MILLERS GRAPHICS

THE SMART

MAY 1984
$150

Once again I would like to apologize for
the tardiness of the newsletter release. 1
also want to thank EVERYONE for being so
patient and understanding. Thanks to the
diligent efforts of Steve Mildon, we have

recently completed the main project we were
working on with CorComp Inc.. S0, now we

can devote our main effort to getting the
newsletter back on track and back out on a
regular basis. A few people have asked 1if
we are still going to release full
subscriptions of the newsletter and the
anawer 1s definitely YES. We will not skip
a single issue and we will not combine two
months into one 16 page newsletter.

This month we have an extensive memory
map of Extended Basic's use of VDP RAM. We
have also mapped out the Disk File Buffer
area as it sits in memory for CALL
FILES(3). So lets get started.

In doing some recent research we
discovered that when you OPEN the R3S232
card for input or output that most of, the
software and hardware switch options can be
spelled out. Such as:

OPEN #1:"RS232.BAUD RATE=9600,.CHECK PARITY"

When the RS232 DSR parses the OPEN
statement it only checks the first two
characters, then it looks for a space or =
sign and then it takes in the appropriate
characters up to the next space period or
close quote, Also, the second and up
.{switches) can have spaces between the
last switch and the next . such as:

OPEN #1:"PIO.EC .TW .LF"

It is also possible to OPEN the same
port more than once at the same {ime.

However, the Hardware switch options must
be the same but, the Software switch

PROGRAMMER

options may be different.

The Hardware switch options are;
Baud Rate, Data Bits, Parity and Two
Stop Bits.

The Software switch options are;
Nulls, Check Parity, Echo, Carriage
Returns and Line Feeds (.CR) and Line
Feeds (,LF)

The last item discovered was that the
.CR and .LF options have no effect when
FIXED length records are specified for a
PRINT command. The exact number of
characters set up in the length is output
exactly as they are sent to the RS232 Card.

Over the past years there have been many
times that we wanted to test a program or
routine without using Memory Expansion.
Each time we wanted to do this we had to
shut down our system and remove the card
from the P E Box. This proved to be a real
pain in the neck, 30 we finally decided to
sit down and write a program that would

shut off Memory Expansion for us.

After a short time of searching for the
proper combination of CALL LOAD's we came

to the conclusion that we were fighting the
values stored in VDP RAM (>0370 - >03BE).

This area holds pertinent system data and
as such would also require new values to be
POKEVed into it. That, we decided was not a
good solution because it required that we
load the PEEKV and POKEV routines each time
we wanted to shut off the memory.

With a little more playing around the
following solution came to be. First type
in the three following programs and save
them to disk using the names indicated.

Then when you want to turn off the memory
type in RUN "DSK1.MEMOFF"., To turn it back

N e ——

on type in RUN "DSK1.MEMON"™. The key tc the
solution was to immediately load another
program after the CALL LOAD is executed.
You MUST either OLD or RUN the program you
cannot MERGE itl!!l

When you CLD or RUN a program Extended
Basic looks at the address we changed and
sets up the proper pointers throughout the
rest of CPU and VDP memory. MERGE, however,
does not change these pointers and the

system gets totally confused. If you try to
LIST or RUN a MERGEd program your system

will probably lock up and you will have to
shut it off and then back on.

The other key is to keep at least one
line of a program in VDP memory when Memory

Expansion is shut off. The 1 REM was added
to the MEMTEST program to allow you to

delete line 100, without turning on the
Expansion Memory, so you could type in your
own program. To turn the memory back on you
can either run the MEMON program our you
can type in NEW or just delete all of the
program lines form memory.

The Expansion Memory will also come back
on if you create an I0 ERROR when you
access the disk, such as typing in a
filename that does not exist on the disk.
Typing in the command SIZE will verify that

the memory is either ON or OFF. Even though
you have turned off Expansion Memory CALL

LINK & CALL LOAD will work fine. This is
because the validation code is still
sitting in Low Mem-Exp (after executing
CALL INIT). What this means is that you can
£f111 up Mem-Exp with Assembly routines,
turn off Mem-Exp and then load an Extended
Basic program into VDP RAM that calls these
routines. Here are the three programs for
turning the memory ON and OFF (don't forget
to execute CALL INIT):

MEMOFF
100 CALL LOAD(-31868,0,0)::
RUN "DSK1.MEMTEST"

MEMOR
100 CALL LOAD(-31868,255,231
):: RUN "DSK1.MEMTEST"

MEMTEST
1 REM
100 CALL CLEAR :: CALL PEEK(
~-31952,A):: IF A=55 THEN PRI

NT "Exp-Memory is OFF" ELSE
PRINT "Exp~Memory is ON"

MMM

OOPS!

In the opps column this month we want to
try and answer few problems that some
people are having with past newsletters.

In an earlier issue on FORTH we stated
that you can copy the FORTH disk with the
Disk Manager Module. It is VERY important
that when you use the Disk Manager to copy
FORTH that you format the disk as Single
Sided. If you do not the menu and a few
other screens end up on side two and as
such they will not work properly. TI-FORTH
accesses the disk using sector IO not file
JO like the other languages. Due to the
nature of the Disk Controller DSR, Forth's
boot screen (screen 3) is not sitting at
sectors 12-15 when you copy the FORTH disk
with the Disk Manager onto a Double Sided
disk it ends up on sectors 367-370 (side
two) and Forth's Screen 3 is left blank.

A few people have written 1in stating
that they are having problems with the
BSAVE for Forth from the March issue. Part
of this may be because of the above
paragraph. Part of it may be due to one or
more of the following items:

1. Be sure you are in DECIMAL base.

2. Be sure you are typing in ' TASK 51
BSAVE and then enter. The Apostrophe
(FCTN 0) is VERY important!!

3. Be sure your Screen 3 has been modified
to match the one shown on page 15 in the
March issue. If you type in the screen
EXACTLY as shown you will be set up for
one single sided disk drive. Make sure
you have 51 BLOAD and not 51 LOAD on
line 2.

i, In order to access BSAVE you must load
it from the Forth menu by typing in
-BSAVE and pressing enfter.

Its quite hard to analyze the exact
nature of the problem without actually
seeing what is going wrong. I hope these
two paragraphs are some help.

In the April issue we dropped a very
important character from the Assembly
listing of the PEEKV, POKEV & POKER
routines., Line 28 on page 7 should read;

0028 0014 MIWS BSS >10

That should clear up any problems you

pight have had when using the Assembler

version. The CALL LOAD version works fine.

