
TIASqv s vDP
M0E0

DISPLAY
PPODESSOPI

t:

Rou

a II

acre

VDP
DISPLAY
MEMORY

5FEED•
1/0PULE DO

op

Tin NOD

16 BIT'
C riOp RUE ESSO

	n

ROM
sysTvii

VONirop

FLANI
'.CHATCH

Pod

1
-

a 	 1i

1 1

MI 	==. Via IMAM

	

IN. &di 	,MLI=L 141110i•

cA5IFTTE 	 10 r6T'C
FirTEPEACE 	iNTERFA.CE

ybxEf
r Fr 11,0AFICt

0

4'1 Hot,

'INS Jew
IQ CONTROL

5
Assembly Language

5
Assembly Language

Faster than a speeding cursor! More powerful than
Extended BASIC!—It's SUPER LANGUAGE!

TMS9900 Machine and Assembly Language:
Part 1: Electrical Signals, Number Systems

and CPU Architecture 	 131
Part 2: Registers, Programming, and

the Need for Assemblers 	 133

Fundamentals of Assembly Language Programming:
Part 1 	 136
Part 2 	 138

Magic Crayon: Learning Assembly Language
the Hard Way 	 146

MINI MEMORY Cartridge 	 154

A Screen Printing Utility:
Part 1: Design Considerations 	 157
Part 2: Screen Dump 	 158

TI:109900
Machine &

	 rimmipeivie.~4., Assembly
Language

PART 1: Electrical Signals, Number Systems & CPU Architecture

I f you're a reader of 99'er Home Computer Magazine,
you are probably aware that there is a difference be-
tween 8-bit and 16-bit computers . . . although just

exactly what that difference is—other than "16 bits are
twice as many as 8 bits"—might not be that obvious. My
purpose in this series of articles is, therefore, to discuss
the inner workings of your 16-bit computer by gradually
introducing you to its operation and low-level program-
ming in a language much closer to the way your com-
puter operates without any BASIC interpreter slowing
things down, or coming between you and the power of
your machine.

The heart of any computer is its microprocessor, and
the one we'll be examining is, naturally enough, the Texas
Instruments TMS9900—the 16-bit chip around which this
magazine is organized. To understand its operation, we
first have to know something about electrical signals and
number systems, so let's begin our discussion here.

Clocks, Pulses, Bits & Bytes
The electrical signals used by a computer are labeled

high and low, or 1 and 0, respectively. One of these
signals is called a bit. Inside the computer this cor-
responds to one wire. All of the wires together are called
a bus. The computer reads and writes a part of the bus
called the data bus at specific intervals, which are
regulated by a clock. The signals that the clock produces
to tell the computer when to read and write are called
clock pulses.

#1 	 *2 	*3 	*4

1 	1 	I 	1 	1 	1 	I 	1

---I– – 	 111 	1E
HIGH

L"

1 0 1 	 1 I
	

DATA RECEIVED

2 SIGNAL LINES
READ TOGETHER

1 0 I 	11 I 	DATA RECEIVED

At each pulse of the clock, the computer reads a group
of lines. Your normal, run-of-the-mill microcomputer
uses groups of 4,8,or 16 bits. All the information read
or written is called data. If the computer is reading or
writing on 1 line, the data is called serial. If it is reading
or writing on a group of lines together, the data is called
parallel. 4 bits in parallel are called a nybble; 8 are a byte;
and 16 has no name, but I propose to call it a gobbyl.

Look at Chart 1. The top line is the clock. In this ex-
ample when the pulse is high, the computer reads the
signal lines. Notice that when there is only one signal line,
the data received can be only a 1 (when the line is high)
or a 0 (when the line is low). There are only two possible
codes you could see during one clock pulse. You would
see a 1 or a 0.

Now look at what happens when you have two signal
lines grouped together: 4 different codes are possible. On
clock pulse #1 both lines are low (code 00); on pulse #2
the bottom line is low and the top one is high (code 01);
pulse #3 has the bottom high and the top low (codel0);
and pulse #4 has both lines high (code 11).

DECIMAL
	

!NARY

16161413 2 	1 —COLUMNS

—VALUES

—POSITIONS

6 5 4 3 2 	1 —COLUMNS

—VALUES

—POSITIONS

91
=

 bZ
Z
E

 =
 gZ

co xr

x 	x

N

n

1 	
=

00
1

01 	
=

 101

, 1 0 1 	4

'DIGIT x VALUE' I DIGIT x VALUE'

--. 	4 x1 = 4

1x10 =10
	Ox 1 = 0

2 I x2=
1,4=4 = 93 Ox 100

0 	x = 1000 	0 1,6 =e
DECIMAL 	TOTAL 	=14 DECIMAL 	TOTAL =14

BINARY 	DECIMAL 	HEXIDECIMAL 	BINARY 	DECIMAL 	HEXIDECIMAL

0000 = 	00 	= 	0 	1000 	= 	08 	= 	8
0001 = 	01 	= 	1 	 100 1 	= 	0 9 	= 	9

00 10 = 	02 	= 	2 	 10 10 	= 	1 0 	x 	A

00 1 1 = 	03 	= 	3 	 10 11 	= 	11 	x 	B
0 100 = 	04 	= 	4 	 1100 	= 	12 	= 	C

0 10 1 = 	05 	x 	5 	 1 10 1 	= 	13 	= 	D
0 110 = 	06 	= 	6 	 1 1 10 	= 	1 4 	, 	E

0 1 	1 	1 	= 	07 	, 	7 	 1111 	. 	15 	r 	F

Chart 2

CLOCK PULSES

READ CYCLES

SIGNAL LINE

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1
	

131

Chart 1

Number Systems
These codes could also be considered numbers. Count-

ing with only 0's and l's is called binary (from the Latin
word for two) or base two counting. Ordinary, plain,
vanilla numbers that we use everyday that are called
decimal (from the Latin for ten, of course) or base ten
numbers. Even though we have only the ten digits from
0 to 9, we can make very large numbers by using the same
digits in different positions. Follow along on chart 2.

The position on the extreme right in a decimal number
is the ones column. For that matter, the position on the
extreme right in any base is the ones column. Why?
Because you find the column value by taking the number
of digits you have and raising it to the power of column
minus one. For example, if you have ten digits, and the
column is number 1 (from the right), then the value of
that column is 10 to the 1 minus 1, or 10 to the 0 power.
Any number to the 0 power is 1, so the first column is
always ones in any base.

The second column is a different matter. In base ten
it is 10 to the 2 minus 1, or 10 to the 1st power, or 10.
So if you write 14 what you mean is 4 groups of ones
and 1 group of tens. In base two the second column (from
the right) would be 2 to the 2 minus 1, or 2 to the 1st,
or 2. The second column or position in binary is the twos
column.

The thing that makes the zero so neat is that it holds
the position without giving it a value. Zero ones is zero!
If you just left a blank there, people would have to write
all their numbers in little boxes or pretty soon the col-
umns would get all jumbled up. Is there one blank or
two? . . .or three?? Better use the zero.

The columns in binary numbers are just like the signal
lines in a computer. In theory, the columns go on
forever—and so do the numbers. Regardless of the base
you are in, you can keep writing numbers forever! But
wait! I just said that signal lines are usually groups of
4, 8, or 16. If signal lines are the same as columns, then
there is a limit to the size of number a computer can
understand. How big is the biggest number you can use?

To find out, raise the base to the same power as the
number of positions you have. On chart 1 when we used
two lines, that was 2 to the 2nd power, or 4 codes or
numbers. With 4 lines, there are 16 (2 to the 4th); with
8 there are 256; and with 16 lines there are 65536.

The last code on the chart is 1111, which in decimal
is 15. I said you could get 16 numbers with four lines,
so where is the last number? Don't forget to count 0! 0
through 15 is sixteen numbers, 0 through 255 is 256
numbers, and so on.

There are other bases, or course. The numbers marked
hexadecimal are from a base with 16 digits—the normal
10 digits from 0 to 9, plus the letters A to F. Use them
just like any other digits. For instance, on the chart, 1111
binary is 15 decimal and F in hexadecimal (hex for short).
The next number in hex is 10; in decimal it is 16; and
in binary you have to add a new position (sixteens) and
write 10000.

You can always add as many zeros to the front of a
number as you want without changing it. However, if you
make a binary number divisible into groups of four, an
interesting thing happens: Each group of four can repre-
sent 16 codes or numbers. Since that is exactly the number

of digits in the hex number system, you can substitute!
This makes long binary numbers much easier to read, and
doesn't change their values at all.

Try a few yourself. They're easy!

	

1 	...• .• • 	Binary number with 5 positions. Equal to 10 HEX.

	

000 I 	• • .• • 	Fill to 6 positions by adding zeros to front

	

000 	Ib, 	Break nto groups of 4.

Give e eh group the proper HEX digit (see chart 21

	

I 	
i 	 10 is the HEX value for 10,000 binary.

	

10 I 1 	001 	BINARY

	

B 	 2 	HEX

	

I 	01 10 		BINARY

	

000 i 	0111;4

	

1 	 6 	HEX

	

11 0 1 	0 11 0 	 1 0 11 	II0 I I 	0 1 0 1 	11 00 	0 100 	01111 	oas

	

D 	 6 	 8 	 8 	 5 	 C 	 4 	 7 	 6

VALUES

960
v
 .0

k

9
g

2

1 	
.091

POSITIONS 2 4 3

Chart 3

Hardware
The TMS9900 is called a 16-bit CPU (Central Proces-

sing Unit). This means that when it fetches an instruc-
tion from memory, it gets 16 bits in parallel. And when
it reads or writes data this is usually done in groups of
16 bits too. [In the TI-99/4A, however, this 16-bit group
is converted into an 8-bit data bus.—Ed.] You may hear
the term word used for 16 bits. If you are talking about
a 16-bit machine, the term is correct. But remember, if
you are talking about an 8-bit CPU, 8 bits (or byte) is
a word; if the CPU is 32 bits, the word is 32 bits.

It is necessary for a programmer to know about only
two kinds of memory. Random-access memory (RAM),
sometimes called read/write memory, is what stores the
user's program, data, etc. The user or the computer can
read or write in it. The memory location is chosen by the
lines on the bus called address lines. The data that is be-
ing read or written appears on the data bus.

Read-only memory (ROM) comes in many varieties
and works just like RAM except for one thing—it can't
be written to. If you tell the computer to write, it will
go through the motions of writing, but it doesn't work.
The old data is still there.

Inside the CPU there are a few memory locations that
are not addressed by the address bus. The chip itself
knows where they are. These are called registers. All
machine language and assembly language programming
involves manipulating the data in these registers, because
that is all that the computer really can do!

How many registers there are and how big they are
varies widely. The chip manufacturer usually labels the
registers and decides on a short code, called an opera-
tion code (op-code), for each of the manipulations that
the chip can do. An assembler is a program that reads
these op-codes and writes them into memory in the binary
form that the CPU understands. When you write a pro-
gram using the op-codes, you are writing in assembly
language. If you write your own assembler you can devise
your own op-codes. But because the manufacturer
generally writes an assembler for his chip, you can use
his op-codes.

About the only thing all CPUs have in common is a
register called the Program Counter (PC). The address
bus is just an extension of the PC. Each bit of the pro-
gram counter is, in effect, connected to one signal line
of the address bus. Since the TMS9900 chip was designed
especially for dedicated control purposes (e.g., produc-
tion lines inspection or phone switching) where the pro-

132 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

L A EQ C OV X
XOP

C
A
R

0
V
E
R
F
L
0
w

P
A

T

UNUSED INTERRUPT
MASK

(A=0

.:.. .:.' . •^ =

REGISTER

IDIEI •••• 	.V112131415

4000 H

CLOCK

0 -14 	 MEMORY

4000 H
4001 H
4002 H

4003 H

ARESS DD 	
>

SUS 	10 10 1100

1st FETCH 000 0 t to

1st DATA BYTE

0 -14 EMORY

4000 H

4001 H

400. 2 H

4000 H
CLOCK

ADDRE SS to u7 1100
2nd FETCH 000 1 0110

2nd DATA BYTE

-4— INCREMENT 2

EXECUTE CYCLE
EXECUTES INSTRUCTION

MEMORY

4000H
4001 H
4002 H

4003 H

.....

111

H
10 195 1100

0001 0110

Chart 4

gram is always in ROM—and since at the time most
ROMs were made for 8-bit computers—the address bus
of the 9900 is a little unusual.

The bits of the PC allow the chip to address 65536
blocks of memory. The blocks could be any size, but as
1 said, most ROMs were in blocks of 8 because most com-
puters had an 8-bit data bus. The PC in the 9900 has 16
bits. These are labeled 0-15, from (left to right), most
significant bit (MSB) to least significant bit (LSB). Why
are there only 15 address lines? Follow on Chart 4 as we
go along.

Normally the PC advances after each instruction or
parameter it fetches so that it points to the next memory
byte. But the 9900 needs 16 bits instead of the 8 available
at each location in most ROMs. So the 9900 has two dif-
ferent fetch cycles: it reads the byte indicated by the PC
on the first cycle, hooks the next byte to it on the second
cycle, then increments the PC by two. To the user this
all appears as one fetch, except that the PC is incremented
by two instead of by one as expected. By eliminating the
last bit, however, the address line appears to step nor-
mally. The drawback is that you can address only 32767
words. It's still 65536 bytes though.

PART 2: Registers, Programming & The Need For Assemblers

Status Register
Almost every CPU has some kind of flag(s). These are

set (high) and reset (low) by actions performed in the
manipulations of data. Different instructions affect different
flags. Modern CPUs combine several flags into a single
Status Register. The TMS9900 is no exception. Its Status
Register (ST) is 16 bits long. Bits 7-11 are not used at pres-
ent. The others are shown in the drawing below and are
explained in the text.

TMS9900 STATUS REGISTER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Each of these conditions will be discussed in more detail
as examples are shown. Until then, these simple descriptions
will help.

The four bits labeled 12-15 can select up to 16 interrupt
levels. All levels equal to or above the level indicated are
enabled.

Bit 0 is set after any operation where the destination value
(answer) is greater than the source (the first operand used;
it remains unchanged). All 16 bits are used for the
comparison.

Bit 1 is similar to bit 0 except that the values are com-
pared as signed integers. The MSB (most significant bit)
designates the sign of the integer, with a 1 meaning negative
and a 0 meaning positive. The range is + 32,767 to — 32,768.

Negative numbers are represented in a two's complement
fashion.

Computer math is cyclic. This means that if you add 1
to the highest possible 16-bit number (FFFF hex), you go
back to 0000 hex with a carry bit that is set. If you subtract
1 from 0000 hex without the carry, you get an overflow;
but if the carry is set, you get FFFF hex. Therefore, — 1
is FFFF hex in two's complement. To see its usefulness, let's
add —1 and 1: FP FF hex plus 0001 hex equal 0000, the carry
is set, and the answer is zero. In a nutshell, this whole
business of two's complements and carry bits is simply a
way to subtract by adding.

Bit 2 is set if the two operands are equal.
Bit 3 is set if a 1 is shifted out of an operand, or if a carry

occurs in a math operation.
Bit 4 is set if the math requested cannot be done.
Bit 5 is set if the parity is odd, and reset if it is even. Odd

parity means that there is an odd number of is in the binary
representation of an operand.

Bit 6 is set after an extended operation has been com-
pleted. This is done because an interrupt is not checked for
after completion of an extended operation. (You therefore
may wish to have the software check for one if this flag
is set).

The ALU
Most CPUs have an Arithmetic/Logic Unit (ALU) where

the simple math is performed. An accumulator, a special
register used by the ALU, usually contains the answers to
the math. In the TMS9900 there is no accumulator because
the destination address serves as the equivalent of an ac-
cumulator. This means, in effect, that any memory loca-
tion can be the accumulator. There is an ALU on the
TMS9900 chip, but its operation is intrinsic to the
instructions.

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	133

Other Registers
Most CPUs have a few extra registers where quickly-

eeded values can be stored, as well as a register called a
Stack Pointer which points to a section of memory where

ore data can be "piled" and then quickly accessed. These
two concepts have been combined on the TMS9900 into a
single Workspace Pointer Register (WP). The WP points
to a block of 32 bytes of the memory arranged as 16
workspaces (WS), each 16 bits long. The workspaces are
synonymous with registers, and are used the same way. We
can change the WP in several ways and can save the old
WP when a new one is used. This allows us to return to
the old one if we need to. This set-up, in effect, acts like
an elaborate stack.

There are five different ways to use these WP registers
to indicate an operand for an instruction. These addressing
modes are as follows:

1. Workspace Register Mode 	—the data in the in-
code 00
	

dicated register is the
data used.

2. Workspace Register Indirect —the data in the
code 01
	

register is treated as
the address of the
real data.

3. WS Register Indirect 	—same as above, but
w/Auto-Increment
	

the register is in-
code 11
	

cremented upon
completion.

4. Symbolic or Direct 	—the address of the
code 10
	

data follows the in-
struction in memory.

5. Indexed 	 —same as above, but
code 10
	

the value in the index
Td or Ts equal 1-15
	

register is added to
the address.

There are three other addressing modes not dealing with
registers per se: (1) The immediate mode has the data im-
mediately follow the instruction code. In other words, the
address of the data is the address immediately following the
PC. (2) The CR U mode has the address of an external in-
put/output (I/O) device determined by bytes 3-12 of register
12. (3) The JMP instruction (and all variations thereof) uses
the last 8 bits of the instruction to determine where on a
256 byte page to jump. The PC indicates the center of the
page, so the jump can be from PC — 128 to PC + 127. One
byte is taken up by the jump instruction itself. The 8 bits
store the relative jump in two's complement form.

