scores. When
the ball bounces off the paddle, then the player’s score
should increase and be printed; when the ball misses the pad-
dle, then the computer’s score should be increased. Notice

The Best of 99’'er Volume 1 105

that the CHECK program is invoked only if the ball is
beyond XCOR 85. Therefore, part of the scoring and noises
can be controlled after line 3 of BOUNCE2 by rewriting
the CHECK program:

TO| (CHE|C[k! ! I
TIE[LIL| @ i
TIE|S|T| |P|ADD|L|E|T/OU|CIH

IIF[T| |CIAILIL| |:|PILIS) [+ [1] “[P|LIS| [;] [T[N] |~
: CFFAQP THIE| |P[LIA[Y|ER|"|S| [S|C/ORIE
IIF|T| %= .. - ;] IN(O[I{S|E| |[FIO[R| |TH|E
Rl o sl [ploli|niT

I{F|T anlhrADlNG 2170

I|FF| [CIA[L|L| |:(C[P|S| [+| 1] |“[CIPIS| |;| |EIL|S|E
;1 HLINICR|EIA(S|E} |CIOMIP\UIT|E|R!" IS ISICIOIR|E
[{FIFl IRIE[E|P AlTIT| |10 [N] . HELS

H RIT| [B(E|E|P| [FIO{R| C| E[R['|S
o WNT

T[x I||[Y0UR S|CIORIF| (T[S} |1| (PC| (3]2
Tjyip PIL[S| PIC| 32

T [|THIE| IClop* " * |E[R['[S| [SICIOR[E| [I{S
W |32

Pihyuiyr| |:C[PIS

AILT! (90| [C|S A|DDIE|D| [T|O| [P[R|E|VIEN|T
ﬂ E[X|TR|A CIOR|I|NIGi FN E{A[CH| |SIER|V|E
E[NID

TiO| N|O[I|SIE

RIE|P{E\A[T| (5| i[{B|E|E{P A|I{T| (3] |N{O|BIE{E(P
ALT| 13 {1

E|N|D|

It is necessary to set up an initial value for both the com-
puter’s score and the player’s score as was done with :Y.
Since this is done just once, it belongs in SETUP. [The in-
itial score is 0 to O—as in the proverbial ‘‘soothsayer’s”
prediction or score before it begins. . . .] So SETUP is
revised:

106 The Best of 99°er Volume 1

T/0] |s|E(T|U[P

TE[L|L| {0

CIARER[Y| |:|B|A[L]L

S/E{TICOILIOR| |: [BL[UJE

HOME

SETH’ADING 910
S|E'TIS|PE[EDI 115! ! |
TELLi i, 21

Cﬁﬂﬁh {1BO[X !
SETCOLom\:BLAcx

SIE|T|H NG| (0

SixY| 123 o

TIELIL) |2

sv| [1/6

claitly| |e| ||y

TaLul e |tiplLis

TALL (0] |*iCIP|S

|nww

|

This game, like most LOGO projects, is open-ended. It
could be altered so that a winner is named at a score of 21,
revised for two players, changed to use joysticks or changed
so that the ball has topspin. With each addition, it is
necessary to make sure that the initial conditions are
established only once, that procedures to be repeated are
placed inside a recursive program, and that there are no
Recursion Interface Bugs.

T
T

T
1

(®
E

E
F

O[UIN|C|E[2

=]

0
Yielo
C &

R

S e
]

[)
~

ﬂpvmmﬁ I&G
s .
i
E

- I|N[G|
v

H

T

v

T

n

E

SADTVOA
XL

S AD|I NG

CaSwmawm.

T|E
IF
T|E
I|F
E

Copyright © 1983 Emerald Valley Publishing Co.

8 x 8 pixel character positions. Thus, if a figure is very dense,
it can’t be very large.)

The documentation that comes with TI LOGO doesn’t
make it easy to discover LOGO’s power. Many of the com-
mands needed for manipulating all but the simplest lists are
not documented.

At this point, it may be helpful to briefly describe just
what is available to a person who sits down to use TI LOGO.
The TI Turtle is an object that lives on a coordinate screen
with horizontal coordinates from — 119 to + 120 and ver-
tical coordinates from —46 to +97. The bottom six lines
of the screen are used for text. The turtle can be assigned
a position, and ‘‘knows’” where it is. It can be assigned a
heading (from O to 360 as the points of a compass) and
knows its heading. Its heading can be changed by a given
angle, and it can be moved a given amount either in the
direction of or opposite to the direction of its heading. It
can make a dot at any position. The pen can be down, up,
or in ‘‘reverse’’ modes, and it can draw in any of 15 colors.

Unique to the TI version of LOGO are sprites—objects
familiar to those with TI Extended BASIC. There are 32
sprites (numbered O to 31) with each assigned to a 16 X 16
pixel shape. Users may design and store 26 of these and can
direct any collection of sprites to assume simultaneously an
attribute such as shape, color, position, heading, speed, or
velocity. The commands which control the turtle act similar-
ly on the sprites. Motion is controlled by assigning a speed
(in the current direction) or a velocity (horizontal and ver-
tical components). Not only can attributes be assigned, but
they can also be obtained as the output of operations because
a sprite always knows its own number, shape number, col-
or number, position (on the full screen), heading, speed,
and velocity.

Papert has described Velocity Turtles (which can have
velocities) and Acceleration Turtles (whose velocities can be
incremented). Sprites can be both. Using sprites we can even
simulate Papert’s ‘‘Dynaturtle”—an acceleration turtle
which does not change direction when it is rotated, but
changes velocity only by accelerating in the direction it is
facing, thus obeying Newton’s laws of motion. A dynatur-
tle therefore behaves like the ship in the popular Asteroids
arcade game. The example procedures that follow this arti-
cle will demonstrate a dynaturtle which can have the force
of its “‘thruster’’ changed, and which can simulate an en-
vironment with friction.

TI1 LOGO also has 256 tiles (numbered 0 to 255) that can
be given arbitrary 8 X 8 pixel designs. We can assign tiles
foreground and background colors and position them
anywhere on the 24 X 32 character screen or on the current
print line. Console characters are tiles, the number of each
tile being the ASCII code of the character. (Note: The Tur-
tle records its trace using tiles, so simultaneous use of the
Turtle and nonprinting characters is limited.)

Numbers, Words, and Lists

A number in TI LOGO is an integer from — 32,768 to
32,767. Numbers can be added, subtracted, multiplied and
divided (integer quotient), calculations being modulo 32,768.
The restriction to integer arithmetic is a definite limitation,
but the limitation is not serious for most applications.

A word is a character string without a space. A feature
of LOGO distinguishing it from other programming

108 The Best of 99’er Volume 1

languages such as BASIC or Pascal is the capability of us-
ing a word simultaneously as (1) the name of a command
or procedure, (2) a variable, and (3) data. For example, if
the word X is to be used as the name of an action, X itself
is used. When an object has been assigned to X, the object
is denoted :X. The word X as data is denoted ‘“X. Suppose
that X has not been defined as an action and has not been
assigned a value. LOGO will respond to X with TELL ME
HOW TO X, to :X with :X HAS NO VALUE, and to “‘X
with TELL ME WHAT TO DO WITH X.