A few people have written stating that
they are having problems loading the
programs after they have been Assembled.
The problem they stated was that they keep
getting UNRECOGNIZED CHARACTER error
messages when they try and load it through
Extended Basic. The Extended Basic loader
will not load compressed object code, 80
when the assembler asks for OPTIONS do not
type in C, This will assemble the program
in uncompressed format and it will load and

LINK to XB fine. See page 33 (Options) and
pages 410-419 (Comparisons with TI Extended

Basic Loader) in the Editor Assembler
manual for additional information.

In the February issue we stated that you
could use the number conversion program,
that was printed in the Free Mini Sample of
the Smart Programmer, to convert the
Assembly Opcode Values into CALL LOCAD
values. Well it seems that few people are
having some problems with this so lets take
another look at it. The Opcode Value is

made up of two bytes, one word, and the
CALL LOAD values must be one byte. The

number conversion program converts word hex
values into word decimal values and it also
split them up into two byte values. The
Opcode Value for the instruction MOV R2,R1
is >C042, This value converted to decimal
in two's compliment is -16318 and converted
to an unsigned number is 49218. To get the
CALL LOAD values just split the hex value
into two bytes >C0 and >42. Now >CO equals

decimal 192 and >42 equals decimal 66. So
the CALL LOAD to load this instruction

would be CALL LOAD(address,192,66). If you
multiply 192 # 256 and add 66 to it you get
49218, I hope this has helped a little.

We have received many letters and
questions and we appreciated all the

comments, tips and compliments. Some
letters have contained self addressed
stamped envelopes and we are sorry that
time has not permitted us to reply
directly. We have read and filed all of
these letters into different question
categories and we plan to answer as many as
possible in the pages of the Smart
Programmer. So please don't send self
addressed envelopes with your questions.

Also if you are having a problem with
something please include the ATA or LTA

number from the bottom of your console and
Extended Basic module, this may help us
narrow down some of the different operating
system differences.

Q&A

Over the past few months we have
received some questions regarding the Power
Up routine and its sequence of events.

The Power Up routine resides in console
ROM and console GROM chip 0, with the
ma jority of it in GROM. Listed below is the
sequence of events, as we know it, that
take place from the moment power is applied
to the console.

1. When power is first applied to the 9900
microprocessor it executes a level O
interrupt which is a reset. When this
happens it knows to grab 1its workspace
pointer from address >0000 and its program
counter or instruction pointer from address
>0002. In the 99/4A these addresses are
burned into the console ROM. Once 1t has
these addresses it begins to execute the
code that is pointed to by address >0002.

2. The code pointed to by address >0002
loads R13 with >9800, the GROM read
address, R14 with >0100, the status flag
and R15 with >8C02, the VDP write address.

3. The balance of the Power Up routine is
in GROM chip 0, First it clears out the
sound list indicator at >83CE and then it
turns off the Speech Synthesizer, if you
have one, and turns off the sound
generators.

}, Next it injtializes the Data and
Subroutine GPL stacks in Scratch Pad RAM,

5. Then it loads the VDP registers with
default values stored in a GROM table.

6. Most of the Scratch Pad RAM is then
cleared out by writing zeros to it.

T. The keyboard interrupts are then
disabled and the cassette audio gate is
turned on, this allows you to hear the
cassette through your monitor speaker.

8. Next the VDP and external interrupts are
enabled.

9. The cassette motors are then enabled,
this sets up the remote jack so0 the motors
can run.

N e —

W

10. Next it generates a BEEP sound by
CALLing the TON1 routine in GROM chip 0.

11. And then it determines the size of VDP
RAM, 4K or 16K, and sets bit 0 in VDP
register 1 to 1 for 16K. I guess that TI
thought they might produce a 4K console at
che point in time,

12. The first 4K of VDP RAM is then cleared
out and the default color and character
tables are moved from GROM to VDP RAM.

13. Next the keyboards are initialized by

scanhing them. ie: CALL KEY{(5.. ,CALL
KEY(4.. , CALL KEY(3.. etc.

14, Then it moves the data for the Title
Screen into the screen image table. At this
point the screen can not be seen because it
is turned off. Bit 1 in VDP register 1 is
set to zero,

15. The ROMs(DSR) and GROMs are then
searched for power up headers and if they
have one they are executed,.

16. After the search and execution of power
up headers is complete the Title Screen is
displayed by writing a 1 to bit 1 of VDP
register 1. This is the first time that you
are able to see the Tile Screen.

17. Next it initializes the Random Number
Generator and then waits for you to 'PRESS
ANY KEY'. After you press a key it
generates another BEEP sound,

18. And then it searches through the
cartridge ROM and GROM for application
programs and builds a list of their names.
ie: Editor/Assembler, Extended Basic, Basic
etc., Note: some consoles, V2.0 (C) 1983, do
not search ROM only GROM.

19. At this point the screen is once again
turned off, VDP register 1, bit 1 is set to
zero and then it sets up the menu screen
with the application programs it found.

20, After the menu is set up it turns on
the screen by writing a 1 to bit 1 of VDP
register 1, and waits for you to make a
selection.

21, If you make an illegal selection it
generates a HONK sound, otherwise it sets
up the starting address for the application
program you selected and branches to it.

We have received a number of questions
regarding the TMS 9918A Video Display
Processor chip and where to get more info
and technical data on it.

TI publishes Data Manuals on every chip
they produce. These manuals range in price
up to about 15.00. They can usually be
obtained through a good electronics
supplier, a local TI sales office or
exchange center or direct from the TI
Semiconductor Group. Most of the TI sales
offices are listed in the phone book and
the address for the TI Semiconductor Group
is:

Texas Instruments
P.0. Box 1443
Houston, TX 77001

You can probably write to them and find
out how much the TMS9918A/TMSG9284/TMS0G294A
Video Display Processors Data Manual
#MPC10A costs.

We have received a number of question on

the care and maintenance of diskettes and
disk drives.

First off in most of the information
that I have read on floppy diskettes I've
noticed that they forget to mention one
very important thing. I, like many other
people, have the BAD habit of laying
floppies on top of my desk without putting
them back into their protective sleeves.
I'm quite lucky that I haven't damaged one
yet. You see, side 1 on the diskette is the
side opposite the label side. This is the
side that comes in contact with the desk
and anything on it when you lay down the
floppy without its protective sleeve. So,
DON'T get into my bad habit, put your disks
back into their sleeves as soon as they
come out of the drive.

