MILLERS GRAPHICS

To start off the April newsletter I
would like to apologize for the tardiness
in getting it out. My recent involvement
with CorComp's Board of Directors has
required a fair amount of my time. We are
deeply involved with the software and
hardware design of new products for the
98/4A, I'm in hopes that in a few issues
from now we will be back on our original
schedule of mailing out the newsletter in
the early part of the month. Until then
please bear with me, I believe that you
will be pleased with both the newsletter
and with the new CorComp products.

OCn the question of LONG or SHORT
programs it loocks like its a toss up. So
our current plans are toc keep going as we
have and to place an oc¢casional long
program in some of the future issues. Now
that we are working with CorComp, I hope to
be able to bring you some articles of a

technical nature. So gather up your TECH
questions and send them in and I'1ll talk

them over with the electrical engineers at
CorComp.

While we are on the subject of CorComp I
would like to talk about a few new things.
First off they are starting up a program to
support 99/4A User's Groups. They have
recently mailed out a package to all the
User's Groups they knew of at the time. One
of the items in this package was a card to
be filled out and mailed back to CorComp.
The card asked for the name and address of
the group and for a phone number and person
tc contact at the group. What they plan to
do is to compile a list of ALL the 99/4A
User's Groups and send it out with each new
product that is shipped from CorComp Inc.
 If your User's Group has NOT received this
package then please have your group write
to CorComp and let them know. Their address
is:

THE SMART
PROGRAMMER

APRIL 1984
$1.50

CorComp Inc.
1255 North Tustin Ave.
Anaheim, CA 92807

I talked about CorComp's three new
products last month but I would like to
bring you more up to date with them. The
99000 EXPANSION SYSTEM is approx 4 inches
high by 12.5 inches long and 12 inches
deep, a little bit bigger than two full
height disk drives sitting side by side.
The graphics display panel on the right
hand side of the face returns the following
information about the 99000 EXPANSION
SYSTEM, your computer and your disk drives.

DRIVE SELECT - DSK1 through DSK4

DRIVE STATUS <~ Side 1, Side 2, Index Mark,
Track €, Step In and Step
Out.

SYSTEM STATUS - CRU Clock, Interrupt
Request and WAIT.

MOTHERBOARD SYSTEMS «~ Flex Cable, RS232,
32K RAM, Disk Controller,
RAM Disk (optional) and AUX
1 through AUX 4 (optional).

There are also 7 switches on this panel
which control the following items. POWER,
R5232, 32K RAM, Disk Controller, System
PAUSE, ECHO and RESET. The ECHO switch is
for modem users in that it will allow you
to Echo your modem input directly out to
your printerl! The RESET switch serves 2
functions, first it will RESET your
computer back to the Title screen.
Secondly, for the advanced programmer, you
can use it to activate the LOAD interrupt.
By this I mean that you can load your
workspace pointer into >»FFFC and your PC
into >FFFE and then when you press RESET
the computer will leave what it is doing
and hop into say a Debugger or whatever
assewmbly program you want it to! This
EXPANSION SYSTEM is not just an add-on its

v\ /"""

M

a TRUE UPGRADE for the 99/44 as well as
being part of the 99000 Computer System.

The Double-sided Double-density disk
controller that is in the 99000 EXPANSION
SYSTEM, the 9900 Disk Controller card and
the 9900 Micro-Expansion System will add
the following new commands and programming
statements to Basic and Exteénded Basic:
CALL POKE & CALL PEEK for rapid reading and

writing to CPU Memory.
CALL POKEV, CALL PEEKV for

and writing to VDP RAM.
CALL MOVEM for moving blocks of memory from

VDP RAM to VDP RAM or CPU Memory to VDP

RAM or VDP RAM to CPU RAM or CPU Memory

to CPU BRAM. This new CALL can move

approx 30-40 screens full of data per
second! ! |
CALL EXEC for Executing ROM

Memory routines.

CALL MGR for 1loading and running the NEW

CorComp Disk Manager programn,

rapid reading

or Expansion

The NEW CorComp Disk Manager program is
supplied on disk, Not only is this program
considerably faster than TI's, it is also a
pleasure to use! (Not that I'm biased or
anything). One of the many enhancements of
this program is that it allows you to
CONFIGURE the manager to your system. You
can select your own text and screen colors,
set up each of the different drive types
attached to the controller for number of
sides, density and number of tracks and set
up your printer type for catalog and disk
test print outs. This CONFIGURE is saved on
the disk and is used for the defaults when
you load the disk manager! I think you'll
like it, its truly a nice utility.

The 9900 Micro-Expansion System is what
I called a stand alone RS232 Interface in
the last issue. It is actually a small
(about the size of 2 speech synthesizers
put together) Expansion System that plugs
directly into the side of your 99/4A. You
can buy it as a RS232 Interface only and
then at a later date add the 32K RAM and
Disk Controller option board or buy it with
everything installed. The suggested retail
price for the 9900 Micro-Expansion System
with a RS232 Interface is 149.95, The
suggested retail price for the 9900
Micro-Expansion System with the RS232
Interface, 32K RAM and Disk Controller is
399.95

For further information and pricing
PLEASE contact your local dealer.

l\/b——'——____

QOPS!

Boy did we goof on the printing of more
than 80 columns in the last issue. Quite a
number of you wrote to us with the
following info. To print more than 80
columns just CPEN your output device using
the VARIABLE statement, such as:

OPEN #1: "“PIO"™,VARIABLE 132

This will allow a 132 column printout
without having to worry about the carriage
returns and line feeds. Thanks to everyone
that sent us this information.

Q&A

This is VDP month. In the past we have
received a number of questions regarding
VPP memory, so this month we are devoting
the Q@ & A section to this area. Instead of
answering individual qQuestions we will
start our series on the VDP memory with =
general overview. Next month we will get a
little more specific on the Extended Basic
use of VDP. To get started lets briefly
look at each of the main areas of VDP
memory as they are used by Extended BRasic.

SCREEN ITMAGE TABLE 2000 - >02FF

This area of VDP RAM holds the items
Lhat you see on your screen. Hex >0000 is
the first column of the first row (upper
left hand corner of the screen). The values
in this table have an offset (bias) of Hex
>60 or Decimal 96. So to place an "A" on
the screen at >0000 you must POKEV a value
of 161 at address >0000, (65+96=161), Using
the POKEV routine that is in this issue the
statement that would accomplish this would
look like; CALL LINK("POKEV",0,161). To
place a "MG" on the screen on the 12th row
at the 15th column you would use; CALL
LINK("POKEV™,367,173,167). The formula to
find the row and column is: (ROW-1)%*32+COL,
(12-1)%32+415=367, M=77+96=173, G=71+96=167.
In the next issue I'll try to explain why
there is an offset of 96.

SPRITE ATTRIBUTE TABLE 20300 - >036F

This table holds the information on the
sprites that is placed there by CALL SPRITE
or you can directly POKEV the information
into this table. We will go into more info
on this table in a latter issue but for now
this is what it holds for each of the 2§
sprites. The dot row and dot colunmn
position of the sprite, The character
number of the sprite and its color.

