

<
Assembly Language

Faster than a speeding cursor! More powerful than
Extended BASIC!—It's SUPER LANGUAGE!

TMS9900 Machine and Assembly Language:
Part 1: Electrical Signals, Number Systems

and CPU Architecture. 131
Part 2: Registers, Programming, and
the Need for Assemblers. 133
Fundamentals of Assembly Language Programming:
Part 1. ... 136
Part 2. . .. 138
Magic Crayon: Learning Assembly Language
the Hard Way. 146
MINI MEMORY Cartridge. 154

A Screen Printing Utility:
Part 1: Design Considerations. 157
Part 2: Screen DUMP. 158

Number Systems

These codes could also be considered numbers. Count-
ing with only 0’s and 1’s is called binary (from the Latin
word for two) or base two counting. Ordinary, plain,
vanilla numbers that we use everyday that are called
decimal (from the Latin for ten, of course) or base ten
numbers. Even though we have only the ten digits from
0to 9, we can make very large numbers by using the same
digits in different positions. Follow along on chart 2.

The position on the extreme right in a decimal number
is the ones column. For that matter, the position on the
extreme right in any base is the ones column. Why?
Because you find the column value by taking the number
of digits you have and raising it to the power of column
minus one. For example, if you have ten digits, and the
column is number 1 (from the right), then the value of
that column is 10 to the 1 minus 1, or 10 to the 0 power.
Any number to the 0 power is 1, so the first column is
always ones in any base.

The second column is a different matter. In base ten
it is 10 to the 2 minus 1, or 10 to the 1st power, or 10.
So if you write 14 what you mean is 4 groups of ones
and 1 group of tens. In base two the second column (from
the right) would be 2 to the 2 minus 1, or 2 to the lIst,
or 2. The second column or position in binary is the twos
column.

The thing that makes the zero so neat is that it holds
the position without giving it a value. Zero ones is zero!
If you just left a blank there, people would have to write
all their numbers in little boxes or pretty soon the col-
umns would get all jumbled up. Is there one blank or
two? . . .or three?? Better use the zero.

The columns in binary numbers are just like the signal
lines in a computer. In theory, the columns go on
forever—and so do the numbers. Regardless of the base
you are in, you can keep writing numbers forever! But
wait! I just said that signal lines are usually groups of
4, 8, or 16. If signal lines are the same as columns, then
there is a limit to the size of number a computer can
understand. How big is the biggest number you can use?

To find out, raise the base to the same power as the
number of positions you have. On chart 1 when we used
two lines, that was 2 to the 2nd power, or 4 codes or
numbers. With 4 lines, there are 16 (2 to the 4th); with
8 there are 256; and with 16 lines there are 65536.

The last code on the chart is 1111, which in decimal
is 15. I said you could get 16 numbers with four lines,
so where is the last number? Don’t forget to count 0! 0
through 15 is sixteen numbers, 0 through 255 is 256
numbers, and so on.

There are other bases, or course. The numbers marked
hexadecimal are from a base with 16 digits—the normal
10 digits from 0 to 9, plus the letters A to F. Use them
just like any other digits. For instance, on the chart, 1111
binary is 15 decimal and F in hexadecimal (hex for short).
The next number in hex is 10; in decimal it is 16; and
in binary you have to add a new position (sixteens) and
write 10000.

You can always add as many zeros to the front of a
number as you want without changing it. However, if you
make a binary number divisible into groups of four, an
interesting thing happens: Each group of four can repre-
sent 16 codes or numbers. Since that is exactly the number

132 The Best of 99'er Volume 1

of digits in the hex number system, you can substitute!
This makes long binary numbers much easier to read, and
doesn’t change their values at all.

Try a few yourself. They’re easy!

L Binary number with 5 positions. Equat to 10 HEX.
ggB Fill to 8 positions by adding zeros to front
BB ppp Breek into groups of 4,
Y Give each group the proper HE X digit (see chart 2)
10 is the HE X vatue fer 10,000 binary.

wwm BINARY naqp_qvlgw@d:ﬁﬂJ 198 Bgs g1y gig

-] 2 HEX 3] 6 8 B8 5 4 7 6

o

© -

256

1 @118 BINARY

5381 41

1 6 HEX

= 4996

VALUES

s |16
w | 1622
~ | 16!
- | 16°

POSITIONS

Chart 3

Hardware

The TMS9900 is called a 16-bit CPU (Central Proces-
sing Unit). This means that when it fetches an instruc-
tion from memory, it gets 16 bits in parallel. And when
it reads or writes data this is usually done in groups of
16 bits too. [In the TI-99/4A, however, this 16-bit group
is converted into an 8-bit data bus.—Ed.] You may hear
the term word used for 16 bits. If you are talking about
a 16-bit machine, the term is correct. But remember, if
you are talking about an 8-bit CPU, 8 bits (or byte) is
a word; if the CPU is 32 bits, the word is 32 bits.

It is necessary for a programmer to know about only
two kinds of memory. Random-access memory (RAM),
sometimes called read/write memory, is what stores the

‘user’s program, data, etc. The user or the computer can

read or write in it. The memory location is chosen by the
lines on the bus called address lines. The data that is be-
ing read or written appears on the data bus.

Read-only memory (ROM) comes in many varieties
and works just like RAM except for one thing—it can’t
be written to. If you tell the computer to write, it will
go through the motions of writing, but it doesn’t work.
The old data is still there.

Inside the CPU there are a few memory locations that
are not addressed by the address bus. The chip itself
knows where they are. These are called registers. All
machine language and assembly language programming
involves manipulating the data in these registers, because
that is all that the computer really can do!

How many registers there are and how big they are
varies widely. The chip manufacturer usually labels the
registers and decides on a short code, called an opera-
tion code (op-code), for each of the manipulations that
the chip can do. An assembler is a program that reads
these op-codes and writes them into memory in the binary
form that the CPU understands. When you write a pro-
gram using the op-codes, you are writing in assembly
language. If you write your own assembler you can devise
your own op-codes. But because the manufacturer
generally writes an assembler for his chip, you can use
his op-codes.

About the only thing all CPUs have in common is a
register called the Program Counter (PC). The address
bus is just an extension of the PC. Each bit of the pro-
gram counter is, in effect, connected to one signal line
of the address bus. Since the TMS9900 chip was designed
especially for dedicated control purposes (e.g., produc-
tion lines inspection or phone switching) where the pro-

Copyright © 1983 Emerald Valley Publishing Co.

T

e . 814 MEMORY
st Wi - apds | SRS g 11pp | 4BPgk
. o .ER cLock 15t FETCH 4881 8118 agf1
_ L RIST 13t DATA BYTE . agge u
®-o KRN TII1 : sl
_-" s 0N 12BU15 A
Fo 7.7] g-14 MEMORY
NELRER s e B * CACIRNTT I
clock 2nd FETCH #Eg1 g11p | afdin
Il. ::::l. 2nd OATA BYTE . aﬂﬂ: 2H
Lr eennren Sl
[iggrrsirresras Lo crewen 2 MwoRY______
s T l51g T3] s
CLocKk]EXECUTE CYCLE G681 P11 | aggin
. EXECUTES INSTRUCTION
HE. 1K e
Bk el] agg3n
Chart 4

gram is always in ROM—and since at the time most
ROMs were made for 8-bit computers—the address bus
of the 9900 is a little unusual.

The bits of the PC allow the chip to address 65536
blocks of memory. The blocks could be any size, but as
I said, most ROMs were in blocks of 8 because most com-
puters had an 8-bit data bus. The PC in the 9900 has 16
bits. These are labeled 0-15, from (left to right), most
significant bit (MSB) to least significant bit (LSB). Why
are there only 15 address lines? Follow on Chart 4 as we
go along.

Normally the PC advances after each instruction or
parameter it fetches so that it points to the next memory
byte. But the 9900 needs 16 bits instead of the 8 available
at each location in most ROMs. So the 9900 has two dif-
ferent fetch cycles: it reads the byte indicated by the PC
on the first cycle, hooks the next byte to it on the second
cycle, then increments the PC by two. To the user this
all appears as one fetch, except that the PC is incremented
by two instead of by one as expected. By eliminating the
last bit, however, the address line appears to step nor-
mally. The drawback is that you can address only 32767
words. It’s still 65536 bytes though. @

PART 2: Registers, Programming & The Need For Assemblers

Status Register

Almost every CPU has some kind of flag(s). These are
set (high) and reset (low) by actions performed in the
manipulations of data. Different instructions affect different
flags. Modern CPUs combine several flags into a single
Status Register. The TMS9900 is no exception. Its Status
Register (ST) is 16 bits long. Bits 7-11 are not used at pres-
ent. The others are shown in the drawing below and are
explained in the text.

TMS9800 STATUS REGISTER
1 2 3 4 5 6 7 89 101112131415

0
LIAIEQICI|OV| P X
> >)= XOP

C o] P ra—— L ——————
AV A UNUSED INTERRUPT
R E R MASK
R R I
Y F T
L v
o)
w

Each of these conditions will be discussed in more detail
as examples are shown. Until then, these simple descriptions
will help.

The four bits labeled 12-15 can select up to 16 interrupt
levels. All levels equal to or above the level indicated are
enabled.

Bit 0 is set after any operation where the destination value
(answer) is greater than the source (the first operand used;
it remains unchanged). All 16 bits are used for the
comparison.

Bit 1 is similar to bit 0 except that the values are com-
pared as signed integers. The MSB (most significant bit)
designates the sign of the integer, with a 1 meaning negative
and a 0 meaning positive. The range is + 32,767 to — 32,768.

Copyright © 1983 Emerald Valley Publishing Co.

Negative numbers are represented in a two’s complement
fashion.

Computer math is cyclic. This means that if you add 1
to the highest possible 16-bit number (FFFF hex), you go
back to 0000 hex with a carry bit that is set. If you subtract
1 from 0000 hex without the carry, you get an overflow;
but if the carry is set, you get FFFF hex. Therefore, — 1
is FFFF hex in two’s complement. To see its usefulness, let’s
add —1 and 1: FFFF hex plus 0001 hex equal 0000, the carry
is set, and the answer is zero. In a nutshell, this whole
business of two’s complements and carry bits is simply a
way to subtract by adding.

Bit 2 is set if the two operands are equal.

Bit 3 is set if a 1 is shifted out of an operand, or if a carry
occurs in a math operation.

Bit 4 is set if the math requested cannot be done.

Bit 5 is set if the parity is odd, and reset if it is even. Odd
parity means that there is an odd number of 1s in the binary
representation of an operand.

Bit 6 is set after an extended operation has been com-
pleted. This is done because an interrupt is not checked for
after completion of an extended operation. (You therefore
may wish to have the software check for one if this flag
is set).

The ALU

Most CPUs have an Arithmetic/Logic Unit (ALU) where
the simple math is performed. An accumulator, a special
register used by the ALU, usually contains the answers to
the math. In the TMS9900 there is no accumulator because
the destination address serves as the equivalent of an ac-
cumulator. This means, in effect, that any memory loca-
tion can be the accumulator. There is an ALU on the
TMS9900 chip, but its operation is intrinsic to the
instructions.

The Best of 99'er Volume 1 133

Other Registers

Most CPUs have a few extra registers where quickly-
needed values can be stored, as well as a register called a
Stack Pointer which points to a section of memory where
more data can be “‘piled”’ and then quickly accessed. These
two concepts have been combined on the TMS9900 into a
single Workspace Pointer Register (WP). The WP points
to a block of 32 bytes of the memory arranged as 16
workspaces (WS), each 16 bits long. The workspaces are
synonymous with registers, and are used the same way. We
can change the WP in several ways and can save the old
WP when a new one is used. This allows us to return to
the old one if we need to. This set-up, in effect, acts like
an elaborate stack.

There are five different ways to use these WP registers
to indicate an operand for an instruction. These addressing
modes are as follows:

—the data in the in-

dicated register is the

data used.

2. Workspace Register Indirect —the data in the
code 01 register is treated as

the address of the

real data.

—same as above, but

the register is in-

cremented upon

completion.

—the address of the

1. Workspace Register Mode
code 00

3. WS Register Indirect
w/Auto-Increment
code 11

4. Symbolic or Direct

code 10 data follows the in-
struction in memory.
5. Indexed —same as above, but
code 10 the value in the index

Td or Ts equal 1-15 register is added to

the address.

There are three other addressing modes not dealing with
registers per se: (1) The immediate mode has the data im-
mediately follow the instruction code. In other words, the
address of the data is the address immediately following the
PC. (2) The CRU mode has the address of an external in-
put/output (I/0) device determined by bytes 3-12 of register
12. (3) The JMP instruction (and all variations thereof) uses
the last 8 bits of the instruction to determine where on a
256 byte page to jump. The PC indicates the center of the
page, so the jump can be from PC— 128 to PC+ 127. One
byte is taken up by the jump instruction itself. The 8 bits
store the relative jump in two’s complement form.

Programming and the Need for Assemblers

If your CPU is the TMS9900, the simplest computer you
could construct would be composed of a clock, a CPU,
some memory, a few control switches, 16 data switches, 16
lights for read out, and 15 address switches. It would be
crude and slow to program, but once programmed, it would
operate as well as any other computer. But how could we
program it?

Suppose we wanted to load register 1 with zero, and then
increment it until its contents were equal to either 1024
{(decimal) or the contents of register 2. The first step can

134 The Best of 99'er Volume 1

be done several ways. Immediately loading register 1 with
0 comes to mind first. A little investigation of the instruc-
tions for the chip show that we could save a word of memory
by using the Clear command. Figure 1 shows the register
format for the various commands, and Figure 2 shows the
op codes for the instructions.

Using this information, we can now determine the binary
values of each word. Load Immediate uses the first 10 bits
as the op code; the 11th bit is not used; and bits 12-15 select
the register. This means the first word is

00000010000X0001, where X can be 1 or 0.
The second word is the value to load, and in this case would
be all zeros.

Using our simplified computer, just flip each switch on
if there is a 1 at the corresponding bit, of f if there is a zero.
Press the Input control switch (it might be called Load, or
. ..), and the instruction is stored in whatever address the
address switches are set to. Then add 1 to the address switch-

FORMAT [o]1]2[3]4a[5]6]7]8]9a]f10[11]12]13]14]15
1 cobe |8 Td D T, s

2 OP CODE | ReLaTiVE JUMP
3 OP CODE D Ts S

4 OP CODE c Ts S

5 OP CODE | w

6 OP CODE | Ts S

7 OP CODE N
8 OP CODE N ow

IMMEDIATE VALUE
9 OP CODE | o [T] s
KEY Td/Ts FIELD CODES

B 1=byte O=word 00 Register

Ty destination address mode 01 indirect

D destination address 10 with RO, symbolic

Ts source address mode 10 with R1—-R15, indexed
S source address 11 Indirect with increment
C counter

W register number

N unused

RELATIVE JUMP from +127 to —128 Figure 1.

es (which adds 2 to the PC) and set all the data switches
to zero. Press Input again, and our complete instruction is
ready.

If instead, we use the Clear instruction, we would use the
single-operand general format with the first 10 bits being
the op code. The next two bits indicate address mode, and
the last 4 bits select the register. Since we want to clear the
register itself (not the word it points to), the code is 00,and
the whole instruction is 0000010011000001.

Even with a hex keypad and a small monitor program,
it would be a very time-consuming process to piece together
the binary words, and then convert to hex and type them
in. Typing in 04Cl is easier than setting switches to

0000010011000001,
but putting together those op codes is just the tedious, bor-
ing kind of work that computers are supposed to free us
of. So why not use them for that?