I have also read a lot of articles about
making floppies into flippies (punching new
holes in the jacket to use the other side
of the disk in a single sided drive). My
opinion on this subject is DON'T, On a
single sided drive the head is on the
bottom and there is a felt type pressure
pad on the top that holds the floppy
against the head. After a few months of use
this felt pad collects dirt and dust. When
you flip your diskettes over you are
allowing this dirty felt pad to come into a
pressure type contact with your valuable

e e

B)

r\

P

M

data. It only takes one scratch on sectors
O or 1 to wipe out an entire diskettell
Also when you flip your disks over you are
causing them to rotate backwards in the
drive. Inside the Jjacket is some special
fabric that helps keep the diskette clean.
But, when rotate it backwards you may cause
the pads to release some of the dirt they
coliected right onto your diskette. Think
of it like a clothes brush you've just used
to brush your sweater with and then try and
brush your black pants off, only reverse
the brush stroke direction -~ what a messl! I
know some people will send in letters

stating that they have been using flippies
for a while now without any trouble. My

only comment is that I would rather spend
the extra couple of bucks for another
floppy than retype in 90K of Data and
Files.

You should store your floppies in a
covered upright position not laying down.
The original box works fine or one of the
many floppy files is also a good idea. When
they are stacked laying down the fabric in
the jacket is pressed against the diskette
and it may imbed some dirt into the surface
and wipe out some data.

My opinion on cleaning your disk drives
with a head cleaning diskette is only use
it as a last resort! If you have made sure
that its not the floppy, a bad connection
or an improperly closed file then run the
destructive disk test. If you have a lot of
errors on a lot of different floppies then
as a last resort use the head cleaner BUT

follow the directions to the letter!! If
they say 9 or 10 drops don't use 20 or 30
unless you want it all over the inside of
your drive., If they say to run the disk for
30 seconds then don't run it any longert

The reason I'm against these head
cleaners it that they are ABRASIVE and if

you use them too much you will wear out the
read/write head in your drive., I know the
head cleaning kit manufactures say to clean
your drive at least once a week & more

often if they are used heavily, but nowhere

on my kit does it guarantee NOT to hurt my
drives. As a matter of fact most of them
have a disclaimer and they will only
replace the cleaning kit if something goes
wrong. We use our computers between & and
15 hours a day, 6 to 7 days a week and we
don't clean the heads any more than ONCE or
TWICE a year.

GPLLNK ROUTINE

Over the past few months we have
received a number of requests for a GPLLNK
Routine that works with Extended Basic.

Also during this same time period we have
received a few modified GPLLNK routines

from various readers, thank you. The GPLLNK
routine we have included in this issue is
very similar to the one that TI sends out,
except this one works, and I believe that
it was sent to us from John Brown.

Once again we have included the Assembly
version and the CALL LOAD version for
Extended Basic. In the Assembly version
there are two programs, GPLLNK & EXEGPL.
The GPL program is all you need to add to
other Assembly programs in order to use the
GPL Routines in GROM chip 0. The EXEGPL

program allows you to CALL LINK("EXEGPL",#)
to execute a GPL Routine from Extended

Basic. The CALL LOAD version contains both
the GPLLNK and EXEGPL so you can LINK to
the routines. The list of available
routines is as follows:

(Note: I believe that >10, >12, >1A, >1C &
>1E are intended for use in a GPL program
only.)

Hex Dec Nane

>10 (16) LINK
Links to subprograms and DSR's.
>8356 points to name location in VDP RAM

VDP location contains one byte for
length of name then the name. The DSR or
subprogram should return back to GROM
through RETN. In GPL code a Data byte of
>8 immediately following the CALL
indicates a subprogram link and >A
indicates a DSR link.

>12 (18) RETN
Return from a subprogram or DSR.

>14 (20) CNS or STR

Convert a number into a string.

>834A contains the number in radix 100
notation. >8355 contains 0 for TI Basic
format. If >8355 is greater than zero
then the number is returned in FIX mode
and >8356 must contain the number of
significant digits, >8357 must contain
the the number of digits to the right of
the decimal point. The location of the
string is pointed to by adding >8300 to
the byte at >8355. >8356 contains the
length of the string.

e e

L TR

>16 (22) CHAR1
lLoad 8 dot high Character set,

Loads the Title screen chars into the
VDP address pointed to by >834A,

>18 (24) CHAR2
Load 7 dot high character set.
Loads the standard chars into the VDP
address pointed to by >83L4A.

>1A (26) BWARN

Warning message from Basic subprogram in
GPL.

>1C (28) BERR

Error message from Basic subprogram in
GPL.

>1E (30) BEXEC
Begins execution of GROM Basic program.

>20 (32) PWRUP
Restarts the system by executing the
GROM portion of the power-up routine.

>22 (34) INT

Converts a floating point number into its

greatest integer value. >834A contains
the floating point number in radix 100
and the greatest integer value 1is
returned to >834A.

>24 (36) PWR
Raise a number to a power. >834A
contains the power value in radix 100

and >»835C contains the value of the
number to be raised in radix 100.

>26 (38) SQR
Calculates the square root of a number.
>834A contains the input value and the

square root is returned to >834%A, both
in radix 100 notation.

>28 (30) EXP
Calculates the inverse natural logarithm
of a number. >834A contains the input

value and the result is returned to
>834A in radix 100.

>2A (42) LOG
Calculates the natural logarithm of a
number., >834A contains the input value

and the result is returned to >834A in
radix 100,

>2C (34%) COS
Calculates the cosine of a number. >834A
contains the input and result.

>2E (46) SIN
Calculates the sine of a number. >8344
contains the input value and the return
value in radix 100.

>30 (48) TANR
Calculates the tangent of a number.

>83U4A contains the input value and the
return value in radix 100.

>32 (50) ATH
Calculates the arctangent of a number.
>8344A contains the input value and the
return value in radix 100.

>34 (52) TONt
Generates a BEEP sound.

»>36 (S4) TON2
Generates a HONK sound.

>38 (56) Get String Space.

Allocates memory space in VDP RAM with a
specified number of bytes for a string
or PAB. The word at >830C contains the
number of bytes to allocate. The word at
>831A points to the first free address
in VDP RAM and the word at >831C points
to the start of the space to be
allocated.

>3B (59) BITRVR
This is a bit reversal routine. It will
reverse the bits in each byte of a block
of specified VDP RAM, lie: make the
characters backwards so b becomes d etc.
The word at >834A points to the starting
address in VDP RAM and >834C contains

the number of bytes to be reversed.
Unfortunately this routine destroys
addresses >8300 through >8340 so it can
not be called from Basic or Extended
Basiec. You can however write and
Assembly language routine to save this
area of memory, use the routine and then
restore this area and return to Extended
Basic.

