MILLERS GRAPHICS

\

THE SMART
_ PROGRAMMER

FEBRUARY 1984
$150

—

To start off the first issue of The
Smart Programmer monthly newsletter we
would like to THANK everyone from around
the world who subscribed and helped make it
all possible., Since February 84 is the
first issue the last issue for the first
year will be January 85.

We would also like to say THANK YOU for
all the complimentary letters and
questions. We read everyone of them and we
do appreciate your comments. Please don't
stop sending them for they truly help us
decide on topics for the newsletter. Well
that is enough editorial for now so lets
start the fun stuff with the first monthly
column.

Q&A

We have received a number of questions
on proprietary disk protection.

Proprietary Protection is used on Scott
Adams, Plato and other third party
diskettes to prevent you from making a
backup copy. It is placed on the diskette
when it is initialized and prevents the
disk from being copied with the BACKUP DISK
feature of the Disk Manager command module.

To enter the Proprietary Protect mode of
the Disk Manager command module go to any
of the menu selection screens in the
module., Then hold down the FCTN key and
press X ten times. On the tenth time you
will hear a beep and > < will appear at the
top of the screen. Now when you initialize
your diskette Proprietary protection will
be placed on it.

I do not recommend that you use this for
your everyday disks since they can no

longer be backed up with the disk manager
command mecdule. If you re-initialize the
diskette in the normal fashion Proprietary
protection will be removed, but so will
your programs and files so use this with
caution and always maintain a backup
diskette that is NOT Proprietary
protected!!

It would not be fair to all of the
software authors who are supporting the
99/44A to tell you how to remove this
protection without losing the data on the
disk so we will have to leave that up to
you to figure out. I will, however, say
that it can not be removed with the disk
manager module. One last thing before we
leave this topice. You can get out of the
Proprietary mode by either going back to
the title screen and starting up the disk
manager over again or you can press FCTN X
one more time and the > < will be erased
from the top of the screen.

We have also received a number of
questions regarding software,

Many of the questions asked what we
thought aboutft a particular piece of
software written by some other company. I
don't feel that it is fair for one software
company to review another company's work,
but there will be times when we will
discuss a utility program and its'?
practical applications.

some of the questions were regarding our
policy on publishing and producing software
for sale through Millers Graphics. On this
Subject let me say that we are not
currently looking for any new titles. We
are however looking for short programs that
exploit the power of the 9G/44A to be

ve——

published in future issues of the
newsletter especially if they use PEEK's
and/or LOAD's.

There were also a few inquiries as to
whether or not we would be publishing any
large programs, 4K+. One that comes to mind
is from a gentleman who has a word
processor that works with the minimum 16K
system and a cassette recorder. I told him
that I would ask all of you to see if you
would like to have this type of programming
reproduced in the pages of the Smart
Programmer, how about it? Write and let us
know, Jjust drop us a postcard with YLONG IS
0.K." or "KEEP THEM SHORT."™ on it and we
will take it from there.

If you leave it up to me, since I love
the numbers, we will all be neck deep in
memory maps, operating systems, GPL
language, D3SR's, Disk formats, CALL PEEK's
and CALL LOAD's before long, so0o please
write.

Many of the questions were on SPRITE
Coincidence and how to detect it with
various other sprites, locations and/or
graphic characters and if there is a CALL
PEEK that can be used for faster detection.

VDP RAM is separate from the CPU,
central processing unit, memory s0 we can
not directly PEEK or LOAD into VDP RAM from
Extended Basic. In Extended Basic we are
quite limited on the amount of sprite
information we can obtain from CPU RAM. The
few addresses that are in the Smart
Programming Guide for Sprites that relate
to sprites are located in CPU RAM and this
is the only information we c¢an directly
obtain at this time.

When we start mapping out VDP RAM we
will publish PEEKV and POKEV routines that
you can use through CALL LINK if you have
Expansion Memory. If you have the Mini-Mem
or Editor Assembler module you can PEEKYV
and POKEV from Basic although Basic does
not recognize auto motion sprites. Before
we get in too deep here, I would like to
save the answers to these questions for the
issue that contains the VDP memory maps. I
think that it can be better explained when
you have the whole picture in front of you,

Ll 8. 8 8 8 R & & _ & 3 _KE__§E _.J

Many people have asked for help on
Adventure games.

The best adventure game I can play is
the one that deals with all the numbers
stored in memory and how they relate to one
another and I am afraid that this one takes
up most of my game time. Even when I try to
play a game I find myself trying to figure
out how the program works and consequently

I usually lose very rapidly. So, based on
this I am afraid that I can't be much help
on solving a particular adventure.

On the other hand I can give you a
little trick that might help. The Adventure
command module contains the input prompts
and the list of acceptable responses. It
also contains some of the decision making
based on your response. With this in mind
it stands to reason that each of the
cassette and diskette games that use this
module have a similar format. Also the
games that you have partially playved and

saved contain the same format from scenario
to scenario.

The point I am getting to is that you
can load one game and load your progress
from another scenario and run it. Naturally
the game will no longer make any sense but
it will from time to time return a few
hints for you to try when you load the game
and your progress the regular way. Don't
forget to check your inventory before you
reload the game the proper way, you may
find some items listed that you didn't even
know existed. Happy Adventuring, I'll go
back to the numbers, I find them to be a
lot easier.

N i Sl - Pyt B W e e b e -

A gentleman from Georgia recently asked
us how to get a Basic program that is
stored on disk and is too large fo run with
the disk drives attached to run. He was
referencing the CALL LOAD in the first
volume of the Smart Programmer that shuts
off the disk drives. At the time that I
talked with him I said I didn't know but
after I thought about it a little while
some tips that Paul Schippnick gave us came
to mind.

The problem was such that the program
could be loaded into memory from the disk
but it contains a large number of numeric
and string variables which eat up a lot of

e e E—

v,

e ——————————_——————— T TRRN==,

memory when the program is RUNning. In
Basic the computer does not recognize
Expansion Memory as a place to load
programs so0 they must load and run from VDP
RAM. Unfortunately the disk buffer space is
also in VDP RAM and uses up some of the
space that may be necessary to run large
Basic programs. Even with the CALL FILES(1)
command there is still aprox 500 bytes
retained as a disk buffer and this may be
just enough to crash the program. The CALL
LOAD, which is listed below, will shut off
the disk drives but in Basic you must type
in NEW Lo open up the memory space.
Naturally whenever you type in NEW your

program is cleared out of memory and that
was the problen.