Why not, indeed. . .That’s exactly what we’ll do when
we look at a TMS9900 assembler.

Copyright © 1983 Emerald Valley Publishing Co.

Mnemonic

A
AB
ABS
Al
AND!
B

BL
BLWP
Cc

cB
Ci
CKOF
CKON
CLR
cac
czc
DEC
DECT
Div
IDLE
INC
INCT
INV
JEQ
JGT
JH
JHE
JL
JLE
JLT
JMP
JNC
JNE
JNO
Joc
Jop
LDCR
L
LIMI
LREX
LWPI
MoV
mMmovs
MPY
NEG
ORI
RSET
RTWP
S

SB
SBO
SBZ
SETO
SLA
Soc
socB
SRA
SRC
SRL
STCR
STST
STWP
SWPB
sZC
S§ZCB
B

XopP
XOR

Op Code

1010

1011
0000011101
00000010001
00000010010
0000010001
0000011010
0000010000
1000

1001
00000010100
0000001 111000000
0000001110100000
0000010011
001000
001001
0000011000
0000011001
001111
0000001101000000
0000010110
0000010111
0000010101
00010011
00010101
00011011
00010100
00011010
00010010
00010001
00010000
00010111
00010110
00011001
00011000
00011100
001100
00000010000
00000011000
0000001111100000
00000010111
1100

1101

001110
0000010100
00000010011
0000001101100000
0000001110000000
0110

0111
00011101
00011110
0000011100
00001010
1110

1111
00001000
00001011
00001001
001101
00000010110
00000010101
0000011011
0100

0101
00011111
0000010010
001011
001010

Format

WOONQaRRARNNTNaaUIONNS=SNNONO==0ONORAENNNNNNNNNNNNNOOONOO O WRWONNO==000000 2=

Figure 2.

Status

0-2,5
0-2
12-15
12-15
0-2
0-2,5
0-4
0-2
12-15
0-6, 12-15
0-4
0-5

| Ll Pt
L]

ooo?ooo
NWOWNNH

4]

Bits Affected

(ST2=1)

(ST1=1)

(STO and ST2=1)
(STO or ST2=1)
(STO and ST2=0)
(ST0=0 or ST2=1
(ST1 and ST2=0)
{none checked)
(ST3=0)

(ST2=0)

(ST4=0)

(ST3=1)

(ST5=1)

Words (OR)
Bytes (OR)

Words (AND)
Byte (AND)

Meaning

Add words

Add bytes

Absolute Value
Add immediate
And immediate
Branch

Branch and Link (R11)
Branch, load WP
Compare words
Compare byte
Compare immediate
External Control
External Control
Clear

Compare Ones Corresp. {OR)
Compare Zero Corresp. (AND)

Decrement by one
Decrement by two
Divide

Computer idles
[ncrement by one
Increment by two
Invert {complement)
Jump if equal

Jump greater than
Jump high

Jump high or equal
Jump low

Jump [ow or equal
Jump less then
Jump unconditionally
Jump no carry
Jump not equal
Jump no overflow
Jump on carry
Jump odd parity
Load CRU

Load immediate
Load immed. INT mask
External control
Load immed. WP
Move word

Move byte

Multiply

Negate {2's comp.)
OR immediate
External control
Return with WP
Subtract word
Subtract byte

Set CRU bit to one
Set CRU bit to zero
Set ones

Shift left (O fill)

Set ones corresp.
Set ones corresp.
Shift right (MSB fill)
Shift right circular
Shift right zero fill
Store from CRU
Store ST

Store WP

Swap bytes

Set zero corresp.
Set zero corresp.
Test CRU bit
Execute

Extended operation
Exclusive OR

Copyright © 1983 Emerald Valley Publishing Co.

The Best of 99'er

Volume 1

135

disk drive and the 32K expansion RAM. Both the Editor
and the Assembler are selectable from menus, and most of
the screens include easy-to-understand prompting messages.

The Editor

The Editor is used to input Assembly Language source
programs initially, to update programs previously saved on
disk and to print programs. The Editor’s features compare
favorably to those of larger systems.

There are two modes: Edit Mode and Command Mode.
Edit Mode is always used to input a program for the first
time, but either mode can be used to change existing pro-
grams after loading them from the disk or typing them in
Edit Mode.

Edit Mode is entered directly from the menu. The screen
is 240 x 24 window on the source program. Function keys
allow you to move this window to the right or left in
20-character increments, or up and down 24 lines at a time.
(Since most of my Assembly Language programs have fewer
than 40 characters per line, I tend to view the leftmost 40
characters and make heavy use of the up and down scroll-
ing). The four cursor keys are enabled in Edit Mode, mak-
ing it especially easy to correct typographical errors. Whole
lines can be inserted into the text by moving the cursor to
the adjacent line and pressing the Insert function key; a new
blank line is inserted, and the user simply types in a new
line. Similarly, a whole line can be deleted by moving the
cursor there and pressing the Delete function key; the line
is removed and the line numbers of the following lines are
automatically decremented. There are also keys for insert-
ing or deleting characters. A Tab key is also provided for
tabbing to columns 8 and 16. Edit Mode makes it very easy
to enter new programs because the user can both type the
source program in a natural manner and correct errors and
omissions as they occur. Edit Mode is exited via the Back
function key, which puts the Editor into Command Mode.

Command Mode reminds me of the UCSD Pascal editor.
The first line of the screen shows the Command Mode op-
tions: Escape, Find, Replace, Move, Insert, Copy, Delete,

Show, and Adjust. Line 2 is reserved for parameters to be
input by the user, so in this mode the text window is 40 X
22. Most options require further information to be given
on line 2, and very clear prompts given so the user knows
what line to enter.

Each option is selected by typing the first character of
the option name. For example, to find an occurrence of a
string in the source program, the user enters F. The system
responds with the prompt <count> < (start col, end
col)> /string/. To find the second occurrence of the string
ABCD between columns 1 and 50, the user would type
2(1,50) /ABCDY/. The system would then display the sec-
tion of the text containing the second such occurrence of
ABCD (if any) with the cursor over the A. The symbols
< > in the prompting message indicate optional parameters.
To find the next occurrence of the string ABCD in the whole
source program, the user need only type /ABCD/. The
Replace option is like Find, except that each specified oc-
currence of the string is replaced by a second string given
by the user. Replace includes an optional verify operator
which allows the user to say yes or no to each replacement.
The Move option allows the user to move sections of text,
indicated by an interval of line numbers, to a different place
in the source program. Copy is similar, except that the sec-
tion of text ends up in both the original position and the
new position. Delete allows easy removal of several con-
tiguous lines from the text. Insert takes a file from disk and
places it anywhere you want in the program being edited.
Show is a way of moving the window so that a certain line
number is at the top of the screen. Adjust is an easy way
to make the line numbers disappear so that the window
shows the source program only. Escape gets you out of
Command Mode and back to the Editor’s menu, where you
can choose to save the source program to disk, print it, purge
it or edit the same or another program.

The Editor performs all line numbering automatically as
lines are entered and maintains these numbers in sequence
as lines are added or deleted. The user can refer to them
for operating on sections of the program; they also appear

Larger system (TXMIRA):

LI 2,0

L1 12,>CO

SBO >F

LDCR @ZERO,l1

SBZ >F
LOOP LDCR @AB(),7

SBZ >8

SBZ >A

INC 2

Cl 2,2

JLT [.LOOP

ZERO DATA 0
AB TEST “AB*

TI-99/4A assembler:
REF VMBW .

L1 0,0

Li, 1,AB
L1 2,2

BLWP @VMBW

AB TEXT ‘AB*

MOVE 0 TO REGISTER 2 FOR INDEX
SET CRU BASE ADDRESS FOR SCREEN
SELECT CRU WORD |

MOVE CURSOR TO HOME POSITION
SELECT CRU WORD 0

PUT CHARACTER ON CRU LINE
STROBE CHARACTER TO SCREEN
INCREMENT CURSOR POSITION
ADD 1 TO INDEX REGISTER
COMPARL REGISTER 2 TO 2

[OOP 1F MORE CHARACTERS

DATA DEFINITIONS

EXTERNAL REFERENCE TO ROUTINE UTILITY

VDP RAM ADDRESS = 0 FOR HOME POSITION
REGISTER 1 POINTS TO FIRST CHARACTER TO DISPLAY
REGISTER 2 = NUMBER OF BYTES TO WRITE

CALL UTILITY ROUTINE TO WRITE STRING

DATA DEFINITION

Figure 1

Copyright © 1983 Emerald Valley Publishing Co.

The Best of 99’er Volume 1 137

on the Assembler output listing, which is handy for
debugging.

TI has incorporated most of the features found in editors
for larger systems into the 99/4A Editor. In fact, the abilities
to edit at the character, line, and group-of-lines levels are
not always all available in larger editors. The only feature
missing from the 99/4A Editor is a variable right margin—a
feature which is really not too significant for Assembly
Language source programs. [But that would be nice for
word processing applications, since this editor already per-
forms 95% of what most people would need for cor-
respondence and document preparation.—Ed.]

The Assembler

The Assembler is a program which converts Assembly
Language source programs into object form—the machine-
language program that executes on the TI-99/4A. The ob-
ject program is written to disk. Optionally, a user can print
out or write an Assembly Language listing to disk.

The 99/4A Assembler is a lot like the 9900 Assembler,
TXMIRA, which runs on larger TI systems. See sample
listing in Figure 1. A programmer who is familiar with
TXMIRA will be able to write Assembly Language pro-
grams for the 99/4A without too much difficulty since the
same addressing modes are used and most of the instruc-
tions operate in the same way.

One big difference, as might be expected, is in the way
a programmer handles input and output to the monitor. The
99/4A Editor/Assembler package includes three groups of
built-in subroutines, or macros: (1) Utility Routines for ac-
cessing machine resources, such as screen 1/0; (2) Extend-
ed Utilities, for accessing routines built into the console
ROMs and GROMs; and (3) Basic Support Utilities for ac-
cessing the parameter list in CALL LINK statements from
Extended BASIC. These utilities make it unnecessary to use
the CRU (Communications Register Unit) lines to the
monitor. Under TXMIRA, all peripheral devices are ad-
dressed via a fairly complex arrangement of CRU lines. Each
device has its own CRU base address and CRU bit
assignments, which means that a programmer must have
very specific information about each device in order to per-
form any input or output. On the 99/4A Assembler these
difficulties in handling the screen have been eliminated by
the Utility Routines. By loading a few registers and invok-
ing the proper utility, a programmer can handle screen 1/0
in a much simpler way. Figure 1 has the code segments which
might be used for writing the character AB to the upper
left portion of the screen.

You can see that the Utility Routines really make screen
handling easier: You can focus your attention on merely
the VDP RAM (the memory associated with the 99/4A
monitor) addresses, and not have to worry about the logistics
of the move. Furthermore, there is no apparent loss of ex-
ecution speed in doing it this way.

Another difference between the 99/4A Assembler and
those for larger TI computers is that the IDLE instruction
is not implemented on the 99/4A. This causes no great dif-
ficulty, but it is useful to know. The IDLE instruction just
causes the computer to wait for an interrupt; this can be
done via another Utility Routine or other means, depend-
ing on which device will cause the interrupt.

The optional listing produced by the 99/4A Assembler
is quite complete. Statement sequence numbers, source
statements, and the hexadecimal code generated are all
shown clearly. A symbol table can also be given and, of
course, the number of errors is shown. Each error is also
flagged in the body of the listing with a descriptive message.
One very nice—and all too uncommon—feature is that a
display of the number of errors is on the monitor when the
Assembler is finished.

Running and Debugging

Once a program has been input, edited, and assembled
with no errors, it can be loaded and run by choosing this
option from the menu. Another menu option (RUN PRO-
GRAM FILE) allows the user to run programs which were
assembled on other Texas Instruments systems or previously
assembled on your system.

The Editor/Assembler package has a special debugging
utility called DEBUG, which can be very helpful in isolating
program errors. For instance, the commands in DEBUG
allow you to set breakpoints in your program. When the
program hits a breakpoint and stops execution, you can then
use other commands to examine the contents of memory
locations and registers, the Workspace Pointer, the Status
Register, or the Program Counter, and if necessary change
them to alter the program’s execution. DEBUG commands
will also allow you to search memory locations for a specific
value, or to search memory locations and print those which
don’t have a specific value. DEBUG allows you to begin
executing your program at any point you determine; com-
bined with the breakpoints, this allows you to go through
a program section by section. All in all, DEBUG provides
a good repertoire of useful tools which will make it easier
to find out why the program you wrote isn’t working the
way you thought it would. @

PART 2: Fundamentals of Assembly Language
Programming on the TI-99/4A

Editor/Assembler for the TI-99/4 and TI-99/4A and

mentioned briefly the advantages of programming in
Assembly Language. Now let’s explore the benefits of
Assembly Language more fully by comparing some pro-
grams written in Assembly Language and BASIC.

In Part I we gave you a preliminary look at TI’s

Some Assembly Language Explanations
Before examining some programs, it would be useful to
mention some general characteristics of the TMS9900 proc-

138 The Best of 99'er Volume 1

essor, and then some specifics on the structure of the
TI-99/4A.

All 9900 programs make use of 16 workspace registers,
each containing 16 bits (one word). Assembly Language pro-
grams define 16 contiguous words of memory for these
workspace registers and set the hardware register called the
Workspace Pointer to point to the first of these memory
locations. Having these workspace registers resident in
memory rather than in the CPU is one of the most power-

Copyright © 1983 Emerald Valley Publishing Co.

ful features of the 9900-family processors. In an Assembly
Language program, the hexadecimal numbers 0 through F
refer to the current workspace registers. (In addition, an
Assembly Language option allows you to refer to them as
RO through R15, which makes programs easier to read.)

The structure of the memory of the 99/4A is fairly com-
plex. The following explanations cover concepts necessary
to understanding the programs in this article, but they only
begin to scratch the surface of the memory structure.

CPU RAM (Random Access Memory) resides in the con-
sole and is directly addressable by Assembly Language pro-
grams. Workspace registers and other memory locations,
as well as the programs themselves, reside in CPU RAM.

VDP (Video Display Processor) RAM, also located in the
console, takes care of the video screen. Sprites, colors,
character patterns, and the screen image itself all reside in
VDP RAM. Unlike CPU RAM, however, VDP RAM is
not directly addressable by Assembly Language programs.
VDP RAM is accessed through specifically assigned CPU
RAM addresses. This is called memory mapping. Locations
0 through >02FF in VDP RAM contain the screen image.
(The symbol ‘>’ means hexadecimal notation;
>02FF =767 in decimal notation.) This means that
whatever characters reside in this section of VDP RAM are
visible on the screen. To change the screen, the program-
mer would place the desired character code(s) into VDP
RAM at the corresponding location(s). VDP RAM loca-
tion O corresponds to the home position (upper left) on the
screen; location 48 (or>30) corresponds to the position
called row 2 and column 17 in BASIC. Let’s say you want
to put an * on the screen at row 2, column 17. The ASCII
code for *is 42, or >2A, and the desired VDP RAM loca-
tion is >30. You might be tempted to use a MOVB (Move
Byte) instruction to accomplish this, but remember, the VDP
RAM cannot be directly addressed from your Assembly
Language program. To access VDP RAM, you’ll need to
use a Utility Routine. VSBW (VDP Single Byte Write) is
a macro instruction which places the most significant (left-
most) byte of workspace register 1 at the VDP RAM ad-
dress contained in register 0. Therefore, to place the * at
row 2, column 17, you’d write:

REF VSBW UTILITY REFERENCE
L'I 0,>30 RO=VDP RAM ADDRESS
LI 1,>2A00 RI CONTAINS * IN MSB

BLWP @VSBW MOVE TO VDP RAM

Most of the utilities use similar schemes of loading data in-
to certain registers and calling the utility by name. I’ll talk
more about some specific ones later.