A word can be assigned any kind of data—i.e., a number,
word, or list as a value. This also distinguishes LOGO from
BASIC or Pascal where the data type of a variable must
be specified in advance. As a bizarre example, note that
MAKE ‘“MAKE “MAKE and MAKE ‘“MAKE [MAKE]
assign to MAKE first the word MAKE and then the list
whose single member is the word MAKE.

A list is the most powerful data object in TI LOGO and
is denoted by a left bracket followed by its members, then
a right bracket. Examples of lists are [], the null list; [HOW
NOW BROWN COW], a list of words; and [REPEAT 4
[FORWARD 20 RIGHT 90]], a list whose members are a
word, a number, and another list.

Data Manipulation in LOGO

Commands which are powerful in manipulating data in-
clude the following: FIRST(F), LAST, BUTFIRST(BF),
BUTLAST(BL), SENTENCE(SE), FPUT, LPUT,
NUMBER?, WORD?, THING?, THING, WORD,
MAKE, RUN, TEXT, DEFINE. The last three are used
to execute a list of commands, to access the list which defines
a procedure and to define a procedure represented by a given
list. These are powerful commands, but to be able to make
use of them it is necessary to be able to construct lists whose
members themselves are lists. The following key (un-
documented) commands, FPUT and LPUT, are helpful
here:

FPUT object list—outputs a list whose first member is ob-
ject, and whose following members are the members of list.

LPUT object list—outputs a list whose last member is ob-
ject and whose members all but the last are the members
of list.

If object is a word or a number, the results of these com-
mands are the same as SENTENCE object list and
SENTENCE list object, respectively. But if object is a list,
FPUT object list adds object to the beginning of list while
SENTENCE object list adds the members of object to the
beginning of list. This is a crucial difference, making possi-
ble the construction of arbitrarily complicated lists. The
other commands in the above list which are undocumented
are as follows:

NUMBER? object—returns TRUE if object is a number,
and FALSE otherwise.

WORD? object—returns TRUE if object is a word, and
FALSE otherwise.

THING? “name—returns TRUE if name has been assigned
a value, and FALSE otherwise.

Copyright © 1983 Emerald Valley Publishing Co.

causes a ‘‘thruster’’ to impart motion to the dynaturtle with 21) contain designs for the dynaturtle, each rotated 30

speed 3. Each touch of the E key adds a velocity with degrees from the preceding.

magnitude 3 to the dynaturtle. Touching S or D makes the

dynaturtle face 30 degrees left or 30 degrees right from its CONTROL is the main loop. Friction is always checked
former heading. Velocities add like vectors. If the dynatur- to see if it is on. If it is on, CHECKFRICTION decreases
tle is not facing in the direction of its motion, the force of the dynaturtle’s speed. If one of the control keys is pressed,
the thruster will cause it to head in a direction intermediate the action is taken and control branches to label A. This
between its heading and direction, exactly as if it were a procedure keeps running until Q is touched.

rocket in space obeying Newton’s laws.
KICK reads the velocity of sprite 0, which is always kept

Touching F will turn friction on. In this state, the dynatur- heading in the direction the dynaturtle is facing. This velocity
tle will be sluggish and come quickly to a stop after each is then added to the velocity of sprite 1, which carries the
kick. It will therefore be necessary to increase the force of shape of the dynaturtle.
the thruster. To do this, touch K. You can then enter a
number, say 10 or 20, and touch ENTER. The dynaturtle ROTRIGHT adds 30 degrees to H, which maintains the
will now be given an increase in velocity with magnitude heading of the dynaturtle and causes sprite 1 to carry the
10 or 20 with each touch of E. Touching F again will turn shape with next highest number, unless that number is larger
friction off. You will find the dynaturtle now very difficult than 21. If sprite 1 is carrying shape 21, it assumes shape
to control. Touch K again and readjust the thrust. 10. In this way, the dynaturtle appears to be rotating to the

N .) right by 30 degrees.
When friction is off, the dynaturtle is seen to act just like & v &

the ship in the Asteroids arcade game. When friction is on, ROTLEFT is similar to ROTRIGHT but gives the effect
it behaves as if it were riding on a rough surface—appearing of rotating the dynaturtle to the left.
to skid as you direct it around the circle.

SETFRICTION simply makes the value of the word

Description of Procedures FRICTION? true if it is false, and false if it i
. ! s t 1S true.
DYNATURTLE activates the procedures INITIALIZE, 115 fasse, an s 118 true

SETDYNATURTLE and CONTROL. SETKICK gets a number from the console and assigns

. o it as the speed for sprite 0. The velocity for sprite 0 (x- and
INITIALIZE draws a circle and initializes the thruster y- coordinates) is used to impart an acceleration to sprite

(sprite 0). 1. Note the command SS FIRST READLINE. The primitive

. . READLINE outputs a list, and SS requires a number for
i ,SE,T,D,YNATURTLE positions the dynaturtle and gives input. The desired number is the first (only) member of the
it its initial shape (shape 10). The secret of the dynaturtle’s

: A list entered.
turning capability is that the twelve shapes (shape 10 through m

i Inlyln]s 1(0] [HE[L[P| [| | ! ol RlofTlR(1glHIT | | : NS
B HA: LiE NoO[TURITILIE] [c[s oL
Y 4 Ay pIR{UNT| |(|7HiE| IDjv|N[alrjuiR|TIL[E| [1]s| [aN s gl || |l 4 fsle
L HElglT| |1 e SIHAPRIEL = 201 THIEN (clalrialy| [1)o] E[L
o ki INT| | Wa(1icls| lo/BfEly[s| IN[EWTION|" - lclafrlrly| Isilalplg] || 1
LA
T INT (kr Forlon.] K
TOL [s (il [= |sefrtefrlilclrliloln
sl - plR[tNT| |[][7] iL|1[vE|s| foN| |a| |s[ujR(|a Tjejsitl |-l jR|1iciT]1 OlN]2
A . H1|ci| |1 1|F(t} v =gl |"IElR{tlcit|tolN]2) |- [FlalLisiE] [p[Rli
MAKIEL TP HVIEI-L PUAEED 1Y v o[a|1N7| |t[clalN| [BlE| [smiopolrl| (ol RP Nl - lelrlioln ol |1
, , 1 1FF| MAKIE) |“IFRIC|T|1ON|2| |*I7lRlule] plR|tN
ST IRIVEL) /v OvEL)) DVY PRI (] 1] 1| [1]F'R{tlcir|tlon| join] 1] || :
o ‘ pRIIINT |[lcolvTRiOLIS!:] |1 iTouicH X END ;| | JJ L i ‘
i
iﬂ(CONTHOL piRlINT! (| Tlo| (s[E[TIK| :
cletalilctrtiloby ESI?T (el | GlElT tkltlclk! [Flrlon] (ria ThelEl e olF| [k(ticlkl2| |1
e il Tl PR[INT| (1[s]:| [iR [LiE[FlT 3l0) [DlEG s(s| [F|t[rjsT| R[ElnD[L|1|NE
AL plR(tiN[T| |I[D]: . R|1GlE[T| [3i0| PDIE E|ND
el Bl (elatels il p[R(LINT| |I[F|: . |Firt[c/7|toln} o[n
LR E [E THEN KLCK] flpl b Tio| [s{E|TD|vIN[A|T/UiR|T|LE
- Lixl 2 ol ITREN go;nlé;T PR . % |[[K}:| |S{E{T} |TIHR{UIS|TIER| [KiT|C TIELLI 11
1ey <1k 1= |-Ie| [7[H[E|N] [s|E|z|F[R[t|c]T]1 oy PR 7@ QUIETE I S| 50| S
el 1+[% =] || (7R |sE(TR]1[clk PRyt A 1] S| 0, S @) (CRRRIY |10
el 1okl £ |-l [rlaizh| [siTole P?INT (|TR(Y| [Tiol f6lo| |ARIojuN[D| (cl1 ggb. Hi1|T|E
SO laltnr] 1]
PRIIN|T| |(|T|Y!P|E| |"{D|Y|N|A|T|UIR|TILIE|"] 11 E-KQNIZIQLIZEE bl
i =N s MA) } A OF| [DYIN)AIT
. IclHE|c|KiF[R|tciT| ol e e 1 R - DHAH c|1RICILIE| [Tl0] [
aer | JFRITCT|tOMN2| TiglElN] (TiE|Lie| [1] {1l oAk ol =
plEED| [>| lo| |TlH[EN| |s[s| |S[PEED] || [1 |l lels ot : ols| i
ERP Poo war 33 | - lsliplel it [1lo S PO (CLRCLEL 8L L L
1ol [rlolriLiEle|T I:ll"r | o I|| e 3 H L{1|Z[E| |T{H[R{U|S|T|E
TiEL(L |1 S i)
SR T 1Ll L Tslo lgﬁgs rﬂlﬂrlowv FlalLls|E
1|F| [s|Hla[plE| |=| 11jo| ITHIEIN IclaRIRlY] [211] [E|L (i R ‘
SiE| [CIARR]Y| |SHIAPE| |- [1
Bl |