The solution requires the Mini-Memory
module to be plugged in the cartridge port
and Expansion Memory to be attached and
turned on. With the Mini-Mem in the port
there are a few new commands added to the
Basic language, even though you have
selected TI BASIC. The ones that we are
concerned with are SAVE and OLD, MINIMEM,
EXPMEM1 and EXPMEMZ2 and out of these we
really only need SAVE and OLD EXPMEMZ2. The
procedure for running these large Basic
programs from disk is as follows:

1. Power Up, select Basic and type in
CALL INIT. This will initialize memory
expansion and it will also clear out what
ever was stored in the Mini-Mem module. If
you want to retain what is in the Mini-Mem
Jjust turn off the memory expansion and then
turn it back on and that will c¢lear it out
without erasing the Mini-Mem.

2. Load the program you want to run from
your disk. OLD DSK1.XXXXXXXXXX .

3. Type in SAVE EXPMEMZ and press ENTER.
This will copy the program in VDP RAM into
the exp-memory.

4, Type in CALL LOAD(-31888,63,255) and
press ENTER. This tells the computer not to

reserve any room in VDP RAM for the disk
buffers.

5. Now type in NEW and press enter. You
have just opened up the extra memory space
in VDP RAM that the disk was reserving. But
since Basic does not recognize expansion
memory your program is stiil intact in high
exXp-memory, addresses hex AQ0QCO through
FFFF.

6. Just type in OLD EXPMEM2 and press
enter and this will copy the program in the
exp-memory back into the expanded VDP RAM
program area. A copy of the program is
still in the exp-memory and it will remain
there until you turn off the exp-memory,
save another program into that space or
type in CALL INIT. No, you can't MERGE
Basic programs.

T. Type in RUN and press ENTER and the

program should now run without giving you a
MEMORY FULI, ERROR.

We didn't use SAVE MINIMEM or SAVE
EXPMEM1 because neither one of these spaces
are large enough to store a large Basic
program, 12K+. The MINIMEM space is 4K of
RAM, The EXPMEM1 space is 8K of RAM and the
EXPMEM2 space is 24X of RAM, Also the
EXPMEM1 space will allow you to save a
program out there but it doesn't like OLD
EXPMEM1 so you can't bring it back. You can
use any one of these three names in an OPEN
statement for files provided you are not
LINKing to an Assembly language subroutine
in which case it is best to just use
EXPMEMZ in yocur OPEN statements for files.

The best solution, if you have
exp-mpemory, is to rework the prograns to
allow them to be loaded directly into
exp-memory via Extended Basie. You will
probably have to rework some of the CALL
CHAR's, HCHAR's, VCHAR's and CALL COLOR's
to compensate for the lack of character
sets 15 and 16 in Extended Basic. You will
however find that they run a little faster

and they are easier to edit in Extended
Basic,

ol

GENERAL TIPS & TRICKS

Mike McCue in New York, who we are
working with on our new boock, gave us the
following trick.

You can change the text and or screen
color while you are in the immediate mode
or program entry mode by using the
following sequence. Note: these commands
are typed in without using line numbers and
you can replace any of the coidor numbers
with any of the colors that you would like.

vfe——————————

To change just the screen color type in;
CALL SCREEN(6)::ACCEPT AT(1,1):A

After you have typed this in press
enter, the screen will change to blue and
the cursor will be at row 1, column 1,
waiting for you to enter a number. DO NOT
press enter, DO NOT enter a number just
press FCTN 4 (CLEAR). The cursor will Jjump
back down to the bottom of the screen and
you will be back in the immediate mode and
you can now type in or list your prograns
against the new background, screen, color.

The only problem with this is that if
you create an error, execute CALL CLEAR,
PRINT or RUN your program the screen will
return to its normal c¢yan color.

To change the cursor, text and screen
color type in
FOR I=0 to 12::CALL COLOR(I,16,1)::NEXT I::
CALL SCREEN(5)::ACCEPT AT(1,1):A
Then follow the above instructions.

To change just the cursor color type in
CALL COLOR{(0,7,1)::ACCEPT AT(1,1):A
Then follow the above instructions.

There is one other trick that you can
use with ACCEPT AT but it is not very
reliable, Sometimes you can get an ACCEPT
AT statement to accept character input out
to the 32nd column by using a subscripted
variable with a simple formula as the
subscript for the input variable. For
example:

100 ACCEPT AT(1,1):A(2-1)

It is not dependable enough to use on a
regular basis but it does show you that
there are a few bugs in every language. I1f
you avoid using formulas in your ACCEPT AT
subscripted variables you won't have the
problem of erratic line lengths.

One last note on these and nmany of the
other tips, tricks and items that we will
be publishing in future issues. There are
approximately % to 7 different operating
systems in the various 99/4 and 99/4A
consoles. There are also a few slightly
different versions of Extended Basic¢ out
there, We try to test as much of this as
possible but you may find from time to time
that somethings may not work exactly the
same on your system.

OOPS!

Looks like we goofed on a couple of
items in our VOL. 2 newsletter.

In our column on CorComp Inc. we miss
quoted the prices on the cards for the
Expansion Box. The 32K memory expansion
card has a suggested retail price of 149.95
and the RS232 Interface card carries a
suggested retail price of §9.95,

Also we were told that the RS232 card
would be FULLY compatible with the TI1I card
and that the parallel port would be
modified slightly to make it a true
Centronics compatible output. You see the
TI RS232 card is not a true parallel
Centronics output and a few of the printers
out there need a special cable with some
converters built into the connector to
allow it to work. CorComp was going to
change this around when they built their
card but it appears that it wasn't done on
the first production run. They also changed
pins 2 & 3 around on the serial output for
some unknown reason. This is not a major
problem you just have to swap wires 2 & 3
on one end of your cable, but it would have
been nice if it was fully compatible. Maybe

they will change this on future cards? I
hope so0.

We also have a bad value in the number

conversion program on page 3. Line number
130 should read:

130 INPUT "“DEC #=":DEC :: IF

DEC<-32768 OR DEC>65535 THE
N 130 ELSE A,DEC=INT(DEC-655
36#(DECK0)):: GOSUB 200 :: G
OSUB 220 :: GOTO 160

The OR DEC>65536 test caused the program
to crash if you input 65536 as your decimal
number to be converted.