‘T\

PATTERN DESCRIPTOR TABLE 20370 - >O0T7TF

When you use CALL CHAR(..... the
character's pattern that you defined is
placed in this table. Also when the
computer powers up, the standard character
set is loaded into this table. Each
character uses up eight bytes. To find the
starting address in decimal for a character
use the following formula. 768+8%#char num.
So for "A"™ the address would be;
T68+8%65=1288. The address for the cursor
is 1008 (768+8%30=1008).

WARNING-~-~~ changing the pattern for
character numbers 0 through 29 could cause
your system to lock up. This area is used
for temporary storage of system
information, disk information, screen
information and the sound table by Basic
and Extended Basic. We will explain this
area better in a latter issue,

SPRITE PATTERN TABLE 20370 - DOTTFE

In Extended Basie this table and the
Pattern Descriptor table reside in the same
place. That is why when you CALL CHAR to a
character that is on the screen and that is
also used for a sprite, they both will
change. In assembly language these two
tables are in separate parts of VDP RAM so
the characters used for sprites are
different than the ones printed on the
screen. In X-Basic the formula for the
sprite character's address in decimal is
the same as the one for the Pattern
Descriptor Table.

SPRITE MOTION TABLE >0780 - >OTFF
This table holds the sprite row and
column velocity and it is used by the
Interrupt routine in conscle ROM. This ROM
routine is executed 60 times a second since
i1t is Interrupt driven and it uses the
values in this table to update the row and
column values in the Sprite Attribute
Table. Unlike the other VDP tables this
table's location is fixed at >0780 by this
ROM routine. The other tables can be moved
around by changing the different VDP
Register values, that is why we can have
different VDP memory maps for the different
languages. Fach sprite uses 4§ bytes in this
table. One for row velocity, one for column
velocity and two that are reserved for
system use, If you compare the BASIC and
Extended BASIC VDP maps for this area
you'll notice that this table is sitting
where character sets 15 & 16 used to be and
that 1is why these characters are not
available to us in Extended BASIC.

COLOR TABLE >0800 - >081F

This table holds the foreground and
background color information for each of
the character sets. Each character set uses
one byte for its color definition. The
first four bits, 0-3, set the foreground
color and the last four bits, 4-7, set the
bpackground color. Here are the character
numbers for each of the 32 bytes in this
table:

Byte Char's Byte Char's Byte Char's

1 0- 7 12 88~ 95 23 176-183
2 8- 15 13 96-103 24 184-191
3 16- 23 ™ 104-111 25 192-199
4 24~ 31 15 112-119 26 200-207
5 32=- 39 16 120-12T7 27 208-215
6 40- 47 17 128-135 28 216-223
T 48~ 55 18 136=-143 29 224-231
8 56- 63 19 144-151 30 232-=-239
9 64~ T1 20 152-159 31 240-247
10 72=- 79 21 160-167 32 248-255
11 80- 87 22 168-175

DYNAMIC MEMORY SPACE >0820 - >35D7
This area of memory holds the PABS,
STRINGS, SYMBOL TABLES, NUMERIC VALUE
TABLE, LINE NUMBER TABLE and your PROGRAM
if you do not have memory expansion or if
you are programming in BASIC. In Extended
BASIC with memdry expansion this area holds
the PABS, STRINGS and SYMBOL TABLES, the
other items are moved out to high memory
expansion. In BASIC your program is loaded
from the bottom (>35D7) up. So if the first
line that you typed in is line number 100
it will be located around >35C7 (depending
on its length). The next line that you type
in might be around >35B0, etec. So if you
typed in the program lines in order, ie:
100, 110, 120 etc., they are placed in
memory like this:
0800 4+=————cmmcrr e s e ————— +

i
i
! LINE NUMBER 150 LINE NUMBER/
l 140 LINE NUMBER 130 LINE NUMBER 1}
120 LINE NUMBER 110 LINE NUMBER 100/

FILE BUFFERS >35D8 -~ >3FFF

With CALL FILES(3) this area starts at
>35D8, any other CALL FILES will move its
starting address higher or lower, On POWER
UP, with a disk controller, the computer
automatically reserves this space for Drive
control information, File allocation
information and Data buffering. Do not
change any bytes in this area our you may
wipe out your diskettes.

e

Hex Dec BASIC Hex Dec ENTENDED BASIC

>0000 0 | SCREEN IMAGE TABLE >0000 0 | SCREEN IMAGE TABLE I
! Start PATTERN DESC TABLE | Start PATTERN DESC TABLE !
! | Start SPRITE PATTERN TABLE!
I +96 Offset (>60 Bias) | +96 Offset (>60 Bias) i
>02FF 767 | END SCREEN IMAGE >02FF 767 | End Screen Image :
e e ——— + - e +
>0300 768 | COLOR TABLE | >0300 768 | SPRITE ATTRIBUTE TABLE |
>031F 799 | | I |
F i e e e e e e e et e e + E !
: | >036F 879 | E
o e e e e e e e e e e + D e e +
20370 880 | PATTERN DESC TABLE I 20370 880 | PATTERN DESC TABLE I
I +96 Offset (>60 Bias) I ! +36 Offset (>60 Bias) I
! i | i
5 I E |
| 768+8%character number: I | 768+8%*character number= !
! address in decimal ! | address in decimal E
| | | |
! ! ! |
>03F0 1008 | Character number 30 I I !
>O3F8 1016 | Character number 31 | I
>0400 1024 | Character number 32 : I
>0408 1032 Character number 33 l E
etc. ! ! f
E i |
] | | | _
; ; ; B
! | >077F 1919 | E
{ e e Dt T T +
i >0780 1920 | SPRITE MOTION TABLE I
>0TFF 2047 | >07FF 2047 | I
o ————— - - e e + o o o e e o +
>0800 2048 | PABS | >0800 2048 | COLOR TABLE I
| STRINGS ! >081F 2079 | l
| SYMBOL TABLES : e e e e o e e e +
| NUMERIC VALUES >0820 2080 | |
! LINE NUMBER TABLE ! Without MEM-EXPANSION |
PROGRAM SPACE | SAME USE AS BASIC !
a F l |
| | With MEM-EXPANSION I
E I PABS)
| STRINGS I
| SYMBOL TABLES I
E } (numeric values, I
| ! | line number table, I
| E | and program are I
! f ! in High Memory |
| } | Expansion) E
| I i |
| | - | |
>35D7 13783 | | >35D7 13783 | |
b e e e o e e e e o e e + dmm e e — - ————— + aY)
>35D8 13784 i >35D8 13784 |]
! DISK FILE BUFFERS | | DISK FILE BUFFERS I
I
i

