
4
LOGO

4
LOGO

A learning environment on your Home Computer.

The History of LOGO 	 97

The Lamplighter LOGO Project 	 99

Who is LOGO for? 	103

LOGO's Powerful Surprises:
Part 1: An Overview of Language

Structure and Syntax 	 107
Part 2: Construction of A Dynaturtle 	 109

Extending LOGO 	 111

The LOGO Poet 	 113

Avoiding Turtle Traps 	 116

Flyaway with the Joy Commands of TI LOGO 	 121

Problem Solving with LOGO 	 124

The History of LOGO
LOGO-a powerful, high-level computer language

designed for educational purposes especially as a pro-
gramming language suitable for young children—is

now available on Texas Instruments' TI-99/4A Home Com-
puters. For more than a dozen years, the LOGO Group at
the Massachusetts Institute of Technology has been develop-
ing the LOGO language and related computer programming
activities. Under the leadership of MIT Professor Seymour
Papert, LOGO activities have been used with children as
young as nursery school age, with MIT undergraduates, and
with many students of all ages in between. The philosopy
of LOGO's developers has been: "No threshold, no ceil-
ing." A beginner can make the computer do something
meaningful and interesting in the very first programming
session. Yet at the other extreme, LOGO is suitable for very
advanced programming projects.

The philosophy of LOGO has been derived primarily
from two sources: The developmental theories of the late
Swiss psychologist, Jean Piaget (with whom Seymour Papert
worked for several years before coming to MIT), and ideas
from a modern scientific field called Artificial Intelligence.
From Piaget comes the idea of creating learning en-
vironments in which most of what children learn can occur
naturally—in the same way children learn to speak their
native language, walk or run, and play ball. From Artificial
Intelligence comes ideas about ways to use programming
languages to aid thinking and problem-solving. Program-
ming a computer in LOGO is seen as the act of teaching
the computer a set of new commands, based on what it
already knows how to do. Each user is, in effect, creating
his or her own computer language, to suit his or her own
purposes. Readers interested in learning more about these
ideas should read Mindstorms, a recent book by Seymour
Papert, in which he develops and extends the vision of the
relationship between computers and learning that led to his
development of LOGO.

LOGO activities are designed to allow use of the com-
puter in a way that is personally meaningful to the user.
Activities developed by the MIT LOGO Group have includ-
ed using a computer to control the behavior of a robot tur-

tle, to draw pictures and explore geometric environments
on a TV screen, to create computer animations, invent in-
teractive computer games, compose, arrange, and play
music, and produce "poetry." The best known LOGO ac-
tivity is using a simulated robot turtle on a TV screen to
produce geometric designs and cartoon-like drawings. Hun-
dreds of children have learned computer programming and
problem-solving skills and developed mathematical exper-
tise while writing programs for the turtle.

The LOGO language includes commands to make the tur-
tle move and draw pictures. A student drawing with the tur-
tle can make it move around on the TV screen by typing
familiar commands such as FORWARD and BACK or
RIGHT and LEFT. The information which beginners need
to control the turtle is already present in their own body
knowledge of how to move forward or back and how to
turn right and left. Programming becomes an extension of
something a learner already knows—rather than something
requiring the mastery of an elaborate technical language or
a complex coordinate system. The turtle becomes for the
learner what Seymour Papert has called "an object to think
with." Students using the computer as a programming tool
become more aware of both their own body motion and
the behavior of the computer.

The version of LOGO developed collaboratively by Texas
Instruments and the MIT LOGO Group for the TI-99/4A
includes an entirely new graphics environment called a
"Sprites World." Sprites are small objects that can move
rapidly around the screen, changing shape, color, speed and
direction. Large numbers of sprites can appear at the same
time to produce exciting animated designs or to be used as
elements in programs to create video games. Because of its
inherent attraction for so many people and because of the
geometric and problem solving ideas embedded in it, the
Sprites World promises to be one of the most exciting
computer-based learning environments yet invented.
The World of the Turtle

Let's take a closer look at what actually happens when
someone learns to program a computer using the LOGO
turtle. The turtle responds to simple commands typed at the

Copyright C), 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	97

keyboard: FORWARD 100, BACK 50, RIGHT 90, LEFT
45, etc. FORWARD 100 moves the turtle forward "100 tur-
tle steps," drawing a line on the TV screen in the process.
LEFT 45 makes the turtle rotate 45 degrees to its own left.
People learning LOGO find it natural to "identify" with
the turtle, imagining themselves going through its motions
as it carries out a particular task. At the same time, con-
trolling the turtle becomes a metaphor for controlling the
computer itself: Like the turtle, the computer responds to
an ordered series of command, and "TO" procedures that
are defined as series of commands.

The ways in which the actions of the turtle can lead to
geometric designs, as well as the method used to define pro-
cedures, is illustrated in the following simple examples. The
turtle can draw a square by repeating the commands FOR-
WARD 100 RIGHT 90 four times. A procedure can be
defined by choosing a name (BOX, for example) and typ-
ing in a series of commands in order.

II Td IBOIX
F.: EWA F.
HI. HI
F..)RWA ri

F.C, !I WA Ft
F. : T
FT1.1!YI A II

To execute BOX enter the following .
TELL TURTLE
BOX
When the new command, BOX, is typed, the turtle im-

mediately draws the shape shown in the figure. (The small
triangle shown in the figure represents the turtle by show-
ing its position and heading). A similar procedure, TRI, can
be defined as follows:

To ..
FORWA D

:', F. ; 	1

I i-T,P.WARD
Ilkilif.:',HIT 1

To execute TRI enter the following:
TELL TURTLE
TRI

A student who has defined procedures such as BOX and
TRI is beginning to "teach the computer" his or her own
private language. BOX and TRI can now be used in the
same way as other LOGO commands. They can be used
to create other drawings such as a simple "house" or an
abstract geometric "flower."

This approach to geometry and programming provides
the basis for a rich universe of activities known as Turtle
Geometry, which includes cartoon drawings (simple and
complex), geometric designs, mathematical theory building,
and computer games. Extensions of Turtle Geometry have
proven fruitful when used with advanced high school
students or MIT undergraduates. The universe of Turtle
Geometry provides a conceptual framework for such aspects
of mathematics as the relation between shapes and angles,
coordinate systems, positive and negative numbers, the use
of variables, symmetry and similarity, and even calculus and
differential geometry. The computer programming involved
in beginning LOGO activities can include procedures and
subprocedures, the naming of procedures and variables, pro-

cedural hierachy, recursion and iteration, the use of condi-
tional logic, and the development of problem-solving
strategies.

Within the universe of Turtle Geometry, there is room
for different students working individually to create their
own sub-universes or microworlds. They can do this with
their own limited (but expandable) sets of concepts and
related activities and projects. To teach LOGO is really to
help learners create, explore, and extend their own
microworlds.

I have used turtle geometry as an example of what can
be done with LOGO because it is easy for a reader to
visualize the commands and to see how they lead to pro-
cedures that produce the results in the pictures—just as it
is for young children. Children learning LOGO have ac-
tually carried out many other types of projects as well: mov-
ing turtles, finding their way around race-tracks or mazes,
animated cartoons, interactive computer games such as Nim
or Tic-Tac-Toe, programs which generate sentences or
poetry (or even play Mad-Libs), and programs to translate
English into Morse Code, or vice-versa. As LOGO becomes
available to owners of TI-99/4A computers, I hope that
these pages can be a forum for describing your LOGO pro-
jects. Since there will soon be more LOGO users than ever
before, we can expect more and different LOGO projects
to emerge. One of the best ways to build the culture of
LOGO is for users to share project ideas through the pages
of books such as this or magazines such as 99'er Home
Computer Magazine.

Although TI LOGO is a recent entry to the LOGO
World, a prototype version has already been tested with hun-
dreds of students between the ages of three and nine at the
Lamplighter School in Dallas, Texas, and by students in fif-
teen elementary and junior high schools in New York City.
Using the Sprites World of animated graphics activities,
these students are busily creating a new universe of LOGO
activities to delight and educate a new generation of com-
puter users. In an age in which computers are omnipresent
in society, and in which universal computer literacy is a
pressing national need, computer-based learning en-
vironments like LOGO have become essential to the pro-
cess of growing up literate in the last decades of the twen-
tieth century.

D 5
9
D 5 0
9
D 5
9
D 5
9

5
2 0

5
2 0

5
2

98 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

111111111111W111011111111111111111181111

1111111811111111111 1 1110111111 1 11 1 11111 1

 111111111111,01111 1111111111 111111111111

II 1 1 I I I UI 14111111111111111111111111

11 11111 11111111111111111111 Hill 10 11
	■=1

PA ALA

The Lamplighter LOGO Project
A 6 6 	child is not a vessel to be filled, but a lamp to

be lighted." The quote from Alexandrov is on
the plaque outside the Lamplighter school. That

sign advises any visitor that the school is very unusual.
The curriculum at Lamplighter is individually tailored to

meet the needs of each student. Individualization is applied
in science, language arts, math, drama, music, art, French,
and physical education. The Lamplighter is strongly sup-
ported by the parents of its students and by its alumni, with
graduates of Lamplighter frequently dropping by to see their
former teachers. Such alumni loyalty might not be con-
sidered unusual, except that the Lamplighter classes begin
with preschool (age 3) and end with the fourth grade-level!.

The physical arrangement of the school reinforces its ap-
proach to learning. Classrooms have only three walls; the
fourth side of each class opens onto an airy, bright shared
space. Class rooms are clustered around these shared-spaces
by grade-level. Inside each classroom there are tables and
chairs for writing work and, on one side, a small tiered well
which is used for many other activities (e.g., reading, French,
music, or story telling). The staff, the facilities, the students,
and the parents all contribute to make Lamplighter a very
special private school.

Lamplighter has been a leader in the use of new
technology for learning. Calculators, Speak & Spells,
Systems 80 units, and Little Professors are abundant
throughout the school. Students regularly use these learn-
ing tools and other learning games found in the shared
spaces. Teachers make extensive use of slides, films, and
video and audio tapes. When Mr. Erik Jonsson (co-founder
of Texas Instruments and Lamplighter Board of Directors
Chairman and benefactor) first proposed introducing com-
puters into Lamplighter, his idea was well received. Mr.
Jonsson had earlier been in contact with Dr. Seymour Papert

of the Division for Study and Research in Education (DSRE)
at MIT, and found the LOGO language and philosophy of
learning intriguing. Papert's initial explanation that LOGO
allowed students to program computers and not vice-versa,
enjoyed a favorable reception from the Lamplighter facul-
ty. Later, as Papert elaborated on the LOGO philosophy,
it became clear the LOGO was very much in accord with
the philosophy and practice of Lamplighter.

In the fall of 1978, Papert and several others from DSRE
made a series of preparatory visits to Lamplighter to ar-
range for the introduction of LOGO to the school. The plan
was to begin LOGO training for first the faculty and then
the students by using the Digital LSI -11 LOGO (in use at
the Brookline, Massachusetts, project) and later, bring TI
LOGO into the school as it developed.

Shortly after the first visit by Papert, Lamplighter rented
the first of two LSI-1 l's that were to be used in the initial
two years of the project. Training sessions helped the initial
core of Lamplighter faculty (representing nursery school,
second grade, third grade, and fourth grade) become
familiar with LOGO. This "Computer Group" then began
working with third and fourth grade students. Shortly
thereafter, a second LSI-11 was rented, and by the end of
the spring term every third and fourth grade student had
had at least one hour of LOGO instruction on a computer.

The third and fourth graders considered it a treat to work
on the computer—partly because these special computer ac-
tivities allowed them to miss classes, and partly because they
genuinely enjoyed working with LOGO. One student's
remark reflects the sentiments of many of these pupils. After
he had spent an hour working at figuring line lengths, turn
angles, and sections of arcs in order to construct a com-
puter picture of a cat, he thanked me for "getting out of
math class."

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	99

In the summer of 1979, the Computer Group was expand-
ed, and two workshops were held to refresh the teachers'
memories. Subsequently, a 10 day workshop at MIT in-
troduced the teachers to more elaborate LOGO program-
ming and allowed them to participate in discussions on the
relationships between learning and LOGO. Then, as the new
school year started, the teachers were really surprised to
discover how little the fourth graders had forgotten about
LOGO. These students generally recalled all of the com-
mands they had learned three months earlier—even though
they had had no contact with LOGO in the interim!

Midway through the fall semester of 1979, several early
prototypes of TI LOGO were tested at Lamplighter and
revised by the MIT LOGO laboratory personnel in consulta-
tion with Lamplighter and Texas Instruments. In January
1980, the pace of computing at Lamplighter accelerated as
an updated version of TI LOGO was implemented on the
TI prototypes. By the end of January, a dozen prototypes
were in use at Lamplighter, and a very few students con-
tinued to use the LSI-11 LOGO. Most pupils, in fact,
switched to the TI prototypes even though that meant re-
learning much of LOGO.

In the middle of the spring semester, a few more pro-
totypes arrived and all the machines were upgraded to a later
version of TI-based LOGO. Before the school year ended,
all of the third and fourth graders had had at least one hour
on the new machines. One of the rented LSI-11's was then
returned (though few noticed its departure). At that time,
several fourth graders were writing elaborate programs
which made use of recursion to create "movies" or "rain-
bows" (changing colors), or elaborate scenes. Some students
were so taken with LOGO that their parents happily bought
them their own computers (at that time, TI LOGO was not
yet commercially available); other students became

enthralled with their ability to produce perfectly printed let-
ters and numerals on a keyboard and later received
typewriters as presents from their parents.

By September 1980, a total of 50 TI LOGO prototypes
were in operation at Lamplighter. The version of LOGO
on these units was very close to that which TI is now
marketing. Then, late in the fall, the second LSI-11 was
returned, but its loss went completely unnoticed because all
of the faculty and student interest was already focused upon
the TI LOGO prototypes. Since September, the Computer
Group has continued to work individually with third grade
students. In addition, the rest of the faculty is being train-
ed in LOGO, and it has been introduced into all of the
classes as part of the regular school curriclulm.

The teams at each grade level decided the best way to in-
troduce LOGO into their classes and worked out various
procedures for that introduction. For example, one teacher
developed special simplified LOGO programs for the
preschool children which required less typing in order to pro-
duce interesting effects. And personifications of LOGO con-
structs made LOGO easier for first and second graders to
understand. Currently, students can be seen at every shared-
space LOGO machine during lunch-hour, before school,
after school, and whenever other school activities are com-
pleted. For the rest of the semester, LOGO will be used in
class by the teachers as they feel it is relevant for their lessons
and will continue to be available (as are the other learning
aids) to students during free periods.

The Lamplighter LOGO project was not intended to be
a formal experiment. Since there are no control groups,
strong causal claims for LOGO's effects are inappropriate.
Several cognitive and psychological assessments, however,
were made at the beginning of the project and will be made
again at the conclusion of the present school year. And,
there already have been some indications of student attitude
and behavior change. This is best exemplified by the way
in which the pupils express their keen interest in acquiring
new LOGO knowledge.

It's always interesting to observe what motivates children
to learn. Because LOGO is so extensive, Lamplighter
teachers find it impossible to show students all the com-
mands in the initial sessions. As a result, students have taken
the discovery of more LOGO commands as a sort of
treasure hunt and this new, "unauthorized," LOGO infor-
mation is disseminated through an "underground network"
among the students. During a training session in which
teachers were learning to use MAKESHAPE (the LOGO
command with which users make their own shapes on a 16
x 16 grid), some students were secretly watching them.
Shortly afterward, a hand-copied "underground" LOGO
manual with clear and concise directions for the use of
MAKESHAPE was found on the floor of a classroom; at
the same time, a number of students began using
MAKESHAPE.

Students have discovered other information accidental-
ly. One student typed MC instead of MS for
MAKESHAPE; this put him in MAKECHARACTER
mode. In this mode, LOGO users can modify old characters,
or make new characters. The student proudly shouted out
his discovery to his classmates, who quickly confirmed his
results and spread the news. New information has diffused
from grade to grade or class to class or from parent to child
in a similar manner.

100 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

00
TELL TURTLE
LAZY8

Figure I.

T 	I1. AIZ Y 8
F D 4

1 0
n E A D N G 0

F F 	LA Y 8
F 0 4

F 10
N D

Comment:
TEST checks the heading of the Turtle. If it's not 0 (North), the Turtle

continues to draw the LAZYS.

After finishing the right-hand circle, the heading becomes 0 and the left-

hand circle is drawn.

To really understand why the left-hand circle ever gets completed, you have
to know something about microprocessors and stack operations. In keep-

ing with the scope of this section, however, a simple anthropomorpic ex-
planation will have to suffice at this time. Other sections will take an in-
depth look at the technical aspect of the language.

