COMPUTER SHOPPER, AUGUST 1986

Page 81

by Ron Albright & Jonathan
Zittrain

In the July column we ask-
ad for letters from those in-
erested in hearing more about

39 and since we did, we'll

Jver more in this column. We

il] go into CO9 programming

w more depth and will com-

ose a short program which
w ill demonstrate console input
and output. The program,
again, will not “do” anything,
but it will demonstrate how to
display information on the
screen and accept user input
from the keyboard. It will alsc
demonstrate one of the most
powerful features of C99, that
is, a direct assembly language
interface which will allow the
inclusion of assembly language
code into the C99 source code
for direct assembly by the
Editor/ Assembler package. We
will take a source code listing
and examine it line-by-line, ex-
plaining each function as we go
along.

If you will, take a look at
Listing 1 for an example of a
C99 program. Let's make a
couple of observations. First,
you will notice that the CH9
program is tvped in using
lower case. It is standard C
(and C99) syntax to type
everything in a C program in
lower case, except for constants
in #define statements {which
we do not use in this example.
The one instance where we use

‘upper-case, is in the direct

assembly language interface
statemment “REF PRINTF”.
This is because everything be-
tween “#asm” and “#endasm”
is In assembler syntax and not
€99 syntax. It is ignored by the
compiler and acted upon only
by the assembler. The printt
function {a powerful C
routine) is in an external file on
yvour system disk (it is a D/FBO
already-assembled file) and is
not acted upon by the compiler
but must be loaded (like CSUP)
before running this program.
There are two ways to write
libraries in C99. The first be-
ing to write it as source code in
C syntax, which would be used
in your program as an
“#include DSKx.filename”
statement. This type of library
function has to he compiled
and assemnbled fresh each time,
These files are in D/V80 format
and an example would be the
“grflrf” library which holds the
graphics commands in C99.
We will use this type in a

future program, The second
way is tu write it in C3Y, com-
pile it, and assemble it to
D/FR0. This type of file, ex-
emplified by the “printf”
library function, {s utlized
with a“#asm” REF DSK«.file
name, and “fendasm’ se-
(quence. a5 in our program,
This second type of library is
“ready-to-use” by the program
and requires very little space in
vour cornpiled code. 1t is ig-
nored by the compiler and, for
the most purt, by the assembler
and will speed the process for
program generation. But
remember, when you use this
external library, it MUST be
loaded in after CSUP and from
the option 3 E/A prompt,
before running your program.

Now, let’s lock at the pro-
gram. Lines 1 through 3 are
our syntax to tell the compiler
to ignore the lines between

T1 Forum

“#asm™ and “sendasm”, and
the signal to the assembler that
we will be using an external
file “PRINTF" for our pro-
gram. The nexi line is the re-
quired “main{)"; function. As
we noted in fuly, a “main()”
function is required in every C
program and is, traditionally,
the first function call. The next
line is the open brace “{"
which marks the beginning of
the function main. The next
line is “putchar{12}". The put-
char{} function is an example
of a function resident to C that
is predefined in the compiler.
It is no different from a user-
defined function (like
“main()”) except that it is
already known to the com-
piler. It is also an example of
a function that needs to have
a variable in its parenthesis, in
our case, “12”. What does this
mean? Putchar!) simply means

to “put a character to the
screen” (our “inputfoutput”
device, or “1/0”). We are
printing ASC 12 (CTRL L) to
the screen. What does it do? It
simply clears the screen. It
would be akin to “a CALL
CLEAR" in Basic syntax, We

: w.c. & Mae
TI-RLE Graphics From Epson FX-80

s -' ‘

could have printed any
character to the screen with
this function, by passing the
desired ASCII number to put-
char. TIf we had wanted to
print an asterisk on the screen,

continued on page 82

Texas
Omni

Texas Instruments lncor-
porated recently announced
the Omnilaser series
famiiy of page printers, setting
a new measure for perfor-
mance and reliabilitv in laser
printers. With faster printing
speed, a ruuch higher duty cy-
cle and a machine life that is
up to 15 times greater than first
generation laser printers, TI's
OminLaser printers represent a
second generation of page
printers designed for shared
resouree environments,