The Game of Life

Life is a classic computer game. It is based on the idea
of a population which goes through life cycles to form new
generations; each position on the screen corresponds to a
cell in the population. Cells which are alive are filled in (with
asterisks in my example); dead cells are blank. The life cy-
cle, or rules of the game, are applied to each generation to
obtain the next generation, and then the new generation is
displayed on the screen. The rules of the game determine
birth, death, or survival of individual cells, and depend on
the state of each cell’s 8 neighbors (adjoining cells, con-

Copyright © 1983 Emerald Valley Publishing Co.

sidered horizontally, vertically, and diagonally) as follows:

1. A live cell with 2 or 3 neighbors survives to the next
generation.

2. A live cell with 0 or 1 neighbor dies of loneliness; a live
cell with more than 3 neighbors dies of overcrowding.

The rules are applied to a generation as a whole, before the
next generation is displayed. Depending on the initial
population, you may see a colony which goes on changing
forever, one which dies out or becomes static after a few
generations, or one which oscillates among a few patterns.

There are a few restrictions on my implementation of Life
which should be explained. First, I have defined the initial
population in the programs, whereas other versions might
allow the user to enter the initial population on the screen
at the beginning of the game. In order to be sure the col-
ony does not exceed the size of the 99/4A screen, which
is 32 x 24, I have forced the border (rows 1 and 24 and
columns 1 and 32) always to remain blank. This means that
when the colony becomes large it may lose its symmetry as
one side of the colony hits the border.

The two programs which follow are in BASIC (Listing
1) and in Assembly Language (Listing 3). Both follow the
same strategy: display the initial colony, calculate the next
generation by considering the neighbors of each cell in turn,
clear the screen, display the new generation, and loop back
to calculate the next generation. The Assembly Language
version uses one byte to represent each cell; the BASIC ver-
sion uses one entry in array SCRN for each cell. At the start
of each generation, live cells contain the value 1 and dead
cells contain 0. During the calculation of the next genera-
tion, a cell can have the values O through 3 as follows:

0 = cell is dead and remains dead for the next generation
1 live cell survives to the next generation

2 = dead cell will be born in the next generation

3 = live cell will die in the next generation

It is necessary to have these four possible values during the
calculation so that the program can have the information
about the current state of each cell while calculating and
storing the next state of each cell. Just before the new
generation is displayed (or not displayed if dead), the values
of the cells are reset to 0 or 1 by means of the array AFTER.

In examining both versions of Life which follow (Listings
1 and 3), you might wonder why anyone would use the more
esoteric Assembly Language over the easier-to-understand
BASIC. The answer is simple: speed. On the 99/4A, the
BASIC program takes 2 minutes and 26 seconds between
generations; the Assembly Language program takes less than
one second! The BASIC version is no fun at all to watch,
whereas the Assembly Language program provides fine
entertainment. [The use of the Utility Routine VMBW (VDP
Multiple Byte Write) in the Assembly language is partly
responsible for this speed. It shows each new generation all
at once. And fortunately, the monitor program is smart
enough to capitalize on this by showing only the changed
portions of the screen, rather than re-drawing the whole
screen each time. If fast enough, the human brain’s ‘““per-
sistence of vision’* allows us to see individual frames of mov-
ing images as continuous rather than discrete pictures—
thus making realistic animation sequences truly possible.—
Ed.]

The Best of 99’er Volume 1 139

Using Assembly Language to Move Sprites

The ability to create sprites which move automatically is
one of the best features of the 99/4A. Sprites can be used
in Extended BASIC and in Assembly Language programs.

VDP RAM has several areas dedicated to sprites. The
Sprite Attribute Block, which gives the sprite locations, sprite
numbers, and colors, starts at address > 300. Each entry in
the Sprite Attribute Block occupies four bytes. A terminator
byte with value> 0D denotes the end of the Sprite Attribute
Block. The Sprite Descriptor Block contains the sprite pat-
terns (shapes), with 8 bytes for each possible sprite. Although
the Sprite Descriptor Block starts at VDP RAM address 0
by default, we have already seen that VDP RAM locations
0 through > 02FF are used for the screen image table, and
locations > 0300 through>O03FF for the sprite Attribute
Block. In order to avoid writing over these areas, the Sprite
Descriptor Block usually starts at location > 0400 for prac-
tical purposes. The entries in the Sprite Descriptor Block
are defined to correspond to sprite numbers starting at 0
and occupying 8 bytes each; therefore the entry at location
>0400 is for sprite number >80. Thus in Assembly
Language programs, the lowest sprite number is usually
> 80. The Sprite Motion Table, which gives the x- and y-
velocities of defined sprites, resides at VDP RAM location
>(0780. Each entry in the Motion Table occupies four bytes,
the last two of which are for system use. The Sprite Mo-
tion Table is filled only if automatic motion is to be used.
An Assembly Language program could move the sprites
(non-automatically) by changing the x- and y-locations of
the sprites in the Sprite Attribute Block. But the system is
able to move the sprites for you via an interrupt processing
routine: Each time a VDP interrupt occurs (60 times per
second), the interrupt processing routine moves any eligi-
ble sprites according to the Sprite Motion Table. In order
to make use of this facility, the Assembly Language pro-
gram must also load the number of moving sprites at CPU
RAM address >837A and enable the VDP interrupts.

Assembly Language vs Extended BASIC

You are probably thinking that this sounds like a lot of
work to achieve moving sprites, especially compared to the
simple CALL SPRITE statement of Extended BASIC.
However, there are times when an Extended BASIC pro-
gram is inadequate. Coincidence checking in Extended
BASIC is not as responsive to velocity changes as you might
like.

The programs which follow (Listings 2 and 4) illustrate
how Assembly Language can be used to overcome these
deficiencies. The program simply moves a target from left
to right on the screen while shooting an arrow from the top
of the screen to the bottom. Both sprites wrap around the
screen. Whenever the arrow hits the target, the sprites stop
moving, the target changes to an X, and the program delays
long enough to make the blow-up visible. Then the program
starts over. The Extended BASIC program relies on CALL
COINC to detect hits. You’ll notice, however, that the pro-
gram doesn’t seem to detect all hits. The Assembly Language
program can stop the action by disabling the VDP inter-
rupt while it checks for coincidence by comparing the loca-
tions of the arrow and the target from the Sprite Attribute
Block. Moreover, the Assembly Language program can
check the point of the arrow against the target instead of
checking the upper lefthand corners of the sprites.

140 The Best of 99°er Volume 1

Because of these differences, the Assembly Language pro-
gram appears to detect more hits correctly. Of course, this
stop-motion processing must slow down the motion, but
it is not noticeable to me. (One indication of the speed of
Assembly Language program execution is the large number
of statements executed in LOOP2 while the hit shape brief-
ly remains on the screen.)

Another shoricoming of the Extended BASIC version is
that the hit shape appears quite a bit to the right of its ac-
tual position when the hit occurred. That is because the
sprites have continued to move while two BASIC statements
(lines 190 and 200) are interpreted and executed. The
Assembly Language version has already stopped the mo-
tion by disabling the VDP interrupt program via LIMI 0;
it doesn’t start the motion again until after the hit sequence
is complete. Thus, only the Assembly Language program
actually shows the blow-up in the right place on the screen.

Understanding An Assembler Listing

The Assembly Language listing (Figure 4) was output by
the 99/4A Assembler. You’ll notice that the Assembler has
added a page number and short title at the top of each page
and added a cross-reference list and number-of-errors-
found-during-assembly message to the end. The cross-
reference list shows the location of the symbols used in the
program relative to the beginning of the program. The line
numbers in the first column were supplied by the Editor
when the program was input and passed along by the
Assembler. The second column of the listing shows the
relative memory location where each statement or data area
will reside during program execution. The third column was
also supplied by the Assembler and shows the machine
language generated by the Assembly Language statement
to the right. The machine language (or object code) is ex-
pressed in hexadecimal notation with one word per line. The
Assembly Language source program (or source code) itself
starts in the fourth column, which contains the labels. The
fifth column contains the source program opcodes, and the
sixth column contains the operands. The seventh column
contains comments, and other comments are sprinkled
throughout the program with asterisks in column 1. Only
the fourth through seventh columns comprise the Assembly
Language source program, this is the only part entered by
the programmer. The Assembler generates the rest.

The Utility Routines VMBW, VSBW, VWTR, and
VMBR are used in the example program. The VDP Multi-
ple Byte Write (VMBW) moves the number of bytes in
register 2 (R2) from the CPU RAM address in R1 to the
VDP RAM address in RO0. VSBW, the VDP Single Byte
Write routine, was explained earlier. VDP Write To Register
(VWTR) puts the value that is in the rightmost byte of R1
into the VDP register whose number is in the leftmost byte
of R1. Among other things, these VDP registers are used
to select VDP modes and features. VMBR is the VDP Multi-
ple Byte Read routine, which reads the number of bytes
specified in R2 into the CPU RAM location in R1 from the
VDP RAM location in RO.

The logic for detecting hits in the Assembly Language
program is based on the fact that the point of the arrow
is three pixels to the right and seven pixels below the corner
of the sprite which is obtained from the Sprite Attribute
Block.

Copyright © 1983 Emerald Valley Publishing Co.

Thus, having the

2
7
2

1), [B1iT)

< < =

1
1
I
2
8
0
0

0| THEIN| (6/50

,[CIO|L|, 8]2])

"|F|F|8|1/B|D|A|5|A|5|B|D|8[1|FF|"
"|1/8/1/8/1(8]1/8/1|8|1{8(3|C{1/8|"
1
4
1

“18(114(2
2v
39

TIE\R|({S|CIRN| (|I|SIUIBI} !}

S|HOW, [N|EW| \G|E|N|ERIA[T|IO|N

Language lets you achieve results which are impossible with

as in the program SHOOT, Assembly Language is capable
capability to write programs or subroutines in Assembly
BASIC and Extended BASIC alone.

a boring game into one which is fun to watch. In other cases,

of providing more accurate results.

Listing 3

Life

Although they are more complex to write, Assembly

~
+
=)
=] w
7]]
S — (=)
" — 2 =
= M Q -] -
= ame =S = B, - - ~e« T N =0
=0 b~ 0O < IO M ™ 3 3 N & s —
(K] OO/, St — — O = bl — — =
= e o = D~ o~ oy Bl e v v B R — O e
=—~+ + = —wom + @ o=~ — — O Ol >
mm M L eNeN | — M m — TS B —— > T
MO ab 20O NI o— oAbz e Q M. <kt xT SN R -
|l tawa Qv O A2 amZ 0O N0 o~ Q SmxmmTaA A OO < 3Awmin
== =00 —=mnunOMOO0—-mIm—0—~/mmM & O8000umuereEsFaunr
=z — |l 1] =0 —0 1} 1] 7)) [=]
O = m|m = /e 3 m mwnaAameEemEeQ — N 3 3 2 = O
mOKDMEADMKKA K E- - =] T - N =)
LOMBMuBMMn OO0t NBMO = e T LL L OO =
—_ = = i G O b~ O~ — X ~ [SN-ASESESESESN:--Re) OO0 WU
0060000006660 000G606 O 8OO0 OCEEE66666
CAPNTIINO NN NI INO N0 S COSramMITNONRNIB - AT IO
W IN N N LD LN LN LN LN (D (O (D (D (O O O © O O ™~ = T T TN
L
-
©
-
)
- =
- O
< —
- =
- g
M =
ol 2%} S
— - = — =
=3 — ~ (%] — 7]
— o~ - [4] P
o < - — =
%] - =] - o~ =~ [2) =]
=) | [e) - - > |l =
[% - m [SI) -~ m By S ©
=g - =) + [$) T2 = w ~ (2]
- —_ [X] [] w o~ - - Loz vl [-X) = in n
— = ™ N = o = -~ M e~ i © © 1]
© — - - — = * [e) N o< < —= =
— 0 w1 o OO0 3~ Z o — e - 00 = OO o +] [X]
[77) [M M O K O il — = =~ m = = =2 o]
= O W | -~ — O OO0 | —pm,m 0 -D O D mm v [
W kB = 02 e — = -2 Mg - 0O e« = W N e —
Mwva b = — = = Oon] T} — =+ — e
T M - e DO /m»n O - RS e — [= ™ il
O | O = | = O — [l — = — —~— — Z e —— M- N OMO O I ZO = xme 1D =
O — w - — M, — I — - Tl Il O O= =
— A 2 B Dl Gl =) AMmZ AN -~ m I O=E= il B0 00
A S MK e S MmN s MR AKBEES SO MM R B [
W O B L G K e 1 O O Rl B i i M RO MO e RN OO0 =0 b &Lk O
DAMKGEZAOAQAMBRLNEZ MG GMELG— N0z R kI ——~0=Z— — 0 —
- - N T T LR N - N X)
S rr aAMITINONNOBTCAMNTINORONSraMNMTIN OROOBC- MINONOCO S
FrrFrFrrErrC T rANANNNNNNANNIMMNMN M ONSET I ITIIIT In

Language programs are far superior to BASIC programs
when it comes to execution speed and for controlling the

facilities of the 99/4A computer. In some cases, as in the
game of Life, the faster speed of Assembly Language turns

Conclusion
Listing 1

(5]

"

L

o

~

L

-

=3

L

~

[

"

- -

| «©

- ©

- ™

Mmoo

| o

- -~
aNoW]

- M -
S i - -
W =g Rl -
[SAR-J MMM T NG
—mm MOM - BN -
H—=ENOWO [N AAAAAS

- AN
LR S AR S S RS R
Bl i 00 D D BB B B B BB BB W

] O 1BV 0D G R D D Dt Dt D D D

—Amma@mAQAmMMmamMmmMan

B =
O W

WS
SCRN
GENS
OFSE

S

]

[+]

[+]

L

PROGRAM

START OF

oA

L J SRS QR
AP0 A - -

[
(SR
© w |
©w
N—0
[oI

141

INDEX
Volume 1

The Best of 99er

COUNTER AND

Copyright © 1983 Emeraild Valley Publishing Co.