Think of the job of drawing the LAZY8 as being given to a group of little
workmen inside the computer. The first workman carries out the first four

lines then decides he needs a rest before continuing. Notice that in his in-

itial contract TO LAZY8 he has agreed to eventually carry out the FOR-
WARD 4 and LEFT 10 specifications. The work must go on while he rests,

so he subcontracts out the next stage to another little man. This workman

also carries out the first four lines, then he too decides to rest. So before

he gets to the FORWARD 4 LEFT 10 tasks, he decides to subcontract out
the balance of the work on the right-hand circle. This process goes on with
enough little workmen (36 in this case) until HEADING = 0. At that time,

the last little man carries out his FORWARD 4 and LEFT 10 tasks, and
gives the job responsibility back to the next-to-last workman who also car-
ries out his remaining FORWARD 4 and LEFT 10 tasks. This reverse pro-
cess of finishing the last two tasks and relinquishing responsibility goes on

until the original contractor finishes his original job with a single FOR-

WARD 4 and LEFT 10, thus completing the left-hand circle in the

LAZY8—Ed.

Figure 2.

A V

I I

N H
L EL

0

AP

T
T
C

A
0

S

It

0 N H

a
0
G

EN
Sc

D

•

Sharing among peers is the overwhelming response of
Lamplighter students to new LOGO information. Pupils
eagerly and proudly explain their accomplishments in
LOGO. At first, however, there were a few exceptions. A
couple of students were secretive about some LOGO infor-
mation and effects. One student made the screen's
background color black so that no one could read what he
typed; another tried to sell LOGO programs to his
classmates! Afer they discovered that other students could
find different ways to achieve the same effects and were will-
ing to share, they started sharing as well.

In at least one case, LOGO seems to be responsible for
a major behavioral change. Late last year, a fourth grader
who had not been performing well academically, and who
had been somewhat disruptive in class, started programming
in LOGO. As he played on the computer, his typing became
very fast (QWERTY keyboards are quite properly regard-
ed by the Lamplighter children as a stupid arrangement with
which they reluctantly work), and his program became
sophisticated. He was heard to remark, "I can't believe how
fast my fingers are typing." He also could not believe how
much fun school had become. Not only did he do well with
LOGO, but he also became an attentive, productive student.

At present, most of the third and fourth graders—and
even some of the first and second graders—are writing
LOGO programs. And this includes some fairly
sophisticated programs which use recursion and the con-
cept of state transparency. A few children even acquired
the skill of using subprocedures—i.e., breaking a complex
program down into its several component parts. This is one
of the most important features of procedural languages such
as LOGO. Most students had discovered recursive program-
ming, or "cursives" as a few called it. In recursive programs,
one of the program lines calls for a new stack to execute
the program again. You do this by including the name of
the program within the program itself. All the recursive pro-
grams written by the students, however, had the recursive
step in the last line. [When the recursive step occurs in the
last line before END, the procedure is said to have "tail-
end recursion." For an example of somewhat more
sophisticated usage, see the LAZY8 procedure in Figure
1—Ed.]

A number of programs produced exciting video scenes.
In EXPLODE, 32 differently colored balls splay out from
the center of the screen before repeating the entire procedure.
One third grader saw how he could place a program which
printed a message inside EXPLODE, and thus combined
recursion and subprocedures. RAINBOW had one or more
sprites continuously change colors for an attractive visual
effect. There were also programs which had the TV monitor
take on a series of sixteen colors, and programs which
changed the background of the screen to black and created
unusual perceptual illusions by shooting light-colored shapes
across the screen. Some even had jets, rockets, or airplanes
spouting fires from their engines.

Other children wrote programs
which put shapes together to create
scenes, such as a home with a car
driving down the street in front of
the home. Most students had writ-
ten utilitarian programs like
VANISH (Figure 2) which caused
the sprites to move off screen, take
on the clear color, carry an empty
shape, and which caused all the
printing to be cleared from the
screen.

After spring break, several things happened which caus-
ed a quantum leap in the computer work of the students.
First, the children were shown how to save their programs
and shapes on cassette tape. Until then, the students had
to write in their computer notebooks anything they wanted
to save. That meant that any elaborate shape had to be
reproduced on a grid in an arduous manner, and long pro-
grams or complex programs required a very long time typ-
ing. (Remember these children are elementary pupils with
little typing experience before computers!).

Students had not used much of their work as founda-
tions for future work simply because loading the old material
took so much of their time. Now, with the recorders, they
could use and improve each session's programs just by tap-
ing and playing back a cassette. Also, they could design and
SAVE complex shapes instead of seeing them lost when the
computers were shut off.

The children were also shown the TELL TURTLE mode.
This opened up all of the turtle geometry features of LOGO.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	101

0
LL

9
LL
D

S

S
T
E

H
E
FI
E
H
E
N

0
L
0

0

0
L
1
L

TO
TE L
SH
TEL

L
SH

S H
E

S H
E

Figure 3

H

E ND

0

0
IGhl 	AN
OLY 	:DIS

T1

III

DI S TIAN
DI STAN
' ".. E

,E

A N G

A NG LE

E

4
270
5 6

C

C

0
C

15 HO
FD 16
15 HO

FD 16
11 HnmIr

FD '2
8

FD
7 8

2

2

4

SH

SH
Y
7
H

S
Y
H
4

Y

Y

6

2

S
S

S

5

5

6 H

SC
FD

SC

15
116

15

H

6
27
7
27

S
0
S

9

2 0
2
2 2

2 3

24
H '90

25

E

HO

HO
HO

0i E

H014

HO

(Turtle geometry is such a powerful idea that some Pascal
systems have adopted it.) This newly acquired mode, coupl-
ed with the previously learned SPRITE MODE, allowed the
students to produce many interesting programs and visual
effects. As a result of these new developments, many of the
students soon exhibited a feeling of mastery over the
computers.

In the final eight weeks of school there was an exponen-
tial explosion in the complexity of the students' programs
and in their ease with the machines. They quickly learned
to use variables as inputs, and consequently "discovered"
the famous turtle geometry POLYgon program which can
generate any regular polygon. (See Figure 3.) Then one stu-
dent found that changing the angle of the turn on each recur-
sion could produce beautiful patterns—including a striking
nested curl in a star pattern. Many students now began put-
ting programs together in subordinate and superordinate
structures. Programs contained the unique LOGO controls
of TEST, IFT, and IFF, as well as the conditionals IF-
THEN-ELSE, plus BOTH and EITHER for conjunctive
and disjunctive branching. One of the third graders wrote
a CAI (Computer-Assisted Instruction) program to quiz his
first grade friends on addition facts using these control com-
mands! He then added visual displays of the addends, and
encouraging remarks when a student made a mistake, or
a colorful scene as a reward for the correct answer.

Using combinations of several user-drawn shapes,
students began constructing very elaborate composite pic-
tures. One third grade student also discovered how to change
the characters associated with each console key [by redesign-
ing the characters on a grid "tile" with the MAKECHAR
primitive—Ed.], and decided to tease the teacher. She
replaced the 3 with a 2, and then called a teacher for a
demonstration. While instructing the computer to print 3
+ 3 (which now looked like a request for the sum of 2 +
2), she remarked to the teacher: "Look how dumb this com-
puter is. . .it doesn't know 2 + 2."

The activity among the third grade students was exciting
to witness. One began programming dramas in which text
was printed at the bottom of the screen while the story was
enacted in SPRITE and TELL TURTLE modes at the top
of the screen. One other third grader was so intrigued by
the space shuttle's landing that on the same afternoon of
the landing, he began working on a shuttle program. First,
he used MAKESHAPE to construct a faithful replica of
the shuttle, complete with USA monogram, black-and-white
coloring, and auxiliary rocket engines. Then he worked for
part of the afternoon and a little of the next morning to
write and debug his programs. His final superprocedure

launched the shuttle with flames shooting from the engines,
jettisoned the auxiliary tanks, orbited the shuttle among
planets in outer space, returned the shuttle to a dry lake-
bed runway, taxied it to the end of the runway, and stopped
it for a perfect landing. His programs are shown here in
Figure 4

Figure 4

Note:
BG = BACKGROUND
FD = FORWARD
SC = SETCOLOR
SH = SETHEADING
SS = SETSPEED

RR
16
HR

RR
3

NE
A N
RE
D

AN
5
FD
6
FD
7
FD
8
FD
9
0
10
FD
11

S
HG

[Note: listings of TI LOGO procedures are just that—listings of pro-
cedures. There's no way to print out a transcription of the data needed
to MAKESHAPE and MAKECHAR as can he done with the HEX Codes in
TI BASIC and Extended BASIC. The only way to show the graphics that
a program contains is to show it as drawn on a series of "tiles" on the
grids that appear on screen when the shapes and characters are first
designed. This is similar to CHARDEF routine in Programming Aids I. The
listing of the Space Shuttle program was included (without the tiles) in
this article to demonstrate the simplicity of the language structure.—Ed.]

The gains made by the Lamplighter children with LOGO
have indeed been impressive. They confirm Papert's dic-
tum [Mindstorms, Seymour Papert, Basic Books 1980] that
children should program computers and not vice-versa. It's
obvious that LOGO has indeed furthered Lamplighter's goal
of igniting the imaginations and intellects of its children.
But more importantly, LOGO has the potential to fire up
imaginations everywhere.

L

L

L

L

D

9

2

2

L

0

6
E

8

0

A

0

7

7

H

E

H
4
3 0

5

N
1
	

A
F D

2 C A
3 C A
0 F D
4 C A
0 F D

13 T

C AR R
16

C'AR H
16

Si

•

C AR H
D 4
CAR
45
2 3

2 0
S

TO
TE
WA
SC
WA

EN

TO
E

S H
T E
T E
S H
T E
SH
EN

TA
PL
Fl
EN

102 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

Its not just for
Turtles anymore . • •

Rp
ecently the question of LOGO's relevance for children
and its relevance for adults has been stated as an im-

licit either/or issue. That the issue ever arose means
that people (including me) who write about LOGO have not
done their jobs as fully as they should. Perhaps the notion
that LOGO was just for children developed because of the
total attention children invest in LOGO. The position that
LOGO is too complex for children may have arisen because
published programs seem magic unless one actively explores
them (including seeing what happens when the programs
are changed). Presenting a program as a fait accompli to
be copied, run, stored, and used like any other software is
contrary to the philosophy of education behind LOGO.

LOGO is for humans. When Papert asked me if I felt
comfortable with my LOGO, I said that LOGO is like a
hologram—when you grasp just the smallest part of it, you
have a small, but complete picture; and later as your
understanding grows, you still have a complete picture, albeit
larger. From that perspective, people can always learn more
from LOGO and do more with LOGO even though they
are able to use LOGO after the briefest of introductions.
This feature of LOGO is what Papert alludes to in his
slogan, "Low threshold, no ceiling."

The LOGO slogan invites empirical verification. In my
self-observations and studies of other adults, I have notic-
ed that there are common, identifiable LOGO-
developmental stages. Among these are the discovery of
heuristics (i.e., powerful ideas), improved understanding of
numbers, appreciation of angles and heading, and awareness
of states and state independence. Probably the greatest gain
people share in working with LOGO is the realization that
one can find out on the computer, rather than ignoring the
question or looking the answer up somewhere. This is so
obvious that it might appear trivial; it is not. All learning
theorists agree that active learning is preferable to passive
learning. This presents a dilemma for those writing about
LOGO: How do you capture the open activity of a LOGO
learning enterprise in a closed article?

The purpose of this article, however, is to reflect the
development of a LOGO game, and in that development
show how an apparently complex program is child's play,
even for adults. At the same time, I hope that the develop-
ment will point to variations and will entice you into active
exploration. The program was initiated by a student in a
course I taught.

L
U

9
5

The program was supposed to be a "Pong" type game.
As you follow its growth, find the point, if there is one,
where the program stops being a children's program.

The game begins not as a program, but simply a collec-
tion of conditions.

ol 	I 	I
Y
D

•
r.

•

AuiN
E E D

These commands set a ball speeding left-to-right across the
middle of the screen.

The idea grows into a program as the ball is set to "boun-
cing" off left and right boundaries. This is accomplished
any of several ways:

0
E

T E
T

B

E ND
lok;N

But BOUNCE 1 sometimes doesn't work—occasionally
the sprite is "caught" at one end or the other. What hap-
pens is that the sprite slips past one of the boundaries (e.g.,
the computer is at line 2 of the program as the sprite moves
left through X coordinate equal to — 85); by the time the
computer reaches line 4, the sprite is well left of X coor-
dinate — 85. Then the computer turns the sprite right 180
(a right 180 functions equivalent to a left 180). Before the
sprite can move beyond the — 85 X coordinate, the com-
puter checks line 4 again, turns the sprite 180 and sends it
still further to the left. Of course, when the computer reaches
line 4 a third time,the sprite is still left of — 85; the poor
sprite is stuck beyond the left-hand boundary! This bug
could be eliminated with a second type of BOUNCE
program:

0
E

T E
F

T E
F

B 0
E N

T

U N

0 U

X
S E

X
S E
C

N C 	2

A n a

CR
 . .

Lit
2

D

8 5
N

N G

2 7
8

9

5

8 5

U

X

X

E

T

0

C

N

C

C

1

C

0

0
a 1

1 8

8
0

Who is LOGO
For?

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	103

SETUP
TE L L 0

SY :BA L
S 7 C L
	

BL U E
E

SE7 BEA
EE7SFEE
TELL
culny 3 X
SE .? 100 0
5ETCVL, 	BL
SETBEAIDIN
TELL 2
ChlITIY 	BIB

ETC 1:1 1. 111 13 	'BL
qF.TIIIELEUN 	0
sve 101 16

E i ll i p f

9

III
D

D

85
ING

1G8
2 7
5
9 0 IN

Now, regardless of how far beyond either boundary the
sprite travels, the program will change the sprite's heading
so that it will move back away from the boundary. A se-
cond bug could occur if one used BOUNCE2 without first
typing in the setup commands, since BOUNCE2 requires
sprite 0 to have a shape, heading, and speed. To avoid any
problems, a better arrangement would be:

TO aAm
SETUF
BOUNCE
END

and

rAP Y
TELL 0
it SET

7:A
bri"
END

A ball bouncing between two boundaries is not much of
a pong game. A closer approximation would result if there
were a paddle for the ball to bounce off. This could be
achieved by merely putting two sprites together as a team
stacked vertically on top of each other, with each carrying
a box. Since the team of sprites is, like the sprite carrying
the ball, part of the initial game setup it should be part of
the SETUP program:

Notice, however, that sprites 1 and 2 receive almost iden-
tical commands, so that a cleaner SETUP program can be
written:

Is!E,
TIF.11.11.1 	T

L L
B U E

nvMw
1E7H:t.'
	

9
1 5

.L . 	11 	2
CARRY :B X

ye 	00 0
L
	

B L A
oLTHEADIN
TELL 2
SY
END

To make the game even more realistic, it is necessary to
change the heading of the ball, to have the player able to
move the paddle, and to keep a score. Obviously the ball
should bounce only when it hits the paddle! These addi-
tions are complex, so one should apply a Papert "powerful
idea" and work on the complexity in smaller, simpler parts.

The movements of the paddles can be accomplished by:

P
	

E
Al L
	

A
A
	

E
	

E L
	

2
	

F 0 RW A D
16

IF
	

A
	

X
	

E L
	

2
	

B A X
	

6

E

I 	I 	1 	1

and PADDLE is simply added to the GAME

E

nuuNk,E 2
END

Ooops; there's a very bad bug in this—the ball never
bounces because PADDLE is recursive without a stop rule,
and the computer never reaches BOUNCE2. So the recur-
sive line in PADDLE is removed:

T 0 P A D D L E
C A L
	

C A
A
	

E E L
	

2
	

F 0 RWA D
1 6

A
	

X
	

E
	

2
	

A CE 1 6

E N D

But now, when GAME is run, there's another bad bug: The
program sets up, allows for one paddle movement and then
stays stuck in BOUNCE2. Once again the difficulty is that
a subprocedure is recursive. As a general rule, when a recur-
sive program is used as a building block for a more com-
plex program, there can be a bug. The bug is common
enough to deserve a name—the "Recursion Interface Bug."
When the bug is corrected by removing the recursive line
of BOUNCE2, a new bug appears.

11 101 IBOMNCE0
TELL 101111

 TEST XCOR
IFT SETHEA
TEST X"P
IFT SHTIKA
END

The ball doesn't bounce, or only bounces once, and the
paddles only work once. This bug is killed by:

1TH

aLiUi
:ADDLE
TUN E2
GAME
END

With that fix, the paddles work, but a completely new
SETUP happens at every execution of GAME. A better
solution is to separate those subprocedures which should
be repeated from those which need to happen just once;

PADDLE
	

SETUP
BOUNCE2

and construct a new, superprocedure:

T-I.; 1PILIA Y
SETUP
GAME
END
...I

E

2

U P

B A L L
0
	

B U E

D N G 9 0
E D 1 5

U P

A
0

I04 	The Best of 99'er 	Volume 1
	

Copyright ©1983 Emerald Valley Publishing Co.