Programming and the Need for Assemblers
If your CPU is the TMS9900, the simplest computer you

could construct would be composed of a clock, a CPU,
some memory, a few control switches, 16 data switches, 16
lights for read out, and 15 address switches. It would be
crude and slow to program, but once programmed, it would
operate as well as any other computer. But how could we
program it?

Suppose we wanted to load register 1 with zero, and then
increment it until its contents were equal to either 1024
(decimal) or the contents of register 2. The first step can

be done several ways. Immediately loading register 1 with
0 comes to mind first. A little investigation of the instruc-
tions for the chip show that we could save a word of memory
by using the Clear command. Figure 1 shows the register
format for the various commands, and Figure 2 shows the
op codes for the instructions.

Using this information, we can now determine the binary
values of each word. Load Immediate uses the first 10 bits
as the op code; the 1 1 th bit is not used; and bits 12-15 select
the register. This means the first word is

00000010000X0001, where X can be 1 or 0.
The second word is the value to load, and in this case would
be all zeros.

Using our simplified computer, just flip each switch on
if there is a 1 at the corresponding bit, off if there is a zero.
Press the Input control switch (it might be called Load, or
. . .), and the instruction is stored in whatever address the
address switches are set to. Then add 1 to the address switch-

FORMAT 0 11 1 2 3 4 1 5 6 1 7 1 81 9 10111 12113114115

r
.
 N

 C
I

e
t
 I

S
I C

.D

r
.
 co 	

co I
OP

CODE B Td D Ts S

OP CODE 	 1 	RELATIVE JUMP

OP CODE D Ts S

OP CODE C Ts S

OP CODE 	 1 	C W

OP CODE 	 I 	Ts S

OP CODE N

OP CODE N 	W

IMMEDIATE VALUE

OP CODE 	I 	D 	1 	Ts I 	S

KEY

mode

+127

Td/Ts FIELD CODES

B 	1=byte 0=word
Td destination address
D 	destination address
Ts source address mode
S 	source address

C 	counter

W register number
N unused
RELATIVE JUMP from

00 Register
01 Indirect
10 with RO, symbolic
10 with R1—R15, indexed
11 Indirect with increment

to —128 	 Figure 1.

es (which adds 2 to the PC) and set all the data switches
to zero. Press Input again, and our complete instruction is
ready.

If instead, we use the Clear instruction, we would use the
single-operand general format with the first 10 bits being
the op code. The next two bits indicate address mode, and
the last 4 bits select the register. Since we want to clear the
register itself (not the word it points to), the code is 00,and
the whole instruction is 0000010011000001.

Even with a hex keypad and a small monitor program,
it would be a very time-consuming process to piece together
the binary words, and then convert to hex and type them
in. Typing in 04C1 is easier than setting switches to

0000010011000001,
but putting together those op codes is just the tedious, bor-
ing kind of work that computers are supposed to free us
of. So why not use them for that?

Why not, indeed. . .That's exactly what we'll do when
we look at a TMS9900 assembler.

134 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Figure 2.

Mnemonic Op Code Format Status Bits Affected Meaning

A 1010 0-4 Add words
AB 1011 0-5 Add bytes
ABS 0000011101 0-4 Absolute Value
Al 00000010001 0-4 Add immediate
ANDI 00000010010 0-2 And immediate
B 0000010001 -- -- -- Branch
BL 0000011010 Branch and Link (R11)
BLWP 0000010000 -- - -- Branch, load WP
C 1000 0-2 Compare words
CB 1001 0-2, 5 Compare byte
CI 00000010100 0-2 Compare immediate
CKOF 0000001111000000 -- -- - External Control
CKON 0000001110100000 External Control
CLR 0000010011 -- -- -- Clear
COC 001000 2 Compare Ones Corresp. (OR)
CZC 001001 2 Compare Zero Corresp. (AND)
DEC 0000011000 0-4 Decrement by one
DECT 0000011001 0-4 Decrement by two
DIV 001111 4 Divide
IDLE 0000001101000000 -- - -- Computer idles
INC 0000010110 0-4 Increment by one
INCT 0000010111 0-4 Increment by two
INV 0000010101 0-2 Invert (complement)
JEQ 00010011 -- -- -- (ST2=1) Jump if equal
JGT 00010101 (ST1=1) Jump greater than
JH 00011011 (STO and ST2=1) Jump high
JHE 00010100 (STO or ST2=1) Jump high or equal
JL 00011010 (STO and ST2=0) Jump low
JLE 00010010 (STO=0 or ST2=1 Jump low or equal
JLT 00010001 (ST1 and ST2=0) Jump less then
JMP 00010000 (none checked) Jump unconditionally
JNC 00010111 (ST3=0) Jump no carry
JNE 00010110 (ST2=0) Jump not equal
JNO 00011001 (ST4=0) Jump no overflow
JOC 00011000 (ST3=1) Jump on carry
JOP 00011100 -- - - (ST5=1) Jump odd parity
LDCR 001100 0-2, 5 Load CRU
LI 00000010000 0-2 Load immediate
L IMI 00000011000 12-15 Load immed. INT mask
LREX 0000001111100000 12-15 External control
LWP I 00000010111 - -- Load immed. WP
MOV 1100 0-2 Move word
MOVB 1101 0-2, 5 Move byte

MPY 001110 - - -- Multiply

NEG 0000010100 0-4 Negate (2's comp.)

OR I 00000010011 0-2 OR immediate

RSET 0000001101100000 12-15 External control

RTWP 0000001110000000 0-6, 12-15 Return with WP

S 0110 0-4 Subtract word

SB 0111 0-5 Subtract byte

SBO 00011101 -- -- -- Set CRU bit to one

SBZ 00011110 Set CRU bit to zero

SETO 0000011100 -- - -- Set ones

SLA 00001010 0-4 Shift left (0 fill)

SOC 1110 0-2 Words (OR) Set ones corresp.

SOCB 1111 0-2, 5 Bytes (OR) Set ones corresn.

SRA 00001000 0-3 Shift right (MSB fill)
SRC 00001011 0-3 Shift right circular
SRL 00001001 0-3 Shift right zero fill
STCR 001101 0-2, 5 Store from CRU

STST 00000010110 -- -- - Store ST

STWP 00000010101 Store WP
SWPB 0000011011 _ _.... Swap bytes
SZC 0100 0-2 Words (AND) Set zero corresp.

SZCB 0101 0-2, 5 Byte (AND) Set zero corresp.
TB 00011111 2 Test CRU bit
X 0000010010 Execute
XOP 001011

--6--
Extended operation

XOR 001010 0-2 Exclusive OR

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	135

co

IT'S SUPER
LANGUAGE

PART 1: Fundamentals of Assembly Language
Programming on the TI-99/4A

B efore getting into the details of the TI-99/4A
Editor/Assembler package, we should first consider
what an assembler is and what it can do for us. Most

readers are already familiar with the TI BASIC language,
and many have already experienced the disk-oriented
features of Extended BASIC. These BASICs are interpreted
languages. When a BASIC program is being run, the BASIC
interpreter converts (interprets) the BASIC statements, one
statement at a time, into machine language—the binary ones
and zeros that the computer understands. It then executes
the statement it has just converted. Since a single BASIC
statement usually generates several machine instructions,
programs can execute relatively slowly. This is especially true
in programs containing loops because each statement in a
loop is interpreted each time it is encountered.

BASIC programs are simply input and RUN, but pro-
gramming in assembly language involves an extra step which
is not apparent in BASIC programming—namely the
assembler stage: Assembly language programs must be in-
put, then assembled and finally RUN. The assembler con-
verts the assembly language statements (or source program)
to machine language; it is the machine-language (or object)
program which is RUN. Because there is no waiting for each
statement to be interpreted at runtime, programs written in
assembly language run extremely fast.

Another major difference between BASIC and assembly
language is the difficulty of writing programs. A BASIC pro-
gram is relatively easy to code because the instructions are
English-like and the programmer does not have to worry
about where variables reside in memory or have to under-
stand the structure of the machine. Assembly language pro-
grams, on the other hand, are harder and more time-

consuming to write because the instructions are machine-
oriented (see "TMS9900 Machine and Assembly Language")
and the programmer must understand the structure of the
machine. Debugging assembly language programs is harder,
too. But these difficulties are not necessarily disadvantages,
because an understanding of the machine allows a program-
mer to create more efficient programs. Programming in
assembly language is an education in itself, and is one of the
best ways to learn how a computer works.

A programmer must consider these tradeoffs in choos-
ing the best language for each application. In general,
BASIC is faster to write and debug, but assembly language
programs execute faster. Happily, TI has made it possible
to choose both by enabling Extended BASIC programs to
CALL assembly language subroutines. This means that a
programmer can write mainly in Extended BASIC and use
assembly language for portions of the program where faster
execution is required (loops, and especially, sorts). Writing
short assembly language subroutines to CALL from Extend-
ed BASIC programs is a good way to ease into assembly
language programming, and after some practice you may
find yourself writing entire applications in assembly
language.

What follows is a preliminary look at the TI-99/4A
Editor/Assembler package. It is, however, only an over-
view of the product. Other sections will go into more depth
on specific features of the software.

Software Media and Required
Hardware

The Editor/Assembler software resides in a Command
Cartridge and on a disk. To run it, you'll need at least one

1 36 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Larger system (TXMIRA):
LI 	2,0
LI 	12,>C0
SBO 	>F
LDCR @ZERO,II
SBZ 	>F

LOOP LDCR @AB(2),7
SBZ 	>8
SBZ 	>A
INC 	2
CI
ILT 	LOOP

ZERO DATA 0
AB 	TEST 	'AB'

TI-99/4A assembler:
REF 	VMBW .

1_1 	0,0
LI, 	1,AB
LI 	2,2
BLWP @VMBW

AB
	

TEXT 'AB'

MOVE 0 TO REGISTER 2 FOR INDEX
SET CRU BASE ADDRESS FOR SCREEN
SELECT CRU WORD I
MOVE CURSOR TO HOME POSITION
SELECT CRU WORD 0
PUT CHARACTER ON CRU LINE
STROBE CHARACTER TO SCREEN
INCREMENT CURSOR POSITION
ADD I TO INDEX REGISTER
COMPARE REGISTER 2 TO 2
I OOP IF MORE CHARACTERS

DATA DEFINITIONS

EXTERNAL REFERENCE TO ROUTINE UTILITY

VDP RAM ADDRESS = 0 FOR HOME POSITION
REGISTER I POINTS TO FIRST CHARACTER TO DISPLAY
REGISTER 2 = NUMBER OF BYTES TO WRITE
CALL UTILITY ROUTINE TO WRITE STRING

DATA DEFINITION 	 Figure 1

disk drive and the 32K expansion RAM. Both the Editor
and the Assembler are selectable from menus, and most of
the screens include easy-to-understand prompting messages.

The Editor
The Editor is used to input Assembly Language source

programs initially, to update programs previously saved on
disk and to print programs. The Editor's features compare
favorably to those of larger systems.

There are two modes: Edit Mode and Command Mode.
Edit Mode is always used to input a program for the first
time, but either mode can be used to change existing pro-
grams after loading them from the disk or typing them in
Edit Mode.

Edit Mode is entered directly from the menu. The screen
is a 40 x 24 window on the source program. Function keys
allow you to move this window to the right or left in
20-character increments, or up and down 24 lines at a time.
(Since most of my Assembly Language programs have fewer
than 40 characters per line, I tend to view the leftmost 40
characters and make heavy use of the up and down scroll-
ing). The four cursor keys are enabled in Edit Mode, mak-
ing it especially easy to correct typographical errors. Whole
lines can be inserted into the text by moving the cursor to
the adjacent line and pressing the Insert function key; a new
blank line is inserted, and the user simply types in a new
line. Similarly, a whole line can be deleted by moving the
cursor there and pressing the Delete function key; the line
is removed and the line numbers of the following lines are
automatically decremented. There are also keys for insert-
ing or deleting characters. A Tab key is also provided for
tabbing to columns 8 and 16. Edit Mode makes it very easy
to enter new programs because the user can both type the
source program in a natural manner and correct errors and
omissions as they occur. Edit Mode is exited via the Back
function key, which puts the Editor into Command Mode.

Command Mode reminds me of the UCSD Pascal editor.
The first line of the screen shows the Command Mode op-
tions: Escape, Find, Replace, Move, Insert, Copy, Delete,

Show, and Adjust. Line 2 is reserved for parameters to be
input by the user, so in this mode the text window is 40 x

22. Most options require further information to be given
on line 2, and very clear prompts given so the user knows
what line to enter.

Each option is selected by typing the first character of
the option name. For example, to find an occurrence of a
string in the source program, the user enters F. The system
responds with the prompt < count > < (start col, end
col) > /string/. To find the second occurrence of the string
ABCD between columns 1 and 50, the user would type
2(1,50) /ABCD/. The system would then display the sec-
tion of the text containing the second such occurrence of
ABCD (if any) with the cursor over the A. The symbols
< > in the prompting message indicate optional parameters.
To find the next occurrence of the string ABCD in the whole
source program, the user need only type /ABCD/. The
Replace option is like Find, except that each specified oc-
currence of the string is replaced by a second string given
by the user. Replace includes an optional verify operator
which allows the user to say yes or no to each replacement.
The Move option allows the user to move sections of text,
indicated by an interval of line numbers, to a different place
in the source program. Copy is similar, except that the sec-
tion of text ends up in both the original position and the
new position. Delete allows easy removal of several con-
tiguous lines from the text. Insert takes a file from disk and
places it anywhere you want in the program being edited.
Show is a way of moving the window so that a certain line
number is at the top of the screen. Adjust is an easy way
to make the line numbers disappear so that the window
shows the source program only. Escape gets you out of
Command Mode and back to the Editor's menu, where you
can choose to save the source program to disk, print it, purge
it or edit the same or another program.

The Editor performs all line numbering automatically as
lines are entered and maintains these numbers in sequence
as lines are added or deleted. The user can refer to them
for operating on sections of the program; they also appear

Copyright (1) 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	I 37

on the Assembler output listing, which is handy for
debugging.

TI has incorporated most of the features found in editors
for larger systems into the 99/4A Editor. In fact, the abilities
to edit at the character, line, and group-of-lines levels are
not always all available in larger editors. The only feature
missing from the 99/4A Editor is a variable right margin—a
feature which is really not too significant for Assembly
Language source programs. [But that would be nice for
word processing applications, since this editor already per-
forms 95 070 of what most people would need for cor-
respondence and document preparation.—Ed.]

The Assembler
The Assembler is a program which converts Assembly

Language source programs into object form—the machine-
language program that executes on the TI-99/4A. The ob-
ject program is written to disk. Optionally, a user can print
out or write an Assembly Language listing to disk.

The 99/4A Assembler is a lot like the 9900 Assembler,
TXMIRA, which runs on larger TI systems. See sample
listing in Figure 1. A programmer who is familiar with
TXMIRA will be able to write Assembly Language pro-
grams for the 99/4A without too much difficulty since the
same addressing modes are used and most of the instruc-
tions operate in the same way.

One big difference, as might be expected, is in the way
a programmer handles input and output to the monitor. The
99/4A Editor/Assembler package includes three groups of
built-in subroutines, or macros: (1) Utility Routines for ac-
cessing machine resources, such as screen I/O; (2) Extend-
ed Utilities, for accessing routines built into the console
ROMs and GROMs; and (3) Basic Support Utilities for ac-
cessing the parameter list in CALL LINK statements from
Extended BASIC. These utilities make it unnecessary to use
the CRU (Communications Register Unit) lines to the
monitor. Under TXMIRA, all peripheral devices are ad-
dressed via a fairly complex arrangement of CRU lines. Each
device has its own CRU base address and CRU bit
assignments, which means that a programmer must have
very specific information about each device in order to per-
form any input or output. On the 99/4A Assembler these
difficulties in handling the screen have been eliminated by
the Utility Routines. By loading a few registers and invok-
ing the proper utility, a programmer can handle screen I/O
in a much simpler way. Figure 1 has the code segments which
might be used for writing the character AB to the upper
left portion of the screen.

You can see that the Utility Routines really make screen
handling easier: You can focus your attention on merely
the VDP RAM (the memory associated with the 99/4A
monitor) addresses, and not have to worry about the logistics
of the move. Furthermore, there is no apparent loss of ex-
ecution speed in doing it this way.

Another difference between the 99/4A Assembler and
those for larger TI computers is that the IDLE instruction
is not implemented on the 99/4A. This causes no great dif-
ficulty, but it is useful to know. The IDLE instruction just
causes the computer to wait for an interrupt; this can be
done via another Utility Routine or other means, depend-
ing on which device will cause the interrupt.

The optional listing produced by the 99/4A Assembler
is quite complete. Statement sequence numbers, source
statements, and the hexadecimal code generated are all
shown clearly. A symbol table can also be given and, of
course, the number of errors is shown. Each error is also
flagged in the body of the listing with a descriptive message.
One very nice—and all too uncommon—feature is that a
display of the number of errors is on the monitor when the
Assembler is finished.

Running and Debugging
Once a program has been input, edited, and assembled

with no errors, it can be loaded and run by choosing this
option from the menu. Another menu option (RUN PRO-
GRAM FILE) allows the user to run programs which were
assembled on other Texas Instruments systems or previously
assembled on your system.