Life continued

Listing 3

1

g
= [=
il [e] <
=] = -
o =3 = m S 1~}
w2 = [o] (%] z = a
= w O @] - = O = [] Ow
- o [e] L] =) . m E= o] [&] o= (S] oot
1l [—_ k] (4] = [A R =] = —_ (73 o U v -0 e
=0 (4] — [%] Ea] — - (2] —_ v 2w w [l
Bz e ZEe - (RIS) —— — < A Z mlbwzuux
7%~ Ke) 9 - [3) [X] z R m -~ [*]] ck W Y Z20unzZR
awu- =] Ed —» = o B w o [=I ¢ WMZZO W U = OQ M~
ook B = (o] = W (284 o o o [[4) - =N - ANERN-] =) zZXA @< O 4
[e XN = = = W 2] = > w1 W v MW [a] m O < 2 wYm had 4 - Qe w
20w (AER) ~ =20 (o] W\ o @ m A W Oow RS RL] U mw - — ZwmoAQz [N
o (] = zZ—-0 Z0 Ox@ O—O0= =~ B 2z HOWme M —Z<COwn =
[7Y z [5 - & £ Mk A@Ab@ab>EAa OR o = O BEX X0 *« ZO Om O
‘0= - (8} OxxMw [e] Heo@mm OmmEOomO BO O vHRE O SEHXWO WwWw o oW CEHWE B o 2
Dol Doy e 2 L] — VOm— o o @ L= U= UDUD VLU =@ = oW LDLOL RZZOZE B kG e G =
L I AN O—f mf EOAG®G © @ o W —=m —u=nn X0 UK OZwH» P @mEa3 mUm w D
=3 B B B Rl An D0 =z Al 1! U oML W | B | | BB Qe B [~ RN ||t B 20O —~Um a Zaa 0 [
- Zm — [”-Ne) 1 | m v vr— e} nZwn F R AR D AR O~ B [eR=E-1 & n | = O/ 2 —_ w
0 oL O= — COoOoOrRMmMWMMWHK QOO0WM WO W Wk MW KZO K —~mWw ELOWnw ©nWmO PO—~0AWO = o
- WD wm = o K -— AU E@m2Z>Z > QA= >MMNZON M mZ w = 0o —m wn nO—~m =z o aannAa>UN 2
now - Xm -] [2]
=@ WM KW (L XY -] -~ [_ -~
allbm O Ak ~ O~ o 3 o [T, Y.
zZm O oxn= -=2b [ReNe) [[w -]
<TmA ~ Ewuwx—0 Z=_0 & o - - 3] = - - -~
T o ~® © [- © w W v om om
= - - — - x o -] %] ® (4] = v U
o ~— = -® © ® ~ [e] o - - n w
—_n -~z < - - - - = [- - > z = =
B o « ©~ -~ —] -~ © < o m ow]
< - @O (=] =~ ~ L (4] 0 n -] =] [&] (4] (4] [&]
= —w -1 - o [] 2] o~ oA w ® ® ©n
Wmm =z @ — W B —@—x —2Z W ® LS z - = —Zun~ @ - - m;m 2
ZUMmm - a2 Umoo - NWZmZm © ZO0O vU U U - @ [z w - Bw—© - mOM DL Wwo B <
[ZR NN = Ne} MANMMVNOOG DN T @ @M ZIIoNIm T o = - 00 B -9 aoUAn (-] Q2 mwvn U~ Mm e w
U -G @ ko~ oo - om R ODEHD SEUSE A0 -0 ~De (5] VUMD -~ (o] [oF--J 4] ~ OMEERA QO LR E o)
LM - HKemMeOOerOUXnXNoel”RWMEOMOMONeErTArMAaaMNAMNOEINTOWLMO NSO MuwuXmandaoc o > o o—
NMOELIEZONMNEN A MammO@Z YRR NI ZAUITUZAZERZRCIMUEMOUMW - - - I @Eac T EE I OUFE YR OZAIONMEE O QN » 1
L ® — = E M
(o] m - - 1] (2] (] Zmomed ;M -] (2] w m] — A e~
=S >>0Mm EW — > o OCLUL & o Ona O O LvLWwLLWmm PAabLDOMKMOODLMWM a2z QO>ad>DHam =ERE oo
O OOWZ A mm Wm0 MUOMZZ~-"AE—=KE =R ZHZZWNZO =~ ~ OO ZWNZZMZ AE =~ AROEOM IE I =3 2
ZECEEQA~AA G AN Z A0~ =D~ 0 =0~ =D~~~ A~ AN a-LS LS ENE~QA— =A@ DmEmEA——0URaamamw
— - =1
a, =31 o = = [A] 2] Ok o 7] ~
[~ - Om azZm o o (LX) W - me— D o [$]
L SR SO ADZ wn = - zm 7] a.a. m2 w a w
O— = <0 LUDOUL m B = <0] (oo} 20 o2 = =
- = (S - -3 m > 5] |- N e} [} [eXe) wn] - ¢ =3
e «+0O VD=L = = (8] L= *] xw xm m 2 o

Copyright © 1983 Emerald Valley Publishing Co.

Volume 1

The Best of 99'er

142

Shoot an Arrow

Listing 4

=
- o
-] -
o o
o [&]
w =}
[4] =
=5 L
P

=
(8]
(o]
-1
-
w
~
]
a
oW

=

=

S
-~ ©
- -}
= A
w -
> ©
- ™
= N
- m -
- w
> ©
o= - A
oo -
O m (8]
ninE NN
- M A

T
F
F
S
BYTE

-
w =
2w
(8]
" ~
w
=}
m
= 50
W o~
w (B -]
w o9
= 2

O™ omMmeIn
-0
NNOHOO0
OO0 0
oW

LOCN AND COLOR

SPRITE 2

>01,>7C,>81,>01

BYTE

OO
0O s

TN
NN
D00
OO0 O

0006

(SRl o
~rOo

[N
NN
500
o066

TARGET

TERMINATOR

>FF,>81,>BD,>A5,>85,>BD ,>81,>FF

>D@
BYTE

BYTE

SHAPE

SLTrAmn AT
Qe 00 M kg L M0 b

WOKMOA ML
NONNANNNONANMN
DOV O
DO

~
(K-
50
50

™
a
e
B
= 0
]
] =~
= —_ > >
< o = (2]
w0 w
© - (o} (<]
- o« -~ -1
A A w w
- - > >
(8] ~
" < - ~
A A
- - w w
© < = =
Al o~ — —
A A = [
- - =] (=)
© © 73 w
- -
A A
© 0] 3
- - S -2
A A A A
© <] -3
L ol o~ o o
A A A A
© ~ < (-3
- < © -3
A A A A °
- - - - o~
©0 - -] 129 oo M~ S
- © [~ 50 o ow
A A A A ANCETrNTe A A AR
w w w w [ER*] Wz
= [o = = HEHONW®MWWWE R
>~ > > > UMW ULUNY D> E R
0~ m -] (-] mmmmMmMmamMA QA=
] =
B [a} > [
v 2] = ~NO
= W o~ = M~ 0
—_ a BV rDANNDD OI
b} 7 mm->xAadxmin Twn
OOV VRTrNTONONITNTrOTOOLOODOON MmN o605
CEFr T rEMNrITN e rNTONO0OOO N0 o0 cGNS
oND
sco
CFNMTNOROAICRDANLOICANMILORNOO DAL N < 0o
MMM NYITTTIYIdT TSI ITTIININLD DL
ODODDHOOODEHNDOENOSOOONDNOSODODOOOD OO0
DODODOOOODNOONOODODODOOHOCDODNOOOCOOD OO0
o S - o~ MILORNNODTC-ONMS
-] L ad - - T TN ONNNN
[o o [OOV OOOOD
o (-] o [DOOOONOOOOOOC

SCREEN WITH BLANKS.

«~FILL

0025

143

Volume 1

The Best of 99'er

Copyright © 1983 Emerald Valley Pubiishing Co.

Listing 4 Shoot an Arrow continued

99/4 ASSEMBLER
VERSION 1.2 PAGE 0002
0026 00S5A 04CO CLR 0 VDP RAM SCREEN HOME
0027 005C 0201 L1 1,>2000 BLANK IN MSB OF R1
005E 2000
0028 0060 0420 BLNKIT BLWP @VSBW WRITE BLANK
0062 0000
0029 0064 0580 INC 0
0230 0066 0280 (o] 0,768 DONE?
0068 0300
0031 0@6A 11FA JLT BLNKIT NOT YET
2032 *SET UP VDP REGISTER 1
9833 006C 0200 L1 8,>01E0 NORMAL SIZED SPRITES
906E 01E0
0034 0070 0420 BLWP @VWTRH
0072 060600
2035 *SET UP SPRITE ATTIBUTE BLOCK.
0236 0074 0201 DEFSPR LI 1,SAL R1-MY ATTRIBUTE LIST
0076 0020"
2037 0078 0200 LI 0,>0300 R@->ADDRESS OF VDP SAB
0074 0300
0038 007C 0202 LI 2.9 9 BYTES TO WRITE
007E 0009
0039 0080 0420 BLWP @VMBW WRITE TO VDP RAM
0082 0000
eo4e *LOAD SPRITE DEFINITIONS
ee41 0084 0201 LI 1, SHAPE R1->MY SPRITE SHAPES
0086 0029°
0042 0088 @200 LI 0,>04¢00 ADDRESS OF FIRST SPRITE
908A 0400
0043 0@08C 0202 L1 2,16 16 BYTES TO MOVE
908E 0010
0044 0090 @420 BLWP @VMBW WRITE TO VDP RAM
0092 0082°
0045 *SET UP SPRITE MOTION TABLE.
0046 @094 0200 L1 0,>0780 RO@->MOTION TABLE IN VDP RAM
9096 0780
0047 0098 @201 L1 1,SPEED R1->MY SPEED DATA
009A 0041
0048 009C 0202 Ll 2,8 8 BYTES TO MOVE
009E 0008
0049 00A0 0420 BLWP @VMBW WRITE
00A2 0092°
eeso *SET NUMBER OF MOVING SPRITES.
0051 00A4 D820 MOVE @HO2, @>837A 2 MOVING SPRITES
00A6 004A"
00A8 8374
0052 *MAKE SPRITES MOVE BY INTERRUPT FROM 9901 1/0 BOARD.
0053 QGOAA @300 MOVEIT LIMI 2 ENABLE INTERRUPT
00AC 0002
0054 *CHECK FOR COINCIDENCE.
0055 @GOAE 0300 LIMI © DISABLE VDP INTERRUPT
0050 0000
0656 *GET SPRITE POSITIONS
@657 0032 0200 L1 2,>0300 R@->Y OF SPRITE IN VDP RAM
eeB4 0300
0058 0O0B6 0201 L1 1,71 BUFFER FOR READ
GeB8 0G4B°
0059 0O0BA 0202 L1 2,6 6 BYTES TO READ
00BC 0006
0060 OGOBE 0420 BLWP @VMBR READ FROM VDP RAM
144 The Best of 99'er Volume 1

Copyright ©.1983 Emerald Valley Publishing Co.

Shoot an Arrow continued

Listing 4

PAGE 0003

ASSEMBLER
2

gece c¢coe

[
+
o
>
~ 1

+ o
- >
>4

]

\%
[
+
«~
<

It

v
-
e

>
LAS)
o -
[
)
o
®

*CHECK COLUMNS
AB

SronLo
NN TN
VOHOO O
CE-X- RN N

o0 O
VLDLVDLOLO
OO OO
- X-R_N-N.- N1

o
0o
eon
on

X2+X2-%1

@X1,@X2

SB

0063

7

I'F RESULT >0
TO

NO HIT
COMPARE

@X2,@H07

MOVEIT

JLT
CB

neoN
BN
0o o
OO0

W o
VanM
LN NN
LR NN

< n
w
(-
(-

~ Y ~
A \% A
2] B B =
-1 - -1 (=] =
=] =1 (=1 = ~
] 7] w0 w (o]
W X] X} o 2 A
~ ~ = = = a
o L [e] Ed
e . [% [7 - T
—- —- — [o]
~ - I -VR 7 S)
=+ | ~) - A W
—- e~ ~ —_ — ©o> = om
o > > -~ o A A > [ad
I i 1 I m =
O ' o~ o (o] - o [
R > = = s o5 o B
+
-
>
I -
v w
~ =
+ [o]
~ —
> B
] —
ver ~ 4
- > ~] —-x
HN® > B H o ®
[- ® -8 - W ® 3
Lo~ - [[S - m
>0® - > > = oA o =
Owm > O > [o] L - - >
= @ ® =Q E HT & o @
0 —
= L3 o
=0 e = A £
Omm m = m U @= —~ =
—- 73 -0 _— 22 A om
%] (%]
B (&)
(8] =
W B g
o -
8] o
* x x
0) ONLOMLONGLONW FOOONBON
W NSNS NTINA OB BO N
N NOBNODT0OOWN NONTNOTO
- NN TOODT Do vLL
© OLMOM® NS00 MO0
A AQAAMMNKMWWK (R IO S
5 00O oo BO S
5 0O LD OOV S
© N~ o o O g © ~ ©
oo (-] ~res LS S O) ~ ™~ ™~
s [o oo ©® © ©
s [on oo © © O

LOOP CTR
CUONTER
DECREMENT OUTER CTR
WAIT MORE
START OVER

DECREMENT
WAIT MORE

OUTER
LOOP

BE SEEN.

LET BLOW UP
LI 3,10
2,12000

«+WAIT TO
LOOP2A LI

MLNBGNMM N
DO KO LS LM
NONWOWWYS
OB NBTO T

KOO Wt O W
LSOO OOE
L ol ol ol S S
- XX R N N N_¥.J

(20 -] - NN DO
™~ o [} ©0 00 00 €0 00 O
on = - RN-R-X-¥. N1
S a - [-R-X- RN X1

SSEMBLER

L4

TSONCQLINDO N
BTN LOOOOITNT
SO0 HOO
(RN NN X N N_X. §_¥N.J]

(2]

[&] (2]

x5 - =]

A W =N
en>cun S0 2

B0 rrunon e
mmE o em > >

- .- XN

ATN LT ONS
TINSSCHBSINWL
DTG0
580000 GG

P2A
OTA

>
= z
=Moo«
SD80rvradO N
[~ RNl T

(o]
B

-~ - - aw-

L0~ 00O
PO N L
VO THOOOOOO
OO

o~ [X]
a -3
[. Xe)] G M
MO OreMm~ImE -
AN @mme @ o>

SPR

- . EEX TN

BTOOONUVUEOO L
VMO ONDO T
DO OO

D000 W

~
B Y
- -6
Mo w -5
ZZe~ o - m

o

N O NOE NN

MmN mmeEm o> S -

~

om- - -

-2

w

5]
>

E

000G ERROR

145

Volume 1

The Best of 99’er

Copyright © 1983 Emerald Valley Publishing Co.

R—Recall Screen. Loads the contents of DSK1.SCREEN
for subsequent modification.

E—FErase Screen. Erases the screen contents.
T—Terminate. Returns to the Master Title Screen.

In order to understand how the program works, it will
be helpful to differentiate two systems. You probably know
that the Central Processing Unit (CPU) in the Home Com-
puter is the TMS9900. 1t has three built-in 16-bit ‘‘hard-
ware’’ registers (the Program Counter, Workspace Pointer,
and Status Register) and makes use of sixteen workspace
registers located in read-write memory. Because these 16-bit
workspace registers are not located on the chip, they are
called “‘software’” registers. The CPU can directly address
the read-write memory (RAM) in the Memory Expansion
Unit and CPU scratch pad, as well as ROM in the console,
Command Cartridges, and various peripherals. However,
it_cannot directly address the 16K of RAM built into the
console.

The 16K RAM block is addressed by another
microprocessor—The TMS9918 (or 9918A if you have a
99/4A,). This Videq Display. Procesor (VDP) has eight 8-bit
hardware registers and four 8-bit software registers. The
software registers are located in read-write memory loca-
tions which can also be addressed by the CPU. The fact
that these four bytes can be addressed by both the CPU
and VDP makes it possible for the CPU and VDP systems
to transfer data back and forth. The CPU addresses of the
registers—8800, 8802, 8C00, 8C02—are assigned respectively
to the symbols VDPRD (VDP Read Data Address),
VDPSTA (VDP Read Status Register), VDPWD (VDP
Write Data Address), VDPWA (VDP Write Address).