E A
LE
CE 2

G
D
N
E

P A D D L E
ZA1L C A

: A E T E L L 2 F AW A D
16 C A L Y 6 Y I F A T L 2 BA 1 6
••.• •L Y 1 6 Y

and alter GAME:

BO u
GAM
END

There is still a small bug left in PADDLE: The computer
will wait at line 1 of GAME until a key is touched (to satisfy
the command CALL RC "A, it needs an RC). The com-
puter needs to skip PADDLE if no key is touched. You can
accomplish this by using TEST and the operation RC? (RC?
answers "TRUE when a key is touched and "FALSE if no
keys are touched).

Unfortunately, this doesn't quite work as intended because
it introduces a new bug: The CALL command CALL :Y
+ 16 "Y and CALL :Y — 16 "Y will not work unless there
is an initial value specified for :Y. Recall that the beginning
value for the top of the paddle on the Y coordinate is 16
(as achieved in SETUP). Since this happens just once, it
belongs in SETUP:

TO 1GAMZ
TEST RC'
IF: FAF:LE

E2

'IN151

T !1SIETUP
F: 0

:B 1'

SE ADI

SB:SPLEi
1

RhY ,
 BXY 100

71:L 2 S
LL 16

EN:

A L

G

B

U E

N

9 0

2
0
0

N
Y

1

X

Y

5

At last the programs are all bug-free and working. The
final tasks consist of linking the ball-bounce off the right
to hitting the paddle, keeping score, and making the flight
of the ball a little more eccentric. Again these are complex
problems, so each should be tackled separately.

B

1

L
0
6

A C K

The BOUNCE2 program now reads:

-1'1L

,i r rmi
.

TF:T
'F:

0

M
UNCE2

xcoR

[

D

D

8 5
N G

N G

2
8

9

0

The second line causes the bounce off the right-hand bound-
ary. If that TEST were altered so that it answered "TRUE
only when the ball is near the paddle or a new program were
designed to check the relationship of the ball to the pad-
dle's Y coordinates when the ball is to the right of X coor-
dinate 85, then the problem could be solved. The paddle
is always at X coordinate 100; since the ball is in motion,
the TEST at 85 is reasonable: When the ball passes through
XCOR = 85, it will approach XCOR = 100 by the time
the computer has completed all of the Y coordinate tests.
The paddle begins the game (through SETUP) with the ex-
tremes of its Y coordinates between — 16 and 16; each time
the E key is typed, the paddle advances 16 along the Y coor-
dinate, and each time that X is typed, it backs up 16 on
the Y coordinate. Therefore, some PADDLETOUCH
operation is needed that can compare the Y coordinate of
the ball and that of the paddle:

TO PADDLETOUCH
TELL 0
TEST EITHER YC R <
	Y
	

3 2
YCOR > :Y
IFT OUTPUT 	FALSE
OUTPUT "TRUE
END

This program will answer TRUE whenever the ball (car-
ried by sprite 0) is between :Y and (:Y — 32) on the Y coor-
dinate. If the PADDLE program is altered, not just to move
the paddle but also to keep track of the Y coordinates of
the paddle through :Y, then PADDLETOUCH will func-
tion nicely:

Next, it is trivial both to tie PADDLETOUCH into the
GAME program and to make the flight of the ball less
predictable. First of all, PADDLETOUCH is added to the
BOUNCE2 program:

T
TELL

BO UMCIE
Al 	I

2
I 1E3

TEST > 8 5
IFT C HE:E
END

I

TO CH E C K
TELL 0
TEST P A D 1 . 	• . 0 U C H
IFT S E T H 	• . N 2 7 0
END III

Then BOUNCE2 gets changed to test for the edges of
the screen. Now, if the sprite reaches the top of the screen,
it bounces back down instead of "wrapping" to the bot-
tom. If it reaches the bottom of the screen, it bounces back
up, and when it hits the left-hand boundary, it bounces at
a 70-degree heading instead of a 90-degree heading.

TO
TELL

FT

!

T E
F
N

TIFTE IS IT

B

T

D

OUNCE2
0
XCC!!

CH?

-
1
• :1

Sr L ' .

D

D

8 5

-
NG

8 5
7

5
4

0

3 5

5

This leaves just the problem of keeping score. Besides
keeping score, it would be nice to generate different noises
when the player scores and when the computer scores. When
the ball bounces off the paddle, then the player's score
should increase and be printed; when the ball misses the pad-
dle, then the computer's score should be increased. Notice

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	105

that the CHECK program is invoked only if the ball is
beyond XCOR 85. Therefore, part of the scoring and noises
can be controlled after line 3 of BOUNCE2 by rewriting
the CHECK program:

TO CHEC x ,

E LL 	0
T E ST 	PA D D LE TOU H

T 	CAL :P LS P 1 N
CF PAS TH E P 	A Y E 11 S 	S C 0 E

F T NO F 0 H E
3 	POI N T

F T 	act n AD I NG 2 7 0
F F 	CAL :C PS 1 P
I NCRE A S CO P U S C 0 H

F F 	PEE WA IT 1 N A
RT EE P F 0 H C H S

• 	.NT
[0 U STOP F. S P C 3 2

T YPE :P L PC 3 2
T ••• - [T H E 	CO S 	S C 0 H

32
PhIN P S
WA IT 90 C S A D D D 0 V 	N

; EXT RA S 	0 AI N G 0 N A 	H S E H V
END

T 0 N 0 1 S E
E P E A 5 B E P WA 3 N 0 B E 	P

A T 	3
E N D

It is necessary to set up an initial value for both the com-
puter's score and the player's score as was done with :Y.
Since this is done just once, it belongs in SETUP. [The in-
itial score is 0 to 0—as in the proverbial "soothsayer's"
prediction or score before it begins. . . .] So SETUP is
revised:

TO SETUP
TELL

HO

TELL

ST
SETH

CARRY

SETHEADI

CARRY

E

T

SETCOLOR

SETSPEED
[1

OLOR
'

:BALL

:BOX

NG
15

2

NG

:BLUE

9 0

]

0
:BLACK

SXY 1 29 0
TELL 2
SY 16
rat L 16 Y
:!.LL 0 PLS
:ALL 0 CPS

This game, like most LOGO projects, is open-ended. It
could be altered so that a winner is named at a score of 21,
revised for two players, changed to use joysticks or changed
so that the ball has topspin. With each addition, it is
necessary to make sure that the initial conditions are
established only once, that procedures to be repeated are
placed inside a recursive program, and that there are no
Recursion Interface Bugs.

0 B OUNCE 2
T E 0

S T y 8 5
F T 	C 1

8 5
S ir D N G 7 0

T T 9 0
1 F D N G 3 5
T T 1,y 8 5
1 F SETHEA D N G 4
N D

I06 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

PART 1: Language Structure and Syntax

LOGO was developed by Seymour Papert and his
associates at the MIT Artificial Intelligence
Laboratory in order to study the way people might

learn in a computer -rich environment. It was designed to
be a language so simple to use that a person could
manipulate objects or concepts by just thinking about what
he or she wanted to accomplish, and not have to worry
about programming. Such a language might stimulate a per-
son to explore, to learn, and to grow.

The idea was to provide certain primitive commands and
operations that could be combined to form more complex
commands and operations. These more complex ones could
then be used exactly like the primitive ones. Thus it would
be possible to construct a single command to accomplish
anything that could be accomplished using the primitive con-
cepts. Additionally, recursion—whereby a command could
call and activate itself—was allowed.

LOGO is a relative of LISP, the list processing language
used in artifical intelligence. LOGO and LISP share the
capability of manipulating numbers, words (character strings
without a space), and lists. A list is a recursively defined
object: It is an ordered set of objects, each of which may
be a number, a word, or a previously defined list. In LOGO,
a procedure is represented by a list; there are commands
to access a list that represents any procedure, and to define
new procedures from lists which might be the result of some
manipulation. Furthermore, a procedure may have inputs
and may have an output, and is activated by specifying its
name (a word) followed by its inputs (which may be
numbers, words, or lists). Defined procedures as well as
primitive commands and operations all have exactly the
same syntax. This is why LOGO is so simple to use. Its
power comes from its list processing capabilities.

I hope that the description given so far has made it ap-
parent that LOGO is not just for children. Although LOGO

can be used in elementary ways, it is much more than FOR-
WARD 20 RIGHT 90. LOGO is a language for all people
who want to learn and expand their capacities.

The LOGO Turtle
The first experiments with LOGO were with junior high

school students who could appreciate manipulation of
words. Then a Turtle was created whose movements could
be understood by very young people.

The Turtle was originally a robot that could be command-
ed to move about the floor. It had a pen which could be
either up or down. In an experiment at the University of
Pittsburgh Learning Center several years ago, one young
person used LOGO to command the floor turtle to draw
an alphabet of large letters. He also taught it to act like an
airplane, and "fly" between cities on a large map. The plane
had the possibility of going out of control, with the turtle
going into a spiral and spinning on the floor. The turtle is
now usually a small triangle on a terminal screen, but it can
still do such things, albeit on a smaller scale.

At the youngest levels, LOGO is being used to teach a
feeling for distances and angles. At levels through college
it is being used to advance a new subject in mathematics
called "Turtle Geometry." Some interesting theoretical
results have come about. (A wealth of examples and exer-
cises is contained in Turtle Geometry by Abelson and
diSessa, where procedures are expressed in a language almost
exactly the same as LOGO.) Recursive designs such as
snowflake curves, space filling curves and trees are applica-
tions of LOGO's power.

TI LOGO
TI LOGO is marketed as a language for children, and

it was a pleasant surprise to discover that TI LOGO has
all of the list processing capabilities built into it. All the
recursive designs presented in Turtle Geometry can be
drawn. (The TI Turtle is, however, limited to 192 different

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	I07

8 x 8 pixel character positions. Thus, if a figure is very dense,
it can't be very large.)

The documentation that comes with TI LOGO doesn't
make it easy to discover LOGO's power. Many of the com-
mands needed for manipulating all but the simplest lists are
not documented.

At this point, it may be helpful to briefly describe just
what is available to a person who sits down to use TI LOGO.
The TI Turtle is an object that lives on a coordinate screen
with horizontal coordinates from – 119 to + 120 and ver-
tical coordinates from – 46 to + 97. The bottom six lines
of the screen are used for text. The turtle can be assigned
a position, and "knows" where it is. It can be assigned a
heading (from 0 to 360 as the points of a compass) and
knows its heading. Its heading can be changed by a given
angle, and it can be moved a given amount either in the
direction of or opposite to the direction of its heading. It
can make a dot at any position. The pen can be down, up,
or in "reverse" modes, and it can draw in any of 15 colors.

Unique to the TI version of LOGO are sprites—objects
familiar to those with TI Extended BASIC. There are 32
sprites (numbered 0 to 31) with each assigned to a 16 x 16
pixel shape. Users may design and store 26 of these and can
direct any collection of sprites to assume simultaneously an
attribute such as shape, color, position, heading, speed, or
velocity. The commands which control the turtle act similar-
ly on the sprites. Motion is controlled by assigning a speed
(in the current direction) or a velocity (horizontal and ver-
tical components). Not only can attributes be assigned, but
they can also be obtained as the output of operations because
a sprite always knows its own number, shape number, col-
or number, position (on the full screen), heading, speed,
and velocity.

Papert has described Velocity Turtles (which can have
velocities) and Acceleration Turtles (whose velocities can be
incremented). Sprites can be both. Using sprites we can even
simulate Papert's "Dynaturtle"—an acceleration turtle
which does not change direction when it is rotated, but
changes velocity only by accelerating in the direction it is
facing, thus obeying Newton's laws of motion. A dynatur-
tle therefore behaves like the ship in the popular Asteroids
arcade game. The example procedures that follow this arti-
cle will demonstrate a dynaturtle which can have the force
of its "thruster" changed, and which can simulate an en-
vironment with friction.

TI LOGO also has 256 tiles (numbered 0 to 255) that can
be given arbitrary 8 x 8 pixel designs. We can assign tiles
foreground and background colors and position them
anywhere on the 24 x 32 character screen or on the current
print line. Console characters are tiles, the number of each
tile being the ASCII code of the character. (Note: The Tur-
tle records its trace using tiles, so simultaneous use of the
Turtle and nonprinting characters is limited.)

Numbers, Words, and Lists
A number in TI LOGO is an integer from – 32,768 to

32,767. Numbers can be added, subtracted, multiplied and
divided (integer quotient), calculations being modulo 32,768.
The restriction to integer arithmetic is a definite limitation,
but the limitation is not serious for most applications.

A word is a character string without a space. A feature
of LOGO distinguishing it from other programming

languages such as BASIC or Pascal is the capability of us-
ing a word simultaneously as (1) the name of a command
or procedure, (2) a variable, and (3) data. For example, if
the word X is to be used as the name of an action, X itself
is used. When an object has been assigned to X, the object
is denoted :X. The word X as data is denoted "X. Suppose
that X has not been defined as an action and has not been
assigned a value. LOGO will respond to X with TELL ME
HOW TO X, to :X with :X HAS NO VALUE, and to "X
with TELL ME WHAT TO DO WITH X.

A word can be assigned any kind of data—i.e., a number,
word, or list as a value. This also distinguishes LOGO from
BASIC or Pascal where the data type of a variable must
be specified in advance. As a bizarre example, note that
MAKE "MAKE "MAKE and MAKE "MAKE [MAKE]
assign to MAKE first the word MAKE and then the list
whose single member is the word MAKE.

A list is the most powerful data object in TI LOGO and
is denoted by a left bracket followed by its members, then
a right bracket. Examples of lists are [], the null list; [HOW
NOW BROWN COW], a list of words; and [REPEAT 4
[FORWARD 20 RIGHT 90]], a list whose members are a
word, a number, and another list.

Data Manipulation in LOGO
Commands which are powerful in manipulating data in-

clude the following: FIRST(F), LAST, BUTFIRST(BF),
BUTLAST(BL), SENTENCE(SE), FPUT, LPUT,
NUMBER?, WORD?, THING?, THING, WORD,
MAKE, RUN, TEXT, DEFINE. The last three are used
to execute a list of commands, to access the list which defines
a procedure and to define a procedure represented by a given
list. These are powerful commands, but to be able to make
use of them it is necessary to be able to construct lists whose
members themselves are lists. The following key (un-
documented) commands, FPUT and LPUT, are helpful
here:

FPUT object list—outputs a list whose first member is ob-
ject, and whose following members are the members of list.

LPUT object list—outputs a list whose last member is ob-
ject and whose members all but the last are the members
of list.

If object is a word or a number, the results of these com-
mands are the same as SENTENCE object list and
SENTENCE list object, respectively. But if object is a list,
FPUT object list adds object to the beginning of list while
SENTENCE object list adds the members of object to the
beginning of list. This is a crucial difference, making possi-
ble the construction of arbitrarily complicated lists. The
other commands in the above list which are undocumented
are as follows:

NUMBER? object—returns TRUE if object is a number,
and FALSE otherwise.

WORD? object—returns TRUE if object is a word, and
FALSE otherwise.

THING? "name—returns TRUE if name has been assigned
a value, and FALSE otherwise.

108 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

A U A
E M R

1
NE

E ST
A

1

0
A

F A C

N

C

1

N N U
E

D

T

Y
Y
N

E

E L
T

UM •

Ems

Ili. pi
IVENESEAUmi

SHAPE 12 4 SHAPE 13 [2>

MOMOMMINMEEMmil
EMI LIE EMI • ME no •••••• MUM II
EMBEINIEMINIEMEM
■EMMINIMM■■E■■■■■■ R•11111•••••••••• IMMEMMIEMEMOIMEMEM

mosoms•••••m• •••••••••10•0•1
■■■ E■ . 	111 ■■

LIMIP

SHAPE 16 V SHAPE 17

SHAPE 20 p SHAPE 21

THING "name—returns the object which has been assigned
to name, if name has a value.

WORD word 1 word2—returns the word formed by con-
catenating word I and word2. (Compare with SENTENCE,
below.)

SENTENCE wordorlistl wordorlist2—(a documented com-
mand), returns a list determined by the inputs. If an input
is a word, that word is put in the list. If an input is a list,
its members are included in the list.

Some of the undocumented commands were found by ac-
cident; others by studying the documentation for MIT
LOGO. Still others were known to Jim Muller, president
of the Young Peoples' LOGO Association (YPLA). We en-
courage readers to share other discoveries with us.

A Calculating Example
As a simple example, consider the problem of teaching

LOGO to act like a calculator. If one enters 2 + 3, the
response is TELL ME WHAT TO DO WITH 2 + 3. Here,
desired output is 5, which is the result of executing PRINT
2 + 3. The problem is solved by using SENTENCE to form
the list [PRINT 2 + 3] and then using RUN to execute the
list. A solution is the following:

After you enter CALCULATE, the computer accepts
arithmetic expressions and prints out the resulting value until
just ENTER is pressed. The recursion then "unwinds," and
the procedure stops.

