MILLERS GRAPHICS

THE SMART
k PROGRAMMER

MARCH 1984
$150

Well here we are with the March issue
and by the great response we have received
from the February issue I guess we are on
the right track. iIn regards to our question
on the program length in the newsletter
SHORT and LONG are running neck and neck at
this point. We will keep tabulating the
results and let you know how it came out in
the next issue, So far the general
consensus seems to be for us to keep on
going like the February issue, Once again I
would like to thank everyone for the
comments, suggestions, tips and questions,
they have been great so please Keep sending
them in.

In the Rumor department things have been
a little quiet lately but we may have a few
goodies for you next month, if we can get
confirmation on them. There seems to be a
rumor out there that we bought the rights
to produce the Extended Basic module. I'nm
sorry to say that this is NOT true. Two
paragraphs of editorial is enough so lets
move on to Q & A's.

Q&A

We have received a few questions on
negative and positive duration CALL SOUND

statements so lets see if we can explain
them a little better.

When the program encounters a sound
statement with a negative duration such as
CALL SOUND(-400,660,0) it immediately halts
any other sounds that are on and starts up
the new sound. When the program encounters
a sound statement with a positive duration
such as CALL SOUND{(400,660,0) it waits
until the previous sound has completed its
duration time before the new sound starts

up. I believe that the program listed below
will help to clarify this a little more.
When you run this program it will first
execute a series of positive duration
sounds and then it will execute the same
sounds but with a negative duration.

Positive duration sounds are mainly used
for songs and sound effects that require
each sound to be on for a specific time.
Positive duration sounds also make great
time delays since the duration is in
milliseconds (duration/1000=zseconds). The
following two sound statements create a 2
second delay before the program continues
execution. CALL SOUND(2000,-4,30) :: CALL
SOUND(1,=-4,30). You can easily add some
lines of code in between the two sound
statements, such as initializing variables
and strings or moving a sprite for a given
time period, s0o that the time is not a
total waste. This is what we used for the
timing on our shooting routine in the Smart
Programming Guide for Sprites.

Negative duration sounds are used for
general input prompts or warning sounds as
well as for sound effects that require
immediate response or rapid changes in
frequency and/or volume. The BEEP for INPUT

and the HONK for syntax and other errors
and warnings the the 99/4A generates are
both negative duration type sounds.

10 CALL CLEAR
TIVE"®
A=z1

:: A$(0)="POSI
A$(1)="NEGATIVE" ::

20 FOR I=1 TO 24 :: DISPLAY
AT(I,11)ERASE ALL:A$(ABS(A<D
)):: CALL SOUND(A®400,1070-1I
#40,I,1080-1%40,I+2):: NEXT
I :: ==A :: GOTO 20

A

Looks like this was the month for
Hardware questions so lets dig into them.
Before we start I must say that these are
my opinions based on our own research,

Can Extended Basic be but on a card for
the P-Box?

Yes it can but it would be fairly tricky
on the 99/4A, The way the 4A is currently
memory mapped leaves very little room in
the CPU address space for the 36K this
language requires. You can't use the 8K
console ROM space since it is already full.
You could use the 8K low memory expansion
space but then it wouldn't be compatible
with any programs that use Assembly
language subroutines since they reside
here. You could use the 8K DSR space if you
wanted to give up use of your disk drives
and/or RS232 since they are paged intoc this
space. The 8K cartridge space is open for
its use so it could be mapped into this
space and with some very fancy bank
switching and logic checking, approximately
five BK ROM banks, it might work out OK.
Since it would be in ROM it would have to
be rewritten in Assembly language and it
would need a GPL link routine to access the
info in GROM chip 0. 24K of Extended Basic
is currently written in GPL language and
this language will not run in ROM or RAM
without going through some sort of GROM
simulator (auto-incrementing addressing).

The other choice would be to put 12K of
it in ROM, like it is now, and the rest of
it in GROM. There might be a problem with
accessing GROM out of the side port though
because not all of the cartridge port lines
g0 out the side and TI has stated that they
were at one time considering eliminating
the ones that currently are there., This may
mean that not all 99/4A's have the same
GROM lines out the side port, 1I'm not sure
if they ever did this. There wouldn't be
any cost savings with it on a card and
depending on how the card was set up you
may or may not be able to access another
module that is plugged into the cartridge
slot. Speaking of costs don't forget about
the costs for purchasing the rights fron
TI, that could be quite a chunk of change.
I don't currently know of anyone that is
panning on producing such a card and I
think if someone other than TI buys the
rights and manufactures it they will
probably follow the current and tested
method of putting it in a module.

Can you put more than one memory
expansion card in the P-Box?

Yes you can. However they will act in
parallel and as such you will still only
have 32K of memory expansion. Lets talk
about about expanding the memory on our
computers for a moment. The TMS 9900
microprocessor and its current memory
addressing scheme will only allow 64K of
memory addressing. 32K of this is reserved
for system operation, 8K console ROM, 8K
DSR space, 8K cartridge space and 8K of RAM
space for memory mapped devices and the
CPU's scratch pad. This leaves us with 32K
of address space for memory expansion, that
i3 the maximum expansicn HAM that our
computer can address without messing up the
compatibility of everything else. We are
limited to 64K of addressing because the
address bus is 16 bits wide. So with every
bit on, equal to 1, we have a binary number
with 16 ones in it, ie; 1111111111111111.
If you convert this into an unsigned, not
two's compliment, decimal number it. equals
65,535. In two's compliment binary, signed
numbers, this equals -1, Now 65,535 plus
address 0 equals 65,536 possible address
locations. 1K is equal to 1,024 bytes or
address locations so 65,536 divided by
1,024 equals 64K.

There are other 16 bit machines out
there that allow memory expansion beyond
64K such as the IBM PC and TI PC but their
microprocessor still only talks to 64K
blocks of memory at a time even 1if they
have a 512K RAM card installed. Many of
these machines have added some sort of
fancy "Shadowing™ , DMA (Direct memory
access) or Segmented Register technigue to
allow the microprocessor to easily page in
different 64K sections of memory as they
are needed. Our HA's do not have this so
64K is max and 32K of directly accessible
Expansion RAM is max without some special
hardware AND special software on the
expansion card. I know that there are some
128K expansion cards out there but remember
they only bank switch 32K of it infto the
address space at one time. The rest of it
can be used as print spoolers, buffers, or
a RAM disk but it requires special software
to make it work. (I think I stuck my neck
out on that one, I can only imagine the
letters that will be coming in). Lets move
on to a Firmware question about the
Editor/Assembler cartridge.

Mo

First off let me say that this module
seems to be getting hard to find. If you
can find one and you have or are planning
on getting Memory Expansion and a disk
drive I strongly recommend that you pick it
up! I believe that in the U.S. 1{ has a
suggested retail price of 39.95 and for
that amount its one heck of a bargain even
if you don't plan on writing Assembly
language programns.

This module comes with the Editor /
Assembler manual, two floppy diskettes and
the module itself. If you are not planning
on writing Assembly language and you are
not interested in the reference info in the
appendices, then this bock and a cup of hot
chocolate is probably the best cure for
insomnia you'll ever find. However if you
are interested in Assembly language then,
even though the book is boring, you need
itt!! It is not, however, an introduction
to Assembly it is only a reference manual
of Assembly language opcodes, syntaxes.