>3D (61) Cassette DSR.
Accesses the cassette DSR. You must set
up a PAR before calling this routine.

>RA (7h) CHR3
Load the 7 dot high small cap
characters. These are the ones used for
lower case letters., This routine is in
the 99/4A only. >834A points to the
starting address in VDP RAM where the
characters are to be loaded.

Me———————————

_‘jﬁ

® XB GPLLNK

GPLLNK DATA

GPLO MOVB @6GRMRA,R1 Fetch GROM address
SWPB R1
MOVB @GRMRA,R1
SWPB R1
Al R1,-3 Back up to the XML instruction
MOVB @SUBSTK,RZ2 Get the stack pointer
SRL R2,8
Al R2,PAD
INCT R2 Push XML address for return
MOVB Rt1, ®R2
SWPB R1
MOVB Rt1,81(R2)
SWPB R2
MOVEB R2,8SUBSTK
MOVB ®#R14+, 86GRMWA Set up address to call
MOVB ®#R14+, 86GRMWA Second byte (also adjust return)
MOV @8>2000,RY Save current XML link
LI R3,GPL1 New XML 1link
MOV R3,8>2000
LWPI GPLWS Use GPL/XB workspace
RT Go to routine
GPL1 LWPI UTILWS Should return here
, MOV R4,8€>2000 Restore original XML location
RTWP and go back to caller
Use the END statement only if not called by COPY directive,.
» END
B o o o o e e ———— - —— - *
& Set up CALL LINK("EXEGPL"™, #) *
S —— . - - &
COPY ®"DSK2.GPLLNK®" NOTE remove END statement from GPLLNK
DEF EXEGPL Set link name in REF/DEF Table
FAC EQU >834A Point to FAC
ADDRSS DATA >400 Sits at >24EC dec 9452 if loaded first
use CALL LOAD(9452,7,?) to cange.
EXEGPIL. CLR RQ
LI R1, 1
BLWP €>200C Use NUMREF routine
MOVB @FAC+1,6DAT+1 Set up GPL call number
MOV €@ADDRSS,@FAC
BLWP @GPLLNK Do GPLLNK routine
DAT DATA >16
RT
END

Routine - Save as source
¥ code and add into desired Assembly

UTILWS, GPLO

#® program with the COPY directive. *

B e e e e e —————————————————_————_———— #
" UTILWS EQU >2038

SUBSTK EQU >8373

GRMRA EQU >9802

GRMWA EQU >9C02

GPLWS EQU >83E0

PAD EQU >8300

B e e e e e c e rer—————————————————————— #

GPLLNK workspace,program counter *

B e e e e ————— — ———————— ———————— — — -———————— &

GPLLNK CALL LOADS

1 1 GPLLNK &
CALL LINK("EXEGPL"™, #)

2 ! Note:9l452 is the address
of the word that is moved
into FAC (>8344)

10 CALL INIT

20 CALL LOAD(16368,69,88,69,
71,80,76,37,186)

30 CALL LOAD(16376,69,88,69,
71,80,76,37,72)

40 CALL LOAD(8194,37,216,63,
240)

50 CALL LOAD(9460,32,56,36,2
48,208,96,152,2,6,193,208, 96
y152,2,6,193,2,33,255,253,20
8,160)

60 CALL LOAD(9482,131,115,9,
130,2,34,131,0,5,194,212,129
,y6,193,216,129,0,1,6,194,216
y2)

70 CALL LOAD(9504,131,115,21
6,62,156,2,216,62,156,2,193,
32,32,0,2,3,37,60,200,3,32,0
)

80 CALL LOAD(9526,2,224,131,
224,4,91,2,224,32,56,200,4,3
2,0,3,128,4,0,4,192,2,1)

90 CALL LOAD(9548,0,1,4,32,3
2,12,216,32,131,75,37,99,200
»y32,37,70,131,74,4,32,36,24}4
)

100 CALL LOAD(9570,0,22,4,91
y32,56,37,106,208,96,152,2,6
,193,208,96,152,2,6,193,2,33
)

110 CALL LOAD(95%2,255,253,2
08,160,131,115,9,130,2,34,13
1,0,5,194,212,129,6,193,216,
129,0,1)

120 CALL LOAD(961%,6,194,216
,2,131,115,216,62,156,2,216,
62,156,2,193,32,32,0,2,3,37,
174)

%M

130 CALL LOAD(9636,200,3,32,
0,2,224,131,224,4,91,2,224, 3
2,56,200,4,32,0,3,128,4,0)

140 CALL LOAD(9658,4,192,2,1
,0,1,4,32,32,12,216,32,131,7
5,37,213,200,32,37,184,131,7
)

150 CALL LOAD(9680,4,32,37,1
02,0,22,4,91,66,252)

GPLLNK TEST PROGRAM

1 1 GPLLNK test program
must load GPLLNK assembly
program first.