110 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

\ THINK TRAT
SHALL NEVER SEE
A PET WHO'S

AS GOODAS ME!

The LOGO Poet

USING RECURSION
FOR LIST HANDLING

: ; ince TI LOGO’s graphics capabilities are so vast and

so easy to use, there is a tendency to overlook its other
features. List handling is a case in point: By combin-
ing some of LOGO’s list primitives—such operations as
FIRST, BUTFIRST, (or the converse LAST,
BUTLAST)—with recursive [see adjoining A Primer on
Recursion and List Primitives] OUTPUT lines, we can easily
write programs to reverse a list, alphabetize a list, or even
compose poetry. The several examples that follow will, 1
hope, demonstrate to you the powerful simplicity and list-
manipulation potential of the language.
Verifying the presence or absence of a word in a list is
a problem commonly encountered in list processing. The
MIT LOGO group refers to this as the “MEMBER?”’ pro-
blem because the program is to answer the question, “‘Is
a specified word in a specified list?”” Some aspects of the
program are obvious. For example, once the answer is ob-
tained (whether TRUE or FALSE), it should OUTPUT to
the user or program which called for the answer. It is also
obvious that if the list is empty, the word is not in the list.
Given just this much information, it is possible to frame
a MEMBER? program:

> wonp LS|t |
1| lotulzpluit| | |F|AlL|S|E

»

Papert, following Polya, notes that one way of solving a
complex problem is to ignore the complex whole and focus
on those parts which can easily be solved. [See Mindstorms:
Children, Computers, and Powerful Ideas by Seymour
Papert—available from the 99’er Bookstore.] In the
“MEMBER?’’ problem, if the first word in the list were
the target word, then it would be easy to detect it and solve
the problem using the LOGO primitive FIRST*, which
returns the first word in a list:

s
i Ml i

Now all that remains is solving for those cases in which the
word is in an interior position or is absent from the list.

Ri{? R|D hmql-r

o]

E Kl
L S
L1l

T B
I S U}.
I S

=

le]
F
F
T

1
E

EN

Copyright © 1983 Emerald Valley Publishing Co.

Were the word second in the list, the problem would be
solved by adding a line using the LOGO primitive BUT-
FIRST, which returns all but the first word in a list of words:

IF FIRST BUTFIRST :LIST = :WORD OUTPUT
“TRUE

since the second word in the list is the first word in a list
which excludes the first word. Similarly, the third word
becomes the FIRST of the BUTFIRST* of the BUTFIRST
of the list, the fourth word is the FIRST of the BUTFIRST
of the BUTFIRST of the BUTFIRST of the list. It would
be possible to write a separate line for each of those posi-
tions as well as the fifth, sixth, seventh or any other poten-
tial word position. However, a program that did this would
quickly grow ponderous. Fortunately, in LOGO this is un-
necessary. Notice that for each position an additonal BUT
FIRST is all that is needed. The problem therefore requires
only a single recursion line to complete the program:

T WIORD| |:(L|T[SIT
1| OU|T|PU|T| ["|FIA[L|S|E
T| i=| |:WORID[OUT[P|UT

OUTPUT M|EM[B[ER{?| |B{U|T|F|I|R[S|T| |:{L{I|S|T

Now when we run the program by typing MEMBER?
[A QUICK BROWN FOX] “FOX, the first stack checks
to see if the list is empty or if the first word in the list matches
the target word, FOX. Then it awaits the results of a se-
cond stack which runs MEMBER? with the truncated list
and the target word. The second stack then awaits the results
of a third stack which runs MEMBER? on BROWN FOX
and “FOX. That stack then awaits the results of MEMBER?
FOX “FOX which returns “TRUE (from the match in the
second line). ““TRUE is returned to the second stack which
outputs ““TRUE to the first stack which outputs “TRUE
to the program which first called it (or to top level). In the
event that there were no matches, one of the stacks would
eventually run MEMBER? on an empty list and would out-
put “FALSE.

Another common problem is to count the number of
words in a list of words. As before, this problem is solved
by outlining the obvious elements of the solution and the
simplest case.

TO COUNT “LIST
OUTPUT some number
END

The simplest case occurs when the list is empty.
TO COUNT :LIST

IF :LIST = [] OUTPUT 0
OUTPUT some number
END

When a list has just one word in it, the program should
recognize that and OUTPUT 1. Since a list with just one
word is one word away from an empty list, The LOGO

* FIRST returns the first word in a list of words, or the first letter in a list
of words, or the first letter in a word. LAST returns the last letter in a list
of words, or the last letter in a word. BUTFIRST returns all but the first word
in a list of words, or all but the first letter in a word. BUTLAST returns all
lbut the last word in a list of words, or all but the last letter in a word.

The Best of 99'er Volume 1 113

operation BUTFIRST applied to that list would yield the
empty list. If there were two words in a list, then obviously
the list is just two words away from an empty list. If a recur-
sive line were put into the program which (a) applied BUT-
FIRST and (b) added 1 to the count for every application
of BUTFIRST, the program would count the words in the
list.

TIO| [CIO[U[NIT| {:IL|I|SIT

LFC|LILS|T) (=] [Uf 1] [ojulT(pulT| @
OlU|T/P|UIT| ((] [ClOIU|NT| [B[UIT/F|L[RIS|T| |:(L{1[S|T
)N

E|ND!

For another example, consider a program which will reverse
a list. The simplest case would be a list with no words.

RIE
i

VIE|R
[

T|o| S|E
I SiT| = |1 olu|T|p(ulT
END

The next simplest case would be a list with just one word.
For such a list we could have the program OUTPUT the
SENTENCE or the word and an empty list.