One of the two diskettes contains the
assembled, object code, game of Tombstone
City a=s well as the documented source code,
what the programmer typed in to get the
object code after it was run through the
Assembler. The other diskette contains the
Assembler, The Editor, a debugger (both the
source and object code) and some utilities.
So what is in the module? Not much! The
module has the input prompts for using it,
it loads some utilities into low memory
expansion, such as the LOADER, VDP read and
write routines, DSR link, GPL link etc. It
also sets up the VDP memory map for its use
of VDP RAM and it adds INIT, LINK, PEEK,
LOAD, PEEKV, POKEV and CHARPAT CALL's to
console Basic., There is 6K of GROM and no
ROM in this module, most of the goodies are
on disk.

The Editor that loads and runs with this
module is one of the best windowed 80
column under $40 word processors you can
buy. It will do FIND, REPLACE, MOVE,
INSERT, COPY, SHOW, DELETE and it has user
setable Tabs. It will not right Jjustify
your type but it is very easy to use, what
you see 13 what you get. The files can be
saved to disk as either DISPLAY FIXED 80 or
DISPLAY VARIABLE 80 and they can be easily
OPENed and written to or read from in Basic
and Extended Basic. The DIS/VAR 80 files
are SEQUENTIAL and the DIS/FIX 80 files are
RELATIVE type files.

With interaction like this between
Extended Basic and Assembly language source
code or word processed text and or DATA
there are quite a few interesting
possibilities. How about an Extended Basic
program that writes Assembly source code.
Hmmm.. sounds like the start of a two pass
compiler!! Anybody have any spare time?
How about an Extended Basic Mail-merge
program for form letters? What if we go the
other way and use it as a full screen word
processing type editor for Extended Basic
programs. Then we could use another
Extended Basic program to read it in and
convert it from ASCII into a MERGEable
token type file which could then be lcoaded
with MERGE DSK1.xxxxxxx . (See the program
that converts MERGE token files into ASCII
on page 11). Of course all of this is also
possible, except for the actual assembly
conversion, with TI-Writer. Sounds like
fun, I just wish I had a little more spare
time to play with it. If someone will write
it we will publish it. Well enough of that
for now.

Before 1 wrap up this article I must add
that one of the other main reasons for
picking up the Editor / Assembler module is
80 you can lecad and run TI Forth and TI
Forth programs! If you haven't seen what
the 99/44A can do in Forth run down to the
next users group meeting in your area and
ask for a demo, I think you will be
impressed.

One last minute tip on using the Editor
/ Assembler module which just came to us
from Danny Michael of Florence, Alabama. To
get the LIST FILE sent out through the
parallel port you need to type in PIOQ. or
PIO.EC in response to the list file prompt.
It needs at least a period after PIO for it
to accept this as a valid I/0 option. Danny
also sent us some other interesting items
which we will be publishing in the next
issue. Thanks Danny.

How do you get more than an 80 column

output on the printer in either compressed

mode or with a 15" carriage?

The TI RS232 card automatically sends a
carriage return character, CHR$(13), after
every 80 characters. To defeat this you
will need to OPEN the device with the
carriage return off, this will also turn
off the line feeds. The statement that does

m

this would look like this for parallel
output. OPEN #1:"PIC.CR" . The only problem
with using this is that you will now have
to send your own carriage return and line
feed commands to the printer at the end of
the string. To do this you need to include
CHR$(13)&CHR$(10) in the print statements
that are sent out to the printer. If you
are using the full width of the carriage
you only need to send them at the end of
each string such as:
PRINT #1:A$&CHR$(13)&CHR$(10)
However if you are not using the full
width of your carriage (ie: 15 inch
carriage with 8 inch paper) then you will
need to send CHR$(13)&CHRS$(10) at the
appropriate column to keep the print head
from going off the edge of the paper.

il ik i

Can TI Forth subprograms be used with
Extended Basic.

No. TI Forth maps outft the Expansion
Memory, VDP RAM and Scratch Pad RAM
completely different than Extended Basic
does. Il uses the entire area of scratch
pad RAM that the Extended Basic interpreter
normally uses so the two would confuse each
other. Also the area in high Mem-Expansion
that is normally used to store an Extended
Basic program is used by Forth as its stack
area and terminal input buffer. All Forth
programs must have the Forth Interpreter,
99/4A Forth support and resident Forth
vocabulary loaded into memory in order to
run.

All languages need some form of
interpreter and vocabulary some where in
memory. The difference between Basic or
Extended Basic and Forth is that these
items are in ROM and GROM where Forth is
loaded into RAM on the 99/4A. Many of the
PC type computers out there have very
little ROM and all of their languages are
ioaded into RAM s0 they are really dumb
computers until something is loaded into
memory.

L

We received the following information on
Signalman Mark III, Mark VII and Volksmodem
modems from a dealer by the name of Tom
Knight. He can be reached at 7266 Bunion
Dr., Jacksonville, FL 32222. His phone
number is (904) 778-4507. The following is
an excerpt from his informative letter on
these modems.

"The main reason that I am writing is
your reference to the MK-III modem in the
current news letter. Are you aware that
Signalman makes another modem for the TI?
It is the Volksmodem and in my opinion is
better than the MK-III. Mainly because it
is a true direct connect modem, you can use
it with any type of telephone. With the
MK-IIT you must have a certain type phone.
It also comes with a Source subscription,
as do all of their modems. Their MK-=VII
modem will also work but requires a slight
modification. (Pins 1 and 2 must be
swapped). Both the Volksmodem and the
MK~-VII connect directly into the wall and
the phone is plugged into them. With the
MK-ITI you put it between the base and the
hand set. The suggested retail price for
the Volksmodem is about $93.00 with cables.
Several members of our Users Group are
using these modems with no problem. Also
the MK-VII has auto originate and auto
answer capability as does the Volksmodem.®"

Thanks for the info Ton.

OOPS!

Well we did it again. Looks like we had
a few more goofs in the February issue.
First off I'd like to apologize to CorComp
Inc., I should have checked out the RS232
card for myself. There is nothing wrong
with the serial pin outs numbered 2 & 3
they are the same as the TI card, sorry
about the mistake and any troubles this
might have caused anyone or any of the
CorComp dealers and distributors.

In the VDP RAM map on page 9 I stated
that the crunch buffer was included with
the other items that are between >0370 and
>O07TTF. That was wrong. The crunch buffer,
which we will explain when we map out VDP
RAM, is located at >0820 - >Q8BF.

Also on page 9, at the top of the right
hand column there is a small mistake. The
top of this column should read:

CONSOLE GROM 20000 - D5TFF 18K Bytes

That about does it for the Q00PS! column

for this month., At least its getting
shorter.

e

The New
EXPANSIOR SYSTEM

The latest news from CorComp Inc. is

/" their brand new EXPANSION SYSTEM for your

TI 99/4A computer.

The EXPANSION SYSTEM has provisions for
installing 2 slimline disk drives or 1 full
height drive and it contains the powerful
SYSTEM motherboard. The following items
that expand the power and versatility of
your 99/43A computer are included on the
motherboard.

1. 32K of Expansion RAM Memory which will
allow you to run Tl Writer, TI LOGO or
LOGO II, TI Multiplan, TI Forth and
Assembly language programs as well as
larger and more powerful Extended Basic
prograns.