10 A$=mt1nnisq&' () %+, -,./01230
56789: ;<=>7@ABCDEFGBIJKLMNOP
QRSTUVWXYZ[\]"_“abedefghi jkl
mnopqrstuvwxyzf{j}~"

20 CALL CLEAR :: FOR I=1 TO
10 :: PRINT "PRESS ANY KEY t
¢ change®™: : :: NEXT 1

30 CALL KEY(0,K,S):: IF S TH
EN 40 ELSE CALL LINK("EXEGPL
",22):: CALL LINK("EXEGPL"™,?2
4):: GOTO 30

YO0 CALL LINK("EXEGPL“,EE)::
PRINT "LARGE TITLE SCREEN CH
ARS"™: : :: GOSUB 80

50 CALL LINK("EXEGPL",24)::
PRINT "REGULAR SCREEN CHARS?™
: ¢ :: GOSUB 80

60 CALL LINK(“EXEGPL“,?“)::
PRINT "LOWER CASE CHARS 0123
456789": : :: GOSUB 80

70 GOTO 40
80 CALL KEY{(0,K,S):: IF S=1

THEN PRINT A$: : :: RETURN E
LSE 80

“5

o e e e e r — —— - T i T Sl i S T . T e e A S o S - T it Sl S " T S " -
>0000 | VDP SCREEN IMAGE TABLE 768 Bytes
| 1 Byte per screen position. Character value offset by >60 (96)
I
| (Row~1)%32+Col=Address
| 202E2=New line Address
>0 2FF |
e o i o - . S e i S i - P A i Sl e S
>0300 | SPRITE ATTRIBUTE TABLE 112 Bytes
| U4 Bytes per sprite. (room for 28 sprites)
I
>036F | | vert pos-1 | horz pos | char #+96 | early clock bit : color !
e o T T i i i Y . - T e e . . - - o i s -
>0370 EXTENDED BASIC SYSTEM AREA 128 Bytes
20371 Auto Boot needed Flag
>0372 Line to start execution at
>0376 Saved symbol table 'GLOBAL' pointer
>(0378 Used for CHR$
>0379 Sound Blocks
>0382 Saved Program pointer for continue and Text pointer for break
>0384 Saved Buffer Level for continue
>0386 Saved Expansion Memory for continue
>0388 Saved Value Stack pointer for continue
>038A On-Error Line pointer
>038C Edit Recall start address
>038E Edit Recall end address
>0390 Used as temp storage place (FAC12)
ﬁﬂ“ »>0392 Saved main symbol table pointer
" >039Yy Auto load temp for inside Error
>03396 Saved last Subprogram pointer for continue
>0398 Saved On-Warning/Break bits for continue
>0394 Temp to save subprogram table
»>039C same as above . Used in SUBS

:
;
I
I
|
I
I
I
|
|
I
I
I
I
I
I
I
I
>039E | Merged temp for PAB Pointer
I
|
I
I
|
I
I
I
I
I
!
I
I
|
I
I
I
I
I
I
|

>03A0 Random Number generator seed 2
>034A5 Random Number generator seed 1
>U3AA Input temp for pointer to Prompt
>03AC Accept temp pointer
>03AE Try Again
>03B0 Pointer to standard string in VALIDATE
»>03B2 Length of standard string in VALIDATE
>03B6 Size temp for record length. Also temp in Relocating Program
>03BY Accept "TRY AGAIN" Flag
>03B8 Saved pointer in SIZE when "TRY AGAIN"
>03BA Used as temp storage place (FAC10)
>03BC Old top of memory for Relocating Program / Temp for INPUT
>03BE New top of memory for Relocating Program
>03C0 Temp Roll Qut Area 32 Bytes
Lib (part of scratch pad RAM is moved here for various operations)
>03DC Floating point sign
>03EF
- —— — - - S s o . e - T W WS Al Sl e o e A A e M e S Sk oY . A 0 b S Sl o i

>O0TTF

>0780

>OTFF

>0800

>081F

>0820

>08BE

>08C0

>0957
>0958
»0967

>0968

e e e i T o R o B e +
| PATTERN DESCRIPTOR TABLE 912 Bytes |
! SPRITE DESCRIPTOR TABLE |
I !
| 8§ Bytes per character / 114 characters (30-143)]
I |
{ >03F0 = Char 30 (The Sprite Motion Table uses the memory |
| >03F8 = Char 31 space for character sets 15 & 16) I
{ >0400 = Char 32)
| I
o e o o o e i B 2 B e e e i S D R A O D T . 0 e o +
| SPRITE MOTION TABLE 128 Bytes |
| 4 Bytes/Sprite !
I :
| | vert velocity | horiz velocity | sys use | sys use | |
o e o e i e o S e e A 7 e e - e e e e e +
| COLOR TABLE 32 Bytes |
| 1 Byte/Character set |
I I
| | foreground color : background color | |
o . v i e o e - S A S e e e A A S e S S R R S sy A N iy e S A ol S e A S A A G - e e W S
! CRUNCH BUFFER 160 Bytes |
: I
| This area is used while crunching ASCII into token codes.]
I I
A e e B e T e e e T o o e D O i B B e D 0 e +
| EDIT/RECALL BUFFER 152 Bytes |
I I
| This area holds the info you type in on the command line. I
| I
A e e - - - —— e M T U S (D W S ol S S A e S T i - +
| VALDE STACK (Default Base) 16 Bytes |
I S i
! Used by the ROM routines SADD, SSUB, SMUL, SDIV and SCOMP. I
e e e e e e . e e e B - e e - +
} The items in this area move according 11888 Bytes |
! to the size of the crunched program. I
| The system also reserves 48 bytes of this area. |
I |
| The SYMBOL TABLES are generated (except the PAB) during I
| the Pre-Scan period after you type RUN. The strings are |
! placed in memory when they are assigned {(ie: A$="Hello") |
I I
! Without Mem-Exp With Mem-~Exp I
I I
| STRINGS STRINGS I
| cocmmmmmeemmemmmmmmem——emmme eemme—mmmemee—e———eeee—see- |
! DYNAMIC SYMBOL TABLE & PABS DYNAMIC SYMBOL TABLE & PABS]
| |
| meermcccsemmcsssmssccscssomooe 0 0SSsscsosooSSSSSSsoemmoEEsTTT)
| STATIC SYMBOL TABLE STATIC SYMBOL TABLE !
I ittt ettt bttt I
! LINE NUMBER TABLE Numeric Values, Line Number |
| comccmrerrcrcc e e Table and Program Space moved |
! PROGRAM SPACE to High Mem-Expansion I
! (ecrunched program) I
I I
| The Line Number Table and the Crunched Program are saved to !
| disk like they reside in memory for PROGRAM "Memory Image" I
| type files. I
i o e e P e o e o i o i e e o R - +

[
1
=
+
fN
L .
Al

>37D8 | DISK BUFFERING AREA for CALL FILES(3) 5 Bytes |
>37D8 | Validation code for the Disk Controller DSR (D>AA) |
>37D9 | Points to TOP of VDP memory (>3FFF) :
>37TDB | CRU base identification (11 for CRU 1100) |
>37DC | Maximum number of OPENed files (>03 default) I
O, |

i File Control Block for ist file OPENed 6 Bytes 518 Bytes |

>37DD | Current Logical record offset |
>37DF | Sector number location of File Descriptor Record I
>37E1 | Logical Record Offset (only used with VARIABLE records) I
>37E2 | Drive number (high order bit set = Updated Data Buffer area) |
| File Descriptor Record (brought in from the disk 256 Bytes) I

>37E3 | File Name I
>37ED | Reserved (>0000) I
>3TEF | File Status Flags (file type and write protection) |
>3TF0 | Max number of Records per Allocation Unit (1 AU = 1 Sector) !
>3TF1 | Number of Sectors currently allocated (256 byte blocks) |
>37F3 | End of File offset within the last used sector !
>37F4 | Logical record length (ie: FIXED 80 or VARIABLE 254 etc.) I
>37F5 | # of FIXED length records or # of sectors for VARIABLE length |
I (the bytes are reversed ie: LSB|MSB should be MSB!LSB) |

>37F7 | Reserved (>0000 >0000 >0000 >0000) I
>37FF | Pointer Blocks - 6 nibble, 3 byte, clusters that point to I
! the Start Sector numbers and the highest logical Record !