|
>3FFF 16383 ! | >3FFF 16383 |

IMS9918A VDP REGISTERS

REG # BIT # DESCRIPTION
0 0~5 Reserved for future use must be 0's
6 M3 (mode bit 3) 1=Graphics II mode
T External VDP enable 0=disable 1i=enable
1 0 4716 K selection 0=z4027 RAM 4K 1=4108/4116 RAM 16K
1 Blank enable/disable O=blank 1=display
2 Interrupt enable O=disable 1=enable
3 M1 (mode bit 1) 1=Text mode
Y M2 (mode bit 2) 1=Multicolor mode
5 Reserved
6 Size (sprite size select) 0=8x8 bit 1=16x16 bit
T Magnification 0=1x 1=2x
e e - ———————————— +
| M1 M2 M3 Mode I
| 0 0 0 Graphics I mode 32 column
1 0 0 1 Graphics II mode Bit~Mapped
I 0 1 0 Multicolor mode 64 column
| 1 0 0 Text mode 40 column |
ot e e o e +
2 0-3 Reserved
N7 Screen table base address = RZ2 # >}400
3 QuT Color table base address = R3 ¥ >4{
L 0-4 Reserved
S=T Pattern {(character) descriptor table base = R4 #* >800
5 0 Reserved
1=T7 Sprite attribute table base address = R5 # >80
6 0-4 Reserved
5=T Sprite pattern table base address = R6 ¥* >800
7 0-3 Foreground color (character color) in TEXT mode.
N7 Background color (screen color) all modes.
Status 0 Interrupt Flag bit.
1 5 or more sprites on the same row.
& Sprite coincidence.
3

-7 Number of the 5th sprite when bit 1 is on.

R = —

e ——————

EIGHT WRITE ONLY YDP REGISTERS
AND THE VDP STATUS REGISTER f§\
Bit # O 1 2 3 4 5 6 7 |
>80 128 >40 64 >20 32 >10 16 >8 8 >4 4 2 2 D1 1
o = o ———————— o o bm——————— to e ———- ——— - temmm———a o +
o | 0 L0 0 b0 { 0 : 0 | M3 |Ext VDP |
I E # : : i | bit-map! I
= e o e o o e o = e ———————— o ————— o e +
B=>00 (0) XB=>00 (0) EA=>00 (0)
+ o e o e et o e e b e o o v do - —— e ———— o s torrm————— +
1 | 4/16K | BLANK |Interrup! M1 I M2 ! 0 l SIZE | MAG !
! RAM } SCREEN | Enable } text ! multi | : i !
TR, UV IO, [P DIy SO o JERP RPN o JINUEPUIIY o NSRRI o S
B=>E0 (224) XB=>EQ (224) EA=>EQ (224)
= o s o ———— tom——————- o ——— o —————— o ——————— dr———————— +
2 | 0 ! 0 : 0 ! 0 ! SCREEN TABLE BASE ADDRESS x >400 !
i : I { I |
tmr—————— m——————-— dom——————— o b e o o e e e m e ——— +
B=>00 (0) {>0000} XB=>00 (0) {>0000} EA=>00 (0) {>0000}
o - o e o drom o ———— o o e o e e o o e e e e e o o o e - o o +
3 | COLOR TABLE BASE ADDRESS x >40 |
[|
| |
e e o o e e e e e e o - o o - T o o} = - + ‘-*SW
B=>0C (12) {>0300)} XB=>20 (32) {>0800]} EA=z>0E (15) {>0380}
- o ——————— o —————— o o o v ————— te——————— o o e o e e me————— +
| 0 I 0 ! 0 ! 0 0 !CHARACTER BASE ADD x >800 !
| I | I I E
o ‘e ———— e + e —————— o e o o o o o o s e +
B=>00 (0) {>0000} XB=>00 (0) {>0000} EA >01 (1) {>0800}
tormr————— o o ————h ———————— e e e v + o o b +
5 1| 0 | SPRITE ATTRIBUTE TABLE BASE ADDRESS x >80 :
| I |
o frm—————— o e trm—————— o e e e e o e e e e e e e e g - - - +
B=>06 (6) {>0300} XB=>06 (6) {>0300} EA >06 (6) {>0300}
- Fr——————— o e o ———— o s e e e ————— o o e +
6] O 0 { 0 ! 0 0 !SPRITE PAT BASE ADD x >800!
I I | I I | I
ot o o e e o o ———— o - — o —————— o —————— - - b +
B=>00 (0) {>0000} XB=>00 (0) {>0000} EA=>00 (0) {>0000}
o —————— o e e e e e o o e e tm—————— = —————— e ————— +
7 | TEXT MODE FOREGROUND COLOR | SCREEN COLOR (all modes) |
|
- toe—m————- o ————— tem——————— = —m e o e o = e o +
B=>07 (7) Cyan XB=>07 (7) Cyan EA=DF5 (245) White/Lt Blue <?;
- - e e e b —————— trmrmme—— o i e e e e e e e —————— + :

S |Interrup|5 Sprite| COINC FIFTH SPRITE NUMBER :

+
I

| Flag Jon a row| ! when bit 1 is set
+

0001 % % 0052 202C
0002 * ®# 00490 0054 OouC5 LOOP1 CLR BS
0003 *# VDP PEEXV, PCKEV & PCKER #0050 0056 D122 MWVB 6BUFF-1(R2) ,RY
0004 * by * 0058 FFFF!
0005 * John Brown ® 0051 0054 0984 SRL R4,8
0006 ¥ # 00h2 005C 1315 JEQ NEXT
0007 % ®# (053 OOSE OuC3 CLR R3
0008 # Syntax Info # 0054 0060 3CHO DIV @STCRE,R3
0009 % PEEKV & P(KEV can peek or poke # 0062 00121
0010 * up to 15 values. ® 0055 0064 CBOS MV §5,6FACH
0011 # * 0066 834C
0012 * add = Address to PEEK or PCKE % 0056 0068 C805 MOV RS,8FACH
0013 * v = Numeric Variable » Q06A 83UE
0014 # n = Number or mmeric # 0057 006C C805 MWV F5,0FAC+6
0015 * expression # Q06E 8350 |
0016 * # 0058 0070 0205 LT F5,>4000
0017 0072 4000
0018 DEF PEEKV,PCKEV,PCKER 0059 0074 AT4l A RU,ERS
0019 200C NMREF BQU >200C 0060 0076 0283 CI R3,1
0020 2008 NIMASG BQU >2008 0078 0001
0021 2018 XMLLNK B >2018 0061 0074 1106 JLT NEXT
0022 2024 VWBW EQU >2024 0062 007C 0205 LI RS,>4100
0023 202C WBR BU >202C 007E 4100
0024 2030 VWIR EW >2030 0063 0080 A143 A R3S
0025 83UA FAC B >834A 0064 0082 06CH SWPB RY
0026 0000 BUFF BSS 18 0065 0084 C304 MOV RY,GFACH2
0027 0012 0064 STORE DATA 100 0086 834C
0028 0014 « MYWS BSS 10 0066 0088 C805 NEXT MOV FS,8FAC
0029) » 0084 834A
0030 # PEFKV Reads VDP RAM Value(s) ® 0067 008C Q4C0 CLR RO
0031 * #0068 008E COu2 MWV R2,Rl
0032 % CALL LINK("PEEXV",add,v,v....) * 0069 0090 0581 INC Rl
0033 * * 0070 0092 0420 BLWP ENUMASG
0034 O01E O2E0 PEEXV LWPI MYWS 0004 2008
0020 0014T 0071 0096 0602 DEC Re
0035 0022 0300 LIMI O 0072 0098 160D JNE LOOP1T
0024 0000 0073 009A OU&0 B ERETURN
0036 0026 0200 LI RO,100 009C QQOF8?
0028 0064 00TY # #
0037 0024 C800 MOV RO, @STORE 0075 % POKEV Writes VDP RAM value(s) *
002C 00121 0076 * #
0038 002E 0uCo CLR RO QOTT # CALL LINK("PCKEV",add,nv,nv...) ®*
0039 0030 0201 LI R1,1 0078 * *
0032 0001 0079 O09E O2BD PCKEV LWP1I MYWS
00U0 0034 0420 BIWP GNUMREF OCAO 0014
0036 200C 0080 00A2 0300 LIMI O
0041 0038 0420 HWP &XMLINK QOA4 0000
0034 2018 0081 00AS O4CD CLR RO
0042 003C 1288 DATA >12B8 0082 00A8 0201 LI R,
0043 O03E C020 MWV 6FAC,RD 00AA 0001
0040 834A 0083 O0AC CBO1 MOV R1,68STORE
0044 0042 0201 LI Rl,BUFF O0AE Q012!
0044 Q000! 0084 00B0 0420 HBWP SNUMREF
0045 0046 DOAO MOVB 8>8312,R2 002 200C
0048 8312 0085 00B4 0420 BLWP 6XMLLNK
0046 004A 0982 SRL R2,8 Q0B6 2018
00U7 00UC 0222 AT R2,-1 0086 Q0BS 12B8 DATA >12B8
OQUE FFFF 0087 O0BA C820 MN @FAC,8BUFF
Q048 0050 0420 B WP 6VMBR OOBC 834A