2. A Double Sided - Double Density disk
controller. This controller will control
up to 4 disk drives and they can be

accessed as either DSK or dsk (upper or

lower case). With 2 slimline Double
Sided Double Density disk drives mounted
in the box you will have T20K of on line
rapid access disk storage. With four
drives hooked up you will have 1.4
megabytes of on line storage. The tests
we saw indicated that this new disk
controller loads programs 2 - Y4 times
faster than the TI disk controller. The
DSR ROM will c¢ontain the necessary
support for loading "Load and Run" type
Assembly language programs without the
Editor / Assembler command module. This
same ROM will also add CALL POKEV and
CALL PEEKV for accessing VDP RAM and
they can be used as commands or program
statements.

3. An RS232 interface with 2 serial outputs
and 1 parallel output. The serial
outputs are TI compatible and the
parallel is a true Centronics output.
This allows you to hook up printers,
plotters and modems to your computer.

"4, Specially designed power supply that
will power 2 slimline disk drives, and
the SYSTEM motherboard.

5. The FLEX cable interface for hooking all
this power up to your computer. The
cable is a small flexible round one (not
a fire hose) that plugs into the side of

your computer via a small L type
connector. This connector directs the

cable towards the back of the computer
instead of straight out to the side.

The EXPANSION SYSTEM, which is about
half the size of TI's box, has some
illuminated graphics and the power switch
on the front panel. The graphic¢s return
information on the Flex cable interface,
32K RAM, RS3232, Disk controller, disk Side
1, disk Side 2, the disk Index mark and
the Option slots. -

The disk controller will control just
about any 5 1/4 inch disk drive from full
height single sided - single density to
double sided - double density slimlines.
There are provisions in the disk controller
section of the motherboard to set up the
head seeking time (track to track) to match
some of the faster (more expensive) disk
drives out there. The disk manager program
is supplied on disk with the box. This is a
completely new program with some yvery nice
enhancements added to it! At the time this
article was written there were other
possible future options being tested for
the Expansion System. These items weren't
fully tested yet so I'll let you know about
them next month.

The EXPANSION SYSTEM will be available
through your local dealer starting at the
end of March. PLEASE c¢ontact your local

dealer for additional information and
pricing.

CorComp 1s also currently working on a
stand alone RS232 interface for the 99/4A.
This RS232 unit will plug directly into the
side of your computer and it will be shaped
to match the 99/4A profile., It will have a
serial port and a parallel port. This will
allow you to hook up a modem, and/or a
printer or plotter to your computer. The
suggest retail price is unknown at this
time. The other item they are currently
working on is a Disk Controller card for
the TI Peripheral Expansion box. This
controller card will have all of the same
features as the controller that is on the
motherboard in the Expansion System. It
will also come with the same Disk Manager
program on diskette and it should be
available around the same time as the
Expansion System. The price is unknown at
this time.

e e —

PEEKING AROUND

This month we will look at Extended
Baslc's use of Low and High Memory
Expansion (the Editor/Assembler and Basic
use is different). If you do not execute
CALL INIT then Extended Basic does not use
Low Memory Expansion. However when you use
CALL INIT X-Basic moves a large amount of
data into this space. The data is mainly
used by Assembly language programs and
subprograms. Some of this data also directs
the loader, CALL LOAD("DSK1.xxxx"), where
in memory to load the assembly program.

XML Link to name link routine:

In Extended Basic the starting address
of this routine is pointed to by >2000.
This routine is used to find a specific
name in the REF/DEF table. First it
compares the value at >2004, LFA, to >4000,
if >2004 contains >4000 then it Jumps out
of this routine and returns a name NOT
FOUND error. If the value at >2004 is less
than >4000, ie >3FF8, it then compares the
called name, ie; CALL LINK("DEBUG"), which
is stored starting at FAC, >834A, against
the characters starting at LFA. It compares
them two at a time, 16 bits, until all of
the characters have been tested or until
one of the characters don't match. If they
all match it then loads the starting
address of the routine into RO and branches
to it. If they don't match it adds 8 to R1,
which is the pointer to the start of the
name, and starts the match all over again.
When R1 equals >4000 it leaves this routine
and returns a NOT FOUND error.

FFA First Free Address in low mem—-exp:

The value at >2002 points to the first
unhused byte in low memory expansion. This
value i3 used by the loader to determine
where to place the assembly program that is
being loaded. After the program is loaded
this value is updated by the loader to
point the new FFA. NOTE: This updating does
NOT occur on AORG type programs!li!

LFA Last Free Address in low mem-exp:

The value at >2004 points to the start
of the REF/DEF table or, if there isn't a
REF/DEF table, it points to the end of low
mem-expansion at >4000. As items are added
to the REF/DEF table by the loader this
value is updated by subtracting 8 bytes for
every entry.

CALL INIT constant:
The value at >2006 is a specific value

of >AA55 that some X-Basic subprograms use
to check to see if CALL INIT has been

executed. When your program executes CALL“Y

LINK or CALL LOAD they check to see if the
value at >2006 is equal to >AA55. If it is
not, it issues an error message, if it is,
it allows the routine to be executed.
Because these routines check for this value
in low mem-expansion you can not execute
CALL LOAD or CALL LINK without it.

UTILITY VECTOR TABLE:

A vector table, of which there are many
throughout ROM, RAM and GROM, contains
pairs of pointers for various items. In
this vector table the pointers indicate
where the utility routine's workspace will
be and where the utility routine starts.
When you are writing an Assembly language
program that is loaded through X-Basic you
need to set up the EQUATES to point into
this table. For detailed info on these
utilities and how they are used see chapter
17T in the Editor/ Assembler manual. The

following routines are vectored from this
table:

RUMASG

This routine places (assigns) a value(s)
into a numeric variable(s) that is used in
a CALL LINK statement. In other words, it
places the value that is in the Floating
point ACcumulator, FAC =>834A, into the
Numeric Value table in high mem-expansion
and sets up the polinter in the Symbol table
in VDP RAM to point to it. This allows your
X-Basic program to use a value(s) that your
Assembly program generates.,

NUMREF

This is the opposite of NUMASG. This
utility allows your Assembly program to use
values that are passed to it from your
X~-Basic program via CALL LINK. In other
words, it looks up the variable name in the
Symbol table, finds out where it is in the

Numeric Value table and moves it into FAC
for your Assembly program's use.

STRASG & STRREF

These act like NUMASG & NUMREF except
they work on string variables. In STRASG
strings are passed to VDP RAM from

mem-expansion. In STRREF they are passed=~

the other way. The starting address of the
string in mem-expansion is in register 2 of
the workspace.

Y‘\%ori——o—n————————

oo —

XMLLNK

This utility allows your Assembly
program to link to a routine in ROM or to a
routine in mem-expansion. These routines

P use the GPL workspace at >83E0, the Utility

workspace at >2038 is only used to store
the return address. For more info on this
routine see chapter 16 in the Editor /
Assembler manual. When we start mapping out
ROM we will discuss the various ROM
routines and their locations.

KSCAN
This sets up the workspace, GPL, and
return address and then branches, BL, to

>000E which is the actual keyboard scanning
routine. After the scan is complete it
returns to this routine which then restores
the utility workspace and return address
and then returns, RTWP. Here is the entire
KSCAN routine, this does not include the
SCAN routine in ROM.