The Editor/Assembler package has a special debugging
utility called DEBUG, which can be very helpful in isolating
program errors. For instance, the commands in DEBUG
allow you to set breakpoints in your program. When the
program hits a breakpoint and stops execution, you can then
use other commands to examine the contents of memory
locations and registers, the Workspace Pointer, the Status
Register, or the Program Counter, and if necessary change
them to alter the program's execution. DEBUG commands
will also allow you to search memory locations for a specific
value, or to search memory locations and print those which
don't have a specific value. DEBUG allows you to begin
executing your program at any point you determine; com-
bined with the breakpoints, this allows you to go through
a program section by section. All in all, DEBUG provides
a good repertoire of useful tools which will make it easier
to find out why the program you wrote isn't working the
way you thought it would. GO

PART 2: Fundamentals of Assembly Language
Programming on the TI-9914A

I n Part I we gave you a preliminary look at TI's
Editor/Assembler for the TI-99/4 and TI-99/4A and
mentioned briefly the advantages of programming in

Assembly Language. Now let's explore the benefits of
Assembly Language more fully by comparing some pro-
grams written in Assembly Language and BASIC.

Some Assembly Language Explanations
Before examining some programs, it would be useful to

mention some general characteristics of the TMS9900 proc-

essor, and then some specifics on the structure of the
TI-99/4A.

All 9900 programs make use of 16 workspace registers,
each containing 16 bits (one word). Assembly Language pro-
grams define 16 contiguous words of memory for these
workspace registers and set the hardware register called the
Workspace Pointer to point to the first of these memory
locations. Having these workspace registers resident in
memory rather than in the CPU is one of the most power-

I 38 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

ful features of the 9900-family processors. In an Assembly
Language program, the hexadecimal numbers 0 through F
refer to the current workspace registers. (In addition, an
Assembly Language option allows you to refer to them as
RO through R15, which makes programs easier to read.)

The structure of the memory of the 99/4A is fairly com-
plex. The following explanations cover concepts necessary
to understanding the programs in this article, but they only
begin to scratch the surface of the memory structure.

CPU RAM (Random Access Memory) resides in the con-
sole and is directly addressable by Assembly Language pro-
grams. Workspace registers and other memory locations,
as well as the programs themselves, reside in CPU RAM.

VDP (Video Display Processor) RAM, also located in the
console, takes care of the video screen. Sprites, colors,
character patterns, and the screen image itself all reside in
VDP RAM. Unlike CPU RAM, however, VDP RAM is
not directly addressable by Assembly Language programs.
VDP RAM is accessed through specifically assigned CPU
RAM addresses. This is called memory mapping. Locations
0 through > 02FF in VDP RAM contain the screen image.
(The symbol " > " means hexadecimal notation;
> 02FF = 767 in decimal notation.) This means that
whatever characters reside in this section of VDP RAM are
visible on the screen. To change the screen, the program-
mer would place the desired character code(s) into VDP
RAM at the corresponding location(s). VDP RAM loca-
tion 0 corresponds to the home position (upper left) on the
screen; location 48 (or > 30) corresponds to the position
called row 2 and column 17 in BASIC. Let's say you want
to put an * on the screen at row 2, column 17. The ASCII
code for * is 42, or > 2A, and the desired VDP RAM loca-
tion is > 30. You might be tempted to use a MOVB (Move
Byte) instruction to accomplish this, but remember, the VDP
RAM cannot be directly addressed from your Assembly
Language program. To access VDP RAM, you'll need to
use a Utility Routine. VSBW (VDP Single Byte Write) is
a macro instruction which places the most significant (left-
most) byte of workspace register 1 at the VDP RAM ad-
dress contained in register 0. Therefore, to place the * at
row 2, column 17, you'd write:

REF VSBW 	UTILITY REFERENCE

LI 	0, > 30 	RO = VDP RAM ADDRESS
LI 	1, > 2A00 RI CONTAINS * IN MSB
BLWP @VSBW MOVE TO VDP RAM

Most of the utilities use similar schemes of loading data in-
to certain registers and calling the utility by name. I'll talk
more about some specific ones later.

The Game of Life
Life is a classic computer game. It is based on the idea

of a population which goes through life cycles to form new
generations; each position on the screen corresponds to a
cell in the population. Cells which are alive are filled in (with
asterisks in my example); dead cells are blank. The life cy-
cle, or rules of the game, are applied to each generation to
obtain the next generation, and then the new generation is
displayed on the screen. The rules of the game determine
birth, death, or survival of individual cells, and depend on
the state of each cell's 8 neighbors (adjoining cells, con-

sidered horizontally, vertically, and diagonally) as follows:

A live cell with 2 or 3 neighbors survives to the next
generation.
2. A live cell with 0 or 1 neighbor dies of loneliness; a live
cell with more than 3 neighbors dies of overcrowding.

The rules are applied to a generation as a whole, before the
next generation is displayed. Depending on the initial
population, you may see a colony which goes on changing
forever, one which dies out or becomes static after a few
generations, or one which oscillates among a few patterns.

There are a few restrictions on my implementation of Life
which should be explained. First, I have defined the initial
population in the programs, whereas other versions might
allow the user to enter the initial population on the screen
at the beginning of the game. In order to be sure the col-
ony does not exceed the size of the 99/4A screen, which
is 32 x 24, I have forced the border (rows 1 and 24 and
columns 1 and 32) always to remain blank. This means that
when the colony becomes large it may lose its symmetry as
one side of the colony hits the border.

The two programs which follow are in BASIC (Listing
1) and in Assembly Language (Listing 3). Both follow the
same strategy: display the initial colony, calculate the next
generation by considering the neighbors of each cell in turn,
clear the screen, display the new generation, and loop back
to calculate the next generation. The Assembly Language
version uses one byte to represent each cell; the BASIC ver-
sion uses one entry in array SCRN for each cell. At the start
of each generation, live cells contain the value 1 and dead
cells contain 0. During the calculation of the next genera-
tion, a cell can have the values 0 through 3 as follows:

0 = cell is dead and remains dead for the next generation
1 = live cell survives to the next generation
2 = dead cell will be born in the next generation
3 = live cell will die in the next generation

It is necessary to have these four possible values during the
calculation so that the program can have the information
about the current state of each cell while calculating and
storing the next state of each cell. Just before the new
generation is displayed (or not displayed if dead), the values
of the cells are reset to 0 or 1 by means of the array AFTER.

In examining both versions of Life which follow (Listings
1 and 3), you might wonder why anyone would use the more
esoteric Assembly Language over the easier-to-understand
BASIC. The answer is simple: speed. On the 99/4A, the
BASIC program takes 2 minutes and 26 seconds between
generations; the Assembly Language program takes less than
one second! The BASIC version is no fun at all to watch,
whereas the Assembly Language program provides fine
entertainment. [The use of the Utility Routine VMBW (VDP
Multiple Byte Write) in the Assembly language is partly
responsible for this speed. It shows each new generation all
at once. And fortunately, the monitor program is smart
enough to capitalize on this by showing only the changed
portions of the screen, rather than re-drawing the whole
screen each time. If fast enough, the human brain's "per-
sistence of vision" allows us to see individual frames of mov-
ing images as continuous rather than discrete pictures—
thus making realistic animation sequences truly possible.—
Ed.]

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	139

Using Assembly Language to Move Sprites
The ability to create sprites which move automatically is

one of the best features of the 99/4A. Sprites can be used
in Extended BASIC and in Assembly Language programs.

VDP RAM has several areas dedicated to sprites. The
Sprite Attribute Block, which gives the sprite locations, sprite
numbers, and colors, starts at address > 300. Each entry in
the Sprite Attribute Block occupies four bytes. A terminator
byte with value > OD denotes the end of the Sprite Attribute
Block. The Sprite Descriptor Block contains the sprite pat-
terns (shapes), with 8 bytes for each possible sprite. Although
the Sprite Descriptor Block starts at VDP RAM address 0
by default, we have already seen that VDP RAM locations
0 through > 02FF are used for the screen image table, and
locations > 0300 through > 03FF for the sprite Attribute
Block. In order to avoid writing over these areas, the Sprite
Descriptor Block usually starts at location > 0400 for prac-
tical purposes. The entries in the Sprite Descriptor Block
are defined to correspond to sprite numbers starting at 0
and occupying 8 bytes each; therefore the entry at location
> 0400 is for sprite number > 80. Thus in Assembly
Language programs, the lowest sprite number is usually
> 80. The Sprite Motion Table, which gives the x- and y-
velocities of defined sprites, resides at VDP RAM location
> 0780. Each entry in the Motion Table occupies four bytes,
the last two of which are for system use. The Sprite Mo-
tion Table is filled only if automatic motion is to be used.
An Assembly Language program could move the sprites
(non-automatically) by changing the x- and y-locations of
the sprites in the Sprite Attribute Block. But the system is
able to move the sprites for you via an interrupt processing
routine: Each time a VDP interrupt occurs (60 times per
second), the interrupt processing routine moves any eligi-
ble sprites according to the Sprite Motion Table. In order
to make use of this facility, the Assembly Language pro-
gram must also load the number of moving sprites at CPU
RAM address > 837A and enable the VDP interrupts.

Assembly Language vs Extended BASIC
You are probably thinking that this sounds like a lot of

work to achieve moving sprites, especially compared to the
simple CALL SPRITE statement of Extended BASIC.
However, there are times when an Extended BASIC pro-
gram is inadequate. Coincidence checking in Extended
BASIC is not as responsive to velocity changes as you might
like.

The programs which follow (Listings 2 and 4) illustrate
how Assembly Language can be used to overcome these
deficiencies. The program simply moves a target from left
to right on the screen while shooting an arrow from the top
of the screen to the bottom. Both sprites wrap around the
screen. Whenever the arrow hits the target, the sprites stop
moving, the target changes to an X, and the program delays
long enough to make the blow-up visible. Then the program
starts over. The Extended BASIC program relies on CALL
COINC to detect hits. You'll notice, however, that the pro-
gram doesn't seem to detect all hits. The Assembly Language
program can stop the action by disabling the VDP inter-
rupt while it checks for coincidence by comparing the loca-
tions of the arrow and the target from the Sprite Attribute
Block. Moreover, the Assembly Language program can
check the point of the arrow against the target instead of
checking the upper lefthand corners of the sprites.

Because of these differences, the Assembly Language pro-
gram appears to detect more hits correctly. Of course, this
stop-motion processing must slow down the motion, but
it is not noticeable to me. (One indication of the speed of
Assembly Language program execution is the large number
of statements executed in LOOP2 while the hit shape brief-
ly remains on the screen.)

Another shortcoming of the Extended BASIC version is
that the hit shape appears quite a bit to the right of its ac-
tual position when the hit occurred. That is because the
sprites have continued to move while two BASIC statements
(lines 190 and 200) are interpreted and executed. The
Assembly Language version has already stopped the mo-
tion by disabling the VDP interrupt program via LIMI 0;
it doesn't start the motion again until after the hit sequence
is complete. Thus, only the Assembly Language program
actually shows the blow-up in the right place on the screen.

Understanding An Assembler Listing
The Assembly Language listing (Figure 4) was output by

the 99/4A Assembler. You'll notice that the Assembler has
added a page number and short title at the top of each page
and added a cross-reference list and number-of-errors-
found-during-assembly message to the end. The cross-
reference list shows the location of the symbols used in the
program relative to the beginning of the program. The line
numbers in the first column were supplied by the Editor
when the program was input and passed along by the
Assembler. The second column of the listing shows the
relative memory location where each statement or data area
will reside during program execution. The third column was
also supplied by the Assembler and shows the machine
language generated by the Assembly Language statement
to the right. The machine language (or object code) is ex-
pressed in hexadecimal notation with one word per line. The
Assembly Language source program (or source code) itself
starts in the fourth column, which contains the labels. The
fifth column contains the source program opcodes, and the
sixth column contains the operands. The seventh column
contains comments, and other comments are sprinkled
throughout the program with asterisks in column 1. Only
the fourth through seventh columns comprise the Assembly
Language source program; this is the only part entered by
the programmer. The Assembler generates the rest.

The Utility Routines VMBW, VSBW, VWTR, and
VMBR are used in the example program. The VDP Multi-
ple Byte Write (VMBW) moves the number of bytes in
register 2 (R2) from the CPU RAM address in R1 to the
VDP RAM address in RO. VSBW, the VDP Single Byte
Write routine, was explained earlier. VDP Write To Register
(VWTR) puts the value that is in the rightmost byte of RI
into the VDP register whose number is in the leftmost byte
of R1. Among other things, these VDP registers are used
to select VDP modes and features. VMBR is the VDP Multi-
ple Byte Read routine, which reads the number of bytes
specified in R2 into the CPU RAM location in RI from the
VDP RAM location in RO.

The logic for detecting hits in the Assembly Language
program is based on the fact that the point of the arrow
is three pixels to the right and seven pixels below the corner
of the sprite which is obtained from the Sprite Attribute
Block.

140 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Conclusion
Although they are more complex to write, Assembly

Language programs are far superior to BASIC programs
when it comes to execution speed and for controlling the
facilities of the 99/4A computer. In some cases, as in the
game of Life, the faster speed of Assembly Language turns

a boring game into one which is fun to watch. In other cases,
as in the program SHOOT, Assembly Language is capable
of providing more accurate results. Thus, having the
capability to write programs or subroutines in Assembly
Language lets you achieve results which are impossible with
BASIC and Extended BASIC alone.

Listing 1 	Life
0 0 CAL L CLE A 5 1 0 F C N T 3 T H E N 5 3 0
0 DIM OFFS E T S 8 A F T E 4 5 2 0 	S C RN S UB S C N S U B) 2

2 0 FOR 1=1 T 0 8 5 3 0 S UB S UB 1
3 0 REA D OFF S E T S 5 4 0 	N E XT C 0 L
4 0 NEX T I 5 5 0 S UB S UB 2
5

1 6
0
0

DAT
DAT

A
A

-33
1,3 1

-3
,3

2
2 ,3

3
3

1 1 5 6
5 7

0 	N
0

E XT
E M

R 0
9101/W S H N EW G E N E A T 0 N

1 7 0 	DIM SCRN 76 8 58 0 	C A LL C L EA R
18 0 REM INI T IA L IZ E 59 0 S UB 3 4
1 9 0 	FOR I=1 T 0 7 68 6 0 0 	F 0 R R 0 2 T 0 2 3
2 0 0 	SCR N(I) 0 6 1 0 	F 0 R C 0 L 2 T 0 3 1
2
2 2
2 3

0 	NEX
0 	AFT
0 	AFT

T
ER(0
ER(1

I
1 =
I =

0
1

6 2
6 3
6 4

0 	S
0
0 	C

C RN
F
A LL

C
(

S
S U
N

H C H

B
S

A R

A
U B

F T

o
)

E R
0

S
T H
0 L

C
E N

4

N
6

2

S
5 0

U B

2 4 0 	AFT ER(2)= 1 6 5 0 S UB S U B 1
2 5 0 	AFT ER (3)= 0 6 6 0 	N E XT C 0 L
2 6 0 	RE IN IT A L IZ E P 0 P U L A T 0 N 6 7 0 S UB S U B 2
2 7 0 	REA D 	NU S U B 6 8 0 	N E XT 0
2 8 0 	FOR =1 TO N UM S U B 6 9 0 G 0 TO 3 7 0
2 9 0 	REA D 	RO C 0 L 7 0 0 	E N D
3 0 0 	ISU B 	(R 0 *3 2 C 0 L
3 1 0 	SCR N 	IS U B) 1
3 2 0 	C AL L 	HC H AR OW C 0 L 4 2
3 3 0 	NEX T
3 4
3 5

0 	DAT
0 	DAT

A 	7
A 	1 1 , 16 1 2 1 5 1 2 1 7 1 3 1 4 1 3 1 8 Listing 2 	Shoot an Arrow

,14 4 , 1 4, 8 100 C A LL CL E A
3 6 0 	REM C AL CU L A T E N E X T G E N E A T 0 N 110 R E M DE F N E S P R T E S
3 7 0 	ISU B 	3 4 120 C A LL CH A 1 4 2 F F 8 1 B D A 5 A 5 B D 8 1 F F
3 8 0 	FOR R 0 =2 T 0 	2 3 130 C A LL CH A 1 4 3 8 1 8 1 8 1 8 1 8 1 8 3 C 1 8
3 9 0 	FOR C OL =2 T 0 	3 1 140 C A LL CH A 1 4 1 8 1 4 2 2 4 1 8 1 8 2 4 4 2 1 8
4 0 0 	CNT 0 150 C A LL SP R 1 T E 1 4 2 7 1 2 4 1 	0 1 0 0
4 1 0 	FOR K =1 TO 8 160 C A LL SP T E 2 4 3 2 1 1 2 4 	1 2 7 	0
4 2 0 	M=S C R N1 SUB OFF S E T S K 170 R E M TE S T 	F 0 H T
430 IF M 	0 T HEN 460 180 C A LL CO NC(1 2,1 0 H
440 IF M 	2 T HEN 460 190 I F H 	T- 0 TH E N 1 80
4 5 0 CNT C NT 1 200 C A LL M 0 T ION 1 0,0)

4 6 0 NEX T 	K 210 C A LL M 0 T ION 2 0 0)

4 7 0 IF S C RN S U B T H E N 	5 0 0 220 C A LL P A T TER N 1 4)

4 8 0 IF C N T- 3 T H E N 5 2 0 230 F 0 R D E L A Y=1 T 0 5 0
4 9 0 GOT 0 	53 0 240 N E XT D E L AY
5 0 0 IF C N T = 2 T H E N 5 3 0 250 G 0 TO 1 5 0

260 E N D

Listing 3 	Life
IDT 	'LIFER'
DEF LIFEA
REF VMBW

WS 	BSS 32
SCRN 	BSS 768
GENSCR BSS 768
OFSET 	DATA —33,-32,-31,-1

DATA 1, 31 , 32 , 33
FS TGEN DATA 7,335,366,368,397,401,429,433
H00 	BY TE >00
H01 	BY TE >01
H02 	BYTE >02
BLNK 	BYTE >20
STAR 	BYTE >2A
AFTER 	BYTE 0 , 1 ,1 , 0

EVEN
H2000 	DATA >2000
LIFEA 	LWP I WS 	 START OF PROGRAM
•CL EAR SCREEN ARRAY.

