Covering the TI99/4A and Geneve home computers

INICAOpendium

Volume 15 Number 1 January/February 1998 $6

Subscription Fees

J6issues USA $35

6 issues Canada/Mexico $42.50

] 6 issues other countries surface matl
____Surface mail $40
~ Air mail $52

Outside U.S., pay via postal or interna-
tional money order or credit card;

personal checks from non-U.S. banks P rotection SC hemes

will be returned. .

ADDRESS CHANGES: Subscribers who
move may have the delivery of their No matter how good they are, someone always defeats them

most recent issue(s) delayed unless

MICROpendium is notified six weeks in 1 Extended BASIc

advance of address changes. Please your

old address as it appears on your 3TO5COLCAT offers convenience
mailing label when making an address . :
of multi-column disk catalogs

'y
poand
<
>
a
O
~
)
-

change.
——— e ————— _
Check each item ordered (or | The Art Of Assembly
list on separate page and enter The ins and outs of Instances
total amount here - :
— : Beginning ¢c99
Check/MO O 3) Dealing with memory requirements
@,
Credit Card Number i .
ﬁ - Hardware projects
Expiration Date o < .
(Minimum credit card order is $9) % 5 i < ¢ US|ng BASIC and a
TR8 8 computer to control
Signature J B | |
< oz Stamps
< O o B .

No sales tax on magazine subscrip-
tions. Texas residents add 7.75%

sales tax on other items, including
back issues and disk subscriptions.
Credit card orders add 5%.

« Connectin g a third drive
- to your Tl

Name

Address

City State _ ZIP

The set of numbers at the top of your
mailing label indicates the cover date

of the last issue of your subscription.

L

I
|
|
|
|
|
|
|
|
|
|
|
| (Required on credit card orders.)
|
|
|
|
|
|
|
|
|
|
|
L

Round Rock, TX 78680

Micropendium
P.O. Box 1343

ep——— .- o m ekt W —

Page 2 * MICROpendium * J anuary/February 1998

CONTENTS
MICAOpendium

MICROpendium (ISSN
10432299) is published bimonthly
for $35 per year by Burns-Koloen
Communications Inc., 502
Windsor Rd., Round Rock, TX
78664-7639. Periodical postage
paid at Round Rock, Texas.
POSTMASTER: Send address
changes to MICROpendium, P.O.
Box 1343, Round Rock, TX 78680-
1343,

No information published in the
pages of MICROpendium may be used
without permission of the publisher,
Burns-Koloen Communications Inc.,
Only computer user groups

While all efforts are directed at
providing factual and true information
in published articles, the publisher
cannot accept responsibility for errors
that appear in advertising or text
appearing in MICROpendium. The
inclusion of brand names in text does
not constitute an endorsemnent of any
product by the publisher. Statements
published by MICROpendium which
reflect erroneously on individuals,
products or companies will be corrected
upon contacting the publisher.

Unless the author specifies, letters
will be treated as unconditionally
assigned for publication, copyright
purposes and use in any other
publication or brochure and are subject
to MICROpendium’s unrestricted right
to edit and comment.

All correspondence should be
mailed to MICROpendium at P.O. Box
1343, Round Rock, TX 78680.

Foreign subscriptions are $42.50
(Canada and Mexico); $40 surface mail
to other countries; $52 airmail to other
countries.

All editions of MICROpendium
are matled from the Round Rock
(Texas) Post Office.

Mailing address: P.O. Box 1343,
Round Rock, TX 78680.

Telephone & FAX: (512) 255-1512

Internet E-mail:
Jkoloen@earthlink.net

Home page: http://
www.earthlink.net/~jkoloen/

John Koloen Publisher

Laura Burns Editor

........
.......
amal D oy T
-..l‘ s

Comments
THE TROUBLES WE'VE SEEN ... 3 :

Extended BASIC

3TO5COLCAT OFFERS CONVENIENCE
OF MULTI-COLUMN DISK CATALOGS 8

The Art of Assembly

THE INS AND OUTS OF INSTANCES12

Hardware projects
UsING BASIC AND A COMPUTER TO

CONTROL ‘STAMPSccouerurrnrrenncnn. 19 38

CONNECTING A THIRD DRIVE TO YOUR

L
TI llIlI'IIIIIl-l-lll.-Il!i.lllllii.lllilliillllll‘lllllllll.lll..ll 35:;
ot "..::-lf.' a .-‘.-:_‘ '

Beginning c99

DEALING WITH MEMORY

REQUIREMENTS couunrrrvmenncseensncssssaseens 22

Protection schemes

NO MATTER HOW GOOD THEY ARE,
SOMEONE ALWAYS DEFEATS THEM 36

Micro Reviews

SOUND GENERATOR, BYTE MAGAZINE
AND SCOTT FORESMAN PAGE SCANS, |]M
BASE Ill-lllll-l-lillllllllIll--l«lllll-l-l-'liiiliilliliillllilllll 38

Graphics
TRANSFERRING DIGITIZED GRAPHICS
BETWEEN A PCANDATI 42

Micro Reviews

T'T FILES HEADERS, A PRIMER ON
RESISTORS, FEST WEST UPDATE 46

i o]

MECR@p@ﬂdﬁﬁﬂm o j&n@ary/Febﬂmry 199 Pﬁlg@

You wouldn’t believe the problems we had producing the November/

December 1997 edition of MICROpendium. What you probably lfnow is that
the last issue of the year came out in mid-December instead of mid-November

as we had planned. | |
If something could go wrong, it did. First, our main laser printer went out.

Then our backup laser printer went out. Then a hard drive containing the
MICROpendium layout failed.

Beyond the hardware problems, we published an Extended BASIC program
called Load Maker that came out all messed up. It contained embedded code
which did not come through the translation process from program to text ﬁle. I
tested the program prior to converting it to text and 1t worked fine. Eut [didn't
have a chance to closely read it on the layout since by then I was dea}mg
exclusively with hardware problems. We're including a_working version of the
program on the January/February MICROpendium disk. |

I think the hardware problems are behind us for now. We installed a new |
hard drive so I think we’re covered on that score. The printers are both working
but the real test comes when we print out the thousands of sheets that we collate
into MICROpendium. [know I’ll have my fingers crossed for a couple of weeks
In January. | |

Along with keeping my fingers crossed, we're also printing only 48 pages this
issue. If we have another hardware breakdown, it will be easier (and cheaper) to
produce a smaller publication. If it works out, then we’ll be back to 56 pages
next time. We're sorry for the inconvenience caused by these problems, but
there’s not much we can do about them.

(Just as we started printing out this edition, we ran into problems. Our

backup refuses to take data from our Mac and the primary print(_%:r 1$ ba_ck in lfhe
shop to have what called a “PCU board” replaced. If this edition is late in getting

to you, you'll know why.)

rest West '98

Fest West "98 1s shaping up to be one of the most promising T1 e:vents of the
year. It certainly will be unique. Congratulations are due to Tom Wills for |
coming up with the idea of a TI “reunion” at the birthplace of the TI99/4A 1n |
Lubbock. Tom and the SouthWest 99ers user group deserve a great deal of credit
for turning this ambitious dream into a reality. It’s not likely to ever happen‘
again, so this 1s probably the one opportunity Tlers will have to congregate 1n
the city where it all began, not to mention talk with other Tlers and perhaps

find a bargain or hard-to-find item from vendors. See you 1n Lubbock. "

oo
e = 5y gy B o]

- b e T
: A e e

Pag

b b
e S
e

E P ; : 2 R -_-._r-::_.; i S ..r:_:::r :
: ; : : = A

mmt
_::: .y a :'.'I“'
. Jelllr
e i

I don’t recall writing you very
often, but want to express my
concern for the problems that are
facing your publication. I know
without you and those who help you
that the TI would have long been
gone. | am sorry that the advertisers
are not supporting you and do want
to see a publication as long as
possible. |

[have faced the problems of semi-
retirement and am working, but am
on deferred retirement and working
two days a week. My letter is without
a point so far, so the point I want to
make is: One day in the future I am
going to ask you to help me make a
program that no one else has ever
asked for and I hope you will still be
there to make it for me.

EUGENE BARRETT
REDDING, CALIFORNIA

Clearing up some
VIT9 questions

[read with some interest the
article about V9T9 in the November/
December issue. Although I’ve never
used VIT9 myself, I can clear up
some of the questions asked on pages
13 and 14.

First on the issue of names for
memory image (program) files. If a
program file has more than one part,
it gets divided into files with sequen-
tial file names. Thus TISLAND,
TISLANE and TISLANF are a set of
three such program files. A loader for
such files uses the first name as the

R@pmd}ﬁaﬁm mmm“}ﬁ‘ ebruary 1998

character to “look for” the next file in
the series. This process works no
matter what that last character in the
first file name is. Thus TISLAN 1,
TISLAN2Z2 and TISLAN3 would work
just as well in the case mentioned.
Each such program file has a six-

byte header at the very beginning of
the file, which the loader uses. If the
first two bytes are >FFFF, the loader
“knows” that this is not the last file in
the series, so it has to increment the
file name’s last character to load
another in the series. The last file in a
series always has >0000 in the first
two bytes of its header, indicating
that no more files need to be loaded.
The next two bytes of this header are
the length of this file’s contents (plus
six for the header), which tells the
loader how much to read from the
VDP buffer into main memory. The
last two bytes of the header are the
loading point for this file, which tells
the loader where in main memory to
load this section.

In a series of this kind, the load
point of the first one is always the
entry point, and that’s where the
loader branches to after the last file in
the series has been loaded.

The file names for all but the first
one are derived by the loader, and the
lengths and load points are in the
header of each file in the series. The
loader thus bases its actions on the
first file name and the header
contents in each file.

Also on page 14 were questions

concerning the meanings of some
CALL LOAD coperations. Here’s what

MICROpendium ° January/February 1998 ¢ Page S

..
L L = R e R

those mean. CALL
LOAD(8196,254,0) sets the address
for where CALL LINK will search for
the linkage names; 8196 decimal is
the address >2004 in the low
memory. In this case, it means that
CALL LINK will start its search at
>FE00 (254,0 = >FE00) in the high
memory. Presumably the listing for
the routine named LOAD and its
starting point is at that location.
LINK then passes the first file name
of the series along to the code via a
normal STRREF process. The three
files TISLAND, TISLANE,
TISLANFare most probably not
GROM stuff, but machine code
segments that load into and run in
high memory, with TISLAND
loading at >A000, TISLANE at
>BFAA and TISLANF at >DFF4. This
1s not necessarily fact, just a very
well-educated guess on my part.

The much more mysterious one 1s
the 1 to 4 loop which loads to
addresses starting at -6144, and going
to that number times two, three and
four as well. The number -6144 1s
equivalent to >E800 in the high
memory. That number times two,
three and four becomes >D000,
>B800 and >A000, respectively. It’s
not immediately obvious why the
loader would need those locations set
to zero. Perhaps the code in the
loader checks those for zero to
confirm whether loading of the
program files was accomplished

correctly.

I hope this clarifies a few things
for Randy and others of our readers.
Not having tried VOT9 myself, I can’t

article, but I thought I should clarify

those things I do understand.
BRUCE HARRISON

HYATTSVILLE, MARYLAND

‘Texas tenacity’
praised

[still read through every edition,
even though my TI99s and Geneves
are packed away, as they have been
for the past three or four years. [
retired from the Navy in '95, on the
West Coast, and then spent a year 1n
college (just to give me somewhere to
go each day) studying electronics
technology. I have also moved twice
in the past four years.

Now I'm digging out my old toys,
because I miss them, and I have more
time to play with them now.

Any road, I want to say that it
must be some kind of stubborn
Texan tenacity that keeps you folks
going, and I hope 1t continues as long
as there is a TI99 left with a spark in
it.

There are no active TI user groups
that I know of in Canada anymore,
but perhaps you could publish a note
in your next issue about how many
subscribers you have or users that
you know about 1n various countries.
It would be nice to know how many
of us there are and, if possible, who

might be
nearby. (e.g., for me, the Maritime

Provinces & Maine).
Have a great holiday season; I look

forward to getting my Jan/Feb 2000
Continued on page 6

P

E] T}
e "n
ALA w
sl Al
OO i W
[P L '

...................... iy " ot ALE N I
P L R R E T T ol T R I B P o |
[l Tl e B N o oy PR = B o R -r.‘.'l'.'..'.'-'.'.:'
................ 1

Continued from

1ssue. GEOFE FR of folks in Maine. We are somewhat

USHER reluctant to print addresses without

DARTMOUTH, NOVA SCOTIA, permission. Canada has at least one
CANADA active users group, but the one we

There’s a fellow Nova Scotian and a

know about is in Ontario. — Ed.

. o]
eyt

| In late N(i)vember Tim Tesch revealed to subscribers of the TI list server
(199@TheRiver.com) that he successtully modified a Geneve using a 512K

memory chip. Previously, the memory upgrade consisted of three 128K chips
for a toal of 3§4K. Teth says the 512K upgrade requires additional wiring but
does not require stacking chips and modifing the Geneve case to accomodate
the triple stack.

“I'have not decided if this is the easier and more time effective of the two

methods, but I hz-we the option,” he said. He planned to continue testing the unit
and then converting another Geneve for a followup test.

Modified DM3 works on Geneve

Dan Eicher posted the following on the TI list server in late December —Ed.