KSCAN LWPI >83EOQ
MOV R11,8>2038+22

GPL workspace
Save GPL rtn add

BL @>000E SCAN routine ROM
LWPI >»>2038 Utility workspace
MOV R11,€8>83E0+22 Restore rtn add
RTWP return

VSBW, VMBW, VSBR, VMBR & VWIR

The first four routines READ and WRITE
single or multiple bytes to and from VDP
RAM. The last routine, VWTR, writes a byte
to a VDP register. We will discuss the VDP
registers and their use when we start
mapping out VDP RAM

VSBW writes a single byte from the
workspace to VDP RAM,

VMBW writes multiple bytes from CPU RAM
via the workspace to VDP RAM.

VSBR reads a single byte from VDP RAM
into the workspace.

VMBR reads multiple bytes from VDP RAM
into CPU RAM via the workspace.

VWTR writes a single byte from the
workspace to a VDP register.

The following is a complete disassembly
of these routines with the EQUATES. The
workspace for these routines is located at
>2038.

VDPRD EQU >8800C VDP read data address
VDPWD EQU >8C00 VDP write data address
VDPWA EQU >8C02 VDP read/write address
RZLB EQU >2038+5 (>203D) R2's Lower byte

VSBW BL 6SETWDA =set up write out addrs
MOVB €2(R13),8VDPWD write out byte
RTHWP return
VMBW BL @SETWDA set up write out addrs

VWTLOP MOVB ¥®R1+,@>VDPWD write out byte

DEC R2 decrement byte count
JNE VWTLOP if more to write jump
RTWP el se return
VSBR BL 6@SETRDA set up read from addrs
MOVB @6VDPRD, 62(R13) read a byte
RTWP return
VMBR BL 6SETRDA set up read from addrs

VRDLOP MOVB €VDPRD, ®R1+ read a byte

DEC RZ2 decrement byte count
JNE VRDLOP if more to read jump
RTWP else return

VWTR MOV ¥*R13,Rt get reg # and value
MOVB €1(R13),€>VDPWA write out value
ORI R1,>8000 set for write to reg
MOVB R1,€VDPWA write out reg #
RTWP return

SETWDA LI R1, >4000 set to write to VDP
JMP WVADD

SETRDA CLR R1 set to read from VDP

WVADD MOV ®R13,R2 get VDP address
MOVEB €R2LB, 6VDPWA write low byte
S0C R1,R2 ad just write bit
MOVB R2,@VDPWA write high byte
MOV €2(R13),R1 get CPU RAM addrs
MOV €4(R13),R2 get byte count
RT return
NOTE: These utilities use the Utility

workspace at >2038 which is in the slower 8
bit RAM. If you write yocur own utilities
try and place your workspace in the 16 bit
RAM scratch pad area for faster execution
tipe.

ERR

The ERR utility transfers control to the
basic error reporting routine in GROM.
This allows your Assembly language routine
to use the standard error messages as
called out in the Editor / Assembler manual
on page 288. This routine, after setting up
the workspace, branches to routines in
console ROM which then branches to the
error routine in GROM and then returns
controll back to your basic progranm,

Y“%orm4miv0’o6eni; o (/J /4/4o—Y¥Y—2m——m—————mm—

A
o
o
—t
o =

>2036 |
>2038 |

$
|
|
l
I 2054 |
|
|
|
|

v
N
4=
oo
=

22054 XML link to name link routine pointer.

>2U4FA First Free address in low mem-exp.

>4000 Last Free address in low mem—-exp.

>AA55 Constant that indicates CALL INIT has been executed.
UTILITY VECTOR TABLE (ie: BLWP @KSCAN)

»>2038 Utility workspace pointer for BLWP E@NUMASG

>20G6 NUMASG Utility starting address.

>2038 Utility workspace pointer for BLWP €NUMREF

221TE NUMREF Utility starting address.

>2038 Utility workspace pointer for BLWP €@STRASG

>21E2 STRASG Utility starting address.

>2038 Utility workspace pointer for BLWP @STRREF

>234C STRREF Utility starting address.

22038 Utility workspace pointer for BLWP @XMLLNK

>2432 XMLLNK Utility starting address.

>2038 Utility workspace pointer for BLWP €KSCAN

>246E KSCAN Utility starting address.

>2038 Utility workspace pointer for BLWP €@VSBW

>248Y4 VSBW Utility starting address.

>2038 Utility workspace pointer for BLWP €VMBW

>2490 VMBW Utility starting address.

>2038 Utility workspace pointer for BLWP €VSBR

>249E VSBR Utility starting address.

>2038 Utility workspace pointer for BLWP @VMBR

>2UAA VMBR Utility starting address.

>2038 Utility workspace pointer for BLWP 6VWTR

>24B8 VWTR Utility starting address.

>2038 Utility workspace pointer for BLWP 6ERR

>2090 ERR Utility starting address.
UTILITY WORK SPACE STARTS HERE

RO-R15

End of work space

Start of XML link to name link routine.

(Finds the name in the REF/DEF Table)
Start of ERR Routine, (Return Error code to basic)
Start of NUMASG Routine. (Numeric Assignment)
Start of NUMREF Routine. (Numeric Reference)
Start of STRASG Routine., (String Assignment)
Start of STRREF Routine. (String Reference)
Start of XMLLNK Routine. (Link to system Utilities)
Start of KSCAN Routine. (Keyboard Scan) -
Start of VSBW Routine. (VDP single byte write)
Start of VMBW Routine. (VDP multiple byte write)
Start of VSBR Routine. (VDP single byte read)
Start of VMBR Routine. (VDP multiple byte read)
Start of VWTR Routine. (Write to VDP register)
{NOTE: No GPLLNK or DSRLNK in X-Basic CALL INIT)

First Free Address in Low Mem~-Exp. pcinted to by »2002

»

The REF/DEF Table resides at the end of

| I
| ® » |
| * Low Memory Expansion. Each entry is 8 bytes long, o |
I , * 6 for the Name and 2 for the starting address. * I
| | # CALL INIT in X-Basic leaves this space empty. L
| I S e e D D P D e P S P e LI L et e * |
! >3FF0 | DEF Name (CALL LINK or BLWP €) 6 characters. |
| D>3FF6 | Start address of the above routine, 2 bytes. |
! >3FF8 ! DEF Name (CALL LINK or BLWP @) 6 characters. |
| >3FFE | Start address of the above routine, 2 bytes. I
i >3FFF |END OF LOW MEMORY EXPANSION |
- e e e e 0 P e - S e T . e o e i +
Extended Basic
HIGH MEMORY EXPANSION usage
e +

{ >AC00 ISTART OF HIGH MEM-EXPANSION
(If Mem-Exp is present then the value at >8389
will be >ET7 while the program is running)

NUMERIC VALUE TABLE (in RADIX 100 notation)

Sterting point of the Symbol table in VDP RAM is
pointed to by >833E while the program is running.
The Symbol table then points into the Numeric value
table for each of the variable names.

LINE NUMBER TABLE -~ 4 Bytes per entry.