LI R1,766
	

LOOP COUNTER AND INDEX
CLEAR 	CLR @SCAN (R1 I

	
CLEAR WORD

DECT R1
	

POINT TO WORD
ILT 	INIT
	

DONE
IMP CLEAR

Copyright © 1983 Emerald Valley Publishing Co. The Best of 99'er Volume 1 	141

Listing 3 Life continued

• LOAD INITIAL GENERATION AND DISPLAY.
INIT 	MOV 	@FSTGEN , R 3 	R 3=110F CELLS

A 	R3 , R3 	 DOUBLE IT FOR WORDS
INITLP MOV @FSTGEN (R3) , R4 	R4 CONTAINS OFFSET

MOVB 0101 ,@SCRN (R 4) 	SCREEN POSITION =1
DEC T R3
INE INITLP 	 MORE TO DO
BL 	@SHOWIT 	 SHOW INITIAL GEN
LIMI 2 	 ENABLE VDP INTERRUPT FOR QUIT

*CALCULATE NEXT GENERATION.
CLCGEN LI 	R1, 33 	 INDEX (I SUB)

LI 	R3 , 22 	 OUTER LOOP CTR (ROW)
CLCLP 	LI 	R4 , 30
*COUNT NEIGHBORS.
CLCNBR LI 	R5,0 	 NEIGHBORS COUNTER (CNT 1

LI 	R6 , 0 	 LOOP CONTROL, INDEX TO OFSET
NBRS 	MOV 	R1 , R 7 	 COPY TO WORK ON

A 	@OF S E T (R61 , R7 	R 7—>D I SP OF NEIGHBOR
CB 	@SCRN (R7) ,@H00 	NBR=0?
TEQ 	NXTNBR 	 YES
CB 	@SCAN (R7) , @HO 2 	NBR=2?
I EQ 	NXTNBR 	 YES
INC 	R5 	 NEIGHBOR ON

NXTNBR INCT R6
CI 	R6 , 16 	 DONE?
!LT 	NBRS 	 LOOK AT NEXT NEIGHBOR
CB 	@SCAN (R1) ,@)H01 	IS CELL ON NOW?
1EQ 	CELLON 	 YES
CI 	R5 , 3 	 3 NEIGHBORS?
1 EQ 	CHANGE 	 YES—BIRTH
IMP 	NOCHG 	 NO

CELLON CI 	RS , 2 	 2 NEIGHBORS?
I EQ 	NOCHG 	 YES—SURVIVE
CI 	R5 , 3 	 3 NEIGHBORS?

EQ 	NOCHG 	 YES—SURVIVE
CHANGE AB 	@HO 2 , @SCAN (R1) 	BIRTH OR DEATH
NOCHG 	INC 	R1 	 NEXT CELL

DEC 	R4 	 NEXT COL
INE 	CLCNBR
INCT R1 	 SKIP TWO EDGE CELLS
DEC R3 	 NEXT ROW
INE 	CLCLP

• RESE T SCAN ELEMENTS TO 0 FOR DEAD, 1 FOR ALIVE.
LI R5, 33 	 INDEX TO SCRN (I SUB)
L I R3 , 22 	 ROW C TR

LOOP 	LI R4 , 30
LOOP1 	MOVB @SCAN (R51 , R6 	 R 6=CE L L VALUE IN MS B

SRL 	R6 , 8 	 SHIFT TO LSB
MOVB @AFTER (R6) , @SCAN (R5) 	CHANGE CELL TO 0 OR 1
INC 	R5 	 NEXT CELL
DEC 	R4 	 NEXT COL
'NE 	LOOP1
INCT R5
DEC 	R3
1NE 	LOOP
BL 	@SHOWIT 	 SHOW NEW GENERATION
IMP 	CLCGEN 	 CALC NEXT GEN

*SUBROUTINE TO DISPLAY GENERATION ON SCREEN.
SHOWI T LI 	R5, 767 	 R5 INDEXES BOTH SCAN

&GENS CR .
BLDSCR CB 	@JIG° , @SCR N(R) 	IS BYTE 0 (DEAD)?

1EQ 	BLK 	 YES
MOVB @STAR ,@GENSCR (R5) NO—PUT • IN GENSCR
IMP 	NXTPOS

BLK 	MOVB @BLNK ,@GENSCR (R5) PUT BLANK IN GENSCR
NXTPOS DEC 	R5 	 POINT TO NEXT CELL

ILT 	OUT SCR 	 DISPLAY IF DONE
IMP 	BLDSCR 	 LOOP IF NOT DONE

OUTSCR CLR 	R0 	 VDP RAM ADDRESS (HOME)
L I 	R1 ,GENSCR 	GENSCR CONTAINS DISP DATA
LI 	R2 , 768 	 768 BYTES TO WRITE
LIMI
BLWP @VMBW 	 WRITE SCREEN
LIMI 2
B *R11 	 RETURN
END 	LIFEA

142 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Listing 4 	Shoot an Arrow

99/4 	ASSEMBLER
VERSION 	1.2 PAGE 	0001

0001 IDT 'SHOOTA'
0002 DEF SHOOTA
0003 REF VMBW,VSBW,VWTR,VMBR
0004 000 WS BSS 32
0005 020 C SAL BYTE >7C,>01,>80,>06 	SPRITE 	1 	LOCN 	AND 	COLOR

021 1
022 0
023 6

0006 024 1 BYTE >01,>7C,>81,>01 	SPRITE 	2 	LOCN 	AND 	COLOR
025 C
026 1
027 1

0007 028 0 BYTE >D0 	 TERMINATOR
0008 029 F SHAPE BYTE >FF,>81,>BD,>A5,>A5,>60,>81,>FF 	TARGET

02A 1
026
02C 5
02D 5
02E
02F 1
030 F

0009 031 8 BYTE >18,>18,>18,>18,>18,>18,>3C,>18 	ARROW
032 8
033 8
034 8
035 8
236 8
037 C
038 8

0010 039 HITSHP BYTE >81,>42,>24,>18,>18,>24,>42,>81 	HIT 	SHAPE
03A 2
03B 4
03C 8
03D 8
03E 4
03F 2
040 1

0011 041 0 SPEED BYTE >00,>64,>00,>00 	SPRITE 	1 	VELOSITY
042 4
043 0
044 0

0012 045 F BYTE >7F,>00,>00,>00 	SPRITE 	2 	VELOSITY
046 0
047 0
048 0

013 049 0 HOO BYTE >00
014 04A 2 H02 BYTE >02
015 04B Y1 BSS 1
016 04C X1 BSS 1
017 04D DUMMY BSS 2
018 04F Y2 BSS 1
019 050 X2 BSS 1
020 051 03 H03 BYTE >03
021 052 07 H07 BYTE >07
022 EVEN
023 054 0020 H0020 DATA >0020
024 056 02E0 SHOOTA LWP I WS

058 0000
025 •FILL SCREEN WITH 	BLANKS.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	143

Listing 4 Shoot an Arrow continued

99/4 	A SEMB ER
VERSION 1.2 PAGE 	0002

0026 05A 4C0 CLR 	0 	 VDP 	RAM 	SCREEN 	HOME
0027 05C 201 LI 	1, >2000 	 BLANK 	IN 	MSB 	OF 	R1

05E 000
0028 060 420 BLNKIT 	BLWP 	(FcVSBW 	 WRITE 	BLANK

062 000
0029 064 580 INC 	0
0030 066 280 CI 	0,768 	 DONE?

068 300
0031 06A 1FA ILT 	BLNKIT 	 NOT 	YET
0032 *SET 	UP 	VDP 	REGISTER 	1
0033 06C 200 LI 	0 , >01E0 	 NORMAL 	SIZED 	SPRITES

06E 1E0
0034 070 420 BLWP 	TiVWTR

072 000
0035 *SET 	UP 	SPRITE 	ATT [BUTE 	BLOCK.
0036 074 201 DEFSPR 	LI 	1, SAL 	 R1—MY 	ATTRIBUTE 	LIST

076 020
0037 078 200 LI 	0 , >0300 	 R0—>ADDRESS 	OF 	VDP 	SAB

07A 300
0038 07C 202 LI 	2 , 9 	 9 	BYTES 	TO 	WRITE

07E 009
0039 080 420 BLWP 	 WRITE 	TO 	VDP 	RAM

082 000
0040 • LOAD 	SPRITE 	DEFINITIONS
0041 084 201 LI 	1, SHAPE 	 R1—>MY 	SPRITE 	SHAPES

086 029
0042 088 200 LI 	0 , >0400 	 ADDRESS 	OF 	FIRST 	SPRITE

08A 400
0043 08C 202 LI 	2,16 	 16 	BYTES 	TO 	MOVE

08E 010
0044 090 420 BLWP 	@VMBW 	 WRITE 	TO 	VDP 	RAM

092 082
0045 *SET 	UP 	SPRITE 	MOT ION 	TABLE.
0046 094 200 LI 	0 , >0780 	 R0—>MOT ION 	TABLE 	IN 	VDP RAM

096 780
0047 098 201 LI 	1, SPEED 	 R1—>MY 	SPEED 	DATA

09A 041
0048 09C 202 LI 	2 , 8 	 8 	BYTES 	TO 	MOVE

09E 008
0049 0A0 420 BLWP 	oVMBW 	 WRITE

0A2 092
0050 *SET 	NUMBER 	OF 	MOVING 	SPRITES .

0051 0A4 820 MOVB 	@H02 ,@>837A 	 2 	MOVING 	SPRITES
0A6 04A
0A8 37A

0052 *MAKE 	SPRITES 	MOVE 	BY 	INTERRUPT 	FROM 	9901 	I/O 	BOARD.
0053 0AA

eAc
300
002

MOVE I T 	L IMI 	2 	 ENABLE 	INTERRUPT

0054 *CHECK 	FOR 	COINCIDENCE.
0055 ORE 300 LIMI 	0 	 DISABLE 	VDP 	INTERRUPT

0 B 0 000
0056 *GET 	SPRITE 	POSITIONS.
0057 0B2 200 LI 	0 , >0300 	 R 0—>Y 	OF 	SPRITE 	IN 	VDP RAM

0 B 4 300
0058 0 B 6 201 L I 	1, Y1 	 BUFFER 	FOR 	READ

0B8 04B
0059 0 BA 202 LI 	2 , 6 	 6 	BYTES 	TO 	READ

0 BC 006
0060 OBE 420 BLWP 	/,VMBR 	 READ 	FROM 	VDP 	RAM

144 	The Best of 99'er 	Volume 1
	

Copyright ©.1983 Emerald Valley Publishing Co.

Listing 4 Shoot an Arrow continued

SEMBLER
1. 2
OCO 0000

PAGE 0003

99/4 A
VERSION

0066
00 67
0068

0065

0062

0064

0061

0063

0C2 B820
0C4 0051'
006 0050'
008 7820
OCA 004C '
OCC 0050'
OCE 11ED
0D0 9820
0 D 2 0050 '
004 0052 '

006 15E9

*CHECK COLUMNS FOR X1<=X24-3<=X1+7
AB 	@H03,@X2 	 X2=X24-3

0069

0070
0071

080

082
083
084
085
086
087

076

077

078

081

072
073
074
075

079

GEE
0F0
0F2
0F4
0F6
0F8
OFA
OFC

OFE
100
102
104
106
108
10A
10C
10E

SB

MOVEIT 	 NO HIT IF RESULT >7
*CHECKS ROWS FOR Y1<=Y2-1-7<=Y1+7.

AB 	@H07,@Y2 	 Y2=Y2-1-7

SB 	@Y1,@Y2
	

Y 2=Y 2-1

ILT 	MOVEIT
	

NO HIT IF RESULT <0
CB 	@Y2,@H07

IGT 	MOVEIT
	

NO HIT IF RESULT >7
*HIT
*CHANGE SPRITE DEFINITIONS.

201 	 LI 	1,HITSHP
	

R1—>HIT SHAPE
039 '

200 	 LI 	0,>400
	

R0—>VDP RAM
400
202 	 LI 	2,8
	

8 BYTES TO LOAD
008
420 	 BLWP @VMBW
	

WRITE TO VDP RAM
0A2'

*WAIT TO LET BLOW UP BE SEEN.
203 	 LI 	3,10
	

OUTER LOOP CTR
00A
202 	LOOP2A LI 	2,12000
	

LOOP CUONTER
EEO
602 	LOOP2 	DEC 	2
	

DECREMENT
6FE 	 INE 	LOOP2
	

WAIT MORE
603 	 DEC 	3
	

DECREMENT OUTER CTR
6FA 	 INE 	LOOP2A
	

WAIT MORE
0B2 	 IMP 	DEFSPR
	

START OVER
END 	SHOOTA

@X1 ,EX2 	 X 2+X 2—X1

ILT 	MOVEIT 	 NO HIT IF RESULT >0
CB 	@X2,@H07 	 COMPARE TO 7

0D8 8820
ODA 0052
ODC 004F
ODE 7820
0E0 004B
0 E2 004F
0E4 11E2
0E6 9820
0E8 004F
0 EA 0052
GEC 15DE

9 /4 ASSEMBLER
VE S ION 1 . 2

BLNK I T 	0060
' H0020 	0054
' HI TSHP 	0039

R0 	 0000
R12 	 000C
R2 	 0002
R6 	 0006

' SAL 	0020
E VMBR 	0000
' WS 	 0000
' Y2 	 004F
0000 ERRORS

PAGE 	004
DEFSPR 	074 	' DUMMY 	04D 	' H00 	 049
H02 	 04A 	' H03 	 051 	' H07 	 052
LOOP2 	106 	' LOOP2A 	102 	' MOVEIT 	0/IA
R1 	 001 	 R10 	 00A 	 R11 	 00B
R13 	 OOD 	 R14 	 00E 	 R15 	 OOF
R3 	 003 	 R4 	 004 	 R5 	 005
R7 	 007 	 R8 	 008 	 R9 	 009

' SHAPE 	029 	D SHOOTA 	056 	' SPEED 	041
E VMBW 	OFC 	E VSBW 	 062 	E VWTR 	 072
' X1 	 04C 	' X2 	 050 	' Y1 	 04B

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	145

MAGIC CRAYON

Learning
Assembly Language

The Hard Way

L ike many other 99'ers, I was anxious to receive the
long-awaited Editor/Assembler package. I remember
the excitement of unwrapping the 470 page manual

when it arrived—and the sinking feeling when I read, "This
manual assumes that you already know a programming
language, preferably an assembly language."

My anxiety grew as I thumbed through it—there were no
pictures, cartoons, or fill-in-the-blank examples. It did say,
"There are many fine books available which teach the basics
of assembly language." So I called the local computer stores.
The only books they were aware of, however, also assumed
familiarity with basics.

I guess I had some fuzzy ideas about assembly language
in the back of my mind: It was qualitatively different from
higher level languages, requiring an in-depth knowledge of
digital electronics and a capacity for the most detailed sort
of logical-mathematical thought. In short—nothing seemed
more difficult.. .

And my experience thus far seemed to confirm my worst
fear. Learning assembly language presumed a prior
knowledge of assembly language; it was not merely
difficult—it was impossible. After running Tombstone Ci-
ty a few times and typing in Pat Swift's Life program (See
"Fundamentals of Assembly Language Programming, Part
1"), I put the Editor/Assembler on a shelf thinking maybe
I'd learn about it gradually over the next year or two.

It would still be there gathering dust were it not for a back
injury that kept me flat on the floor, unable to do anything
except read the manual. I was surprised to discover that
writing an assembly language program is similar to, and in
some respects simpler than, writing a program in BASIC.
A new programming context or conceptual model is re-

quired. But to get started, I found that this picture could
be primitive, containing many over-simplifications and
approximations.

The picture I developed enabled me to successfully for-
mulate and execute a simple programming objective. The
program and associated underlying concepts are presented
here to facilitate the learning process for others who, like
me, find it hard to overcome preconceived notions about
how difficult assembly language is. The program should not
be taken as a model of exemplary programming technique;
at this point my conception of "good programming" is pro-
gramming that works . . . period. You will undoubtedly be
able to find ways to improve this one—to make it work
faster and utilize memory more efficiently—and in so do-
ing, further develop the concepts presented.

In TMS9900 Assembly Language, four video display
modes are available: Graphics (or Pattern) Mode, Text
Mode, Bit-Map Mode (99/4A only), and Multicolor Mode.
In Multicolor Mode, the screen is divided into a grid 64 x
48, with each box measuring 4 pixels on a side. Each box
can have a color assigned to it.

The program allows use of a joystick to move a flashing
cursor on the screen. Whenever the fire button is depress-
ed, the cursor leaves a trail of small, colored boxes. The
following single key commands are available:

C—Change Color. Displays a color palette and pointer.
Move the pointer to the desired color with the joystick. Press
the fire button to make that the color of the boxes, or press
the C key to make it the color of the screen background.

S—Save Screen. Saves the current contents of the screen
as DSK1.SCREEN.

I46 	The Best of 99'er Volume 1

R—Recall Screen. Loads the contents of DSK1.SCREEN
for subsequent modification.

E—Erase Screen. Erases the screen contents.

T—Terminate. Returns to the Master Title Screen.