"By addressing the needs of
the systems market, the Omni-
Laser printers can reduce the
cost of ownership of page
printers, since a printer can be
shared bv many users,” said
Tom Stringtellow, vice presi-
dent and manager of the Peri-
phera)l Products Division in
TI's Data Systems Group. “Be-
cause of significant advances in
printing speed, durability and
machine life, the OmniLaser
printers are truly practical in
the systems environment.”

The OmniLaser Series 2000
family consists of three
printers: the OmniLaser 2015,
Omnilaser 2108, and Omni-
Laser 2115. The Omnil.aser
2015 is intended for high-
quality, high-volume word
processing with limited
graphics, “vhile the OmniL.aser
2108 and 2115 support the

2000

Instruments Introduces New

Adobe Systems Incorporated
PostScript page description
language, an emerging stan-
dard that allows users to print
pages that integrate text,
graphics and scanned images.
All combine second-generation
print engines with proprietary
TI controllers to create high-
performance page printers.
“TI's semiconductor tech-
nology capability will make
pussgle significant price/per-
formance advances in the
Omnil.aser Series 2000 fami-
ly,” Stringfellow said. “As TI
perfects new technologies, we

Tl OmniLaser Printer Family

plan to incorporate them into
the OmniL.aser family to con-

tinue to bring the pgreatest
possible value to users.”

The OmniLaser 2015

With a print speed of 15
pages per minute {ppm), the
OmniLaser 2015's print engine
is nearly twice as fast as most
first-generation laser printers,
which typically prints eight
ppm. The 2015 has a maxi-
mum duty cycle of 25,000
pages per month, compared to
an average of 3,000 for first-
generation printers; the 2015's

Laser Family of Page Printers

durability ideally suits it for
rigorous use with even a large
system. And with a machine’
life of 1.5 million prints—up to

- 15 times greater than that of

most current laser printers and
the cost per page, much lower
than its first generation
counterparts.

The 2015 has the capacity to
handle 500 sheets of paper
through two 250-sheet input
bins, allowing users the conve-
nience of loading letter and
legal size papers without fre-

continued on page 82

Page 82

In support of its introduction
recently of the Omnil.aser
family of printers, Texas In-
struments also announced an
agreement with Adobe Systems
Incorporated to adopt is Post-
Script page description lang-
uage. PostScript will reside in
two of TI's new OmniLaser
Printers, the medels 2108 and
2115.

PostScript allows the flex-
ibility to fully integrate text
and graphics, thereby allowing
complete control aver how the

COMPUTER SHOPPER, AUGUST 1986

~ Texas Instrtﬁ;ent;Adoﬁts TPostScript]

Foi Laser Printer Family

printed page will lock. It
enables the printing of rutated
type, textures, patterns,
halftones, images and incor-
porates a variety of graphic
arts-quality typefaces that can
be printed in any size and
anywhere on the page.
“PostScript is a dynarmic tool
that will enable TT's Omni-
Laser printers to meet the
needs of our target applica-
tions, including desk-top
publishing, computer-aided
engineering, forms generation

and elaborate business presen-
tations. These jobs require the
full integration of text,
graphics and scanned images,”
said Tom Stringfellow, vice
president and manager of
Peripheral Products Division in
TI's Data Systerms Croup.
PostScript’s state of the art
capabilities have been adopted
by many major manufacturers,
including Digital Equipment
Corporation, Apple Computer
and Wang Laboratories Incor-
porated. PostScript is widely

recognized in the industry as a
leading page description lang-
uage for printers. ' '