OQur last goof is concerning the CALL
LOAD address of -31806. We stated that if
you turn off the auto sound processing by
loading this address with 32 that you will
lock up your computer if you execute
another CALL SOUND. Well that was only
partially right. If you use sound
statements with positive durations such as
CALL SOUND(100,660,0) it will lock up but
you can use negative durations such as CALL
SOUND(-100,660,0) without locking up.

Mer—

PEEKING AROUND

This will be another one of our monthly
columns in which we will be publishing
memory maps, peek and load addresses and
other items relating to memory locations.

S0 lets get start by looking at a couple
of new addresses that were sent to us from
Mike Sijacic of Michigan. The first address
is hex >8373 or decimal -31885., This is
located in the scratch pad RAM area and it
1s an address that is known as the " Least
significant byte of the subroutine stack
pointer”. Mike stated that if you load 255
into this address that it acts the same as
typing in BYE. Unfortunately it does not
work on all the systems out there but here
is another way to accomplish the same
effect,

100 CALL INIT ::
,A,B)::
)

CALL PEEK(2
CALL LOAD(-31804,A,B

The word at memory location O is the
workspace pointer for FCTN + (QUIT), the
power up routine. The word at memory
location 2 is the address for the power up
routine. So what we have done is to get the
address for the power up routine and load
it into the Interrupt Service Routine (ISR)
hook. Then on the next VDP Interrupt, which
happens 60 times a second, the computer
will jump to the address in the ISR hook
location to continue execution and since we
have loaded the address for the power up
routine the computer acts as if you pressed
FCTN «+.

The next address that Mike sent us works
fine and what it does is to make the
computer restart Extended Basic. It acts
the same as when you select Extended Basic
from the menu so it will try to boot a file
named LOAD if you have a disk drive
attached to your computer. This address is
also located in scratch pad RAM at hex
>8326 or decimal =-31962. This address is
known to Extended Basic as "the return
- address from Assembly Language codel,
Loading Jjust about any value here will
restart Extended Basic.

TALL LOAD(-31962,255)

The last address that Mike sent is at
>83FC or decimal -~-31748. This address is
bit mapped and it changes the speed of your
sound statements and the rate of flashing
on the cursor. CALL LOAD(-31748,1) is
normal and anything else effects the cursor
and sound speed. Use it with caution and we
will talk more about it in a future issue.

To start off the memory maps we have
enclosed an Overall System map. The Overall
System map contains all of the addresses
that are directly accessible by the TMS
9900 microprocessor. Along with this 64K
block of memory our systems contain an
additional 16K block of VDP RAM that is
accessed through the TMS 9918A video
display processor. Our system is also
currently set up to access up to 48K of
GROM, Graphics ROM, but with a little
additional hardware it can access up to
498K of GROM. We will talk more about this
in future issues when we discuss GROM and
GPL, Graphics programming language. Right
now lets break down the Overall System map.

ROM - Read Only Memory. You can only
read, CALL PEEK, from this memory, you
cannot write, CALL LOAD, to it.

ROM comes in many forms, some of which
are HOM, PROM, EPROM, EEPROM and GROM, but
they all serve a similar basic function and
that is to store information. This
information is in the form of numbers and
in our systems the numbers range from 0 to
255 in each address. These numbers are used
by the CPU, TMS 6900 microprocessor, as
programs, subprograms, data and vector or
Jump tables.

One of the main differences between the
different types of ROM is how they are
programmed. ROM and GROM are generally
programmed with a mask at the time of
manufacturing by etching the program right
into them. PROM stands for Programmable
ROM, and they are programmed through a
PROM, EPROM or EEPROM programmer. This
process is commonly called "Burning a
PROM", Once a PROM is burned it cannot be
erased, on the other hand EPROM's,
Eraseable Programmable ROM's, can be erased
by exposing the chip to strong ultraviolet
light, a sun lamp, for about 15 minutes.
EEPROM's, Electronically Erasable and
Programmable ROM's, can be erased with a
special electroinc signal.

| 3 .

Our systems mainly contain ROM's and I
haven't found ANY EEPROM's 30 you do not
have to worry about wiping out your
system's programming by typing in the wrong
thing. As a matter of fact, over the past
five years I have yet to find any command
or commands that have hurt my systems at
all. The worst I've done is to lock them up
but that is easily recovered from by
turning the console off and then back on

again. So feel free to type in whatever you
want, you can't hurt it.

One last note on ROM, it is a

nonvolatile type of storage which means

that it retains what ever was programmed
into it even when the power is shut off.
Without any ROM and GROM in our computers
we could only communicate with them in
machine language, until we loaded some
smarts into their RAM.

RAM - Random Access Memory. You can
read, CALL PEEK, and write CALL LQAD to
this type of memory chip. RAM is a volatile
type of memory in that it forgets whatever

was programmed into it when the power is
shut off.

This is where most of the activity goes
on when you are programming or running a
program. We have 4 areas of RAM in our
computers, VDP RAM, Low memory expansion,
the area for memory mapped devices and the
scrateh pad and finally High memory
expansion. It is also possible to have RAM
in the Cartridge Port and DSR areas of
memory. Lets look at the different areas of
memory and how they are used in our
systems.

20000 - >1FFF ROM

8K Bytes

Hex O through 1FFF is the area of CPU
memory that is reserved for ROM in our
systems and contains the following:

The Interrupt Vectors and interrupt

processing for Auto sound, Sprite
motion, Interval timer and DSRH
interrupts.

The XOP (Extended Operation instruction)
vectors,

The keyboard scanning routine.

The GPL (Graphics Programming Language)
interpreter.

The low level cassette DSR (Device Service
Routine).

Part of the Basic interpreter.

The Radix 100 fleoating point routines for
addition, subtraction, multiplication
and division.

The subprogram and DSR search routine.

It is this section of memory along with
GROM chip 0 that takes control when we turn
the console power on.

22000 - >3FFF RAM

8K Bytes

Hex 2000 through 3FFF is mapped out for
Low memory expansion. When you plug the 32K
memory expansion card in 8K of it is mapped
into this space and the other 24K is mapped
at a higher address. If you do not execute
CALL INIT this space will not be used by
Extended Basic. When CALL INIT is executed
the Extended Basic command module loads
some Assembly language routines into this
area. This space is used by the Editor
Assembler command module and when you
select this module from the menu the

Assembly language rouftines are
automatically loaded into this space.
>4000 -~ D5FFF ROM 8K Bytes

Hex 4000 through HFFF is the area of our
memory that is mapped out for the DSR's,
Device Service Routines. This area is
zeroed out unless you are accessing the
RS232 card, disk controller, P-Code card or
the Video controller peripheral.