In order to understand how the program works, it will
be helpful to differentiate two systems. You probably know
that the Central Processing Unit (CPU) in the Home Com-
puter is the TMS9900. It has three built-in 16-bit "hard-
ware" registers (the Program Counter, Workspace Pointer,
and Status Register) and makes use of sixteen workspace
registers located in read-write memory. Because these 16-bit
workspace registers are not located on the chip, they are
called "software" registers. The CPU can directly address
the read-write memory (RAM) in the Memory Expansion
Unit and CPU scratch pad, as well as ROM in the console,
Command Cartridges, and various peripherals. However ,
it cannot directly address the 16K of RAM built into the
console.

The 16K RAM block is addressed by another
microprocessor—The TMS9918 (or 9918A if you have a
99/4A). This Video Display Procesor (VDP) has eight 8-bit
hardware registers and four 8-bit software registers. The
software registers are located in read-write memory loca-
tions which can also be addressed by the CPU. The fact
that these four bytes can be addressed by both the CPU
and VDP makes it possible for the CPU and VDP systems
to transfer data back and forth. The CPU addresses of the
registers-8800, 8802, 8C00, 8CO2—are assigned respectively
to the symbols VDPRD (VDP Read Data Address),
VDPSTA (VDP Read Status Register), VDPWD (VDP
Write Data Address), VDPWA (VDP Write Address).

We don't have to be concerned with the details of mov-
ing data to and from VDP RAM and to VDP registers,
however, thanks to some of the built-in programs called
utilities. The five utilities of use are identified by the sym-
bols VSBW, VMBW, VSBR, VMBR, and VWTR. The
respective functions of these programs are VDP RAM:
Single Byte Write, Multiple Byte Write, Single Byte Read,
Multiple Byte Read, and Write to Register. User workspace
registers are used to pass parameters—e.g., the number of
bytes to read or write—to the utility.

The standard utilization of VDP RAM in the
Editor/Assembler is shown on Table 1. The blocks involved
in the multicolor mode are the Screen Image and Pattern
Descriptor Tables. Before entering multicolor mode, the

Image Table is initialized. The 768 bytes of the table
are divided into six 128-byte sets. Each set is further sub-
divided into four 32-byte groups. To initialize the table, the
numbers 1-31 are written in order into each of the four
32-byte groups in the first set: 0, 1, 2,. . . 31 four times.
Then the numbers 32-61 are written four times into the next
128-byte set. This process is continued until the numbers
160-191 are written four times in the sixth 128-byte set. In
my program, I didn't want this process to be visible on the
screen, so I first put the display in Text Mode and made
the foreground and background colors gray.

Once the Screen Image Table is initialized, color boxes
are placed on the screen by means of the Pattern Descrip-
tor Table. Each 4 x 4 pixel box on the screen corresponds
to half a byte in the Pattern Descriptor Table. To place a
colored box on the screen, the appropriate color code is writ-

Table 1 VDP RAM MEMORY
—Editor/Assembler-

	

Address of 	Length

	

First Byte 	of Block, 	Contents
Decimal 	Hex 	Bytes

0
768
896

1024
1920
2048

4096

14295

16383

>0000 	768 	screen Image Table
>0300 	128 	Sprite Attribute List
>0380 	128 	Color Table
>0400 	896 	Sprite Descriptor Table
>0780 	128 	Sprite Motion Table
>0800 	2048 	Pattern Descriptor Table and

Peripheral Access Blocks
>1000 	10199 	More Peripheral Access

Blocks and Buffers
>37D7 	2089 	Reserved for Diskette Device

Service Routines
>3FFF 	 Last Address

Total 16384 Bytes

ten in the nybble (4 bits) in the Pattern Descriptor Table
which corresponds to the desired screen position.

The first eight bytes of the Pattern Descriptor Table cor-
respond to the boxes in a column beginning in the upper
left corner of the screen. The first four bits in byte #1 con-
tain the color of the box in the extreme upper left corner,
and the last four bits the color of the box immediately to
the right of the first box. Byte #2 contains the colors of the
two boxes immediately under the first two, and so on for
the first eight bytes.

The ninth byte in the table contains the colors for the pair
of boxes in a new column beginning again at the top of the
screen. Subsequent bytes follow this pattern corresponding
to 32 columns of box pairs with eight pairs in each column.
This group of 256 bytes thus takes care of the top sixth of
the screen.

The 257th byte corresponds to the beginning of a new
column of box pairs starting again on the left side of the
screen. The six 256-byte groups thus correspond to the 3,072
possible boxes in multicolor mode. [Since the color of each
box is indicated in a name table in memory, and the names
are mapped onto the screen according to their position in
the table, this multicolor mode is a true memory-mapped
configuration. It does, however, trade off lower resolution
for color memory-mapping capability, but the high-
resolution sprites are still available. For an explanation of
sprites and an introduction to the high-resolution bit-map
mode, see "3-D Animation".—Ed.]

In the program, a double-size sprite provides a reference
point for determining where boxes will appear. The dot row
and dot column of the sprite can be determined at any time
by referring to the Sprite Attribute List in VDP RAM. Then,
since boxes are supposed to appear in the center of the sprite,
the screen location can be calculated by adding 8 to the dot
row and dot column, which represent the sprite's upper left
corner. But in order to find the corresponding location in
the Pattern Descriptor Table, a few more calculations must
be performed.

If we let R and C be the dot row and dot column desired
for the box location, the number of complete 256-byte
groups above that location is the integer quotient of R/32.
Multiplying that number by 256 thus gives the first compo-
nent of the offset in the Pattern Descriptor Table.

Similarly, the integer quotient of C/8 gives the number
of complete 8-byte columns to the left of the location. So

The Best of 99'er Volume 1 	147

that number is multiplied by 8 and added to the offset.
Dividing the remainder of R/32 by 4 gives the number of
bytes above the location in the 8-byte column the location
is in. Adding that to the offset gives the offset for the byte
in the Pattern Descriptor Table.

But we still have to know if the desired location is the
most or least significant nybble of the byte, and to deter-
mine that we can divide the remainder of C/8 by 4. If the
integer quotient is 0, it's the left nybble; if 1, it's the right
nybble. The appropriate color code then need only be placed
in the correct nybble (leaving the other one unchanged), and
the box appears just where it should.

Let's consider an example: Suppose the upper left cor-
ner of the sprite were at dot row 83 and dot column 147.
The center of the sprite would then be at 91 and 155. The
number of complete groups (32 columns with 8 bytes in
each) above that location is 2, i.e., INT(91/32). So the in-
itial component of the offset is 2 * 256 or 512 bytes. The
number of 8-byte columns to the left of the location is
INT(155/8) or 19. That makes the offset 531. Above the
location, in its 8-byte column, there are 6 bytes—i.e.,
INT((remainder 91/32)/4)—giving an offset of 537. The re-
mainder of 155/8 is 3, and INT(3/4) is 0, so the nybble of
interest is the most significant (left) one of the 539th byte
of the Pattern Descriptor Table.

Now let's take a brief look at the source listing. The first
section consists of a number of assembler directives. The
DEF directive makes the symbol MARKER available to
other programs, and the REF directives make several utilities
available for use of MARKER. Then there is a variety of
other assembler directives. The simplest type is EQUate,
which assigns a constant to a symbol at assembly time.
USRWS, for > 20BA (8378), and that value replaces the
symbol wherever it appears in an operand; the label may
subsequently be substituted for the number.

The mnemonic BSS stands for Block Starting with Sym-
bol. This directive causes the assembler to advance its loca-
tion counter without writing anything into the object pro-
gram. It leaves an empty area (of the number of bytes
specified in the operand) which can then be used as a storage
space for data later on. The label is set equal to the memory
location of the first byte in the block at the time the object
program is loaded. (Since this program is relocatable, the
place where the loader program decides to start loading it
may change, depending on what other programs have
already been loaded.)

The DATA, BYTE, and TEXT directives are similar to
BSS except that the contents of the buffer are explicitly
defined in the operand field. The label is assigned the ad-
dress of the first byte at the time the object program is load-
ed. All of these buffer areas are contiguous. For example,
look at the instructions immediately after the label
MARKER. The pattern codes for two double-size sprites,
the cursor and arrow, are loaded into the Sprite Descriptor
Table in VDP RAM. Since the pattern data for ARROW
is contiguous with that of CURSOR in both CPU and VDP
RAM, all 64 bytes can be loaded in one shot.

You should have little trouble figuring out the rest of the
program by reading the comments provided and referring
to the manual. But don't stop after you understand how
it works—try to make some changes. To start with, try
changing the shape and colors of the sprite cursor, the ar-
rangement of the color palette on the screen, etc. Then try
to make the program more efficient in speed and utiliza-
tion of memory.

Be prepared to run into problems; it's through encounter-
ing and solving them that you'll learn most rapidly. When
I decided to stop reading and start trying to write a pro-
gram, I had visions of seeing a curl of white smoke rise from
the computer's cooling vents, but that didn't happen to me
and probably won't happen to you either. So don't be afraid
to experiment.

14$ 	The Best of 99'er 	Volume 1
	

Copyright 21 1983 Emerald Valley Publishing Cr,

Listing 1 	Magic Crayon

DEF 	MARKER
REF 	VSBW,VMBW,VMBR,VSBR
REF 	VWTR,KSCAN,DSRLNK

* DEFINITION OF LABELS

SCREEN BSS 	>300
PALET 	BSS 	>600
PATRN 	BSS 	>600
ROW 	BSS 	1
COL 	BSS 	1
CURSOR DATA >8040 >2010 >0804,>0000

DATA >0000 >0408 >1020 >4080
DATA >0102 >0408 >1020 >0000
DATA >0000 >2010 >0804 >0201

ARROW DATA >0102 >0408 >0000 >0000
DATA >0000 >0000 >0000 >0000 	 11
DATA >0080 >4020 >0000 >0000
DATA >0000 >0000 >0000 >0000

AT TR I B DATA >5878 >800F >D000
ARRA T T DATA >6578,>8401
PDATA 	DATA >0600 >1000 >0000 >0600

DATA >0008
TEXT 	' DSK1 . SCREEN '

ZERO 	DATA >0000
D32 	DATA >0020
D8 	DATA >0008
GRAY 	DATA >EEEE
MAX 	DATA >0 5 F F
COLMAX DATA >0100
LOAD 	BYTE >05
BLACK 	BYTE >11
ONE 	BYTE >01
TWO 	BYTE >02
FCOLOR BYTE >10
BCOLOR BYTE >0E
H18 	BYTE ,12
H14 	BYTE >0E
H11 	BYTE >0B
H07 	BYTE >07
H06 	BYTE >06
H05 	BYTE >0 5
H02 	BYTE >02
NOK EY 	BYTE >F F
PAB 	EQU 	>0F80
USRWS 	EQU 	>20 BA
PNTR 	EQU 	>8356
UNIT 	EQU 	>8374
F IRE 	EQU 	>8375
JOYS TY EQU 	>8376
IOYSTX EQU 	>8377
SPRITE EQU 	>337A
STATUS EQU 	>837C
GP LWS 	EQU 	>83E0
•
• DEFINE SPRITE PAT TERNS FOR CHRS 128 AND 132
•
MARKER LWPI USRWS

LI 	80,>400
LI 	R1,CURSOR
LI 	R2,64
BLWP @VMBW

LOAD WORKSPACE POINTER / START
VDP ADDRESS CH 128 SPRITE DESCRIPTOR TABLE
CPU ADDRESS OF CHAR PATTERN
64 BYTES TO MOVE (2 PATERNS)
LOAD DATA TO VDP RAM

• SET FOREGROUND AND BACKGROUND TO GRAY

LI 	R0 , >01F0
	

PLACE IN TEXT MODE
BLWP (1,VWT R
	

WRITE TO VDP R1
LI 	RO , >0 7EE
	

SET FORE AND BACKGROUND TO GRAY
BLWP @VWTR
	

WRITE TO VDP R7

• INITIALIZE SCREEN IMAGE TABLE FOR MULTICOLOR MODE

LI 	HO, SCREEN
LI 	R1 6
CLR 	R2

LOOPO 	LI 	R3,4
LOOP1 	LI 	R4,>20

MOVB R2 R5
LOOP2 	MOVB R5 *R0-1-

AI 	85,>0100
DEC 	R4
'NE 	LOOP2
DEC 	B3

INITIALIZE POINTER
INITIALIZE GROUP COUNTER
INITIALIZE VALUE
INITIALIZE REPETITIONS COUNTER
INITIALIZE VALUE COUNTER
START REPETITION
STORE VALUE IN ARRAY SCREEN
CHANGE TO NEXT VALUE
COUNT DOWN FOR NEXT VALUE
DO NEXT VALUE
DEC REPETITION COUNTER

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	149

Listing 1 Magic Crayon continued

INE 	LOOP1
AI 	R2,>2000
DEC 	R1
INE 	LOOPO
LI 	RO,>00
LI 	R1,SCREEN
LI 	R2,>300
BLWP @VMBW

DO NEXT REPETITION
NEXT STARTING VALUE
DEC GROUP COUNTER
DO NEXT GROUP
VDP ADDRESS FOR SCREEN IMAGE
CPU ADDRESS OF DATA BUFFER
768 BYTES TO WRITE
INITIALIZE VDP SCREEN IMAGE

*

•

INITIALIZE COLOR PALETTE SCREEN

LI 	RO,>100
LI 	R1,PALET

LOOP3 	MOV 	@GRAY,*R1+
DEC 	RO
INE 	LOOP3
CLR 	RO
LI 	R3,16

LOOP4 	LI 	R4,2
LOOPS 	MOVB @GRAY,*R1+

MOVB @GRAY,*R14-
MOVB @BLACK,*R1+
LI R5,4

LOOP6 	MOVE RO,*R1+
DEC 	115
INE 	LOOP6
MOVB @BLACK,*R14-
DEC 	R4
INE 	LOOPS
SWPB RO
AI 	RO,>11
SWPB RO
DEC 	R3
INE 	LOOP4
LI 	RO,>300

LOOP7 	MOVB @GRAY,*R1+
DEC 	Re
INE 	LOOP7

•

INITIALIZE WORD COUNTER
INITIALIZE POINTER FOR PALET ARRAY
STORE GRAY COLOR >EEEE
DEC WORD COUNTER
WRITE NEXT WORD
INITIALIZE COLOR VALUE
INITIALIZE COLOR COUNTER
INITIALIZE COLUMN COUNTER
STORE GRAY BYTE
STORE ANOTHER GRAY BYTE
STORE BLACK BYTE
LOAD COUNTER FOR COLOR BYTES
STORE A COLOR BYTE
DEC COLOR BYTE COUNTER
STORE ANOTHER COLOR BYTE
STORE A BLACK BYTE
DEC COLUMN COUNTER
DO SECOND COLUMN
SHIFT TO LEAST SIG BYTE
ADD 1 FOR NEXT COLOR NUMBER
SHIFT BACK TO MOST SIG BYTE
COUNT DOWN COLOR COUNTER
DO NEXT TWO COLUMNS
SET BYTE COUNTER FOR REMAINING SCREEN
STORE A GRAY BYTE
COUNT DOWN
REPEAT UNTIL DONE

* INITIALIZE PATTERN TABLE — TRANSPARENT

CLEAR 	LI 	R0,>300
LI 	R1,PATRN

LOOPS 	MOV 	@ZER0,*R1+
DEC 	RO
INE 	LOOP8

*

•

LOAD PATTERN TABLE
*

LI 	RO,>800
LI 	R1,PATRN
LI 	R2,>600
BLWP @VMBW

INITIALIZE WORD COUNTER
INITIALIZE POINTER FOR PATTERN ARRAY
STORE COLOR = TRANSPARENT
COUNT DOWN FOR NEXT WORD
WRITE NEXT WORD IN ARRAY

VDP PATTERN TABLE ADDRESS
CPU BUFFER ADDRESS
1536 BYTES TO WRITE
WRITE TO VDP RAM

*

•

SELECT DOUBLE SIZE AND MULTICOLOR MODE

LI 	R0,>01EA 	 TO WRITE 11101010 TO VDP R1
BLWP gVWTR 	 WRITE TO VDP R1
SWPB RO 	 MOVE >EA TO MOST SIG BYTE
MOVB R0,@>83D4 	 STORE COPY I>EA) IN CPU RAM

*

•

DEFINE ATTRIBUTES FOR SPRITE #0

LI 	RO,>300
LI 	R1,ATTRIB
LI 	R2,6
BLWP @VMBW

*

•

DEFINE # OF ACTIVE SPRITES

VDP SPRITE ATTRIBUTE LIST
LOCATION OF ATTRIBUTE LIST FOR SPRITE 0
6 BYTES TO MOVE
WRITE DATA TO VDP RAM

MOVB @ONE,@SPRITE 	STORE NO. OF ACTIVE SPRITES IN CPU RAM
•
* INITIALIZE CURSOR COLOR AND COLOR CHANGE COUNTER

LI 	R3,>0F01 	 SPRITE COLORS — WHITE/BLACK IN /I3
CLR 	R4 	 INITIALIZE COUNTER — COLOR CHANGE

	 START MAIN LOOP 	

*

•

CHECK IOYST FOR MOTION, FIRE BUTTON AND KEYS

CHECK 	LIMI 2 	 ENABLE INTERRUPTS
LIMI 0 	 DISABLE INTERRUPTS

I50 	The Best of 99'er 	Volume 1 	 Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 Magic Crayon continued