The OmniLaser family of
page printers includes the
models 2015, 2108 and 2115.
The Omnil.aser 2015 can print
15 pages-per-minute with a
basic controller for limited text
and graphics. The models 2108
and 2115 use the PostScript
controller. The model 2108 can
print eight pages-per-minute,
and has a duty cycle of 10,000
prints-per-month. Iis life ex-

pectancy is approximately
600,000 prints. The model
2115 can print 15 pages-per-
minute for an approximate

- 25,000 prints-per-month. Life

expectancy for the models 2015
and 2115 is about 1.5 million
prints, which is up to 15 times
the expected output of first-
generation printer engines.
For additional informatio..
contact Texas Instrument
P.O. Box 809063, H-86
Dallas, TX 75380-9063; (81
527-3500. 4

Tl Forum
continued from page 81

we could have used “put-
char(42}" (ASC 12 is CTRL
L a cilear screen code}. You
will notice also that the put-
char function is ended with a
semicolon. Every function call
in C is ended with a semicolon.
Remember that and check
your program lines for a
semicolon after each line as it
is, in iIny experience, the big-
gest single source of compiling
errors when you are starting
out.

The next line is a function
call, I think, unique to C99. It

is the “locate()” function. All

this does is place the cursor on
the screen at the row and col-
urnn locations you pass to the
variable, locate(). Think of it
like the "DISPLAY AT (row,
column)” statement in XB.
Unlike the DISPLAY AT state-
ment were you designate in
one statement the row/column
location AND the string, in the
case of locate() you only
designate the row/columii. The
next statement will designate
what you want to print. So we
pass row 9, column 10 to the
locate() function and end it
with a semicolon. Next, we
designate what we want
“displayed” in our two-part
“DISPLAY AT” statement, us-

Hasm
REF FRINTF

fxrdazm

main}

{
putchar (12)g
locateiB, 1Q);
iccate{(?,101;
locate (10, 10);
locate{20,13);
iccate{(il,10);

locate{24,13X);

getchari{);
manu [}
nenuil
int c3}
putchar{l2);
locatei{l,10];
locate {5, 1)}
locate{s, 1)
locatet(?, 1)
logcate(d,1);
locate{zd,1);
c=getchar {);
if{c<a49 | c>I52)
manuil;
putchar (12}
locatefl,1);
chr-40;
locatelZ8,1);
getchar ()}

putchar {12);
main{);

puts{"Hit any key..

puts{*[2] Choice 2"

putgs{"[I] Choice 32V

printf{"Your choice was ¥Xd from the menu

Liating 1

puts ("wwswxMMgnu 1. 0==mes'}
puts("==A maru-Ltility=="),
Pults {"escrsseusazssssassan') 4
putsi{“written in c%9"});
puts("{c) 1994 Ron Albright")

'“}l

puts ("meMgru—Utility==t)y
puts(”"l1l]) Choice 1");
V3
13
puts("f4]1 Choice 4%);

puts{"Your Selaction™ "I};

I‘,:}i

puts{"Press any key to continum,..")j

ing another function, “puts{).”
Puts simple means “put string.”
Just like putchar meant “print
this char”, puts simply means
“print this string”. We also pass
to this function a variable in
the form of a statement en-
closed in parenthesis. S0, we
have told the compiler, simp-
ly, in two statements, nothing

more than “DISPLAY
AT{8,10): “= = = = = Menu
1.0 = = == =", The next &

statements are 4 pairs of in-
crementing locate and puts
statements to complete our in-
itial screen. The next line is our
first keyboard I/Q function,
And now here is your first test:
If “puts” meant “put string”
and “putchar” meant “put
character,” What does “get-
char” mean?

