MILLERS GRAPHICS

THE SMART
PROGRAMMER _

JUNE 1984 ‘

$1.50

To start off this issue I would like to
dispel a few rumors that are floating
around. First off, as most you know by now,
we have not gone out of business nor are we
planning to. It seems that the phone
company had a few problems a while back and
was telling pecople that our phone was
disconnected. I don't know what the problem
was since our phone has always worked from
this end. Next on the list is the CorComp
CEQO rumor. I have never been nor do I plan
on being the Chief Executive Officer of
CorComp Inc. Also, while we are on the
CorComp subject, they did not buy us out
and we did not buy them out! There has
never been any such intention from either
party. It sure is funny how these things
get started and passed around. I guess that
I'1l have to get on the Source more often
and keep an eye out for them. Enough of
that stuff lets get started with the
newsletter.

allirenilh il

We would like to thank all of the User's
Groups for their continued support, even
though we slipped up and didn't release an
issue for awhile. The Disk Controller
project was a little more involved than we
originally thought. We would also like to
thank everyone for passing the good word
around about the newsletter and for Bill
Grants letter to Compute magazine about the
newsletter. Its nice to know that everyone
is pleased with it, We enjoy writing it and
doing the research for it. As we stated in
the May newsletter, our main goal is to get
it out on a regular monthly basis. It is
almost impossible to get caught up (Oct.
issue out in Oct.) without slopping
together a bunch of issues. So if you don't
mind the June issue arriving in Sept. we
would rather keep the quality up and
release them monthly.

OOPS!

Other than a few misspelled words the
/A articles were fine. In the TI PC column

we slipped up on the information about
MS5-DOS 2.1 and the TIDRAW program. After a

little closer look we discovered that the
problem was where the DEF SEG was set at in
the TIDRAW program and not with DOS. The
original DEF SEG was at hex 1EQ00. This was
fine under DOS 1.25 but with D0OS 2.1, the
RAM Disk, Buffers and the PRTSCRN Utility
installed it was writing over an important
part of memory. We change the DEF SEG at
the beginning of the TIDRAW program to DEF
SEG=&H3A00 and everything now works fine.

In order for this to work you must have a
minimum of 256K of RAM installed.

Q&A

We have been receiving a number of
questions on console lock up (without using
CALL LOAD or CALL PEEK). Many have stated
that after half an hour or more of use the
console just locks up when they are typing
in a program or running a program that
worked fine before. They also stated that
sometimes the console must cool down before
it will come back and other times it will
come right back after they have repowered

up.

There are quite a few reasons why your
console my lock up so lets start with the
easiest ones to fix and then move on to the
hard ones. First off ANY connection is a
weak link and over time they can corrode
and lose contact. Also when the console
warms up these connections expand slightly

] e e EEEEE—

and may lose contact because of a little
corrosion., Removing and inserting your
Extended Basic module a few times will
clean up the contacts on the module and the
cartridge port and may clear up the
problem. The side port can be cleaned with
the same technique. We have also found that
the Speech Synthesizer seems to add to the
lock up problem since it adds another
connection between your console and your
Expansion Box. You might try using your
computer without it to see if that helps.
Next check the cartridge port connections

by opening the door and looking in there

with a flash light for any bent, lose or
misaligned contacts in the connector. You
should also check the Speech connector, the
Expansion Box connector and ALL of the
connectors inside the Expansion Box. Lastly
check the circuit board edges (where the
cards and modules plug into the connectors)
for torn or rolled back contacts. Note: the
female connectors have a contact in every
position but the circuit boards do not
always have a matching contact. Some cards
and modules only use part of the possible
contacts and some of them even have a
number of contacts connected together.

If the above items don't help the lock
up problem it may be inside your computer.
This 1s where it gets a little harder to
fix. If you have never had your console
apart then I recommend that you get
together with a friend that has (and got it
back together 0K} for the following items.
I might also add that you should ground
yourself to a metal object before handling
the main circuit board or any chips! Static
electricity can build up in your body and
transfer itself to the chip. 1If this
happens its good bye chip!! The first thing
to check is the right angle connector that
the modules plug into. This connector plugs
down into the main circuit board and it may
be dirty or have a bent contact so look
it over carefully.

On the Black and Silver consoles there
are a few socketed chips that may have
partially walked themselves out of their
sockets. So if the right angle module
connector was OK on the Black and Silver
conscle then remove the metal shielding
from the main circuit board. After the
shielding is off you will see a chip in the
upper left hand quadrant of the board that
has white silicon heat dispersing grease on
it. This grease makes contact with the

metal shielding to help keep this chip
cool. This is the TMS 9918A Video Display
Processor and it is a socketed chip. Use
the eraser end of a pencil to gently push
this chip back into its socket. It would
not be a bad idea toc apply a small amount
of white silicon grease to the top of this
chip to ensure good heat dispersion. This
heat dispersing grease can be obtained from
a good electronic store.

The other three socketed chips are GROMs
0, 1 and 2. They are located on the left of
the right angle module connector above the
TMS 9900 microprocessor. Once again use
your pencil eraser to gently push these
chips back into their sockets. If any of
the chips were lose you might hear a slight
click sound as you reseat them. While you
have your console apart this far you might
want toc check all of the wire and ribbon
cable connections. It might not be a bad
idea to spray your key contacts with a good
quality tuner/contact cleaner. This will
eliminate most or all of the unwanted
repeating when you press a key.

If none of the above items helped your
lock up problem or keyboard repeat and you
are handy with a soldering iron you MIGHT
try replacing the 9901 chip in the console.
It is located to the right of the TMS
9918A. This chip handles the I/0 for your
computer and allows it to talk to the VDP,
keyborad and Cassette I/0 items. This chip
costs around 15.00 retail and you can
probably find it for less through a
discount electronics store or mail order
house. I recommend that you also buy a
socket for it and sclder that to the board
instead of the chip. Most chips are very
gsensitive to heat and with a socket you do
not have to worry, alsc its a lot easier to
replace this chip latter on if it goes bad
again.