LI 	R0,1 	 INDICATE REPETIONS OF CHECKS
BL 	@CHECKS 	 BRANCH TO SUBROUTINE CHECKS
MOVB @ONE,@UNIT 	 SELECT REMOTE UNIT TO SCAN
BLWP @KSCAN 	 SCAN LEFT KEYBOARD
CB 	@FIRE,@H05 	 WAS °E" PRESSED?
JEQ 	CLEAR 	 IF YES GO TO CLEAR SCREEN
CB 	@FIRE,@H02 	 WAS "S" PRESSED?
JNE 	NEXT1 	 IF NOT, GO ON
B @SAVE 	 IF SO, BRANCH TO SAVE ROUTINE

NEXT1 	CB 	4FIRE,H06 	 WAS "Ft" PRESSED?
JNE 	NE.,XT2 	 IF NOT, GO ON
B @RECALL 	 IF SO, BRANCH TO RECALL ROUTINE

NEXT2 	CB 	@FIRE,@H11 	 WAS "T" PRESSED?
JNE 	NEXT3 	 IF NOT, GO ON
LIMI 2 	 ENABLE INTERRUPTS
LWPI GPLWS 	 LOAD GPL WORK SPACE
BLWP @0000 	 RETURN TO MASTER TITLE SCREEN

NEXT3 	CB 	@FIRE,@H14 	 WAS "C" PRESSED?
JNE 	NEXT4 	 IF NO, GO ON
B @SELECT 	 IF YES, GO TO COLOR SELECT ROUTINE

NEXT4 	CB 	@FIRE,@H18 	 WAS FIRE BUTTON PRESSED?
'NE 	SKIP 	 IF NO, SKIP DRAW ROUTINE

•
• ROUTINE TO PLACE BLOCK ON SCREEN

DRAW 	LI 	R0,>300 	 VDP SPRITE ATTRIBUTE ADDRESS
LI 	R1, ROW 	 CPU BUFFER TO RECEIVE DATA
LI 	R2,2 	 FETCH 2 BYTES
BLWP @VMBR 	 FETCH DOT ROW AND DOT COLUMN
CLR 	R7 	 INITIALIZE R7 AND R8
CLR 	R8 	 --FOR USE IN DIVIDE OPERATION
CLR 	R2 	 INITIALIZE OFFSET FOR PATRN ARRAY
MOVB @ROW,R0 	 PUT DOT ROW IN R8
SWPB R8 	 MAKE IT LEAST SIG BYTE
AI 	R8,9 	 ADD ROW OFFSET FOR COLOR BLOCK +1
C 	R8,@COLMAX 	 IS THE DOT ROW > 255?
JLT 	NOCORR 	 IF NOT, DO NOT APPLY CORRECTION
S 	@COLMAX,R8 	 IF SO, SUBTRACT 255

NOCORR DIV 	@D32,R7 	 DIVIDE DOT ROW OF BLOCK BY 32
SLA 	R7,8 	 CALCULATE BYTES IN PRECEEDING GROUPS
A 	R7,R2 	 ADD # OF BYTES IN PREVIOUS 32X8 BYTE GROUPS
SRL 	R8,2 	 DIVIDE REMAINDER BY 4
A 	R87-112 	 ADD # BYTES ABOVE IN CURRENT 8 BYTE SET
CLR 	R7 	 INITIALIZE R7 AND R8
CLR 	R8 	 --FOR USE IN DIVIDE OPERATION
MOVB @COL,R8 	 PUT DOT COLUMN IN R8
SWPB R8 	 MAKE IT LEAST SIG BYTE
Al 	R8,8 	 ADD COLUMN OFFSET FOR COLOR BLOCK
C 	R8,@COLMAX 	 IS THE DOT COLUMN > 255?
ILT 	NOCORC 	 IF NOT, DO NOT APPLY CORRECTION

@COLMAX,R8 	 IF SO, SUBTRACT 256
NOCORC DIV 	@D8,R7 	 DIVIDE BY 8

SLA 	R7.3 	 CALCULATE BYTES IN PRECEEDING 8 BYTE SETS
A 	R7, R2 	 ADD # BYTES IN PREVIOUS 8 BYTE SETS, THIS GROUP
MOV 	R2,R2 	 CHECK IF INSIDE PATTERN ARRAY 	N
JLT 	SKIP 	 IF NOT SKIP SCREEN PLACEMENT
C 	R2,@MAX 	 CHECK IF INSIDE PATTERN ARRAY EEN
JGT 	SKIP 	 IF NOT SKIP SCREEN PLACEMENT
LI 	R0,>14 	 REPEAT SUBROUTINE CHECKS 20 TIMES
BL 	@CHECKS 	 BRANCH TO SUBROUTINE CHECKS
CLR 	R1 	 INITIALIZE R1 FOR BLOCK COLOR
MOVB @FCOLOR,R1 	 STORE COLOR IN R1
SWPB R1 	 MAKE IT LEAST SIG BYTE
CLR 	RO 	 INITIALIZE RO FOR CURRENT ARRAY ELEMENT
MOVB @PATRN(2),R0 	 COPY ARRAY ELEMENT AT OFFSET INTO RO
SRL 	R8,2 	 CALCULATE WHETHER BLOCK IS LEFT OR RIGHT
JEQ 	MARK1 	 IF 0 LEAVE BLOCK AS LEFT NYBBLE
SRL 	R1,4 	 IF 1 MAKE BLOCK RIGHT NYBBLE
SWPB RO 	 MAKE CURRENT ELEMENT LEAST SIG BYTE
SRL 	R0,4 	 GET RID OF LEAST SIG NYBBLE
SLA 	R0,4 	 PUT REMAINING NYBBLE BACK
JMP 	MARK2 	 SKIP TO LABEL

MARK1 	SLA 	R0,4 	 GET RID OF MOST SIG NYBBLE
SRL 	R0,4 	 PUT BACK REMAINING NYBBLE
SWPB R0 	 MAKE IT LEAST SIG BYTE

MARK2 	A 	R1,R0 	 ADD NEW COLOR TO ADJACENT VALUE
SWPB RO 	 MAKE IT MOST SIG BYTE
MOVB R0,@PATRN(2) 	 MOVE IT TO ARRAY AT OFFSET
LI 	R0,>0800 	 VDP PATTERN TABLE ADDRESS
LI 	R1, PATRN 	 CPU BUFFER
LI 	R2,>600 	 1536 BYTES TO MOVE
BLWP @VMBW 	 WRITE TO REDRAW SCREEN

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	151

Listing 1 Magic Crayon continued

SKIP
	

CLR 	R5 	 CLEAR R5 AND R6 TO RECEIVE JOYST VALUES
CLR 	R6
MOVB @JOYS TY , R5 	 PUT Y RETURN IN R5
NEG 	R5 	 MULTIPLY BY —1
SLA 	R5,2 	 MULTIPLY BY 4
MOVB @JOYS TX , R6 	 PUT X RETURN IN R6
SLA 	R6 , 2 	 MULTIPLY TIMES 4
SWPB R6 	 MAKE XVEL LEAST SIG BYTE
MOVB R5 , R6 	 MOVE YVEL TO R6 AS MOST SIG BYTE
LI 	R1 ,USRWS+12 	 CPU ADDRESS OF VELOCITY BYTES (R6 1
LI 	RO , >0780 	 VDP ADDRESS OF MOT ION TABLE
LI 	R2 , 2 	 2 BYTES TO MOVE
BLWP @VMBW 	 WRITE DATA TO VDP RAM
B @CHECK 	 START LOOP OVER AGAIN

•
• END OF MAIN PROGRAM LOOP 	
•
* COLOR SELECT ROUTINE

SELECT LI 	RO , >07EE 	 CHANGE BACKGROUND TO GRAY
BLWP @VWTR 	 WRITE TO VDP R7
LI 	RO , >800 	 VDP BUFFER FOR PATTERN TABLE
L I 	R1 , PAL ET 	 CPU BUFFER FOR PALETTE
LI 	R2 , >600 	 1536 BYTES TO MOVE
BLWP @VMBW 	 DISPLAY PALETTE
LI 	RO , >300 	 VDP BUFFER FOR ATTRIBUTE LIST
LI 	R1 , ARRATT 	 ARROW ATTRIBUTES
LI 	R2 , 4 	 4 BYTES TO MOVE
BLWP @VMBW 	 WRITE DATA
BL 	(ijDEBNC 	 BRANCH TO "DEBOUNCE" SUBROUTINE

LOOP9 	LIMI 2 	 ENABLE VDP INTERRUPT
LIMI 0 	 DISABLE INTERRUPT
MOVB @ONE , @UN I T 	 IDENTIFY REMOTE UNIT TO SCAN
BLWP @KSCAN 	 SCAN LEFT KBD AND REMOTE UNIT #1
CB 	@F IRE ,@H18 	 CHECK FIRE BUTTON
JEQ 	CMARK 	 IF PRESSED, CHANGE MARK COLOR
CB 	epF IRE ,H14 	 CHECK "C" KEY

EQ 	CSCRN 	 I F PRESSED , CHANGE SCREEN COLOR
CLR 	R6 	 INITIALIZE R6
MOVB @JOYS TX , R6 	 PUT JOYST X IN R6
SLA 	R6 , 2 	 MPY BY 4
SWPB R6 	 MAKE LEAST SIG BYTE
LI 	R1 ,USRWS+12 	 LOAD CPU ADDRESS (R6)
LI 	R0 , >0780 	 LOAD ADDRESS OF MOT ION TABLE
LI 	R2 , 2 	 MOVE 2 BYTES
BLWP @VMBW 	 LOAD DATA TO VDP RAM
IMP 	LOOP9 	 GOTO LOOP9

CSCRN 	BL 	@DOTCOL 	 DETERMINE COLOR FROM DOT COLUMN OF ARROW
SWPB R1 	 MAKE IT MOST SIG BYTE
MOVB R1 , @BCOLOR 	 MOVE IT TO BCOLOR
IMP 	BACK 	 JUMP TO BACK

CMARK 	BL 	@DOTCOL 	 DETERMINE COLOR FROM DOT COLUMN OF ARROW
SLA 	R1,12 	 PUT IN PROPER POSITION FOR @FCOLOR
MOVB R1 , @FCOLOR 	 MOVE IT TO FCOLOR

BACK 	BL 	@DEBNC 	 DEBOUNCE
CLR 	RO 	 PREPARE TO RETURN SCREEN COLOR
MOVB @BCOLOR , RO 	 PUT BACKGROUND COLOR IN RO
SWPB RO 	 MAKE IT LEAST SIG BYTE
MOVB @H07 , RO 	 INDICATE WRITE TO VDP R7
BLWP @VWTR 	 WRITE IT TO R7
LI 	R0 , >800 	 VDP PATTERN TABLE ADDRESS
LI 	R1 , PATRN 	 PATTERN BUFFER IN CPU RAM
LI 	R2 , >600 	 1536 BYTES TO WRITE
BLWP @VMBW 	 LOAD PATTERN SCREEN
LI 	R0 , >300 	 VDP SPRITE ATTRIBUTE TABLE ADDRESS
LI 	R1, ATTR I B 	 ADDRESS OF CURSOR ATTRIBUTES
LI 	R2 , 4 	 4 BYTES TO MOVE
BLWP @VMBW 	 LOAD DATA TO GET CURSOR SPRITE
B @SK IP 	 BRANCH TO LABLE SKIP

•
* DSR ROUTINE TO SAVE "SCREEN" -- PATTERN TABLE
•
SAVE 	LI 	RO , >1000

L I 	R1 , PATRN
LI 	R2 , >600
BLWP @VMBW
LI 	RO , PAB
LI 	R1 , PDATA
LI 	R2 , 21
BLWP @VMBW
L I 	R6 PAB+9
MOV 	R6 , @PN TR
BLWP 6,DSRLNK

PREPARE TO MOVE PAT RN TO VDP BUFFER
CPU BUFFER ADDRESS
1536 BYTES TO MOVE
WRITE DATA
VDP PERIPHERAL ACCESS BLOCK ADDRESS
CPU BUFFER TO BE WRITTEN TO VDP
21 BYTES TO WRITE
WRITE PAB
SET POINTER TO NAME LENGTH
STORE IN >8356 > 8 3 5 7
EXECUTE SAVE OR LOAD

I 52 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 Magic Crayon continued

DATA 8
B @CHECK

	
IF SO, BRANCH BACK TO BEGINNING

* DSR ROUTINE TO RECALL "SCREEN" -- PATTERN TABLE

RECALL LI 	R0 , PAB 	 VDP PERIPHERAL ACCESS BLOCK ADDRESS
LI 	R1 , PDATA 	 CPU BUFFER TO WRITE
LI 	R2 , 21 	 21 BYTES TO WRITE
BLWP @VMBW 	 WRITE PAB
LI 	RO , PAB 	 SUBSTITUTE "LOAD" I/O OP CODE
MOVB @LOAD , R1 	 MOVE OP CODE TO R1
BLWP @VSBW 	 WRITE BYTE TO PAB
LI 	R6 , PAB+9 	 SET POINTER TO NAME LENGTH
MOV 	R6 ,@PNTR 	 STORE IN >8356 >8357
BLWP @DSRLNK 	 COPY DATA TO VDP BUFFER
DATA 8
LI 	R0 , >1000 	 PREPARE TO COPY FROM VDP TO PATRN
LI 	R1 , PATRN 	 CPU BUFFER ADDRESS
L I 	112 , >600 	 1536 BYTES TO COPY
BLWP @VMBR 	 COPY BUFFER
LI 	RO , >0800 	 NOW COPY TO PATTERN TABLE
LI 	R1 , PATRN 	 ADDRESS OF CPU BUFFER
L I 	112 , >600 	 1536 BYTES TO COPY
BLWP @VMBW 	 COPY TO TABLE
B @CHECK 	 BACK TO THE BEGINNING

•
• SUBROUTINE TO PERIODICALLY CHANGE SPRITE COLORS
•
CHECKS AI 	R4 , >100

J EQ 	CHANGE
DEC 	II0
J NE 	CHECKS
IMP 	RETURN

CHANGE SWPB R3
MOV 	R3 , R1
LI 	I10 , >303
BLWP @VSBW

RETURN RT
•
• DEBOUNCE SUBROUTINE
•
DEBNC 	MOVB @ONE , @UN I T

BLWP @KSCAN
CB 	@F IRE ,@NOKEY
JNE 	DEBNC
RT

ADD 256 TO R4
WHEN R4 REACHES 0, CHANGE COLOR
DEC COUNTER
IF NOT 0 ADD ANOTHER 256
BACK TO MA IN PROGRAM
SWITCH COLOR BYTES IN 113
PUT R3 IN R1
ADDRESS OF SPRITE #0 COLOR IN VDP RAM
WRITE MOST SIG BYTE OF R1
BACK TO MA IN PROGRAM

KEY UNIT TO CHECK
SCAN KEYBOARD
IS NO KEY PRESSED?
IF A KEY IS PRESSED, CHECK AGAIN.
GO BACK TO MA IN PROGRAM

*

•

SUBROUTINE TO DETERMINE COLOR FOR ARROW
•
DOTCOL CLR 	R1

LI 	R0 , >301
BLWP @VSBR
SWPB R1
AI 	R1 , >07
SRL 	R1 , 4
RT

"END START"

AUTO 	END 	MARKER

INITIALIZE R1 TO RECEIVE DOT COLUMN
VDP ADDRESS OF DOT COLUMN
READ BYTE FROM ATTRIBUTE TABLE
MAKE IT LEAST SIG BYTE
ADD OFFSET FOR POINT OF ARROW
DIVIDE BY 16
RETURN

AUTOSTART

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	153

MINI
MEMORY
CARTRIDGE
There's More There
Than Meets the Eye

You know, looks can be deceiving. Who'd suspect
that a bespectacled, mild-mannered reporter for
the Daily Planet could leap over tall buildings with

a single bound? In the same way, there's more to TI's
Mini Memory Command Cartridge than meets the eye.
What appears to be a normal, garden-variety Command
Cartridge, however, really converts your TI Home Com-
puter from a good BASIC machine to a trim and effi-
cient assembly language instrument.

Even the name is a clever disguise: "Mini" Memory,
indeed! If you believe that there's just a tiny bit of
memory in there, you probably believe that the Trojan
Horse was nothing more than an overgrown hobby-horse!
This cartridge actually has 14K bytes of memory: 4K of
RAM, 4K of ROM and 6K of GROM.

RAM (read/write) memory is used by your computer
to store your programs. And you know that any program
you write disappears from the computer's memory when
you shut the computer off. But Mini Memory has a sur-
prise for you: When you shut the computer off and
unplug the cartridge, your programs don't disappear
from the cartridge's RAM. A battery inside the cartridge
feeds a trickle of current to the CMOS devices—which
are real power misers—and keeps them alive. And now
you can carry your programs around with you, plug them
in, and instantly load them—no cassettes, no diskettes,
no messy cables, no long waits.

But there's more yet. Besides battery-backed RAM, this
cartridge also has 4K bytes of ROM (Read-Only Memory)
and 6K bytes of GROM (Graphics Read-Only Memory).
The ROM and GROM give you seven additional TI
BASIC subprograms, as well as access to many system
routines from assembly language programs. The ROM
also contains a powerful program debugger, EASY BUG,
which can help you exterminate those pesky "logic ver-
min" which infest programs.

At this point, you may be saying to yourself, "What
good does all this Assembly Language access and debug-
ging stuff do for me, anyway, without an assembler?"
Glad you asked. The Mini Memory Command Cartridge
comes with an assembler on cassette. You can load this
assembler into memory, enter assembly language

statements, and have the assembler translate them into
TMS9900 object code.

Let's explore this cornucopia one item at a time.

FILE STORAGE
Probably most persons will use the Mini Memory car-

tridge most often for temporary storage of programs and
data. You can think of the Mini Memory cartridge as a
very fast-access storage device. [See "Getting Down to
Business" for a tutorial on random access files.—Ed.]