]er:ry C. tipped me off to the fact, DM3 was modified to work on the Geneve
by Mike Dodd. I found a copy of this software on Beery Millers CDROM. 1
pulled this program and put it up on the Hugger BBS (317)782.9942. |

From the bit of testing I have done, it works well with the Geneve, both
floppy and ramdisk... If any of you have TI’s and Myarc Floppy disk, I'd be

Interested in hearing about your results of use of this program, or, if you have a

Geneve and a non-myarc controller! Eicher can be reached at
EICHER®delphi.com.

c99 corrections

A couple of problems have been found in two Beginning c99 columns.

In the September/October column, the “TEXTFUN” program had a line of
the source code which was wrapped, due to the new MICROpendium format.
Howe.ver, this line should not be typed in as two separate lines. The line in
qllEStllOI'] is the introS[] array initializer. The text “This is an example of an array
containing text.”; should all appear on one line.

In the November./December issue, the Power function has a line which reads

HPO HEI ;”- i hlS Sh(}lﬂd habe KW@ . ‘ - it VW —-— (1 e e

...
B e T e g S M TP LB cop- S
.........................

Cancer claims
Ray Kazmer

Ray Kazmer of Sunland, Califor-
nia, died Sept. 9. He was known for
his graphics and animation programs
and contributed a number of articles
and User Notes to MICROpendium.

In 1988, Kazmer spearheaded a
drive for donations of TI equipment
to help Sister Pat Taylor of Dubuque,
lowa, in her work with elderly
residents of the nursing home where
she lives.

He grew up in Ohio. He was an Air
Force veteran and worked as a
professional photographer. He also
wrote screenplays.

Ken Gilliland, of Notung Software,
for which Kazmer produced the
program Star Trek Calendar, says:

“In mid-August, Ray was diag-
nosed with cancer in the prostate,
liver and kidneys. Over the next
several weeks, I and Bobbi (his ex-
wife) helped him through the many
bumps and difficult issues of settling
matters. He slipped away quickly in
early September due to complications
from his ailments. I might add that 1n
his conscious moments, he was the
‘typical’ Ray, kidding around and
making the nurse’s lives hell and not
surprisingly, one of the very last
words he breathed was ‘computer.”

Gilliland adds, “After his passing,
he was immediately cremated and his
ashes left in my care for scattering,
per his request.”

MICROpendium ° January/February 1998 o Page 7

i COMPETITION COMPUTER |
| 350 MARCELLA WAY |
' MILLBRAE CA 94030

i (800)471-1600 6AM-3PM M-F

| A RARE FIND:BARE TI CONSOLE
PRINTED CIRCUIT BOARDS $40

| PLATO CARTRIDGE WITH CON-
| TROL DATA LABEL (GOLD) NOT
{ TI'S $50

! CONTROL DATA LABELED TI99/4A

| WITH SPECIAL GROMS (BOOTS UP
| AS CONTROL DATA WORKSTATION
i NO TI TITLE SCREEN $100

i [STILL HAVE CONTROL DATA

i LABELED TI'S W/O SPECIAL

| GROMS (NORMAL TI BOOT) $40

| CONTROL DATA WORKSTATION
i SETUP MANUAL WITH UNIQUE PE
i BOX SETUP DESCRIBED $5

| DATABAR PROGRAMS ON DISK $3 |
i XMAS SCSI SALE: SCSI CARD,
| CABLE, HARD DRIVE 43MB, +CASE |
! NOTHING ELSE NEEDED! $199
| ARE YOU UPSET ABOUT THEEND |
f OF TI FILES ACCESS ON DELPHI. |
| DESPAIR NO MORE! OUR CD ROM |
| HAS THE FILES YOU USED TO
! DOWNLOAD AND MUCH MORE 835 |

| USED BUNYARD MANUAL $25S

WE HAVE LOTS OF RARE EARLY
NON TI COMPUTER STUFF ALSO
SUCH AS VIDEO BRAIN, BALLY
ARCADE/ASTROCADE, ATARI
JUPITER ACE, TIMEX, ETC ...

B T Ol R T T R e 2 o i R T L, - oL
AR b el R Ny ¥ R gy e, L e T L

WE BUILD IBM COMPATIBLES TOO
| THOUGH LARGELY FOR THE

{ LOCAL MARKET IF YOU CAN’T
FIND A PC TO FIT YOUR BUDGET,
TRY US

LI | I A VPR XA T P24 i RKLHT Y i T P

s T k- B AR B 1 e 1 W
4

?ag& 8 o MECR@pwﬁdmm © .Eaimmﬁ'y/F ebruary 1998

BY LEONARD W. TAFFS
SWI9ERS, TUCSON, AZ.

Who needs a five-column cata-
loger that lists files downward in
alphabetical order? Who needs yet
another disk cataloger? The answer is
people like me.

Why? Because my eyes tire from
having to read the printout of
catalogers that list alphabetically
three or four across, as in
MASTERDISK and Jack E. Evans Sr.s
three-column Cataloger. When you
have more than 30 or 40 files on a
disk, it is possible to miss seeing a
title in reading across. And what
about a disk like Nuts and Bolts by
Jim Peterson that exceeds 100 files?

Most utility catalogers (DM 1000,
WRITER programs, etc.) print
&downward but are limited to 1 or 2
columns. With up to 100 files or
more you have either a long tape, or a
page to have to fold to stick in the
disk jacket.

To meet this need I wrote a
program that will print all files
downward in alphabetical order in
your choice of three, four, or five
columns. Printer codes/commands
used are as for an NX10 printer.

Change if necessary to suit your
printer.

3TOSCOLCAT (after entering disk
number to catalog, and entering a
date — date is opticnal — stores the
disk content files in an array. You’ll

see the titles scrolling up your screen.

When it has read a disk, you are given

the option of reading the titles as
many times as you wish without
having to print a hardcopy (V/P).
Not shown on screen is the fact
that you can choose another disk at

this point by pressing “Q),” after which

you are prompted for another disk.
Entering “Y” for “yes” and pressing
Enter will rerun the program from
beginning.

If, at the “V/P” prompt, you enter
“P” you are asked to choose “3, 4, or 5
columns.” Not shown on screen here
is the fact you can escape from
starting printing by pressing zero or
9. Pressing zero will return you to the
option of viewing the contents again.
Pressing 9 will terminate the pro-
gram.

Note that a separate CALL KEY is
included which allows you to stop the
array scrolling temporarily by
pressing any key when reviewing
arrays.

When you have chosen to review
the array the first time you are
prompted to “Read Again or Print (A/
P).” Press “A” to read again, or “P” to
print your catalog.

When you have selected the
number of columns you wish, then
the screen informs you that the
computer 1s initializing arrays for
printing.

At this time the arrays are being

MICROpendmm * January/F ebruary 1998 Page 9

set to approprlate columns Wlth a
large number of files this will take a
few seconds — a counter is displayed
showing you the array counting (so
you won’t think your computer has
locked up). If your printer 1s not
hooked up, or is not turned on, or if
off-line, the arrays will be processed
for printing showing the counts, but
nothing will happen and the program
cannot continue until you have
activated the printer or put it back
on-line.

Finally you are prompted for
another disk.

Note the arrays RS1$ through
RS5$ in line 10 are set to 32. This
assumes you will choose three, four,
or five columns appropriate to the
number of records you have. This
means you will need to set these
arrays to higher values if you choose
to print more than 96 files in three-
column fashion. The whole purpose
of this program was to make 1t
feasible to print the largest number of
files in as little space as possible. It
doesn’t make a lot of sense to print
120 files in three columns when you'll
have a much more compact listing in
four or, even better, 1n five. For
instance, Nuts and Bolts disk number
3 fits very nicely in five columns, on a
sheet of paper, when folded, fits a
disk jacket very nicely.

3TO5COLCAT uses conventional
spacing and condensed print. By
changing the appropriate printer
lines you could get closer spacing. By
changing print style you could even

narrow the columns. But the
program, as is, does what I wanted, so

here 1t 1s.

As shown at the end of the

program, [would appreciate any
comments on this program.

3TOSCOLCAT

1 ! [3TOS5COLCAT] 10-17-97

2 !
3 1 3 or 4 or 5 Column Disk

Cataloger
4 !
5 ' by W. LeonardTaffs
SW99%ers, Tucson, AZz.
7
8 | For EXTENDED BASIC
9 1

10 DIM ARS (127),RS1$(32),RS2
$(32),RS3$(32),RS4$(32) ,RS5$
(32)

20 GOTO 100

30 A,AS,A2,A2S$,A3,ADJ, AGS, B,
BS,C,C3,C4,C5,D,DATES,DSCS, D
SK$,F,G,I,I$,I2,INC,INCS,INC
2,J,J1,J32,J33,34,35,I,K,K1,Kl
S

40 L,L$,M,MS$,N,P,PS,PR,R3$,R
4$,R5$,FS1$,FS2$,FS3$,FS4$, F
S$5%,S,STP,T1S$,T2$,T3S$,T4S,T5

$,X,X$,X2,2

50 CALL CLEAR :: CALL SCREEN
: : CALL KEY

60 1@P-

100 CALL CLEAR :: CALL SCREL

N(4):: DISPLAY AT(2,8):"DISK
CATALOGER”

110 DISPLAY AT(4,1):”"By W. L
eonard Taffs, SWI99%ers”

120 DISPLAY AT(9,1):"Print 3

Continued on page 10

Page 10 - MICROpendium ° J anuary/February 1998

.....................................

page 9

to 5 Column CATALOGS”: :” (C fEOPfFTi;i.TH%ﬁ;JZJ*Hl 1t PS . IF I2=1 THEN I§=" “&I$ EL DISPLAY AT(A+2,1):RPT$(" .

olumns Down in Alfa Order)- ;60 IF_&—iJ;:t-)) . SE IF 12=2 THEN I§=" “&T$ 28):: A=A+l :: IF A=23 THEN
= EN L$=T1$&L$ EL z 430 IF ARS(I)="" THEN 450 A=1

130 INPUT “DISK: “:DSC$:: D SE IF J=2 THEN L&=T288L& ELS I 440 DISPLAY AT(A,1) :AR$(I)::

SKS="DSK”&DSCS8&” .” :: PRINT E IF J=3 THEN L$=T3$&LS$ FELSE e e
;;LII(\:T?:;R“DAT‘E: VDATES :: € IF J=4 THEN L$=T4$&LS Sample catalog output to a laser printer
140 1| DIM ARS (127) T4 230 IF J<>5 TH.E}I BS=AS&K1S$&" US:226 AV:1214 9 Files 1/2/97

TS (5) &LS&PS :: B=LEN(BS):: N=M= | sesesssssessssssxassszssaszszzssssss

150 T15="D/F" :: T2$="D/V" : B :: BS$=B$&SEGS (MS, 1, N) i 3705-2 22 D/V163 || 3TOSCOLCAT 20 PROGRM || GIFTRANSFR 23 D/V 80 P
: T38="1I/F" 20 T4S="I/V" 280 IF J<>5 THEN ARS (INC)=B$ ‘ 37055 26 D/V 80 || 3TO5COLDOC 18 D/V 80 || SIDEBAR68 16 D/V 80
T5$="PROGRM” :: R3$=RPTS (=~ .: PRINT INCS:” “:BS :: GOT 3T05:1ST80 32 D/v 80 || GIFTPHOTO 2 D/v 80 || TuTe8 65 D/V 80
, 77} :: RAS=RPTS(*=",107):: R 0 320 -
5$=RPTS$ (*=",130) 290 IF J=5 THEN LS=T54 NEWSB"E DR

160 MS=RPTS (™ “,23):: M=LEN

300 IF J<5 THEN B$=AS$&K1S$&”) L |
"&L$:: PRINT INCS;” “;B$:: Harrison upgrades three programs

[+]

MS):: OPEN #1:DSKS, INPUT , R}
i“;‘EIXNPégT;TNQE 5 oo ARS (INC)=BS$:: GOTO 320310 : | Bruc? Harrison has ngraded three of his programs, Font Designer, AMS
180 DKooy ; US,. ",&S,TRS op B$S=AS&K1S&” “&LS&PS :: B=LEN Video Titler and AMS Slideshow. | o
: —o+ (BS):: N=M-B :: B$=B$&SEGS (M _ Font Designer for those with 24-pin or Bubble Jet printers now has a built-in

2)&" AV:"&STRS$ (D) :: PRINT “D $,1,N):: PRINT INCS:” “:BS - i catalog function to make it easier to find the font files for editing or download-
SK: ";DSK$: : :: ARS(0)=DSKS$: ARS$ (INC) =BS ing, according to Harrison. The catalog function shows only files of the D/V 120
190 INPUT #1:AS$,J,K.L :: INC 320 GOTO 190 type, as created and used by this program.
=INC+1 :: INCS$=STRS(INC):: C 330 REM ** EOA ** | The AMS Video Titler also no has a built-in catalog which will reveal only
=LEN(INCS):: IF C=1 THEN INC 340 CLOSE #1 files suitable for use by the program, Harrison says. That includes TI-Artist

=" "&INCS$ ELSE IF C=2 THEN 350 PRINT :“Disk Read. " . INC - pictures and the Harrison Drawing program’s picture files. In both cases, after

INCS=" “&INCS 1:"Files.”: - the catalog is presented, a selection cursor appears on the catalog screen with
200 IF AS$S="" THEN 330 360 DISPLAY AT (24, 1) :"VIEW A " which the user can select a file from the list.
210 ' J=TYPE L=PARAM RRAY OR PRINT? (V/P)": - The AMS Slideshow’s catalog function has been upgraded so 1t can show up
220 K1$=STRS$ (K) : : K1=LEN(K1$ 370 CALL KEY(0,K,S):: IF S<1i ‘ to 127 file names on three screens, Harrison says. Also, the Time Delay between

pictures can be zero for rapid change, a Pause feature allows pressing the space
bar during timed showings to freeze the program on the current picture until
the space bar’s release, and the program now shows on the screen how many

files have been selected for the “show.”