While we are on the subject o¢of repair
lets discuss the Expansion Box and cards.
The easiest way to diagnose a problem with
your P-Box is through the process of
elimination. If your computer locks up on
Power Up try unplugging the P-Box from the
console. If it works OK then the problem is
in the P-Box. If there is a problem with
the P-Box start by unplugging every card
but the Flex Cable Interface and try
powering up your system. Then one by one
plug your cards back in until the problem
reoccurs. Then unplug all of the cards but

the one that seems to cause the problem and
the Flex Cable. If the problem has gone
away then it is probably a combination of
two or three cards that causes it. When you
think you have it narrowed down get
together with a friend that has a P-Box and
try swapping cards around. The first card
to swap should be the Flex Cable Interface.
This card can partially go bad, which may
make you think that your RS232 or Disk
Controller is bad. If everything in your
box works fine with your friends Flex Cable
then very carefully check all of the Flex
Cable connections and make sure they are
not bent or misaligned. If the connections
look OK the problem may be with one of the
5 chips in the Flex Cable circuitry.

On the Flex Cable Card itself there are
4 chips. Three T4LS244's and one THLS245.
Inside the black connector that plugs into
the computer there is also one TALS245
chip. These chips cost under 4,00 at a
discount electronics store but they may be
hard to find from time to time. Usually it
is one of the THLS24l's that goes bad. The
TULS245's rarely go out. If your system no
longer recognizes your RS232 or Disk
Controller but they work fine in your
friends system, then odds are you have a
bad Ti4LS244. The chips on the card are
lined up in a row and the TALS24Y4 in the
middle 1s the most common cause of
problems. If you decide to repair the card
yourself then once again I recommend that
you buy some 20 pin sockets for the chips
and solder those to the board.

We have also discovered that in some of
the Expansion Boxes there is a hidden fuse.
If you can't get any power to your P~Box
and the fuse in the back of the box 1s 0K
and the power cord is OK then the problem
might be with the internal fuse. This fuse
is a real bear to get to. You nmust
disassemble your P-Box to point where you
can easily get to the transformer. Inside
the transformer, yes I said inside, is
another fuse. It is located near the
bottom, usually on the side that faces the
card connectors, inside the plastic case.
You will have to break off part of the case
to get to it, it is not in a fuse holder it
is Just soldered in between a couple of
wires. This fuse rarely goes out unless
there is something else wrong with the
power supply inside the P-Box. So just
replacing it may not solve the problem and
it may just blow out again.

We've been receiving a number of
questions on upgrading the memory in the
console.

After checking with a few people the
conclusion is that it would be extremely
difficult to modify the the RAM in the
console. Replacing the 4116 RAM chips with
4164 RAM chips will not accomplish anything
without a major modification to accommodate
some sort of multiplexing scheme to address
the additional memory. This requires a
ma jor modification to the circuitry. The
biggest problem arises from the fact that
TI did not use a DRAM controller to address
the memory. There might also be a problem
with the voltage since the 4164s draw more
power. Oh well, nice thought.

We've received a number of questions on
the problems with TI Writer and the
formatter. The answer for most of the bugs
and other problems has been taken care of
by the release 0of a new version of TI
Writer. TI recently released a newver
version of TI Writer and TI Multiplan to
the User's Groups. So if you belong to a
group you can get these new versions. TI
alsc released the source code for TI Forth
to the User's Groups so get “n contact with
your local group to get copies of these
programs.

We are still receiving a few questions
regarding problems with the BLOAD changes
to the Forth System disk.

Some people wrote in saying that
everything worked fine but they were
getting) ? on the screen after it loaded.
We looked at the printouts of Screen 3 they
sent us and on line 13 there was a space
missing between ;(it should be ; (. Some
of the other problems have come from
modifications to our screen 3. We chose
screen 51 for the BSAVE because it would
not wipe out any important screens even if
you loaded ALL the options. Also a few
people forgot or accidentally erased the
R->BASE on line 15 of Screen 3. A few
others modified Screen 3 and did not close
the REMs properly. The (character tells
Forth that EVERYTHING up to the next)
character is a remark and not program code.
If you forget to close your remark
statements Forth will not execute anything
after the last (character! So on Screen 3
if one of the) is missing it may not
execute R->BASE and it will lock upl

Nb—s—__

PEEKING AROUND

This month we mapped out GROM chip 0 in
the consocle. Next month we will map out
GROM chips 1 and 2 (Basic Language). Before
we get into the memory map I would like to
talk a little about GROM and the GPL
Language.

GROM in the 99/4%A is a memory mapped ROM
device that is read and executed serially
by the GPL Interpreter. The GPL interpreter
resides in the console RCM and is written
in 9900 Assembly Language. EFach time GROM
is accessed it automatically increments
itself to its next address, that is why
your console locks up when you CALL PEEK
(-26624,x). When you execute this CALL PEEK
from Extended Basic¢, GROM increments itself
and it is on the wrong address for Extended
Basic to continue execution. The GPL
interpreter, or your assembly program, can
change the GROM address to be read by
writing to >9C02 (-25598), this allows the
GPL interpreter to branch to and/or CALL
different GROM routines.

GROM chips, TMSO430, contain up to 6K of
data but in the 99/4A they reside in 8K
address spaces. So the valid GROM addresses
are >0000->17FF, >2000~>37FF, >4000-5TFF
ete. The data that is located between >1800
and >1FFF etc. is Jjust a repeat of sone
other portion of the GROM chip. The easiest
way to look through GROM is to use the
DEBUGGER that comes with the Editor/
Assembler, After loading DSK1.DEBUG
through the Editor/Assembler Load and Run
option and starting it with the start name
of DEBUG, press M for memory dump. Then
place a 'G' before the first memory dump
address (ie: M GOQO00,17FF) to dump the
contents of GROM O to the screen.

If you want to look at Extended Basic's
GROM you can re-Assemble the DEBUGGER
without the 'C' option to a file named
*XBDEBUG! and load it with CALL INIT ::
CALL LOAD("DSK1.XBDEBUG"). Note: The new
uncompressed object code for the debugger
requires 66 sectors on the disk. After it
is loaded type in CALL LINK("DEBUG") and
then press 'U' to set the proper character
bias for Extended Basic. When you have the
dot prompt on the screen type in:

M G6000,D7FF
to look through XB's GROM. While it is
dumping the GROM data to the screen you can

press the space bar to stop and start the
scrolling. For more information on the
Debugger see pages 363-392 in the Editor/
Assembler manual. If you belong to a User's
Group you can get a copy of SBUG (Super
Debugger) which TI recently released to
them. This has provisions for generating a
hardcopy print out of memory dumps and
disassembled 9900 ROM and RAM object code.
It also allows you to single step through
your program.