I Offset in the cluster. Change the nibble order from l

I iss2:s81| {roi:ss3) iro3:ro2} to !ss3:ss2:s3s51] Jro3:ro2:ro1} !

>38E3 | Data Buffer area 256 Bytes I
| e :

>39E3 | File Control Block for 2nd file OPENed 6 Bytes 518 Bytes |
I same pattern as above :

>39E9 | File Descriptor Record 256 Bytes |
| same pattern as above I

>3AE9 | Data Buffer area 256 Bytes I
| e I

>3BE9 | File Control Block for 3rd file OPENed 6 Bytes 518 Bytes |
i same pattern as above I

>3BEF | File Descriptor Record 256 Bytes |
| same pattern as above I

>3CEF | Data Buffer area 256 Bytes |
o e i S e e e e e B e . B +

>3DEF | VDP STACK AREA 252 Bytes |
>3EEA | !
o e o e e e e e e e B +

| DISK DRIVE INFO § Bytes |

>3EEB | Last Drive Number accessed |
>3EEC | Last track access on Drive 1 I
>3EED | Last track access on Drive 2 !
>3EEE | Last track access on Drive 3 I
e e e e e e e e e B i e +

>3EEF | (?? not used any more was for the 99/8 ?7) 6 Bytes |
>3EF4 | I
o e o e e e e B e i e B B e e e o +

>3EF5 | VOLUME INFORMATION BLOCK 256 Bytes |
| (Copy of Sector 0 from the last disk accessed for a HRITE) |

>3FF4 | Contains Disk Name, type and bit map for used sectors. I
e e i e e i e e - e i B e e e e e +

>3FF5 | FILE NAME COMPARE BUFFER 11 Bytea |
>3FFF ! Contains disk number and 10 character file name for last access.|
o e i v e e et B e i e B 2 O S B e e +

M—

COLOR EDITOR

The following program was sent to us
from one of our European readers. It allows
you to mix any two c¢olors and displays a
large block of the new color. After using
it for a little while we made a couple of
small modifications that allowed it to run
a little faster. We left the original code
in place with REMs in front of it so you
could see the difference. There are many
ways to get the computer to do something
and its always fun to see how another
way works.

This program places 15 double sized
sprites down the right hand side of the
screen to form the color selections. You
are then allowed to move another sprite,
the marker, up and down this column to make
a selection. When you are on the color you
want just press the fire button on the
number one joystick or any key but the up
and down arrow keys. The program then uses
this color as the foreground color and the
next color choesen will be the background
color. It is fun to play with and it shows
you which c¢olors mix well to form a new
shade for use in another program. We would
like to thank Mr. Reitinger for sending us
this program. We alsoc hope he doesn't mind
the minor modifications to his program,

i

1 1 COLOR EDITOR
for mixing any desired
2 colors with joyst or
Keyborad.

2 With Greetings

E.H.REITINGER
Vienna, Austria

3 1 TIg9Q9Q-Journal-Klub
A-1150 Wein
Felberstrabe 24/26

10 CALL SCREEN(16):: CALL CL
EAR

20 MS$="E5AAS5AAF5AARGAAT
A=t122

30 CALL MAGNIFY(2):: CALL CH
AR(64,RPT$("F",16),34,"FF818
1FFFFFF" 128, "FFFFFFFFFFFFFF
",7T3,M$):: CALL COLOR(3,16,2
,4,16,2,6,1,1,5,2,1)

Yo —mMmmMmM8m 00—

40 CALL VCHAR(1,27,64,192)::
CALL HCHAR(23,1,64,162):: H
=1

50 G==2 :: FOR I=3 TO 16 ::
CALL SPRITE(#1,643,I,(G+I)#%*12
,230):: NEXT I :: CALL SPRIT
E(#2,3H,16,5,230)!#16,128,16
, 17,230)

60 CALL SPRITE(#1,42,2,A4,231
)

70 FOR S=4 TO 22 :: CALL HCH
AR(S,3,73,24):: NEXT S

80 CALL JOYST(1,X,Y):: ON (S
GN(Y)+2)GOTO 90,130,110

90 AzA+12
=2

IF A>170 THEN A

100 CALL LOCATE(#1,A,231)::
GOTOC 130

110 A=A-=-12 IF A0 THEN A=z

170

120 CALL LOCATE(#1,4,231)

130 CALL KEY(1,K,S):: IF S=0
THEN 80

140 IF K=z5 THEN 110 :: IF K+
1=1 THEN 90

145 F=INT(A/12+2):: CALL S0U
ND(200,660,2):: GOTO 180 1! T
his was inserted to replace
line 150,160 & 170 Ed.

150 IFOR F=2 TO 16 :: CALL C

OINC(#1,#F,3,C):: 1F C THEN

CALL SOUND(200,660,2):: GOTO
180

160 INEXT F

170 !GOTO 80

180 CALL COLOR(6,F,H):: DISP
LAY AT(24,9)SIZE(7):USING "

":F,H :: H=F :: GOTO 8
0

5" 1— =FORTH

4"* We have been receiving a lot of requests
| la

tely for some Forth programs that use
graphics., Well this month, thanks to Mr.
Volk, we have a program called Diamond
Draw. This program uses the Bit Mapped mode
and allows you to move a diamond around the
screen to draw lines in different colors.
After you have typed it in and saved it out
to disk (FLUSH) you will need to load
-VDPMODES and ~-GRAPH if your Forth system
is not set up to boot these in initially.
The just type in the first screen number
you saved this program on and LOAD. After
the program is loaded and complied type in
RUN to start the program. The instructions
for using Diamond Draw will appear on the

screen so just proceed from there. Its a
lot of fun to play with. All we need now is

a BSAVE routine to save the drawings.

SCR #91
0 (MY MOST USED WORDS

Mr. Volk also sent us a copy of some new
words he has added to his Forth system and
a copy of a single disk copying routine.
Since the disk copy routine uses his new
words AT, WORK and TOP (our PAGE) you will
need to lcocad in screen # 91 first or add
these three words to the beginning of
screen # 92. IF your Forth system has been
set up using the BSAVE routine from the
March 1i1ssue then -SYNONYMS and -COPY
should already be loaded. Once you have
LOADed the screen(s) just type in RUN., The
program automatically prompts you from
there. I might recommend that you cover the
write protect notch on the MASTER DISK,
Just in case you goof and place the master
disk in for the copy disk. It probably
wouldn't hurt it since it is doing a sector
copy but your COPY disk would end up
incomplete. With the notch covered the
program will halt with an error if you goof
and you can just type in run to restart it.