Answer: “get a character”

Hope you got that right. All
getchar does is fetch =a
character from a keyboard
press and passes it to the pro-
gram. You will notice that,
unlike “puts” and “putchar”
where the program passes the
variable to the function by in-
cluding it in the parenthesis of
the function call, getchar() has
no variable passed in its paren-
thesis. That is because we will
get the variable for getchar
from the keyboard press not
the program. Getchar is
nothing more than an “INPUT
X" statement in BASIC. Just
like in BASIC, the program
waits till a key is pressed to go
on. Right now, we don't care
what key is pressed; only that
a key IS pressed. We will look
closer at getchar() later in this
tutorial. The final function call
in the main{) function is to call
a user-defined function in the
program. The next block of
code is called “menu(}” and, by
including the "menu(};" state.
ment in main{) we thereby pass
program control to the next
function. Think of it as similar
to a "GOSUB” in BASIC. Since
we don’t have line numbers in
C, we call routines by name,
(Actually, this is closer to
“CALL subroutine” in XB, but

continued on page 214

New OmnilLaser
conlinued from page 81

quently restocking paper trays.
Resolution is a high 300 x 300
dots per inch, for crisp graphics
and word processing that ap-

proaches typeset quality. The

2015 has two slots for plug-in
font modules. Standard type-
face is Courier 10, 12 and 16.7
(compressed) pitch; additional
fonts can be downloaded into
the standard 512K system
RAM.

The 20135 is targeted for en-
vironments such as legal and
insurance offices, or other
business applications that
primarily require word pro-
cessing, with additional re-
quirements for data processing,
forms generation and business
presentation graphics. .

The OmniLaser 2115 and 2108

The OmniLaser 2115 uses
the same 15.ppm print engine
as the 2015; its powerful
PostScript controller is built
around the 32-bit Motorola
68000 microprocessor, the
same class of microprocessor
that drives TI's new Business
System 1000 series of super-
microcomputers. With three
megabytes of RAM, the Omni-
Laser 2115 has more com-
puting power than AT-class
products, providing enhanced
flexibility in layout and design
of documents. The 2115 has
two font cartridge slots, and
optional fonts can be addressed
via the font cartridges.

The speed and dursbility of
the OmniLaser 2115 print
engine, combined with the
power and flexibility of
PostScript, makes it an ideal
laser printer for shared
resource use in such applica-
tions as in-house publishing,
CAD/CAE workstations and
forms generation.

While the 2115 brings high-
functionality to the shared
resource market, the 2108
serves as 8 workstation printer
for the same graphics-intensive
applications. The 2108 has an
eight ppm engine with a
10,000 page per month duty

eycle, a 600,000 print machir
life and a 68000-based con-
troller with two megabytes of
RAM.

Pricing and Availability

The OmniLaser 2015 will be
available in July from TI resel-
lers at a suggested list price of
$5995. The OmniLaser 2115
and 2108, will be priced at
$7905 and $5995, respectively.

The OmniLaser Series 2000
printers have industry-stan-
dard emulations and inter-
faces. OmniLaser 2015 stan-
dard printer emulations in-
clude the Diablo 630, Hewlett-
Packard LaserJet, Texas In-
struments OMNI 800 Model
833/Qume Sprint 11, and op-
tionally via emulation car-
tridges, the TI Model 810, IBM
Proprinter and HP Laser]et
500 Plus.

RS-232 serial and Cen-
tronics-type parallel interfaces
are standard, The OmniLaser
2115 and 2108 have Diablo
630, HP LaserJet 500 Plus, T1
855 and Hewlett-Packard 7473
plotter emulations, and inter-
faces for RS-232, Centronics-
type parallel, RS 422 and

AppleTalk.

Service will be provided by
TI's nationwide network of
trained technicians. Service
programs include on-site
maintenance, key operator
training and a customer sup-
port line, among others.

Texas Instruments Incor-
porated pioneered the
technology behind its patented
semiconductor thermal print-
ing process and the world's first
thermal printing, silent data
terminal. The company’s Data
Systems Group also introduced
the OMNI 800 Model 8§10,
which has earned an industry-
wide reputation for reliability
in dot-matrix printers.