IlTo ‘HEVE\RSE P L] |
I,Fi 1|S|T [1] joujTi=" | 1
o’u‘ ‘T sl ‘NCET el eslel |y
It [RIEIVIERSIE| [BlU[TiLIAIS(T] |.pupfs]T|)

END ! :

This solution can be applied to longer lists as well!

For a final example, let’s use LOGO to ‘‘write’’ random
poetry. As a first effort at LOGO poetry, we’ll attempt some
‘“free verse’” by instructing a poet to string words together
randomly from a list we select. First, we will need a pro-
gram like SELECT to output a selected item from a list.

Tio| [slEfcelclr| |: v :|e[ifs
v

T
FILRIS|T| |:|L|1IS|T
- 1] 1B

LiF| |:|N| = [1] [o{U|TIP|UIT

O\U[T|P|UIT| |SEIL[E[C|T| [: [N U|T|F|I|RIS|T
J|LIIS|T

ENID

Then we need a program to generate random numbers for
SELECT. Because LOGO’s RANDOM primitive provides
the integers through nine, if our list is less than ten, we can
get a COUNT of it and use that COUNT.

To{ ‘NI" :‘LEN‘GTH‘ 1
“DloM |"|N

TIES|T nlul}{ NP | [:N] < J[LIENGT

H [+ 14 i (

1F'T ‘OUTPUT N

LEF OUTPUIT NUMB LENGT\H ‘

e T TR |H|MHH

By first typing
CALL COUNT :LIST “LENGTH

we can then use NUMB for the value of LENGTH. If we
then type:

TYPE SELECT (NUMB :LENGTH) [a list of words]

the computer types one of the words in the list. We can write
that as a program:

il

14 The Best of 99°er Volume 1

A PRIMER ON RECURSION
AND LIST PRIMITIVES

It is easier to understand recursion in LOGO if one imagines
that each LOGO program is a job for a contractor to perform. Each
contractor is a specialist and can do only one job. Every contrac-
tor follows strict working rules; these rules say that when the con-
tractor sees STOP, he must stop, when he sees OUTPUT, he must
pass back some information and then stop. Of course, when a
contractor reaches an END, he also stops. When a contractor
sees the name of any LOGO program inside of the program he
is completing, he subcontracts that job out to another contrac-
tor. Thus, in COUNT [A, B, C], the first contractor reads the first
line of the program, but the condition isn’t met, so he moves to
line two. There he is told to OUTPUT 1 + the COUNT of [B, CI.
Since he can’t do another program, he subcontracts the job. The
subcontractor reads line 1 of COUNT and since it doesn’t apply,
he reads line 2. He is told to OUTPUT 1 + the COUNT of [C]. He
can’t do that, so he also subcontracts that job. The third contrac-
tor notes that line 1 doesn’t apply and line 2 tells him to OUTPUT
1 + the COUNT of [|. He also must subcontract the job out,
and so the fourth contractor reads line 1 of COUNT. Since the
list is empty, he OUTPUTs 0 and passes the job back to the third
contractor; he in turn adds 1 and then OUTPUTSs 2. The first con-
tractor adds 1 to that and then OUTPUTSs 3, which is the correct
answer. With this explanation, you should now be able to analyze
a program which gives you the answer to a number X raised to
N power.

TO EXPONENT :X :N

END
TO EXPONENT :X :N
IF:N = 0 OUTPUT 1

END

TO EXPONENT :X :N

IF:N = 0 OQUTPUT 1

IF:N = 1 QUTPUT :X

OUTPUT (EXPONENT :X :N—1) * :X
END

To turn this into a line of poetry, we should have a random
number of such randomly picked words with a random
number of spaces between words (E. E. Cummings’s style)
and then a carriage return:

Ti0| |sip[alc|E

RIE[P[EA|T| [R|aINDloM| |1 [p[R|1]N[T|cllAlR| 3[2] |1
END

1i0| [L|1|N[E] [:|L{1]s|T I
RIE|P[EIAT| [R[A[N[DIOM| ((|s|p[A|clE| [VE[R[S[E| [:[L|I
S|T) |

PRII|NIT| [SE[LEC|T! || [Njum(B| |:|LENGITH 1)
([L1js,T . ‘ \
E[ND| | ‘

Note: PRINTCHAR 32 puts the character with ASCII code
32, a space, on the screen.

If we want continuing lines of poetry, we can write a recur-
sive program:

S

Now, putting this all together we get:

1 L s} L LU T m“

|
éi’l‘l E‘S‘I} }SJT | lll l|1‘|||llll

[l e
=——0

Copyright © 1983 Emerald Valley Publishing Co

Now we can try converting POET into a program which
produces either rhyming verse, blank verse, or a finite
number of lines of verse. One way to modify POET to pro-
duce rhymed verse is to give it two different lists—one of
words for the interior words of each line of verse, and
another of rhyming words for the last word in each line.
Then the program can be changed so that only rhyming
words are placed in end positions.

()
=
=z
)
wr
=
o
—
£
=
= <
=
[3z]
w

MUIS|T| |AICICIOM

=
[x]
[ZX7)

[l ol]

]

]

I T s L s T |
o =)
=

[
=]
o
=
—
N
=]
=3
=
m
o
[e]
=
=
=<
=
—

N -
= m
o
t3
S
=
=
=
o 9 o
[e]
=
[
o
)
[+
[2]
<
]
=
w
3
=

S|P|A/CIE
3(2

Mg el Ee- - -

5|T

ST

o bt 10 11
clowhyz| :[clifsit 1 111

Q
[e]
=
=

=

ur
=S

Z oMo ZOO0_ =
=
k2]
=

- Q =

T
D| ||

[e]
=
=

=)
=
2 — O
—
=
2
[=)
=
~
=
1
=
[]
—

O
=Y

oluft[plu

=
|
=

Qe me— =m0

ZocomO =W,
[
3]
1
Q
3
=
=

s
al=]
=
w
=1
—

BN
—

Copyright © 1983 Emerald Valley Publishing Co.

You probably recognize that the problem of generating
rhyming verse is one form of the problem of teaching the
computer to write text which follows a specified rule (in this
case each line must rhyme). The more general application
of rules to text is nothing less than grammar. One of the
grade school pupils in the Brookline project wrote a text-
book rule program like POET which generated random
sentences. After she saw the effects of changing parts of
speech she exclaimed enthusiastically that she now
understood what a noun was.

POET can also be quickly adapted to a sentence generator
which young people can play with to make grammar
meaningful.