v\“orr/— - — — — — —

m

O0EE 0000
0088 00C0 BS20
00C2 8312
00CH 0013
0089 00C6 0203
00C8 0002
0090 00CA 04CO
0091 00CC COu3
0092 OOCE 0420
00DO 200C
0093 00D2 0420
00D4 2018
0094 00D6 12B8
0095 00D8 DAEOC
OODA 834B
00DC 0000!
0096 OODE 0583
0097 OCEO 8803
OCE2 0012°
0093 OCE4 16F2
0099 OOE6 C020
OOES 000Q°
0100 OOEA 0201
OOBC 00021
0101 OOEE C083
0102 00F0 0222
O0F2 FFFE
0103 O0F4 QU20
O0F6 2024
0104 O0F8 0uCO
0105 OOFA D800
O0FC 837C
0106 OCFE 02E0
0100 83E0
0107 0102 0460
0104 0070
0108
0109
0110
0111
0112
0113 0106 0300
0108 0000
0114 0104 04C0
0115 010C 0201
010E 0GO1
0116 0110 0420
0112 200C
0117 0114 C820
0116 8344
0118 00127
0118 011A 0201
011C 0002
0119 011E 0420
0120 200C
0120 0122 0420
0124 2018
0121 0126 12B8
0122 0128 CO20

AR 6>8312, 8STORE+1

LI R3,2

LooP2 CLR RO

MOV R3,R1
BLWP @NUMREF

BLWP 6XMINK

DATA >12B8

MOVB @FAC+1, €BUFF(R3)

INC R3
c R3, &STORE

JNE LOOPZ

B &0070

* P

n
il

CALL LINK("PCKER",reg no.,value)¥

PCKER LIMI O

CLR RO
LI R1,1

BLWP €NUMREF

MOV @FAC, 8STORE

LI R1,2

* BLWP @NUMREF

BLWP @XMLLNK

DATA >12B8
MOV @FAC,RO

R Writes to a VDP Register *

*

%

PEEKY, POKEV & POKER

0124 834A

0123 012C D020 MOVB @STORE+1, RO
012E 0013

0124 0130 0420 ELWP 6VWTR
0132 2030

0125 0134 Q45B RT

0126 END

0000 ERRORS

CALL LOADS

The following program contains the CALL
LOADS to install the CALL LINK("PEEKV",,.
CALL LINK("POKEV™, .,

VDP routines into Low Memory Expansion.

& CALL LINK("POKER",..

100 CALL CLEAR :: CALL INIT
:: CALL LOAD(8196,63,232)1
set up Last Free Address LFA

110 CALL LOAD(16360,80,79,75
,69,82,32,38,12,80,79,75,69,
86,32,37,164,80,69,69,75, 86,
32,37,36)! set up REF/DEF

120 CALL LOAD(9491,100)! STO
RE data 100

125 ! Start PEEKV routine

130 CALL LOAD(9508,2,224,37,
20,3,0,0,0,2,0,0,100,200,0,3
7T,18,4,192,2,1,0,1,4,32,32,1
2,4,32)

140 CALL LOAD(9536,32,24,18,
184,192,32,131,74,2,1,37,0,2
08,160,131,18,9,130,2,34,255
,255,4,32,32,44)

145 1 Start LOQOP1 routine

150 CALL LOAD(9562,4,197,209
,3&,36,255,9,132,19,21,u,195
,60,224,37,18,200,5,131,76,2
00,5,131,78,200,5)

160 CALL LOAD(9588,131,80,2,
5,64,0,161,68,2,131,0,1,17,6
,2,5,65,0,161,67,6,196,200,4
,131,76)

165 1 Start NEXT routine

170 CALL LOAD(9614,200,5,131
, T4,4,192,192,66,5,129,4,32,
32,8,6,2,22,221,4,96,37,
254)

1756 1 Start POKEV routine

Nl'j"_——g_—

-

180 CALL LOAD(9636,2,224,37,
20,3,0,0,0,4,192,2,1,0,1,200
y1,37,18,4,32,32,12,4,32,32,
24,18,18%4)

190 CALL LOAD(9664,200,32,13
1,74,37,0,184,32,131,18,37,1
9,2,3,0,2)

165 | Start LOOP2 routine

200 CALL LOAD(9680,%4,192,192
,67,4,32,32,12,4,32,32,24,18
. 184,216,224,131,75,37,0,5, 1
31,136,3)

210 CALL LOAD(9704,37,18,22,
242,192,32,37,0,2,1,37,2,192
0 131,2,34,255,254,4,32,32,36
)

215 | Start RETURN routine

220 CALL LOAD(9726,4,192,216
,0,131,124,2,224,131,224,4,9
6,0,112)

225 1 Start POKER routine

230 CALL LOAD(9740,3,0,0,0,4
,192,2,1,0,1,4,32,32,12,200,
32,131,74,37,18,2,1,0,2,4,32
,32,12,4,32)

240 CALL LOAD(9770,32,24,18,
18”:192132:131:7h:208132:371
19,4,32,32,48,4,91)

250 CALL LOAD(8194,39,04)!Ch

ange First Free Address to e
nd of new routines

TEST VDP ROUTINES

The following program uses the VDP
routines that you installed with the
previous program or the assembly program.