The power of a list processing language such as TI LOGO
becomes apparent the more you use it. Yet for learning, all
of these advanced capabilities don't have to be utilized. This
is what makes the language so versatile—its built-in power
that is accessible on demand. And it is this versatility that
allows teachers to tailor LOGO for special applications, and
reassures all students that with LOGO there is always more
to learn. 	 CD

PART 2: Constructing a DYNATURTLE

The instructions for using the dynaturtle are obtained by
typing HELP. The dynaturtle itself is activated by typing
DYNATURTLE. The procedure starts out drawing a cir-
cle and displaying a white dynaturtle. Touching the E key

■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■
■•■■■■■■■■■■■■■• • ■■■■■■•• ■■■N■
■■••••• IIIIII OM
••••••• ••■■■• mum ••••• •• OM ME • 	11 In •• •• 	•
■■ ■ II 	■■■■ ■■■■■■■■■■■■■■■• ■■■■■■■■■■■■■■■■

SHAPE 10 A

■■■■■■■■■
................

■nips am:

■ 	L

ENE
SHAPE 11 4

■■■■■ •■••■■■■• 1111 = ■••• i■■■••■
M 11 ••••■ =ME ••••••••• ••••• MEE= •••• ••• ••• 	EMI IMO ■ M 	111111■

■■INI■■■l_011■■■ ••••••••••••••••
■•••■••■■•■•■■■ ••••■■■•■••■■■■■ ••■1••■■■•••■■■■■

■•••■■■■■■■■■■■■

•••••••••••••••••
....

.............

............

...■■

...... 	

.... 	 ■ r

... 	 . MI EMS 	• •• MI WEN 	••••• MOM 11■■••
■ MUMMER II■■• ••••••••• MIEN •••••••••• ••••• •••••••••••••••• ••••••■■■■■■■■■■ IMMUNE MEIN=

im■■■■■■ mm■
■■■■■■■■■■■■■■••
■■■■•••■ 111111■••■• MTh 	■■■• M■■ 	NUMMI
■•■■■•
■■■■■• 	IHN wing WNW 11;•••• ••••••• • EMI •1•••••• •• •••■ MUMS =MHO
■■■■■■•■■ =MEMO
■••■■■■■■■■■■•■• NIMM■■■■■■■■■■■■•
■■■•■■■■■•■■■■■•

SHAPE 14 4

SHAPE 18 .4

SHAPE 15

w•••••••••amos ■■■■■■■■■■■■■■■■
■■■••••■■■•■■•■• 11 al .1
=Mum ■

1111..

M■■. IBM
■••••■■ 	■•• •••••••••■■ •■•■

SHAPE 19

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	109

H,E TO
NOT
PRI
IEC
PhI

rHl
PRI
HI C
PRI

PRI
PRI
)
PRI
PRI
ER
PRI
PRI
PRI
FF

P

P

T U
N

N

N
N
H
N

N

Y E

IC

E
TH

H

F T

V

A N

H

0

B

T

T

THO NT CON

KICK FRO

LEFT 30
RI HT 30
FRICTION

THRUSTER K

AR•UND

DYNATURTLE

E

III
S T 3E E ID

PE

Y

T]
T E

U
S [1(

IT

IT

N

T

H

G E

S
D
F

T

E
D
0

1

E
NT
NT

NT
NT
NT

1

Rihi
RINT

RINT
PRINT

:NT
EN:

I 7 Nr .

NAT RTLE IS

OBEYS NEWTON

ION. I

ES ON A SURF

S 	•T 	OR R

LS: 	 TOUCH

causes a "thruster" to impart motion to the dynaturtle with
speed 3. Each touch of the E key adds a velocity with
magnitude 3 to the dynaturtle. Touching S or D makes the
dynaturtle face 30 degrees left or 30 degrees right from its
former heading. Velocities add like vectors. If the dynatur-
tle is not facing in the direction of its motion, the force of
the thruster will cause it to head in a direction intermediate
between its heading and direction, exactly as if it were a
rocket in space obeying Newton's laws.

Touching F will turn friction on. In this state, the dynatur-
tle will be sluggish and come quickly to a stop after each
kick. It will therefore be necessary to increase the force of
the thruster. To do this, touch K. You can then enter a
number, say 10 or 20, and touch ENTER. The dynaturtle
will now be given an increase in velocity with magnitude
10 or 20 with each touch of E. Touching F again will turn
friction off. You will find the dynaturtle now very difficult
to control. Touch K again and readjust the thrust.

When friction is off, the dynaturtle is seen to act just like
the ship in the Asteroids arcade game. When friction is on,
it behaves as if it were riding on a rough surface—appearing
to skid as you direct it around the circle.

Description of Procedures
DYNATURTLE activates the procedures INITIALIZE,

SETDYNATURTLE and CONTROL.

INITIALIZE draws a circle and initializes the thruster
(sprite 0).

SETDYNATURTLE positions the dynaturtle and gives
it its initial shape (shape 10). The secret of the dynaturtle's
turning capability is that the twelve shapes (shape 10 through

21) contain designs for the dynaturtle, each rotated 30
degrees from the preceding.

CONTROL is the main loop. Friction is always checked
to see if it is on. If it is on, CHECKFRICTION decreases
the dynaturtle's speed. If one of the control keys is pressed,
the action is taken and control branches to label A. This
procedure keeps running until Q is touched.

KICK reads the velocity of sprite 0, which is always kept
heading in the direction the dynaturtle is facing. This velocity
is then added to the velocity of sprite 1, which carries the
shape of the dynaturtle.

ROTRIGHT adds 30 degrees to H, which maintains the
heading of the dynaturtle and causes sprite 1 to carry the
shape with next highest number, unless that number is larger
than 21. If sprite 1 is carrying shape 21, it assumes shape
10. In this way, the dynaturtle appears to be rotating to the
right by 30 degrees.

ROTLEFT is similar to ROTRIGHT but gives the effect
of rotating the dynaturtle to the left.

SETFRICTION simply makes the value of the word
FRICTION? true if it is false, and false if it is true.

SETKICK gets a number from the console and assigns
it as the speed for sprite 0. The velocity for sprite 0 (x- and
y- coordinates) is used to impart an acceleration to sprite
1. Note the command SS FIRST READLINE. The primitive
READLINE outputs a list, and SS requires a number for
input. The desired number is the first (only) member of the
list entered.

T(1;' Y N E
A

Y N Uni E
N

Ehi

T 0 K K
T E 0
S H H
M A K D V V E L A K E D V Y Y V E L
T E 1
S V X VE L V Y VE D V
E N D

0 C 0 N T 0 L

IC F H C N
C

0 A
V • E X H C

X E 	T H EN KICK
• X S H EN HOTLE F T

X H EN ROTRI G H T
X F H EN SETH C T 0 N
X K 	T H EN SETKI K
X Q H EN STOP

G 0 A
N D

H E C F H IC T ION
F C T ON THEN TE F 	S

P E E D 0 HE N SS SPEE D
E N

TO 0 T L E F T
TE L 1
MA K E H H 3 0
IF HA P E 1 0 H EN C A R Y 2 E
SE AR Y S HA E 1
EN D

Thr IR 0 R GIH
1

A N 0 B H H 3 0
H A P E 21 T H E N C A 0 E

S A A 	Y S H AP 1

SETF IC N
A E TES T F IC 10 N

IFT E RI C T 0 N F A S E P
G H NT • C TI 0 N 0 F F

IFF MAK E RI C 0 T H U P N
T [ERIC ION ON

K E Y END

0 ET K
HR U T Y E F 0 F K K

T E
G S F IR T H A D N E
EG E N
N 0

T 0 SET D YN A T U E
CK T E 1

S X 50 S Y 8
S S S H 0 A Y 0

L E S C : 	H TE
E N D

T ICS NIT E
' MAK "H H A D IN G 0 F Y N AT

ILL AW C RC L E 	TO G
0 A 0
CS H T
SX 5 0 C E 8
TEL L N T A E T H U S T E

3
MAti F 0 N F A E
END

110 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

DIRAW
TELL .TURTLE
SIMPLIFY
E NID1

,111 1

I 	I

I

EXT-E-N-13-1-N-G LOGO
Applications for Very Young Children

-

S eymour Papert designed LOGO to have a low
threshold so that even young children could benefit
from it. Unfortunately, the present technical require-

ment that LOGO input and output be text-bound limits
LOGO to children who can read and type.

It is apparent that learning in a LOGO environment of-
fers greater potential for pre-verbal children than for verb-
al humans. This is simply because there is so much more
for them to learn. But it is equally apparent that the
reading/typing prerequisite is an artificial barrier to that
same environment. The ultimate solution—a computer
which can comprehend and generate speech—is not yet
available. (Programs such as TI text-to-speech, however, can
do a reasonable job of talking.) Still, there are ways LOGO
can be adapted to children who are only able to recognize
alphabetic characters or typewriter keyboard symbols.

Even before LOGO was implemented on the DEC LSI/11
or the TI-99/4, people in the MIT LOGO lab worked on
simplified LOGO systems. One approach yielded a special
LOGO input device which translated symbol cardsi inserted
into slots through a light scanner into ASCII code. Although
prototypes of the "slot machine" card reader worked well
enough, the idea was never developed commercially. A se-
cond approach was followed by Bob Lawler, a graduate stu-
dent at the time, who wanted his two children to be able
to use LOGO. He wrote a number of excellent LOGO pro-
grams which allowed very young children to draw with the
turtle, to play shoot-out games with the turtle, or to design
elaborate turtle pictures. Lawler's programs were written
for a large, mainframe computer version of LOGO, but his
ideas are compatible with TI LOGO. In fact because of the
excellent color graphics of TI LOGO, his ideas may involve
children more effectively when set up on the TI-99/4A. The
essence of his programs was to simplify access to turtle
geometry by simplifying and combining commands. One
simplification allows pupils to move the turtle forward or
backward a fixed amount, or to turn the turtle left or right
a fixed amount by pressing any of the four "arrow" keys:

I The cards carry labels like I'for RIGHT 90, 4 for FORWARD 10, as
well as symbols for recursion and sub-procedure calls.

TO SIMPLIFY
CALL RC ANSWER
IF :ANS ER = D RI 	pT 3 0
IF ANr rp = E 1 0
IF = X 10
IF :% •fLn iciT 30
SIM•f
END

With slightly more sophisticated children, or as children
work with DRAW, we can add other commands by merely
inserting them into SIMPLIFY. For example:

IF :ANSWER = "C CLEARSCREEN

IF :ANSWER = "Q STOP
IF :ANSWER = "0 PENERASE
IF :ANSWER = "1 PENDOWN SETCOLOR I

IF :ANSWER = "4 PENDOWN SETCLOR 4
IF :ANSWER = "U PENUP

Then, as students master the fuller set of DRAW commands
and learn the idiosyncracies of QWERTY typewriter code,
they can be introduced to TELL TURTLE without using
DRAW any further.

Coleta Lewis, a teacher at the Lampligher school in
Dallas, adapted sprites for use by nursery school children.
(The Lamplighter school pioneered the use of TI LOGO
with children; see "The Lamplighter LOGO Project.") Two
"games" her children played allowed them either to move
a garage around the screen, move a car around the screen,
and vary the colors of each separately, or to construct a face
and then color in the parts of the face. Programming sprites
for very young children is not much more difficult than
DRAW. As one example of a sprite game for youngsters,
consider a game of blocks. It is fairly easy to create a
universe of blocks with simplified sprite commands. First,
it is necessary to make up some "blocks" using
MAKESHAPE. A circle (shape 4) and a square (shape 5)
already exist. A good set of blocks ought to have a triangle.

SHAPE 4

SHAPE 5

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	I I I

astir
MERE MEM VIII M

MILO
1;;;;11
	Z SEMI

Other shapes could be easily added. Children should be
able to color the blocks, move the blocks around, change
the shape of any of the blocks, and bring more blocks onto
the screen. In addition, when a child begins working with
one of the blocks, he or she should be able to identify which
one it is. (One way this identification can be aided is to have
them briefly flash colors.) The following programs imple-
ment these ideas:

It would, however, be better to build triangles with four dif-
ferent orientations' because the shapes of sprites cannot be
rotated.
These could be assigned shape numbers 6, 7, 8, and 9. A
good block set should also have a rectangle. To show the
two orientations, shape numbers 10 and 11 could be
designed as shown.

1

HIM

MEM
MEE.

SHAPE 11 SHAPE 10 SHAPE 9 SHAPE 8 SHAPE 7 SHAPE 6

0

TFLL

TELL

END

SCRE

31:1%1,

 BL
THI

ANL,
SPR
NUM

BUIL

SIN:'

OC

0

EN

:A

SC

P

L

D

P
E

a1 S

IF

L
0

E E

A%

9Il llNI

3'i

C

N

A

117S

TYPED

FE

HY

RE

1

4

III

TAKES
AS

.D
S

S

A
N

E

UP
T

PUT

CA 111,71 1.461 S
IF •• 	V: 	I, N E X T
IF r.N3WCh B A C K NE
IF C S E C LO B

IF :AN S WE R E S E HE AD
OR ARD 10 I YE H E SP I TE

TEN S E P S UP

IF :A NIAE rt K ..;

FOR 0 'NI

EN S TE P S D N

IF AN S WE R S SE TH E A D N
F R A D 1 0 I 	• YE H S H P

TEN S T E P S LEFT

IF 	:.NSW:: D SE TN E A D N G
FORA! D 	13 ; OV E TH E P

TEN STEP S RI H

IF • ANSAER F Ri
IF Q ST OP S T

; TH E P 0 A

ect. D

i° 	"1 	1111 	11 	11
11 THIS 	z

T F A

 EITHER: RA
YHEI S lSLIYE LA

•••

AM!. 7 7
EVE

11q -' Alk . 1114.4111 "H! .
III 411400 04

4. a 	"7: 	"

0 WAIT
1 T 20

T N E
TH
TE

E
T
T

H
H

S R
T

U B E TS
N E P 0

H 3
P
B

L 	%ti' 1: 	=
ti 	 A
L..rT 	I 	T

LL (NU
RRY 4 4iOP

1

E

P

C

N 0 0 S

L
PIR1IT
I FF

ENL

S

A
F

T 0 B II0 N E

0
P
E

N

S

A
TH1

. : 	 .

P

• N7
•

ELL
TOP

EPUB
ELI

•

S K 0
Y
V BA C

D

U FISIT

PRIT
IFF

0 T ER
IS P

S

TH IS

U

H F!

1

S S

L
0

YO UR N B F

L

0 T 0 F B

S
PE

SH

0 F

T
S

P HI
HA

0
T

N

UR
E

11

0
E

E WS
ED

C ED
0 B

A
HA N G

T ES T A P S 0 18
TE 4 TN

L:CK SE:
— CHANG'S
ULD AKE

Fr ir.45
:R37 I
ADE 6'0
HIS

LA .1 —

T
F

CK
B

BL
Ti

FA

E

G

A

FT

T

FF

27 0
TE

4 C A Y

B

ST F

T

F

H

WI H A

K

H 0

H
E

F OC E E B N

90
A HAP

SHA
E S

C S

E T
N
H E P

E
E TO T H

SNAP

1•1!D!

E H

S

END.

Copyright © 1983 Emerald Valley Publishing Co. 1 I 2 	The Best of 99'er Volume 1

The LOGO Poet:
USING RECURSION
FOR LIST HANDLING

S ince TI LOGO's graphics capabilities are so vast and
so easy to use, there is a tendency to overlook its other
features. List handling is a case in point: By combin-

ing some of LOGO's list primitives—such operations as
FIRST, BUTFIRST, (or the converse LAST,
BUTLAST)—with recursive [see adjoining A Primer on
Recursion and List Primitives] OUTPUT lines, we can easily
write programs to reverse a list, alphabetize a list, or even
compose poetry. The several examples that follow will, I
hope, demonstrate to you the powerful simplicity and list-
manipulation potential of the language.