Tio| [s[EN|T[EIN|CIE]S
pR{INT| |([rlvplE| a| [L|1s{r| lolF| (AfR[T|1|clLlE]s
N, [T{H[EWN| [PRIE(S!S| [ENTIER].| [
clalr il RlElalnllTINE] 1 algiT
PRR[. ~ & [t]1slrl [olF| INouln]s| [y
Dl M-~ EN|TE[R]. | |]
CIAL 0 m{FlAGag (NE| [INIOJUINIS
“ws b | (8] fLnlsfr] Jole! [aplrelclritlv
) sls| [emITiER].| 1
Clapia n|FIAIDILITINIEl |“|AID)])
pR| - | -~ | & [tltlsl7] lolF| [viE[R||s) &l
o[- sis! [EIN(TE[R].| [Njow| WiaITIClH
1
w U lalelalole/iinlg| [-|v[e[nisls
“w xRl |:[alR/T| |:Mlolulnis| |:[alp|s]| |:IvIElR[B
AR|1| |:Injojulls| |:[apls| |:|v
[
1 |} Infor(3| i coulmr| ;AR
|
clr| || Ivumie| (| Iclojulnlz| |: v
: Ivlojuly|s
| (SIELECT] [NJumis] [« cloux] | [ViE
. 00| viER(Bls w
E
e [SELECT] (L INuMB| 1 cop[T |: |alD
IRRRE l i |
s|plalc|E ‘
rivlele| [selLleicit| (| Numis| || lcoluiT| |:]No
v W] INjojuimls
w07 30
5 i AMMAR| |:[alRiT| |:[Molu[s| |: [alpj1| {:VIE[R[B
§
I.ﬁDr

SENTENCES can be made a better grammarian by adding
distinctions of number and gender where appropriate; it can
be made a more sophisticated language generator if GRAM-
MAR is altered to allow for conjunctions and subordinate
clauses. All of these changes and more can be programmed
by students as they learn both the specifics of grammar

and the mathematics of LOGO. @

! Papert would probably argue that most students know the grammar which
schools attempt to teach, but that the students do not have verbal labels
for syntactical rules and parts of speech, and do not see the relevance of
the labels once they are told them. A sentence generator program can make
grammar ‘‘speech syntonic.”

The Best of 99'er Volume 1 115

Notice how much of each line is repetitive. A better
LOGO program would have taken advantage of that redun-
dancy and used a broader application program:

D

S| X
E|LIEIC|T N{UM B NIT| |:

>

R
S
X

l".l§
=0

Then GRAMMAR could be written:

TIO
ER
0l

RIAMMIA R |:|A{R|T| |:|N|O|UIN{S| |:|AD[]

<

B
R

~l S NIO|UINIS
sirAIF

| VIE[RIB|S
“g‘ o

Caitind: |2 |A[D{]
W :NIO|UIN|S
e 17

AT 32

GRIAMNM * :|A[R|T| |:INO[VIN|S| |:1AD|I| |:|VIE[R[B
S

o

The second GRAMMAR program is more elegant and
is shorter. It achieved greater simplicity by taking out of
GRAMMAR all of the repeated functions and placing them
in WORDS. All of the functions carrying out the program
WORDS are directed at placing a single word from a
designated set of words. The specification of the set and
type of words is left for GRAMMAR, the program sur-
rounding WORD. A common format for many well-written
LOGO programs is:

TO DOSOMETHINGSPECIFICALLY :SPECIALINPUT
GENERALPURPOSEPROGRAM :GENERALINPUT
END

TO GENERALPURPOSEPROGRAM
:GENERALINPUT

LOGO commands :GENERALINPUT

END

On occasion it is necessary to string together several
general-purpose programs inside a specific-purpose pro-
gram. In that case, the general program often requires that
there be some set-up steps and some ‘‘fix-up”’ steps before
and after the general program. Such programs have the
form:

TO GENERALPURPOSE
SETUP
GENERALFUNCTIONS
FIXUP

END

Mathematicians may indeed recognize a similarity be-
tween the concept of elegance and aesthetics in program-
ming and the expression of algebraic functions. There are
many ways to express algebraic functions, but it is often
more useful and always more elegant to express such func-
tions in a form which collects common factors and simplifies
terms even where such simplification may require a set-up
or a quick fix-up manipulation along with the factoring.

There are two other major aspects to consider in order
to write better LOGO programs. One is writing programs
which don’t run out of memory; the other is writing them

Copyright © 1983 Emerald Valley Publishing Co.

to run as fast as possible. It is important to understand the
major feat accomplished by Texas Instruments and by the
MIT LOGO Lab in putting LOGO on the 99/4. LOGO is
a very high level computer language which requires large
amounts of memory. The architecture of microcomputers
limits the speed with which large amounts of memory can
be addressed. The TI LOGO which emerged from the joint
efforts of TI and MIT represents an effort to compress code
to the minimum memory requirement without compromis-
ing its applications. There are two tricks which they built
into TI LOGO to make LOGO feasible on a micro. If you
use these tricks you can gain even greater satisfaction from
your computer. The first feature is an automatic garbage-
collector. A garbage collector is a part of the operating
system which takes used memory and makes that memory
available for further uses. Of course, the garbage collector
should not destroy and overhaul all of memory’s work. The
way that the automatic garbage-collector in LOGO
recognizes when a unit of memory has served its purpose
is by checking the instructions written in the memory. Below
are examples of programs which permit or exclude the
collector:

T » " “O|N| [:|S[1[D{E| |:|A[N|GIL|E
Flof " :1S|1|D[E

LIE|e 1) |:1ANG|L[E

PIOL|Y(GIOIN| |:|S[1D|E| |: |A{NGIL|E
E|ND

In this program, the garbage collector notes that each time
POLYGON is entered (referred to as the level of
POLYGON), there are no further commands or instruc-
tions after the line POLYGON :SIDES :ANGLES (called
the recursive call line). Thus the piece of memory that was
used to store POLYGON at that level is collected for reuse.
If all memory gets used up in TI LOGO, the message “OUT
OF SPACE”’ appears, but POLYGON will never generate
that message because it will never run out of memory.

T W I
FIORWA
E

This program will never run out of memory in TI LOGO
because the program terminates.

0l
&
N

D
R

E
D

L
L

E
E

N
N

G|
G|

T
T

H|
H

" :
D

1
[|

|

T/0] POPVFPP‘:SIDE :|ANjGILIE
FIORWA[RIN! 1-Isl1|D[E

LE[F[T] 23l E

UF| | &2 iuz i= |of [s|tioj
pioltlyiGupy -5/ 1[D[E| |: |A[N(GILIE

i | RN

This program could use up all available memory before
it reaches its stop conditions because the garbage collector
cannot refurbish the memory used to execute this
POLYGON at any level. The program leaves work to be
done (namely PENUP) once control is passed back to the
level of POLYGON.

Unfortunately, the garbage collector is not empowered
with the authority to decide if any instructions following
the recursion call are worth keeping, and so the following
POLYGON program could run out of memory:

T/0| |Plo|L|Y[clolN] |:|s|1D|E[s| |: [AlN|a[L/Els
FIORWAIR[D| [:|s|1|D[E[s

LIEF|T| |: [AINGIL[ES

POL|YGON| [:[s|1|D[E[s| |:|AN/G[LIEls
E|N[D

The only difference between the first POLYGON pro-
gram and the one here is the empty line following the recur-

The Best of 99er Volume 1 117

sion call and before END. The garbage collector sees that
there is a line of commands and cannot tell that the line
is useless, so it is barred from refurbishing the memory!
Empty lines use up memory and can block garbage ccllec-
tion (depending on their location), so empty lines should
be eliminated from your programs.

Finally, the operating system can work faster when fewer
sprites are being used, i.e., programs which use no sprites
run faster than programs which use sprites. The more sprites
in use (generally), the slower the system operates. The reason
for the slight degradation in response time is obvious—the
system has to check to see which, if any, sprites must be
displayed or moved. The system checks on its sprites by
looking up the highest number of sprite called upon. For
example, TELL 31 or TELL SPRITE 31 would cause the
system to check on every sprite from 31 on through to sprite
0. Such a check is necessary (from the user’s perspective)
only if all 32 sprites are being used. If only one sprite is need-
ed, then the user should type TELL 0 or TELL SPRITE
0 and the system would skip the checkup on sprites 1 to
31, thus saving a small amount of time.