The 99/4A is set up to address 3 GROM
chips in the consocle and up to 5 more GROM
chips in a cartridge for a total of 48K.
However, TI set up the 4A to allow
addressing of multiple pages of cartridge
GROMs. What this means is that with the
proper hardware you could have up to 16
cartridges plugged in and the console could
address them one at a time. However one
module can access routines from another
module with the GPL CALL routine. Imagine
16 times 30K + 18K (console) or 498K of
GROM data on line for your use, that is a
lot of power! In the GROM chip 0 map you
will notice a reference to a data statement
that says '"REVIEW MODULE LIBRARY'. This
statement is part of a routine that
searches through all 16 pages, if the
proper hardware is there, and builds an
application program menu for them when the
Power Up routine is executed. I think TI
was thinking about building an extended
module holder at one time. I've been told
that there is a limited amount of power
available out of the cartridge port so a
holder of this type would require 1ts own
power supply and some buffering on the
extension cable into the port. I hope that
one of the many third party hardware
companies out there give it a try, I'm
tired of swapping modules. If this device
were a reality the memory mapping addresses
for the different pages are as follows:

GROM READ READ WRITE WRITE
PAGE DATA ADDRESS DATA ADDRESS

0 9800 9802 9C00 9COo2
1 9804 9806 9COo4 9C06
2 9808 980A 9C08 9COA
3 980C 980E 9COC 9COE
4 9810 9812 9C10 9C12
5 9814 9816 9C14 9C16
6 3818 981A 9C18 9C1A
T 981C 98 1E 9C1i1C 9C1E
8 9820 9822 9C20 9C22
9 9824 9826 9C24 9C26

~

P\

GROM READ READ WRITE WRITE
PAGE DATA ADDRESS DATA ADDRESS

10 9828 9824 9C28 9C2A

11 982C 982E 9c2C 9C2E

12 9830 9832 9C30 9C32

13 9834 9836 9C34 9C36

14 9838 0834 9C38 9C3A

15 983C 983E 9C3C 9C3E

GPL, Graphics Programming Language, was
developed by Texas Instruments. It is very
compact code object code and the source
code is similar to assembly but contains
some higher level instructions than 9900
assembly code. This language is byte
oriented instead of word oriented like 9900
assembly. The instructions c¢an be either
byte or word values and can directly access
all of CPU ROM and RAM, GROM and VDP RAM.
It allows data transfers from a single byte
to an entire block in one instruction, from
anywhere to anywhere. It also allows a
special formatted data move for easily
placing compacted data in exact locations
on the screen. GPL also supports two stacks
in CPU scratch pad RAM know as the GPL Data
stack and the GPL Subroutine stack. The
data stack is used to manipulate data that
is pushed and popped to and from it. The
subroutine stack keeps track of the
subroutine return addresses to allow
nesting of multiple subroutines.

GPL also contains instructions (operands)
for key board scanning, random number
generation, sprite coincidence detection,
pattern changes, sound, I/0 control and XML
for linking to 9900 Assembly language
routines. We understand that the GPL
Assembler was written in a combination of
FORTRAN and 9900 Assembly, but its only
available for TI 990 minicomputer systems.
Some of the higher level macros provide for
IF - THEN - ELSE, REPEAT -~ UNTIL, CASE,
MOVE (blocks of data), WHILE - END, FOR =~
TO - BY - END, GOTO and CALL. Lets look at
a couple of GPL instructions from the Power
Up routine and their assembled opcodes.

Address Opcode lnstruction

>006E 390008000451
MOVE 8 FROM ROM(#VDPREG$) TO VDP{0)
This instruction moves 8 bytes from the
GROM #VDPREG data table at >851 into the
the VDP registers (initializes the VDP
registers with the default values for the
Power Up routine).

>00F5 310200A90004BA
MOVE 512 FROM ROM (#CHR1$) TO CHAR(>20)
This instruction moves 512 bytes fronm
the GROM #CHR1$ data table at >04BY into
the pattern definition table, starting with

character 32 (>20). This loads the Title
Scereen characters.

>00C2 8EA00030DC
IF RAM(0) .NE. 0 GOTO label
This instruction checks the byte at VDP
RAM location >00 and IF it is Not Equal to
0 it branches the location pointed to by
the label relative to GROM chip 0 (D40 =
BRANCH to location >00DC).

>01B4 0603CE CALL BEEPTONE

This instruction CALL's (GOSUB's) the
routine to generate a beep sound located at
>03CE. When a >00 (RTN) or >01 RTNC is
encountered in the CALLed routine it
returns back to where it was called from

and continues execution at the next
instruction.

b |

The following GROM memory maps are from
a conscle that has the coding of LTA 0683.
This LTA number indicates the week and year
the console was assembled. You may find
when you are looking through your GROM with
the Debugger that it does not exactly match
the memory maps on the following pages. TI
made a number of small changes to both the
console ROM and GROM over the years so not
every console is exactly the same. These
changes are the main reason you should
always use the vector tables to acquire the
entry points for the different routines
instead of branching directly into the
routine with your assembly language
programs. 1f you branch directly into the
routine on your console it may not work on
your friends consoles. Unfortunately TI has
not released a complete list of the changes
and their related LTA or ATA dates for the

approximately 6 different versions of
consoles,

The GROM routines that are listed in the
GROM vector table can be called from an
Assembly Language, Forth or Extended Basic
program (with EXEGPL from the May issue).
The Editor/Assembler manual gives a fairly
complete description of the proper setup
for calling each routine on pages 251-257.
I hope this will help in your understanding
of GROM and its possible applications in
your Assembly, Forth and XB programs.