We don’t have to be concerned with the details of mov-
ing data to and from VDP RAM and to VDP registers,
however, thanks to some of the built-in programs called
utilities. The five utilities of use are identified by the sym-
bols VSBW, VMBW, VSBR, VMBR, and VWTR. The
respective functions of these programs are VDP RAM:
Single Byte Write, Multiple Byte Write, Single Byte Read,
Multiple Byte Read, and Write to Register. User workspace
registers are used to pass parameters—e.g., the number of
bytes to read or write—to the utility.

The standard utilization of VDP RAM in the
Editor/Assembler is shown on Table 1. The blocks involved
in the multicolor mode are the Screen Image and Pattern
Descriptor Tables. Before entering multicolor mode, the

“Screen Image Table is initialized. The 768 bytes of the table

are divided into six 128-byte sets. Each set is further sub-
divided into four 32-byte groups. To initialize the table, the
numbers 1-31 are written in order into each of the four
32-byte groups in the first set: 0, 1, 2,. . . 31 four times.
Then the numbers 32-61 are written four times into the next
128-byte set. This process is continued until the numbers
160-191 are written four times in the sixth 128-byte set. In
my program, I didn’t want this process to be visible on the
screen, so I first put the display in Text Mode and made
the foreground and background colors gray.

Once the Screen Image Table is initialized, color boxes
are placed on the screen by means of the Pattern Descrip-
tor Table. Each 4x 4 pixel box on the screen corresponds
to half a byte in the Pattern Descriptor Table. To place a
colored box on the screen, the appropriate color code is writ-

o

VDP RAM MEMORY

Table 1
—Editor/Assembler—
Address of Length
First Byte of Block, Contents
Decimal Hex Bytes
0 >0000 768 _Screen Image Table
768 >0300 128 Sprite Attribute List
896 >0380 128 Color Table
1024 >0400 896 Sprite Descriptor Table
1920 >0780 128 Sprite Motion Table

2048 >0800 2048 Pattern Descriptor Table and
Peripheral Access Blocks

More Peripheral Access
Blocks and Buffers

Reserved for Diskette Device
Service Routines

- Last Address

4096 >1000 10199
14295 >37D7 2089

16383 >3FFF

Total 16384 Bytes

ten in the nybble (4 bits) in the Pattern Descriptor Table
which corresponds to the desired screen position.

The first eight bytes of the Pattern Descriptor Table cor-
respond to the boxes in a column beginning in the upper
left corner of the screen. The first four bits in byte #1 con-
tain the color of the box in the extreme upper left corner,
and the last four bits the color of the box immediately to
the right of the first box. Byte #2 contains the colors of the
two boxes immediately under the first two, and so on for
the first eight bytes.

The ninth byte in the table contains the colors for the pair
of boxes in a new column beginning again at the top of the
screen. Subsequent bytes follow this pattern corresponding
to 32 columns of box pairs with eight pairs in each column.
This group of 256 bytes thus takes care of the top sixth of
the screen.

The 257th byte corresponds to the beginning of a new
column of box pairs starting again on the left side of the
screen. The six 256-byte groups thus correspond to the 3,072
possible boxes in multicolor mode. [Since the color of each
box is indicated in a name table in memory, and the names
are mapped onto the screen according to their position in
the table, this multicolor mode is a true memory-mapped
configuration. It does, however, trade off lower resolution
for color memory-mapping capability, but the high-
resolution sprites are still available. For an explanation of
sprites and an introduction to the high-resolution bit-map
mode, see ‘‘3-D Animation’’.—Ed.]

In the program, a double-size sprite provides a reference
point for determining where boxes will appear. The dot row
and dot column of the sprite can be determined at any time
by referring to the Sprite Attribute List in VDP RAM. Then,
since boxes are supposed to appear in the center of the sprite,
the screen location can be calculated by adding 8 to the dot
row and dot column, which represent the sprite’s upper left
corner. But in order to find the corresponding location in
the Pattern Descriptor Table, a few more calculations must
be performed.

If we let R and C be the dot row and dot column desired
for the box location, the number of complete 256-byte
groups above that location is the integer quotient of R/32.
Multiplying that number by 256 thus gives the first compo-
nent of the offset in the Pattern Descriptor Table.

Similarly, the integer quotient of C/8 gives the number
of complete 8-byte columns to the left of the location. So

The Best of 99'er Volume 1 147

that number is multiplied by 8 and added to the offset.
Dividing the remainder of R/32 by 4 gives the number of
bytes above the location in the 8-byte column the location
is in. Adding that to the offset gives the offset for the byte
in the Pattern Descriptor Table.

But we still have to know if the desired location is the
most or least significant nybble of the byte, and to deter-
mine that we can divide the remainder of C/8 by 4. If the
integer quotient is 0, it’s the left nybble; if 1, it’s the right
nybble. The appropriate color code then need only be placed
in the correct nybble (leaving the other one unchanged), and
the box appears just where it should.

Let’s consider an example: Suppose the upper left cor-
ner of the sprite were at dot row 83 and dot column 147.
The center of the sprite would then be at 91 and 155. The
number of complete groups (32 columns with 8 bytes in
each) above that location is 2, i.e., INT(91/32). So the in-
itial component of the offset is 2 * 256 or 512 bytes. The
number of 8-byte columns to the left of the location is
INT(155/8) or 19. That makes the offset 531. Above the
location, in its 8-byte column, there are 6 bytes—i.e.,
INT((remainder 91/32)/4)—giving an offset of 537. The re-
mainder of 155/8 is 3, and INT(3/4) is 0, so the nybble of
interest is the most significant (left) one of the 539th byte
of the Pattern Descriptor Table.

Now let’s take a brief look at the source listing. The first
section consists of a number of assembler directives. The
DEF directive makes the symbol MARKER available to
other programs, and the REF directives make several utilities
available for use of MARKER. Then there is a variety of
other assembler directives. The simplest type is EQUate,
which assigns a constant to a symbol at assembly time.
USRWS, for >20BA (8378), and that value replaces the
symbol wherever it appears in an operand; the label may
subsequently be substituted for the number.

148 The Best of 99'er Volume 1

The mnemonic BSS stands for Block Starting with Sym-
bol. This directive causes the assembler to advance its loca-
tion counter without writing anything into the object pro-
gram. It leaves an empty area (of the number of bytes
specified in the operand) which can then be used as a storage
space for data later on. The label is set equal to the memory
location of the first byte in the block at the time the object
program is loaded. (Since this program is relocatable, the
place where the loader program decides to start loading it
may change, depending on what other programs have
already been loaded.)

The DATA, BYTE, and TEXT directives are similar to
BSS except that the contents of the buffer are explicitly
defined in the operand field. The label is assigned the ad-
dress of the first byte at the time the object program is load-
ed. All of these buffer areas are contiguous. For example,
look at the instructions immediately after the label
MARKER. The pattern codes for two double-size sprites,
the cursor and arrow, are loaded into the Sprite Descriptor
Table in VDP RAM. Since the pattern data for ARROW
is contiguous with that of CURSOR in both CPU and VDP
RAM, all 64 bytes can be loaded in one shot.

You should have little trouble figuring out the rest of the
program by reading the comments provided and referring
to the manual. But don’t stop after you understand how
it works—try to make some changes. To start with, try
changing the shape and colors of the sprite curser, the ar-
rangement of the color palette on the screen, etc. Then try
to make the program more efficient in speed and utiliza-
tion of memory.

Be prepared to run into problems; it’s through encounter-
ing and solving them that you’ll learn most rapidly. When
I decided to stop reading and start trying to write a pro-
gram, | had visions of seeing a curl of white smoke rise from
the computer’s cooling vents, but that didn’t happen to me
and probably won’t happen to you either. So don’t be afraid
to experiment. @

Copyright © 1983 Emerald Valley Publishing Ce

Magic Crayon

Listing 1

™

MARKER
VSBW, VMB

(SR
[REXNX]

LABELS

VWTR ,KSC

DEFINITION OF
S
S
S
S
S

<
A\

5009 TOHOO06
BS990
50O0ONOSO0
STOOSO006
ANNANNNANNA
TOOTOOO00
BNNOSSO0O6
NOONOOSO6
Brroo6eO90eANn
ANNNANANNNANNN

,>0000,>0600

BSOSO L0
TFOOTOONOO0
OTTOTOOOOTO
NOONOOIT G N0
ANNANANANANANA

SCREEN"

BONSONSOOONNORTr OO OMLG OKOIONCUS
TOOOOOWORNOOXOND WLO ORI W
GO rOrodOoNNOBNOBOLNTTICrNSUANLANONNLELGMMMMMNMNMN
NOOOOOEONVUOEONOOO LOECOTrOOrOrOoOO6 ® (LGN WK WM0K
ANANAAANANANANANANA- AAAAANANNANRNAANNANANNAANNAANNNNANANAANA
R R L L R AR R AR AR R AR AR YR AR A RN EA A}
R R R R R R R R R R e EEDDDDDDD DR D
KGR KD KL KG KG KD KG KG kg xf KE L K KRG KD KE KRG KRG D D D D e D D D D i e e > OO OO QOO Q0
AaNAAAAAAAQAAAFRAAANAAAMMMMMMMMMMMMMM LB G] L W 6 W W w
=
[m e > ~om B NARY) —
o = — g & oo = D W b
w fe) o <t o - sQu 3,3 WM BRmemnme—=2 W
[~ o MEN XSO0 00TI RN OIMNEOME—E>>md QO
=} ~ ma MMEOE<<QOZRUUrr 00tz Zz—~000Fa
(8] =L = <G Ay NAAUSEULUN MO FLANENENNEN TN ZADARDE —~—nwnd x *

132

128 AND

FOR CHRS

SPRITE PATTERNS

T
CRIPTOR TABLE

AR
ES
)

FAZwn
7] o=
[AR~N-S
~ W
Elalal
o g e
Bla, QA
W =
Z mest
— i — @

oo x
- Owma

W O >
VOOE

e Q-
LR RN o)

E-RsR] =5
v e
O
zTaarFan
g

= a0 =
Oasa O
>0

[

[e]
o wn
o m
neba
TADOR
)
noO N>
Dmmem ®
- oy
o E
B

L
L
L
L
B

o
wm
B
3
=
=

TO GRAY

TO GRAY
IMAGE TABLE FOR MULTICOLOR MODE

RO,>01F0
BLWP @VWTR

RO,>07EE
BLWP @VWTR

LI

FOREGROUND AND BACKGROUND
L1

INITIALIZE SCREEN

SET

SCREEN
T VALUE

AY

(=]
=1
=0 [
— oo W

P COUNTER

N COUNTER

—~ 0N~ X
Om=mLE—~>X0mO
AaU>m>— WD~

Wz e
IR R WD Z g~
NNNNNAIOR >
e W = QW
[N G g . - Qoo
LR R RG g moxw
e L] () B R
RO G D
—— e O D U
ZZzZZZHEmO0W
= = 00 A A

S
6
4
>
R
*
>
OP2

SraMmIaNnmIng OM
ol iRl ol]

m |

5] g (SRR
= = 00~z W
WM OAaEEsa—-n0

Looro
LOOP1
LOOP2

149

Volume 1

The Best of 99°er

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1

Magic Crayon continued

INE LOOP1 DO NEXT REPETITION
Al R2,>2000 NEXT STARTING VALUE
DEC R1 DEC GROUP COUNTER
INE LOOPO DO NEXT GROUP
LI RO,>00 VDP ADDRESS FOR SCREEN IMAGE
L1 R1,SCREEN CPU ADDRESS OF DATA BUFFER
L1 R2,>300 768 BYTES TO WRITE
BLWP @VMBW INITIALIZE VDP SCREEN IMAGE
*
+ INITIALIZE COLOR PALETTE SCREEN
*
L1 RO,>100 INITIALIZE WORD COUNTER
L1 R1,PALET INITIALIZE POINTER FOR PALET ARRAY
LOOP3 MOV @GRAY,+R1+ STORE GRAY COLOR >EEEE
DEC RO DEC WORD COUNTER
JNE LOOP3 WRITE NEXT WORD
CLR RO INITIALIZE COLOR VALUE
L1 R3,16 INITIALIZE COLOR COUNTER
LOOP4 LI R4, 2 INITIALIZE COLUMN COUNTER
LOOP5 MOVB @GRAY,*R1+ STORE GRAY BYTE
MOVB @GRAY, »R1+ STORE ANOTHER GRAY BYTE
MOVB @BLACK,*R1+ STORE BLACK BYT
L1 R5,4 : LOAD COUNTER FOR COLOR BYTES
LOOPE MOVB RO, *R1+ STORE A COLOR BYTE
DEC RS DEC COLOR BYTE COUNTER
INE LOOPSG STORE ANOTHER COLOR BYTE
MOVB @BLACK, ~R1+ STORE A BLACK BYTE
DEC R4 DEC COLUMN COUNTER
INE LOOPS DO SECOND COLUMN
SWPB RO SHIFT TO LEAST SIG BYTE
Al RO, >11 ADD 1 FOR NEXT COLOR NUMBER
SWPB RO SHIFT BACK TO MOST SIG BYTE
DEC R3 COUNT DOWN COLOR COUNTER
INE LOOPA& DO NEXT TWO COLUMNS
L1 RO,>300 SET BYTE COUNTER FOR REMAINING SCREEN
LOOP7 MOVB @GRAY,»R1+ STORE A GRAY BYTE
DEC RO COUNT DOWN
INE LOOP7? REPEAT UNTIL DONE
*
* INITIALIZE PATTERN TABLE - THANSPARENT
.
CLEAR LI RO ,>300 INITIALIZE WORD COUNTER
L1 R1,PATRN INITIALIZE POINTER FOR PATTERN ARRAY
LOOP8 MOV @ZERO,*R1+ STORE COLOR = TRANSPARENT
DEC RO COUNT DOWN FOR NEXT WORD
INE LOOPS WRITE NEXT WORD IN ARRAY
*
« LOAD PATTERN TABLE
.
L1 RO ,>800 VDP PATTERN TABLE ADDRESS
L1 R1,PATREN CPU BUFFER ADDRESS
L1 R2,>600 1536 BYTES TO WRITE
BLWP @VMBW WRITE TO VDP RAM
*
* SELECT DOUBLE SIZE AND MULTICOLOR MODE
*
LI RO,>01EA TO WRITE 111061018 TO VDP R1
BLWP @VWTR WRITE TO VDP R1
SWPB- RO MOVE >EA TO MOST SIG BYTE
MOVB RO,@>83D4 STORE COPY (>EA} IN CPU RAM
*
+ DEFINE ATTRIBUTES FOR SPRITE 40
*
L1 RO,>300 VDP SPRITE ATTRIBUTE LIST
L1 R1,ATTRIB LOCATION OF ATTRIBUTE LIST FOR SPRITE 0
L1 R2,6 6 BYTES TO MOVE
BLWP @VMBW WRITE DATA TO VDP RAM
N)
* DEFINE # OF ACTIVE SPRITES
*
MOVB @ONE,@SPRITE STORE NO. OF ACTIVE SPRITES IN CPU RAM
*
* INITIALIZE CURSOR COLOR AND COLOR CHANGE COUNTER
.
L1 R3,>0F01 SPRITE COLORS — WHITE/BLACK IN R3
CLR R4 INITIALIZE COUNTER - COLOR CHANGE
*
e START MAIN LOOP —-——mmmm =
*
* CHECK]JOYST FOR MOTION, FIRE BUTTON AND KEYS
»*
CHECK LIMI 2 ENABLE INTERRUPTS
LIMI 0 DISABLE INTERRUPTS

150

The Best of 99°er

Volume 1

Copyright © 1983 Emerald Valley Publishing Co.