Student Reactions to a Four Week LOGO Class
By Gene Branum

Students pick up these principles quickly. For instance,
Gene Branum, a student in a four-week LOGO course,
reflects on this experience:

‘“The expectations of the students varied—we wanted to
know more about computers, we wanted a different Jan-
term experience, or maybe just a free Jan-term. Whatever
the motivation, all came away affected in some way by our
experience. All experienced both the frustration of failure
and the flush of triumph as the computer finally ‘did what
it was supposed to.’

“The format for our experience was a four-week mini-
term (Jan-term) at Austin College. Our class met; five days
a week for two hours, and we were required to spend at
least one hour of work on our own as well. This require-
ment was easily met; as one student put it, ‘It was not
unusual to spend four hours at a time’ on the computer.
Needless to say, the experience was very intense, and there
was a great deal of self-teaching. This was felt to be one
of the greatest strengths of the course.

“Professor Hank Gorman did a fine job of teaching the
basics early in the course. As he told us his expectations,
we scoffed. After two weeks, he told us, we would be draw-
ing cartoons and making up games. Even though his leader-
ship was great, the majority were insecure about ‘the
machine.” Our confidence, however, grew with experience
and familiarization.

““The two greatest aspects of the course for all of us were
(1) the team experience and (2) experience in general prob-
lem solving skills. The true strength of LOGO is that
students, working together, can teach each other massive
amounts of material. The realization that everyone had
problems put us all on the same level. Sharing ideas and
solutions became important for everyone because no one
could work totally independently. Many social experiences
allow students to interact, but LOGO is one of the few that
forces students to think together.

“Without exception, all of the students involved in the
course commented that, after LOGO, they knew better how
to approach a complex problem. Dr. Gorman spent several
class periods on problem solving skills: decomposition,
recursion, naming, multiple descriptions, and the ‘little
men.’ These skills not only aided our search for solutions
to LOGO problems, but also for problems that require a
thinking solution. The overriding principle of LOGO is that
the simple builds to the complex, which is its major strength
as a system for any age-group.

“While it was widely agreed upon that none of us
‘mastered’ LOGO, each of us developed confidence in our
abilities to control the computer and make it do what we
requested. The LOGO experience allowed everyone to use
logical approaches to problem solving and gain valuable
hands-on experience in a discipline that continues to increase
in importance.”

The following programs, which students wrote during this
course, show an emerging appreciation for elegance, speed,
and simplicity in programming. Except for correction of
typographical errors, their work hasn’t been edited in an
attempt to find still more elegent ways of achieving their
programs’ goals. Note, however, that they all grasp the
essentials of esthetic programming. @

Space Pylon Racer

Once set up, the player guides his saucer through pylons.
Two shapes must be made first (check graph paper). The
keys control the saucer. E moves it upward, X moves it
downward, D moves it forward, S moves it backward, F
speeds it up, A slows it down. If the ship hits a pylon, the
beep sounds.

Use arrow keys to change direction.
Use F for fast speed.
Use A for slow speed.

e 100 L
rlsi ; ’

L! Al is[s| 10| [sc| o cla[Rlg|Y| lo
EIT i
EiL|L] |0 ‘ ‘
PR
NID \

118 The Best of 99%er

mwr v

Volume 1

wThikﬂscx !] } “ !
W) [BIOfT{H; |(| BIOJT|H| (X|CIOR; |>| 1~ 16(5] X
Dort oKkl I3Is] D¢ [Blo|TiH! |Y[ClOR] 5| (7]8
i T nl | (9@)

|mr‘l GIO| [“[B

- | |Blo|T(g| [¢| {BlojT|H| |x|ciolR| |>| | l6/5] [x
.kl [1318 D || [BiolT|H| [YiciOR| |>| |5(a

vl [<| (710])

1{F|1| lclol (B

TIE[S|T H| [(| BlojTH © R{[>| =T x} !

Bli<| 136 1) \(] (BOTH : B> T3 L. |

R| |<| [9l0| | |||

1IF|T| G0 [“|B

TIE|S|T| |BO|TIH| |(| |BlO|T|H| IX|ClOR| [>| % [X[clol

R{ |<| [11[s| D] |(| {BIO|TH| IY|CIOR| 15| =+ |Y|ClO]

R{ I<| |710])

1{FiT| Glo| [“]B

TIE|S|T| [BO|T|H| |(| |BO|T[H| X|clolR| |>| |1]5| [|cio

R |<| (48] [)] (| BlO|T[H| |Y|ClOR| i<| [-| {7(0] l¥iC

ORI |»| |-| |B{6] |)

1[FiTl [Gjof |"|B

TEFT BO|TH| [(| [BO|TH| [X|cOR| |5 1|5] IXIC

R| i< 14/5])| |(| [BlOITH| [Y,COIR! |<| =| I5l@i lYiC

OR| > [-| (66] |) 1 [

1{F|T| GOl |"|B)

B|: .

I|F{T| [B|E[E|P| WIA[I|T| {1|5| [NIO|B|E|EP

E(NDD

Copyright © 1983 Emerald Valley Publishing Co.

TCH

st

E‘N‘D‘ ‘i\i‘\\

ihild

Now, if we enter SOLVE 2 ““A B ““C, the output will be:

PICK UP A SET ON C
PICK UP A SET ON B
PICK UP C SET ON B

The number of moves for three rings is 3, as expected.
What will be the seven moves for SOLVE 3 “A “B ““C?
Try it!

We’ve looked at a LOGO procedure for solving the
Tower of Hanoi as an abstraction. This procedure, SOLVE,
prints out—as a list—the sequence of moves necessary for
the solution. But given the graphics power of LOGO, we
should be able to design a program—a series of
procedures—which will represent the actual movement of
rings from one peg to another graphically. And, in fact we
can use LOGO’s MAKECHAR command to define the re-
quired graphics, called tiles, and we can move these newly-
defined tiles about, using LOGO procedures. So let’s begin
at the beginning.

Let A, B, and C be the three pegs. When we know which
rings are on which pegs, we then know the particular state
of the puzzle. In our LOGO implementation, the variables
A, B, and C will be the names for lists which tell us which
rings are on each peg. Our puzzle will have 8 rings. Let us
number them 1 through 8 in order of increasing size. The
beginning position, with all rings on peg A, is represented
by:A=[12345678],:B=1],and:C = []. Moving
the top ring from A onto B results in the state :A = [2
345678]1,:B=[1],:C = [].Inessence, a move con-
sists of removing a number from the beginning of one list
and adding it to the beginning of another list. At the same
time, of course, the graphic representation ring must be
erased and redisplayed in the correct position.

Let us first construct a procedure HANOI, which will
allow us to play with the puzzle and then, when we want,
solve it automatically.

1T
T

]!o
SIEITIT

H{AINol 1
1[AlL1fzlE
D

DuiEl (8

INITIALIZE should set colors and define constants.
SETUP should display the puzzle with all the rings on peg
A. PLAY should allow us to pick rings up and put them
down by simply pressing the names of the corresponding
pegs. Play might continue until ‘Q’ is pressed. The puzzle
should then be redisplayed and solved automatically, begin-
ning with the rings on peg B. The procedure SOLVE was
developed in the previous section. Procedures SETUP,
PLAY, and SOLVE will depend on workhorse procedures
GETRING and SETRING. The requirements for IN-
ITIALIZE will become apparent as we make choices about
representation.