I

I

I

I

I

I

|

I

|

I

I

I

I

I

|

I

| Line # = 2 Bytes | Start Address of line = 2 bytes | |
Line numbers are always stored highest # to lowest # |
Starting address of this table is pointed to by >8330 |
Ending address of this table is pointed to by >8332 |
Current line number being referenced |
in this table is pointed to by >832E |
__ [
|

I

I

I

I

I

I

|

|

I

I

I

|

I

I

I

I

PROGRAM SPACE (Last line entered is at the top)

|

I

I

|

|

I

i

'

I

I

| Start of program space = (value at >8332)+1

{ Programs reserved words have been converted to Token values
I and the line numbers are removed from the beginning of
I
|
|
I
|
I
I
I
I
.
t
!
)
|

each line. The format for each line is as follows:

1st Byte
Following Bytes

Number of bytes for the line
(Start Address) Actual line code with
Token values replacing reserved words.

Last byte = >00
>FEET Highest address to be used in Mem-Exp. pointed to by >8384
>FFFC Workspace for LOAD Function. (non-maskable interrupt,
>FFFE Address for start of LOAD Function. not DSK1.LOAD)
>FFFE END OF HIGH MEMORY EXPANSION
o o o o i e B o Sl e 0 e B S i 8 i i B S 28 2 o o e o e A +

W

LINE SIZE

This program PEEKs into high memory
expansion and displays information about
your program. After you type it in save it
out to disk as a MERGE type file. Then you
can MERGE it back onto the top of anyone of
your programs and run it. This program
displays the bytes per line, where the line
number table is, where each line starts in
memory and what the total size of your
program is. You can display the results on
the screen or send them out to your
printer. You may need to modify the OPEN
statement on line 1 to match your printer.
On line 4 we are adding 5 bytes to the D
value, U4 to compensate for the line number
table entries and 1 to compensate for the
line length indicator. While this progran
is running you can stop and restart the
scrolling by pressing any key.

1 CALL CLEAR :: PRINT :"Qutrp
ut to Printer? (Y/N) N" :: A
CCEPT AT(23,26)SIZE(-1)VALID
ATE("YN"):A$:: IF A$=%"YI" TH
EN OPEN #1:"PIO®" :: P=t1

2 CALL CLEAR :: CALL PEEK(-3
1952,A,B,C,D):: A=A%256+B-65
536 :: C=C#*256+D-65536 :: PR
INT #P: "™ PROGRAM INFORMAT
IONP?: :"Line Number Table®

3 PRINT #P:

m:A:"End
Line

umber

:®"Start Address
Address ";C: : "7
Bytes Start?m":" N
Used Addresstt:"? -.

4 FOR I=C-3 TO A STEP -4 ::
CALL PEEK(I,B,D,E,F):: B=B#*2
56+D :: E=E®#®256+F-65536 :: C
ALL PEEK(E-1,D):: D=D+5

5 PRINT #P,USING "
$##¢ #4#4#4#47:B,D,E
++ CALL KEY(O,D,E)::

HEN CALL SCREEN(6)::

F#H#
T=T+D
IF E T

GOSUB T

6 NEXT I A=(A-C=-1)/-4 ::

PRINT #P: :TAB(8);"Total B
ytes =";T:" Number of Line
s =":A:"Average Bytes/Line =

".: ITNT(T/A):: STOP

7 CALL KEY(O0,D,E):: IF E<1 T
HEN 7 ELSE CALL SCREEN(8)::
RETURN

PEEKer
This program will allow yocu to PEEK

~anywhere in CPU memory, >0 - >FFFF, and it

will display both the numeric¢ value and the
ASCII characters for the values on the
screen. You may input your starting and
ending address as either HEX or Decimal
values and it will display the values in
these memory locations in the same number
base. You may want to combine LINE SIZE and
PEEKer together so you can easily find and
display your program as it sits in memory.

100 ON WARNING NEXT :: CALL
CLEAR :: H$="0123456789ABCDE
F"® :: PRINT ®"DEPRESS YOUR AL
PHA LOCK KEY": :"PRESS LETTE
R FOR INPUT BASE":

110 PRINT : :"D =DEC # B =
HEX #": : :: CALL SOUND(40,6
60,9)

120 CALL KEY(0,K,S):: IF S<1
TEREN 120 ELSE ON POS("DH",C
HR$(K),1)+1 GOTO 110,140,180

130 INPUT A$&" DEC ADDRESS=

n:EA :: IF EA<~32768 OR EA>®b
5535 THEN 130 ELSE EA=INT(EA
+655368(EA>32T767)):: PRINT

: RETURN

GOSUB 130
A$="END " :: GO
IF EA<SA THEN 140

140 A$="START"
:: SA=EA ::
SUB 130
150 FOR I=SA TO EA STEP 8 ::
cALL PEEK(I1,A,B,C,D,E,F,G,H
Y:: PRINT USING "###43# #44#

J4# #4#4 #4## "&CHR$(A)E&CHR$(B
)&CHR$(C)&CHR$(D):},4,B,C,D

160 PRINT USING "##4### ##+#
$3# #4¢ $#4# "&CHR$(E)ECHRS$(F
J&CHR$(G)&CHR$(H):I+4,E,F,G,
H :: NEXT 1 GOTO 110

170 PRINT A$&" HEX ADDRESS="
:+ : :: ACCEPT AT(22,20)BEEP

SIZE(Y)VALIDATE(HS$):EA$:: R
'ETURN

180 A$="START" ::
c: SA$=EAS$ A$3="END "™ ::
GOSUB 170 :: IF EA$<SA$ THEN
180 ELSE GOSUB 210 SA=T

t: SA$=EAS :: GOSURB 210

GOSUB 170

Mo

ﬁﬁ\

e ‘|

190 EA=T :: FOR I=SA TO EA S
TEP 6 :: A=I :: GOSUB 220 ::
A$=HEX$&" ™ :: FOR T=I TO I
+5 STEP 2 :: CALL PEEK(T,A,B
Y:: B$=B$&CHRS$(A)&CHRS$(B)
200 A=zA%256+B :: GOSUB 220

: A$=A$&HEX$&" "™ :: NEXT T :
: PRINT A$&" "&B§ :: Bé=znn
¢ NEXT I :: GOTO 110

210 T=0 :: SA$=SEG$("0000",1
, U~-LEN(SA$))&SA$:: FOR I=1
TO 4 :: T=T+(POS(H$,SEG$(SAS$
yI,1),1)=-1)%16"(4-I):: NEXT
I :: T=T+65536%(T>3276T7):: R
ETURN

220 A=A+65536%(A>32767)

230 HEX$=SEG$(H$, (INT(A/H4096
YAND 15)+1,1)&SEG$(H$, (INT(A
/256)AND 15)+1,1)&SEG$(H$, (I
NT(A/16)AND 15)+1,1)&SEG$(H$
, (A AND 15)+1,1):: RETURN

bl

MERGE / READ
This program was sent to us from Barry
Traver. When you run this program it will
ask you for the file name of a program that
was saved on DSK1 with the MERGE option. It
will then OPEN this file and read it in. As
it reads it in it converts the Token values
into their actual reserved words and
displays them on the screen. By playing
around with this and becoming familiar with
the token values you could easily reverse
this action. Then you could have your
program OPEN a file and PRINT #1 out to it,
this means your program could write actual
program lines. These lines c¢ould then be
MERGEd back in and run. You could use it to
write CALL SOUND(xxx,xxx,x) lines for music
or sound effects or CALL CHAR lines for
characters. This could open up a whole new
aspect of programming.
Thanks Barry.