A DSR i1is nothing more than the
programming necessary to communicate with
one of these devices. When you access one
of these cards, such as OLD DSK1.xxxx, the
DSR for that card is paged into this space
for the CPU to access it. This paging is
handled by the TMS 9901 Programmable
Systems Interface chip which takes care of
the interrupt and Input/Cutput interface
functions. The DSR is only paged into this
area during the exact moment that you are
addressing the card, such as OPEN
#1:"RS232" or PRINT #1:" HELLO"™ and then it

Nl:-__'————s—

is paged back out s0 you can not peek into
this area from Extended Basic and see the
DSR. In a future issue we will show you how
to use the Debugger from the
Editor/Assembler to look at the DSR's and
everything else for that matter.

>6000 -~ >TFFF ROM and/or RAM 8K Bytes

Hex 6000 through 7FFF is the area of
memory that is mapped out for the Command
Module's ROM and/or RAM. Some of the
command modules such as the Disk Manager
and Editor/Assembler do not contain any ROM
or RAM so with these modules this area is

zeroed out.

The Extended Basic module contains 12K
of ROM and it is mapped into this area.
How, you might be asking, do they fit 12K
into an 8K space? They do it by
flip/flopping (paging) the 4K of ROM at
>7000 - >7FFF, This 1s accomplished by
writing to ROM address >65A6 and it is
flipped back by writing to ROM address
>7T000. This is one of the few times that
executing a CALL LOAD to a ROM address has
any effect. If you execute CALL INIT ::
CALL LOAD(26022,1), you will find that your
computer locks up and you will have to shut
it off and back on to regain control and
this is because you flipped part of the
Extended Basic language at the wrong time.

If you have the Mini-Memory module
plugged in then >6000 ~ >6FFF (4K) is ROM
and >7000 « >7FFF (4K) is Mini-Mem RAM. As
you c¢an see this block of memory varies
with each ¢f the modules that are plugged
in. One last note on this space, even
though the cartridge is mapped into this
space the GROM in the cartridges is
accessed from a different location in
memory.

>8000 - >9FFF RAM 8K Bytes

Hex 8000 through 9FFF is the area of
memory used for memory mapped devices such
as VDP RAM, GROM, the Sound & Speech
processors and it is also used for the
CPU's scratch pad area.

Scratch Pad RAM is the area of memory
that the CPU uses to hold a2 wide variety of
temporary and system information. The
scratch pad occupies 256 bytes of a 1K

block. This 1K block is not fully decoded
so the scratch pad repeats itself every 256
bytes within this block. In our systems the
scratch pad is at >8300 through >83FF but
you can find the same information at >8000
- >80FF, >8100 - >81FF and >8200 - >82FF.

This area of RAM operates very fast
because unlike the Expansion RAM which is
on an 8 bit bus this area of RAM is on a 16
bit bus. If you write Assembly language
programs you should try to keep your
workspace within this 256 byte area but be
careful of the precautions called out in
the Editor/Assembler manual on pages 404
thru 406. Because this area of memory has
s0 much going on in it we will be mapping
it out in a future issue.

The remainder of the items between >8400
and >9FFF are known as memory mapped
devices, These items are accessed through a
small window, address, and they transfer
one byte at a time, to or from, the device
until all of the requested bytes have been
transferred. Some of the devices have
separate addresses for reading/writing data
and setting up the address within the
device to be read from or written to such
as VDP RAM and GROM. While others may use
special coding right in with the data
stream to determine whether it is a read or
write operation and what the address is
within the device being accessed.:

It is because VDP RAM is a memory mapped
device and because TI did not provide PEEKV
and POKEV statements in Extended Basic that
we can not peek and poke or load into it.

>A000 - D>FFFF RAM 24K Bytes

Hex AQOO through FFFF is the area of
memory used for High Memory Expansion. If
you have memory expansion attached to your
computer this is where your Extended Basic
programs are loaded into and RUN from. This
area also holds the line number table and
numeric values for the numeric variables.
The line number table is more or less a set
of pocinters that tell the CPU what address
in memory a specific Extended Basic program
line starts at. It is because the Low and
High memory expansions are split up in the
memory map that we can not load an Extended

Basic program larger than 24K into our
computers.,

i e —

OVERALL SYSTEM MAP
>0000 | CONSOLE ROM Interrupt Vectors, XOP Vectors, 8K Bytes
| GPL Interpreter, Floating Point Routines,
>1FFF l XMLLNK Vectors, Low-level cassette DSR etc.
1>2000 | LON MEMORY EXPANSION RAM 8K Bytes
| Varies according to the loader used (Assembly).
| >3FFF E Generally not used by Extended Basic progranms.
| >4000 iDSR ROM Device service routines 8K Bytes
i Determined by CRU bit setting
>5FFF | Disk Controller, RS3232, P-Code etc.
>6000 {CARTRIDGE PORT ROM (& Mini-Mem RAM) 8K Bytes
| 12K of Extended BASIC ROM. Upper 4K & D>T7000 - D>TFFF
| >TFFF | is flipped to page in another 4K for a total of 12K
>8000 RAM MEMORY MAPPED DEVICES VDP, GROM, SOUND & SPEECH 8K Bytes
>8000 | Duplication of scratch pad ram € >8300 ->83FF
>80FF |
>8100 | Duplication of scratch pad ram € >8300 ~>83FF
>81FF |
>8200 |} Duplication of scratch pad ram € >8300 ->83FF
>82FF |
>8300 | CPU SCRATCH PAD RAM 256 bytes
>83FF |
>8400 ! SOUND CHIP
>87FF |
>8800 | VDP READ DATA
>8802 | VDP STATUS (MSBy)
>8BFF |
>8C00 | VDP WRITE DATA
>8C02 | VDP READ/WRITE ADDRESS (to write set MSb of the MSBy to 01)
>8FFF |
29000 | SPEECH READ
>93FF |
>3400 | SPEECH WRITE
>9TFF |
>9800 | GROM/GRAM READ DATA
>9802 | GROM/GRAM READ ADDRESS
>9BFF |
>9C00 | GROM/GRAM WRITE DATA
>9C02 | GROM/GRAM WRITE ADDRESS
>9FFF |
>A000 |HIGH MEMORY EXPANSION RAM 24K Bytes
|
I Extended Basic High Memory Usage, Free space end
I pointed to by CPU RAM PAD address >8386
]
I
| Numeric values
| __
| Line number table
| emcmm e e r e ————————
I X-Basic program space
!
FEFF I
o e e i e e e i e e e e e B e e +

ADDITIONAL MEMORY NOT IN
THE CPU ADDRESS SPACE
VDP RAM 20000 - >3FFF 16K Bytes
This is the memory that comes built into
the console and it is separate from the
rest of CPU memory. If you do not have
memory expansion attached to your computer
this is where your Extended Basic programs
reside and run from. Basic does not
recognize memory expansion so your Basic
programs always reside here, also a pure
Assembly language program cannot be run
from this space.