126 The Best of 99'er Volume 1

Assume that INITIALIZE assigns the value 8 to N and
:TOP is the number of the ring to be displayed. Then
SETUP can be:

TIO| |S|E|TU|P

Cls

S|TAND| ("|A

STAND B

TENL| ["[C]
“ITIOP] [:[N
‘1A
"B N
‘I (L))

nierioiA|T) |2 IN| [[|S[E[TRIIINIG ["|A] M|AKIE| \"ITIO

P| [:|TIOPPY = 1] |1

EIN|D

Using utilities MEMBER?, EMPTY, and ALARM, we
can write PLAY in such a way as to validate all inputs. We
want to accept either ‘Q’ or to stop PLAY the letters A,
B, and C only. (VALID will be initialized to [A B C].)
We also want to prevent an attempt to remove a ring from
an empty peg. If an error is made, we will cause an alarm
to be sounded. (See the listing for definitions of the utilities.)

|1P| P|L|AlY
“(X| R
X = |* H|E|N| [S{T|O]
IF NOT EMIB[ER!?| |:[X! [:|VIA|L|I{D| [T[H|E[N|
A[LIL: M |G "IL
- M OT|Y[?| (TH|[TNIG| |:[X| [THIEN| |A|L|AR
L

In this procedure, note that the value of X, :X, is the name
of a peg, either A, B, or C. One might expect that the value
of :X would be denoted : :X, but this denotes the value of
©:X’. The primitive THING must be used. THING :X is
the list named by :X.

In order to discuss GETRING and SETRING, we need
to be specific about how to represent the graphics. We could
use the turtle, but we choose tiles because this allows the
most colorful display. The LOGO screen is divided into 32
columns numbered 0 to 31 from left to right, and 24 rows
numbered 0 to 23 from top to bottom. We can place the

=0 O

<O=
EEYE]
)
- O
=

El

>
[
<
E2l
(=
o
=]
=2
[x]
=z

=0 %
—
N M

rings on the display by locating them relative to their

DB P 88 .38 L 2| 25 .2

T

IERSENEENEREN S

Copyright © 1983 Emerald Valley Publishing Co.

pegstands. Let ABASE, BBASE, and CBASE name the
coordinates for the centers of the pegstands. Reasonable
choices are :ABASE = [7 21], :BBASE = [252] }, and
:CBASE = [16 11]. Suppose a ring is the top one on a
given peg. Its center has as its column coordinate the same
column coordinate as the peg, and its row coordinate is equal
to the row coordinate of the base minus as many rings as
are on the peg. If we use TOP, COL, and ROW to contain
the number of the top ring and its column and row coor-
dinates respectively, we are led to:

liTinl IsielT|RIIINIG |: [P

v L:lp| Isg| |:(Tlofe| |7lri1ilG] |:|p

we: “sjcioorp| |TIH(1|N/c] WoRID| |:|p| |*[BjA
we g |“|cloft] [Flz[rls{t! |: [BicloolRD

w- el | [k| (ciojuinT| |Tlsl1inial |: [P

MaclE |"Riow |(| |Lials|T| |:|BlclooRip|)] | |:
K

i1 |s|p|LialY[R1 N

Bt |1

0 GET%IN&‘JP‘ ‘

Ma[K[E ;BchmD{Tﬁluc ofRp| |:el |“pia
S| | | ‘ w ‘

MAKIE| *[T/o[P| [F|1R[ST| [= . %G| |:|p

Mialklel |“lclolc| [F|1lR[s|t| | : =" of[D

we. |kl (clofulnT| (Tl % - [p

w<. . |'[Row |(] |LlalslT| i eiooRID| D] H |:
Koo

¢+ - RINg

: BiF{ ITHII NG| |: [P

ECIRIGn

In using these procedures, :P is a letter (A, B, or C). Thus
WORD :P “BASE will return the word ABASE, BBASE
or CBASE. Note how BF (BUTFIRST) and SE
(SENTENCE) are used to change the value of :P (which
will equal A, B, or C). By passing the name of the peg, we
can change its value. This would not be the case if we passed
the value of the peg to the procedure. (Computer scientists
call this passing parameters ‘‘by reference’’ rather than ‘‘by
value.”)

We are left with the problem of actually displaying the
pegs and displaying and removing the rings. The work will
be done by STAND, DISPLAYRING, and ERASERING.
We need to choose the tiles and colors.

The bases will use tile 96 and be black. The pegs will use
tiles 104 and 105, and be white. Tile 104 is square, and tile
105 is rounded at the top. Recall that the number of rings
is :N, and the division in LOGO is integer division.

D| |TIH|I|N Fk%k [P [“|B[&
I(R|S|T| |:{BIC{t *
A[S|T| |:[BlClOf - *
Ll [|<IN||/] 12
2| (¢ [C| [IN| |71 2])| [L[R|T
mﬂxt HIRA 1] 11

~- 1
P|T) |1/@14| |:|ClO|L| |:|K| MAK|E
]

K

Tiles and colors for the rings will be chosen as follows:
The shapes for the tiles are designed so that ring k appears
to be k + 2 tiles wide, but it is actually 3 + 2*(k/2) tiles
wide. The accompanying figure shows the number and shape
of all the required tiles, which we will have to make using
MAKECHAR.

Ring Tiles Color Tiles wide
I 112,113,114 Red 3
2 120,121,122 Orange S
2 128,129,130 Yellow 5
4 136,137,138 Lime 7
5 144,145,146 Olive 7
6 152,153,154 Sky 9
7 160,161,162 Blue 9
8 168,169,170 Purple 11

A ring appears when the right number of tiles of the right
shape and color are displayed.A ring is erased by display-
ing blanks and the peg tile. For effect, the rings will be
displayed from the center out and erased from the outside in.

T|O| |E[R{A|S|E|R[1NIG

MIAIRIE} |17 11 [+ (:iTio[p] /] 12

RE|P[E(AIT| [t M| [:[TO[B| |/] [2| |[[P{T] [3]2] |:|C
L| |~ =07l |2 |R|Of P|T| |3/12| |:[CIOL| [+ [:|T] |:1R
ow| ™= <E| "[I| |:[7] |7 [1]

PT{ (134 :(CIO[L :ROM

END!

TIOl IpIT(S|P|L(A|Y[R|ING)
P MIED LT 11040 4 (:iTIOP) (*1 18
ura. |“MUD| TOF M [:[TOP] [*| 8
”MlA}ElEIv”RT T0C | |:\TIOP) |*| |8
iPT M oL 1RO

MLl n

w3 2T |:|T(OfP| {/] 2| [{|P|T| (:MIID| |: CIO|L
=1 1.1 IROM PIT| |:M|1[D| [:[CIO|L| [+ |] R
» MAKIE| |"|] IV

S [T |z [cloiL] [|:(TiolP] |/] 2] - 1] |:[R
P|T| [:|R|T| |:|CIO|L| [+ TOPR| |/] 2| #] [1 R
END

We are almost ready to play with the puzzle. IN-
ITIALIZE (see listing) defines colors for the tiles, and
assigns values to N, VALID, ABASE, BBASE and CBASE.