10 ! MERGE/READ BY
- B.A. TRAVER
552 SEVILLE ST.
PHILA., PA 19128
(FOR FURTHER INFORMATION,
SEND S.A.S.E.)

20 1 THIS PROGRAM WAS
INSPIRED BY TWO PROGRAMS
BY JOHN CLULOW.

v

30 ! THE PURPOSE OF THE
PROGRAM IS TO ASSIST IN THE
READING AND INTERPRETATION
OF PROGRAMS STORED IN MERGE
FORMAT ON DISK.

40 DATA ELSE

50 CALL CLEAR :: DIM C$(254)
,¥(200):: GOTO 60 :: C,CL,I,
J,k,L,L1,L2,R,S,S1,82,N$,X$
:¢: CALL KEY :: !@&P-

60 PRINT "MERGE/READ PROGRAM
®: :"BY BARRY A. TRAVER"™: :
:"WANT COMMENTS (Y/N)? ";

TO0O CALL KEY(0,K,S):: IF S=0
THEN 70 ELSE PRINT CHR$(K);:
: IF K=78 THEN 170 ELSE IF K
<>89 THEN 70O

80 CALL CLEAR :: PRINT " SO
ME COMMENTS ON PROGRAMS IN M
ERGE FORMAT:": : :"™ EACH PR
OGRAM LINE IS REP-":®"RESENTE
D BY A STRING OF"

90 PRINT "CHARACTERS."™: :®
THE FIRST TWO CHARACTERS RE
PRESENT THE LINE NUMBER; TH
E LAST CHARACTER IS ALWAYSCH
R$(0)."

100 PRINT :® MANY ASCII CHA
RACTERS HAVESPECIAL MEANINGS

y E.G., CHR$(154) REPRES
ENTS ®"®"REM®""™ AND CHR$(157)
REPRESENTS RHCALL®R W: :

L »
) *

110 GOSUB 370

120 PRINT "™ WITH INSPECTION

OTHER PATTERNS CAN BE D
ISCOVERED.": :" FOR EXAMPLE
, CHR$(200) INDICATES THA
T THE NEXT™"

130 PRINT "CHARACTER WILL IN
DICATE THE LENGTH OF THE STR
ING TO FOL-":"LOW (IF YOU CA
N FOLLOW®":®"THAT!)."

140 PRINT :® ®®LTNE 65535""

OR CHR$(255)&":"CHR$(255) 1
S THE END~QOF-FILEMARKER FOR
THE PROGRAM.": :

, THE LEFT-MOST COLUMN INDIC
ATES THE ASCII CODES, AND
THE NEXT COLUMN GIVES SOME
INDICATIONOF THEIR MEANING.

"I-
160 GOSUB 370

170 FOR I=129 TO 254 :: READ
C$(I):: NEXT I

180 PRINT :: INPUT "NAME OF
(MERGE FORMAT) FILE? ":N§ ::
CALL CLEAR :: OPEN #1:"DSK1
."&N$,VARIABLE 163 :: DISPLA
Y AT(1,4):"ASCII CODE FOR LI
NE™

190 IF L=65535 THEN 340

200 LINPUT #1:X$:: L1=ASC(S
EG$(X$,1,1)):: L2=ASC(SEGS$(X
$,2,1)):: L=L1%256+L2

210 DISPLAY AT(1,24):STR$(L)
1t C=1 :: J=2

220 S1=LEN(STR$(L1)):: DISPL
AY AT(3,4-S1):STR${(L1)&" "&S
TR$(L1)&"*#256" :: S2=LEN(STR
$(L2)):: DISPLAY AT(4,4-S2):
STR$(L2)&™ +"&STR$(L2)

230 FOR I=3 TO LEN(X$):: R=I
+2+2%(C=1):: IF I>40 THEN R~
R~16 :: IF I>80 THEN R=R-16
:: IF I>120 THEN R=R-16

240 J=Jd+1 : Y{(I)=ASC(SEG$(X
$,I,1)):: DISPLAY AT(R,C+3-L
EN(STR$(Y(I)))):STR$(Y(I))

250 IF Y(I-2)=201 THEN IF Y(
I-1)=0 THEN DISPLAY AT(R,C+1%
):STR$(Y(I)):: GOTO 300 ELSE
DISPLAY AT(R,C+4):"+"&STR$(
Y(I)):: GOTO 300 ~

260 IF Y(I-1)=z201 THEN IF Y(
I)=0 THEN 300 ELSE DISPLAY A
T{R,C+4):STR$(256%Y(I)):: GO
TO 300

270 IF Y(I)>254 THEN DISPLAY
AT(R,C+h4) :nun

280 IF Y(I)>128 AND Y(I)<K255
THEN DISPLAY AT(R,C+4):C$(Y

(I))

w

150 PRINT " IN THIS UTILITYX

290 IF Y(I)>31 AND Y(I)<91 T
HEN DISPLAY AT(R,C+4):CHR$(Y
(I))

300 IF J<20 THEN 330

310 C=C+1l4 :: J=0 :: IF C>16
THEN C=1

320 IF I=40 OR I=80 OR I=120
THEN 350

330 NEXT I
THEN 350

IF I=LEN(X$)+1

340 CLOSE #1 :: CALL CLEAR
: END

350 GOSUB 370

360 IF I<K>LEN(X$)+1 THEN 330
ELSE 190

370 DISPLAY AT(24,3)BEEP:"PR
ESS ANY KEY TO GO ONT

380 CALL KEY(0,K,S):: IF 8=0
THEN 380

390 FOR CL=3 TO 24 :: DISPLA
Y AT(CL,1):: NEXT CL :: RETU
RN |

400 DATA ™::®,mim IF,GO,GOTO
GOSUB,RRETURN,DEF,DIM,END,FO
R,LET,BREAK,UNBREAK, TRACE, UN
TRACE, INPUT,"DATA™,RESTORE, R
ANDOMIZE

410 DATA NEXT,READ,STOP,DELE
TE, REM,ON,PRINT,CALL,OPTION,
OPEN,CLOSE,SUB,DISPLAY, IMAGE
ACCEPT,ERROR,WARNING,SUBEXI
T, SUBEND, RUN

420 DATA LINPUT,,,,,,THEN,TO
,STEP,",“,;,:,),(,&,,Gﬁ,ﬂﬂn,
XOBINOTI=I<1>I+!-!*!/1 BEEE
EOF,ABS,ATN,COS,EXP, INT

430 DATA LOG,SGN,SIN,SQR,TAN
LEN,CHR$,RND,SEG$,POS,VAL, S
TR$,ASC,PI,REC,MAX,MIN,RPTS,
v449, NUMERIC,DIGIT,UALPHA,S
I1ZE, ALL

440 DATA USING,BEEP,ERASE,AT
 BASE, ,VARIABLE,RELATIVE,INT
ERNAL,SEQUENTIAL,OUTPUT,UPDA
TE, APPEND,FIXED, PERMANENT, TA
B,#,VALIDATE

A e T

~

m

PC NOTES

Our TI PC program for this month is a
little File Menu and Loader program written
in Basic (See listing below). When you run
this Loader a screen with your progranm
files, similar to diagram 1, will be
displayed on your monitor. You can then use
the cursor arrow keys to move around the
menu selections. When you are on the
program that you want to run just press
RETURN and the program will boot in and
run. If you want to look at the other drive
move the indicator down to B:®.BAS and
press RETURN. This will display the Basic
program files from drive B.