When you have the Mini Memory Command cartridge
plugged in, the 4K-byte RAM has the file name
MINIMEM for TI BASIC program and data storage. The
RAM occupies physical addresses 28672 through 32767
(hexadecimal 7000 through hexadecimal 7FFF). You can
save programs in this file and load programs from it. (For
example, to save a TI BASIC program, just enter the
command SAVE MINIMEM.) You can also store data
in this file using the file specification available for any
TI BASIC file. For example, the following statements
open the Mini Memory file and store data values in the
file.

OPEN #3 :"MINIMEM",RELATIVE,FIXED,
UPDATE, INTERNAL
PRINT #3: A,B,C,D
With the Mini Memory cartridge you can also access

a second new file. EXPMEM2 is the name of a 24K-byte
memory file located in the 32K Memory Expansion unit.
EXPMEM2 is available, however, only if you have the
Memory Expansion unit connected to your computer and
turned on.

ADDITIONAL TI BASIC SUBPROGRAMS
Seven additional TI BASIC subprograms are yours

with the Mini Memory cartridge. These subprograms are
PEEK, PEEKV, POKEY, CHARPAT, INIT, LOAD,
and LINK.

The PEEK subprogram reads bytes of CPU RAM data
and copies the data directly into TI BASIC variables. For
example, the statement:

CALL PEEK (8192,A,B,C,(8))
reads three bytes of data starting at address 8192, and
assigns the values read to the variables A, B, and C(8).

The PEEKV subprogram reads bytes from VDP RAM.
It works exactly like PEEK, except PEEKV accesses VDP
RAM instead of CPU RAM.

The POKEV subprogram stores data values into VDP
RAM. For example,

CALL POKEV(784,30,30,30)
writes the value 30 to VDP RAM locations 784, 785, and
786.

I 54 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

The CHARPAT subprogram reads a 16-character pat-
tern identifier that specifies the pattern of a character
code. For example,

CALL CHARPAT(68,D$)

places the pattern defining character code 68 in the string
variable D$.

The three TI BASIC subprograms INIT, LOAD, and
LINK interface Assembly Language programs and TI
BASIC programs.

The INIT subprogram initializes the CPU memory for
Assembly Language programs. The LOAD subprogram
loads Assembly Language object files into CPU memory
and it loads data into the CPU memory.

There are two forms of the LOAD subprogram. One
form is used to load an object file from a storage device
into memory, and the second form is used to load data
directly into CPU memory. For example, the statement

CALL LOAD ("DSK1.DEMO")

loads the file DEMO from the diskette in Disk Drive 1.
The second form of the LOAD subprogram is a POKE

function for CPU RAM. For example, the statement

CALL LOAD (8197,85,40)
loads the value 85 into memory location 8197 and the
value 40 into memory location 8198.

The LINK subprogram passes control and, optional-
ly, a list of parameters from a TI BASIC program to an
Assembly Language program. For example, the statement

CALL LINK ("PROG1",A,E(9))
passes control from a TI BASIC program to an Assembly
Language program named PROG1 and passes the
variables A and E(9) to the program.

ACCESS TO SYSTEM ROUTINES
The utility routines resident in the Mini Memory Com-

mand Cartridge can be called from an Assembly
Language program to access machine resources and in-
terface with the TI BASIC interpreter. It's fair to warn
you that the use of these routines requires a knowledge
of the routines themselves and the organization of data
used by the routines. You can get additional information
about these routines from the Editor/Assembler owner's
manual (available separately).

Two types of access programs are resident in the Mini
Memory Command Cartridge. One program contains a
collection of system utilities with which to link to
ROM/GROM routines, perform a keyboard scan, access
the VDP, etc. The individual utility programs are
classified as either Standard Utility programs or Extend-
ed Utility programs.

A second program contains TI BASIC interface utilities
with which an Assembly Language program can access
variables passed through a CALL LINK statement in a
TI BASIC program. This program also contains an error-
handling utility to return exceptions to a TI BASIC
program.

STANDARD UTILITY PROGRAMS
The following standard system utilities become accessi-

ble with the Mini Memory Command Cartridge:
—VDP Single Byte Write—Write a single-byte value to

a specified VDP RAM address.

—VDP Multiple Byte Write—Write multiple bytes
from CPU RAM to VDP RAM.

—VDP Single Byte Read—Read a single byte from a
specified VDP RAM address.

—VDP Multiple Byte Read—Read multiple bytes from
VDP RAM into CPU RAM.

—VDP Write to Register—Write single-byte value to
any of the VDP RAM registers.

—Keyboard Scan—Scan the keyboard and return a
key-code and status. This routine can also read the
position of the Wired Remote Controller.

EXTENDED UTILITY PROGRAMS
Extended utilities are provided to access routines in the

console GROMs and ROMs. These utilities are GPLLNK
(link to GPL routines in GROM), XMLLNK (link to
routines in ROM), and DSRLNK (link to Device Service
Routines).

GPLLNK Routines
The GPLLNK routines are as follows:
—Load Standard Character Set—Load the standard

character set into VDP RAM
—Load Small Character Set—Load the small

character set (for the 40-column Text Mode) into
VDP RAM.

—Execute Power-Up Routine—Initialize the system as
if the computer had just been turned on.

—Accept Tone—Issue an accepting tone for input.
—Bad Response Tone—Issue a bad-response tone

warning.
—Bit Reversal Routine—Provide a mirror image of a

byte of information.
—Cassette Device Service Routine—Access a cassette

tape recorder/player as a storage device.
—Load Lower Case Character Set—Load the

lower-case character set into VDP RAM.
The following floating point routines are also available

through GPLLNK:
—Convert a floating-point number to an ASCII string.
—Compute the greatest integer contained in a value.
—Raise a number to a specified power.
—Compute the square root of a number.
—Compute the inverse natural logarithm of a value.
—Compute the natural log of a number.
—Compute the cosine of a number.
—Compute the sine of a number.
—Compute the tangent of a number.
—Compute the arctangent of a number.

XMLLNK Routines
Routines in the console ROM can be accessed through

the XMLLNK routine, The following routines can be
called from an Assembly Language program using
XMLLNK:

—Floating-point addition.
—Floating-point subtraction.
—Floating-point mutiplication.
—Floating-point division.
—Floating-point compare.
—Floating-point stack addition.
—Floating-point stack subtraction.
—Floating-point stack multiplication.
—Floating-point stack division.
—Floating-point stack compare.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	155

—Convert a string to a number.
—Convert a floating-point format number to an integer.
—Push a value onto the value stack.
—Pop a value from the value stack.
—Convert an integer number to floating-point format.

DSRLNK Routines
DSRLNK links an Assembly Language program to a

Device Service Routine (DSR) or a subprogram in ROM.
As with GPLLNK and XMLLNK, TI cautions you to
make sure you know what you are doing before using
DSRLNK. [A DSR is a machine language program that
TI has burned into ROMs found in each of its peripherals.
Since each peripheral contains its own custom "operating
system," the TI-99/4A did not have to be designed to
anticipate future peripheral requirements.—Ed.]

TI BASIC INTERFACE UTILITIES
TI BASIC interface utilities allow an Assembly

Language program to read or assign values to variables
passed in a parameter list from a CALL LINK statement
in a TI BASIC program. These utility routines include
argument-passing utilities and an error-reporting utility.

The following are the TI BASIC interface utilities:
—Assign a numeric value to a numeric variable.
—Assign a string to a string variable.
—Retrieve the value of a numeric parameter.
—Retrieve the value of a string parameter.
—Report an error. (The Assembly Language program

can report any existing TI BASIC error or warning
message upon returning to TI BASIC.)

EASY BUG DEBUGGER
Also inside the Mini Memory cartridge's ROM is

EASY BUG. EASY BUG is a versatile program develop-
ment tool with which you can (1) debug your Assembly
Language programs, (2) access the input/output ports of
the computer, (3) load programs, and (4) store programs.
And it really is easy to use. With EASY BUG, you can
inspect and (optionally) modify the contents of CPU and
VDP memory, display the contents of ROM, run
Assembly Language programs from EASY BUG, directly
access the peripheral devices which are connected to the
computer via the 9900 microprocessor's serial I/O port
(the CRU), and save or load programs on cassette.

LINE-BY -LINE SYMBOLIC ASSEMBLER
A line-by-line symbolic assembler on a cassette tape is

supplied with the Mini Memory cartridge. It assembles
Assembly Language statements and stores the object code
directly into the 99/4A's CPU RAM. You can make both
forward and backward references to one- or two-
character labels with the Assembler. Each source state-
ment you enter is immediately assembled into object code
and stored into memory. Because some source code is re-
tained in a nine-page text buffer, you can scroll the screen
to review previously entered lines of source code by press-
ing the up- and down-arrow keys. The source program
cannot be saved, however.

The Line-by-Line Assembler occupies about 2K bytes.
When it is loaded into the Mini Memory cartridge's 4K
byte RAM, you still have about 2K bytes of memory for
your Assembly Language program.

Assembler Directives
The Assembler recognizes seven directives:

—The AORG (Absolute Origin) directive establishes
the location counter value to set the starting address
of assembled code.

—The BSS (Block Starting with Symbol) directive re-
serves a block of initialized memory.

—The DATA (Data Initialization) directive initializes
a word or words of memory to a specific value.

—The END (End Program) directive terminates the
assembler and causes a display of the number of
unresolved references, if any.

—The EQU (Equate) directive defines a value for a
symbolic constant.

—The SYM (Symbol Table Display) causes a display of
all symbols and their values in the program.

—The TEXT (String Definition) directive causes a
string of characters to be translated into their ASCII
code and stored as a part of a program.

[Rather than being strictly a part of the internal logic
of your program, assembler directives are commands
which direct the Assembler to perform certain operations
at assembly time.—Ed.]

DEMONSTRATION PROGRAM
Along with the Line-by-Line Assembler on the cassette

is an Assembly Language demonstration program called
LINES which draws a colorful line design on the screen.
The LINES program can be run only on the TI-99/4A
Home Computer, however, because it requires the
enhanced graphic processor contained on the TI-99/4A.

OPERATION
TI has a knack for creating complex and versatile pro-

grams that are still simple to operate; they've definitely
done it again with the Mini Memory Command Car-
tridge. When you plug in the cartridge, turn on the com-
puter, and pass the opening credits on the Master Title
Screen, you are presented with a simple, three-choice
selection screen. You can choose TI BASIC, EASY BUG,
or MINI MEMORY.

If you select MINI MEMORY, you are presented with
a second three-choice selection screen. You can choose
to load an object program into memory and run it, run
a previously loaded program already in memory, or re-
initialize the cartridge to prepare it for loading new pro-
grams or storing data. Pick a number, pluck a key, and
you're off and running. It's as easy as eating oatmeal
cookies!

CONCLUSION
This has got to be one of the best deals around. 4K

bytes of RAM with battery backup assure that all the
good stuff stored in the RAM is not lost when you turn
off the console or even when you remove the cartridge.
10K bytes of ROM and GROM give you seven additional
TI BASIC subprograms (including PEEK and POKE),
access to system routines from Assembly Language, and
routines to allow you to interface Assembly Language
programs to TI BASIC. You've got a user-friendly pro-
gram debugger, a symbolic line-by-line assembler, and
a captivating graphics demonstration program. All of
this, plus 84 pages of documentation, for $99.95 (sug-
gested retail price). With all this to offer, it's really not
too hard to see why there's definitely more to the Mini
Memory Command Cartridge than meets the T-eye . (25

I 56 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

C

C
C

C

c
C

A Screen Printing Utility

PART 1: Design Considerations

One of the best features of the TI-99/4A computer
is its graphics capability. The programmer can
create a huge variety of screens by using the sim-

ple character-definition commands of TI BASIC.
Wouldn't it be nice to dump those screens to your non-
thermal printer? This two-part article presents a method
for doing this on the TI-99/4 impact printer. Part I
discusses the theory behind the screen dump. Part II will
provide the Assembly Language subroutine itself.

I should mention that the 99/4A has an improved video
processor (TMS9918A) which allows you to define up to
768 unique characters on the screen. However, this bit-
map mode requires an extra 12K of memory to hold the
larger tables needed. We'll limit ourselves to the Graphics
I, or standard mode, in this discussion.

Approach —in English
The video screen contains 768 character positions, ar-

ranged in 24 rows of 32 characters. Each character is com-
posed of an 8 x 8 dot matrix, giving you a screen of 192
x 256 dots. The screen dump program will reproduce
the screen dot-for-dot on the printer.

With bit-image mode selected, the TI-99/4A prints
characters which are one dot wide and 8 dots high. Since
the screen characters are also 8 dots high, each screen
character can be represented by 8 TI-99/4A bit-image
characters, for a total of 64 possible dots per screen
character.

Accessing the Screen Image
The contents of the screen are stored in VDP RAM.

Since we are not concerned with color here, only two of
the screen tables in VDP RAM are of interest. The first
is the Screen Image Table, which starts at default
address > 0000 and contains 768 bytes. Each byte cor-
responds to the character position on the screen and con-

tains the character number occupying that screen posi-
tion. VDP RAM addresses > 0020 through > 003F cor-
respond to the second screen row, and so on. Since each
character number is contained in one byte, you can see
that the character numbers must be between > 00 and
> FF, or decimal 0 through 255.

The second table we'll need is the Pattern Descriptor
Table, which starts at VDP RAM address > 0800 by
default. This table contains the dot patterns for each of
the 256 characters which can be in use. The BASIC sub-
program CHAR, which is used to define dot patterns for
characters, stores patterns in this table. Since a character
pattern takes 8 bytes to define, and there can be up to
256 different characters, the Pattern Descriptor Table oc-
cupies 2084 bytes of VDP RAM.

Figure 1 shows the relationship between these two
tables. For a given screen ROW and COLUMN, the VDP
RAM address of the corresponding character number is
given by (ROW — 1) * 32 + COLUMN — 1. Once you
have obtained this character number, you can use it to
index to the correct spot in the pattern Descriptor Table.
The offset in this table is just 1024 + (N — 32)*8 in
decimal, since each pattern description is 8 bytes long.
Figure 1 shows an example of finding the pattern for the
home position (ROW 1, COLUMN 1) on the screen. The
character number resides in the Screen Image Table at
address 0. If the home character on the screen is "A",
then VDP RAM address 0 contains the value 65 or > 41.
From the offset in the Pattern Descriptor Table, we get
VDP RAM address > 800 + > 200 = > 0A00. The eight
bytes starting at > 0A00 in VDP RAM contain the pat-
tern for the character "A". You can see that for our pur-
poses, the contents of the Screen Image Table are just
intermediate, though necessary, data. The character pat-
tern is what we're really after.

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	157

Figure 1. r 	>0000

>1000h, 8 BYTES

Screen Image
Table

768 entries
>02FF

1 BYTE

PATTERN FOR CHAR # 0

>00 	>38 	>44 	>44 	>7C >44 1 >44 >44

PATTERN FOR CHAR # 255

99/4A screen
32 x 24 =

768 positions

rr 	
>0800

T(ROIN-11+32+COL-1

	 -11

-1024 + (CHAR # —1)+8

>0A00

>41

Pattern Descriptor Table
VDP RAM - 	 —J L 	

Figure 2. > 00 >38 >44 >44 >7C >44 >441 >44

1 >00 >48 1 >48 >3F1 >48 I >3F >001 >00

TI.994A character pattern from Pattern Descriptor Table

0 0 0 1,..
each byte represents one row

0 0 0 0 0

I 0 0 1 1 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

o 1 1 1 1 1 o o

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

4--/ each byte represents one column

TI.99/4A printer bit image pattern

character in binary form

Figure 3.
BYTE 	0

TI-99/4A character in binary form
1 	 2 	 7

IN 1 0000 	0000 1 0011 1000 1 0100 0100 1(i0100 	0100

BIT 0123 	4567

BIT 011-M67 	1, 1

I

	

Do i:KV 	0011

	

rxi 	uuuu 1111 0100 , 1000 moo , 0000 1

BYTE 	0 1 2 7
TI-99/4A printer bit-image data

The 8-byte character pattern represents the dot pattern
which appears on the screen in what I'll call row- wise
form. The top portion of Figure 2 illustrates this for the
character "A". The first byte of the pattern represents
the first row of the dots which comprise the character.
The hexadecimal notation is just a shorthand way to
group four bits at a time, with bits of value 1 standing
for dots which are turned on in the character.

Translating the Characters to
TI-99/4A Format

The TI-99/4 printer constructs its bit-image output in
a different way. It uses what I'll call column - wise form.
It still takes 8 bytes to produce the same character, but
each byte of data passed to the printer represents a col-
umn (rather than a row) of dots in the finished character.
The bottom of Figure 2 illustrates this. If we think of
the character's dot pattern as an 8 x 8 matrix, then the
translation from TI internal format to TI-99/4A printer
bit-image format is equivalent to transposing the matrix.
We can't really treat each character pattern as a 64-bit
matrix because 9900 Assembly Language does not have
a BIT data type, but we can base the logic of the pro-
gram on this idea.

Program Outline
The screen dump program reads the Screen Image

Table one byte at a time starting at the top (VDP RAM
address 0). The value of each byte is used to calculate
the position of the character pattern, and the 8-byte pat-
tern is obtained from the Pattern Descriptor Table. These
8 bytes will be manipulated to produce 8 bytes of infor-
mation encoded for the TI-99/4 printer. Figure 3 shows
how the bits of the TI-99/4A character pattern are
rearranged to form bit-image data for the printer. Notice
that the data at byte M, bit N is moved to byte N bit M—
or transposed. The program will also have to send cer-
tain control characters for bit-image mode to the printer.