Verifying the presence or absence of a word in a list is
a problem commonly encountered in list processing. The
MIT LOGO group refers to this as the "MEMBER?" pro-
blem because the program is to answer the question, "Is
a specified word in a specified list?" Some aspects of the
program are obvious. For example, once the answer is ob-
tained (whether TRUE or FALSE), it should OUTPUT to
the user or program which called for the answer. It is also
obvious that if the list is empty, the word is not in the list.
Given just this much information, it is possible to frame
a MEMBER? program:

:WO
1

UT

T 0
IF 	:

END

EMB
LIS

RD I s
0

U

Were the word second in the list, the problem would be
solved by adding a line using the LOGO primitive BUT-
FIRST, which returns all but the first word in a list of words:

IF FIRST BUTFIRST :LIST = :WORD OUTPUT
"TRUE

since the second word in the list is the first word in a list
which excludes the first word. Similarly, the third word
becomes the FIRST of the BUTFIRST* of the BUTFIRST
of the list, the fourth word is the FIRST of the BUTFIRST
of the BUTFIRST of the BUTFIRST of the list. It would
be possible to write a separate line for each of those posi-
tions as well as the fifth, sixth, seventh or any other poten-
tial word position. However, a program that did this would
quickly grow ponderous. Fortunately, in LOGO this is un-
necessary. Notice that for each position an additonal BUT
FIRST is all that is needed. The problem therefore requires
only a single recursion line to complete the program:

TO ME B E R? :W 0 L S T
IF :LI S T 0 U T P U T F A E
IF FIR S T IS T 0 D 0 U T U T

TRUE
OUTPUT M E E B U T F S T S T
:WORD
END

Now when we run the program by typing MEMBER?
[A QUICK BROWN FOX] "FOX, the first stack checks
to see if the list is empty or if the first word in the list matches
the target word, FOX. Then it awaits the results of a se-
cond stack which runs MEMBER? with the truncated list
and the target word. The second stack then awaits the results
of a third stack which runs MEMBER? on BROWN FOX
and "FOX. That stack then awaits the results of MEMBER?
FOX "FOX which returns "TRUE (from the match in the
second line). "TRUE is returned to the second stack which
outputs "TRUE to the first stack which outputs "TRUE
to the program which first called it (or to top level). In the
event that there were no matches, one of the stacks would
eventually run MEMBER? on an empty list and would out-
put "FALSE.

Another common problem is to count the number of
words in a list of words. As before, this problem is solved
by outlining the obvious elements of the solution and the
simplest case.

F A S E

Papert, following Polya, notes that one way of solving a
complex problem is to ignore the complex whole and focus
on those parts which can easily be solved. [See Mindstorms:
Children, Computers, and Powerful Ideas by Seymour
Papert—available from the 99'er Bookstore.] In the
"MEMBER?" problem, if the first word in the list were
the target word, then it would be easy to detect it and solve
the problem using the LOGO primitive FIRST*, which
returns the first word in a list:

ER

E

T 0 M E WO R D • 	It. 	iISIT
F S T 0 U
F F S ST : 	D
T RU

E N

Now all that remains is solving for those cases in which the
word is in an interior position or is absent from the list.

TO COUNT "LIST
OUTPUT some number
END

The simplest case occurs when the list is empty.

TO COUNT :LIST
IF :LIST = [] OUTPUT 0
OUTPUT some number
END

When a list has just one word in it, the program should
recognize that and OUTPUT 1. Since a list with just one
word is one word away from an empty list, The LOGO

* FIRST returns the first word in a list of words, or the first letter in a list
of words, or the first letter in a word. LAST returns the last letter in a list
of words, or the last letter in a word. BUTFIRST returns all but the first word
in a list of words, or all but the first letter in a word. BUTLAST returns all
but the last word in a list of words, or all but the last letter in a word.

I 	1 	I

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	I 13

o'u
S C T E

L

EiR S El
ST =

SENT
ERSE

R:E V
: LI
PUT
REV

N
U

E
B S A T

TO
IF
OUT

END

operation BUTF1RST applied to that list would yield the
empty list. If there were two words in a list, then obviously
the list is just two words away from an empty list. If a recur-
sive line were put into the program which (a) applied BUT-
FIRST and (b) added 1 to the count for every application
of BUTFIRST, the program would count the words in the
list.

0

0
F

N

C

P

0
L
U T

N
T

C 0 u
i

N
0 U

U T
P
F

U T 0
T

For anot 1e - example, consider a pi ogram which will reverse
a list. The simplest case would be a list with no words.

TO1
	

E V E B E
IF
	

S
	

1
	

0 U P U
END

The next simplest case would be a list with just one word.
For such a list we could have the program OUTPUT the
SENTENCE or the word and an empty list.

This solution can be applied to longer lists as well!
For a final example, let's use LOGO to "write" random

poetry. As a first effort at LOGO poetry, we'll attempt some
"free verse" by instructing a poet to string words together
randomly from a list we select. First, we will need a pro-
gram like SELECT to output a selected item from a list.

0

E

0
F
U
N D

S E
N
U
T

T

E C T
1
E

0
E

N
U
C T

P U
N

S
F H

1
S

B U F
S
H

Then we need a program to generate random numbers for
SELECT. Because LOGO's RANDOM primitive provides
the integers through nine, if our list is less than ten, we can
get a COUNT of it and use that COUNT.

T 0 N :L NG T H
C AL DO N
T ES
H

spl

1

H N, 0 N E N G

FT OUlTP UT :N
IFF OUTPUT' NUMB

	
NG TjH

E ND
	

III 	I

By first typing

CALL COUNT :LIST "LENGTH

we can then use NUMB for the value of LENGTH. If we
then type:

TYPE SELECT (NUMB :LENGTH) [a list of words]

the computer types one of the words in the list. We can write
that as a program:

TO VE
TYPE
LIST
ERD

S
S

LE C
SIT

NIJ(1 ENG T H

A PRIMER ON RECURSION
AND LIST PRIMITIVES

It is easier to understand recursion in LOGO if one imagines
that each LOGO program is a job for a contractor to perform. Each
contractor is a specialist and can do only one job. Every contrac-
tor follows strict working rules; these rules say that when the con-
tractor sees STOP, he must stop, when he sees OUTPUT, he must
pass back some information and then stop. Of course, when a
contractor reaches an END, he also stops. When a contractor
sees the name of any LOGO program inside of the program he
is completing, he subcontracts that job out to another contrac•
tor. Thus, in COUNT [A, B, C], the first contractor reads the first
line of the program, but the condition isn't met, so he moves to
line two. There he is told to OUTPUT 1 + the COUNT of [B, C.
Since he can't do another program, he subcontracts the job. The
subcontractor reads line 1 of COUNT and since it doesn't apply,
he reads line 2. He is told to OUTPUT 1 + the COUNT of [C]. He
can't do that, so he also subcontracts that job. The third contrac-
tor notes that line 1 doesn't apply and line 2 tells him to OUTPUT
1 + the COUNT of []. He also must subcontract the job out,
and so the fourth contractor reads line 1 of COUNT. Since the
list is empty, he OUTPUTs 0 and passes the job back to the third
contractor; he in turn adds 1 and then OUTPUTs 2. The first con-
tractor adds 1 to that and then OUTPUTs 3, which is the correct
answer. With this explanation, you should now be able to analyze
a program which gives you the answer to a number X raised to
N power.

TO EXPONENT :X :N

END
TO EXPONENT :X :N
IF :N = 0 OUTPUT 1

END

TO EXPONENT :X :N
IF :N = 0 OUTPUT 1
IF :N = 1 OUTPUT :X
OUTPUT (EXPONENT :X :N —1) * :X
END

To turn this into a line of poetry, we should have a random
number of such randomly picked words with a random
number of spaces between words (E. E. Cummings's style)
and then a carriage return:

TO SPACE
REPEAT RANDOM P B N C H A R 3 2 	1
END

TO LINE :LIST
REPEAT RANDOM P A E V E H E
ST]
PRINT SELECT N M B EN G

LIST
END

Note: PRINTCHAR 32 puts the character with ASCII code
32, a space, on the screen.

If we want continuing lines of poetry, we can write a recur-
sive program:

TO LINES
LINE 	:LI
LINES :L
	

T
END

Now putting this all together we get:

TO OH T L I S
CA CPU N : L,1 S LENGTH
LII N E S S T
EN D

1111 II 1 	1 I 1 	1 	1

114 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co

Now we can try converting POET into a program which
produces either rhyming verse, blank verse, or a finite
number of lines of verse. One way to modify POET to pro-
duce rhymed verse is to give it two different lists—one of
words for the interior words of each line of verse, and
another of rhyming words for the last word in each line.
Then the program can be changed so that only rhyming
words are placed in end positions.

You probably recognize that the problem of generating
rhyming verse is one form of the problem of teaching the
computer to write text which follows a specified rule (in this
case each line must rhyme). The more general application
of rules to text is nothing less than grammar. One of the
grade school pupils in the Brookline project wrote a text-
book rule program like POET which generated random
sentences. After she saw the effects of changing parts of
speech she exclaimed enthusiastically that she now
understood what a noun was.

POET can also be quickly adapted to a sentence generator
which young people can play with to make grammar
meaningful.

TO 	LINE

; 	LINES

ENu

TO 	POET

:

CALL
CALL

; 	ARE

LINES
END

TO

LISTS

NECE
ANY

•

LINE

:L

S

N

1ST
LIST

7'.

•

-

L I IST

:LIST

UST

:LIST

:LIST

:RHY

A

:RHY

P R OGRA

• •

:

C

:RHYM

:RHY

1ST

HYNES

ES
ES

ES

FIND
WORDS

B H Y

LE

E

E

U S

NG
LE

OU

E S

A T

T

TH

T

NGTH

HERE

E T

NO

HO

BE

; 	LINE M UST PUT HY E ONLY AT

THE E ND OF EA C H 	LI N E

REPEAT RANDO r P ACE V ERSE :LI
ST 1

ELECT N UMB ENGTHR
v ES

PUTS A H Y E A T 	TH E END

END
T SPAC E
PC 32
END

TO COUN
IF 	5 • : 	• ' 	0
OU

-r i
C 0 U N • 5 S

E NID

TO NUI B LE N GT H
CALL RA N D 0.1.1
TEST BO T H N 0 N (:LENG
H + 1)
IFT OUT U N
IFF OUT P N U 	B E N G H
END

TO SELE C N S
IF :N 1 0 U TP U F S :LIST
OUTPUT E E C N UTFIRST
:LIST
END.

T v? L S
• E E C T N B E NGTH

r
ENID

0 S E NT E N E S
H I N T Y P E A IS 0 F A E
A ND TH E N P B E N E

C A I RE A N E AR T
A IS T 0 F N 0 U N S A N

.-.% D E N TE
A mFIA , ;(.. , (% E NO U N S

N : : 	E A IS 0 F A E C V
SS E N TE B

E AD
PR " • E A IS 0 F V E RB S A N
D 	' 	• E N TE N OW WA T H

REA N E VE B S
AR A T N OU N S A D 1 V E B

E N D

T 0 G A A B A T NO U N A D V
E 	B S
T Y E 	SEL E C T IN U C 0 UN T A
T A T
S P A r. E

: 	• : 	SEL C T NU B C 0 U N N 0
7N: N 0 U N S

E
SEL E C NU B C 0 U N V E

V E B S
E

Ilrc SEL E C N CO U N A
D

Irv)
E

SE A L C T NU B C 0 U N T NO
•) N 0 U N S

. 	'
AVi 30
.:,'Ar
ti
EN D h

AR A R N U N S A D V E B B

SENTENCES can be made a better grammarian by adding
distinctions of number and gender where appropriate; it can
be made a more sophisticated language generator if GRAM-
MAR is altered to allow for conjunctions and subordinate
clauses. All of these changes and more can be programmed
by students as they learn both the specifics of grammar 1

 and the mathematics of LOGO.

1 Papert would probably argue that most students know the grammar which
schools attempt to teach, but that the students do not have verbal labels
for syntactical rules and parts of speech, and do not see the relevance of
the labels once they are told them. A sentence generator program can make
grammar "speech syntonic."

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	115

Avoiding
Turtle Traps

\ J

S eymour Papert and his colleagues purposefully decid-
ed to structure LOGO to facilitate the writing of good
computer programs. The concept of good program-

ming is not superficially apparent. Of course, a program
should accomplish its intended goal, but all programmers
recognize that any goal can be achieved by many different
types of programs. Beyond simply "working," there are a
number of criteria by which programs can be judged. Pro-
grams which have multiple applications are generally bet-
ter than single-purpose programs. Programs which are easier
to debug and which can be understood by people other than
the authors (or which can be understood by the authors at
a future time) are more desirable. Pragmatically, programs
which run faster or with fewer bits of memory are better
than slower or more memory-intensive programs. Finally,
some programs are aesthetically more appealing than others.

It is possible to find examples of program applications
in which two or more of the criteria are in conflict. However,
it is more often the case that the criteria are in accord. All
of the criteria except for aesthetics are straightforward and
relatively objective. Still, writing aesthetic programs is so
satisfying that aesthetics will be considered first here.

For instance, you can write GO in LOGO, but programs
with many different branches from GO commands are par-
ticularly inelegant: Why write poor programs when good
ones are easier to write? Also inelegant are programs with
hundreds of lines of code, especially when the code con-
tains several repetitions of a series of commands. And pro-
grams with many inputs are generally less aesthetic than
those with fewer inputs. Compare the aesthetics of two pro-
grams which count the number of words in a list:

N
IF

CO
EN

This program requires typing as input along with COUNT
and the list in question requires a starting value of :N — O.

0 0 N L S
F L S T 0 U P U 0
U P U C 0 U N B U T F R S S

1
1 N D

This program requires no superfluous input.
Elsewhere in this chapter, there is a fairly complex pro-

gram, DYNATURTLE, which creates a turtle that obeys
Newtonian laws of motion. Despite the complexity of the
program, DYNATURTLE is relatively elegant:
DYNATURTLE has only three lines, which are IN-
ITIALIZE, SETDYNATURTLE, and CONTROL. Each
of those lines is, in turn, a brief program which serves a
unique function. Contrast DYNATURTLE's elegance with
a spaghetti-pole BASIC program which would achieve the
same effects. Such a program would be long and littered
with extensive GO-TO's.

A subtler example of elegant and inelegant programs can
be made from the GRAMMAR program. The program was
modified from a earlier POET program and was written:

TY

0

PE

T

TO GR A A R A R T N 0 UN S A :V
ER BS
TYPE SEL E C N U B CO U N AR
T 1 I :A R T
CPA f E

• • SEL - 	: N U CO U N NO
N : N S

S EL
• B

N
S

U B CO U N VE

E
SEL E C T N U CO U N AD

:A D
SP A E
TY PE SEL E C N U B C U N T N
UN N 0 U N S
PR IN
WA IT 30

AM A R A N 0 U N A D V E RB

EN

Si
N':1! I

N
UNT :N
D

U

•.

T F

0 U T

1 I 6 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

This program could use up all available memory before
it reaches its stop conditions because the garbage collector
cannot refurbish the memory used to execute this
POLYGON at any level. The program leaves work to be
done (namely PENUP) once control is passed back to the
level of POLYGON.

Unfortunately, the garbage collector is not empowered
with the authority to decide if any instructions following
the recursion call are worth keeping, and so the following
POLYGON program could run out of memory:

0 PO L Y G ON
	

S D E S
	

A N G E
F 0 WA D :S D E S

E F
	

A N GL E
P 0 YG 0 N :S D E S
	

A N
	

E S
E N

The only difference between the first POLYGON pro-
gram and the one here is the empty line following the recur-

to run as fast as possible. It is important to understand the
major feat accomplished by Texas Instruments and by the
MIT LOGO Lab in putting LOGO on the 99/4. LOGO is
a very high level computer language which requires large
amounts of memory. The architecture of microcomputers
limits the speed with which large amounts of memory can
be addressed. The TI LOGO which emerged from the joint
efforts of TI and MIT represents an effort to compress code
to the minimum memory requirement without compromis-
ing its applications. There are two tricks which they built
into TI LOGO to make LOGO feasible on a micro. If you
use these tricks you can gain even greater satisfaction from
your computer. The first feature is an automatic garbage-
collector. A garbage collector is a part of the operating
system which takes used memory and makes that memory
available for further uses. Of course, the garbage collector
should not destroy and overhaul all of memory's work. The
way that the automatic garbage-collector in LOGO
recognizes when a unit of memory has served its purpose
is by checking the instructions written in the memory. Below
are examples of programs which permit or exclude the
collector:

• 0 N S D E A N G L E

ri 	AN
S

E
D E

L YGON D E A N E

In this program, the garbage collector notes that each time
POLYGON is entered (referred to as the level of
POLYGON), there are no further commands or instruc-
tions after the line POLYGON :SIDES :ANGLES (called
the recursive call line). Thus the piece of memory that was
used to store POLYGON at that level is collected for reuse.
If all memory gets used up in TI LOGO, the message "OUT
OF SPACE" appears, but POLYGON will never generate
that message because it will never run out of memory.

SI

D 1E
FO

 LE
O

 EN

T 0 D E E N T H
F 0 RWA H D E N T H
E N D

This program will never run out of memory in TI LOGO
because the program terminates.

POLYGON : SIDE :
RWARI1 	SIDE
FT 	Al;;: E —

=:NgYG IJI4 	aIDE

0
F 0

E
F

A N G L E

P
E

Notice how much of each line is repetitive. A better
LOGO program would have taken advantage of that redun-
dancy and used a broader application program:

0 WO D S X
Y P
	

S E E
	

N U B
	

C 0 U N T
x

N

Then GRAMMAR could be written:

TO GRA A A N 0 U N S A D V
ERRS
WORDS : A T

L'E
6)S : N 0 U N S
,riAn7F.