~—-— Thank you Mr. Volk -—-—-

' (LOAD ~-SYNONYMS FIRST if not already BLOADed)

: MYLOAD -GRAPH -VDPMODES ;
: AT GOTOXY

: TOP CLS 0 O AT ;
: RANDOM RND 1+ .

(n1 === n2)
2 ® SPeé + @ ;

W 00— O Il N

(Same as Brodie 's
(n RANDOM >>> gives random number)
PICK (Leave copy of ni1-th number on top of stack)

(Will load these options)
(Same as 'Display At')

'"PAGE')

: ROLL (Rotate nth number to top of stack) (n --- n)

10 DUFP 1 = IF DROP ELSE DUP 1 DO SWAP R> R> ROT >R >R >R LOQP

11 1 DO R> R> R> ROT ROT >R >R
12 : TEST BEGIN ." HELLO THERE™ 2 SPACES ?TERMINAL UNTIL ;

13 TO END)

SWAP LOOP THEN ;
(FCTN 4

14 : SGN DUP IF DUP 0< IF -1 ELSE 1 ENDIF ELSE 0 ENDIF ;

15 ¢ WORK BLOCK DROP UPDATE ;

(My word to update a FORTH screen)

SCR #92
0 (A Word to copy FORTH disks-~Single Drive 5/16/84 J. Volk)
1 (Load Screen #91 and -COPY then RUN)
2 O VARIABLE COPYSCR 0 DISK_LO
3 : MES1 COPYSCR €& 88 > IF CLS ABORT ENDIF TOP 2 11 AT ."™ INSERT M
4 ASTER DISK " KEY DRQOP (PRINT MESSAGE AND KEY PRESS)
5 ¢+ COPY1 5 0 DO COPYSCR €@ WORK 2 20 AT ." SCR # "™ COPYSCR ? 1 copP
6 YSCR +! LOOP ; (DO THE WORK AND LET US KNOW~-GET NEXT SCREEN)
7 : COPYZ2 2 11 AT .m INSERT COPY DISK-ANY KEY " KEY DROP ;
8 (COPY 5 SCREENS AND PRINT MESSAGE)
9 : GETIT BEGIN MESt1 COPY1 COPY2 FLUSH COPYSCR @ 89 = UNTIL ;
10 (RUNS ABOVE WORDS)

S
m-—-ﬁ

ok gl el
(U QN =g W'V

MESO TOP 2 11 AT ."™ INITIALIZE FORTH DISK ? (Y/N) " ;

MSG TOP 2 11 AT ." INSERT COPY DISK " KEY DROP ;

: RUN MESO KEY 89 = IF MSG 0 FORMAT-DISK DISK-HEAD ENDIF GETIT ;
14 (ROUTINE TO INITIALIZE DISK)

Mem—mMmmm M M

W -

(1
P
=0

ik
QW ooO-ITON FTWh—-0O

I 1
N =

— il
4= L

Y
\Wn

£
¢
- &

— rd amh b sk b
MEWN=20VO-TO0NEWhN -0

»
Qo
e o

W O~ITOWN LW N =D

DIAMOND DRAW

#116
(Diamond Draw- An Origional FORTH program by J. Volk u4/2/84)

- AT GOTOXY ; : INSTR CLS 1 1 AT .°" Diamond Draw " 1 3 AT ." by
John J. VOLK"™ 1 7 AT ." USE E,S,D,X,W,R,Z,C TO MOVE DIAMOND®" 1 9
AT ."™ Q' TO CHANGE DIAMOND COLOR"™ 1 11 AT .™ '0° FOR DRAW ON--
'*F! FOR DRAW OFF"™ 1 13 AT ."™ *'.' TO CHANGE BACKGROUND COLOR"™ 1 2
0 AT " crcvcecrana HAVE FUN | ~=cvceece=—-- m 1 23 AT ."™ ANY KEY TO
START" BEGIN ?KEY 0 > UNTIL ; 1 VARIABLE STAT 2 VARIABLE SCOLR
124 VARIABLE YPOS 1 VARIABLE SCRCOLOR 94 VARIABLE XPOS BREX : SET
UP GRAPHICS2 3800 ' SATR ! 2000 SSDT 20 DCOLOR 1 1028 4482 8244
2810 0 SPCHAR YPOS @ XPOS @ SCOLR @ 0 O SPRITE ;
DELAY 500 0 DO I DROP LOOP ;
- STATEON 1 STAT | ; : STATEOFF 0 STAT 1 ;
. SDCHANGE 10 DCOLOR +} DCOLOR € F0 > IF 00 DCOLOR 1 ENDIF 1 SCO
LR +! SCOLR @ F > IF 0 SCOLR ! ENDIF SCOLR & 0 SPRCOL DELAY ;
DECIMAL : BCHANGE 1 SCRCOLOR +! SCRCOLOR € 15 > IF 0O SCRCOLOR !
ENDIF SCRCOLOR € SCREEN DELAY ; --2

#1117

(Diamond Draw- Screen 2)} DECIMAL -

- CHECK XPOS 6 DUP 0 < IF 1 XPOS | ENDIF 180 > IF 180 XPOS 1 END

IF YPOS @ DUP 0 < IF 1 YPOS I ENDIF 250 > IF 250 YPOS ! ENDIF ;
. UP -1 XPOS +! CHECK YPOS @ XPOS €& O SPRPUT STAT € 1 = IF YPOS

@ 3 + XPOS 6 8 + DOT ENDIF ;

- DOWN 1 XP0OS +! CHECK YPOS €& XPOS @ 0 SPRPUT STAT € 1 = IF YPOS
@ 3 + XPOS € 3 + DOT ENDIF ;

« RIGHT 1 YPOS +1 CHECK YPOS €& XPOS @ 0 SPRPUT STAT @ 1

S @ XPOS € 3 + DOT ENDIF ;

. LEFT -1 YPOS +1 CHECK YPOS @ XPOS 8 0 SPRPUT STAT € 1 = IF YPO

S @€ 3 + XPOS @& 3 + DOT ENDIF ;