100 CALL CLEAR :: FOR I=0 TO

T64 STEP 8 :: CALL LINK("PO
KEV",T1,161,162,163,164,165,1
66,167,168):: NEXT I

110 CALL CLEAR :: FOR I=0 TO

758 STEP 16 :: CALL LINK(®P
OKEV®",I,161,162,163,164,165,
166,167,168,169,170,172,173,
174,175,176):: NEXT I

120 CALL CLEAR :: FOR I=126

TO 223 :: CALL LINK("POKEV",
396,I,I+1,I+2,1+3,I+4,1I+5,I+
6,I+T):: NEXT I

130 DATA 0,0,0,0,0,0,0,255,2
5%,130,130,130,130,130,130,2
54,0,124,124,124,124,124,124
, 124

140 FOR I=1 TO 3 :: INPUT "P
RESS ENTER TO CHANGE CURSOR™
:A$:: READ A,B,C,D,E,F,G,H
t: CALL LINK("PQKEV“,1008,A,
B,C,D,E,F,G,H):: NEXT I

150 DATA 0,0,0,0,0,0,0,255,2
54%,130,130,130,130,130,130,2
54,0,0,0,0,0,0,0,0

160 FOR I=1 TO 3 :: INPUT "P
RESS ENTER TO CHANGE EDGE C
HAR":A$:: READ A,B,C,D,E,F,
G,H :: CALL LINK("POKEV",101
6,A,B,C,D,E,F,G,H):: NEXT I

170 PRINT : :"SCREEN COLOR C
HANGES"™ :: FOR T=1 TO 5 :: F
OR I=0 TO 15 :: CALL LINK("P
OKER",7,I):: NEXT I :: NEXT
T :: CALL SCREEN(S8)

180 A$="18#$77&*()+123456789
O0==-:><,.3/"_2"}{}\ " ABCDEFGHI
JKLMNOPQRSTUVWXYZabecdefghijk
lmnopqrstuvwxyz®™ :: FOR I=1
TO 5 :: PRINT A$:: NEXT 1

190 PRINT : :"CHARACTER COLO
R CHANGES"™ :: FOR I=30 TO 70
:: FOR T=2063 TO 2076 :: CA
LL LINK("POKEV",T,I):: NEXT
T :: NEXT I :: CALL CHARSET

200 INPUT "PRESS ENTER FOR T
EXT MODE":A$:: CALL LINK("P
OKER",7,244):: CALL LINK("™PO
KER",1,240)

210 INPUT "PRESS ENTER FOR M
ULTI COLOR MODE ":A$:: CALL
LINK("POKER",1,232):: FOR I
=1 TO 300 :: NEXT I :: CALL
LINK("POKER",1,224)

220 INPUT "PRESS ENTER FOR B
IT MAP MODE ":A$:: CALL LIN
K("POKER",0,2):: CALL LINK(™
POKER",1,224):: FOR I=1 TO 3
00 :: NEXT I

230 CALL LINK("POKER",0,0)

NI'S__Q—_

: o

EXTENDED BASIC SYMBOL TABLE STRUCTURE

The starting peint of the Symbol table in VDP RAM is pointed to by >833E
The structure for the Symbol table is as follows:

Byte No.

] Variable type Numeric & Numeric arrays

>H0->4T (64-71) Numeric DEF & DEF arrays

>80~->87 (128-135) = String & String arrays
numeric variable like A or COUNT (not an array)

>03 three element numeric array A(x,x,Xx)

>84 = four element string array S$(x,x,x,x)
Length of the variable name. ie: COUNT would equal 5
Points to next entry in the symbol table. >0000 for last entry.
Points to the name of this variable in the Symbol table.
Points to the location in the Numeric value table for type >00
or to the location of the string in VDP RAM for type >80.
Start of the variable's name for types >00, >40 and >80

>00~>07 (0-=7)

ie: >00

o

--:Il.i!'ILAJ
o Oy =

9 & up

If it is not type >00, >40 or >80 then the following applies for
the different types:
Byte No.

7-8

9-10
11=-12
13-14
15-16
17-18
19-20

1st element's DIM if type >01, >41 or >81 variable.
2nd element's DIM if type >02, >42 or >82 variable.
3rd element's DIM if type >03, >43 or >83 variable.
4th element's DIM if type >04, >U44 or >84 variable,.
5th elementt's DIM if type >05, >45 or >85 variable.
6th element's DIM if type >06, >46 or >86 variable.

Tth element's DIM if type >07,

>34T or >87 variable.

After all of the DIM's follows the location in memory for each of the
elements of a String array. First comes the locations for each of the first
elements, ie: S$(x,x,x) then the second elements, S$(x,x,x) etc.

If it is a numeric array the word following the DIM's points into the
Numeric value table where the array starts. Since each numeric variable is 8
bytes long in Radix 100 notation the first 8 bytes in the Numeric Value table
are for A(0,0,0) the next 8 bytes are for A(1,0,0) ete. (With OPTION BASE 0)
After all of the location(s) pointers follows the name of the variable, this
does not include the brackets and numerals for arrays. S$(1,2,3) would only
have S$ in this location and A(1,2,3) would only have A in this loacation.

DIM S$(2,2) {type >82)

EXAMPLES with OPTION BASE 0

DIM A{12,3) {type >02}

Byte No. Byte No.
T-8 = 202 T~8 = >0C
9=-10 = >02 =10 = >03
11=-12 = VDP address of S$(0,0) 11-12 = Start address in Numeric
13-14 = VDP address of S$(1,0) Value table of entire
15-16 = VDP address of S$(2,0) array.
17-18 = VDP address of S$(0,1) 13 = 241 = A
19=20 = VDP address of S$(1,1)
21=-22 = VDP address of S$(2,1)
23=24 = VDP address of S$(0,2)
25-26 = VDP address of S$(1,2)
27T-28 = VDP address of S$(2,2)
29=-30 = >5324 = S$

Me—mm——————————————————————————————————

The following program uses CALL LINK
("PEEKV",...) and CALL PEEK to loock into
the Extended BASIC symbol table and
subprogram symbol table. The symbol table
contains information on the variables in
your program (see previous page). The
subprogram symbol table contains
information on the variables used in user
written subprograms and the built in
subprograms. This program will print out to
a printer or to the screen the following
information: The address in the VDP symbol
table that references the variable. The
type of variable, how many elements if it
is an array type variable, what the length
of the variables name is and its name and
what the DIM is for each of the elements if
it is an array. The subprogram symbol table
returns the following info: What the start
location is in GROM for the built in
subprograms (ie: CALL CLEAR). Which
variables are used for parameter passing
and which are used in the subprogram for
user written subprograms, as well as the
the regular info on the type, elements etc.

After you type this program in save it
out to disk using the MERGE coption, then
you can MERGE it back into your own
program. Don't forget that you must have

the PEEKV and POKEV routines loaded to

utilize this program. One last thing, when
this info is printed out remember that the
variable names that start with @ or { are
probably from this program. Have fun.