“%_———5—_+—_

>0010
>0012
>0014
>0016
>0018
>0014A
2001C
>001%E
»0020
>0022
>0024
>0026
>0028
0024
>002C
>002E
»>0030
>0032
>0034
>0036

>0038
>003B
>003D

>003F
>0042
>0045
>0046
>0048

>0044

GROM HEADER
Valid GRCOM Header Identification Code
Version number

>AA

>02

>Q000
>0000
>0000
>1310
>1320
>0000

Number of Programs.
Address

Address
Address
Address
Address

here
here
here

none
noene

none

of Power Up Header .o
of Application Program Header
of DSR Routine Header

of Subprogram Header

of Interrupt Link

none in GROM

>0000 Reserved for future? expansion.

GPLLLNK VECTOR TABLE

The values in these tables contain the instruction >40 (BR)
which is BRANCH if condition bit in status register is RESET
and the address is relative to the 6K GROM chip it resides in.

Actual address for GROM O =

>143DC
S4H3C
SU9AG
>4396
SY39E
SUB LG
SHL4G
SULUC
>4052
>51FE
>4C82
>4D59
>L4LDBY
SUE6 Y
SYEFQ
SHF0 1
>UFSF
SUF80
>43CE
>43D6

>054D12

>H25E
SHY1T

>052844
>0537BY

>60
>0D00
>1100

>43C2 Load Lower
~~= The following

value - >4000 (ie: >43DC = >03DC)

LINK programs to link between programs and DSR's
Return from LINK or DSR

CNS

~ Convert number into a string

Load Title screen characters
Load Regular upper case characters

Generate Basic WARNING message

Generate Basic ERROR message
Begin execution of GROM Basic
GROM Power Up routine

INT

SQR
EXP
LOG
COS
SIN
TAN
ATN

- Convert floating point to Integer function
- Exponentiation, raise a number to a power
~ Sgquare Root function

- Exponential function

- Natural Logarithm function

- Cosine function

- Sine function

- Tangent function

-~ Arctangent function

- Generate BEEP sound

- Generate HONK sound

BRANCH to GROM 2 »>U4D12 Get String Space routine

- Bit reversal routine

- Special GROM entry point for Cassette DSR, points to
a GROM routine that calls an XML to execute the low
level Cassette DSR in the console ROM which returns
to the high level Cassette DSR in GROM.

BRANCH to GROM 1 >2844 Memory space check for PAB's

BRANCH to GROM 1 >37BY4 GPL subprogram setup

DATA - Basices screen character offset

DATA - Speech Read address (>0D00 + >8300

DATA - Speech Write address (>1100 + >8300

>9000)
>9400)

case characters
three were changed in the later version of ---
GROM - After approx 3/82 or LTA 1482

S04B4 Address of the Title Screen character data table
»06B4 Address of the Regular upper case character data table
>087Y4 Address of the Lower case character data table

»05284C = BRANCH to GROM 1 >284C - WARNING routine
>05284E = BRANCH to GROM 1 >284E - ERROR routine
>052010 = BRANCH to GROM 1 >2010 - Execute Basic
DATA TABLES

DATA >80 (Hex 80)

DATA for VDP Register default values

DATA for Color Table default values for Title Screen
DATA for BEEP sound

DATA for HONK sound

DATA :1981:

DATA :TEXAS INSTRUMENTS:

DATA :HOME COMPUTER:

DATA for Title Screen Characters (CHR$(32-95)) -

DATA
DATA
DATA
DATA

FLOATING POINT ROUTINES
Roll Qut routine~ moves part of Scratch Pad to VDP Roll Out Area
CNS - Convert Number into String routines
Roll In routine- moves VDP Roll Out Area back into Scratch Pad
Balance of CNS routines
V PUSH - Push a number from FAC onto the VDP Value Stack
- Pop a number off the VDP value Stack to FAC
Exponentiation, raise a number to a power
Square Root function
Exponential function
Natural Logarithm function
Cosine function
Sine function
Tangent function
Arctangent function
DATA and misc constants used by the Floating Point routines
Misc subroutines used by the Floating Point routines
INT = Integer function

V POP

SQR -
EXP -
LOG -
COS -
SIN -
TAN -
ATN -

BIT REVERSAL ROUTINE (see May newsletter)
DATA this is the >40 bytes that is moved into >8300 and used
by the Bit reversal routine.

DATA :REVIEW MODULE LIBRARY: {(currently not used ~ this is for

/

\ Unused area contains >0000 /

ey oy e ik e S ey ek g e e D . S S e S T S A S AN S e A ek s e s i e e e e S S S S A S D A S N N A W i e s e Sl R S S S S S AN N S R S R e m s S

GROM ROUTINES

POWER UP ROUTINE (displays the Title Screen see MAY newsletter)
LOAD TITLE SCREEN characters routine

LOAD REGULAR UPPER CASE characters routine

LOAD LOWER CASE characters routine

GENERATE BEEP sound routine

GENERATE HONK sound routine

LINK ROUTINES for linking between programs and DSR's

RETURN from link or DSR

for Regular Upper Case Characters
for Lower Case Characters

:FOR:

for TI LOGO loaded at CHR$(1) in the Pattern Desc. Table

the

(CHR$(32-95))
(CHR$(96-126))

Multi-Page GROM set up, called from Power Up >01FC)
\

CASSETTE DSR - High Level - checks for OPEN errors, displays
screen messages for cassette operation ete.
PAB set up for DSR (see Editor/Assembler manual pages 291-304)

PAB+0

PAB+2 -
PAB+4 -
PAB+> -
PAB+6 -
PAB+8 =~
PAB+9 -
PAB+10 -

- I/0 Opcode (Open, Close, Load, Save etc.)
PAB+1 -

Flag/Status (File-type, Mode of Operation & Data-type)

VDP Data Buffer Address
Logical Record Length

Character Count (bytes) to be transferred

Record Number (0-32767 not used for cassette I/0)

Bias for ASCII characters {>60 in Basics)

Length of the Device Name (>03 for CS1)

Start of the Device Name

DSR Header(s)

>1318 - Pointer to next Device Name Header

'CS1' or

>1326 - Start address for this Device

>03

>435331 - DATA :CS1:

20000 - Pointer to next Device Name Header - no more

- Name length for this Device

>132C -~ Start address for this Device

>03

>435332 - DATA :CS2:

SUBPROGRAM Header

0000 ~ Pointer to next Subprogram header - no more

- Name length for this device

>1573 - Start address for this Subprogram

201
>03

Start of CS1 DSR {set up for CS1)
Start of CS2 DSR (set up for CS2)
& CS2 come here to start DSR
DO CASE Branch table for OPEN, CLOSE, READ Record, WRITE Record,

Both CS1

ERROR and EXIT routines
CASSETTE ROUTINES

OPEN a file routine
READ a Record routine
WRITE a Record routine
Transfer data routine for READ and WRITE
LOAD a file routine

CLOSE a file routine

VERIFY cassette data routine
SAVE a file routine
CASSETTE SUBROUTINES -~ These subroutines display the messages

on the screen for cassette operation,

- Name length for this subprogram
- DATA :03: (can not CALL CTRL C (CHR$(3)) from Basics)

'C32?

RESTCRE/REWIND, LOAD, SAVE, DELETE(close)

turn on/off the cassette

motors, look for key presses and wait for the leader to pass.
Cassette Motor on
Cassette Motor off

Wait for leader to pass

SUBPROGRAM >03 - Adds Bias >60 to the Cassette messages

DATA TABLE for Cassette operation messages le: REWIND CASSETTE
TAPE, THEN PRESS ENTER etec.

/ I believe this area if full of Jjunk, not used,\
\ there are no references or branches into here./

TR ARy e e -y oy 3y ey oy §y ypo§yoy ¥y 37 _§y ¢ ¥ ¥ 3 ?* §_ ¢ T 1 2 § ‘¢ ¥ § § Y J 44 3% 1 3 ¢ O3 I § 8 J 4 % 3 0 1 % B I I % B

CRC data

I
I
I
I
:
!
|
|
I
I
|
|
:
I
I
I
I
I
I
I
I
I
I
I
:
:
I
I
I
I
I
;
:
I
:
I
:
I
I
I
I
|
I
I
|
|
I
I
I
I
;
I
|
I
I
+

ASSEMBLY LANGUAGE TO EXTENDED BASIC
CALL LOADS CONVERSION PROGRAM

Paolo Bagnaresi of Milan, Italy sent us
P the nice conversion program on the
following pages. Here are a few excerpts
from his letter that help to explain the
program. "The program of Barry Traver is
really interesting. I followed your advice
of using this MERGE approach as a new tool
of programming, as well as your tips and
explanations about memory locations. I
developed this program called ACE (Assembly
Converted to Extended), which by means of
CALL PEEKs, peeks into low memory
expansion. ACE then creates a MERGEable
DIS/VAR 163 Extended Basic file that
contains the actual content of the memory
iocations in CALL LOAD form. ACE also
converts the DEF table, the pointer to the
DEF table and the pointer to the First Free
Address in low memory.® "The original
Assembly program must RUN by itself in the
Extended Basic environment and it must not
contain any AORG statements.™ "To use ACE
load the program (making sure that the low
memory expansion is clean, which is, start
from the master title screen). The program
is self explanatory. Just follow the
instructions until the end of the program.®
We have used this program to convert a
number of Assembly programs and it works
extremely welll - Thank You Paolo -

T 1 ACE : Assembly Object to
Extended Basic CALL LOADs
Converter 8/3/1984

2 1 By
Paolo Bagnaresi
Tel.(02)-514.202
Address:

3 ! Via J.F. Kennedy 17
20097 San Donato Milanese
(Milan)- Italy

10 GOTO 40 :: DIM STDEF$(100
)i D$1N$1F$:DEF$1PB$:SC$:RI
$,CT$,L$,HEX$,H$,DSC$,DECCS,
PROG$

20 CALL LOAD :: CALL INIT ::

CALL LINK :: CALL PEEK :: C
ALL CHAR CALL HCHAR :: CA
LL KEY

e ——

30 AUT,N,A,B,C,D,E,F,G,H,I,L
,M,N,CT,MS,LS,DBM,DBL,FINELO

C,LOC,INIZLOC,INDEF,NDEF,NLI

NK,NL,NLINE,NST,KY,ST,DEC, PO
Z

¥

Y0 CALL CLEAR :: CALL SCREEN
(16):: FOR T=0 TO 14 :;: CALL
COLOR(T,13,16):: NEXT T ::

18P~

50 CALL CHAR(128,"00282828",
131,"000000FF"):: L$=RPT$(CH
R$(131),28):: H$="0123456789
ABCDEF" :: CALL CLEAR

60 PB$="By Paolo Bagnaresi
Via J.F. Kennedy

17 20097 San Donato

Milanese (Milan)- ITALY"

70 DISPLAY AT(1,1):L$:L$: T
AB(13);"ACE"™: :TAB(14);:"by":
TAB(7);"Paolo Bagnaresim":TAB
(7);"Tel(02)=-514w202":"San D
onato Milanese-ITALY"™:L3$

80 DISPLAY AT(11,1):TAB(10);
"Assembly":TAB(10);"Converte
r to®":TAB(10):"Extended":L$

90 DISPLAY AT(14,1):L$:"ACE
converts the Object®:"of an
Assembly Program into%":"an E
xtended Basic Program.%":"The
Assembly Program MUST be®

100 DISPLAY AT(19,1):"suitab
le for Extended BasicW:"envi
ronment and MUST NOT":%"conta
in any AORG.":L$

110 DISPLAY AT(24,6)BEEP:"Pr
ess any key"

120 CALL KEY{(0,KY,ST):: IF S
T=0 THEN 120 ELSE CALL CLEAR

130 DISPLAY AT(1,1):L$:TAB(5
);"Are the Assembly®":"0Object
8 already loaded ?®: :% Ans
wer: (Y/N) N":L$

140 ACCEPT AT(5,17)SIZE(-1)V

ALIDATE("YN")BEEP:RI$:: IF
RI$="" THEN 50 ELSE IF RI$="