V E S
S 	• 	-

A 1
A:E

rn Di
N 0 U N S

WA IT 	E2
GRA ". A T N 0 U N S A D V E 	B

END

The second GRAMMAR program is more elegant and
is shorter. It achieved greater simplicity by taking out of
GRAMMAR all of the repeated functions and placing them
in WORDS. All of the functions carrying out the program
WORDS are directed at placing a single word from a
designated set of words. The specification of the set and
type of words is left for GRAMMAR, the program sur-
rounding WORD. A common format for many well-written
LOGO programs is:

TO DOSOMETHINGSPECIFICALLY :SPECIALINPUT
GENERALPURPOSEPROGRAM :GENERALINPUT
END

TO GENERALPURPOSEPROGRAM
:GENERALINPUT

LOGO commands :GENERALINPUT
END

On occasion it is necessary to string together several
general-purpose programs inside a specific-purpose pro-
gram. In that case, the general program often requires that
there be some set-up steps and some "fix-up" steps before
and after the general program. Such programs have the
form:

TO GENERALPURPOSE
SETUP
GENERALFUNCTIONS
FIXUP
END

Mathematicians may indeed recognize a similarity be-
tween the concept of elegance and aesthetics in program-
ming and the expression of algebraic functions. There are
many ways to express algebraic functions, but it is often
more useful and always more elegant to express such func-
tions in a form which collects common factors and simplifies
terms even where such simplification may require a set-up
or a quick fix-up manipulation along with the factoring.

There are two other major aspects to consider in order
to write better LOGO programs. One is writing programs
which don't run out of memory; the other is writing them

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	117

sion call and before END. The garbage collector sees that
there is a line of commands and cannot tell that the line
is useless, so it is barred from refurbishing the memory!
Empty lines use up memory and can block garbage collec-
tion (depending on their location), so empty lines should
be eliminated from your programs.

Finally, the operating system can work faster when fewer
sprites are being used, i.e., programs which use no sprites
run faster than programs which use sprites. The more sprites
in use (generally), the slower the system operates. The reason
for the slight degradation in response time is obvious—the
system has to check to see which, if any, sprites must be
displayed or moved. The system checks on its sprites by
looking up the highest number of sprite called upon. For
example, TELL 31 or TELL SPRITE 31 would cause the
system to check on every sprite from 31 on through to sprite
0. Such a check is necessary (from the user's perspective)
only if all 32 sprites are being used. If only one sprite is need-
ed, then the user should type TELL 0 or TELL SPRITE
0 and the system would skip the checkup on sprites 1 to
31, thus saving a small amount of time.

Student Reactions to a Four Week LOGO Class
By Gene Branum

Students pick up these principles quickly. For instance,
Gene Branum, a student in a four-week LOGO course,
reflects on this experience:

"The expectations of the students varied—we wanted to
know more about computers, we wanted a different Jan-
term experience, or maybe just a free Jan-term. Whatever
the motivation, all came away affected in some way by our
experience. All experienced both the frustration of failure
and the flush of triumph as the computer finally 'did what
it was supposed to.'

"The format for our experience was a four-week mini-
term (Jan-term) at Austin College. Our class met; five days
a week for two hours, and we were required to spend at
least one hour of work on our own as well. This require-
ment was easily met; as one student put it, 'It was not
unusual to spend four hours at a time' on the computer.
Needless to say, the experience was very intense, and there
was a great deal of self-teaching. This was felt to be one
of the greatest strengths of the course.

"Professor Hank Gorman did a fine job of teaching the
basics early in the course. As he told us his expectations,
we scoffed. After two weeks, he told us, we would be draw-
ing cartoons and making up games. Even though his leader-
ship was great, the majority were insecure about 'the
machine.' Our confidence, however, grew with experience
and familiarization.

"The two greatest aspects of the course for all of us were
(1) the team experience and (2) experience in general prob-
lem solving skills. The true strength of LOGO is that
students, working together, can teach each other massive
amounts of material. The realization that everyone had
problems put us all on the same level. Sharing ideas and
solutions became important for everyone because no one
could work totally independently. Many social experiences
allow students to interact, but LOGO is one of the few that
forces students to think together.

"Without exception, all of the students involved in the
course commented that, after LOGO, they knew better how
to approach a complex problem. Dr. Gorman spent several
class periods on problem solving skills: decomposition,
recursion, naming, multiple descriptions, and the 'little
men.' These skills not only aided our search for solutions
to LOGO problems, but also for problems that require a
thinking solution. The overriding principle of LOGO is that
the simple builds to the complex, which is its major strength
as a system for any age-group.

"While it was widely agreed upon that none of us
`mastered' LOGO, each of us developed confidence in our
abilities to control the computer and make it do what we
requested. The LOGO experience allowed everyone to use
logical approaches to problem solving and gain valuable
hands-on experience in a discipline that continues to increase
in importance."

The following programs, which students wrote during this
course, show an emerging appreciation for elegance, speed,
and simplicity in programming. Except for correction of
typographical errors, their work hasn't been edited in an
attempt to find still more elegent ways of achieving their
programs' goals. Note, however, that they all grasp the
essentials of esthetic programming.

Space Pylon Racer
! H

B 0 T B 0 T H X C 0 > — 65 X
3 5 T H Y R > 74

Once set up, the player guides his saucer through pylons.
ii G 0

9 0

Two shapes must be made first (check graph paper). The • - B 0 T H B 0 H X 0 65 X

keys control the saucer. E moves it upward, X moves it
n 7

3 5
0

BO T H Y 0 > 54

downward, D moves it forward, S moves it backward, F I FT 0
" 7 speeds it up, A slows it down. If the ship hits a pylon, the TEST

< 	i iS
H

B
0 	H
0 H

B
B > 	7 :

X I
Y l

beep sounds. R < 	90
I 	I I F T

Use arrow keys to change direction. TEST
< 	115

BO H B
B
0 T H
0 T H

C
Y C

0
0 B

>
> Y

XCO
0

Use F for fast speed. R < 	70

Use A for slow speed. I FT
TEST

GO
BO H B 0 H XCOR > 1 5 XCO

< 	45 1 B 0 H Y COB < 70 YC
OA > 8 6
IFT GO

TO 	IGLA E TEST 0 T H 0 T H XCOR > 1 5 	XCO
Cc R < 	45 0 TH Y COR < 50 YC

L AL S 0 S C 0 A RY 0 OR > 6 6
SET I FT GO
TELL 0 B:
SPA I FT B E P w A 5 NO B E E P
END END

1 I 8 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

EMEMEIMEMEEMEMEME
EMEMEMEMENIMEMIEME
EMEMEEMBE EMEMEMEM
MEMEMEME ME MMMMMM

MEMEME■■ MMICE■ale■

MUM MM MMMMM MM

EMEMEMMEMEMEMEME

MEMEMENEEMEMEMEM
MEMEMEMEMEMEMEME

ma II liiii IIIEEEIESIImmEEm

	

ME MMMMMMMMM MMEN 	
■■■ 	Urn
ME 	 REM
Ma 	 ME
■ 	

■■N■ M! 	

EMMEN WOMEN

EMMEN= MMMMMMM I
MAKESHAPE 20
Saucer

E
9 C

C

A

A

H

H 1 0

5
0

7 S
6

E T
0

4 0 E P
T

A
1

T
1 0 WA

0

TO WAV
TELL 3
SC 1
TELL 4
Sr 1

• L 3
• L 4

al 10
SETUP
TELL 4
SY 10

10 1

3
N:.LLP

0

5 WA
WAIT

ME NM mEEME■■ •• 	E 	
ME 	MENEM' 	
ENE
MEME 	■E REM
•

.
	•Ni mg

E M V
L 0
12

1

TO
TEL
SS
T PT

1NF

9 S S
3 4 0 S C

MEL 	

MEM 	 EMMA
■■■■ MEM 	
mom
■■■■ 	
MMMMMM MEM 	•
EMMEN MIE IIMMEME

x A 5

S
L
E
T

1

WA 0 5
T
S

0
WA

5

T
T

W
T
S
E

C

H

P

6

D

E
1

AT
5

5

0
E
E
A

N

0
A
E
E
8
7

P

V A

LL
LL
PE

• ••'.
S
A MY! 6

• 6
: 	6

A I T A
A
A

5
5
5

8 A
N D E

TO B
REPE
AIT
TELL
SC 1

7

W A B C 5 T 6 1 0
U
A
5 T R 9

B
WA

H
T

S

W
5

0

AVE

10 [SX
SX 	2

IN
10

'M S

IT 3 5 [A
IT 5 C
IT 5

N

C

S

IMEMEMEME

MEM. EMEMEMEME
MEM MENEM=
MEMEME MEMO MMMMM
EMMEN 	■■ E■

■MEMO

MAKESHAPE 9

MAKESHAPE 10

T 0
TE

X

art
S
W
S
C
T
S
S
W
E

A

A
E
H
S
A
N D

TOW
LL 5

I L
LL 	

O 1

T
2
1

IT
0

9
100

90
10
1 	1

70
130

70
0

115

7

C

5

A

C

2
5

Y

0

0

5

S

T

S 0

IrlINIOUITI 	I 	I 	I

T 350
AVE

20

50

TO S
TELL
CARR

6

. 	L
DC, 4
SS 0
ROMP
TELL
iN%

E

Y

T U

6

P

S

0

A

0

X

S H 0

C H

6

S

1 5

TO
WAV
MOV
WAI
SWF

• %

AA..
BURN

A
thu

■ MM ■N! ■ mEMENIRE
■■■■■■

•

•

mom

OMPPER

it
ii::
■■■•—

MAKESHAPE 21
Pylon

Tr::
100
7ELI

••

nhu

0
i

1
2
3
4
5
6

1 	2
21
Sly

SXY
AI• ,

ARRY

i"C7

3
SC

20

4

- 	 50
- SO
30
3C

:BL'.
5 	6

1 	-
1

:7

SC

27
60.

1
-

- 	°7
80

:RED

)

SXY

T 0 SP r• 0 N TR 0
cx

rtt
E ND

0 C 0 N TA 0 L
F C H 	E T H E N 	T E 	T 3 4
EL E ST 0 P

C AL H C 2
F z E 0 0 P
F
F

z
z

X
D

1 = Z T 0
0 P

P

F z S T E LL H 270 T 0 P
F z F T E LL S 10 S 0 P
F z A E LL 5 	S T 0 P

E ND

Spinout
This program was designed as a cartoon to depict two

Indianapolis-style racing cars racing, crashing, burning, and
being towed away. The central program, SPINOUT, con-
tains 7 subprograms. These short programs make the cen-
tral program neat and concise.

mEmEmpplimmwomma
IMMEMIEEE mom
mom mm
m 	•
■ EM.■
mamma Ems or
ME ME 	■ ■
✓ r 	am am
a ME
	mom mom

mom
ME 	ME MELD

•
ig s1 	le:
18.11mmill

J
":11

MAKESHAPE 6 MAKESHAPE 7

■ Ern MUM.
• mow Erna
• RE RN EE mEEE

ME MEM mom nog
EE mom 	 ■

ram ■■ mmo ■■ mo
NEE ■MME ■ Am
:MMEMEMEWEEMEMEM

MAKESHAPE 11

0

Munchie

Munchie illustrates how one can program a sprite to move
to certain locations where an object may be found. After
testing coordinates within the procedure, it eats that object
and continues on until it eats all objects. You move Mun-
chie by using arrow keys, and set speed by using keys 0,
5, and 1. You should stop Munchie when passing over the
object to be eaten.

E

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	119

■

1111.••• 	; ••••"1.11
■ •• ■ all 	■•••■

111.111 Ma!!!
■ MMMMMM ■ 110O111• ■
■ MMMMMM ■•••••■ •■
MMMMM MG ■1•••••••■

mr.
•••

it•
•	 mom • •
..

Hi

IIMMIMMOIMUMS MMMMMM

■ 1

■ 	
■••• ■ 	• 11:111111

•• MMMMM
11•••• 11 •11111
111111•••• lergoal

• ■. ■■■■
	 wows • • • mi•E•o• ■
EMMA WI • %MU
••••11111 	••••
MEMO •• • nip
mei NMI MOMS

•• MMMMM MMMM •••
•• MMMMMM ••••••

11111111111•111
-1

1'.. 1111.11111111.1 .'

Fieldgoal Movie T

S

S
T

E

B

0

7
1

2
B

U

U

P
C
E
C
E

0
E
C
E
C
E
C

S

L

L

L

A

A
N
A

B
S
B

BY
XY

Y

•

I M N E
:0 0

50 T2 r7t' WIPE
:5
TELL :
ST I
SE
EXT 110
END

TO SETU
WIPE
TE:L 1
SC 'YEL

"E

110.1.11
.XY — 5
- '4L 3

1: 70
iLLL 4
SC :131.8
SKY 70
TrE L 5
SC 3-A
EX? 80

T IC KICK
EETJF
%A ■ 7 12
7E:: 2
CA5111 7
TALLl 1
S1F 90
55 10
RISE
TF!'

if 1
EAT

ENE
..!
:0 PISE
:ELI 1
CARR' 8
SN
ES 10
EH 45
WA:T oe
SE 00

T 1
135

4

r!
BE:

—17

. 	• .

L L 7 SET

9

SM■M ■
• ERA 	 MMIMM
ail 	 III an 	■•■
• 11••
• w••

P

CANE

CARR

8 Y 1V1AKESHAPE 6

6 Y

8
A 9 C

E
8
C

2
C
C

Y

MAKESHAPE 10 MAKESHAPE 11
2 A

3
A

R 1

0 B B TO MOVE
TELL 	41
CARRY 1
NONCE/.
;7E51

Ff. CAL%
FT CALL
F
F :0
F

F
F
F
El C&

EEP
CIREOI
ZHO '

ITE
WAIT 8 5 1 1 C A

MAKESHAPE 7

0 2 70

B B A Y N

U P
MAKESHAPE 8

TO ZAT3
MEPEAJ
WAIT 2

;
TELL I
MOVE
E40

TO EAT2
113PEAT
WAIT 2
TELL 2
TILL
MOVE
END

2 2 E P B E A N EP T BE •••••• •••••• •••••• 0
5 S S •••••• 	••••••

...... •••••■ 	■••••• •••••• 	•••••• Wr1

SC
EE

2 15 2 BE E N B EP A 7 •••••• 	■••••■
MOON..

0
0

0 S MAKESHAPE 9

P C. I
TELL
04.715
S7 1
KA:7
SY 8
WAIT
ENV

U

4

2 TO EA
4t/X4
WAI1
7E11.
TELL

PE
IND

25 2 ••••• 	
••••i

■• ■ •••••■ •••• ■ ■ MMMMM •
••••• • • ••••••

BE E P N BE EP A

10 a.:
SF

1 0

C25 MAKI SI IAPE 10 NECK
BOTH XCOR

TEST BOTH Y

7
TES
45

IFT

, fFr

5 15 R

YC

X

5 COB OR

TELL 0 ES' 4 EMI
;FY CABBY 10 SEEF.
11 MIFF?

:EST BOTH
IFT TEST
25
IT TELL 0 IS1 	EA
J1- 1 CAEAY 1111lW
11 INWEll

Tr$II 	xco

F' I 	BOTH
< — 70 1

IFT 7l 	0 SS 0 EAT
1FF MI:.
1END

5 T A RR

55
B

Y

i; C

T 5 Y CA RR

1VIAKESHAPE 11 0 B X 0

• 8 B YC C

3

III

MAKESHAPE 12

Copyright © 1983 Emerald Valley Publishing Co. 120 	The Best of 99'er Volume 1

FLY AWAY
with the

JOY
Commands

of TI LOGO

you push the stick forward, and the aircraft begins to
roll. You then gradually pick up speed and start mov-
ing down the runway. After reaching takeoff speed,

you move the stick again, and suddenly you're airborne.
Now you have control of the skies—to fly high or low, do
loops and other maneuvers, and then land. But be careful
with your speed! You don't want to stall and crash.

This isn't flight training or a simulator. It is a TI LOGO
procedure that gives you the opportunity to fly by keyboard
or joystick. It uses either the arrow keys or the JOY 1 and
JOY 2 commands. The JOY commands return one of nine
values depending on the position of the joystick, thus open-
ing a wide range of possibilities for interactive games and
other activities.

At first, it might appear that the nine values have little
relationship to each other. You'll note that the three and
the seven were omitted. However, the pattern of the values
is quite interesting.

2 6 10

1 -..--- 5 9 ..-

0 4 8

Moving from left to right in each row, you'll note that
each digit is four more than the previous digit, i.e., 2 +
4 = 6, 6 + 4 = 10, etc. Moving from bottom to top in
each column, observe that each digit is one more than the
previous one.