Magic Crayon continued

Listing 1

%]
=
1w —
] -4 =
0 — =]
UMz B o
[CROR 4 = (=] -
om0 w o
0w w [-
o " -
e O 8] W =5
O Wk] > [$]
= 9 W
n—=A o 7] -]
2 m
ODZLewe O Oe
—~0PO0AmA A A
Em MWW %1 w
WMmW>n nZnunZnnz
ADEHEMNONOLNOL®NO
WMnOMMEW ZW ZW
m B & mOMmONMEO
OWmEFAQAURAUKRAY
WHE O m =
= [X] - - -
MM A W)) A~
VOO w: 0O0: 00: O
—~ZWZE N ZW =
[~ XL -) 1] w1 w
R RO O o O o)
RN NE BB =B
= n o~ o -
- ® © 1) -
& = oom] £
wbd ® ®© © e
@z - - -
O -l NS WM
RO > @ D@
S U2 D] DG bd BT B
60U O Mol o) bl MW
Z9O@®
m e
P2 O W X} w
—mQumpmmEz @z Mz
PMEAEMD Dm0~

ROUTINE

SCREEN

TS
PACE
R TITLE
?
S
u

T
E

P

K 5§

STE

SED
GO TO COLO
BUTTON PR

INTERRU
LOAD GPL WOR
RETURN TO MA
" C PRES
, GO ON
S
I

ENABLE

[N - R REN R]

PLUEIZRI=zVOzZNUIOZIOW

NEXT3
NEXTA4

*

SCREEN

BLOCK ON

ROUTINE TO PLACE

*

[
=]
o
[
n (¢
o
=] v
o o =
o e AR~} = o
U W n = U
w W=
" w Wo- Zom
M W =wn [AN-S w
D> > B - om £~
> - Om > M m Z v [N eNe) D
= + o @ (8] wx W owm (2] m
[= U o 0o =] W= ek Aol 23
~ 5 o] > (-] »2 (o] ul — LRl] [¢] =]
AL (8] — N~ = m — U > > (2] 5 - wea — =
w z (o] (o] 12l MmMzZmM = (o] 2] Aol o lo] L HamWwy L
7 = o= - O — Z o~ |- $) —~MEZKZES VS [I Ry X | >
WM D =m m W >Aawn W e O w A mKmueaxO Vv Z M w =
- T R m O mm>D 5 (SR mw=ECE OO0 e mWIMNM = = W;
o o - -5 - [~ Ne] - - Qo m [A] | =] w v W =z H>™QaD ;| = (N7}
AA O wa O O MU—= b w Oowno DNZVZUMIM WOMWZMW>™G @mm & LW
x5 a W O Dwes> O & W o HMDODEmCO0D WEm OW ~Azm Hawmd =
2] = om O o Ommwer O +HmEN oA RANERA] (o] (SRR e =N 2] ZexmOA 2]
> oW O S O D > A ZWw W™ 0O B B B A1 DD el meUwm 2 [=) (Al
e QSWK A A M A @ AL A S = DZm Al monUzZz—a U aQxes o
5w a waNAW =z m a MW G - o~ munm o~ <mg w O
M0 AA—~=00U0 AL —Z WMA=ZUNZoaN —golamumemeUs Zm mE m =y W >wm
—w ZZEPWmmeL AR QO —m>Z> =W B W WZDOm—~OMMNM W —~ = QU™ O
M ME e = WMOM— MDD = W NMEEME—~OL NLIENOM-AnNZ HZub—xm E5R
= Az HBHODBmunAam AZ WaeD wmzalAleE =X WO LW - » G -
~OuEN e~ B O O Oz N EHLOO0O M~ ~H8 S WA 0 WY O e Oom
MEHLMO®EZO [N - --N 2N T mZDnwoL=Zm > w1 w oD mERNA I ZWE R QB [2N~]
e E ™ Mgy 3R ~O0RMmZAaZamy g B @Az —~m wman w
WMEd> W WwOWMLE=OMRME mEWKG OMZ=Q™ W~ m WOMM> W WMLZLLEmmOoo0Oxmmnm
HMARNLONES00ADOW WHENWNDODASO0OAQAD>WE M MDODONAANSKWM>WMEO—~a0 = OE W
—_—fe O ta— A OO L K> =~ DA VARMLVLNNEH=~O —~MEGME <) o = QO
mLONQAD =S - KO MR aAD B - - PMOHESWSDASE0QD B bl
") = LO—= Ok~ -~ w = O—=QOm&= -~ = SRR =G L I O~ W=~ L~ D m
noOn—=m—~A mEQO0AP=Ax—=xA LDEOO0OAD=MOXMOXO—~M -~ D E - - & @ W
VDOHOE W HZ®N—D — O N ~Z®u—~0U VDZUVZWZHEWNE>UOcM o woomm ©
ADME— L —MA >ana>a—~kLEMdA >RaaWw | A= OM— A MEM— MO X> D —

AAMWEZ [ZoKAnNLk—=<XA—~0Z | DALl = <ANLINLUNEOZHESZ0OC o KudDMubsa<OAaanm
PUOML— | —aAES—~—~—AlKAa—~ | AE—~—~—~A0K0—~0=mAa—~uE—~D0—~—SU0anlaE<EE>0cE

Y -
- ~
3 > - - -~
< om < om o - =
= - = - - ~ me=
o o . © . B v om -~ o =6
[-3-3 -] O m < o U=~ = 9 x O = W0 S
mO o - OmE - & | - OEEm NN X D = - ~ 6 frO<OR
Aoy E 0QO0-NOmNE = 0 R®0W -rMEmEAQa AW O HaNMT QoM @ A Am
-~ B o ~~OO0M - - - (o] -~ cOO0® - - me= e e D T - - m e =B
OrANPRNONCOROOVARNRNOORNRUOOOOVARRANMANNOUrur S A rOoSOo <080 robO N>
mEm O Qe mZ 0 AR Z e O e O E N Mo mmEm ©
a m | - m @ = < m Mm@ (=2
Bomme > e B> mom > A - > > mroam> AR AKA KA A> B
e OB = R =l [= a0B = = OM U= RaH0BROmuMEBEmAaEAamE BEO—m s
PR RRDDUENRKD~NANKCOUENRCO—~NANKSE—~D—mRUEn0En —nnnnn—nnmanEaa-am
o (8]
o [- ~
= o [o) ™)
< o &)] [
3 o] (o] [L
a = = = =

151

Volume 1

The Best of 99'er

Copyright © 1983 Emerald Valley Publishing Co.

Magic Crayon continued

Listing 1

Z Ed
0 o o]
w o ~
=)] ~
= < L]
[= w2
> — b o 7 =] 0
© o oo wn [(2]
2] B - - [~ [™ «=
w — &) = = = =0 = =] Ao
> ol = o = =0 = a =] m an
o] R 2] —_ =@ =] (=1 o a L] < >
-— %] [5] 7] = = - (o] (o] 5] = - @ = 7] — -9
O o = - =] iz a3 O = o o o [R5 a >0
w —_) =] o] s O = 8] (&34 ve W A > O o
3 v mm 2l [m 7] (8] = g o = n = [N} w2 (o] [
— w o | [] w =m m A = B~ [N = ~ v @ | o] -z (4]
w (SRR I o 2] =] OF X wm o o Mz o W o= o = m =
&) LRl ol =] U =z=m =] 2] O = @ = a az Bl pd = =x O = 5]
w MmO~z Ee— I oS @ = < UL -~0 w o & A b = w = [y 2] ~
o 200 ax | O Mk - S S o~ = =k = - vxm>a A W Ko ~ 0 — ~A
U O~ mOU | = W " Woa —m mme < O> O &= nO®@®> MOWMZEE D~ = o [ARTEC
o w [7- R o | o vb = Woow H~0 @ @@ - - SR E=) [$X] LW OE =m0
o M O A | a > ZEEDAZU U 0 > = W K kmE Z0U0 mZ—wmAax ®» W oan> O W L0
< >E Aam | Z A0 <wn DA Z0ZzZ = m @wn a B o OO0 MUK L= mEe=O = WO ME XA
© = z o W > m 1 o~ SW wm OMDMEE < M A K KA B ow m BOMUMLE @ meE m o [
m o= e~k > >] Ommm FHEKE> AEmEe O & 2 gm0 > OwO O O A HMAdm ueEHmd>U < >A - m 0wo
Il wa OO0OO0OO0OO0 | -5 O0OO0OFHO®O WMZEo0oADPULFLY®— —x - D AELD MEZEHEHEEROO0 D0 m ~ O0AO0 =OE &
a = ZSEmo = i (LN S SR X - A—=mEmm W -3 wAaw®n o OFmMOMUL mDul— LMHZXOEO0O S @ »
Z o mrme S mnn o 1 ™A - = . Bl - B AumE OUw LLA ORXmOZ W m a2 B O Mo
4 DmambD nnwnoO=<O 1 O mpnmeO < -~ (SN [agAl Hple O oo= oo OMmMWMBPEmDWUMMELO -] Omuwu i m = Ll ARG
&~ B~ RO i o O MMBMANHEHEOAQA—~ HEM: N 0 S CAaMEroNmE RO MEMHEHORCO M HMMEHAN me ®
1 WL MamE & 1 MOMKE Lk XE> NuLu—mnDu—ueLbAme=0= Zao B M O MEE e [N I B bR) R
E O Eaamas>aauna 1 Bl b e I WkbMLw: Rad WMaA KO—~HHO—= FOMUKREH—HZ>™ < E N (SR WA= WS SRR A
AR AaX>MAAQM K i WM PDoDmED M N e=a W MO RNOENANE =~ HEZ N~ KEQANENAN < mDPm mMDE O -
-] Do B G oG B B 1 Ummm SN S RANSEER Y MM — —m [o= = O | oA v Bl (8] [g m [AN--- RN AR
" e MW EYaE 1] wo OrHZAKZZOALAE MAAMAOMMBMAN MOAM M-~ HOAQ K>AX a Ok M= @O
W MDD Aem L~ DMMARA LR W N>R ERE>RUNRMA AR LA Q@ | mMOM—aD —=OM
= DEHLDD=OaA m®n A TmAam—Ax oSoZ—AUERANLZDAXOOOOOMXODMDOMmDEZxAXin0oANn Om | AN N A AT KR
U AEESAEEEOPOR o] UEBE>ULFraA>ETIRETRALMA~ N~~~ EEwE atAaESE—~AanEAaaE—~Erara>daeam ADTEFER>LUNRVW
o
-1 =
w
= w
[5
= (8]
(4] 172}
~ [e] ~ :
n 0 - o 6 ~ 0 © - o =]
5]] + a = 2] I i 4] + o] o] [@ [~
- - 0o —_ (%] [2] . = o o - weo - =] - = - > oz L o
El » =0 2z WM eNe O =] ® € > =0 - 0 =1 0 " e e ©Om X OEe B + =
)] [M O~ B N e8a0 oOom 8] ®= - - = o~ O U O DL O = OO ©OH » e @ m 2z
w [} MmO BO < O OmO<LOTPom = R pIMMZ W ne FTOU m ONLZ = -mOOEME 2o G- -
» NN EDANmm E om ABABM AR AKTAMR MOmERTE =N DANmAakR @MEHT®m O NeHAnAmAKT@—~ O A Ama s Nmo x
o -0 - ----2Em -E - - -E - - -2l Zwn—x—~U O - ---E00 -UVO --W1 O BF ---5 ---EM & =---8 ---8 - -0
MO~ —POrBN>D WL H O>OOTrAN>OETCrAN>AN OMLERNO —~POroN>0ArrdArr ABMOIN>OrN>OT-N>W BrN>ETN>OOAN
EE @ @EENERE®® O U EOmmmOEmEoNeUEUsREKEERE O KPR E RO NN RN OO® N KRR OEs S
(2} =
m m mm -9 [a) =3 -9 -9 o — @ O = o= = - -3 mm/|m e o a — o a ac
R O - = = m = = 2 EE>E2 O Om>a Za ada <> m>A>R = 3 -~ = 2 >=
NP0 MAa0R O === W VI ol e e p I e e 3 I e = O M ANAA0 AR~ I E B OE 0 30 O 3l D el A O3
DLUEZnNnSEvnE d33amm M RARAE P AR EaD 0~ E N Mo~ munE—~—anEmMUEnEmadaamaliamm o] [EENE QA SRR K . - -
| = S
| 0o =
| = O) = x =
o | O wm a. -5 5 £ v W
- 1 (8] - (o] O] (8] a =
™ w o v = < o
w0 *« x 2 * ¥ W0 -1 (8] (&) m * x * W0

Copyright © 1983 Emerald Valley Publishing Co.

Volume 1

The Best of 99'er

152

CHECKS Al R4 ,>100
JEQ CHANGE
DEC RO
JNE CHECKS
JMP RETURN
CHANGE SWPB R3
MOV R3,R1
L1l RO ,>303
BLWP @VSBW
RETURN RT

*

* DEBOUNCE SUBROUTINE

*

DEBNC MOVB @ONE,@UNIT
BLWP @KSCAN

CB @F1RE,@NOKEY
IJNE DEBNC
RT

*

*= SUBROUTINE TO DETERMINE

*
DOTCOL CLR

R1

L1 RO,>301
BLWP @VSBR
SWPB R1
Al R1,>07
SRL R1,4
RT

*

+ "END START"

*

AUTO END MARKER

Listing 1 Magic Crayon continued

DATA 8
B @CHECK IF SO, BRANCH BACK TO BEGINNING
*
+ DSR ROUTINE TO RECALL "SCREEN" —-—- PATTERN TABLE
*
RECALL LI RO ,PAB VDP PERIPHERAL ACCESS BLOCK ADDRESS
LI R1,PDATA CPU BUFFER TO WRITE
L1 R2,21 21 BYTES TO WRITE
BLWP @VMBW WRITE PAB
Ll RO, PAB SUBSTITUTE "LOAD" 1/0 OP CODE
MOVB @LOAD, R1 MOVE OP CODE TO BR1
BLWP @VSBW WRITE BYTE TO PAB
LI R6 ,PAB+9 SET POINTER TO NAME LENGTH
MOV R6,@PNTR STORE IN >8356 >8357
BLWP @DSRLNK COPY DATA TO VDP BUFFER
DATA 8
L1 RO ,>1000 PREPARE TO COPY FROM VDP TO PATRN
L1 R1,PATRN CPU BUFFER ADDRESS
LI R2,>600 1536 BYTES TO COPY
BLWP @VMBR COPY BUFFER
LI RO ,>0800 NOW COPY TO PATTERN TABLE
Ll R1,PATRN ADDRESS OF CPU BUFFER
L1 R2,>600 1536 BYTES TO COPY
BLWP @VMBW COPY TO TABLE
B @CHECK BACK TO THE BEGINNING

* SUBROUTINE TO PERIODICALLY CHANGE SPRITE COLORS

ADD 256 TO R4
WHEN R4 REACHES 0, CHANGE COLOR
DEC COUNTER

IF NOT @ ADD ANOTHER 256
BACK TO MAIN PHOGRAM
SWITCH COLOR BYTES IN R3

PUT R3 IN R1

ADDRESS OF SPRITE #@ COLOR IN VDP RAM
WRITE MOST SsIG BYTE OF R1

BACK TO MAIN PROGRAM

KEY UNIT TO CHECK

SCAN KEYBOARD

IS NO KEY PRESSED?

IF AR KEY IS PRESSED, CHECK AGAIN.