You cannot RUN the files with the .DAT,
.EXE or .COM extensions from Basic so the
program will halt with an error if you try.
If you have a hard disk drive you might
want to change the B 's in line 5 to E 's.
If you have external drive(s) you can
easily add another line similar to lines 4
or 5 to accommodate the drive(s). The
easlest way to accomplish this is to:

1. RENUM the program.
- 2. Press F1 RETURN to List the progranm.
3. Move the cursor up to line 50 and
change the line number to 55.
4. Change the B 's to the proper drive
letter and then press RETURN.

5. Now press ESC and type in RENUM 1,;
and press RETURN.

6. LIST the program to check the changes
and then SAVE"FILEMENU

Tou might want to add the following code
to the very beginning of line 1.

KEY 12,CHR$(27)+"RUN FILEMENU™

Then whenever you press F12 and RETURN
(as a fail safe), FILEMENU will boot in and
run. You can also type in BASIC FILEMENU
and press RETURN from MS-DOS and Basic and
Filemenu will boot in from the system and
run. You could also create a batch file
with EDLIN.COM that would do the same thing
from MS-DOS.

A few last notes on the program for this
month. Be very careful of the spacing on
lines 4, 5 and 6 when you type them in or
the program won't work right because the
indicator is not allowed to move to a space
character. If you change the screen display
around make sure that the LOCATE in line 3
matches the CHR$(SCREEN(.... in line 1%.
This is what tells the program which drive
you want to load and run from, The [QUIT]
selection puts you into the Basic command
mode and [SYSTEM] returns you to MS-DOS.
Try changing the COLOR's on lines 2 and 11,
and you can delete PALETTE from line 2 if
you don't have a graphies board, have fun.

A: % BAS
Diag 1. FILEMENU.BAS CHAR .BAS CHAR-ASC.BAS BOXES .BAS BOXES1 .BAS PATTERN2.BAS
BOXES2 .BAS PATTERN1.BAS PAT1ASC .BAS ALLPAT .BAS BOXASC .BAS FLMEN .BAS
A:%_ BAS A% % A:® _DAT A:% EXE A:% _COM
B: %, BAS B:# # B: %, DAT B:# EXE B: #, COM
[QUIT] [SYSTEM]
Diag 2. 1 '<< BASIC Program Loader >> V831120 Craig Miller MILLERS GRAPHICS
2 PALETTE: ON ERROR GOTO 17: DEFINT A~Z: COLOR 4,0,0,0: F$="A:%.BAS": KEY OFF
3 X=1: Y=4: R=0: C=0: CLS: LOCATE 2,31,0: PRINT F$ PRINT FILES LEFT$(F$,7)
6 PRINT "A:% BAS A% & A:® DAT A:¥% EXE A% COMM
7 PRINT "B:% BAS B:% # B: % DAT B: * EXE B: %, COMM
8 PRINT "[QUIT] [SYSTEM]": GOTO 12
9

K$=INKEY$: IF K$="" THEN 9 ELSE IF K¢= CHR$(13) GOTO 1“

10 A=ASC(RIGHT$(K$,1)):

12 Fg="": Y=Y+R: X=X+C: FOR A=0 TO 11:
13 COLOR 0,5: LOCATE Y,X: PRINT F$;:

R=(A=72)-(A=80):
11 IF X+C<1 GOTO 9 ELSE IF SCREEN(Y+R,X+C)=32 GOTO 9 ELSE LOCATE

C=13%((A=T75)~(A=TT))
Y,X: PRINT F$:

F$=F$+CHR$(SCREEN(Y,X+A)): NEXT

COLOR 4,0: GOTO 9

14 IF MID$(F$ 2 2)=".*“ GOTC 3 ELSE IF LEFT$(F$ 8)="[SYSTEM" THEN SYSTEM

15 IF LEFT$(F$,7)="[
16 LOCATE ,,1:

18 FOR A=1 TO 1000: NEXT: RUN

QUIT" THEN CLEAR: KEY ON: END
RUN CHR$(SCREEN(2,31))+":"+F$
17 COLOR 7,0: LOCATE 12,19: PRINT "F I L E

NOT FOUND ERROR"

e

5" 1—- =FORTH

CONFIGURING TI FORTH TO YOUR SYSTEM

Now that TI Forth has arrived at the
User's Groups lets get started by
configuring it to match your own system. I
strongly recommend that you read through
the ENTIRE Forth manual before you start,
it could keep you out of trouble later on.
TI Forth is originally configured for 1
single sided disk drive and the printer is
set up as RS232.BA=9600 and it has a syntax
error on the printer output screen, 72.

I am probably already too late but,
BEFORE YOU DO ANYTHING WITH TI FORTH MAKE A
BACKUP COPY OF THE DISK 1t!1! The Disk
Manager can be used to backup the TI Forth
system diskette (only use single sided).
There are a few commands that could be
detrimental to your Forth diskette if you
are not careful such as CLEAR, UPDATE,
FLUSH, ED@ and EDIT. Forth has a 5 screen
buffer, 5K, which resides at >2010 through
>3423. When this buffer is full and one of
the screens in the buffer has been marked
as updated Forth will automatically write
out to the disk, which could write over
something you wanted to keep. So ALWAYS
keep the write protect sticker on your
original diskette and only use 1t to make
coplies of for your use.

Now that you have a backup copy lets
configure it to your system. First lets
load Forth by following the instructions in
chapter 1 of the Forth manual. By now you
should have read chapter 3 on the EDITOR so
lets put it to use. After Forth boots in
you will have a menu of additional
vocabulary blocks listed on the screen and
the cursor will be below the line that
reads TI FORTH. To invoke the EDITOR you
must first load the vocabulary for it. This
is done by typing in -EDITOR and pressing
ENTER. Forth will then go out to drive 1}
and load and complile the appropriate
SCREENs into memory.

After the cursor comes back you can then
EDIT the various SCREENs on your BACKUP
DISKETTEIl! To edit a SCREEN Jjust type in
the SCREEN number followed by a space and
the word EDIT and then press enter. The
editor will take over from there and
display the SCREEN.

0
|
2
3
3
o
&
7
g

L

10

i1

12
13

14

15 R->BASE

: SWCH OFIO

SO0 now lets modify the printer section
of Forth and fix the syntax error. Type in
EMPTY-BUFFERS DECIMAL and press ENTER. This
will clear out the buffer and set the
number base for decimal numbers. Now type
72 EDIT and press ENTER. The 72nd SCREEN
has the RS232 information for your printer.
For a parallel printer replace RS232 and
RS232.BA=9600 as indicated by the under
lined PIO's in the listing below. If your
printer is serial but at a different baud
rate or uses .LF or .EC etec just insert or
delete the appropriate characters as needed
on line 4 after "™ RS232. The syntax error
is on line 5. To fix it change PAB ADDR @
VDP to PAB-ADDR € VDP. This applies to the
01NOV82 disk name version only, the
TI-FORTH disk name version is OK.