These patterns begin to suggest why three and seven were
omitted from the values assigned. However, to make the
logic behind these patterns even more graphic, let's convert
them to binary numbers.

0010 	0110 	1010

0001 — 0101 --- 1001

0000 	0100 	1000

Now look at the first two digits in each column. You'll
note that they are the same, representing from left to right,
0, 1, and 2. Also, if you look at the last two digits in each
row, you'll note that they are also the the same. Moving
from bottom to top, they also represent 0, 1, and 2. So what
we really have here is a distinctive coordinate system with
real meaning, rather than what might first be perceived as
a random placement of values.

(0,2) 	(1,2)(2,2)

(0,1)(1,1)--.(2,1)

(0,0) f (I30) 	(2,0)

Let X and Y be used to name these coordinates. The coor-
dinates for the joysticks can be assigned with the command.

MAKE "Y (JOY1) / 4
MAKE "X (JOY1) — 4 * :Y

Now let's put these JOY commands to work in
FLYAWAY, a procedure developed by Roger Kirchner, a
fellow YPLA member. This is a procedure for one or two
players that tests each player's ability to take off and safely
land an airplane on the runway shown on the screen. Either
the direction keys on the keyboard or the joysticks can con-
trol the plane.

The joystick commands are incorporated in the pro-
cedure, STICK S. Push the stick forward, and the aircraft
increases its speed.

IF :X = 6 THEN FASTER

Pull the stick back and the aircraft slows down:

IF :X = 4 THEN SLOWER

To minimize the chance for error, direction commands
are accessed by merely moving the joystick to the left or

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	121

affromal•
a 	 1
■ 1 	 ■
■■■•••• ■■■ ■•
■■■■■■■ ■■■ ■M••• ■■■ •■
■■■■■■■ ■■■
VIM MOM

NM

IIMIMMIMMEMMEMM ■

■■ ■■•
mom MN MBE EN BM
Mg
ERNE M.

 • •
M •• MEE

■M 	• ••

IIIIMIM ••• MR •
•IIM Eill ••

■
o■ 	own • mi

•■•••=m•••• ■•■
M •••

DI• ••
DE

•

■ •1
OWE=

2. AIL

9r12 on

••ENE •=
ME

L MM

l ill ""11111111
M mi 	ill

■ ME I • W ■ 	■ ■■■ ■
MEW •
I•■■•■■■

lik•MOSEP•

SHAPE 13

SHAPE 14

SHAPE 15

SHAPE 12

SHAPE 18

SHAPE 16

SHAPE 11

SHAPE 10

SHAPE 17

122 	The Best of 99'er Volume 1

0
A
F

M K

F

F

F

F

F

F
T
F

H

•

‘..01
1
D

C(S)
 VA

PR
IF
r.

OT

PI

I L
E

E

AK

C EY
)

)

N
P
N

K

N

)

2

TO F.YA AY
iE7:7

•- •VANE 1 SETPLANE 2
1LD. •M DE 	J
IFF 	%"BOL
IFT : %"ROLJOY
END

ROL
•
THEN TELL 1 FASTER

I THEN TELL 2 FASTER

X THEN TELL 1 S •WER

THEN TELL 2 S *WEB

S THEN TELL 1 TURNLEF

I THEN TELL 2 TURNLEF

D THEN TELL 1 T R RIG

K THEN TELL 2 T R RIG

O THEN STOP
HEC K 2

C
E
ON

x

x

x

x

K
RO

1
L

C
T

E

H NIS
S N

x P

•• 	N T
MAKE

.•.

MAiL
CS
END

T?)

)

ON

E

7

RU
TH

N
E N H E

• BL
AD
RE
AD

F
R
F
B

E

E

U
L
D
L

H

2

NG
CK
F

WIT
I 	it

• •

'22
— 40
— 60

)

)

0
FF

3

B

L

U

NS

[NA E
PILOT
[NA E
PILOT
[
rFLY!

•

(

•• 	-F
D • NO

P

right. It does not matter whether you hit position 0, 1, 2; 	ple enjoying maybe 50 to 100 hours of drawing pictures with
the aircraft will turn left. 	 LOGO, he would imagine they would then tire of the

language and move on to the other things.
IF :X > 4 THEN TURNLEFT

	
Do chess players ever tire of chess? Do chess masters ever

IF :X < 6 THEN TURNRIGHT
	 really feel that they have mastered the game? Probably not.

The moves of chess can be easily learned by primary grade
Of course, it would be possible to add additional maneuvers 	youngsters, but entire lifetimes are spent learning the game.
using each of the nine joystick positions. This would require

	
Certainly the graphics capabilities and the speed of TI

a much more sensitive touch to the joystick, but that could
	

LOGO are spectacular. Indeed, they tend to overshadow
also add to the challenge of the flight. 	 the other attributes of the language. Where that happens,

With each turn of the aircraft, a new shape is called to
	

it is most unfortunate because LOGO offers a young per-
show that new position. These range from #I0 through #18. 	son so much more than just graphics—much more than
The first shape, #10, is similiar to the Plane shape in TI

	
BASIC and some other high level languages.

LOGO. The next shape shows the aircraft at a 45° angle. 	For example, look closely at BASIC: It uses a finite
The other shapes depict the plane in a 90° angle, 135° angle, 	number of commands that must be strung together in
at 180°, 225°, 270° and 315°. Shape #18 depicts the crash. 	statements that tend to hide the operation of the program.

The CONTROLJOY and the CHECK P procedures con- 	Were the operation of BASIC programs easily discerned,
trol the aircraft in the air. CHECK P monitors the speed

	
TRACE would be unnecessary. LOGO, on the other hand,

and "altitude" of the aircraft to test for the CRASH
	

is a virtually unlimited language. If the command doesn't
parameters. 	 exist, use your imagination and create it! This is the

marvellous challenge of TI LOGO—using your imagina-
FLYAWAY is an excellent graphics program that begins 	tion and creativity to discover the real potential of the com-

to tap the power of the LOGO language. It goes quite a 	puter. Way back in the dark ages before microcomputers,
bit further than merely drawing pictures with the computer. 	Albert Einstein expressed a truth that is especially relevant
This is an important point to realize. But unfortunately, not 	to today's computer learning environments: "Imagination
all educators do: In a November issue of Infoworld, one 	is more powerful than knowledge." Undoubtedly, Einstein
educator stated that although he can understand young peo- 	would have approved of TI LOGO.

MEM
MIN
MEM MO
EOM
MEM ME

Copyright (1--D1983 Emerald Valley Publishing Co.

N THE
iI

0

L

L

5

1

PI L

PILOT

1 00 9

P

0 w K A

TO PLUS :N
IF :N < 17
Et$t 011-TRITt
EMD

TO MINUS
ir 	If 	.-. 	0

OUTPUT

TO WEL
Lt

A
93
EN

T LW 01I1P0'
7 	fIL021:

1

710 KOWA?'
TELL TIIE 116
TELL r[LE
MARE 'TICES 	1; 4
9 140 1 	101 10
MACE 'BOW 1.5

IF 	TILLS
NAIL . t F

RPEAT 12
E
E
 C I L

; 1

2 11151 	1

124 132
0 I

T

1.

H

C 0

N

E

S

IR

T

TO HELP TO S TI C K
CS MA K E 1 0 Y :S
PRINT f F LYA AY TE L S
PEIN7 	[1 IF 4 	'HEN TURNLE F T
PF:N - 	[BL UE PIL US S XE Y S E IF 6 TURNIP I H T

OR JOYS TI CK IF 6 	7E-N
PR 	[IF 4 	7:E:4
PR 	[RED PIL T U SE S 	KEY S EN D
I OR T YST I C K 2
?R1N7 	I PR:NT T CHECK : P
?E:NT 	[C FE L L :P

[
FASTER: E 0 K 	ST I K F

IF
IF
TE

XC
S T

SPEED
R

EITRE

>

H
:X
1 0

Y re ,

7 .-EEN
:!7%

,

r::

uiGi F 	YC 0

cx
SL E R X K 	STI K BA

IF
1 	A.

T
F

PR 	%7 	[TURN L E FT S R S K IF F 	I ^E t: ED 0 H N E L C
EL S L

TRIUrI [TURN R IGH T: D K S T IC WAIT '23
K] ...L2 LAN:. w H
FR:Na 	I I PAIN T I ENID
FR:N7 	':EE H AN T A BE F F AN

LAI,• SAFELY F:HiT 1 TC 	ILT•6RE G HT
i P7 	45
[BON VOY AGE] IIIFI .1.''E 10 H E N C A H H Y 17

I 	: .‘:.-Y S 1

VA NI S H
ENT il

:A H S H 0 S S 0 C A RY TO 	--- NL F
a LT 	Z:

END IF anAPE 1 7 T H E N C A H Y 10 E

TO C 	NT Pn Y tin L

CARRY S H A P 1

ST CK 	1 K 	1
ST (711 2 ,K .2 TO SLOWE H
IF TH E N T IF SPEED 0 T H S E D

N 10 Y
EN D EN D

IF
LS E

SE
:P

A

P L A
1

K E

N F P
N
•Y

A
S

E YS Y S E IF
5

EN

F

D

ASTER
1 	0 H N S P EE D

P 	S 2 P 2 Y CY
Y S 0 SH 9 0 A RR Y 1 0

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	123

Problem Solving
WITH LOGO

I t is pleasureable to work with a language like LOGO
because it gives us something to "think with," and it
encourages us to think in what Papert has called "mind-

sized bites." The solution of a problem can be identified
with the definition of a procedure. If the problem is sim-
ple, we can specify the procedure directly. Otherwise, we
try to specify it in terms of a small number of simpler
procedures.

Often, this method leads to a complete solution of a pro-
blem. But sometimes, a problem is so complex that the
method leads to an indefinite number of problems. A solu-
tion seems hopeless.

But suppose that new problems have the same form as
previously encountered problems, and are simpler. The pro-
blem will be solved at least "theoretically," if the rules lead
to a solution in a finite number of steps. Such a solution
is said to be recursive.

One of the beauties of a language such as LOGO is that
recursive procedure definitions are allowed. And writing a
LOGO procedure not only gives a theoretical solution, but
a practical one which can be carried out by executing the
procedure. Of course, for the latter, one needs access to a
T1-99/4A with TI LOGO (or some other implementation
of LOGO).

In thinking through the solution of a problem, one often
works "both ends." The big picture leads to smaller pic-
tures. But also details occur which can be incorporated in-
to procedures, which then make the solution of larger pro-
blems easier.

T 	T
TEST
U]
IFT 0
IFF 0
END

S I T E 0 [A

T
T
P
P
U
U

T
T

A
A
N
N
V 0

0
H
H
D

This procedure reduces our problem to the solution of three
simpler problems, which we might need to reduce further.
The procedures we need are:

MEMBER object list
TRANVWORD word
TRANCWORD word

MEMBER returns TRUE if object is in list and returns
FALSE otherwise. TRANVWORD translates word if it
begins with a vowel. TRANCWORD translates word if it
begins with a consonant. We can hope that MEMBER is
a utility built into LOGO. It isn't, but this is no problem.
Nearly anything that isn't a primitive can be built in.

At any stage in the solution process we can decide to work
on big problems or focus on little ones. The solution of a
problem isn't a linear process, even if solutions are usually
presented as if the process were orderly and straightforward.
The LOGO procedures document and organize progress.

Let's focus on the problem of deciding membership. If
object is in a list, it is either the first item of the list, or else

Translating the Pig Latin
As a concrete example of these ideas, consider the

momentous task of translating an English word into Pig
Latin. According to my children, the rule is to add "HAY"
at the end of a word beginning with a vowel, otherwise to
take the consonant sound from the front, add "AY" to it,
and put it at the end. Thus "AND" translates to "AN-
DHAY", and "BREAK" translates to "EAKBRAY."

These rules lead immediately to a LOGO procedure for
accomplishing the task:

10ENAY OVE'vAY!

T 0
CS P
E.]

N

TO P
CS
PRIN
PRIN

. 	: 	.

MAhr.
IF :
THAT
PAIN

ENr.

E
R

T

TRA
:1(
I 0
:K

NC 0
1

=
U

0
)

E BE
TPUT
TPUT
ST :

D
H

H

w
T

K :LINE
[

R 13
N RD
N PIG

P
T

RI

PR
TY

N FO P A T N P H A C C E N 0

0

V

WEL

WEL

OWE

(W

A E V

V

0

S

S

L

0

A

A

E
F
F
C
N

S
T
F
H

T

T
E

A
A

Y P

TY

E P G A N E N A E F
B

N E
N

P N F
E
E
F
F
U
N

0
E

F
F
N

PE TR
32 PR

L
0 F E L A

T

B
E

T
T
U

E

S

F

D

T H RS F S

H

G

P
P

L A

G
G

N

Y

OU
OU

FIR

A
0 RD TIn T

:P
LH)

TO
IF 	:
Sc.

IFF

:• 	.
•

END

0 RA
UT

N VW
WO

WI
U

E
N

L
L

H
H

P
P D H A a E A G AT IN

E

TPIG

N
E

D W

A
A

TR A OR
BE

E BER :X :SET
SET = [I THE F S N

S

T P F L A

W

E 0 U A G

E
S
G

P
E
E
A

E

S
N
E
0

E
E
N
P

N E

H
H

UN
LI

A

S

N
N E

F

D
0 TPUT

TPUT
T
T

X = rills,' 	•

.C:eUl pIEit•Ah

.1 	111111111

E N
N
V RD

RD
N
A

H P N 1 F
D

U C W
F S T T

A
P N

Copyright © 1983 Emerald Valley Publishing Co. 124 	The Best of 99'er Volume 1

TO INUMMIOV ES
TEST :N

OU
I
TPUT

= 1
IFT 1
I FF O1JT'PUT 1
:N —
END

1 11)
N U OVE S

III

0 S 0 V N P P 2 P 3
N 1

F G E T 1 N G P S N G P 2
1 F F S 0 L V E N P 1 P 3 P 2
S n T. V 1 P P 2 P 3

N 1 P 3 P 2 P

To have LOGO print out the moves in order, we need
to implement two procedures called GETRING and
SETRING:

In the meantime, let's implement GETRING and SETR-
ING simply so we can test our solution:

N
2

G E H N G P
TYD
	

P C K U P
	

P H
P P H N C H A

	
3

C H A H 3 2

it is the first of a truncated list, or it is not in the list. The 	the beginning to the end until the first letter is a vowel, and
definition is, naturally, recursive: 	 then add "AY". We are led to:

B E H : X S E T R A N C 0 D II?IF :SET T H N U P U T F A L TE S M B H F S :W A
Sr U

:X F I RS ET IF 0 U P U 0 B D :W A Y
OUT P U T R U IF 0 U P U T T A N C WO RD D B
OUT P U T B :X B F S T TF S T Fl H T :W IFFI

END EN D

With this definition, MEMBER FIRST :W [AEIOU
] will return TRUE if :W begins with a vowel, and FALSE
if it doesn't.

The definition of TRANVWORD is so simple we can
write the procedure anytime. Let's do it now:

T
0
E

0
U
N

T
D

T
P U

A
T

N V 0 H
D

D : W
:W H A Y

The (undocumented) primitive WORD takes two words as
input and outputs the word formed by joining them.

The definition of TRANCWORD takes more thinking.
We want it to be recursive. We want to move letters from

If we try (that is, think through, or execute in LOGO)
TRANCWORD "BREAK, we find it will return
EAKBRAY, as desired. And TRANCWORD "YOU
returns OUYAY. But TRANCWORD "BY runs out of
space because the recursion cannot end. Evidentally Y must
be added to the list of vowels. But then TRANCWORD
"YOU would return YOUHAY and not OUYAY.

Can you fix this bug? We want Y to count as a vowel
only if it isn't the first letter. One solution is to use two in-
puts to TRANCWORD, one of which is a flag. This solu-
tion, as well as the generalization to translating a sentence,
can be seen by reading the PIGLATIN procedure and the
procedures it calls.

TOWER OF HANOI

Now we turn to a less frivolous example. The Tower of
Hanoi is a puzzle familiar to many. It consists of three
pegstands. One contains a "tower" of circular rings. The
object is to move the tower from one peg to another, mov-
ing one ring at a time, and never putting a larger ring on
top of a smaller one. There is rumored to be a Buddhist
priest working on a puzzle with 64 rings; when he finishes,
the world will end. If he makes one move per second, how
much should we worry?

We can use LOGO to worry about this problem. We need
a procedure, say NUMMOVES, which takes for input the
number of rings and outputs the number of moves. Sup-
pose we think of the task this way: Move the top n —1 rings
to an auxiliary peg, then move the largest ring, then move
the smaller n —1 rings onto the largest.

The way of viewing the problem leads to the following
recursive definition for NUMMOVES:

Trying this procedure, we find that NUMMOVES 2 =
3, and also that NUMMOVES 3 = 7. The reader might
try to find a formula for NUMMOVES n, and also the value
of NUMMOVES 64.