The TMS 9900 CPU addresses this space
through the TMS 99184 VDP processor. This
space 1s mapped out according to the
language you are running in and the VDP
mode you are in., In Extended Basic without
memory expansion this area contains the
fellowing:

>0000 =>02FF
>0300 ->036F
>0370 =>077F

Scereen Image Table

Sprite Attribute Table
Sound buffer, Crunch buffer,
Roll out area for Floating
point routines, Pattern
descriptor table and Sprite
descriptor table.

Sprite motion table.

Color table.

PAB's, Numeric Values, Line
Number table, Program space,
and String space.

Disk buffer space.

>0780 ->07FF
>0800 ->081F
>0820 ~>35D7

>35D8 =>3FFF

If you have memory expansion then >0820
->35D7 is used for the PAB's and the String
space., The Numeric values, Line Number
table and Program space are moved into
memory expansion at >A000 ->FFFF after the
"PROGRAM" type file has been loaded from
cassette or disk.

This area of memory is quite extensive
sC we will be devoting a couple of issues
to mapping it and the VDP registers out for
Basic, Extended Basic and the Editor
Assembler. We will also map out TEXT and
Bit-Mapped modes s0 gather up your VDP
guestions and send them in so we can
included them with the maps. We will also
publish the Assembly language routines of
CALL LINK(PEEKV,... and CALL LINK({POKEYV,...
that you can load as an assembly file or
with CALL LOAD's for use in Extended Basic
1f you have memory Expansion.

CONSOLE GROM 20000 - >17FF

8K Bytes

There are 3 GRCM chips mounted in our
consoles and each chip contains 6K bytes of
programming or data. Each chip resides
within an 8K address space so there is 2K
of useless addresses per chip. GROM chips
are a special type of ROM that is
manufacfured and patented by TI. GROM
stands for Graphics Reaed Only Memory but TI
also manufactures GRAM, or Graphics Random
Access Memory, chips but they are not used
in our conscles. The unique property of
GRCM is that it is auto incrementing ROM
which means that every time it is accessed
in automatically increments to the next
address within itself. GROM mainly contains
programs and routines written in GPL code.
GPL is TI's own Graphics Programming
Language that they are not too quick to
give out any info on. GROM also contains
large amounts of data that is pertinent to
the system monitor and operation of our
consoles. The 3 GROM chips in the console
contain the following:

GROM O >0000 ->17FF The Title screen power
up routine, Title screen character
set, Standard character set, Lower
case character set, Hi-Level
cassette DSR messages and the
Trig functions such as ATN, SIN etec.

GROM 1 >2000 ->37TFF Vector tables for the
Basic language, The ERROR statements
for Basic and part of the Basic
Interpreter,

GROM 2 >3000 ->5TFF Part of the Basic
Interpreter, the reserved word list
and their associated token values.

GROM chips 3 through 6, 24K Bytes,
reside in the Extended Basic cartridge and
they contain the following.

GROM 3 >6000 ->TTFF X-Basic vector tables,

the ERROR statements for X=-Basic and
part of the X-Basic Interpreter,

GROM 4 >8000 ->97FF Part of the X-Basic
Interpreter.

GROM 5 >A000 ->BTFF Part of the X-Basic
Interpreter.

GROM 6 >C000 ->DTFF Part of the X-Basic
Interpreter, the reserved word list
and their associated token values.

Ivl'_'l'_—_g—_____

Now lets add it all up like the other computer companies do!!!

CONSOLE MEMORY

8K Console ROM @>0000=>1FFF 8K Console RAM €>8000->9FFF
18K Console GROM €>0000->5800 # 16K VDP RAM @>0000->3FFF *
26K of ROM/GROM Total 24K of RAM total

CONSOLE MEMORY plus EXTENDED BASIC

8K Console ROM @>0000->1FFF
12K X-=-Basic RCM @>6000->7FFF

18K Console GROM @83>0000->57FF # 8K Console RAM @>8000->9FFF
24K X-Basic GROM @>6000->DT7FF * 16K VDP RAM €>0000->3FFF %
62K of ROM/GROM Total 24K of RAM Total

Now add

MEMORY EXPANSION and the SPEECH SYNTHESIZER

8K Console ROM €>0000~>1FFF

12K X-Basic ROM @>6000->T7FFF 8K Expan RAM @>2000->3FFF
18K Console GROM €>0000-=>57FF #% 8K Console RAM €>8000->9FFF
24K X-Basic GROM @>6000->D7FF # 24K Expan RAM @>A000->FFFF
32K Speech ROM @>0000->T7FFF * 16K VDP RAM €>0000->3FFF *®
94K of ROM/GROM Total 56K of RAM Total

and finally add
THE RS5232 CARD and THE DISK CONTROLLER CARD

8K Console ROM €>0000~>1FFF
2K RS232 DSR ROM €>4000~>4800 (aprox)
8K DISK DSR ROM €>4000-)>5FFF

12K X-Basic ROM @>6000->7FFF - 8K Expan RAM &>2000->3FFF
18K Consocle GROM €>0000->57FF * 8K Console RAM &€>8000->9FFF
24K X-Basic GROM €>6000->D7FF # 24K Expan RAM @>A000->FFFF
32K Speech ROM @>0000->7FFF # 16K VDP RAM €>0000->3FFF #
104K of ROM/GROM Total 56K of RAM Total

Boy do we have a lot of memory mapping to dol!

®* Note: These items are memory mapped devices. You cannot PEEK or LOAD here
from Extended Basic,

Ve

Here are a couple of programs that use
CALL LOAD to change your screen display so
you will need expansion memory to run them.