{ ALTERNATE I/00 SUPFURT FOR PIO PNIR 123082 LLCT)
t CLOAD INDEX

BASE-OR DECIMAL 48 R-3BASE CLOAD STAT

0 0 0 FILE 3PI0 BASE-DR HEX

PABS @ 10 + DUP PAB-ADDR ' 1- PAB-VBUF !
SET-PAB OUTRT F-D* PIO® OPN 2
PAB-ADDR @ VSBW 1 PAB-ADDR € S + VSBM PAB-ADDR @ ALTOUT ! »

: UNSWCH O ALTOUT ! CLSE
t PASCIT { BLOCKE ——- FLAG)

BLOCK O SHAP DUP 400 + SWAP
DO 1 Ce 20 > + 1 Ce DUP 20 < SWAR 7F > OR
IF DROP O LEAVE ENDIF LOOP
TRIAD O SWAP SWCH 3 / 3 # DUP 3 + SWAP
pa I 7ASCIT IF 1+ 1 LIST CR ENDIF LOOF
~-fUP IF 3 SWAF - 14 ¥ O D0 CR LOOP
OF MESSAGE OC EMIT ENDIF UNSWCH
-=2

After you have made the proper changes
press FCTN 9 (BACK) and you will be out of
the edit mode. Then type in FLUSH and press
ENTER and the changes will be written out
to the disk. Now type 1in MENU and the
original menu will come on the screen next
type in : XXX ; and press ENTER. To load
the printer vocabulary type in ~PRINT and
press ENTER.

To c¢heck your printer turn it on and
then type in SWCH 72 LIST UNSWCH and press
ENTER. When you do this you should get a
printout of the revised SCREEN 72. SWCH
tells Forth to change from screen output to
printer output, 72 LIST lists out SCREEN 72
and UNSWCH changes from printer output to
screen output, If it didn't work right then
type 1in FORGET XXX and press ENTER. This
erases the printer vocabulary out of memory
S0 you can reload the new one after you
reedit SCREEN T2.

-

M

After you have the printer working right
type in COLD and press ENTER. This will
re-BO0OT Forth and start it up with just the
standard vocabulary. WARNING what we are
about to do will write over part of the
standard screens, you might want to make a
backup copy of your disk with the new
printer selection first. Before we go too
far here may 1 suggest that you load
~64SUPPORT and edit SCREEN 72 to see the
difference between the 64 column editor and
the standard one. You will need to decide
which editor you like better since you can
only have one in memory and we will be
setting it up to auto-boot. Now type in
COLD and press ENTER. Next you will need to
decide which of the menu selections you
will be using the most so we can load them
into memory. I might suggest that you load
the following selections for use during
your introduction to TI Forth. Type in the
following line and press ENTER.

-GRAPH -DUMP ~VDPMODES -COPY

If you are going to use the ASSEMBLER
portion of Forth type in -ASSEMBLER and
-CRU and press ENTER. Now type in
yourname ; and press ENTER. This will place
your name in the dictionary below the print
and edit vocabulary sc you can easily
FORGET these words to open up memory space
before you load your programs. If your
programs will be using the printer or the
floating point routines then load in -PRINT
and/or ~FLOAT before you enter your name.
Next load in -BSAVE and «~EDITOR or
~64SUPPORT, you have now locaded most of
Forth's vocabulary so you can easily become
familiar with it. After you learn more
about Forth you may want tc be more
selective on what is auto-booted in.

Now what we are going to do is to set up
Forth to automatically boot in all of the
menu options that you would like in a
binary fast loading fashion. Type in

' TASK 51 BSAVE
(NOTE: ' is an apostrophe -~ FCTN O)

and press enter. This will save everything
between HERE and TASK in the dictionary as
& binary image on the disk, starting with
screen 51. Odds are that it will write over
screens 51 through 64 or more but it won't
matter because they are saved in the binary
image. If you load the entire vocabulary
except -TRACE there will be approximately
39300 bytes free for your use,.

0

Now that you have executed BSAVE you
will need to modify SCREEN 3, the auto~boot
SCREEN. Since you already have the editor
loaded you can just type in EMPTY-BUFFERS
and then type in 3 EDIT. When we saved the
vocabulary with BSAVE we eliminated the
need for much of what is on SCREEN 3. After
you have modified your SCREEN 3 to match
the one listed below press FCTN 9 (BACK)
and then type in FLUSH. You have Jjust
completed setting up Forth to rapidly load
your menu selections and to mateh your
printer output. To test it out just type in
COLD and press ENTER and Forth will rapidly
boot the vocabulary that you BSAVEd.

NOCTE: To set up for your disk drive
types Jjust delete the (from the beginning
of the line{s) that describe your drive(s).
If you have a single sided and double sided
drive they will have to be configured as
single sided. If look at APPENDIX F in your
Forth manual you will notice that many of
the selections we loaded also loaded other
selections. On SCREEN 3 we also added 2 new
words to Forth, FREE returns the available
memory for your program and PAGE clears the
screen and homes the cursor to the upper
left hand corner.

{ Wel COME SCREEN) BASE-DR HEX 10 SYSTEM { Clears Srreen

1 00 GOTOXY . Leading., TI Forth CR 10 ©3C2 C! (QUIT off

< DECIMAL 31 BLDAD 16 SYSTEM MENU

2

4§ 1 VDPMDE ! { Teils Forth you're in TEXT Made)
o O DESK_LO ! (AlTows EDIT/COPY on al) SCREENS)
b

7 0 150 DISK_HI ! (Set up for 2 Single Sided Drives)
o

¥ {180 DHSK_SIIE { et up for Double Sided Drive{s})
10 { 3460 DISK_RI { Set up for 2 Double Sided Drives)
i1

12 ¢ FREE 3P@ HERE -, 5 (Displays amount of free memory)
13 ¢ PAGE 0 O GOTOXY CLS : (Clears Screen % Homes Cursor)

14

15 R->BASE

If you have a hard time reading the
white letters on the blue background you
can change them to the Extended Basic
colors by including the following commands
on any of the blank lines on SCREEN 3.

23 7 VWTIR
and the screen will change to ceyan with
black letters. Next month we will start
looking at programming in Forth. Until then
have fun and read the manual and "Starting
Forth"™ by Leo Brodie.

‘e

SUBSCRIPTION INFORMATTION

i Fiarralireshh el

THE SMART PROGRAMMER - a monthly 16+ page newsletter published by MILLERS GRAPHICS
U.5. 12.50 year - Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

To subscribe send a Check, Money Order or Cashiers Check, payable im U.S. currency

TO: MILLERS GRAPHICS
1475 N. Cypress Ave.
San Dimas, CA 91773

iy

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA G1773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
All mail directed to THE SMART PROGRAMMER will be treated as unconditionally
assigned for publication and copyright purposes and is subject to THE SMART

PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAPHICS

Texas Instruments, TI, Hex-Bus and Solid State Software are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE
1475 W. Cypress Ave. U-SPF'AD%AGE
San DimﬁS, CA 91773 San Dimas, CA 91773
PERMIT NO. 191
JAMES A. COURTNEY 85-01BR

RR #U4 2748 W. HUME RD.
CRIDERSVILLE, OH
15806

THE SMART PROGRAMMER