Of more interest is a procedure for actually solving the
puzzles, and beyond that, for implementing the solution
graphically. By the above reasoning, what we need is a pro-
cedure SOLVE with four inputs:

SOLVE n pegl peg2 peg3

which would move the top 11 rings from pegl to peg2 using
peg3. Using the rules we obtain:

Copyright 0 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	125

TO
	

E T RI N
TYP E
	

SE T
N 	:P

Now, if we enter SOLVE 2 "A "B "C, the output will be:

PICK UP A SET ON C
PICK UP A SET ON B
PICK UP C SET ON B

The number of moves for three rings is 3, as expected.
What will be the seven moves for SOLVE 3 "A "B "C?
Try it!

We've looked at a LOGO procedure for solving the
Tower of Hanoi as an abstraction. This procedure, SOLVE,
prints out—as a list—the sequence of moves necessary for
the solution. But given the graphics power of LOGO, we
should be able to design a program—a series of
procedures—which will represent the actual movement of
rings from one peg to another graphically. And, in fact we
can use LOGO's MAKECHAR command to define the re-
quired graphics, called tiles, and we can move these newly-
defined tiles about, using LOGO procedures. So let's begin
at the beginning.

Let A, B, and C be the three pegs. When we know which
rings are on which pegs, we then know the particular state
of the puzzle. In our LOGO implementation, the variables
A, B, and C will be the names for lists which tell us which
rings are on each peg. Our puzzle will have 8 rings. Let us
number them 1 through 8 in order of increasing size. The
beginning position, with all rings on peg A, is represented
by :A = [I 2 3 4 5 6 7 8], :B = [], and :C = []. Moving
the top ring from A onto B results in the state :A = [2
3 4 5 6 7 8], :B = [1], :C = []. In essence, a move con-
sists of removing a number from the beginning of one list
and adding it to the beginning of another list. At the same
time, of course, the graphic representation ring must be
erased and redisplayed in the correct position.

Let us first construct a procedure HANOI, which will
allow us to play with the puzzle and then, when we want,
solve it automatically.

OIN
	

P RII N
	

HAS 3 2

Tr HANOI
INITIALIZE
SETUP
ILAY
EFT::

8 A C

INITIALIZE should set colors and define constants.
SETUP should display the puzzle with all the rings on peg
A. PLAY should allow us to pick rings up and put them
down by simply pressing the names of the corresponding
pegs. Play might continue until 'Q' is pressed. The puzzle
should then be redisplayed and solved automatically, begin-
ning with the rings on peg B. The procedure SOLVE was
developed in the previous section. Procedures SETUP,
PLAY, and SOLVE will depend on workhorse procedures
GETRING and SETRING. The requirements for IN-
ITIALIZE will become apparent as we make choices about
representation.

In this procedure, note that the value of X, :X, is the name
of a peg, either A, B, or C. One might expect that the value
of :X would be denoted : :X, but this denotes the value of
`:X'. The primitive THING must be used. THING :X is
the list named by :X.

In order to discuss GETRING and SETRING, we need
to be specific about how to represent the graphics. We could
use the turtle, but we choose tiles because this allows the
most colorful display. The LOGO screen is divided into 32
columns numbered 0 to 31 from left to right, and 24 rows
numbered 0 to 23 from top to bottom. We can place the
rings on the display by locating them relative to their

as

•. 	-,
,

miumpapamm
i
i
m
_ snaggeouniumum

11111111110111111=11M11 i Ellaii1111111111•1111•111111
immumimmuus aimmiginummuu

slinnillIMMINIMUIMEn 111111111H11111111111••••••
1111111111111111111111111111111 11111111•11111116111111111111111111

11.1
Nis um
1.19r

w 	
w

anima no 	
_§11 t11011111111111MMIIIIIIIII

KIMilim
ilin N

III 111111111111111111111111111111
• 11111111111M1111111111111 ISM MOM
1. 	111111•0011111

WNW! 11111111111MAIIIIMMAIIIIIII 1111•11
1, 1111111111111 	N 	 111111M 	NMI 1..1 	M

..

111111

. •
.. L.,...i...
• L./a. akiza
a 	Tz7

all
a

la,

I L.

1
17

11
17

iii

MUUMMOMUMMUSUMMUMM
MUMNIORMMOSOMMOMME

Ommuilmannummumm
MUMMUUMMOSSMSEMOMM

rLi sium um
M 	 2111"."12221111111

Assume that INITIALIZE assigns the value 8 to N and
:TOP is the number of the ring to be displayed. Then
SETUP can be:

TO
CS

SETUP

STAND A
STAND B
F7Atil. C
MI.::: TOP N
'.AX' A
vF B (

C (
:N S E T N G A A E T ncrtlgT

P 	:TROP — 1
END

Using utilities MEMBER?, EMPTY, and ALARM, we
can write PLAY in such a way as to validate all inputs. We
want to accept either 'Q' or to stop PLAY the letters A,
B, and C only. (VALID will be initialized to [A B C].)
We also want to prevent an attempt to remove a ring from
an empty peg. If an error is made, we will cause an alarm
to be sounded. (See the listing for definitions of the utilities.)

TI LPL
MA :E

:X

Iiii:v.72.
• m.

,n, Ll

GETIRIN
L2

11 7 ...'N O T

SE7R:N
PLAIT

H E INPI 	1

A

T

Y

X RC
"Q H E N S T 0 P

	

Ei B E
	

V A
	

D THEN
GO
	

1
TY T H N G
	

H E N A LAR

G :X

X RC

	

E B E
	

V A D THEN
GO L 2
G :X

Copyright © 1983 Emerald Valley Publishing Co. 126 	The Best of 99'er Volume 1

No. 	Color 	No.
112 - Red -114
128 - Yellow -130
144 - Olive -146
160 - Blue -162

No. Color 	No.
120 - Orange - 122
136 - Lime - 138
152 - Sky 	- 154 	•
168 - Purple - 170

IMO
•
■
■
RR
RR

EWE

Ring

Ring
2
4
6
8

pegstands. Let ABASE, BBASE, and CBASE name the
coordinates for the centers of the pegstands. Reasonable
choices are :ABASE = [7 21], :BBASE = [25 21], and
:CBASE = [16 11]. Suppose a ring is the top one on a
given peg. Its center has as its column coordinate the same
column coordinate as the peg, and its row coordinate is equal
to the row coordinate of the base minus as many rings as
are on the peg. If we use TOP, COL, and ROW to contain
the number of the top ring and its column and row coor-
dinates respectively, we are led to:

TO 	S
MAKE
SF

T A ND 	:P
BCOORD H N WO B P B A

Col. 	FIR T B
R. 	LAS T B C 0 1 	• 	'

MA OL J 	:COL N 2
E A 1 	+ 	2 N 2 P T

:R 	A K :1 1
MAK K 	R• 1
B P A T N 	[PT 1 0 4 COL K A K

K K 1]
P 1 0 5 OL K
P C H A RN :P C 0 L B w
E N D

Ti es and co ors for the rings will be chosen as follows:
The shapes for the tiles are designed so that ring k appears
to be k + 2 tiles wide, but it is actually 3 + 2*(k/2) tiles
wide. The accompanying figure shows the number and shape
of all the required tiles, which we will have to make using
MAKECHAR.

Ring 	Tiles 	Color 	Tiles wide
1 	112,113,114 	Red 	3
2 	120,121,122 	Orange 	5
2 	128,129,130 	Yellow 	5
4 	136,137,138 	Lime 	7
5 	144,145,146 	Olive 	7
6 	152,153,154 	Sky 	9
7 	160,161,162 	Blue 	9
8 	168,169,170 	Purple 	11

MTh Sir T R ING
SE
00 H D

0 P
H N

H
G

11;1)G
0 D

P
P B A

C OL F B C 0 0 D
K CO N T T H N G

MAKE OW L A S B C 0 0 H D
K
DISPL Y BIN
END

0 E B I NG :P
M AK 005 D, THING WORD P
S
M AK E OP F ST 	.-.NG 	:P
M AK C OL F ST 	!''ORD

K C 0 [I N T TH:N' 	:P
OW AST 	:13),00RD

1
• R NG

F H I NG 	:P

In using these procedures, :P is a letter (A, B, or C). Thus
WORD :P "BASE will return the word ABASE, BBASE
or CBASE. Note how BF (BUTFIRST) and SE
(SENTENCE) are used to change the value of :P (which
will equal A, B, or C). By passing the name of the peg, we
can change its value. This would not be the case if we passed
the value of the peg to the procedure. (Computer scientists
call this passing parameters "by reference" rather than "by
value.")

We are left with the problem of actually displaying the
pegs and displaying and removing the rings. The work will
be done by STAND, DISPLAYRING, and ERASERING.
We need to choose the tiles and colors.

The bases will use tile 96 and be black. The pegs will use
tiles 104 and 105, and be white. Tile 104 is square, and tile
105 is rounded at the top. Recall that the number of rings
is :N, and the division in LOGO is integer division.

A ring appears when the right number of tiles of the right
shape and color are displayed.A ring is erased by display-
ing blanks and the peg tile. For effect, the rings will be
displayed from the center out and erased from the outside in.

R
L
0
P
E

0
A
E

T
N

K
P

D

ERAS
E "I
EAT

:1

134

1

RI
1

RO
"I
CO

N

L

G
:TOP 	/
T•P 	/
PT 	32
I 	— 	1
: SO

2
2

C OL
[P T 3 2

TO 	PI LAYRING S I P
T 	104 :T P 8
ID 	IC: + 	:T 0 P 8

1111M
M 	 :

P T 	lee
•cu, H

:T • P 8

T :TOP 	/ 2 	[P T
H PT ID C OL R •

A 	AK 1]

w :L T : 	L TOP 2 1 B •

PT 	:R T :C o T•P 2 1

END

We are a most -eady to play with tie puzzle. IN-
ITIALIZE (see listing) defines colors for the tiles, and
assigns values to N, VALID, ABASE, BBASE and CBASE.

No. Color 	Part 	No. Req'd
96 	Black 	- Base 	- 9 x 3
104 White 	- Peg 	- 16
113 	Red 	- Ring 1 - 	1
121 Orange - Ring 2 - 3
129 Yellow - Ring 3 - 	3
137 Lime 	- Ring 4 - 	5
145 Olive 	- Ring 5 - 	5
153 Sky 	- Ring 6 - 7
161 	Blue 	- Ring 7 - 	7
169 Purple - Ring 8 - 	9

105 White

Peg Top

3 Req'd

*OWN
W111111•1111111/
O■■■■■O■
MMMMM MIN
■■■■■■ME
MMMMMM OM

■■■■■■■■

LIYU

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	127

Before anything will happen, though, the tiles must be defin-
ed using MAKECHAR. (See figures.) Then, ENJOY! Recall
that to manipulate the rings, you just need to press the let-
ter of the peg from which you want to take, or to which
you want to add a ring. Use the procedure HELP if you
forget.

After you have had some fun with the puzzle, you might
want to try a four peg variation. To implement a four peg
version, do the following:
Change INITIALIZE to include:

MAKE "VALID [A BCD]
MAKE "ABASE [8 10]
MAKE "BBASE [24 10]
MAKE "CBASE [8 23]
MAKE "DBASE [24 23]

In SETUP, add:

MAKE "D []
STAND "D

The puzzle should then contain four pegs: A, B, C, and
D. It can be manipulated just like the three peg puzzle. The

automatic solution will still use just three pegs. But as a wor-
thy challenge, you might try to write a better version of
SOLVE which takes advantage of the fact that there are
two auxiliary pegs instead of just one. The puzzle should
take fewer moves to solve. How many less than 2n — 1
moves are required if there are n rings and four pegs? I
would be interested in any of your results. Then can five
pegs be fit on the screen. . . ?

But if you are looking for a lesser challenge, or just want
to experiment with a simpler puzzle, note that the number
of rings is set in INITIALIZE and can be changed. Try this:
Enter INITIALIZE, and then MAKE "N 5 (or some other
integer). If you now enter SETUP, a puzzle with 5 rings
will be displayed. Enter PLAY, and you can manipulate
this puzzle until you press Q. Now enter SETUP again, and
then SOLVE 4 "A "C "B. This will cause four rings to
be moved automatically to peg C. Then enter PLAY and
you can complete the puzzle by yourself. With LOGO, the
procedures are your own to do with or modify as you please.
Use your imagination, make up other puzzles, or just go
ahead and play with this section's puzzle as is.

TO
INI
SET

TO

T

TO

A

G

A
S
P
E

TO
CS

iMA

P

PLA
RFT

TELL
TELL

74.7)1.4.

ii!

1h44113
10 '•.

STAND
STAND
STAND
MAHE

IM
KH

MA.
REPEAT

END

H

U

U
'L V

I

P L L

F
L

0

L
E
L AY
N D

;E 7

F 	-v:TY?

:TOP

A
AL

P

P
E 	8

N 	T
L

	

T 	L
L
1.

r
T:LE

r . !

„

P L A

E 	X
:X
N 	T

Li
RING

X

GO
G

SET UP

A
B
C

11 111

"BpAa
" 	BAS

E

A

A
E
E

RC

E

:X

R C

'X

A

C
P
I
I
I
N

IZE
96
104
• •

136
144
152
1 ,50

E

Q
B
L

B
L

:N
I

]
[S

1

128

• 58

B

SC

: 	 SC

A
I 7

1C

THEN
ER?
1
HING

ER?
2

E
I

SC

sr

C

: B

B 	C
7

2

:X

:X

:X

B 	N

STOP

h l`
(:)11

GI!

.

G

ACK

1 :HE

lur SLIT '

:VALID

:VALID

'1
AIN

:

THEN

A

E

G E
w

E

A

ALAB

K E

THEN

THEN

0

Lhu

TO
IF
LSE
IF
T

END

TO
CS

111

rh

USH
END

TO

SF

96

PT
PT

TO

SE

.

BPIFIP

OUTPU

PRINT
PUZZL

MAKE

MAar,
REPEAT

MAKE
REPEAT

"K

END

MAKE
MAKE

MAKE
MAKE
MAKE

ME
:L

:X
"TR

HE

ilr

SPL

STAND

:I

105
CHARNU

SE

LA

3 0
EP

T

L

E

")

"IC

:X

"

A

BE
1ST

"C OL
"RO

" [COL

M

P

T

S L 1

T
S•L

1,
:ROW

:N
—

B ING

KI

YR

Ft

BCOORD

:COL

:ROW

:COL

B

P E

H

Q
V

:P

Fl

+

1

SE

F
C 	UN

I N

LA

IP

H A

A
0 w N

U

	

E D 	A

TH

AST
ST

2
M AXE

	

T 	1
I

	

P 	:

P
TOP

TH

l

D

 CT

T
• •

I:

LI ST

N

B

AND

NG

BC
N

0 1 4

C

A 	RING.

BF

BCOOR

/
:N

BC
NG
:B

ATI

• ORD

0 U

TH

C

A

OR

2
/

C 0 L

0011
:P

C

O W

T P

N

B

C
A

D

D

2

D

D

B D

U T

ST

EGIN

0

H
LLY,

:P

)
1

K

F

U TP

RE

THE

[PT
]

i 	AKE

1

B

BA

A

U

P

A

0
F

S 0
G IE
S
E N

0

MA
RE

OW

PT

EN

TO

0
P
E

L
E

TO
MA

MI-
M

K

iF

Muer

MAEL
MAKE

ERASE
MAKE
END

NS A
LYE

LYE
D

D

P EA

D

IP

W
T
ND

0
F
SE
ND

K

SOIL

TRIN

E
T

M A ISE
:L T

RT

M A KE
1 0 4

C 0 UN
: L IS
0 UT

G

E

E

ID

AS

RING
:P

V

2
N

G
N

LT
ID

RT

1 	1

R•W

E
1

1
B

C

T
U

T OP
C OL
K CO

OW

P TY?

0

H

:COL

:TOP

:COL

:COL

B INGH!P
COOTIb

BF

—
P1
—

124

106

1

+
OW
I
OL

T

U

105

PT

ING

1

1

/

:1

+

: T
P

:

S

F
F
U :7

L

U

1.11)

SE

—

THING

G

: 	P
T

: P 3

+
+

+
:R OW

2
:
+

:

0 P
0 P
T 3

B 0

H
S
,

LA

S

TH
CO

P 2
E T B

P
N G

P

TO P
:T 0
TO P

P
D
1
0 P

0 P

2
2
1

EN
UN

:B
ING

:B

H E
A

THING

ING

3

2

P

C OL

2

C
1

T

P

N
LSE,

Viatip

OORD

:P2
P2
:

,

8

8

2

2

P
0

F

:P
OORD

OU

Y1

0 U TPUT

:P1

8

D

+

3

:P

P

COL

1

2

0
:LIST

:PI

I

E

:ft

B 0

B 0

0
B

BA

TjI R

128 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