For additional information
contact Texas Instruments,
P.O. Box 809063, H-880,
Dallas, TX 75080-9063; (800)
927-3500.

Mention that you read about
it in Computer Shopper. @

Page 214

COMPUTF;R SHOPPER, AUGUST 1986

T Pciam
continued from page 82

tet's not confuse ourselves at
this point.) We are “COSUB-
ing to tue function ” mepn),
We close our maing) iunction
with a closed brace and we are
tinished with our first function
in this short program.

We next start a new fune-
tion, called “menu(})”. We do
not end the naming of a new
function with a semicolon, We
then use another open brace to
signify to the compiler the start
of this function’s code. The
next line is an important one.
It is the declaration of a
variable, “C". C, unlike
BASIC, requires that you
declare ALL variables within
a function at the START of the
function. (Again, for the sake
of simplicity, I will not discuss
the difference between local
and global variables), WE are
declaring an “integer” (“int”)
variable, called "C.” We are
telling the program, “‘we will
refer to something called “C”
in this function and it will be
an integer,” Next, we clear the
screen again with putchar{12),
and set up another screen
display with a series of 6 pairs
of “locate” and “puts” fl:.mc-
tions. Again, a series of
“DISPLAY AT's".

The next statement sets out
previously declared variable
“C" equal to another “get.
char”. Unlike our first get-
char(), this time, we care what
key is pressed as it determines
which menu was selected.
With this statement, we equate
“"C” to the ASC value of the
keyboard item pressed. We
are, in effect, saving TWO
things: INPUT X C = ASCIX)

The next statement is simp-
ly to test if the keyboard press
for getchar{} was something
between 1 (ASC 49) and 4
(ASC 32}, If it was less than
ASC 49 or greater than ASC
32, we call menu{) again. In
essence, we are saying, in
BASIC,

100 INPUT X
LLOAF (<1} OR IF (A>4) THEN 100 ELSE 120
120 {the nex! statement)

The *“!” (not a colon but
FCTN A) is a “bitwise inclusive
OR". If either or both the
operands are TRUE, then the
“THEN" operand is executed.
“IF the ASC value of C is less
than 49 OR the ASC value of
C is greater than 52, THEN
ask again; ELSE do the next
statement.” If either of the
statements are true, do
“menu{)” again. If both are
false (i.e. C is between 49 and
52), keep going.

The next two statements
clear our screen again with
putchar{(l2), and place our
cursor at row 1, column']l with
“locate{1,1)”. Then, we take
our integer variable C and set
it equal to C-48. What does
that do? If C had the ASC
value of 49 {"1" was pressed),

C-48 would giveusC=1.[fC
equaled 32 {4 was pres.ed),
(.-48 waind be 4. This s ate-
ment s totklug more thu s .ay-
N i i oA L C=CHAsL

Then we isc 2 new fun. o,
“printt. 1. ke puts(), priatf{)
allows us t; print a string, But
it is different in that it also
ailows us to print a decim] in-
teger variable also as part of
the string. Look at the printf
staternent. The “%d"” in the
statement tells the compiler
that we are going to print a
decimal integer variable {thus,
the reason for the "d”; we
would have used "% (" to
print a character variable).
The entire statement is en-
closed in quotes, then a com-
ma, then the integer variable
we want placed in the screen
display where the “%d" i, In
this case, the integer variable
“C", Since we didn't know
before hand, which key would
be pressed for the menu selec-
tion, we had to use a variable.
And to print a variable. we
have to use printf{) instead of
puts(). If we were clairvovant
and knew that menu selection
1 would be chose, we could
have used puts ("Your choice
was 1 from the menu”); but we
didn’t so we use the variable C
and printf{:. Next, we move
the cursor to row 24, colimn
1, print “Press any key to con-
tinue..” and then wait for a
keypress with getchar(), Again,
this time we don’t care which
key is pressed for getchar().
Then, we call our first function
“main()” and set things up all
over again, We close the func-
tion “menu()” with a clused
brace to signify the end of the
function "“menu{}”.