Y" THEN CALL CLEAR :: GOTO 3

70 ELSE N§=m1nm CT$=ny"
GOSUB 900

150 DISPLAY AT(6,1):L$:"Inse
rt the diskette with theW:"3
ssembly object and enterhm:nt

he object progr. name®™: :"Na
me : ";PROGS:L$

160 DISPLAY AT(22,1):L$:"era
se and press ENTER if you"™:T
AB(G);"are through"

170 ACCEPT AT(11,9)SIZE(~10)
BEEP:PROGS$ IF PROG$="" TH
EN CALL CLEAR :: GOTO 3206

180 DISPLAY AT(13,1):"Disk D
rive ? (1=-3) ":N$:L$:: ACCE
PT AT(13,20)SIZE(-1)VALIDATE

("123")BEEP:N$:: IF Ng="" T
HEN 130
190 ON ERROR 360 :: CALL LOA

D("DSK"&N$&"."&PROG$):: ON E
RROR STOP

200 DISPLAY AT(15,1):"Do you
want to check them:;M"loaded
program 7 (Y/N) ";CT$:L$::
ACCEPT AT(16,24)SIZE(-1)VALI
DATE("YN")BEEP:CT$:: IF CT$
="N" THEN 150

210 DISPLAY AT(18,1):"Does ¢t
he program come back":"to Ekx
tended Basic ? (Y/N) Y":L$:
: ACCEPT AT(19,27)SIZE(-1)VA
LIDATE("™YN")BEEP:SC$

220 IF SC$=m"Y" THEN 240 ELSE
FOR T=1 TO 10 DISPLAY AT
(21,1)BEEP:"In this case no
check™:"is possible ":L$:L$%

230 FOR I=1 TO 100 :: NEXT 1
:: CALL HCHAR(21,1,32,96)::
NEXT T :: GOTO 150

240 CALL PEEK(8196,A,B):: NS
T=0 :: INDEF=A#256+B :: FOR
T=16376 TO INDEF STEP -8 ::
NL=T :: GOSUB 870 :: NST=NST
+1 :: STDEF$(NST)}=DEF$:: NE
XT T

250 CALL CLEAR :: A

nqmn

0 :: D$=

oo

260 DISPLAY AT(1,1):L$:"List
of DEFS to choose from":"fo
r checking pourposes":L$270
FOR T=5 TO 20 STEP 2 :: FOR

Z=1 TO 19 STEP § :: A=zA+1 ::
DISPLAY AT(T,Z)BEEP:A;STDEF
$(A):: IF A>=NST THEN 280 EL
SE NEXT Z :: NEXT T

280 DISPLAY AT(T+i,1):L$::
DISPLAY AT(20,1):L$:"DEF No.
? (1 -";NST;") ":L$:"Press
ENTER when finished":L$§ :: A
CCEPT AT(21,21)}VALIDATE(DIGI
T)SIZE(-2)BEEP:D$:: IF D$<>

nn THEN 340

290 CALL CLEAR :: DISPLAY AT

(1,1):L$:"Are the programs 1

oaded": :"so far OK. ? (Y/N)

Y":L$:: ACCEPT AT(Y4,20)VAL

IDATE(®"YN®)SIZE(~-1)BEEP:SC$
IF SC$="Y" THEN 320

300 DISPLAY AT{(6,1):L$:"Unfo
rtunately in this casel: :"i
t's not possible to®": :"elim
inate just one program": :"b
ut it's necessary to load®

310 DISPLAY AT(15,1):"™all th
e program{(s) all ": :"over a
gain.": :"0K? (Y) Y":L¢$:: A
CCEPT AT(19,9)VALIDATE("Y")S
IZE(-1)BEEP:SC$:: CALL INIT
CALL CLEAR :: GOTO 150

320 DISPLAY AT(6,1):L$:"Are
all the programs®m": :("loaded
already ? (Y/N) Y":L$:: ACC
EPT AT(9,24)VALIDATE("YN")SI
ZE(-1)BEEP:SC#$

330 IF SC$="N" OR SC$="" THE
N CALL CLEAR GOTO 150 ELS
E 370 |

340 A=VAL(D$):: IF A>NST THE

"N 280 ELSE CALL LINK(STDEF#§(

A)):: GOTO 250
350 ! Error handling

360 FOR T=1 TO 8 :: DISPLAY

AT(20,1)BEEP:L$:TAB(6);"Driv
e error or":TAB(6);"Program
name errort:L$:L$:: FOR I=1
TO 100 :: NEXT I :: CALL HC

HAR(20,1,32,128):: NEXT T ::
RETURN 150

e

370 CALL CLEAR

380 ON ERROR 400 : CALL PEE
K(8194,4,B,C,D):: FINELOC=A®
256+B NL,INDEF=C#256+D ::
GOSUB 870 IF ASC(DEF$)=2
55 THEN 400 ELSE INIZLOC=DBM
*256+DBL

390 ON ERROR STOP
0

GOTO 43

400 CALL CLEAR FOR I=1 TO

10 :: DISPLAY AT(10,1)BEEP:
L$:L$:"™ The Assembly Progra
ms®": " have not been load
ed": :TAB(10);:;"LOAD THEMI!I"™:L

$:L$

410 FOR T=1 TO 100 :: NEXT T

:: CALL HCHAR(12,1,32,160):
: NEXT I GOSUB 900 :: GOT
0 150

420 IDisk~printing routine

330 CALL CLEAR : GOSUB 790
:: IF Fg="" OR N$="" THEN 32

767 :: ON ERROR 840 :: GOSUB
320 :: OPEN #2:"DSK"&N$&n ., "
&F$, VARIABLE 163 ON ERROR
STOP :: N=0

440 'Address of the programm
er

450 PRINT #2:CHR$(0)&CHRS(N)
&CHR$(131)&CHR$(199)&CHRS$(LE
N(PB$))&PB$&CHR$(0):: N=1 ::
GOSUB G40

460 !Insert CALL INIT

Y70 PRINT #2:CHR$(0)&CHRS$(N)
&CHR$(157)&CHR$(200)&CHRS(4)
&U"INIT"&CHR$(0):: N=2 :: LOC
=INDEF GOSUB 940

480 ! DEFs name printing

490 FOR NDEF=INDEF TO 16376
STEP 8

500 PRINT #2:CHR$(0)&CHRS$(N)
&CHR$(157)&CHR$(200)&CHRS(4)
&"LOAD"&CHRS$(183)&CHR$(200)%
CHR$(LEN(STR$(NDEF)))&STR$(N
DEF):