The first program places your computer
in the Multi-Color mode and then generates
patterns on the screen. Both this program
and the one following it are fighting the
Extended Basic system monitor in that the
computer wants to return to a normal 32
column display in graphiecs 1 mode for
Extended Basic. We presented them here for
you to play with, they aren't what we would
call truly useful but they are fun to look
at.

After you have tried the first program
replace lines 30 and 40 with some PRINT,
DISPLAY AT and HCHAR or VCHAR statements of
your own, you won't be able to see any text
but it produces some interesting patterns.
We will discuss Multi-Color mode more in
future issues.

What this program does is to place the
value needed for getting into Multi-Color
mode into an address in the scratch pad ram
and this address is a duplicate of VDP
register 1. The operating system in our
computer automatically copies whatever is
in this address into VDP register 1 when a
key is pressed that is why we have the CALL
KEY statement in line 20, Once you press a
key the computer will switch itself into
Multi Color mode. If you stop the program
with FCTN 4 (CLEAR) the System monitor will
return the screen to its normal appearance.

You can use sprites in Multi-Color mode
but the magnification is also in VDP
register 1 s0 for now just use standard
size sprites. When we map out VDP RAM we
will included all the info on the different

VDP registers.

10 CALL CLEAR :: CALL INIT :
: CALL LOAD(-31788,232):: PR
INT "PRESS ENTER"™

20 CALL XEY(0,K,S):: IF S=0
THEN 20 ELSE CALL SCREEN(2)

30 CALL CLEAR :: FOR T=1 TO

T :: FOR I=34 TO 126 :: PRIN
T CHR$(I);:: NEXT I :: NEXT

T

40 FOR I=34 TO 126 :: CALL V
CHAR(1,1,I,768):: NEXT I ::

'm

The following program also uses CALL
LOAD to place you into Text Mode (40
Column)}. This program is also fighting the
Extended Basic system monitor which thinks
i1t is still in a 32 column display mode
with 28 column PRINT lines.

We can get into text mode by using a
similar method as the last program however
we could not see any text. The foreground
and background colors in Text mode are
stored in VDP register 7 which is not
directly accessible from Extended Basiec. So
what we did was to write a small assembly
language program that switches the mode and
sets the foreground and background color.
Then we loaded this program and used CALL
PEEK to take it apart so we could present
it as CALL LJAD's for everyone that does
not have the Editor Assembler command
module.

Because of the ACRG statement in the
Assembly version we knew the the program
would be in memory at address hex 3000
which is decimal 12288, We also had to load
the LINK name for this program in the
REF/DEF table which resides at 3FF8 since
there is only one name in it. The rule for
the REF/DEF table is that the name must be
6 characters in length, including trailing
spaces, and have 2 bytes following the name
that give the address in memory where the
program starts. Don't forget that the first
byte is multiplied by 256 and the second
byte is added to it to form the word that
indicates the address. In our case it is
48#256 = 12288 plus 0 = 12288 or hex >3000.

There is one more thing that MUST BE
done in order to let the computer know that
some thing is in the REF/DEF table. You
must load the starting address of the
REF/DEF table into hex 2004 or decimal
8196. Our REF/DEF table starts at 16376, 8
bytes up from the bottom of the table, 6
for the name and 2 for the address. So
16376 divided by 256 = 63.96875. 63 is the
first byte so we will subtract 63 from
63.96875 and multiply .96875 times 256 to
get 248 which is the second byte and that
is how the first CALL LOAD on line 10 in
the program came to be.

The second CALL LOAD at 16376 loads the
LINK name and the starting address of our
program. The CALL LOAD's on lines 20 and 30
are the Assembly language program. In the
CALL LOAD on line 30 you will find the

p 1 GOTO 30
11

m

number 244 at the beginning of the second
line, this is the foreground and background
color of the ftext on the screen you can
play around with this value to change the
colors without hurting the program. Once

again we will discuss this value when we
map out VDP RAM.

When you run this program things won't
line up right on the screen because we are
fighting that system monitor but some
things of interest come into view on the
bottom of the screen, Because Text Mode
allows 960 character positions on the
screen we are able to see part of VDP RAM
that is just below the normal screen image
table. The part that has been brought into
view is called the Sprite Attribute Table,
the Sound Table and the Crunch buffer. I
hate to keep doing this but once again we
will discuss these in depth with the VDP
maps, for now just play with this and watch
what happens.

While you are running the program it
asks you to input a string and as you do
the screen scrolls up but everything is
offset because the system thinks it is in
32 column mode. After you play with this
change line 50 and put all 28 sprites into
motion by using a FOR NEXT loop and add
line 60 to read GOTO 60 to keep the program
running. You will not be able to actually
see the sprites since they are not allowed
in Text Mode. You will be able to see the
bytes being updated in the Sprite Attribute
table and this is the same thing that

happens when you are in the normal mode
with visible sprites.

For now just play around with it and we
will keep looking for a way to defeat the
system monitor in Extended Basic so we can
have a true 40 column display for our
programs in Extended Basic.

10 CALL CLEAR :: CALL INIT :
: CALL LOAD(8196,63,248):: C
ALL LOAD(16376,84,32,32,32,3
2,32,48,0)

20 CALL LOAD(12288,2,224,131
,224,2,1,240,129,216,1,131,2
12,216, 1, 140, 2,6, 193’216,1)

30 CALL LOAD(12308,140,2,2,1
,244,135,216,1, 140,2,6,193,2
16,1,140,2,6,155)

Here is the Assembly language version of

the previous program's CALL LOADS on lines
10, 20 and 30.

40 CALL LINK("TM)

50 INPUT A$::

N CALL CLEAR ::

50

IF A$="C" THE
GOTO 50 ELSE

Line Hex Oped Label Opcode

Num. Add. Valu Field Field

0001 DEF T

0002 3000 AORG >3000

0003 3000 O2E0 T LWPI >83EQD
3002 83E0

0004 3004 0201 LI R1,>F081
3006 F081

0005 3008 D801 MOVB R1,6@8>83D4
300A 83D4

0006 300C D801 MOVB R1,8>8C02
300E 8C02

0007 3010 06C1 SWPB R1

0008 3012 D801 MOVB Rt1,€>8C02
3014 8CO02

0009 3016 0201 LI Rt,>FL8T
3018 F487

0010 3014 D801 MOVB R1,68>8C02
301C 8C02

0011 301E Q6C1 SWPB R1

0012 3020 D801 MOVB R1, €>8C02
3022 8CQ2

0013 3024 069B BL ¥%R11

0014 END

If you use the number conversion program
from Vol 2 of our newsletter on the hex
numbers in the Oped Valu (Opcode Value)
colunmn and convert them into decimal you
will find that they are the szme as the
ones used in the CALL LOAD statements, Play
around with this and become familiar with
it because we plan on presenting more
Assembly language programs that will be
loaded with CALL LOAD along with the
Assembly version s0 everyone with expansion
memory can benefit from them.

o I T

<

.-'_'_.--'"

r—r— 7 1 T . ' @ I . 1 . J I [4 Ll Ll 1 1 b

N . S S N - SR A Sy Blgeinbio ol SN S o o S S S N SR S S ey kil b oS A

The following program does not require
expansion memory and it is still a lot of
fun to play with. It does however require
Extended Basic and a joystick to use it.
This program allows you to draw on the
screen using only the joystick and the fire
button.