We then save this to disk.
Run the compiler for an output
file and assemble the output.
When we load our program,
we have a slight twist, First we
load our assemnbler output with
E/A option 3, then we .oad
CSUP as always, But, ins:ead
of entering nothing when we
get our “File Name:” prompt
for the third time, we have to
load a third file. When you get
the filename prompt ayain
after loading CSUP, load ir. the
D/F80 file “PRINTF” from
your C99 program disk. Since
we REFerenced it in our pro-
graim, we HAVE to load it
before the program will run.
When PRINTF is loaded. hit
enter the fourth time you get
the “FILE NAME:” prompt
from E/A 3, then enrter
“START" for the “Program
Name;" prompt and our menu
example should run,

There vou have it. Your first
C99 “program” (such as it is).
If you want more on (99,
write us at C'omputer Shopper.
As alwavs. we will include
seme programming tips with
your reply if vou enclose an
SASE. And we will reply to
every letter with an SASE.

Quick Produc: Note: I have
just received a copy of Joy
Paint 99 (CGreor Lakes Soft-
ware, B04 [, Grand River
Ave., How:l: MI 48843;
$49.95), Whls I plan a full
review soon 1 have to tell you
now that I think it is the very
best graphics program for the
TI I have ever seen. Absolute-
ly. Buy it. Mure on that later,
Corcomp (2211-G Winston
Road, Anaheim, CA 92806;
(714} 956-4430) continues its
support of the T1 with two new
product announcements. They
have a "99Hcme Sentry”
system which is the software to
run the naopular X-10
Powerhouse to computerize
your home. Lights, cool-
ing/heating, and appliances
can be programied to run off
the X-100. The software and
hardware has a SRP of $79.95
and you'll need a separate

“module (running $13.95) for

each electrical appliance you
want to control. This system is
available for many other com-
puters and now we are in that
mainstream as well. The sec-
ond product iromn Corcomp is
a4 memory expansion device.
You can get s stand-along
model (not requiring Expan-
sion Box) in a 236K version
($249.95) or 512K ($269.96) or
a card for the expansion box
(256K for $169.95; 512K for
$229.95). They also hint at
some new software to utilize
these devices to their maximum
potential. Write or call Cor-
comp for details, While it is
difficult to print in this column
schematics for hardware
modifications, we hope to
make some available by mail
soon. If you have made any
changes that vou would like to
share with others, or if you are
interested in doing soldering to
improve your system, send
your schematics or needs to us
at the Computer Shopper. We
know there are schematics
available for adding 32K
memory directly to the con-
sole, building an auto-
answer/auto-dial device to a
cheap Volksmodem, building
an 8K “super cartridge,” and
others and we hope to be able
to mail those out soon. You
have to write to let us know
your needs. Speaking of
schematics, one of the best
sources of that kind of informa-
tion comes in the form of &
newsletter from Bruce Caron
out of Canada. It is full of
technical information of the
highest quality. The R/D Com-
puting Newsletter is monthly
and excellent. I is not new
having been in publication for
over a year and the back issues
are worth getting. You can
subscribe for $14. vear and that
includes 12 issues and first class
postage. Write to Ryte Data,
210 Mountain Street, Halibur-
ton, Ontario, Canada KOM
150. Thanks to the Mid-South

Users Group (P.O. Box 38522,

Germantown, Tennessee
38183-0522) for the great
newsletter. What an active
group. We'd like to see more
users group newsletters as they
are a4 major source of
developments for the 99/4A
home computer. We're also in-
terested in giving a little ink to
any Fairware programs users
write, so send us the details and
we'll try to publish them.