}):: IF K1=3 THEN K1$=K1S$ ELS THEN 370

E EF Kl=2 THEN K1$§=" “&K1$ E 380 IF (K=86)+(K=118)THEN 39
LSE IF Kl=1 THEN K1$=" ©“gK1 0 ELSE IF K=13 THEN 370 ELSE

-

S .
IF (K=81)+(K=113)THEN E : . .
230 A2$=RPTS (* “,11):: A2=LE [.SE 510) 650 All three programs are compatible with SCSI or other hard drives and have
N(A25):: A=LEN(AS):: A3=A2- 390 | ** UTIEW ARRAY *+ i updated instructions on the disks, accordin_g to Harrison. The two AMS
A _ ! programs have been updated to be compatible with AMS cards up to 1 meg
400 CALL CLEAR :: A=1 :: DIS '

. AS=AS$&SEGS (A25. 1. A3)240 ' | capacity, and automatically tailor themselves to the size of AMS in use.
PLAY AT(24,1):ARS(0) : Upgrades are $1 each, including shipping and handling. For new buyers, the

LS=STRS (L) : : L=LEN(LS):: IF =
L2 THEN L§* ~gpLe 410 FOR I=1 TO INC | AMS programs are $7 apiece. For information or to order, write Harrison at
420 I$S=STRS$(I):: I2=LEN(IS) : 5705 40th Place, Hyattsville, MD 20781.

nalleam

oot
R
:':'.'-:-::::::::

............. e T e e o 2
w -

] - .
bl

- P
;
b

R :
DT :
S ;i = : e enee
S e S

2 . s Fr
. l. .
. N,

AR H

N N N . o ;

' CH P R

L S S ; e e e e

RPAR e 5 CEr S _,..-"1-':"" B S
e RO AR

o

' ru.. o v
" '
P f
)

}P"ge 12 o E © mﬂary/E ebruary 1998

" "y g g
B it i e
"t e aa ra '] ..-.'---llll 1 g o e
i b o el T = e e 1 P)
h R S T e L
v
o

:._:- e e, X 4 .

. e L "
: R : 5
lrl-

o e L Sl - i ko o e Rl M s e B R oo o i
e L A e A ey e AT NAEEERE
DR] =T S T e e T e LR e : T e e T g
...

BY BRUCE HARRISON

M_any' Moons ago, we generated some programs to deal with the problems of
draW1f1g Bit-Map images and printing them. These products include our own
Drawing Program, and our TIAPRINT. for printing TI-Artist picture files. Both
of those are now available in versions for both 9-pin and 24-pin printers.

| As happens, we had some correspondence from our good friend Charles
Kirkwood Jr. He ran into the need to deal with printing TI-Artist Instances.

At ﬁrst., our reaction was not very positive. True, we'd made a provision in
our Drawing Program to bring in TI-Artist Instance files and Incorporate them
into dra»}rings, but otherwise hadn’t done anything with them. What Charles
was seeking was a way to use Instances as a “letterhead” for his correspondence.

That seemed a reasonable thing to do, so when some free time was available, we
sat down at our faithful TI and started writing source code.

THE FORMATTER PROBLEM
Others in the TI community have devised methods for printing Instances as
part of a TI-Writer document, through the Formatter. This creates problems we
don’t need, mainly because the Formatter uses “printable” characters as control
Eodes. Thus, if the binary content of a byte in the Instance happens to equal the
@” symbol, the Formatter will translate that into an escape sequence intended
to put the printer into double-strike mode.
That’s definitely not a good thing to have happen in the middle of a picture.

Also, the Formatter cannot gracefully handle strings of characters longer than
80, and we thought that this too would be a killing limitation.

| THE STANDALONE SOLUTION

Our 1dea, then, was to keep the Formatter out of the loop when printing an
Instance as a letterhead. We devised a method that takes an Instance file
automatically centers it on the paper, re-maps the bits into the correct b}t
graph'ics form, and prints it as single-density graphics.

Using this simplest approach meant that, among other things, our program
?vould be compatible with a broad range of 9-pin dot matrix printers. That
includes most Epson, Star Micronics, and Panasonic models in use by the TI
community. Since our stand-alone program opens the file to the printer as a D/
V 254 file, and with the .CR option, we have no problem with sending the bytes
we need without suffering any unwanted carriage returns or line feeds. Thus
one can take any instance file and send it to the printer without fear.

| THE DRAWBACKS

Th.ere is one major drawback. After printing the Instance, you must turn off

the printer and roll the paper back to the start of the sheet so that whatever is

course, the text file must begin with some number of blank lines or carriage
returns so that the letterhead won'’t get overprinted by the text.

We felt, though, that these two things would be fairly easy to do, so we've
gone ahead and offered the product called PRNINST to the TI public as public
domain software. The disk also includes versions for double-density bit graphics
and for 24-pin printers, as PRNINST2 and PRNINST24.

But WHAT ABOUT EDITING?
We’ve never invested in a copy of TI-Artist. Most of the time we don’t need it

anyway, so why bother? Then we started playing around with Instances.

Back some time ago, Dr. Charles Good sent us about six disks full of very
nice Instances from Lima’s public domain library. We started printing these out
as part of the testing for our PRNINST product. In doing so, we discovered that
some of these had stray “artifacts” in them, and that they needed some editing
to correct these small flaws. Without TI-Artist, we had no way of visually editing
these Instance files. In some cases, the flaws were in obvious enough places that
we could edit them using the Editor/Assembler Editor, but those were the
exceptions.

What we needed was some method to see what we were doing to an 1nstance
directly on the screen, then save it back to disk in Instance (D/V 80) format.

Back to The Drawing Board

Or, rather, the source code from our Drawing program. We figured that with
a few changes here and there, we could adapt the Drawing program into an
editor for Instance files. It took a few days and nights of hard work, but we were
able to produce an easy to use editor that would take care of instances so long as
they were 22 characters or less in height, and 32 characters or less 1n width.
Since most instances are in that category, we feel our effort was worthwhile.
Besides allowing the direct input of Instance files, we kept the ability to load
drawings in either our own format or in the TI-Artist Picture file format. That
way, we could extract some neat part of an existing picture into an Instance that
could then be used by itself or incorporated into some other picture.

In testing, we of course found many small bugs, and have corrected them, so
the INSTED product was made available through the usual channels. This
program, like the Drawing program that spawned it, is very versatile. One can,
for example, load in font files, either of the CHARA1 type or of the TI-Artist
type, and use those to type things on the instances. We mentioned the ability to
bring in pictures, and that turned out to be very usetul. Some of Charles
Kirkwood’s pictures were converted “in toto” from picture files into instances.
We can also use this program to make new instances from scratch.

THE SAVING PROCESS

Saving Bit-Mapped imagery as instances 1s a non-trivial matter, as you might
Continued on page 14

LT A g T
T e
e e e

g.:e 14 MECR@mmm ° January/February 1998

r.
o -
* e i L L B N e

- .-..'
[S

II ll'l'.
el TR
re R .

o e AT
B h
...........
. L W it e D L s e R
o e e T A A e L L e T W Rl e

T e T e e e T TR R
..................

-

LR
|||||||
||||||
nh
.....
|||||
lllllllll

...........
.................
...
...
B T e e o P L T o e o e Pl e
...
|||||||

...

...
...

! L . r ' R e e el Te D T e i T T T T T D T T e L e e e D i o e Y, v . - W .
...

...

..

..

................
...
..
............
..................................
..

.............
...
.....

high by 32 columns wide. Thus we need to scan the contents of the Bit-Map
pattern table to determine the required height and width of the instance. To do
this quickly, we dump the entire pattern table, starting from Row 2 of the
screen, and extending to row 23, into CPU memory. That’s actually done when
you come out of the editing mode, so that we can put the program’s menu on
the screen without losing the picture. Thus while we’re looking at the menu, the
pattern table is stashed away as >1600 bytes in the high memory. The save
process scans through that memory, looking first from what would be the top of
the picture, until it finds a byte with non-zero content. The row where a non-
zero byte is found gets stashed away as the start row for saving. Now the
program scans again, this time starting from the bottom of the stashed pattern
table, working upwards until it finds a non-zero byte. This tells us the height of
the instance. |

This process of scanning is then repeated going sideways to find the leftmost
column of image content, then its width. Now we have all the needed param-
eters of the image content to start actually saving the Instance file.

STRUCTURE OF AN INSTANCE

Except for the first record in the file, which contains the width and height of
the Instance In character rows and columns, the content of the file is in groups
of eight numbers, so that each record contains the numbers for one character
definition. These numbers are written into the file in human-readable form, so
that the file is editable (in theory) with the E/A editor as with any D/V 80 ﬁl,e.

Thus a record in the file is eight numbers, separated by commas. Such a record
looks like this:

0,0,126,67,0,14,253.85

Since each number represents a byte, the range of these numbers goes from 0
through 255. Knowing this, we're ready to save our Instance to disk.
o The first order of business is to write that first record, which contains the

width al?d height of the instance to follow. To do that, we take the width first,

convert it from a number to a string, and write that string into a buffer in VDP.
For this, we use an “undocumented” GPLLNK feature, given to us by Merle
Vogt. Since these are all single byte numbers, we clear the Dyte at >835E and put
the byte to be converted at >835F We use the Warren/Miller GPLLNK routine
tollowed by the DATA >2F7C. That undocumented feature provides us with t};e
number in the form of a string, but without the leading space that’s usually

reserved for 2 plus sign in the “normal” convert number to string routine. That’s
a fff)rtunate circumstance, since that leading space is neither desired nor re-
quired.

Aftfi‘f the width, we write a comma to the VDP Butter, then the string form of
the height. Now we’re ready to send the first (actually Oth) record to the file.

-

first record gets written. Meanwhile, we’ve stashed away the product of height
and width, as that tells us how many total records (after the Oth one) we need to
write to this file.

Next, we go back into the stashed pattern table, and take the bytes starting at
the top row, left column. These get translated to strings and then sent out in
groups of eight, separated by commas as shown above. We continue this for
WIDTH repeats, then move down one row from our start point and do another
set of WIDTH character definitions. When we’ve done HEIGHT times WIDTH
records in this fashion, we’re done, so we close the file and return to the main

menu. All of this takes time, particularly if we're writing to a floppy disk. Thus
we give the user a "PLEASE WAIT PATIENTLY” message on the screen while

saving the Instance.
A SMALL CAUTION
For reasons we've not been able to determine, some of the Instances we've
gotten from Charles Good come with one or more blank rows at their begin-
ning and/or ending. We don’t know why they were made that way, as extra rows
of all zeros add nothing to the instance, but just take up space on the disk. If you
edit such an instance with our program, those blank rows will be eliminated

from the saved 1nstance.
TODAY’S SIDEBAR

The sidebar source code today is not a complete program, but just a section
of the code from the double density bit graphics printing program PRNINST2.
This section is the vital ingredient in converting an eight byte character pattern
into sixteen bytes of Bit Graphics data for the printer. We thought this section,
incomplete as it is, might prove helpful to those trying to work with this kind of
transition. This works by shifting registers, and inserting a bit into the output
byte only if there’s a “carry” on the input byte. In other words, if the most
significant bit of the input byte was a 1 before the shift, then a 1 gets placed in
the least significant bit of the byte being prepared for output. It takes eight
passes through all 8 bytes of one character pattern to prepare one 16 byte
section of the output to the printer. Each such output section makes 16/120ths
(or 8/60ths) of an inch character on the paper. We should point out that on the
9-pin printers the aspect ratio is incorrect, so circles on your instance will be

slightly “ovaled” on the paper. They’ll be a bit wider than their height. On 24-

pin printers, the aspect ratio will be correct, since the special line feeds are 1n

60ths of an inch instead of in 72nds.