No. Color No. No. Color Part No. Req’d
112 —Red —114 : % Black —Base — 9x3 105 White
128 — Yellow —130 104 White —Peg _ — 16
144 — Olive —146 113 Red T Rimel] Peg Top
_ _ range — Ring2 — ,
160 — Blue 162 129 Yellow — Ring3 — 3 3 Req'd
No. Color No. 137 Lime —Ring4 — 5
120 — Orange — 122 145 Olive —Ring5 — 5
136 - Lime - 138 153 Sky —Ring6 — 7
152 —Sky —154 161 Blue —Ring7 — 7
168 — Purple — 170 169 Purple —Ring8 — 9
Copyright © 1983 Emerald Valley Publishing Co. The Best of 99%er Volume 1 I27

Before anything will happen, though, the tiles must be defin- automatic solution will still use just three pegs. But as a wor-

ed using MAKECHAR. (See figures.) Then, ENJOY! Recall thy challenge, you might try to write a better version of
that to manipulate the rings, you just need to press the let- SOLVE which takes advantage of the fact that there are
ter of the peg from which you want to take, or to which two auxiliary pegs instead of just one. The puzzle should
you want to add a ring. Use the procedure HELP if you take fewer moves to solve. How many less than 2n — 1
forget. moves are required if there are n rings and four pegs? |
After you have had some fun with the puzzle, you might would be interested in any of your results. Then can five
want to try a four peg variation. To implement a four peg pegs be fit on the screen. . . ?
version, do the following: But if you are looking for a lesser challenge, or just want
Change INITIALIZE to include: to experiment with a simpler puzzle, note that the number

of rings is set in INITIALIZE and can be changed. Try this:

MAKE “VALID [A BC D] Enter INITIALIZE, and then MAKE “N 5 (or some other

MAKE “ABASE [8 10]

MAKE “BBASE [24 10 integer). If you now enter SETUP, a puzzle with 5 rings
MAKE “CBASE [§ 23]] will be displayed. Enter PLAY, and you can manipulate
MAKE “DBASE [24 23] this puzzle until you press Q. Now enter SETUP again, and
! then SOLVE 4 “A “C “B. This will cause four rings Lo
In SETUP, add: be moved automatically to peg C. Then enter PLAY and
MAKE “D [] you can complete the puzzle by yourself. With LOGO, the
e rocedures are your own to do with or modify as you please.
STAND “D . . .
Use your imagination, make up other puzzles, or just go
i : X o .
The puzzle should then contain four pegs: A, B, C, and ahead and play with this section’s puzzle as is. >
D. It can be manipulated just like the three peg puzzle. The
o1 |7[0] [AlL AR o kbhvs Il 1ol ‘
alL{1|z[E FIFIEP = |1 - GETRIN
T se Bt 2] Is
o P SOLIVIE| |:IN [~ 1, :[p1 ‘P‘2\ ‘3
e G{E|TR[I[N(G| |: [P[1 SETHING !
8l |- Iaf 18] |"Ic riof MB35} - - - :Ngvg SN | (L] [el ‘p1‘ ‘
pe fLhlsT = e | oulTRlule] (Rl o RERERRY o
LisE | ! " | g
H‘l[.é[‘;éESC :BIJFCK ;f TgugL““T LTS THEN oTie U A f'as o |-irolel o] 18 l
T e (S e ouirllulT! MEMBIERe| |2 [Bl| 1:[u1is/T %%IS\?E;%S?.".‘J ‘
gl 23 sl :omAhG@ EIND| | | ‘ eip o p| ccolt] Row || ‘
TiLE 128 :u [ific.ix MAKIE()1} 11 ‘
T:LE 136 a7 Tl‘:‘ HEL P R(E(P(E(A(T| [:{Tlolp| /] [2 [i[P{r| feMiID| [:[coOt
iRl 138 & ol v - ; -{: owl p[t| |:M1p| |:[coL| [|, R
1.._.. 132 7 :IN{r| |cl|v[ele| [-[malniol1]-| [vlo| (BlEla{i|N o LR A
B |1r3§] l‘,\p|,HT A1 i cloit| | [:{Tiole| |/} (2] {-| |1 |:{mio
A ¢ :) * | |&],| [Bl,| IR| [c] |T/o| [R|EMO! .)
:;:. ‘. k ‘I[A 8| ol) < oy Dl (& RlTel]) P|T COIL| 4+ [[TIO| |/] |2 [+ 11 .ﬁo
. ulp - el ([1]
R ’2.7311] pla/1INT| |1[rio| fulti],| alND| wialtlcl| THlE EN !
weo | lclalslE | 1 [hl () P(U[z{z(L(E| {SIO[L|VIED (AluTjoMiA(T(1{CIALIL|Y|,| [P Tl el Inle
pan) Ei% QP il 1 1+ [:{Top| /] |2
pe- 1| 4 [:itiole] /] (21 [1]p[7] [3[2] |:kclo
'!I'I?.PLAY HARARRARE) i .13? :l;'l'_.’:ﬁ :]COL |1 1
v Jg| el fele MARKE |"BICOORD! TIHIING WORD! |:[P| - 318 ol delol el
aey | [l (rl(E [s|Tlole . EN
1{F| Iolr| MEMBIER|2 |:[x| |:\vIAlLIT[D| T/HE[N g ARSI eRoRP
KL - (6ol ("L : Tjo| {CloUiNT] {:[L{1{8(T
i|F -‘-'Z'l'ﬂ” Tt |: (x| Tle(EN| |alL/aiaM MAnz Lo w2 i|F :ﬂxs*r = 11| 1] [rlElw| lofult|elulz| (o] I
GOl | b RIEPEA 2lalelel E L B R tsie| JouflplulT 1| L+ 'cloluln'al BlF L Lhis i
cleltla|Ivgl |:x et e AU EEURRELIL END: . S .
s vl ol Rﬁ R|E|P|E[A] P|T| (11014 |:iCiOIL| |:[K| MIAK|E 10l leleltlli nie ' P
fioel v JE B(ER[2| [:[x| |:|vajLitp] |tH|EN ”"1j. l-x Niminlkie! |-[slc 'o‘ono‘ TIHING WORD| %:P“ BiA
.o w : I I !
bt om0 PIT| CJH Pl COL| fROW 11 wo o | i R |]]
plL[AlY EIND Mak: |[clof| JEfE = rzscrooab [
END 1ol Isle I Mg | K| (COUNT, .HIN :|p :
MA|KIE! |: :|To|p Y |i|P MA[KIE| |"RIOW| [(CIOORD| | |+ |
gg SIE(T|U|P MAIK[E D| |T{H .- |:[P| |"|BiA gBASERlNG
3 SIE. | | - R
SITAND) . A MAKE| | teisiel -[slclololaip MAIKE |: Pl B F: THING
S|TIAIND| |*|B MAIKIE NjT| T2 NG| |:IP E|ND i i
e lelrilol 1l Mia|k[E Lir B(ClolRD| |1 HH |: i wv]rvo sl ’
MiE : [3 T :
AL . slplt v [l R () D] (TEEN jolujtpiulT) |v|TR
B ch{D T fE oju|Tipfulr| [*FlalLis|El ;
“IC 1 Im \ lefi] |1 | i | \ P |
:IN} [C[SIE|T/R{E[NG| |”|A| MAKE| |*{T|o] b col
1|
T
‘ H i

128 The Best of 99'er Volume 1 Copyright © 1983 Emerald Valiey Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