When you run the program the screen will
go black and fourteen different colored
boxes will be displayed at the top of the
screen. In between each colored box is a
black box and it can be used as a color or
to erase a small part of your drawing. To
pick up a color move the white dot with the
joystick on top of the color you want on
the top row and press the fire button. The
color you have picked up will be display in
the upper left hand corner of the screen.

Now you can move the white dot to any
location on the screen and wherever you
want to put a colored block just press the
fire button, you can also hold down the
fire button and draw as you move the white
dot around. The program will alsc allow you
to wrap around the screen in all directions
30 you can easily go from the bottom of the
screen to the top to get a new color.

When you are ready for a new color just
go back up to the top of the screen and
pick it up. If you want to erase your
drawing from the screen just move the white
dot up to the top of the screen, any where
on the first row, and press the 1 key.
After the screen is erased your white dot
will be at its starting position but it
will still be loaded with the last color
you wWere using. |

There are a lot of items you could add
to this program since there is so0 much
memory left. You could add IF K=7 THEN 180
ELSE to the beginning of line 170.
Then when your white dot is on the top row
of the screen and you press the 2 key,
keycode 7 on the split keyboard scan, you
will leave this program and jump down to
your own routine on line 180. How about a
routine that saves the screens out to disk
or cassette using CALL GCHAR in FOR NEXT
loops., Maybe you could jump down to execute
a screen dump utility, if you have one, or
whatever else you can come up with.

100 CALL CLEAR :: CALL SCREE
N(2):: K=2 :: W=32 :: FOR S=
88 TO 136 STEP 8 :: CALL CHA
R(S,"FFFFFFFFFFFFFFFFOOY)::
NEXT S

110 CALL CHAR(42,"00003C3C3C
3C"):: CALL COLOR(1,14,2,8,1
3,3,9,4,5,10,6,8,11,7,9,12,1
0,11,13,12,14,14,15,16)

120 FOR 35=88 TO 136 STEP 8 :
: DISPLAY AT(1,K):CHR$(3S)&"
"&CHR$(S+1):: K=K+4 :: NEXT
S

130 CALL HCHAR(2,1,32,736)::
CALL SPRITE(#1,42,16,17,121
Je: ¥=3 :: X=16 :: CALL SOUN
D(-100,660,9)

140 CALL JOYST(1,K,S):: X=X+
SGN(K):: Y=Y=-SGN(S):: IF Y>2
4 THEN Y=1 ELSE IF Y<1 THEN
Y=24

150 IF X>32 THEN X=1 ELSE IF
X<1 THEN X=32

160 CALL LOCATE(#1,Y%8-7,X%8
-T):: CALL KEY(1,K,S):: IF S
=0 THEN 140 ELSE IF Y>1 THEN
CALL SOUND(-90,-2,15):: CAL
L. HCHAR(Y,X,W):: GOTO 140

170 IF K=19 THEN 130 ELSE CA
LL GCHAR(Y,X,W):: CALL .SOUND
(-90,880,7):: CALL HCHAR(1,2
,W):: GOTO 140

This DRAW program was programmed using
some of the routines and formulas from the
Smart Programming Guide for Sprites. We
wanted to present it here in hopes that 1t
might help you to better understand how to
group together and modify some of the
different routines from the book.

You will find the documentation for
parts of this program in the Formula
section and in JOYST 3. By using KEY 3 you
can add keyboard inputs to it. I hope you
enjoy using and modifying it.

e T

5" 1— =FORTH

AN INTRODUCTION TO TI FORTH

Forth is a very fast and powerful
language that Texas Instruments will be
releasing to the TI 99/4A Users' Groups
sonetime in Feb. If you don't belcong to a
local users' group and you would like to
bring out ALL the power of your G9/4A I
would strongly recommend that you join one.
For the cost of Joining a group and the
costs of duplicating the Forth manual and
diskette you will be able to write and run
some very powerful programs. To program in
TI Forth you will need the following
equipment. A c¢onsole, monitor or TV, the
Editor Assembler command module, 32K Memory
expansion, at least one disk drive and of
course a copy of TI FOKTH,.

Forth opens up the entire computer to
your programming imagination and it is much
easier to program in than Assembly
language. Anything you can do in Assembly
language you can do in Forth from writing a
simple program to writing rapid action,
interrupt driven, bit mapped games or your
QWh programming language.

It is a word orientated language similar
to LOGO in that you define a word as a
procedure and then you can use that word to
help define the next word and so on. That
is how you build a program in Forth. The
words that you define are added to Forth's
resident vocabulary, which in the case of
TI Forth is pretty extensive already.

TI Forth supports ALL of the VDP modes
and it even adds two more of its own.
Besides Graphics mode (32 Column), Text
mode (40 Column), Multi-Color mode and
Bit-Mapped mode TI added SPLIT and SPLITZ.
SPLIT mode is a Bit-Mapped screen with 8
lines of text at the bottom of the screen,
Perfect for Graphic adventure games and
plotting routines. SPLITZ2 mode is also a
Bit-Mapped screen but it allows 4 lines of
text at the top of the screen, this one i=s
great for programs that need Bit-Mapped
graphics and only a little text. All of
these modes can be entered into by typing
in a one word command such as TEXT, SPLIT
or GRAPHICS. Bit-Mapped screens support
words such as LINE, DOT, DRAW and UNDRAW.
With SPLIT and SPLITZ modes you can Lype in
commands and watch them work.