- Just recently, we purchased a Canon Bubble Jet printer, and the PRNINST
stuff works beautifully with that machine. Oddly, it makes no difference
whether we use the single or double density versions, as the print quality 1s

determined by the mode of the printer. In its HQ mode, either the single or
Continued on page 16

P

&

e January/February 1998 « Page 17

Ze

T . . e
e . [l S
Lt e - o . P vl e B R e i e W WL
. r . 3 RPRIR o Tt B mr i B R o P I Uit ey T R I BRI R

Lt '

Continued fro ' - . o

double density graphics look superb, while in the printer’s HS mode, the * EIGHT BYTES REPRESENTING THE NUMBER STRINGS
graphics look “thinned”. For normal 9 or 24 pin printers, we’d recommend * TN ONE INPUT RECCRD
using the double density graphics (PRNINST2 or PRNINST?24), as these i *
produce much better looking renditions of the Instance. * CORE PROCESSING SECTION
Next month, among other things, we’ll discuss some things outside the realm *x RE-MAPPING OF ONE CHARACTER DEFINITION
of Assembly programming. See you then. . * FOR BIT GRAPHICS PRINTING

* THIS TAKES THE 8 BYTES THAT DEFINE
* A CHARACTER AND RE-MAPS THEM INTO

- * 8 PAIRS OF BIT-GRAPHICS BYTES FOR THE PRINTER

! *x ON EACH PASS THROUGH INNER LOOP, THIS

* TAKES THE MSB OF EACH OF THE 8 BYTES

* TN INPBUF, PUTS THAT INTO R1, WHICH GETS

* SHIFTED LEFT BY ONE BIT ON EACH PASS

* THE INPUT BYTE ALSO GETS SHIFTED LEFT ONE BYTE,

* THEN PUT BACK IN INPBUF.
* WHEN INNER FINISHES, R1 HAS ONE BIT FROM EACH INPUT BYTE,

* SIDEBAR 68
* RE-MAPPING FRAGMENT
* WE ENTER WHERE A RECORD HAS JUST BEEN READ

* THE STRINGS IN THE RECORD MUST RE CONVERTED TO
* NUMBERS, WHICH ARE STASHED IN INPRUF

RNREC1 LI RO, INPPAB+5 LENGTH OF RECORD

BLWP @VSBR READ THAT
MOVB R1,R2 MOVE TO R2 « EACH INPUT BYTE IS SHIFTED LEFT BY ONE BIT.
SRL R2,8 RT. JUST * REPEATING ALL THIS 8 TIMES
CLR R1 R1=0 * CREATES 16 BYTES IN OUTBUF
LI RY, INPBUF POINT TO CPU INPUT BUFFER * WHICH REPRESENT CONTENT OF THE CHARACTER
LI RO, IBUFF AND TO VDP INPUT BUFFER RE-MAPPED INTO PRINTER BIT GRAPHICS FORMAT
A R2,R0 ADD LENGTH TO ADDR * SUITABLE FOR DOUBLE DENSITY GRAPHICS. MODE
MOV RO,R7 COPY ADDR TO R7 "
BLWP QVSBW WRITE A 0 AFTER RECORD LI R4,8 8 BYTES TO DO
S R2,RO0 BACK TO START OF RECORD LI R10,0UTBUF R10 TO OUTPUT CPU BUFFER
GNNUM BL @CONVN GET A NUMBER | MAPLOP LI RS5,8 8 BITS TO MAP
* LI R9,INPBUF R9 POINTS TO INPUT
* SUBROUTINE CONVN USES XMLLNK TO CONVERT THE STRING IN CLR Rl R1=0
* THE VDP RAM BUFFER INTO A NUMBER AT FAC, THEN USES 4 INNER MOVB *RJ,R3 GET AN INPUT BYTE
* XMLLNK TO CONVERT FLOATING POINT TO AN SLa R1,l SHIFT Rl LEFT 1 BIT
* INTEGER AT FAC. WE TAKE ONLY THE LOW ORDER BYTE SLA - R3,1 SHIFT INPUT BYTE LEFT 1 BIT
* JNC NOCAR IF NO CARRY, LEFT BIT WAS O
MOVB @FAC+1, *R9+ PUT INTO CPU INPUT BUFFER ORI R1,1 IF A ONE, PLACE 1 IN LOW BIT OF Rl
SKCOM1 BLWP @VSEBR READ A BYTE NOCAR MOVB R3, *R9+ PUT BACK INPUT BYTE, INC POINTER
INC RO POINT AHEAD ONE « AT THIS POINT THE INPUT BYTE, SHIFTED LEFT BY ONE BIT,
CB R1,@COMMA IS THAT A COMMAZ + HAS BEEN PUT BACK INTO THE INPUT BUFFER LOCATION
JEQ GNNUM IF SO JUMP BACK * AND R9 POINTS AT THE NEXT BYTE OF INPBUF
C RO,R7 CHECK END OF RECORD DEC R DEC BIT COUNT
JLT SKCOMI IF LESS. REPEAT JNE INNER IF NOT DONE, REPEAT
* SWPB R1 SWAP SO RESULT IS IN LEFT BYTE R1

Continued on page 18

Paﬂg@ ES MHCR@pmﬂmm ° Jammawﬁ“ @bmary 1998

Contmued fmm page 17

MOVB R1, *R10+ PLACE IN OUTPUT
MOVB R1, *R10+ REPLICATE IN NEXT BYTE
DEC R4 DEC BYTE COUNT

JNE MAPLOP
LI RO, OBUFF
LI R1, QUTBUF
LI R2,16
BLWP @VMBW

BL CGWRTREC

IF NOT DONE, REPEAT

POINT AT OUTPUT VDP BUFFER
AND CPU OUTPUT BUFFER

16 BYTES (ONE CHARACTER)
WRITE TO BUFFER

SEND 16 BYTES TO PRINTER

* THIS PROCESS CONTINUES FOR ALL THE RECORDS

* COMPRISING ONE ROW OF THE INSTANCE, THEN IF MORE
* RECORDS REMAIN, IT GOES BACK TO AN EARLIER POINT,
* SENDS THE CONTROL CODES AND MARGIN BYTES, THEN

* STARTS SENDING THE NEXT ROW OF THE INSTANCE.

CabDD to include SOB with new release

The next release of PC99 will include the OPA ROMs and GROMs from the
Son of a Board by Oasis Pensive Abacutors, according to CaDD Electronics.

Mike Wright of CaDD says Gary Bowser of OPA gave permission for use of
the ROMs and GROMs in mid-December.

“Since ‘ROMs’ and ‘GROMSs’ are just files in PC99, it is very easy to switch
between them — no hardware mods are needed! We recently patched the 99/4A
ROM interrupt routine to include Jeff White’s fixes. It is that easy,” Wright
says.

According to CaDD, the OPA ROMs and GROMs gives the OPA title screen
and then access to its built-in disk manager and other features. CaDD will
supply the OPA documentation with PC99.

The OPA files are released as freeware. There is a suggested donation if you
use them with PC99.
The SOB menu allows users to catalog drives and run software. It provides a

menu for selecting from multiple GROM cartridges. The SOB orlgmally sold
for about $50.

CRUG folds

The Central Pennsylvania Users Group in Harrisburg, Pennsylvania, disbanded

as of its December meeting, according to its December newsletter, announced as
being its last.

R A e e L

| S I | | E B .I: :.. 3 . $:
VTR A RN b d i ;] B X +

MICROpendlum e January/February 1998 ¢ Page 19

l.lsmg BASIC and a computer

to control Stamps

BY GEOFF TROTT

One of the uses that a computer
can be put to is that of controlling a
system. For example, Ross Mudie has
used one of his TI99/4As to control a
model train set. Many other members
are interested 1n using a computer as
the basis for things like a home
security system. Uses like these can
make good use of an ‘old’ computer
that is not used any more.

The main difficulty in doing any
of these simple tasks is to get the
signals into and out of the computer
in some simple way. Ross has done
this by using the cassette port, |

think.

When I was asked by Lew Griffiths
to help him with his desire to control
a train set, I thought that it would be
most useful to have an interface that
could be used with almost any
computer and was not special to the
T199/4A. This lead to using the
RS232 port as the communication
path between the computer and the I/
O data. Most computers have an
RS232 port as standard, or it can be
added as an extra

UsING THE RS232 Port

These days the RS232 port 1s most
often used for a mouse or for a
modem, although sometimes 1t 1s
used for a printer. The nice thing
about the RS232 1s that 1ts program-
ming is a standard part of the
computer’s operating system so 1t can

be accessed in any programming
language, such as BASIC.

So I decided to make a device
which could be connected to any
computer’s R§232 port and which
would allow digital data to be
transferred into and out of a com-
puter.

[managed to interest one of my
students, Rodney Stewart, in doing
this job as a small project in the final
year of his degree. He was given the
task to find the cheapest way to make
such a simple device and to test 1t
with as many different computers as
he could. He came up with a solution
which cost about $100 to $200,
depending on the cost of making a
printed circuit, and which was
demonstrated to work with a TI99/
4A, an Amiga, a Macintosh, and a PC.
The program for each computer was
written in a form of BASIC and
should be quite easy to modify to suit
any application.

The system can handle up to 64
digital inputs and 64 digital outputs.
It is modular in that the hardware can
be expanded in eight-bit lumps at a
time up to the maximum of 64. The
inputs and outputs are grouped 1nto
eights and then can be accessed as
single bits or eight bits at a time. Data
are transferred by simple character
commands from the computer.

For example, the command
“03.6=1" would set bit 6 of byte 3 to

Continued on page 20

..........................
A ., i

b

rI

:

L g s

R

...
i e R L S T

..

..

a 1. Eight bits can be changed at a
time with the command “03=255",
which would set all bits of byte 3 to 1.
The response to an output command
1 °$” to indicate all is well or “#” if an
error 1s detected.

For input, the command “12”
would cause a response of “$ddd,”
where “ddd” is the decimal value of
the bits in byte 2, while “I12.3” would
cause a response of “$b,” where “b” is
either 1 or 0 depending on the value
of bit 3 in byte 2. In all cases, input
and output, the “$” as the first
character in the message indicates the
command 1s successful while a “#” as
the first character in the message
Indicates an error.

TESTING THE SYSTEM

An Extended BASIC program for
the T199/4A to test the system
follows. (The program won’t do
anything unless you actually have

input coming from the RS232 port.—
Ed.)

100 OPEN #1:”"RS232.EC.BA=960
0.PA=N.DA=8",QUTPUT !247
110 CALL KEY(0,K,S)!'!'187

120 IF SO THEN 150 '094

130 PRINT #1:"%" 1053

140 GOTO 170 1249

150 LINPUT AS '015

160 PRINT #1:AS !173

170 OPEN #2:”"RS232.EC.BA=960
0.PA=N.DA=8",INPUT !147

180 INPUT #2:X$ [187

190 CLOSE #2 !'152

200 COMMS=SEGS(XS,1,1)!041
210 LENGTH=LEN(XS)-1 1250
220 IF COMMS="*" THEN 270 10

12

230 IF COMMS$="!" THEN 340 !0

73

240 IF COMMS$="$”" THEN 290 !0

26

250 IF COMM$="#" THEN PRINT

“ERROR” GOTO 110 !094
260 GOTO 110 1189

270 PRINT “STAMP OK” !170
280 GOTO 110 1189

290 IF LENGTH=0 THEN PRINT *“
OUTPUT SUCCESSFUL” :: GOTO 1
10 1113

300 NO$=SEGS (X$, 2, LENGTH) ! 09
9

310 NO=VAL(NO$) 1099

320 PRINT NO !057

330 GOTO 110 !'189

340 PORTS$=SEGS$(X$,2,1)1067
350 PORT=VAL (PORT$) 1179

360 PRINT “PORT NUMBER: “:PO
RT 1241

370 FOR I=3 TO LENGTH !002
380 IF SEGS$(XS,I,1)="." THEN
430 1202

390 NOS=SEGS$(XS$,T,1)1233
400 NO=VAL (NO$) 099

410 PRINT NO; 1237

420 IF SEGS (XS, I+1,1)="." OR
I=LENGTH THEN PRINT !044

430 PORTS=SEGS (X$,I+1,1)1076

440 PORT=VAL (PORTS) !179

450 I=I+1 1011

460 PRINT “PORT NUMBER: “,PO

RT 1240

470 NEXT I !223

480 GOTO 110 !'189

The RS232 1s a bit interesting for
the TI99/4A, so that it must be

opened twice, once for output and
once for input. Line 100 opens it for
output and this remains open while
the program runs. Line 170 opens 1t
for input to read one line and

then closes it in line 190. This 1s
because the RS232 does not like
half duplex connections.

The program waits in a loop
for a key to be pressed (110).
Until a key is pressed, the
system is polled (a “%™
character sent) and the
response to the poll is input
into X$ (180). When a key 1s
pressed, the input command 1s
put in a string A$ (150) and
then sent to the system. The
response to the command is
read into X$ (180). The first
character of the response is put 1n
COMMS$ and the program performs
different functions depending on
that character.

Receipt of “#” means an error has
occurred. Receipt of “$” means
success and, if the command was an
output, there are no more characters.
For an input command, the value 1s
extracted from the message after the
“$” converted to a number, and
printed on the screen.

Receipt of “*” means no inputs
have changed while receipt of *!”
means that some inputs have changed
and the new values follow the “!”
character with the port number and
bit numbers. These last two charac-
ters are the possible responses to a

poll and can be thought of as a type
of interrupt, where changes in input
values can be notified to the com-

ptwithou reading all the inputs
to find out whether any have
changed.

This is a Stamp. ¥
Stamps have a variety of uses
and turn up frequently in amateur

| robotic experiments.

This simple program shows how

the data s handled by the program in

the computer and the system. The
system itself is a microcontroller
called a “Stamp 2.” This is a single
chip microcontroller based on a
PICC microcontroller, but with a
BASIC interpreter in ROM. The
BASIC interpreter allows the Stamp
to be programmed in its own version
of BASIC, which leads to fast pro-
gram development. The Stamp
program is developed on a PC using
another program, which does all the
checking for errors and then allows
the code to be downloaded to the
Stamp for execution.