So much new software has
been written for the TI-99/4A
recently, all of which is public
domain| Here's an overview of
some of the latest develop-
ments for our not.so-small

computer,
TI-RLE — “Run Length
Encoded™ graphics have rapid-

ly become the industry stan-
dard for high resolution
graphics. Two programs have
recently been written that will
allow the TI1-99/4A to convert
an RLE file on disk to a picture
that can be displayed on the
screen or printed on the
printer. Paul Gray has written
99RLE, a public domain Forth
program that will do such a
translation of RLE files, and
Travis Watford has written an
assembly language program
tor the same purpose.

Where can RLE files be
found? Well, bulletin boards
and major telecommunications
networks are a good starting
place to lock. CompuServe, a
major computer network (we’ll
be delving more into telecom-
munications in later articles),
has quite a few RLE pictures
available, from mugshots of
the FBI's Ten Most Wanted to
pictures of famous celebrities.
Although many of these pic-
tures are copyrighted, many
are not, which means that they
will soon be finding their way
to bulletin boards and user
group libraries as scon as Paul
and Travis' translation pro-
grams do)

This is really a major ad-
vancement for the TI-85/4A,
not to mention an impressive
enhancement. Figure 1 is an
RLE picture of W.C. Fields,
downiloaded from Com-
puServe’s TI Forum,* which
demonstrates the resolution of
RLE graphcis. Paul Charlton,
author of the “fairware”
FAST-TERM terminal emula
tor, says that plans for adding
RLE protocol to his program
are in the works. Adding RLE
display abilities to a terminal
emulator means that RLE pic-
tures could be displayed and
printed as they are received
from a network or BRBS,
eliminating the need to receive
what looks like junk and then
translate it with one of the
translator programs. “lIt's
number six on my list,” says
Paul, “after writing a new
operating system and taking
care of a few other tasks.” A
promise was extracted from

Paul to release a new version of
FAST-TERM as soon as
possible.

Other programs include a
program being developed by
Coe Case to actually copy
IBM-format disks (MS-DOS or
PC-DOS) to TI format with a
TI computer. Coe has suc-
cessfully taken a document
created with Wordstar on a PC
and transferred it to a
TI1.99/4A with his program.
More work needs to be done,
as Coe needed to create a
directory and bit map on sec-
tor 0 of the new TI-format
disk, as well as a file header on
sector 1. There is certainly a lot
of potential here, though,
allowing those 99/4A wusers
with PCs of some sort at work
or elsewhere to set up some
kind of meaningful dialog be-
tween the computers. We will
keep you updated on progress
with this program!

Yet another interesting
enhancement for the TI-09/4A
has been the discovery by .
Howie Rosenberg of
“DCOPY,” a public domain
disk copier that not only will
work with the Myare 128 or
512K RAMGAdisk card, but will
also ARCHIVE a group of files
in a directory. The idea behind
archiving files is to take any
number of separate files and
place them all under one
filename, seemingly as one
DISPLAY/FIXED 128 file. Us.
ing DCOPY, the one file can
then be ungrouped again into
its original parts.

This is especially convenient
for transferring files to a BBVS
or other telecommunications
network, since only one file
need be downloaded instead of
several, eliminating the
possibility of missing a
necessary file in a series, The
archiving process adds two sec-
tors to the combined length of
all the files, so there is no ac-
tual compression of the data.
The ability to compress Files
(making them unusable until
uncompressed, but stnaller un-
til then) would mean that less
time would be necessary for
transferring files to telecom-
munications networks, mean-
ing a savings in money for pay
services and allowing more
users to access a BBS in a piven
time, since less time would be
needed for each user to send or
receive a file,

Although we do not have
compression ability yet, the ar.
chiving feature of DCOPY
should be very useful.
DCOPY, like RLE, should be
making its way to Jocal bulletin
boards and TI users groups
VEry soon.

It is incredible to see such
continuing interest in and
development for the TI-99/4A.
These new programs are a
reminder that our computer is
far from dead or abandoned:
we are doing just fine, ®