1 CALL CLEAR :: PRINT "OUTPU

T TO PRINTER Y/N N"™ :: ACCEP

T AT(23,23)SIZE(-1)VALIDATE(
"YN"):8€8$:: IF €€g=m"Y" THEN
OPEN #1:"PIO"™ :: €€=1

2 DIM @$(5),[$(1):: €§(0)="N
umeric®" :: 0$(1)="Num Array"

:: 683(3)="Num DEF" :: &88$(4
)="String" 6$(5)="Str Arr
ay"

GOSUB 12

4 CALL PEEK(-31942,[1,[2)::
[t=[1%*256+[2 :: PRINT #6€6:86e
$: "SUBPRCGRAM INFORMATIONT":
:"NAME" ; TAB(17):"TYPE"

5 CALL LINK("PEEKV",[1,{3,[4
,[5,(6,[7,(8,[9,[10):: FOR @
=0 TO [4-1 :: CALL LINK("PEE
Kve , [T#256+[8+8,[2):: 081$=01
$&CHR$([2):: NEXT @

e

6& IF [3 THEN PRINT #6€:68% :
: PRINT #€€0,USING "{###{##¥#4¢#
####4# GROM Address #####m:é@
1$,{9%256+[10 @1g=mn :: G
OTO 11

7T PRINT #6€:803% :: PRINT #68¢
, USING "##4#¢#4###4d¢4# User

Written":61$ @1¢=m" :: I
F [9=0 THEN 10

8 FOR €=[1+2 TO [1+90 STEP 2
CALL LINK("PEEKV",@8+4,[9
[11,[12):: [1=6 :: €&=€-

,[10,
1#([11=0)::

g1% NEXT @
9 PRINT #6€: :"Parameter pas
sing variables®": : :: @1=[9#
256+{10 GOSUB 13

10 CALL LINK("PEEKV",[1+12,]

t1,[12):: @1,[11=[11%256+[12
:: IF [11 THEN PRINT #66: :

"Subprogram variables®: : ::
GOSUB 13

11 IF [5+[6 THEN [1=[5%256+[
6 :: GOTO 5 ELSE END

12 CALL PEEK(-31938,681,82)::
@1=€1%256+82 PRINT #66:n
ADD TYPE EL LEN

VARIABLE NAME DIM":06%

13 CALL LINK("PEEKV",@1,63,@
4y,685,686,07,88):: FOR €=0 TO
84-1 :: CALL LINK("PEEKV", @87
#256+084+8,82):: 01$=z013$&CHR$
(82):: NEXT @

14 82=€63+128%(€3>127):: IF |
1 THEN 16 |

15 FOR €=1 TO @2%*-(@82<8 OR &
2>127):: CALL LINK(®"PEEKV®",g@
1+44+6%2 ,087,08):: 823$=023$&STR
$(678256+088)&" "* :: NEXT @

16 PRINT #6€,USING "###¢¢ #¢&
F FR2LRDRERE # #F REREESL L
FEGPERE SLEELEFEVEERRER2024
¢ ¢e44#47:01,03,86$(INT(83/3
2)=-(82>0)),082,04,014%,682%

17 61¢,82¢="" :: IF 65+686 TH
EN 81=05#256+86 :: GOTO 13 E
LLSE RETURN

M

5™ 1— =FORTH

We have two different Forth programs for
you this month. The first program is to be
placed on your Forth System diskette on
SCREEN 6. The DISK-INIT is used to
initialize, clear and install the error
messages on a blank disk that will be used
to store your Forth programs on. This
program assumes that you have set up your
Forth System disk according to last months
newsletter (with the BSAVE).

Boot in your TI Forth disk (the BSAVEd
version) and type in 6 CLEAR FLUSH. Now
type in 6 EDIT and then on SCREEN 6 type in
the following program. After the program
has been typed in press FCTN 9 (BACK) and
type in FLUSH. Now that you have saved this
on SCREEN 6 you can easily load it into
memory by typing in 6 LOAD. After the
program is loaded you can run it by typing
in DISK-INIT., When you run this program
follow the instructions that come up on the
screen. When the program is finished your
screen will clear and TI FORTH will appear
at the top.

SCR #6
PROGRAM DISK INITIALIZATION) BASE->R DECIMAL

: KEY¥Y? CR ." and Press any key."™ KEY DROP ;
: CLEAR-IT DISK_SIZE @ 0 DO I CLEAR LOOP FLUSH ;

: INIT PAGE
L Insert blank disk in drive 1t
KEY? O FORMAT=-DISK CLEAR-IT DISK-HEAD ;

: INSTALL=-ERRS PAGE

.M Place FORTH System diskette in drive 1" KEY? CE CR

11 4 BLOCK UPDATE 5 BLOCK UPDATE

12 ." Place Initialized blank disk in drive 1" KEY? FLUSH
13

14 : DISK-INIT INIT INSTALL-ERRS PAGE ABORT '

15 R=2>BASE

—
W OO = OV Ly DY o O
ey

Documentation

line 0 Screen name in brackets, move
the old number base to the return stack
and change the number base to DECIMAL.

KEY? Generate a carriage return and
then print the "and Press any key... ™
message on the screen. Next look for any
key press, DROP its value off the top of
the stack and end this word.

CLEAR-IT Take the value stored in
DISK_SIZE as the end of the loop and 0
as the start of the loop. Next start a
loop (similar to FOR I=0 TO DISK_SIZE)
and put the loop counter, I, on the
stack. CLEAR the screen number that I
left on the stack until the loop is
finished. Then FLUSH the buffers out to
the disk to CLEAR the last few screens
and end this word.

Y‘oe—————

W'

INIT Clear the screen and home the
cursor (see the March newsletter for
PAGE) and then print the "Insert
blank,..." message. Next use our KEY?
word for the rest of the prompt and
input, Afterwards initialize the
diskette in drive 1, then do the
CLEAR-IT routine and finally write out a
disk header that the disk manager can
recognize and end this word.

INSTALL~ERRS Clear the screen and home the
cursor and then print the "Place
FORTH.,." message. Next use the KEY?
word and after a key is pressed generate
2 carriage returns. Next read in screen
4, mark it as updated, read in screen 5,
mark it as updated and then print the
"Place Initialized..." message. Next use
the KEY? word and after a key is pressed
FLUSH (write) the error messages
(SCREENs 4 & 5) out to the new disk and
end this word.

DISK-INIT This word starts and direects
the program flow. First we execute INIT
then we execute INSTALL-ERRS next we
clear the screen and home the cursor and
finally we leave the program and print
TI FORTH on the screen.

line 15 This takes the o0ld number base

from the return stack and stores it back
into BASE.

After you are done using this program

you can type in FORGET KEY? and it will be
erased from memory.

WARNING...... Make sure you follow the
screen prompts and that you have covered
the write protect notch back up after this

program is installed on your Forth System
diskettell!

i el Wil P —

Now that you have this program installed
on the System diskette lets go ahead and
use it to initialize a new diskette and
then we will store our next program on it.
In the next c¢olumn you will find an
Extended BASIC program listed. This program
allows you to type in a name and address
and then it will print it back out on the
screen in its proper format. After which it
changes the screen color a few times and
then starts over again. To make the Forth
program easier to compare to the XB version
we used the line numbers with an L in front
as the Forth words. So L100 does in Forth

what line number 100 does in Extended
BASIC.