Joy changes address

Joy Electronics Inc., a dealer in Tl
products, has changed its mailing ad-
dress to 11258 Goodnight Lane, Ste.
110, Dallas, TX 75229-339)5.

A
ol "I.
ar s
i
Aia

MICROpendium ° January/February 3

will actually take up 65 bytes. |
In addition, if you take a look at the assembled output of these lines after

they are compiled, you will notice each array is ended with the assembly
language EVEN statement. I must confess my complete assembly language

BY VERN JENSEN ignorance here. However, my guess is that the EVEN statement aligns the next

As you become more experienced with 99 and start writing larger programs, - block of data so that it starts on an even memory address. And since 65 is not an
you will discover that it is important to keep your code as compact as possible. | even number, the EVEN statement will place the next block of data 1 byte
This 1s because both the code for your program and all of your variables must ' beyond the end of the previous block of data. This means that if you have a 64
load into the TI's memory at run time. The longer your code, the less room you ‘ character array like the one below, and you want to start reading from the next
have for variables, and vice-versa. So writing compact code would be especially array, you should read from element 66. In other words, cData{66] below is
important for applications that need a lot of data space, such as a word proces- equivalent to cData2(0]. The program below actually compiles. Try 1t out if you
SOL. want.

However, 1t is important for all applications, since if you don’t watch out, #include “DSK2.GRF1:H”
your program will eventually become too large to load. This happened when I | -
was developing Virus Attack. I added so much to the game that it wouldn’t fit char chrNum{] = {65,69,73,77,0};
into the TT’s memory until Bruce Harrison wrote a special routine that would j
load it into both high and low memory. char cDatal[] = .

SIMPLE TRricks “0000000000000000111111111111111122222222222222223333333333333333";

While we have the luxury of writing in a simple, fast 'anguage, it does have its 01?‘124{;2222424[;44_44455555555555555556666666666666666777777‘7777777777";
drawbacks. One is that a single c99 statement may be compiled into many B
assembly language statements, making it difficult to write compact code. df;z BZEZES ; 8[8]88_888999999999 9999999AAAAAAAAAARAAAAARBBEBBEBBBBBBEEB" ;
However, by keeping this in mind, there are some tricks you can do to make char cDatad[] = |
your program shorter. For one, putting repetitive statements in loops can help “CCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFF”
immensely.

Consider the task of setting up the graphics for a game. In Extended BASIC main ()
you would typically make repeated CALL CHAR statements. However, in c99, {
function calls are probably one of the most “expensive” statements in terms of T int n;
the amount of assembly code that is needed for each c99 statement. Instead of | Gril();
making repeated ChrDef calls, if we place the data for each group of characters i

i for (n=0; n <= 15; n++)

in an array, we can loop through the array and only have to write a single
ChrDef call, which results in fewer assembly statements than there would be if
we made several separate ChrDef calls.

VChar (5,n+10,65+4n,15) ;

However, we now run into another problem; to my knowledge, c99 provides tnitchar();
no way to initialize character arrays with strings longer than one line, thus while (1);
limiting your array data to 80 characters. However, with a little trickery, we can)
get around this limitation. We can create one big array by placing several small
arrays in a row, one right after the other. Then we can access the first one as if it InitChar ()
were as big as the sum total off all the arrays combined. When we get outside the ; {
bounds of the first array, we drop into the second one. int ¢;

One thing to keep in mind though is that if you initialize your arrays with '? c = 0;

Character string constants, as I do below, then each array will be appended with Continued on page 24

E%gze 24 MHCR@pemﬂmm ° j anuary/February 1998

'.: ey -.:.,. _1 R el et e

AN e W] T e e e T e R T T

''

LA gyt S e L R B e A T e e e e T e

..........
..
..

Contmued from page 23
while (chrNum[c] i= ()
{
ChrDef (chrNum{c], &cDhata[n*66]) ;
C++;
}

When InitChar is called, the code loops through all elements of the chrNum
array until it hits 0. The chrNum array is used to specify the character set for
each block of data. Next, the address of the appropriate section of the cData
array 1s passed to the ChrDef function. When the element number exceeds the
bounds of cData, it spills into cData2, cData3, and cData4.

Normally you don’t have to use tricks like this in standard C, since standard
C provides a way to break long strings up between several lines, but since we
don’t have this capability in ¢99, we must make do with what we have. Of
course, if you don’t have room for any Char data at all in your program, you
could move it to a separate file, then have your program open that file and reads
its contents when starting up. However, this technique generally isn’t too
popular, since it adds an additional delay to the program’s loading time, even if
it saves a little memory. I imagine most users should find the technique de-
scribed above more than adequate for keeping your InitChar function as
compact as possible.

It you've never done it before, you should compile a ¢99 program sometime
with the “Include C Source” option turned on. Then open up the resulting
assembly language output file with the editor and take a look at the number of
assembly language statements necessary for each c99 statement. (The program
above would be a perfect program to do this with.) Knowing how much each
c99 statement “costs” In terms of program length will help you when writing
your program, since you will know how to write code in the most efficient way
possible. Typically, simple variable assignments, if statements, and arithmetic
operations require fewer assembly language statements than the “bigger” c99
statements, such as function calls or complicated if statements.

B11s AND BYTES

Writing more compact code isn’t the only way to make a program take up
less memory. If you need to keep track of lots of “on/off” choices, such as the
preferences settings a user has selected, you can change the individual bits of a
number, where each bit corresponds to one of your choices, rather than devot-
ing an entire variable to each choice.

For example, a while back I was considering working on a ¢99 game where
the player would walk around in 2 maze of rooms, each room filling the screen.
The rooms would contain varicus objects that the player could pick up. When

MHCR@penﬁmm .Ealmmwfﬁ? @EBE'EEEB.H"EI W@% P&ﬂg@ 25

the player leaves a room and comes back, the objects he picked up should not
reappear.

I wanted the game to contain around 50 or so rooms, and I wanted each
room to be able to contain at least 10 objects. If I were to create a char array
with one element for each object, each element specifying whether the corre-
sponding object had been picked up, my array would take up 500 bytes! This
would obviously leave me less room for actual program code, since the data for
the objects alone takes up a good chunk of memory.

A better way to do it would be to dedicate a single int variable to each room,
and set the individual bits of that variable to indicate whether the correspond-
ing object has been picked up. A 0 bit would mean it hasn’t been picked up yet,
while a 1 bit would indicate that it has. And since an int has 16 bits, we could
have 16 objects per room, while only requiring a total of 100 bytes (2 bytes per
room * 50 rooms).

When each room is loaded from disk, my program would scan through the
room and store the position of each object in a two-dimensional array with 16
elements 1n the first dimension (one element for each object), and 2 elements in
the second dimension. The second dimension of the array would be used to
store each object’s row and column on the screen. So the code for scanning a

level might look something like this:
char objArray([1l6](2];

ScanLevel ()

{
int row, col, char, objNum;

objNum = 0;

for (row=l; row <= 24: row++)

{

tor (col=2; col <= 30; col++)
{
char = GChar (row,col};
1f (char == kObjl || char == kObj2 ||
char == kObj3 || char == kObj4)

objArray[objNum] [0] = row;
objArray[objNum} [1] = col;
cbiNum++;

Once an object is picked up, this array would be scanned to find the array
Continued on page 26

..........................

............................

....................... L LA

LR A R L Ok bl . B L el T, B il - C e N gy g : ;) :
..

" . . . ’ 2 ROt I

I

Continued from page 25
element with the matching row and column. This array element is the object’s
“1D” This method ensures that each object on the screen gets its own unique ID,
and these IDs will be the same each time the level is loaded, since the room is
always scanned in the same order. Once we know an object’s ID, all we have to
do to mark that object as being removed is to set the corresponding bit in the
variable that keeps track of objects for the current level. That code might look
something like this:

/* Below 1s an array of 50 integers, one for each room, */
/* tor keeplng track of which objects have been picked up. */
/* You’'d want to set each element to 0 before starting the
game. */
int ObjDatal[50];

StoreObject(foom, row, col)
int room, row, col;
{

char objID;

ob3ID = 0;

/* Scan objArray to find the ID for this object */
for (objID=0; objID <= 15; objID++)

{
1f (objArray{objID}[0] == row &&
objArray[objID] [1l] == col)
break;
}

/* Mark this object as having been removed. */

SetBit (&ObjData{room], objID, 1);

}

The SetBit function is covered later in this article. You simply pass it the
address of an integer, the position of the bit you wish to change (0-15), and
whether you want the bit changed toa 1 or a 0.

To keep objects from reappearing when the player reenters a room, we must
tirst build the array that keeps track of the position of all objects in the room
(the objArray), then we must look at each bit in the variable that keeps track of
what objects in the room have been picked up. Naturally, each object that hasn’t
been picked up shouldn’t be there, so we erase it with a call to the HChar

statement.:
EraseObjects ()

{

int row, col, char, objID, r, c;
obj1ID = 0;

/* Scan entire room for objects */
for (row=1l; row <= 24; row++)

{
for (col=2; col <= 30; col++)
{
char = GChar{(row,col);
/* Did we find an object? */
if (char == kObjl || char == kObj2 ||
char == kObj3 || char == kObj4)
{
/* Determine the object ID for this object */
for (objID=0; objID <= 15; objID++)
{
1f (objArray[objID][0] == row &&
objArray[objID][1] == col)
break;
}
/* Has thilis object been picked up? */
1f (GetBit(ObjDatalroom],objID}) == 1)
{
/* If so, erase it! */
r = objArray[objID]}(0];
¢ = objArray[objID][1];
HChar(r,c,32,1);
}
}
}
}

Once again, the GetBit() function 1s covered later in this article. It simply
returns the value of a single bit from an integer. You pass the integer to the
function, and the position of the bit you wish to read (0-15). Don’t spend a lot
of time trying to understand the example functions above. If they don’t make
sense, 1t doesn’t matter - the important part is what is coming below. The code
above is provided simply to demonstrate one situation where you might want
to set the individual bits of a number, rather than dedicating an entire variable
to each on/off choice. I should also warn you that the functions above are not
tested. They should work, although it’s possible I may have made a mistake
when writing the code. (Nobody’s perfect.)

A LITTLE BACKGROUND

As you probably know, variables are stored in the computer as a series of
Continued on page 28

Continued from page 27
bits, which are simply “on/off” switches with a value of either 0 or 1. A Char
variable takes up a Byte, which is a term meaning 8 bits. An int takes up 2 bytes,
SO 1t contains 16 bits. In Base-2, or Binary format, the right-most bit of a
number is the one’s place, the bit to the left of that is the two’s place, the next is
worth 4, the next 8, then 16, 32, 64, 128, 256, and so on. So this is what the
number 11 would look like in Binary format:

00001011

Look at which bits are on and which are off. The bits in the 1, 2,and 8 places
are turned on. So 1+2+8 = 11. Here’s what a Char variable would look like with
all 1ts bits turned on:

11111111

That would be 1+2+4+8+16+32+64+128, or 255, the maximum value of a
Char variable. Here’s another example, with the binary equivalent of 76
(64+8+4): |

01001100

BINARY OPERATORS

The C language provides several operators for changing a number at the bit
level. The simplest of these is the shift operator, which we will look at first.
There are actually two shift operators, “<<“ and “>>”, which shift the bits of a
number left or right a specified number of bits, filling vacated bits with 0. Here’s
an example that shifts the bits stored in x left two positions. The result is then
copied back into x:

X = X << 2:

[t x had been 00101110 (46), it would become 10111000 (184). Or if x had
been 01001010 (74), it would become 00101000 (40). Notice that we lose the 1
bit on the far left because it is shifted right out of the number. Shifting a
number left 2 places is the same as multiplying the number by 4. (4x46 = 184.
And 4x74 = 296, although as that number exceeds the bounds of a char variable,
the result is 296-256, or 40.) Shifting a number left by only 1 is the same as
multiplying that number by 2.

Right shifting a number is similar to left shifting. Here’s an example that
shifts the bits in x 4 places to the right:

X = X >> 4;

That would turn 11110000 into 0000111 1,and 10101011 into 00001010.
Next we come to the “one’s complement” operator ~ (FCTN-W on the Key-

board), which converts each 0 bit into a 1 bit and vice versa. So if n below is
00100111, it would be turned into 11011000-

n = ~n;
You can also use this operator in combination with other statements. Here’s

an example that shifts the bits in b right ¢ positions, then inverts the bits, storing

the result in a. It should be noted that b and ¢ are not changed by this operation;

.....
....................

MICROpendium ¢ January/February 19

-
’
'

S ._I':' :r
=

B et T et L P L L

a = ~(b>>c);

Next we come to the bitwise AND operator “&”, not to be confused with the
logical AND operator commonly used in IF statements (“&&”). The bitwise
AND operator compares two numbers, setting each destination bit to 1 only if
the corresponding bit of both numbers is also 1. For example, the statement “n

= a&b” would set n to the result of the following operation, where a and b are

the top two numbers:
10111001 (a)
00011101 (b)

00011001 (n)

Here you can clearly see how each bit in the result is turned on only if the
corresponding bit in both a and b is on. The bitwise AND operator is usually
used to mask off a certain set of bits. For instance, the statement “n = a&7” sets
n to the first three right-most bits of a. (Remember that 7 is equal to 00000111
in binary.) That is, if a was 11010110, then n becomes 00000110.