GO BACK TO MAIN PROGRAM

R

INITIALIZE R1 TO RECEIVE DOT COLUMN
VDP ADDRESS OF DOT COLUMN

READ BYTE FROM ATTRIBUTE TABLE

MAKE IT LEAST S1G BYTE

ADD OFFSET FOR POINT OF ARROW
DIVIDE BY 16

RETURN

AUTOSTART

Copyright © 1983 Emerald Valley Publishing Co.

The Best of 99’er Volume 1

153

The CHARPAT subprogram reads a 16-character pat-
tern identifier that specifies the pattern of a character
code. For example,

CALL CHARPAT(68,D$)

places the pattern defining character code 68 in the string
variable D§.

The three TI BASIC subprograms INIT, LOAD, and
LINK interface Assembly Language programs and TI
BASIC programs.

The INIT subprogram initializes the CPU memory for
Assembly Language programs. The LOAD subprogram
loads Assembly Language object files into CPU memory
and it loads data into the CPU memory.

There are two forms of the LOAD subprogram. One
form is used to load an object file from a storage device
into memory, and the second form is used to load data
directly into CPU memory. For example, the statement

CALL LOAD (*‘DSK1.DEMO”)

loads the file DEMO from the diskette in Disk Drive 1.
The second form of the LOAD subprogram is a POKE
function for CPU RAM. For example, the statement

CALL LOAD (8197,85,40)

loads the value 85 into memory location 8197 and the
value 40 into memory location 8198.

The LINK subprogram passes control and, optional-
ly, a list of parameters from a TI BASIC program to an
Assembly Language program. For example, the statement

CALL LINK (“PROGI”,A,E(9))

passes control from a T1 BASIC program to an Assembly
Language program named PROGI1 and passes the
variables A and E(9) to the program.

ACCESS TO SYSTEM ROUTINES

The utility routines resident in the Mini Memory Com-
mand Cartridge can be called from an Assembly
Language program to access machine resources and in-
terface with the TI BASIC interpreter. It’s fair to warn
you that the use of these routines requires a knowledge
of the routines themselves and the organization of data
used by the routines. You can get additional information
about these routines from the Editor/Assembler owner’s
manual (available separately).

Two types of access programs are resident in the Mini
Memory Command Cartridge. One program contains a
collection of system utilities with which to link to
ROM/GROM routines, perform a keyboard scan, access
the VDP, etc. The individual utility programs are
classified as either Standard Ultility programs or Extend-
ed Utility programs.

A second program contains TI BASIC interface utilities
with which an Assembly Language program can access
variables passed through a CALL LINK statement in a
TI BASIC program. This program also contains an error-
handling utility to return exceptions to a TI BASIC
program.

STANDARD UTILITY PROGRAMS
The following standard system utilities become accessi-
ble with the Mini Memory Command Cartridge:
—VDP Single Byte Write—Write a single-byte value to
a specified VDP RAM address.

Copyright © 1983 Emerald Valley Publishing Co.

—VDP Multiple Byte Write—Write multiple bytes
from CPU RAM to VDP RAM.

—VDP Single Byte Read—Read a single byte from a
specified VDP RAM address.

—VDP Multiple Byte Read—Read multiple bytes from
VDP RAM into CPU RAM.

—VDP Write to Register—Write single-byte value to
any of the VDP RAM registers.

—XKeyboard Scan—Scan the keyboard and return a
key-code and status. This routine can also read the
position of the Wired Remote Controller.

EXTENDED UTILITY PROGRAMS

Extended utilities are provided to access routines in the
console GROMSs and ROMs. These utilities are GPLLNK
(link to GPL routines in GROM), XMLLNK (link to
routines in ROM), and DSRLNK (link to Device Service
Routines).

GPLLNK Routines

The GPLLNK routines are as follows:

—Load Standard Character Set—Load the standard
character set into VDP RAM

—Load Small Character Set—Load the small
character set (for the 40-column Text Mode) into
VDP RAM.

—Execute Power-Up Routine—Initialize the system as
if the computer had just been turned on.

—Accept Tone—Issue an accepting tone for input.

—Bad Response Tone—Issue a bad-response tone
warning.

—Bit Reversal Routine—Provide a mirror image of a
byte of information.

—Cassette Device Service Routine—Access a cassette
tape recorder/player as a storage device.

—Load Lower Case Character Set—Load the
lower-case character set into VDP RAM.

The following floating point routines are also available

through GPLLNK;

—~Convert a floating-point number to an ASCII string.

—Compute the greatest integer contained in a value.

—Raise a number to a specified power.

—Compute the square root of a number.

—Compute the inverse natural logarithm of a value.

—Compute the natural log of a number.

—Compute the cosine of a number.

—Compute the sine of a number.

—Compute the tangent of a number.

—Compute the arctangent of a number.

XMLLNK Routines

Routines in the console ROM can be accessed through
the XMLLNK routine, The following routines can be
called from an Assembly Language program using
XMLLNK:

—Floating-point addition.

—Floating-point subtraction.

—Floating-point mutiplication.

—Floating-point division.

—Floating-point compare.

—Floating-point stack addition.

—Floating-point stack subtraction.

—Floating-point stack multiplication.

—Floating-point stack division.

—Floating-point stack compare.

The Best of 99°er Volume 1 155

—~Convert a string to a number.

—Convert a floating-point format number to an integer.
—Push a value onto the value stack.

—Pop a value from the value stack.

—Convert an integer number to floating-point format.

DSRLNK Routines

DSRLNK links an Assembly Language program to a
Device Service Routine (DSR) or a subprogram in ROM.
As with GPLLNK and XMLLNK, TI cautions you to
make sure you know what you are doing before using
DSRLNK. [A DSR is a machine language program that
TI has burned into ROMs found in each of its peripherals.
Since each peripheral contains its own custom ‘‘operating
system,”” the T1-99/4A did not have to be designed to
anticipate future peripheral requirements.—Ed.]

TI BASIC INTERFACE UTILITIES
TI BASIC interface utilities allow an Assembly
Language program to read or assign values to variables
passed in a parameter list from a CALL LINK statement
in a TI BASIC program. These utility routines include
argument-passing utilities and an error-reporting utility.
The following are the TI BASIC interface utilities:
—Assign a numeric value to a numeric variable.
—Assign a string to a string variable.
—Retrieve the value of a numeric parameter.
—Retrieve the value of a string parameter.
—Report an error. (The Assembly Language program
can report any existing TI BASIC error or warning
message upon returning to TI BASIC.)

EASY BUG DEBUGGER

Also inside the Mini Memory cartridge’s ROM is
EASY BUG. EASY BUG is a versatile program develop-
ment tool with which you can (1) debug your Assembly
Language programs, (2) access the input/output ports of
the computer, (3) load programs, and (4) store programs.
And it really is easy to use. With EASY BUG, you can
inspect and (optionally) modify the contents of CPU and
VDP memory, display the contents of ROM, run
Assembly Language programs from EASY BUG, directly
access the peripheral devices which are connected to the
computer via the 9900 microprocessor’s serial I/0 port
(the CRU), and save or load programs on cassette.

LINE-BY-LINE SYMBOLIC ASSEMBLER

A line-by-line symbolic assembler on a cassette tape is
supplied with the Mini Memory cartridge. It assembles
Assembly Language statements and stores the object code
directly into the 99/4A’s CPU RAM. You can make both
forward and backward references to one- or two-
character labels with the Assembler. Each source state-
ment you enter is immediately assembled into object code
and stored into memory. Because some source code is re-
tained in a nine-page text buffer, you can scroll the screen
to review previously entered lines of source code by press-
ing the up- and down-arrow keys. The source program
cannot be saved, however.

The Line-by-Line Assembler occupies about 2K bytes.
When it is loaded into the Mini Memory cartridge’s 4K
byte RAM, you still have about 2K bytes of memory for
your Assembly Language program.

Assembler Directives
The Assembler recognizes seven directives:

156 The Best of 99'er Volume 1

—The AORG (Absolute Origin) directive establishes
the location counter value to set the starting address
of assembled code.

—The BSS (Block Starting with Symbol) directive re-
serves a block of initialized memory.

—The DATA (Data Initialization) directive initializes
a word or words of memory to a specific value.

—The END (End Program) directive terminates the
assembler and causes a display of the number of
unresolved references, if any.

—The EQU (Equate) directive defines a value for a
symbolic constant.

—The SYM (Symbol Table Display) causes a display of
all symbols and their values in the program.

—The TEXT (String Definition) directive causes a
string of characters to be translated into their ASCII
code and stored as a part of a program.

[Rather than being strictly a part of the internal logic
of your program, assembler directives are commands
which direct the Assembler to perform certain operations
at assembly time.—Ed.]

DEMONSTRATION PROGRAM

Along with the Line-by-Line Assembler on the cassette
is an Assembly Language demonstration program called
LINES which draws a colorful line design on the screen.
The LINES program can be run only on the TI-99/4A
Home Computer, however, because it requires the
enhanced graphic processor contained on the TI-99/4A.

OPERATION

TI has a knack for creating complex and versatile pro-
grams that are still simple to operate; they’ve definitely
done it again with the Mini Memory Command Car-
tridge. When you plug in the cartridge, turn on the com-
puter, and pass the opening credits on the Master Title
Screen, you are presented with a simple, three-choice
selection screen. You can choose TI BASIC, EASY BUG,
or MINI MEMORY.

If you select MINI MEMORY, you are presented with
a second three-choice selection screen. You can choose
to load an object program into memory and run it, run
a previously loaded program already in memory, or re-
initialize the cartridge to prepare it for loading new pro-
grams or storing data. Pick a number, pluck a key, and
you’re off and running. It’s as easy as eating oatmeal
cookies!

CONCLUSION

This has got to be one of the best deals around. 4K
bytes of RAM with battery backup assure that all the
good stuff stored in the RAM is not lost when you turn
off the console or even when you remove the cartridge.
10K bytes of ROM and GROM give you seven additional
T1 BASIC subprograms (including PEEK and POKE),
access to system routines from Assembly Language, and
routines to allow you to interface Assembly Language
programs to TI BASIC. You’ve got a user-friendly pro-
gram debugger, a symbolic line-by-line assembler, and
a captivating graphics demonstration program. All of
this, plus 84 pages of documentation, for $99.95 (sug-
gested retail price). With all this to offer, it’s really not
too hard to see why there’s definitely more to the Mini
Memory Command Cartridge than meets the T-eye . @

Copyright © 1983 Emerald Valley Publishing Co.

The 8-byte character pattern represents the dot pattern
which appears on the screen in what I’ll call row-wise
form. The top portion of Figure 2 illustrates this for the
character ‘‘A”’. The first byte of the pattern represents
the first row of the dots which comprise the character.
The hexadecimal notation is just a shorthand way to
group four bits at a time, with bits of value 1 standing
for dots which are turned on in the character.

Translating the Characters to
TI-99/4A Format

The TI-99/4 printer constructs its bit-image output in
a different way. It uses what I'll call column-wise form.
It still takes 8 bytes to produce the same character, but
each byte of data passed to the printer represents a col-
umn (rather than a row) of dots in the finished character.
The bottom of Figure 2 illustrates this. If we think of
the character’s dot pattern as an 8 X 8 matrix, then the
translation from TI internal format to T1-99/4A printer
bit-image format is equivalent to transposing the matrix.
We can’t really treat each character pattern as a 64-bit
matrix because 9900 Assembly Language does not have
a BIT data type, but we can base the logic of the pro-
gram on this idea.

TI-994A character pattern from Pattern Descriptor Table
Figure 2. l>00| >3al >44] >44| >7c| >44] >44| >44]

each byte represents one row

oOfogojojojojJo]o

ojojt 1T|1]o]|o]o

ojtjojojof1}jo]oO

character in binary form

oj1jojojo)]1jolfo

0 1 0 0 0 1 ot o0
‘—l each byte represents one column
| >00] >3F| >a8] >8] >48] >3¢] >00] >00]
TI-99/4A printer bit-image pattern

Figure 3. TI-99/4A character in binary form
BYTE O 1 2 7

IN [0000 0000 [0011 1000 [0100, 01003 0100 0100 |

Figure 1. =500 —

[(ROW=1)x32+COL—1 !
! |
IA] | Screen Image | p— |
Table +——T !

|

|

|

|

|

|

]

99/4A screen
32x 24 = |
768 positions

768 entrics
>02FF

r—————————d

---------- 1024 + (CHAR# —1)%8 ——--——==-~~-~—~-]

-
mI
<
—
m

M —

-
|
E >0800| PATTERN FOR CHAR # 0
!
|
L

20A00; >00] >38[>44] >a4[>7c[>aa] >a4] >a4

PATTERN FOR CHAR # 255

>1000, 8 BYTES —

L Pattern Descriptor Table
——————— VDP RANM = "= e s s e s

BIT 0123 4567 l l
BIT om I '
Do[0000 vuuw [0011 1111] 0100 , 1000 & < 0000 . 0000 |

BYTE O 1 2 7
TI-99/4A printer bit-image data

Program Outline

The screen dump program reads the Screen Image
Table one byte at a time starting at the top (VDP RAM
address 0). The value of each byte is used to calculate
the position of the character pattern, and the 8-byte pat-
tern is obtained from the Pattern Descriptor Table. These
8 bytes will be manipulated to produce 8 bytes of infor-
mation encoded for the T1-99/4 printer. Figure 3 shows
how the bits of the TI-99/4A character pattern are
rearranged to form bit-image data for the printer. Notice
that the data at byte M, bit N is moved to byte N bit M—
or transposed. The program will also have to send cer-
tain control characters for bit-image mode to the printer.

PART 2: Screen Dump

99/4 screens to the TI-99/4 impact printer is

designed to be called from console BASIC, and can
be entered into your system using either the
Editor/Assembler or the Line-by-Line Assembler in the
Mini Memory Command Cartridge.

VDP RAM Under Console BASIC

When the TI-99/4A is under control of the BASIC in-
terpreter, VDP RAM contains two areas of interest here.
VDP RAM addresses >0000 — >02FF (0 — 767 in
decimal) contain the character numbers associated with
each screen position. The character patterns for character
numbers 32 — 159 start at VDP RAM address >0400
(1024). In the Pattern Descriptor Table address the §-byte

The Assembly Language subroutine for dumping

158 The Best of 99'er Volume 1

character pattern corresponding to a character number
N is 1024 + (N —32) * 8 in decimal.

The dump subroutine (called DUMP) uses these facts.
Starting with VDP RAM address 0, DUMP gets the
screen character number and uses it to calculate the VDP
RAM address of the associated character pattern. It then
reads the 8-byte character pattern, transposes the matrix,
and writes the resulting 8 bytes to the printer. DUMP per-
forms this process on each successive byte of screen
RAM, up to and including VDP RAM address >02FF
(767).

DSRLNK and Printer Qutput
The actual output to the printer is done by means of
a built-in Extended Utility Routine called DSRLNK.

Copyright © 1983 Emerald Valley Publishing Co.

Before calling DSRLNK, the Assembly Language
subroutine must set up a Peripheral Access Block (PAB)
in VDP RAM. Here is the format of the PAB we’ll use
for the printer:

BYTE# CONTENTS
0 [/0 opcode: >00 = open
>01 close
>03 = write
1 Flag/status byte. >12 is the code for se-
quential file, output operation,
DISPLAY type data and variable length
records.
2,3 Data buffer address in VDP RAM. We’ll
use > 1E00.
Logical record length.
Number of characters to write.
8 Not used here.
Length of file descriptor which follows.
File descriptor. We’ll use RS232.PA=0.
DA =8.BA =9600.CR
We’ll put the PAB in VDP RAM starting at address
> 1D00 (hereafter called V1DO00), and we’ll put the data
area containing the actual data for output to the printer
at VIEO0O. These addresses could have been elsewhere in
VDP RAM, as long as the locations chosen were not used
by something else.
To perform a printer operation, the program must do
the following:
1. Build the PAB in VDP RAM.