Nla_‘h“__“—

%

510 FOR LOC=NDEF TO NDEF+6 S
TEP 2

520 CALL PEEK(LOC,MS,LS):: P
RINT #2:CHR$(179)&CHR$(200)&
CHR$(LEN{(STR$(MS)))&STR$(MS)
&CHR$(179)&CHR$(200)&CHRS$(LE
N(STR$(LS)))&STR$(LS);

530 NEXT LOC

540 PRINT #2:CHR$(182)&CHR$(
0):: GOSUB 940 N=N+1 :: N
EXT NDEF

550 !'Print DEF pointer and F
FALM

560 PRINT #2:CHR$(0)&CHR$(N)
&CHR$(157)&CHR$(200)&CHRS(4)
&"LOAD"&CHR$(183)&CHRS$(200)%&
CHR$(LEN(STR$(8194)))&STR$(8
194);

570 FOR LOC=8194 TO 8196 STE
P 2

580 CALL PEEK(LOC,MS,LS):: P
RINT #2:CHR$(179)&CHR$(200)&
CHR$(LEN(STR$(MS)))&STR$(MS)
&CHR$(179)&CHR$(200)&CHR$(LE
NCSTR$(LS)))&STR$(LS);

590 NEXT LOC

600 PRINT #2:CHR$(182)&CHR$(

0):: GOSUB 940 N=N+1 :: L
0C=9460
610 ! Main program printing

620 PRINT #2:CHR$(0)&CHR$(N)
&CHR$(157T)&CHR$(200)&CHRS$(4)
&"LOAD"&CHR$(183)&CHR$(200)%&
CHR$(LEN(STR$(LOC)))&STRS$(LO
C);

630 FOR LOC=LOC TO LOC+20 ST
EP 2

640 IF LOC>FINELOC THEN 670
:: CALL PEEK(LOC,MS,LS):: PR
INT #2:CHR$(179)&CHR$(200)&C
HR$(LEN(STR$(MS)))&STR$(MS) &
CHR$(179)&CHR$(200)&CHR$(LEN
(STR$(LS)))&STR$(LS);

650 NEXT LOC

660 PRINT #2:CHR$(182)&CHRS$(
0):: GOSUB 940 :: N=N+1 :: I

F LOC<=FINELOC THEN 620 ELSE
680

670 PRINT #2:CHR$(182)&CHR$(
0):: GOSUB 940

680 N=N+t1
690 ! CALL LINK printing

700 FOR NLINK=INDEF TO 163756
STEP 8 :: NL=NLINK :: GOSUB
870

710 PRINT #2:CHR$(0)&CHR$(N)
&CHR$(157)&CHR$(200)&CHRS(4)
&"LINK"&CHR$(183)&CHR$(199)&
CHR$(LEN(DEF$))&DEF$&CHRS$(18
2)&CHR${(0):: GOSUB 940

720 N=N+1 :: NEXT NLINK

730 PRINT #2:CHR$(255)&CHR$(
255):: CLOSE #2

740 CALL CLEAR :: DISPLAY AT
(5,1)BEEP:L$:"The assembly p
rogram ";DEF$: :"has been re
corded as a": :"DIS/VAR 163
file. The name®™: :%"of this f
ile is ";F$:L$

750 DISPLAY AT{(14,1):"You ca
n MERGE this file®: :"and ob
tain an Ext.B.Program":L$:"E
xecute now in command mode: ™
: :"O>NEW®:">MERGE DSK";N$:;".
";F$

760 FOR T=1 TO 70 :: DISPLAY
AT(23,1)BEEP:">SAVE DSK";N$

;".";SEG$(F$,1,LEN(F$)-3)&"E

XT":L$:: CALL KEY(O,KY,ST):
IF ST<>0 THEN STOP

770 NEXT T :: END

780 ! Open file: disk drive
& name selection

790 DISPLAY AT(1,1):L$:"Name
of the last DEF":%"of the a
ssembly programs®: :M"Mloaded
in memory : ";DEF$:L$

L T T

800 F$=DEF$&"MRG" :: DISPLAY

AT(8,1):L$:"proposed name f
or the file®: :"Max 10 chara
cters ";F$: :L$:: ACCEPT AT
(11,19)SIZE(-10)BEEP:F$

810 IF Fé$="" THEN RETURN ELS
E IF POS(F$," " 1)>0 OR POS(
F$,".",1)>0 THEN 800

820 DISPLAY AT(14,1):L$:"Dis
k Drive? (1-3) ®";N$:L$:: AC
CEPT AT(15,19)VALIDATE(™123"
)SIZE(-1)BEEP:N$:: RETURN

830 ! Sub file error

840 ON ERROR 850 :: CLOSE #2
850 RETURN 430

860 ! call peek DEF names

870 CALL PEEK(NL,E,F,G,H,I,L
"DBM,DBL):: DEF$=CHR$(E)&CHR
$(F)&CHR$(G)&CHR$(H)&CHR$(I)
&CHR$ (L)

880 PO=POS(DEF$,"™ ",1):: IF
PO>0 THEN DEF$=SEG$(DEF$,1,P
0-1):: RETURN ELSE RETURN

890 ! Sub CALL INIT once onl
y

900 IF CT=1 THEN RETURN ELSE
CALL INIT :: CT=1 :: RETURN

910 ! Sub # of necessary pri
ntings

920 NLINE=ABS(INT(-((FINELOC
-9460)/22+(16384-INDEF)/4+3)
Y):: DISPLAY AT{(17,1)BEEP:"T
he necessary Printing":"oper
ations with Disk Drive®: :"{
max 172) will be";NLINE:L$

930 IF NLIRE>172 THEN FOR T=
1 TO 10 :: FOR I=1 TO 90 ::
NEXT I :: CALL HCHAR(23,1,32
,32):: DISPLAY AT(22,1)BEEP:
L$:"OBJECT SIZE IS TOO LARG
En:L$:: NEXT T :: STOP ELSE
RETURN

940 NLINE=NLINE-1 :: DISPLAY
AT(21,1):L$:"# of printings
vyet to be":"executed will b

e": NLINE:L$:: RETURN

Mo

E

5" 1— =FORTH

This month we have another single disk

™ drive disk copylng routine. Right after the

May newsletter went to press we received
this routine in the mail from Doug Smith of

Waldorf, MD. We understand that he also
sent copies of this routine to a number of
Users Groups around the country. In Doug's
letter to us he stated that the routine
destroys part of the character table and
that there were a couple of other
precautions to follow when using this
routine. It was also mentioned that
executing COLD after the routine was
finished would not restore the character
sets and that it was necessary to go back
to the TI Title Screen and reload Forth.