You can use the & and >> operators together to determine whether a specific
bit of a number is on or off. Here’s a function that returns whether the specified
bit is on or off:

GetBit {theNum, theBit)

int theNum;
char theBit;

{
if (theBit == 0)
return myNum & 1;

else
return {(theNum >> theBit) & 1:

}
To call this function, simply pass an integer and the position of the bit you

would like to read. Keep in mind that since integers can be both positive and
negative, the leftmost bit is used to specify whether the number is negative or
positive. Passing a value of 0 as the theBit parameter will read the right-most bit
(the 1’s place), a value of 1 will read the bit to the left of that, and so on. Since
there are 16 bits in an int, you can pass any value between 0 and 15 as the theBit
parameter.

Now lets take a look at how the functions works. Lets say you call the
function with an integer of 99 and a theBit parameter of 5. (Remember that
since the first bit position is 0, a value of 5 will read the 6th bit.) A value of 99 is
the following in Binary (64+32+2+1):

0000000001100011

As you can see, the 6th bit from the right is a 1, so the function should return

Continued on page 30

e e ROpendium -+ January/February 199

Pt .~ B TRy . - - . tae . . b .
. . J A] R T IR L W] .
A i ;) . "] . ' h 0 " o
: . G . . . - oL
. . - . e .) .
W] . 1 . i A I T ENENS .. n N
-] f. ' s . . ST] =y .
Ty ey ot . . - ! . . T - TTR .. T - -
eyt - EFEND L . - 3 B - O = PR ER . . Db e N '
I Rt al T b L R b o n TR n AN]

LT T T T T T T e e e
LI N e Rt B Pl it D L O el P o L T A T T T T T L PR e e R R
e SR e S) B e L P P P R e e L e e ST T e e e
el e L e T i e e e e T e DI T

Continued from page 29
true. But first, let’s take a look at how the function works. First the bits in
theNum are shifted right by the value in the theBit parameter, resulting in this
number:

00000000000000112

Next, this number is used with the AND operation to get the right-most bit:

0000000000000011

0000000000000001

0000000000000001

The resulting number is returned to the user, which in this case is a 1. If the
theBit parameter had been a 4 instead of a 5, a 0 would have been returned. You
may have noticed that a special case is added for when the theBit parameter 1s a
0. This is because for some reason, the shift operators don’t work correctly on
the TI when used with a value of 0. Normally, shifting a number right or left 0
bit positions should do absolutely nothing, but attempting to do this on the TI
results in code that doesn’t work right. By adding the special case to the GetBit
function, we avoid this problem.

THE OR OPERATORS
By now you may be wondering how one would write a function to set a
particular bit. This leads us to the OR operators. The first version, the bitwise
OR operator |, turns the destination bit on when the corresponding bit in either

or both of the source numbers is on. Here’s an example:
char a, b, c;

a = 150;:
b = 227:

c = a | b;

Again, the bitwise OR operator “|” is not to be confused with the logical OR
operator “||” that you use in IF statements. In the operation above, the bits in C
are turned on when the same bits in either a or b are on. Here’s an illustration:

10010110 (a)

11100011 (Db)

11110111 (c)

The other OR operator A, called the exclusive OR operator, turns the
destination bit on when the same bit in either a or b is on, but not when both
bits are on:

c=aAb;

10010110 (a)

11100011 (b)

01110101 (c)
Below 1s a function which uses the bitwise OR operator to turn a single bit
on or off, leaving the other bits unchanged:
SetBit (theNum, theBit, onQOff)
int *theNum, onOff;
char theBit;

{
if {(onOff)
{
1f (theBit == 0)
*theNum = *theNum | 1;
else
*theNum = *theNum | (1 << theBit);
}
else
{
if (theBit == 0)
*theNum = *theNum & ~1;
else
*theNum = *theNum & ~{1 << theRit);
}
}

To call this function, pass the address of an integer you wish to change, the
position of the bit to be modified, and a 1 or a 0. If the bit is to be set to 1, the
left shift operator is used to move a 1 into the correct bit position, then the OR
operator is used to add that bit to the number. If the bit is to be set to 0, the
one’s compliment operator is used to get a mask that has all bits turned on
except for the bit to be set to 0, and this mask is used with the AND statement to
turn that bit in the number off.

Again, remember that when you call this function, the theBit parameter can
be any value from 0-15, where 0 indicates the first bit on the right, 1 indicates
the second bit from the right, and so on. And just like earlier, we must add a
special case for when the theBit parameter is 0, to avoid shifting a number 0
positions.

A TEeST PROGRAM

Together, the left and right shift operators, the AND and OR operators, and
the one’s complement operator provide everything needed to operate on a
number at the bit level. To conclude this article is a program which lets you
toggle the individual bits of a number between 1 and 0, and then shows the

result in both binary and decimal format.
Betore getting started, you'll need to copy the ACCNUM/O file from Bruce

Harrison’s ¢99 utilities disk (which comes with my ¢99 Starter Kit) to your work
Continued on page 32

age 32 © MICOpendium ° January/February 1998

RN i . ReRIg i L ;E-:EE;E;;-'—'.—E"?-' S e L ceat O e R R e A R ik paR
BE '"N'N _______ S R ; ' _ 5
S Lo LT e e e T T L T e e L IR IR L & 3 E A I o 5 gad P 3 k :

Continued from page 31 {
disk 1n drive 2. You should also copy the PUTNUM/O file to your work disk if int s;
you didn’t last issue.

In addition, you’'ll need to type in the BPHONK assembly code below, saving
it 1n its own file called BPHONK on your work disk. As you may have guessed, it
contains two useful routines for generating the standard beep and honk sounds. .

The BPHONK file was originally included with c99 release 4, but somehow ose S :B e oy E e "

didn’t make it into my starter kit. To use the routines Just add this line to your gizzti E? 3 2;;3 T;(eicl; f;aTh:)LCh Prer
rogram: 2. |

Einilude "DSK2 .BPHONK"” PrestE L TRinany

Then'you can invoke a beep or a honk simply by calling the function with the while (1) /* Endless loop */
appropriate name, such as Beep(), or Honk(). Since the code is compiled along {
with your program, there is no need to load a separate library at run time. /* Display the number in both */

- s /* decimal and binary format. */
BPHONK ' PutNum{13,10, theNum, Q) ;

S —————— e
PutBinary (17,10, theNum) ;

#asm
REF CSGPLL
BEEP BL QCSGPLL
DATA >34
B *13
HONK BL @CSGPLL
DATA >36
B *13
#endasm

R /* {AccNum should do this, but doesn’t.)
E3FTT1EE?T7L. do

_— e
{

DSKZ2 .CSUP
DSK2 .GRF1
DSKZ2 .ACCNUM/O

DSKZ.PUTNUM/O
DSK2 .BITTEST/O /* Honk if invalid number */
if {theBit < 0 || theBit > 15)

ooe.—-e
BITTEST/C ork () ;

____-__‘—_—'————— . . .
} while (theBit < 0 || theBit > 15);

/* BITTEST/C - FROM THE JAN/FEB */
0ldBit = GetBit {theNum, theBit);

#include “DSK2.BPHONK"”
#include “DSK2.GRFL:H" SetBit (&theNum, theBit, !oldBit);
}

extern PutNum({)}, AccNum(), DisStr{): }

Grfl():
Screen(8) :

Beep(); /* Part of BPHonk */
do

{
/* Get the bit to be changed */

theBit = AccNum(8,28,1);

/* Wait for enter key to be released. */
*/

Key{0,&s);
} while (s);

int theBit, oldBit;
int theNum = 0 - PutBinary (myRow, myCol, myNum)
char myRow, myCol;

main () Continued on page 34

I MR B wtg
=
—_

Open

o nE il e
T R e T e e e o o o S L B L, B et et

Januar /February 1998

B T e = e, S H L L
=t Tt T L PR SR R e’ I
- e R Nl

A, .
e s -
A T

e I i T T i,

int myNum;

char n;

int myBit: By JIM WIEGAND

The following article has appeared
/* Draw each of the 16 bits */ i1 a number of user group newsletters.

for (n=0; n < 15: n++) — Ed.
{ Connecting a third disk drive to

myBit = GetBit (myNum, 15-n); your TI 1s relatively easy. A power "Y”
HChar (myRow, myCol+n, ‘0’ + myBit, 1): connector and the proper data ribbon
} cable will put you into operation. |
} used a Radio Shack Tandy Color
Computer drive. It has a power
supply and a single-sided disk drive. I
replaced it with a double-sided half- and 3, respectively. Most 3.5-inch
height drive. drives are set up as drive “B” (DSK2).
if (myBit == 0) Most disk drive data cables will Some of these drives will have DS
return myNum & 1; have a guide inserted into the jumper blocks allowing you to select
else controller connector between pins 3- its drive number. This block usually
return (myNum >> myBit) & 1; 4 and 5-6 (pin 1 always has a colored consists of a row, or maybe two rows,
} wire on the ribbon cable). The TI of five or six pins with a jumper
disk controller card has an external across two of them. Look around the
connector for an additional drive. sides near the connector end. If no
This connector has a guide slot such selector can be found, then the
between pins 9-10 and 11-12. If this unit is probably hard-wired as drive

a catalog from MCM Electronics of
Centerville, Ohio (800-543-4330). A
call will probably get you a catalog.
These kits contain the power adapter
and a data connector adapter.
JUMPER BLOCKS

A little information about disk
drives may be helpful at this point.
The TI disk controller uses connector
pins 10, 12, and 14 as the drive select

GetBit (myNum, myBit)
(DS) lines to select disk drives 1, 2,

int myNum;
char myBit;
{

SetBit (myNum, myBit, onOff)
int *myNum, onOff;
char myBit;

{
if (onOff) special cable cannot be found, you “B.” A data cable modification will be
{ can cut the guide out of the ribbon required. Here are directions:
if (myBit == 0) connector. Be careful to not damage From the colored wire on the
*myNum = *myNum | 1; the contacts. If you make this ribbon cable (pin 1), count wires to
else modification, remember to have the 12 and 14.
*myNum = *myNum | (1 << myBit): colored wire at the bottom when . Cut these wires about an inch
) hooking it up. If you are technically from the disk drive connector.
else inclined, you can remove the disk > Solder a wire between pin 14
{ mvmit - o) controlier ca‘rd and c1;1t a slot 3:1 the from the d%sk coptroller and pin 12
myNum = *myNum & -1. proper location. Don't cut too eeply from the disk drive. These connec-
else ' lf: you d(_?' this. Watch for printed tions should be insulated. You can use
‘myNum = *myNum & ~ (1 << myBit), circuits in the line of the (?ut. | tape, tubing, or other suitable
} You can also use a 3.5-inch disk material.

drive. Adapters to allow mounting
these in the 5.25-inch drive bay may
not be easy to find. I located some in

The odd-numbered pins are
common (grounded) and are all on
one side of the connector.

The identity of the author of the following article is not known. We found it in
M.U.N.C.H., the newsletter of the Massachusetts Users of the Ninety-Nine and
Computer Hobbyists.—Ed.

The TI proprietary protection scheme simply wrote an uppercase “’P” at a
certain byte. UALPHA P is ASCII hex 50. Using a sector editor, simply change
the >50 to >20. The >20 is decimal 32, which is the space character. Do this for
all of your files. Now they are ali unprotected.

I am assuming some familiarity with a sector editor and that you have to
write the changes back to disk to make them permanent.

Extended BASIC protection is just about as simple. It usually consists of
adding eight to the file type byte in the FDR (tile descriptor record). Sometimes
you may have to XOR words 2 and 4. So, simply subtract eight from the file
type byte and your program should be unprotected.

How do you XOR words >2 and >4? The simplest way is to change both
words to binary. Line up the columns. If both columns are different, i.e. 0/1, 1/
0, write a 1 beneath those two columns. If the columns are the same, write a 0.
Ignore any long line of Os you may have to the left. Start with the first 1 and
continue writing left to right as you would any number. Store the results in
bytes 0 and 1.

Perhaps an example will make it better understood. Let us assume that word

H2 = 37C$ = 0011 O111 1100 1110 and that

37CB = 0011 0111 1100 1011 word H4.

The result is 0000 0000 0000 0101. 101 is 5 in decimal and hex. S0, In bytes
0 and 1, we will write HOO and HOS.

The next protection scheme I would like to discuss is almost as simple as
writing “P.” This type of protection uses a program that can detect bad sectors.
It depends on only initializing a certain number of tracks. Let us say you have a
disk manager such as CorComp’s which will allow you to 1nitialize a certain
number of tracks. Let us say you initialize ei ght tracks. Eight tracks times nine
sectors/track equals 72 sectors. The program checks sector 72 and, 1f 1t 1s good,
returns you to the title screen.

Why 72?7 Remember in “computer speak™ we almost always start counting at
0. So eight tracks would initialize 0 through 72 for a total of 72. Sector number
72 would be on track nine.