. LUP -1 XPOS +! -1 YPOS +1 CHECK YPOS ¢ XPOS € 0 SPRPUT STAT @
1 = IF YPOS € 3 + XP0OS € 8 + DOT ENDIF ; |

RUP -1 XPOS +! 1 YPOS +! CHECK YPOS # XP0OS € 0 SPRPUT STAT & 1
IF YPOS 8 3 « XPOS @ 8 + DOT ENDIF ;3

IF YPO

-->

#118

(Diamond Draw-3rd Screen)

+ LDOWN 1 XPOS +! =1 YPOS +1 CHECK YPOS €& XPOS €& O SPRPUT STAT &
1 = IF YPOS € 3 + XP0OS @ 8 + DOT ENDIF ;

+ RDOWN 1 XPOS +1! 1 YPOS +! CHECK YPOS € XPOS 6 0 SPRPUT STAT &
1 = IF YPOS € 3 + XP0OS @ 8 + DOT ENDIF ;

+ INIT INSTR SETUP ;

«: KEYIN3 CASE 69 OF UP ENDOF 88 OF DOWN ENDOF 68 OF RIGHT ENDOF

§3 OF LEFT ENDOF ENDCASE ; : KEYIN2 CASE 87 OF LUP ENDOF 82 OF R

UP ENDOF 90 OF LDOWN ENDOF 67 OF RDOWN ENDOF ENDCASE ; : KEYIN1

CASE 79 OF STATEON ENDOF 70 OF STATEOFF ENDOF 46 OF BCHANGE ENDO

F 81 OF SDCHANGE ENDOF ENDCASE

. ENDALL TEXT CLS 1 1 AT ." ENTER 'FORGET AT' TO SAVE MEMORY"
.+ RUN INIT BEGIN 7?KEY DUP DUP DUP DUP 0 > IF KEYIN1 EEYIN2 KEYIN

3 ENDIF SP! ?2TERMINAL UNTIL ENDALL ;

ﬂ1§

PC NOTES

The votes are in and it looks like the
. TI PC column will be staying for awhile. A
few people wrote in saying that they had no
intentions of buying a TI PC and as such
they would like to see this space devoted
to 99/4A articles. But quite a few other
people said they like the column a they
want it to stay so here it is for May. By
the way, most of the articles that we have
been placing in this column are fairly
standard enough to be used with most MS-DOS
based computers, such as the IBM, Compact,
Eagle etc.

This month we will cover some of the new
aspects of MS-DOS V2.11. This new version
has some very nice enhancements added to

it.
structured directories. These are most

useful with a hard disk since you can
easily segment the disk under different
directories and keep all those files
crganized! When you are using
subdirectories you should find the PATH
comnand to be extremely useful. This
command allows you to tell the system which
path (directory-subdirectories) to search
in for a file. On our system we have placed
all of the DOS system files in the ROOT
directory. Then in our AUTOEXEC.BAT file we
have the command PATH \ . The backslash is
the default name of the ROOT directory. Now
when we are in any other directory we can
easily use any of the DOS Tiles with the
current directory, such as TREE, SIZE,
CHKDSK #.#% etc. by just typing them in.

Another new feature that can be added to
your system boot disk is the CONFIG.SYS
file. This file is created by using the
line editor EDLIN or by typing in:

COPY CON CONFIG.SIS

This will copy whatever you type in to
the soon to be created CONFIG.SYS file.
After you have every thing typed in that
you want just press F6 or CTRL Z and
RETURN. That will put an End Of File marker
on the sc¢reen and copy whatever was typed
into the CONFIG,.SYS file.

With a CONFIG.SYS file on your boot disk
you can set up a number of system

A parameters including RAMDISK(s), PRTSCRN

(screen dump utility) and the number of
Pisk Buffers. Here i1s how our CONFIG.SYS
file was set up:

The first of which is the TREE .

E>COPY CON CONFIG.SYS
BUFFERS=9

DEVICE=RAMDISK .DEV 50
DEVICE=PRTSCRN.DEY

“Z {eof marker F6)

Now whenever we power up our system it
looks into the CONFIG.SYS file and sets up
nine Disk Buffers, one Ram Disk that can
hold up to 44K of files, 45056 bytes, and
it installs the Screen Dump utility into
memory. The ram disk has an overhead of 6K,
even though the manual says it has an
overhead of 3K. We have looked in the
memory where the ram disk resides and it
doesn't appear to require the 6K overhead.
It is possible that it is setting up a
pointer wrong, which may be the reason for
the following problem we ran into. Some
Basic programs, such as TIDRAW.BAS, that
use BLOAD to load Assembly language support
routines into Basic's memory space, may
lock up if you have a CONFIG.SYS file on
your boot disk. The Basic programs that use
BLOAD to lcoad the Three Planes Graphics
memory work fine since this is a completely
different area of memory. The CONFIG.SYS
file listed at the top of this column seems
to work fine on every program we have
tested. If your CONFIG.SYS file causes lock
up, try changing the the size of the ram
disk(s) or the number of buffers. We found
that the larger the ram disk(s), the
greater the the number of buffers that were
needed to prevent lock up. Also an odd
number of buffers seemed to help clear up
the problem and set up the memory properly.

Once you have the ram disk installed it
is accessed as G: and all of the DOS
commands and system files will work on and
with it, except FORMAT. So it 1is a great
temporary storage area. It also helps to
speed up execution of programs that require
a lot of disk accesses such as Wordstar and
dBASE II. It is also nice for files that
you are going to use EDLIN or DEBUG on, and
to temporarily store and edit files that are
downloaded through your moden.

The Screen Dump utility works with the
TI 850, TI 855 and Epson printers with
graphics, After this utility is installed
you can press; SHIFT PRINT to dump text
only, ALT PRINT to dump graphics only,
CTRL PRINT to dump reversed graphics,
ALY SHIFT PRINT for text and graphics or
CTRL SHIFT PRINT for reversed graphics and
text. Have fun.

Mo

SUBSCRIPTION INFORMATION

THE SMART PROGRAMMER - a monthly 16+ page newsletter published by MILLERS GRAPHICS W
U.S. 12.50 year - Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

To subscribe send a Check, Money Order or Cashiers Check, payable in U.S. currency

TO: MILLERS GRAPHICS
1475 . Cypress Ave.
San Dimas, CA 91773

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
All mail directed to THE SMART PROGRAMMER will be treated as unceonditionally
assigned for publication and copyright purposes and is subject to THE SMART

PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAPHICS

Texas Instruments, TI, Hex-Bus and Solid State Software are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE

1475 W. Cypress Ave. _ U-S;E[SBAGE

San Dimas, CA 91773 San Dimas, CA 91773
PERMIT NO. 191

THE SMART PROGRAMMER