2. Put the address of the length of the file descriptor
(byte 9 of the PAB) into CPU RAM address > 8356.

3. Call DSRLNK.

You’ll notice that the call to DSRLNK must be
followed by a word (two bytes) containing the value 8§,
which means that you want to link to a Device Service
Routine (DSR).

RS232 Considerations

Since the DUMP subroutine uses the RS232 interface
to communicate with the printer, some additional code
is needed to save and restore the address of the GROM.
This is because the GROM address is changed when the
RS232 DSR is used. At the beginning of the DUMP
subroutine, the GROM address is obtained one byte at
a time from the GROM Read Address at location >9802.
The GROM address increments itself when the first byte
is read (actually moved) from the GROM Read Address.
This makes the second byte of the GROM address one
too big, so it must be decremented by DUMP. Just before
returning to BASIC, the DUMP subroutine restores the
GROM address by moving it to the GROM Write Ad-
dress at location >9C02, again one byte at a time.

6,

O D

10-35

Linkage to Console BASIC

A console BASIC program invokes the DUMP
subroutine by the statement CALL LINK(‘** DUMP”’).
DUMP returns to the BASIC program by branching to
the contents of register 11 (R11). Just before returning
to BASIC, the DUMP subroutine clears the error byte
at @ > 837C (sets it to 0). Failure to clear this byte can
result in an undeserved INCORRECT STATEMENT er-
ror when you return to BASIC.

Copyright © 1983 Emerald Valley Publishing Co.

Transposing the 8x8 Character Matrix

Once a screen character’s 8-byte pattern has been read
into CPU RAM (at label IN), the DUMP subroutine uses
the following technique to build the 8 bytes of output at
label DO.

The first byte of DO is composed of the first bit of
each of the 8 bytes starting at IN, the second byte of DO
is composed of each second bit of the bytes at IN, and
so on. Figure 2 of Part One shows the bit movements
for the pattern character of an “A”.

DO is built from left to right, and R4 is used to hold
each byte of DO as it is built. R4 is cleared before each
byte is built, so DUMP has to turn on any bits necessary.

To tell if a certain bit of IN is on, DUMP compares
the value of the byte containing the bit in question to a
power of 2. To see how this works, consider the byte con-
taining >82 (130 in decimal, 1000 0010 in binary). The
leftmost bit of the byte is on; in fact, the leftmost bit
would be on in any byte containing >80 (128) through
>FF (255). In other words, we could test for the left-
most bit’s being on by comparing the value of the byte
to decimal 128 (2 to the 7th power); if the value is less
than 128, we wouldn’t have to turn on the corresponding
output bit.

This technique can be used to test any bit of a byte for
our purposes, using the appropriate power of 2. The
second-to-leftmost bit can be tested against 64, its
neighbor to the right against 32, and so on down to |
for the rightmost bit. This works because we’ll be con-
sidering the bits from left to right in each byte. After each
bit is tested, it must be turned off (in CPU RAM, not
on the screen) so that it doesn’t interfere with the test
of the following bit. To see this, consider the byte con-
taining > 82 (130) again. If we want to determine if the
second-to-leftmost bit is on, we would compare the byte
to 64. You can see that it would pass the test, even though
the bit in question is not on! However, if we had reset
the leftmost bit to 0 after testing it previously, the byte
would now contain >02 instead of >82, and the test
would fail, as it should.

Once we have decided that an input bit is on, we must
set on the corresponding bit in R4. This is done by add-
ing the appropriate power of 2 to R4. To turn on the left-
most bit, add 128; to turn on the rightmost bit, add 1.
Remember that the byte being built is in the right half
(LSB, or least significant byte) of R4.

DUMP uses RS to contain the power of 2 for testing
whether the input bit is on, and R6 to contain the power
of 2 for setting the bit on for output. The LSB of R7 con-
tains the input byte being tested, and the most signifi-
cant byte of R7 is filled with zeros. This allows DUMP
to use the simpler and more plentiful register instructions,
and to completely avoid having the [eftmost bit of a byte
interpreted as a sign bit.

Printer Consideration

DUMP writes one full screen line to the printer at a
time. Before each line, the program must write a 4-byte
control sequence to put the printer in graphics mode and
tell it how many graphics characters are coming next. This
sequence is > 1B, >4B, >FF, and >00. The last two
bytes mean 255 characters will be written, with the order

The Best of 99°er Volume 1 159

of the bytes being reversed for evaluation (>00FF, or
255).

The program issues a carriage return and line feed on-
ly after each of these writes, that is, at the end of each
screen line. DUMP uses the CZC (Compare Zeros Corre-
sponding) instruction to accomplish this. R9 contains the
position in VDP RAM of the next screen character
number. Positions 0 — 31 (>00 — > 1F) of VDP RAM
correspond to the characters on line 1 of the screen; posi-
tions 32— 63 (>20 — >3F) correspond to characters on
line 2, etc. The CZC instruction occurs right after R9 is
incremented and before the corresponding screen
character is decoded. Therefore, the carriage return and
line feed should be written whenever R9 is an even multi-
ple of 32. The CZC instruction uses a mask of > 1F (0000
0000 0001 1111 binary). If R9 is a multiple of 32, then
its last five bits will all be zero. Notice that the mask has
only the last five bits turned on. Under these cir-
cumstances, the CZC instruction sets the equal status bit
on if and only if the last 5 bits of R9 are all zero, that
is, if and only if R9 contains an even multiple of 32. The
JNE instruction which follows the CZC instruction causes
the program to skip outputting the carriage return and
line feed when R9 does not contain a multiple of 32.

Left to its own devices, the printer will respond to a
line feed by spacing down 1/8’” or 1/6”°. This would leave
blank stripes in the screen dump. The sequence ESCAPE
A 8 is written by DUMP to tell the printer to space down
only 8/72”” on each line feed. This produces a continuous
image.

Mini Memory Considerations

To enter the DUMP subroutine via the Line-by-Line
Assembler, do the following:

1. Select MINI MEMORY and then RUN from the
first two menus.

2. Enter NEW as the program name.

160 The Best of 99’er Volume 1

3. When the Line-by-Line Assembler screen appears,
type a space, then AORG, another space, >7D14, and
then press [ENTER.] (From now on the spaces will be
assumed.) This sequence lets you start the program at
>7D14 instead of the traditional >7D00.

4. Enter the program as shown in Listing #1. Enter only
the label (if any), opcode, and operands. Don’t enter
END yet.

5. Put the entry point for DUMP into the DEF/REF
table by entering the following lines:

AORG >7FE8(CR)

TEXT ‘DUMP ’(CR)

DATA >7D14(CR)

6. Set the last used address in Mini Memory by
entering:

AORG >701C(CR)

DATA >7F02(CR)

7. Indicate that you are finished by entering:

END(CR).
The system should show that you have no unresolved
references. Press enter twice, and then QUIT the Line-
by-Line Assembier.

8. Enter EASY BUG from the master menu.

9. Press any key to bypass the instruction screen.

10. Enter S7000 when the system prompts with ? and
then 7FFF when the system prompts TO? This tells the
system to save the contents of the Mini Memory to
cassette tape. Just follow the instructions presented by
the computer after this, and then QUIT EASY BUG
when you have saved and checked your tape.

You are now ready to use the DUMP subroutine. The
sample BASIC program in Listing #2 just draws a screen
and then waits for you to press the P key, at which point
DUMP is called to print out the screen. You can incor-
porate DUMP into your own programs in any way you
choose. Happy dumping! @

Copyright © 1983 Emerald Valley Publishing Co.

Dump

Listing 1

- -] - o <
7} 2] m E RGN -5 © < A o woom
=z [=z UU * mowm W [V T
o 2] [V} Zm oz = — [ST- ay I 2 VO
| 2] = = =] [ZNS] a3 - P ~ 0 m 0O O > m =W
= w (5] = [-0 o] »” (=] (8] =] (=] =0 AR/
— - [=N-] a, <] a, [- = | > w = > m <] [] <]
(6] wm [[SR7] W e |l o = w A~ [e] ~ m W wv 12 - G L M [
o o= = We = a O =wn - m @ = [] == O P a < om]
[a] [~] =g == - o L] w2 x5 = (4] [o] [2] o] =) (2] =0
o a | o T - Z =E Ek 0O =+ x - 0 =ZU = —ka DOEZ W K =) =
= = O = m (2] - e = & WS 8] A == -0 m—-0 o - = D — = zZw —
1] 2y a, [a) J:] 5] = [&] hnad (o] - W m = 7% >~ (o] —
= = b A o o =< o> Z muo= + m ©A mm = m o~ =W m < (KR} ©
O O = = L= &) [SF). 4 &) w LVDOoOw « =z 0O 0= 7] De® B~) S -
= o —wm ™ oo o~ W [T [R D EZ - e = % [[[™
U U m O > a a 0O mDWL>U -] mm o (=T Beny —b m|m X w e} w o> e}
o = WO o O—wmiaz UV mw - Z bmb@ X DZZ W = Ol X w mE
[N S [a] o wEDO w O-mx If [- AN ARA] M=o O—=—0=Z >HAOX o] [=) =]
o O @ (e} w b - T -] O m W w0 b = £ @D = B » (e} =
2] X OK 2] U wmwm 0DV = wmOL A FEREL>LO @m0 Zwem O AEO O 16] (o} 2] [4]
m m O a, B~ — = A>T] L 2 o [l V- [PR [«R 2] G R B RS D = (8] 2] =
v wm W £ o© w (o] 12l £ w > o = mQ [e] R0 DO > > D 3 w (%]] [A]
S - = [1 4 D M HZ Z Aamw® o v Ome= B MAa—ik WMOME I = W =
= Bz NAZ A A [T~ = m m ~E mZE X omZE wm ==
= = O — e = L - 1 o — m 2] 2] v R O~ = Lol - =
woowm O m Ow =3 D DNzZ0wn w o DO DOOMT NDODVNOWMDPDMONODFONO =] 2 Oow =]
¢ o = A A a, B A0 =B [@ eewm x o, AEmmEEE A ZNEADA NN ND o a an [
- -
v w L] [+
® @© (7] om © ~ - -) on
- - [o w0 oA ne © n - " © ne o oW eQAne ©
~N o~) CEMO TRNOOTOOITO © Mo U © o — - — seco VeMD SrROBTO
Te © [=] NQOM B AAMNATNDL NoM © N NN Mmoo L] = [e) [aY - X B NOQOM & AQONWL
- © FAVWBr A AQPreBroeBraN O A In ® r o Z N ~ — — a rFreOrr BT A0 AYTreoc O
Ao Aamo A - PANODAAD AT O QO -~ N OO [Mre—0O0r Z o 9N & v ® = AAO® ALTO A IO ~ sAANO AAQ
NAMAWRA - - A - ~A BB -~ -A -~ -~A ~ - A ~A B6l N A - - — B I - - - M - A - s mA s cA BB - s A -
AN RORRETr A LU RN rrBor o r 0B rN Y U rren o rrrrrr A AU OMNTRNORN CONMAERRNO AL TO IS~ IBTNRQLORFVTrror O «~
Umommm oy o g ny ay a o, g a (=] o m [Sieel m m B - [P 2
> A>RAD Z PR > 4 4 BROEBM Omms>Ra < > B m mmm>e b A O B> O gk 4 2 >R > 4
OCOBOBM——~—~ 3~ 0RO a3 = O~ WMZHO M= =0 A= 33308 = BOZXUBROZEU ~—d~— = 3~ 0™ = O —

.AMSMSDLLLBLMBDLMLLBLLBLLLBMBDLDICMBSASAMLLBLCLCCCMSC.J.ASSMIS.JSMIS]LLBLLLBLMBDLMLLBLL

LO
L3
L2
L1

161

Volume 1

The Best of 99'er

Copyright © 1983 Emerald Valley Publishing Co.

Listing 1

Dump continued

LI 2,8
BLWP @>6028 PUT DO INTO DATA BUFFER
MOV 6,@>8356 POINT TO DEVICE NAME LENGTH
BLWP @>6038 DSRLNK TO OUTPUT 8 CHARS
DATA 8
L1 10,50 DELAY
DEC 10
INE $—2
INC 9 POINT TO NEXT SCREEN POSITION
Ccl1 9,767 DONE WITH SCREEN YET?
IGT L4 YES
czc @MK , 9 NO. ARE WE AT END OF LINE?
JNE Lo NO-DO NEXT SCREEN CHARACTER
L1 o,>1D05 YES-OPUTPUT CR LF
L1 1,>0200
BLWP @>6024 PUT LENGTH OF 2 IN PAB
LI 0,>1E00
LI 1,CR
LI 2,2
BLWP @>6028 PUT CR LF INTO DATA BUFFER
MOV 6,@2>8356 POINT TO DEVICE NAME LENGTH
BLWP @>6038 DSRLNK TO OUTPUT CR LF
DATA 8
L1 10,>0400
MOV 10 ,@>7DEA
I MP LO DO NEXT SCREEN CHARACTER
L4 L1 0.>1000 COME HERE WHEN FINISHED DUMP
LI 1,>0100
BLWP @>6024 PUT CLOSE OP CODE IN PAB
MOV 6,2>8356 POINT TO DEVICE NAME LENGTH
BLWP @>6038 DSRLNK TO CLOSE PRINTER
DATA 8
LI 106,50 DELAY
DEC 10
] NE $—-2
MOVB @S1,@>9C02 RESTORE SAVED DATA TO GRMWA
SWPB @§81
MOVB @51,@>9C02
SB @>837C,@>837C CLEAR ERROR BYTE FOR BASIC
LI 10,50 DELAY
DEC 10
JNE $—2
B *»11 RETURN TO BASIC
IN BSS 8 AREA FOR SCREEN PATTERN
DO BSS 8 AREA FOR PRINTER PATTERN
MK DATA >001F MASK FOR EOL TEST
PD DATA >0012,>1E00,>FF00,>0000,>0014A
* PAB DEFINITION
TEXT 'RS232 . PA=0O.DA=8.BA=9600.CR"’
* DEVICE NAME
CRH DATA >0DOA CR LF
E1 DATA >1BA4B,>FF00 ESC K GRAPHICS SEQUENCE
s1 BSS 2 SAVE AREA
E2 DATA >0D1B,>4108 CR AND ESC A VERT SPACING
END
Listing 2 Screen Dump
1/0/0[[C|A|LIL| |CILIE|AR
111(0| |ClAL|L| (C{H|A[R|(|9!6],|"|1i8|3|C|?(E|F|F|F|F|?(E|3|C|1/8]"|)
12\0| |ciAIL(L| [HIC|H|A[R|(1],[1],]9/6],]7|6/8])
1/30| |[CIAILIL| IK|EY|(|0|, R|VIA|L|, |S|T|&|T|)
1(4/0| |1|F} |s{T/AT|=|@| [THIEN| [1|3]0
1(5/0| {1|F| [R\V|A[L|<[>(8|@ |T/H|EIN| [1|3/0
1/6/0) IC/A[LIL| |L|1INIK|(|" DlUMP|"|)
1i7/e} {EIND
162 The Best of 99'er Volume 1

Copyright © 1983 Emerald Valley Publishing Co.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