Another method that was widely used until cveryone caught on was the
spiral sector. In this scheme, not all of the bytes should be written to sector 0
are written to sector 0. Let us say you break this sector up into eight-byte

D e
PR aroaor =i - i - "1 I.I.I-II I'.'-Irl
LR

.
R R P R S e .t R AR)

MICROpendium ° January/February 1998 - Page 37

|

T s
A, wle

'] .'.'.
i
o= 1H

Wy

L e
R T R
o T R e s
“

ot e e T e e TR e L T T T =, =t e P P L B B At D, el e)

your last eight-byte block will be written to sector 31.
Why not 32?7 Remember we start counting at 0. This is called a spiral sector
because of the pattern formed as it moves inward towards 31. Meanwhile, 31 is
moving outward in the same pattern, and so on. Of course, once copier pro-
grams were written which
could copy spiral sectors,

authors and publishers quit | mately all these schemes
using them. f o a -
Another scheme which fail because at some point
nac some success 1s 10 zero the diisk controller card has
out sectors 0 and 1. Some i -
authors also zero out the - to be able to read the disk.
bytes count for each line of . .
an Extended BASIC _ HOW many protef:hon
program, which lets itrun -~ | sChemes are really possibie?
but makes 1t unlistable. Once | : .
again when programs were | since Tl deCI.ded_ to foliow
developed that could restore | IBM’s lead in this matter,
the byte count and sectors 0 there are exacty 34

and 1 programmers were
forced to try other schemes.

One 1s to tell a track
editor the sectors are IBM-type sectors with 512 bytes per sector. Another is to

tell 1t there are no sectors on this track when the track actually has sectors on it.
Another 1s to misnumber sectors and tracks so that we have sector 2000 on
track 400 when 1t 1s actually sector one on track zero. Almost anyone can come

up with some kind of protection scheme.
The real fun lies in writing a short program that in effect tells the FDC

(floppy disk controller) that everything is all right.

Another interesting tidbit — I once examined a protected disk with a track
editor and found the names and addresses of three people written in the tracks
throughout the disk.

Needless to say, the disk would not boot or, if force-booted, would not run
unless the names and addresses were there. Fortunately, I had a track copier

that could copy the names, so I was able to make my backup copy.

Ultimately all these schemes fail because at some point the disk controller
card has to be able to read the disk. How many protection schemes are really
possible? Since TI decided to follow IBM’s lead in this matter, there are exactly
34,

Another gem — tell the backup program that the tracks are alternating

single- and double-density!

Page 38 - MICROp

e T IE : P A AR AT
. e e o " " RO R TS P B e I
‘. Do : et T

BY CHARLES GOOD

A new service to readers of my
column.

For several years I have offered to
mail anyone for $1 any of the
shareware or freeware disks I review
in my MICROpendium column. The
vast profits from this service have
gone into my Florida vacation fund
and have finally accumulated enough
to pay my way to the edge of town.
So, from now on, I am willing to e-
mail any of the disks I have ever
reviewed for free, as well as send
them through the US mail to those
who send me $1 for the cost of
postage and disk.

To receive free software from me
by e-mail you have to have an e-
mail account that accepts attached
binary files. I can e-mail disks in
either of two ways. If you own
PC99 I can send the disk in PC99
format which can be directly used
on a PC by the recipient without
any manipulation.

If you have a double-density disk
controller and own the commercial
software PC-Transfer, then I can e-
mail the disk with a TIFILES header.
You will need PC-Transfer to move
the TIFILES file you receive onto a
99/4A disk and then you will need
Archiver to unpack the files.

PC-Transfer 1s available for
purchase from Ramcharged Com-

puters. PC99 i1s available from
CaDD Electronics.

JM BASE
by John Martin

In a recent column I mentioned
that there are people who run
businesses using 99/4A computers.
JM Base was written in Extended
BASIC by such an individual. It is a
general data base with a business
orientation. You can keep most of the
records needed for a small business
Or you can just use JM Base as a name
and address database.

The entire software package
requires four disks, the program disk
and three data disks. Disks are
recognized by volume name so you
can put any disk in any drive, and you
only need the data disks on line (in a
drive) if you are actually going to use
them. The data disks are for inven-
tory, books, and mail list.

You can start the software directly
or read a short documentation file
which then automatically starts the
software. After a short introductory
screen you get to the main menu,
which has the following options:

. customer list

. print customer list
. last file search

. Inventory

. print inventory

. books

. print books

. print labels

. phone call list

. setup.

CND GO SN N U W 0N e

Wb e T T B T b I T R I R R T T B ki e o IR e R L e W bl b R R e e i P L~ T e T e i T T e e~ B bt T T T S ot Tl T Bl B Tl T Tl B
...... R T B R b e il e e M b B T el R R e Tl B Pl el e e o S M B R b T S b o P A bl b MM M i W M M M M W RO W

On the “Books” disk you can set
up 10 years worth of data one month
at a time. Each monthly data set
includes input for several sources of
income, and the following expenses:
sales tax, supplies, auto, advertising,
misc, shipping, and telephone. There
are also some user-definable expense
categories. These categories can be
edited as needed. Net income for the
month is automatically calculated as
data is added or changed. State sales
tax 1s automatically calculated. Year-
end totals can be calculated.

The “List” disk includes name,
address, phone, and fields for up to
four user-defined pieces of informa-
tion about each person in the data
base. You can store up to 10 separate
lists on the same List disk. The
number of individuals in each list 1s
apparently limited only by the
capacity of the media. From this data
you can print the whole list as a
tabular report on 8.5 x 11 paper, or
mailing labels onto fanfold 1.5 x 3-
inch labels. You can also print a list of
telephone numbers.

The “Inventory” disk lets you keep
up to 10 inventory lists on the same
disk. Each data block in each list lets
you enter part number, description,
quantity, wholesale cost, and retail

cost. Your cost (“quantity” times
“wholesale cost”) is then calculated
and stored on disk.

JM Base is designed to keep data
for a small business on a minimal 99/
4A disk system. You don’t need hard
drives or RAMdisks. Everything runs
off of floppy drives and the various
floppy disks can be 1in any drive. You

do need at least two DSSD drives,
since the program disk must always
be on line, and you must put a data
disk in another drive. Four drives
work best and will give you seamless
access to all your data without
manually switching disks. The
software will work on RAMdisks if
your RAMdisks can be recognized by
volume name. Horizon RAMdisks at
an address other than >1000 may not
let you do this.

JM Base comes on a DSSD disk
which includes a short documenta-
tion file. The title screen says that the
program 1s not freeware. But it 1s. [
was given the disk by Rich
Gilbertson, who told me that the
author John Martin 1s now allowing
the software to be freely distributed.

SOUND GENERATOR
by Walid Maaloui:

This 1s a really fun Extended
BASIC program that helps you to
compose sounds and music 1n the
Extended BASIC environment. No
longer do you have to repeatedly type
long CALL SOUND statements in
command mode to discover what a
particular combination of three
sound channels and the noise
generator will sound like. Sound
Generator gives you a nice screen
display showing each of the param-
eters available for a single CALL
SOUND statement. You can modify
any of the parameters, then play the
resulting sound, then modify another
parameter and play the sound again

Continued on page 40

Page 40 MICROpendmm * January/February 1998

CALL SOUND statement at a tlme

Contmued from page 39 -

as many times as you want.

For each of the three channels that
can be accessed in a single CALL
SOUND statement you can alter the
frequency. For the noise generator you
can alter the type of noise (noise types
1-8), and for both the three channels
and the noise generator you can
independently set the volume. You can
also set the duration to any value for
the combination of sounds. You get a
screen display of all the numbers,
which you can increase or decrease in
single digits or in multiples of 50
using keyboard input. You can play
the resulting sound once, or have it
play repeatedly until you tell the
computer to stop playing. Once you
get a sound you like you can send the
resulting values to a printer.

One of the most unusual aspects of
Sound Generator is that you can use
the Mechatronics mouse instead of
keyboard input to increase or decrease
the values of the various sound
parameters. Other than Monty
Schmidt’s Command DOS, which was
released many years ago, I know of no
other software that uses the
Mechatronics mouse. I don’t have
such a mouse, so I didn’t test this
feature.

[really enjoyed playing around
with Sound Generator, seeing what
slight adjustments in this or that
parameter would do to the resulting
sound. It is particularly interesting to
listen to the effect of the noise
generator on sound quality. Please
understand that Sound Generator
only works with the equivalent of one

From within Sound Generator you
cannot write music by combining
several successive CALL SOUND:s.

Sound Generator is public domain.
I'll be glad to e-mail it to you, or you
can send me $1 and [will putitona
TI disk and use the postal service to
get 1t to you.

BYTE MAGAZINE
and SCOTT FORESMAN

page scans
by Bill Gaskill

Bill Gaskill is an unofficial 99/4A
historian. He has one of the largest
collections of 99/4A documentation I
know of and will be speaking about
99/4A history at Fest West ’98. In
order to help finance his trip to
Lubbock for Fest West *98 he is selling
digitized scans of some of the interest-
Ing documents in his collection.
Details of his offerings are at http://
www.g].net/~lucky7/ which is Bill’s
Internet web site. This is, by the way,
the most detailed, most informative
historical 99/4A web site I have ever
seen. Vast quantities of 99/4A infor-
mation and photographs can be found
here. To view the scanned documents
you need a PC that runs Windows 3.1
or higher. Here is what is offered:

Byte magazine has given Bill
permission to sell scans of 1978-1980
magazine pages with TI information
leading up to the official release of
the 99/4. You can read rumors about
TT's impending entry into the
personal computing market, the
newly released chip set for Speak and

MECR@pemdmm o january/February 1998 E"age éM

Spell toys, the FCC S crackdown on
TV interference from computers that
hook to TVs, some 1979 full page ads
from dealers selling the 99/4 even
though they probably didn’t actually
have the product yet, a discussion of
how the fate of the 99/4 is in transi-
tion as well as mention of the (never
released) 99/7, a book about TI’s
magnetic bubble memory, problems
TI had getting the FCC to accept its
RF modulator, and the January 1980
official company announcement of
the 99/4 with pricing photo and

“options list.

The Scott Foresman documents are
also sold with permission. In many
cases these documents explicitly state
that they may be freely copied. Most
of these documents relate to the
School Management Applications
packages. You could run an entire
school district with this software,
which came in command module
form and required a 99/4 with disk
system. Payroll, accounting, purchas-
ing, and classroom management were
all possible with these command
modules. The company offered to sell
both the software and the needed 99/4
hardware.

The documents include complete
price lists for the Scott Foresman
software and TI hardware. There are
also full page ads for Scott Foresman
mathematics and reading education
command modules, some of which
may not be familiar to you. Scott
Foresman put product numbers on
these command modules that are
different from the PHMxxxx numbers
used by TI for the same product. One

of my favorites 1s the 1984 SF sale
advertisement offering all its com-
mand titles at the close out price of
$4.95 each. Some of the $4.95 titles |
have never actually seen as an actual
command module. All now cost more
than $4.95, if you can find them.

These two sets of scanned pages are
different from the Gaskill scans I
offered through this column 1n early
1997. Bill is asking $6.95 for each of
the two document sets. This includes
postage and a copy of the Visioneer
Viewer software needed to view and
print the documents on a PC running
Windows. If you can receive e-mail
with attached files then Bill can e-mail
you the documents. Otherwise he will
use the postal service to mail the files
to you on 3.5-inch PC formatted,
high-density disks.

ACCESS

Bill Gaskill (source of scanned Byte
and Scott Foresman pages) 2310
Cypress Court; Grand Junction CO
81506; e-mail lucky7@gj.net; TI related
web page at www.gj.net/~lucky?7

Charles Good (source of JM Base
and Sound Generator); P.O. Box 647;
Venedocia OH 45894; Phone (419)
667-3131; e-mail good.6@osu.edu

Ramcharged Computers (source of
PC Transfer, needed to transfer e-
mailed TIFILES TI software onto TI
disks) 6467 E. Vancey Dr.; Brookpark
OH 44142; Phone (216) 243-1244; e-
mail RMarkus847@aol.com

CADD Electronics (source of
PC99, needed to run TI software e-
mailed in PC99 format) 45 Centerville
Dr.; Salem NH 03979; e-mail
m)mw@xyvision.com

e Tttt T B gt by m n =y gy s

LT A e A e R T T e e] T L T T e T o o
R O e S L I L e e e SRR WP L i T
R Rk W R [‘I Y o S

. - SRR

5 A

42 - MICROpendium © Jamuar

BY ROGER PRICE

The transfer of a digitized photo-
graphs to the TI99/4A has been
something that I have wanted to do
ever since a photo processor started
digitizing photographs several years
ago. I have never seen any step-by-
step method of how to do it. A
person not having a PC may not
know how or what to ask a friend to
do to help him transfer a picture.
This article is designed for that
purpose.

To do the following process, you
need a full TI system and either a PC
or a friend with a PC and a cable to
connect the R$232 ports, the pro-
gram Telco or other terminal pro-
gram on the TI and a terminal
program on the PC. The programs
GIFMANIA and TI-Artist, or a
program to print out or view artist
pictures are also needed.

Start by planning your picture so
the main object has good contrast
with the background. A blue car
against a green hill background will
likely not show up very well. Putting
the car up against a white garage, for
example, will turn out much better.
With my PC I can use a digitized
picture from a film processor, I can
grab a picture from a videotape or I
can use a video camera to digitize a
picture or an object. At this point let
us say that we have our picture
digitized and it is on a 1.44-mb PC-

type disk.