M

100 CALL CLEAR :: CALL SCREE
FOR I=0 TO 14 ::

N(6):: CALL
COLOR(I,2,15):: NEXT I
T10 CALL CLEAR DISPLAY AT
(4,1):"Name :":"Address:":
"City sW:MState :":"Zip

« 17

120 ACCEPT AT(4,9)SIZE(20):N
$:: ACCEPT AT(5,9)SIZE(20):
A$:: ACCEPT AT(6,9)SIZE(20)
:C$:: ACCEPT AT(7,9)SIZE(2)
:3% :: ACCEPT AT(8,9)SIZE(5)

A

130 DISPLAY AT(12,1):N$:A$:C
$&M, NES$E" MET

140 FOR I=1 TO 16 :: CALL SC
REEN{(I):: FOR J=1 TO 100 ::
NEXT J : NEXT I CALL SCR
EEN(6):: GOTO 110
SCR #6
8 (XB TO FORTH SAMPLE)} BASE->R DECIMAL
: MG ; { "FORGET MG™ WIFES OQUT ALL OF THE FOLLOWING NEW WORDS)

: L10G CLS 5 SCREEN 17 3 DO 1 14 I COLOR LOOP EMPTY-BUFFERS ;

: L1710 CLS 0 3 GOTQXY ."* Name :" CR ." Address:" CR
M City :" CR ,®™ State :" CR .M Zip v

: CLRBUF 8210 90 32 FILL ;

D o= N Ll fo -

11 ¢ L120 CLEBUF 10 3 GOTOXY 8210 20 EXPECT

12 10 4 GOTOXY 8232 20 EXPECT 10 5 GOTOXY 8254 20 EXPECT
13 10 &6 GOTOXY 8276 2 EXPECT 10 7 GOTOXY 8280 5 EXPECT ;
14

15 --> (= LOAD NEXT SCREEN ALSO)
SCR #7
0 (XB TO FORTH SAMPLE CONT. }
1
2 : L130 2 12 GOTOXY 8210 22 -TRAILING 2- TYPE
3 2 13 GOTOXY B232 22 -TRAILING 2~ TYPE
4 2 14 GOTOXY 8254 22 ~TRAILING 2- TYPE .t , ©
5 8276 4 -TRAILING 2~ TYPE .7 n
6 8280 7 -TRAILING 2- TYPE CR CR ;
T
8 : QUIT? ?TERMINAL IF TEXT ABORT ENDIF ; (FCTN 4 STOPS PROGRAM)}
S

10 : L1140 15 0 DO I SCREEN 100 O DO QUIT? LOOP LOOP 5 SCREEN :
11
12 : LOOPIT L11G L120 L130 L140 MYSELF ;

13
14 : RUN GRAPHICS L100 LOOPIT ;
15 R=>BASE RUN (START PROGRAM AFTER LOADING)

This is just one example of how an INPUT
or ACCEPT AT statement is handled in Forth.
Since Forth is 80 versitile there are many

ohter ways to accomplish the same effect.
This program is not truly useful since it
does not store the names and addresses out
“to disk, but with a few modifications you
could easily accomplish this. Lets move on
to the documentation for this program and
how to save and load it for future
referance, |

After you have used DISK~INIT to format
a blank disk for Forth program storage
remeve your Forth System diskette fronm
drive one and place this initialized

- diskette in drive one. Next type in 6 EDIT

and then while you are in the edit mode
type in SCREEN 6 as it appears on the left.
After you have completed SCREEN 6 press
FCTN 4 (ROLL UP) to edit SCREEN 7. Then
type in SCREEN 7 as it appears on the left.
After both screens are typed in press FCTN
9 (BACK) and type in FLUSH., To test it out
type in 6 LOAD and your program should
load, compile and run. If you run into a
problem or you just want to reload the
screens just type in FORGET MG and the
programs words will be erased from the
vocabulary so you won't get the "isn't
unique™ message.

You can stop the running program by
pressing FCTN 4 (CLEAR) when the program is
changing the screen colors after the input
prompts. After you have stopped the program
you can restart it by typing in RUN since
that is the word we defined in the program
as the start word.

The L100, L1100, L1120, L130 and L1140
words accomplish the same thing as the
corresponding line numbers in the Extended
Basic version,

The EMPTY~BUFFERS at the end of L1100
clears out the space we will be using for
our string storage. It also clears the
UPDATEd flag if it was set so that we don't
accidentally write anything out to the
disk. The EMPTY-BUFFERS word, however,
places the null character >00 throughout
the disk buffer area in low memory. The
problem with this oc¢curs when you want to
print your strings out on the screen they
ended with a bunch of white squares {char
() so we created another word. The CLRBUF
word writes char 32, the space character,
out to the area of memory that we are using
for our temporary string storage.

The QUIT? word uses 7TERMINAL to check
for the FCTN 4§ key press. If it was pressed
we will leave the GRAPHICS mode and go into
the TEXT mode, Then the ABORT word exits
our program and places the TI FORTH message
on the screen.

Now lets follow this program from the
RUN word, First we enter the GRAPHICS mode
(32 column display like XB).

MNe————

m'

M

Next we execute the L100 word. This word
clears the screen, changes the screen color
to Lt Blue, sets the colors for the
characters as Black on Grey and empties the
disk buffer space. In Fcrth you have the
entire 255 ASCII character set to your
avail and as such character set 0 is for
chars 0 through 7, set 1 is for 8 through
15, set 2 is for 16 through 23, set 3 is
for 24 through 31, etce. That is why we have
our DO LOCP set up for sets 3 through 17.
Next we execute the word LOOPIT.

LOOPIT is the main word for executing
this program in that it directs the flow
for the other words. First it executes L110
which clears the screen, places the cursor
at row 4 column 1 and prints " Name :", The
CR word moves the cursor down one line and
then we print the next prompt etc. After
all the prompts are printed we leave this
word and continue execution with L120. If
you think of Forth words as subprograms 1in
that after the word is executed it returns
to the next statement following it, you
might find it easier to trace through a
Forth program. for example think of LOOPIT
as being the following line in Extended
BASIC~ 50 GOSUB 110 :: GOSUB 120 GOSUB
130 :: GOSUB 140 GOTO 50 and imagine
that each of these lines has a RETURN at
the end of them.