PART 2: Screen Dump

T he Assembly Language subroutine for dumping
99/4 screens to the TI-99/4 impact printer is
designed to be called from console BASIC, and can

be entered into your system using either the
Editor/Assembler or the Line-by-Line Assembler in the
Mini Memory Command Cartridge.

VDP RAM Under Console BASIC
When the TI-99/4A is under control of the BASIC in-

terpreter, VDP RAM contains two areas of interest here.
VDP RAM addresses > 0000 — > 02FF (0 — 767 in
decimal) contain the character numbers associated with
each screen position. The character patterns for character
numbers 32 — 159 start at VDP RAM address > 0400
(1024). In the Pattern Descriptor Table address the 8-byte

character pattern corresponding to a character number
N is 1024 + (N — 32) * 8 in decimal.

The dump subroutine (called DUMP) uses these facts.
Starting with VDP RAM address 0, DUMP gets the
screen character number and uses it to calculate the VDP
RAM address of the associated character pattern. It then
reads the 8-byte character pattern, transposes the matrix,
and writes the resulting 8 bytes to the printer. DUMP per-
forms this process on each successive byte of screen
RAM, up to and including VDP RAM address > 02FF
(767).

DSRLNK and Printer Output
The actual output to the printer is done by means of

a built-in Extended Utility Routine called DSRLNK.

158 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Before calling DSRLNK, the Assembly Language
subroutine must set up a Peripheral Access Block (PAB)
in VDP RAM. Here is the format of the PAB we'll use
for the printer:

BYTE# CONTENTS
0 	I/O opcode: > 00 = open

> 01 = close
> 03 = write

1 	Flag/status byte. > 12 is the code for se-
quential file, output operation,
DISPLAY type data and variable length
records.

	

2, 3 	Data buffer address in VDP RAM. We'll
use > 1E00.

4 	Logical record length.
5 	Number of characters to write.

6, 7, 8 	Not used here.
9 	Length of file descriptor which follows.

	

10 — 35 	File descriptor. We'll use RS232.PA = O.
DA = 8.BA = 9600.CR

We'll put the PAB in VDP RAM starting at address
> 1D00 (hereafter called V1D00), and we'll put the data
area containing the actual data for output to the printer
at V1E00. These addresses could have been elsewhere in
VDP RAM, as long as the locations chosen were not used
by something else.

To perform a printer operation, the program must do
the following:

1. Build the PAB in VDP RAM.
2. Put the address of the length of the file descriptor

(byte 9 of the PAB) into CPU RAM address > 8356.
3. Call DSRLNK.
You'll notice that the call to DSRLNK must be

followed by a word (two bytes) containing the value 8,
which means that you want to link to a Device Service
Routine (DSR).

RS232 Considerations
Since the DUMP subroutine uses the RS232 interface

to communicate with the printer, some additional code
is needed to save and restore the address of the GROM.
This is because the GROM address is changed when the
RS232 DSR is used. At the beginning of the DUMP
subroutine, the GROM address is obtained one byte at
a time from the GROM Read Address at location >9802.
The GROM address increments itself when the first byte
is read (actually moved) from the GROM Read Address.
This makes the second byte of the GROM address one
too big, so it must be decremented by DUMP. Just before
returning to BASIC, the DUMP subroutine restores the
GROM address by moving it to the GROM Write Ad-
dress at location > 9CO2, again one byte at a time.

Linkage to Console BASIC
A console BASIC program invokes the DUMP

subroutine by the statement CALL LINK("DUMP").
DUMP returns to the BASIC program by branching to
the contents of register 11 (R11). Just before returning
to BASIC, the DUMP subroutine clears the error byte
at @ > 837C (sets it to 0). Failure to clear this byte can
result in an undeserved INCORRECT STATEMENT er-
ror when you return to BASIC.

Transposing the 8x8 Character Matrix
Once a screen character's 8-byte pattern has been read

into CPU RAM (at label IN), the DUMP subroutine uses
the following technique to build the 8 bytes of output at
label DO.

The first byte of DO is composed of the first bit of
each of the 8 bytes starting at IN, the second byte of DO
is composed of each second bit of the bytes at IN, and
so on. Figure 2 of Part One shows the bit movements
for the pattern character of an "A".

DO is built from left to right, and R4 is used to hold
each byte of DO as it is built. R4 is cleared before each
byte is built, so DUMP has to turn on any bits necessary.

To tell if a certain bit of IN is on, DUMP compares
the value of the byte containing the bit in question to a
power of 2. To see how this works, consider the byte con-
taining > 82 (130 in decimal, 1000 0010 in binary). The
leftmost bit of the byte is on; in fact, the leftmost bit
would be on in any byte containing >80 (128) through
> FF (255). In other words, we could test for the left-
most bit's being on by comparing the value of the byte
to decimal 128 (2 to the 7th power); if the value is less
than 128, we wouldn't have to turn on the corresponding
output bit.

This technique can be used to test any bit of a byte for
our purposes, using the appropriate power of 2. The
second-to-leftmost bit can be tested against 64, its
neighbor to the right against 32, and so on down to 1
for the rightmost bit. This works because we'll be con-
sidering the bits from left to right in each byte. After each
bit is tested, it must be turned off (in CPU RAM, not
on the screen) so that it doesn't interfere with the test
of the following bit. To see this, consider the byte con-
taining > 82 (130) again. If we want to determine if the
second-to-leftmost bit is on, we would compare the byte
to 64. You can see that it would pass the test, even though
the bit in question is not on! However, if we had reset
the leftmost bit to 0 after testing it previously, the byte
would now contain > 02 instead of > 82, and the test
would fail, as it should.

Once we have decided that an input bit is on, we must
set on the corresponding bit in R4. This is done by add-
ing the appropriate power of 2 to R4. To turn on the left-
most bit, add 128; to turn on the rightmost bit, add 1.
Remember that the byte being built is in the right half
(LSB, or least significant byte) of R4.

DUMP uses R5 to contain the power of 2 for testing
whether the input bit is on, and R6 to contain the power
of 2 for setting the bit on for output. The LSB of R7 con-
tains the input byte being tested, and the most signifi-
cant byte of R7 is filled with zeros. This allows DUMP
to use the simpler and more plentiful register instructions,
and to completely avoid having the leftmost bit of a byte
interpreted as a sign bit.

Printer Consideration
DUMP writes one full screen line to the printer at a

time. Before each line, the program must write a 4-byte
control sequence to put the printer in graphics mode and
tell it how many graphics characters are coming next. This
sequence is > 1B, > 4B, > FF, and > 00. The last two
bytes mean 255 characters will be written, with the order

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	I 59

of the bytes being reversed for evaluation (> OOFF, or
255).

The program issues a carriage return and line feed on-
ly after each of these writes, that is, at the end of each
screen line. DUMP uses the CZC (Compare Zeros Corre-
sponding) instruction to accomplish this. R9 contains the
position in VDP RAM of the next screen character
number. Positions 0 — 31 (> 00 — > 1F) of VDP RAM
correspond to the characters on line 1 of the screen; posi-
tions 32 — 63 (> 20 — > 3F) correspond to characters on
line 2, etc. The CZC instruction occurs right after R9 is
incremented and before the corresponding screen
character is decoded. Therefore, the carriage return and
line feed should be written whenever R9 is an even multi-
ple of 32. The CZC instruction uses a mask of > 1F (0000
0000 0001 1111 binary). If R9 is a multiple of 32, then
its last five bits will all be zero. Notice that the mask has
only the last five bits turned on. Under these cir-
cumstances, the CZC instruction sets the equal status bit
on if and only if the last 5 bits of R9 are all zero, that
is, if and only if R9 contains an even multiple of 32. The
JNE instruction which follows the CZC instruction causes
the program to skip outputting the carriage return and
line feed when R9 does not contain a multiple of 32.

Left to its own devices, the printer will respond to a
line feed by spacing down 1/8" or 1/6". This would leave
blank stripes in the screen dump. The sequence ESCAPE
A 8 is written by DUMP to tell the printer to space down
only 8/72" on each line feed. This produces a continuous
image.

Mini Memory Considerations
To enter the DUMP subroutine via the Line-by-Line

Assembler, do the following:
1. Select MINI MEMORY and then RUN from the

first two menus.
2. Enter NEW as the program name.

3. When the Line-by-Line Assembler screen appears,
type a space, then AORG, another space, > 7D14, and
then press [ENTER.] (From now on the spaces will be
assumed.) This sequence lets you start the program at
> 7D14 instead of the traditional > 7D00.

4. Enter the program as shown in Listing #1. Enter only
the label (if any), opcode, and operands. Don't enter
END yet.

5. Put the entry point for DUMP into the DEF/REF
table by entering the following lines:

AORG > 7FE8(CR)
TEXT 'DUMP '(CR)
DATA > 7D14(CR)

6. Set the last used address in Mini Memory by
entering:

AORG > 701C(CR)
DATA > 7F02(CR)

7. Indicate that you are finished by entering:
END(CR).

The system should show that you have no unresolved
references. Press enter twice, and then QUIT the Line-
by-Line Assembler.

8. Enter EASY BUG from the master menu.
9. Press any key to bypass the instruction screen.
10. Enter 57000 when the system prompts with ? and

then 7FFF when the system prompts TO? This tells the
system to save the contents of the Mini Memory to
cassette tape. Just follow the instructions presented by
the computer after this, and then QUIT EASY BUG
when you have saved and checked your tape.

You are now ready to use the DUMP subroutine. The
sample BASIC program in Listing #2 just draws a screen
and then waits for you to press the P key, at which point
DUMP is called to print out the screen. You can incor-
porate DUMP into your own programs in any way you
choose. Happy dumping! cat

160 	The Best of 99'er 	Volume 1
	

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1 	Dump

AORG 	>7D14
MOVB 	@>9802,@S1
SWPB 	@S1
MOVB 	@>9802,@S1
SWPB 	@S1

GET 	MSB 	OF 	GROM 	ADDR 	INTO 	S1

GET 	LSB 	OF 	GROM 	ADDR

DEC @S1 CORRECT 	FOR 	AUTO—INCREMENT
LI ,>1D00
LI 1 	, PD
LI 2,36
BLWP ca>6028 WR ITE 	PAB 	TO 	VDP 	RAM
LI 6,>1D09
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH
BLWP @>6038 DSRLNK 	TO 	OPEN 	PR INTER
DATA 8
LI 10 , >0400
MOV 10 ,@>7DEA
LI 0,>1000
LI 1, >0300
BLWP 6>6024 PUT 	WRITE 	OP 	CODE 	IN 	PAB
LI 0 , >1005
LI 1 , >0400
BLWP @>6024 PUT 	LENGTH 	OF 	4 	IN 	PAB
LI 0 , >1E00
LI 1,E2 PUT 	CODE 	FOR 	CARRIAGE 	R TN 	&
LI 2 , 4 8/72 	VERTICAL 	LINE 	SPACING
BLWP @>60 2 8 IN 	DATA 	BUFFER.
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH
BLWP @>6038 DSRLNK—CHANGE 	VERT 	SPACING
DATA 8
LI 10 , 50 DELAY
DEC 10
JNE 5-2
CLR 9 R9—>NEXT 	SCREEN 	POSITION

L O MOV 9 , 0
BLWP @>602C PUT 	BYTE 	OF 	SCREEN 	RAM 	IN 	R1
SRL 1 	, 8 SHIFT 	TO 	LSB 	OF 	R1
AI 1,-128 ADJUST 	FOR 	BASIC
S LA 1 	, 	3 .8
AI 1 	,10 24 PTRN 	ADDR=1024+ 	CHAR #-32) .8
MOV 1,0
LI 1, 	IN
LI 2 , 8
BLWP @>6030 PUT 	PATTERN 	INTO 	IN
LI 5,128 R5 	= 	B I T #
CLR 8 R8 	= 	OFFSET 	FOR 	DO

L3 LI 6,128 R6 	= 	BYTE It
CLR 3 R3 	= 	OFFSET 	FOR 	IN
CLR 4 R4 	IS 	FOR 	BUILDING 	NEXT 	CHAR

L2 CLR 7
MOVB @IN (3) 	, 7 R7 	HOLDS 	BYTE 	BEING 	DECODED
SWPB 7 PUT 	BYTE 	IN 	LSB 	OF 	R7
C 7 , 5 IS 	BIT 	ON?
ILT L1 NO
A 6 , 4 YES , TURN 	OUTPUT 	BIT 	ON
5 5 , 	7 TURN 	OFF 	INPUT 	BIT
SWPB 7 PUT 	BYTE 	IN 	MSB 	OF 	R7
MOVB 7 	, 	I N 	(3) REWRITE 	TO 	IN

L 1 INC 3 POINT 	TO 	NEXT 	INPUT 	BYTE
SRA 6 	, 	1 /2
IGT L2 DO 	NEXT 	BYTE, 	IF 	MORE
SWPB 4 PUT 	OUTPUT 	BYTE 	IN 	MSB 	OF 	R4
MOVB 4 ,g,D0(8) STORE 	AT 	DO
INC 8 POINT 	TO 	NEXT 	BYTE 	OF 	DO
SRA 5 , 1 /2
IGT 1.3 CONSTRUCT 	NEXT 	OUTPUT 	BYTE
LI 0 , >1005
LI 1 , >0000
BLWP C>6024 PUT 	LENGTH 	OF 	4 	IN 	PAB
LI 0, >1E00
L I 1, 	E1
LI 2 , 4
BLWP @>6028 PUT 	ESC 	K 	SEQ. 	IN 	DATA 	BUFF
LI 6 , >1009
MOV 6,C>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH
BLWP @>6038 DSRLNK 	TO 	WRITE 	ESC 	K 	SEQ.
DATA
LI 10 , >0000
MOV 10 ,,?>7DEA
L I 0 ,>1D05
L I 1, >0800
BLWP @>6024 PUT 	LENGTH 	OF 	8 	IN 	PAB
L 	I 0 , >1E00
LI 1 , DO

Copyright © 1983 Emerald Valley Publishing Co.
	 The Best of 99'er 	Volume 1 	161

Listing 1 	Dump continued

LI 	2 , 8
BLWP @>6028 PUT 	DO 	INTO 	DATA 	BUFFER
MOV 6 , @> 8 3 56 POINT 	TO 	DEVICE 	NAME 	LENGTH
BLWP @>6038 DSRLNK 	TO 	OUTPUT 	8 	CHARS
DATA 8
LI 10 , 50 DELAY
DEC 10
INE 5-2
INC 9 POINT 	TO 	NEXT 	SCREEN 	POSITION
CI 9,767 DONE 	WI TH 	SCREEN 	YET?
JGT L4 YES
CZC @MK , 9 NO. 	ARE 	WE 	AT 	END 	OF 	LINE?
J NE L0 NO—DO 	NEXT 	SCREEN 	CHARACTER
LI 0 , >1D05 YES—OPUTPUT 	CR 	LF
LI 1 , >0200
BLWP @>6024 PUT 	LENGTH 	OF 	2 	IN 	PAB
LI 0 , >1E00
LI 1 , CR
LI 2 	, 	2
BLWP @>6028 PUT 	CR 	LF 	INTO 	DATA 	BUFFER
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH
BLWP @>6038 DSRLNK 	TO 	OUTPUT 	CR 	LF
DATA 8
LI 10 , >0400
MOV 10 ,@>7DEA
IMP LO DO 	NEXT 	SCREEN 	CHARACTER

L4 LI 0 , >1D00 COME 	HERE 	WHEN 	FINISHED 	DUMP
LI 1 , >0100
BLWP c' >6024 PUT 	CLOSE 	OP 	CODE 	IN 	PAB
MOV 6,@>8356 POINT 	TO 	DEVICE 	NAME 	LENGTH
BLWP @>6038 DSRLNK 	TO 	CLOSE 	PR INTER
DATA 8
L 	I 10 , 50 DELAY
DEC 10
INE 5-2
MOVB @S1 ,@>9CO2 RESTORE 	SAVED 	DATA 	TO 	GRMWA
SWPB @S1
MOVB @S1,@>9CO2
SB @>837C ,(,>837C 	CLEAR 	ERROR 	BYTE 	FOR 	BAS IC
LI 10 , 50 	 DELAY
DEC 10
IRE 5-2
B .11 RETURN 	TO 	BAS IC

IN BSS 8 AREA 	FOR 	SCREEN 	PATTERN
DO BSS 8 AREA 	FOR 	PR INTER 	PATTERN
MK DATA >001F MASK 	FOR 	EOL 	TEST
PD DATA >0012 , >1E00 , >FF00 , >0000 , >001A

PAB 	DEFINITION
TEXT ' RS232 	PA=0

*
DA=8 	BA=9600 . CR '

DEVICE 	NAME
CR DATA >01)011 CR 	LF
El DATA >1B 4B , >FF00 ESC 	K 	GRAPHICS 	SEQUENCE
S1 BSS 2 SAVE 	AREA
E2 DATA >0D1B , >4108 CR 	AND 	ESC 	A 	VERT 	SPACING

END

Listing

10 0

2

A L L C L

Screen

E A

Dump

110 A L L C H A 9 6 1 8 3 C 7 E F F F F 7 E 3 1 8
120 A L L H C H A 1 	,1 9 6 7 6 8
130 A L L K E Y 0 VA L S T A
140 I F S T A T 0 T H EN 1 3 0
150 I F V A L 8 0 TH E N 3 0
160 A L L L N K D U
170 E N D

162 	The Best of 99'er Volume 1 Copyright © 1983 Emerald Valley Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