[start by loading the picture into a
PC graphics program called
Photoworks and use it to change the
file to 256 colors. I then load the file
into Windows 95 Paint. On my
computer Paint cannot handle more
than 256 colors. Now you can do any
artwork you need to do, such as
wiping out a background you do not
like or puttinb in lettering. Then I
save the picture back to the bitmap
file.

Next I reload the picture back into
Photoworks and check the contrast
and brightness. I can also resize and
crop the picture so I have the main
object in the picture and resized to
about 275 pixels wide by about 200
pixels high. At this point I save the
picture as a GIF.

CABLE PINOUTS

The next step is to connect a cable
between the RS232 ports on the TI
and the PC. On my laptop I use the
following connections:

PC Pin TI Pin
2 3

3 2

4 6

5 7

6 20

A total of five wires are switched.
Some people say you can get by with
only two or three wires. Some people
will say my pinouts are wrong, but a
laptop has a nine-pin port while a

Fig. 1

desktop computer has a 25-pin
RS232. The connectors are a nine-pin
D-sub female on the PC and a 25-pin

male D-sub on the TI. The connector

cord I use was originally made so I
could download disks from the TI-
99/4A to the PC using the PC99
emulator.

Now [load in Telco on my TI and,
using Windows, I load in
Hyperterminal on the PC. I set Telco
to Terminal mode. Hyperterminal
starts in the terminal mode and will
auto connect to the terminal program
in Telco. I do this to make sure there
1s a linkage of the two programs to
start with.

A way to check 1s to type a letter
on one computer. The connection is
good if the letter shows on the screen

of the other computer.

Once you are sure of the connec-
tion, select Fctn-9 on Telco and then
select Download. On the PC select
Transfer.

With a disk in the 4A ready to
receive the picture file, use send in
Hyperterminal to download the file.]
use XMODEM, 8N1, ANSI and CRC
checking. Other setups may work.
The program in Windows called
Direct-to-Direct Connect will not

MICROpendium ¢ jJanuary/February 1998 c Page 43

work. I think this works with PC-to-

PC connections only.
WHAT NEXT?

At this point you have your picture
on your TI and you can tell your
friend thanks for the download.
Another way to download the picture
1s to have your friend upload the
picture to a BBS and then you can
download, but this requires a
modem.

GIFMANIA 1s our link to TI-
Artist and 1t loads in XBASIC, TI-
Writer, or the Editor/Assembler
cartridge. Select No. 1 from the
GIFMANIA menu and load your GIF
picture.

There are several options to view
the picture. However, you must use
the “M” option to load it for saving
into TI-Artist for printout. For screen
viewing in TI-Artist you can experi-
ment with the options. Use function
No. 2 to save the picture to a TI-
Artist format.

Now you can load TI-Artist and
load your picture. The process is now
complete and your picture is in TI-
Artist where you can print out the
picture or do whatever. I added the
caption “49 Ford” with TI-Artist. (See
Fig. 1.)

Does your Artist picture have a
line down the middle? Try CR on the
end of your print code instead of LE.

If you need more instruction, help
on downloading, or do not under-
stand a part of this process, contact

me at 1015 River Dr., Marion, IN
46952; or call me at (765) 664-6001.

Page 44 ° MHCRQ[{J}@HMMM o Jammﬁ“y/F @E}mmzry H@@S

You might find the following information useful, or least illuminating. It was
posted by Tim Tesch on the TI list server. —Ed.

A while back, someone asked for docs on the TIFILES header. Well, here we
go....

The TIFILES header 1s used by the TI/Geneve to recreate a file and its type.
This header allows us to transfer files from TI to TI, TI to Geneve, TI to IBM,
or IBM to T1/Geneve all the while keeping the file intact and its format correct

How 1s 1t done? Well, the TIFILES header, used first in FasTerm, is set up as
follows:

HEADER BYTE >07 start of header, IMXT Ymodem uses

>(8)

TIFILES TEXT “TIFILES”

The next 8 bytes of the record are taken from the disk DSR’s Addition
Information structure. This data is read/written using DSR Opcodes >14, >15,
>24, and >25; tloppy read/write and hard drive read/write. It is structured as
follows:

FILESECTORS DATA xxxx total sectors
STATUSFILAGS BYTE xx status, type of file, etc.
RECPERSECTOR BYTE xx records per sector
BYTESLASTSEC BYTE xx bytes used 1n last sector
(pgm image)
LOGRECLEN BYTE xx logical rec length
RECSECUSED DATA xxxx records or sectors used

This 1s all that 1s required to properly send/receive files. However, certain
extensions to the format were made. Mass Transfer first modified this record to
make multiple file transfers possible. How?

If the byte at position 26 was not equal to zero, MXT knew that additional
files were being sent. A “cheap” Ymodem, it allows TI/Geneve users to transfer
multiple files without intervention.

Port (a terminal program for the Geneve) expands on this idea by including a
flag at offset 28. If this flag is set to >FFFF, the following 8 words of data from
position 30 through 37 are used to transfer the date and time stamp information
for the transterred file. In this manner Port preserves date/time stamps.

The header 1s sent either as a 128-byte block or a 1024- byte block depending
upon which protocol is in use.

A primer on resistors
Dick Bulmer wrote the foliowing, which appeared in the Kawartha Kronicle.
Have you ever iooked at the insides of your TI console, or your TV or VCR
for that matter, and wondered what the coiored bands on the resistors mean?

'Address . -
Clty T State 2P |
~ Texas residents add '7 75% sales tax.. Credit card orders add 5%.Check box for each
item ordered and enter total amount here:

Credit Card # _ CXp. Date
- Signature

MJCRUp@fuerm 0 J@mumyﬁ @hﬁ"mwy 1998 - Page 45

W ""1. St

uq: R \- ﬂ-. -l.,“ 1.,'. b "ﬂ:_ Eﬁ EEF ﬁ} 2 :-,- ‘___ o i s .- .-'

-. ?:: -l'ﬂ!::.-.- a "l:h".-."l. "'.‘l.'!'l.-uﬁ"' ""-‘-:-.“'-. E‘. #*'ﬁ e o S " i .-r-."' -.-' "' ": .- ﬂ 4 g
= -l' : :E::,| }-::':ﬂ o ‘\'|."- "% 1*"-". : ':. 2 .:.:::::\". -:-, ﬂr:‘: L .,:;:._' ;5;3: 4 ,::':' 1'; Lo ! _:_.:E_ el e

e,

e
L

Resmtors“’

Resistors are the little cylinders with a wire coming out of each end. They
are the part of an electric circuit used to provide resistance. Here’s a quick look
at the codes, not intended to be complete, but may be enough to satisty your
curiosity.

Each resistor has at least three colored bands at one end.These are used to
identity the value of the resistor. A fourth band 1s sometimes used to indicate

Continued on page 46

g Serles 1993 1994 (Aprll 1993-Mar 1994 6dlsks) e 825,
- [Series 1992-1993 (Apr 1992-Mar 1993, 6 disks)...................

- O Series 1991-1992 (Apr 1991-Mar 1992, 6 disks)........... s

U Series 1990-1991 (Apr 1990-Mar 1991, 6 disks)c.co......... _

O Series 1989-1990 (Apr 1989-Mar 1991, 6 diskS)

O Series 1988-1989 (Apr 1988-Mar 1989, 6 disks) $25.
(2 110 Subprograms (Jerry Stern's collection of 110 XB
.subprogmms L ISK) oot en e e e ans v $6.00

| TI-Forth (2 disks, req. 32K, E/A, no docs)cccccceennee. ceeeeee $6.00
TI-Forth Docs (2 disks, D/V80 files)ccccecurrrrenenn. verereneen. $6.00

i:II988 updates of TI-Writer, Multiplan & SBUG (2 disks) $6.00
am’ DlSk of programs from any one issue of MICROPendmm between

Apnl 1988 and Presentc.cueuevereeveeeceereeeeeerereneeseeeennan, SPR .$5.00
D CI—ECKS M and CHECK e ?'?4#--'-*.-*54--00

Check/MO ' Vﬂsa M/C (Circle method of paymmﬁ)

ge 46 ° M T%@“m@mdmm o january/F @bmmfry 1998

LB, N e e S el S = o e o, -k, .1:.1.:-;._.. " .’.‘.':‘.":".'.'.'.- ” T TN T N

Contmued fmm page 45

wattage e
rating. At E@@h msﬁsﬁ’m
the other | has at least |
end,you | three colored |
willusually | bands at one |
see another | end. |
band (D 1n |

the graphic)
that 1s colored gold or silver, indicat-
Ing manufacturing tolerances.

Black O Green 5
Brown | Blue 6
Red .2 Violet 7
Orange 3 Gray 8
Yellow 4 White 9

Gold 1dentifies a 5 percent
tolerance.

Silver 1dentifies a 10 percent
tolerance.

The color of band “A” gives the
value of the first figure, band “B”
that of the second and band “C” tells
how many zeroes follow B. For
example, 1f “A” 1s brown, “B” is
orange and “C” 1s red, the value of
the resistor 1s 1,300 ohms, or 1.3K
ohms. A 27K (27,000) ohms resistor
would be coded red, violet and
orange.

rest West "98 update

Here 1s the tentative schedule for
the “TI Experience” at TI Lubbock

facility:

8 to 8:30 a.m. Registration/Sign-
In at the facility

8:30 to 9 a.m. Introductions and
other “housekeep-
ing’

91tc 10 a.m. Lee Kitchens, for-

......
e
LN
Tt
..........

mer TI manufac
turing engineering
manager speaks.

10 to 10:30 a.m. Break

10:30 to 11:30 TI9Y9/4A historian
Bill Gaskill speaks.

11:30 tonoon Finish up and leave
the TI facility.

During the afternoon, seminars
wills be conducted at the Sheraton
Four Points Hotel. Vendors will also
be present. A hospitality room will be
avatlable until 10 p.m.

As part of the speakers’ time, there
will be a question and answer
$eSSION.

Refreshments will be served
courtesy of Texas Instruments and
there will be tours of the facility for
those who are interested. All TI99ers
are 1nvited to this morning session, as
are all employees of Texas Instru-
ments and residents of Lubbock.

Texas Instruments has agreed to
allow an oftficial photographer at the
TT Experience and a VCR recorder.
The photographer will be Gary Cox
who has taken pictures at many TI199
fairs. Otherwise, cameras are not
permitted on the premesis.

A brunch will be held Sunday, Feb.
15, at the Four Points Hotel. The cost
15 $7.95 per person.

DT version Works
with Geneve

The following comes from the TI
list server. It was submitted by Dan
Eicher.

ferry Cofttey tipped me otf to the
fact that Disk Manager 111 was

MICROpendlum ° J anuary/F ebruary 1998 ° Page 4’7

modlﬁed to wor on the Geneve by |
Mike Dodd. I found a copy of this

software on Beery Millers CD-ROM.
I pulled this program and put it up
on the Hugger BBS (317-782.9942).

From the bit of testing I have
done, it works well with the Geneve,
both with floppy drives and
RAMdisk.

SCSI DSR progress

David Nieters, SCSI DSR devel-
oper for Western Horizon Technolo-
gies, reported progress on the SCSI
DSR recently.

In a posting to the TI list server he
said “I believe I've fixed the bug that
corrupts the VIB when trying to
create a directory after the first sector
of the bitmap is full. Since there are
over 2,000 bits in the first sector of

- the bitmap and the first sector is only

for file and directory headers (not
actual file data — that goes in later in
the bitmap), this bug does not rear its
ugly head until after you have over
2,000 files and/or directories on your
SCSI drive.”

 “We are testing this DSR now
(hate to fix one thing and break 10
others). If you are using a version 1.1-
x of the DSR and have close to 2,000
files on your SCSI drive, you may
want to stop creating new files until
you get this new DSR.”

HRD crash recovery

We found this in the newsletter of
the SouthWest 99ers. The author is

unknown.
If your Horizon RAMdisk locks up

-. nd you can’t access DSK1, but the

disk conroller and HRD LEDs on the
PEB are lit, try the following:

» Turn the PEB and console offt.

* Insert the E/A module in the
console.

» Turn on the console. (Turning
the console on before the PEB
seems to be critical to success.)

» Hold the shift key down and turn
on the PEB.

» Select option 5 from E/A and
load the HRD CFG file from
DSK1.

Disk access should reappear and
you should be able to access your
RAMdisk directories.

Next, reload the ROS you nor-
mally use — do not throw out the
existing information. Exit CFG and
everything should be fine.

DISKS, BACK ISSUES

U Back Issues,$3.50 each to March 1996, later

$6 each. List issues on separate sheet.

No price breaks on sets of back issues. Free
shipping USA. Add $1, single issues to Canada/
Mexico. Other foreign shipping 75 cents single
issue surface, $2.80 airmail. Write for foreign
shipping on multiple copies.

OUT OF STOCK: V1#1-2; V2#1

GENEVE DISKS (SSSD unless specified)
GENEVE PUBLIC DOMAIN DISKS

These disks consists of public domain programs
available from bulletin boards. If ordering DSDD,

specify whether Myarc or CorComp.
SSSD DSSD DSDD

J Series1 $9 $7 $5
J Series2 $9 $7 $5
J Series 3 $9 $7 $5
J Series4 $9 $7 $5
d Series 5 $9 $7 $5
J Series 6 $9 $7 $5