L120 is our ACCEPT AT line but first it
will use CLRBUF to clear out our buffer
area and then it starts looking for inputs.
The 10 3 GOTOXY positions the cursor at row
4 column 11 for the NAME : input prompt.
ddress 8210 is the first section in our
buffer area and 20 is the maximum number of
characters to save., After 20 characters
have been typed in, or the ENTER key is
pressed, the 20 or less characters that you
typed in will be stored at address 8210
(decimal). After the first input is
complete the program continues with the
next GOTOXY until it has reached the end of
the L120 word (;)

After all of the inputs are filled in
the program continues execution with L130.
This is the word that prints out all of the
information that you typed in. The word
EXPECT from the previous line places two
nulls (>00 >00) at the end of the input
line as an end of line marker so we must
remove them before we print the line out on
the screen., So if we typed in 20 characters
our line will be 22 characters long, if we

typed in 14 characters our line will be 16
characters long etce. The -TRAILING word
strips the extra space characters off the
end of the line, if we did not fill it out,
and 2- strips the two nulls off the end of
our input. TYPE will then print out on the
screen just or input without the nulls and
extra space characters. This may not have
been the most efficient way to input, store
and retrieve and print out these strings
but we had to start somewhere. We could
have used user variables or stored then
right in the dictionary, but we will get to
that in a future issue.

When L130 is complete the program will
continue execution with L140. This word
sets up a DO LOOP te change the screen
color and the uses a nested DO LOCP with
the word QUIT? in it as a time delay
between color changes. This is why you can
stop the program while the screen colors
are being changed. After the LOOPs are
conmpleted we will change the screen color
back to Lt. Blue and leave this word.

The last word that LOOPIT executes is
the word MYSELF. This word allows Forth to
be recursive, in that any word can execute
itself. So when Forth comes to MYSELF it
will start LOOPIT all over again.

As you can see its not to difficult to
translate programs from BASIC or Extended
BASIC into Forth. A lot of the words are
similar except that Forth usually has the
column before the row such as COL ROW
GOTOXY instead of DISPLAY AT(row,col). Also
the loops are slightly different in that
the starting number and ending number are
swapped and the ending number 1is 1 unit
greater such as: FOR I=1 to 10 :: NEXT I in
XB is like this in Forth: 11 1 DO LOOP. The
colors, and sprite numbers are also off by
1 digit. Gray in XB is 15 and in Forth its
14 so the colors in Forth run from O
through 15 and the sprite numbers run from
0 through 3t1. In Forth you also have to add
3 to the XB character set value to arrive
at the same char numbers. And lastly don't
forget that the screen in Forth starts with
row 0 and column 0.

I hope that this short program example
and documentation will help you in writing
and running your own Forth programs. Next
month we will have more examples for you
and until then keep experimenting, that's
how I learned.

N

____——M

PC NOTES

This month in the PC column I would like
to talk about the machine a little bit.
First off I'm glad to see that TI is
putting approx 9 million dollars into an ad
campailgn that compares the TI PC to the IBM
PC. The TI is a little faster than the IBM,
it has MUCH better resclution on the
monitor than the IBM and the keyboard is a
Joy to use!l!l! Why buy an IBM? 1. Because
you like Charlie Chaplin. 2. Because you
like the initials IBM. 3. Because you like
to pay more for less. 4, Because you're mad
at TI for the home computer pull out.

Seriously, don't rush out and buy an IBM
because of item 4 above. That is a fact of
life in the computer industry. If you are
in the market for a machine of the PC
caliber first you should compare keyboards
AND resolution on the monitor (including
nupber of colers in hi-res mode). Next look
at the software availability. Just recently
Tl released MS~-D0OS 2.1 for the PC and on
this disk 1s a program entitled EMULATE.
When you type in this command the system
installs the proper values into RAM that
will allow the TI PC to run many of the IEM
programs. Now I1'm not going to say that you
can run all of the IBM programs, but you
can certainly run a lot more of them then
before. There is a saying out there that
states "The ONLY computer that is truly IBM
compatible is an IBM" (Peanut excluded of
course). That is because the only computer
that uses IBM PC DOS is IBM and they hold

10 *BOXES1 BY CRAIG MILLER 1-1-8%
20 CLS: PALETTE:KEY OFF :

the rights to it and their ROM code that
makes it compatible. However the TI PC with
MS-DOS 2.1 can run many of the IBEM progranms
provided they DO NOT contain graphics. TI
graphics are MUCH better than IBM's and as
such they are not compatible. Most of the
better programs such as LOTUS 1=-2-3 that
use graphics have been written for the TI
PC. If you are planning on buying a PC type
computer I'd recommend taking a look at the
TI PC, I've been pleased with it.

This months PC program is a randonm
pattern generator that uses the box and box
filled commands of MS DOS Basice. You must
have the three plans graphics board in
order to run this program. While the
program is running you can press the RETURN
key to pause. Then if you want to continue
with the same pattern just press C, if you
want to start a new pattern press any other
key. Also while the program is running
pressing any key other than the RETURN will
start a new pattern. After a random number
of boxes have been generated, as determined
by line 120, the program will automatically
clear the screen and start a new pattern. I
hope you enjoy it.

One last thing, We've received a few
letters requesting that we use this spate
for more 99/4A info and drop the PC column.
S0, this may be the last PC column unless
we hear differently from you, please let us
know, We have a lot more info and
programming that we would like to pass on
about the TI PC.

DEFINT A-Z :P=2 :COLOR 4,0:LOCATE ,,0:PRINT

30 RANDOMIZE VAL(RIGHT$(TIMES$,2))#VAL(MID$(TIMES,Y4,2)):GOTO 170
40 LINE (X+X+360,Y+150)-(C+C+360,R+150),P+4,BF

50 LINE (X+X+360,Y+150)-(C+C+360,R+150),P,B

60 LINE (Y+Y+360,X+150)-(R+R+360,C+150),P,B: RETURN

70 X=(X+E) MOD 149: Y=(Y+F) MOD 149
80 C=(C+G) MOD 149: R=(R+H) MOD 149
90 Y=-Y:R=-R:GOSUB 40
100 Y==Y:R==R:GOSUB 40
110 IF RND®*A<1 THEN GOSUB 140
120 IF RND#150<2 THEN 170

: X==-X:C=~C:GOSUB 40
s X=z=X:C==C:GOSUB 40

130 I$=INKEY$:IF I$="" THEN 70 ELSE IF I$=CHR$(13) THEN 200 ELSE 30

140 E=RND#12-6: F=RND¥12-6

150 G=RND¥*12-6: H=RND#12-6

160 P=RND#7:4=8 : RETURN

170 X=RND®*129-65 : Y=RND®*129-65
180 C=RND%#129-65 : R=RND¥129-65
190 A=4:CLS :GOTO 90

200 I$=INKEY$:IF I$="" OR I$=CHR$(13) THEN 200 ELSE IF I$="C" THEN 70 ELSE 30

SUBSCRIPTION INFORMATION

[— oy L ir sl il i - il

THE SMART PROGRAMMER - z monthly 16+ page newsletter published by MILLERS GRAPHICS
0.S. 12.50 year « Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

To subscribe send a Check, Money Order or Cashiers Check, payable in U.S. currency

TO: MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773

-

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
All mail directed to THE SMART PROGRAMMER will be treated as unconditionally
assigned for publication and copyright purposes and is subject to THE SMART

PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAPHICS

Texas Instruments, TI, Hex-Bus and Solid State Software are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE

1475 W. Cypress Ave. UEF,PE%“GE

San Dimas, CA 91773 San Dimas. CA 91773
PERMIT NO. 191

THE SMART PROGRAMMER