TI Forth also supports 32 Sprites in all
of the VDP modes except TEXT mode. Many of
the Sprite commands are very similar to the
ones you are currently using in Extended
Basic¢ except they operate MUCH faster., At
last a COINC that works right. Some of the
commands for Sprites are; SPRITE, SPRCOL,
COLNC, COINCALL, COINCXY, DELSPR, DELALL,
SPCHAR, SPRPAT, SPRPUT, SPRGET, MOTION,
SPRDIST and SPHDISTXY. Forth runs so fast
that you could easily write a few of your
on words to add to this list, say for
checking COINC against a graphic character
or for finding out which two sprites have

COINC. How about calling them COINCHAR and
COINCWHCH.

Unlike Assembly Language you can type in
commands or define words in the immediate
mode and see how they operate before you
include them in your program. Forth is a
complied language s0 when you are defining
a word in the immediate mode and you press
ENTER it is instantly compiled and placed
in the dictionary. Then you just type in
the new word and watch it work.

When you are ready to start writing your
program you can enter the edit mode by
telling it the screen number on the disk
and EDIT, such as 30 EDIT <ENTER>. TI Forth
will then bring up a 64 column, standard
for Forth, windowed screen for you to type
in your programs on. After you have entered
your program just type in FLUSH and Forth
will write it out to the disk at that

screen. Forth allows 90, 1K Byte screens
per single sided, single density diskette.
When you what to load and run your progran
just type in 30 LOAD and it will load and
complle your program into the dictionary.
It will also auto-run it if you set it up.
that way or you can type in a one word
command to run it. TI Forth also has a 64
column editor that is not windowed and uses
SPLIT mode, Bit-Mapped, to give you 6}
columns on the screen at the same time.

If you haven't noticed by now I am
really excited about Forth's power, speed
and ease of programming, this is what a
computer is supposed to be like. If you've
tried programming with Assembly and haven't
gotten too far look into Forth, you'll love
it. Even if you are an avid Assembly
programmer you'll like Forth since you can
write assembly code right in line with the
rest of your program and Forth will
assemble it.

e

There was a lot of good news for TI
99/4A owners at CES. Before I get started
let me explain what CES is. It stands for
Consumer Electronics Show and it is held
twice a year. Once in the summer around
June at Chicago and also in January at Las
Vegas. The show was very large and
encompassed the entire Las Vegas convention
center as well as parts of three major
hotels. We walked around for three days and
still didn't see it all. There wasn't as
much on computers as there was on stereo's
and telephones but there were a lot of
software companies in the computer section.

Most of the software companies that we
talked with said they planned on continued
support for the 99/4A. A few of them talked
about new releases that will be coming out
over the next 9 to 10 months. Atari soft
has has the following releases planned,
some of which are already out. Pac-Man,
Donkey Kong, Centipede, Dig Dug, Defender,
Robotron: 2084, Pole Position, Ms Pac-Man,
Jungle Hunt, Moon Patrol, Joust, Shamus,
Protector II and Piecnic Paranoia.
Tigervision plans on releasing six more
titles to compliment its current Miner
2049er release. The titles are Springer,
Scraper Caper, Espial, Changes, Sky Lancer
and Super Crush.

In talking with Scott Adams he said that
they plan on continued support for the
99/4A. At the time we talked with him he
stated that they had further negotiations
with TI before he could say anything
definite. There were also quite a number of
octher companies such as Scott Foresman,
DLM, Broderbund and Sieara On Line, to name
a few, who had further negotiations with TI
planned. All of the companies we talked
with except CBS games and Milton Bradley
said they planned on continued support for
the TI 99/4A !1! That was nice to hear.

We also looked at Oscar, the bar code
reader from DataBar, for the 99/4A while we
were there. They didn't have a working
version of any of the software packages
that will be released in bar code form for
use with their reader, but for around 80
dollars with some software included it
looked pretty interesting. It should be
available very soon at your local dealer.

While we were at the show we stopped in
at CorComp's hospitality suite to look at
their P-Box prototype. We also heard a
rumor that they will bring out a baby P-Box
prior to the full P-Box. The baby P-=Box
will probably hold up to 4 cards. Your disk
drives will have to be external and have
their own power supply and case. We haven't
heard any prices at this time.

We also spotted a very nice letter
quality daisy wheel printer made by Dynax.
The Dynax model DX 15 has a 15 incech
carriage that is friction feed and prints
at 13 characters per second ,13 CPS. It
also comes standard with a parallel
interface and a 3K Byte buffer. The option
list for this printer includes a tractor
feeder, cut sheet feeder and an optional
keyboard that turns it into an electric
typewriter!!

It looks like Ron Wells will be carrying
this printer for around 499.95 plus
shipping, he seems to carry everything. If
you would like further information on the
printer you can contact him or Diane at
(714) 983-2878. His address is 5523 San
Jose, Monteclair, CA 91763. Oh yes, they
also have a special on Signalman Mark III
modems right now. This modem is made for
the 99/4A and it comes with a free one year
subscription and sign on to the Source,
which is valued at $100.00. They are
selling the modem with the subscription for
84.95 plus shipping.

While we are talking about modems we
would like to ask everyone that has ANY
information about ANY Bulletin Board
Systems for TI computers to send us the
info. We are planning on running a complete
listing of BBS for TI users in a future
issue. Also when you write please included
as much info as possible about the BBS,
such as sign on fee, types of data , phone
number and public domain access codes etce.
With your help we should be able to compile
a nice list from around the world.

OQur TI PC column will start next month,
we ran a little short on space this month.

In ¢losing for this month we would like
to thank everyone who subscribed and all of
the TI 99/4A Users' Group's for your
continued support, it wouldn't have been
possible without YOQOU!

SUBSCRIPTION I NFORMATION

THE SMART PROGRAMMER -~ a monthly 16+ page newsletter published by MILLERS GRAPHICS
U.S. 12.50 year - Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

To subscribe send a Check, Money Order or Cashiers Check, payable in U.S5. currency

TO: MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
All mail directed to THE SMART PROGRAMMER will be treated as unconditionally
assigned for publication and copyright .purposes and is subject to THE SMART
PROGRAMMER'S unrestricted right to edit and comment, MILLERS GRAPHICS assumes no
liability for errors in articles. -

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAFPHICS

Texas Instruments, TI, Hex-Bus and Solid State Scftware are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE
1475 W. Cypress Ave. “°PAD
San Dimas, CA 91773 San Dimas. CA 91773

PERMIT NO. 181

3R

|)

THE SMART PROGRAMMER