The routine as we received it did a very
nice job of copying a single sided single
density disk in only 3 passes! Doug uses
almost all of the available memory in the
computer, including part of the Pattern
Descriptor Table, as a buffer for the 30
screens (30K) the routine copies in one
pass. The routine also assumed that there
were no - (dash) options loaded (ie: ~DUMP)
into memory since it uses the dictionary
space for a buffer also. Doug wrote the
routine so that it will run with Just the
basic Forth system loaded.

Since most of you have modified your
Forth disks to BLOAD the options you want
we felt that we better modify Doug's
routine to compensate for this. We also
made a few other modifications to the
routine to correct the Pattern Descriptor
Table problem and we changed a little bit
of the other logic around and added the
BEEP sound for the screen prompts. Now
after you have typed this program onto one
of your blank screens or onto anther disk
that you use for your Forth Programs just
type in the screen number LOAD and press
ENTER. The modified routine will clear out
your BLOADed options and then lcad in
Doug's new words. After they are loaded and
complied the program displays 'ENTER W TO
COPY THE DISK IN DRIVE 1 ok'. At this point
you are in the command level of Forth and
not in a running program so you can type in
whatever you want, but remember that all of
your normal options have been erased from
the dictionary. This was done with the
FORGET MENU statement on LTNE 0 of the
first screen.

Doug also made provisions for copying
part or all of a single sided disk. At the
command level you can type in 29 CY and
press ENTER to copy screens 0-29. You can
also type in 59 CY to copy screens 0~-59 or
Just type in W to copy screens 0-89 (the
entire disk).

The main modifications we made to Doug's
routine are:
1st Screen's Lines:
0 - BASE->R DECIMAL FORGET MENU, this
saves the current base to the return stack,
changes the base to decimal and clears out
any options that may be loaded in the
dictionary.
3 - 52 0 33660 C! 10 SYSTEM, this
generates the beep sound when the prompts
are displayed.
We also swapped lines 6 & 7y, removed TX
from the PR word and added the CR's, spaces
and PR to line T (M3) to reprompt you for
another disk copy.

2nd Screen's Lines:

We crunched up BPU and BDR to make room for
the following additions and changes,

9 - M2 . was added to PAS to initially
prompt you for the Master disk and to allow
for some logic changes in CY.

10 - CHR was added to restore the Pattern
Descriptor table to its original state.

11 & 12 - CY was modified to accommodate
the the changes made to the othepr lines, to
make use of the word CHR and to display TI
FORTH on the screen when the routine is
finished.

14 = was added to set DISK LO at 0 to
avoid a DISK FENCE ERROR and 0O 33730 C! was
added to allow you to use FCTN QUIT to get
back to the Title Screen. MON is not in the
dictionary after this routine is loaded.

15 - was added to restore the base from the
return stack. You MUST have an R~>BASE for
every BASE->R statement or you will lock up
your system!! Any time you move something
out to the return stack you must at some
point recall it from the return stack. And,
finally, TX was added before PR to ¢lear
the screen and generate a beep prior to the
initial prompt.

We would like to thank Doug Smith for
this nice routine, we are sure that
everyone with a single drive system will be
Pleased. The program is very simple to use
and it certainly makes it a lot easier to
back up your diskettes. As always I
recommend that you keep the Master Diskette

write protected while copying. Have Fun.
13

m—

SCR #98

0 (3 Pass Disk Copy - Doug Smith) BASE->R DECIMAL FORGET MENU -~
: CLS 16 SYSTEM : : UMBW 2 SYSTEM ; : VMBR 6 SYSTEM

0 VARIABLE AREA 15360 ALLOT 0 VARIABLE PL
TX CLS 5 10 GOTOXY 52 0 33660 C! 10 SYSTEM ;

M1 TX ."™ INSERT COPY DISK~-PRESS ANY KEY " KEY DROP ;

M2 TX ."™ INSERT MASTER - PRESS ANY KEY " KEY DROP ;

PR ." ENTER W TO COPY DISK IN DRIVE 1 " ;

M3 TX ."© COMMAND COMPLETED ™ CR CR CR ." " PR ;

PU PL @ 20 +« PL 86 5 + DO I BLOCK AREA 2 + I PL @& 5 + -~ 1024
* + 1024 CMOVE LOOP ;

BU PL ¢ 5 + PL & DO I BLOCK UPDATE LOOP M1 FLUSH ;

DR PL € 10 + PL @ 5 « DO AREA 2+ I PL € 5 + - 1024 * 4+ T
BUFFER 1024 CMOVE UPDATE LOOP FLUSH PL € 15 + PL € 10 + DO
AREA 2+ I PL @€ 5 + - 1024 ®* 4 T BUFFER 1024 CMOVE UPDATE
LOOP FLUSH PL € 20 + PL @& 15 + DO AREA 2+ I PL @ 5 + -

—_—) ek e 3 3
D EWhN = OO o~ O Wi —

1024 # 4+ T BUFFER 1024 CMOVE UPDATE LOGP FLUSH ; -
SCR #99
0 (3 Pass Disk Copy cont.)
1 BPU PL @ 28 + PL @ 20 + DO I BLOCK 5120 I PL @ - 20 - 1024
2 # 4+ 1024 VMBW LOOP PL @ 28 + BLOCK 3072 1024 VMBW
3 PL @& 29 + BLOCK 1122 1024 VMBW ;
Y BDR PL € 25 + PL @ 20 + DO 5120 I PL @ - 20 - 1024 * + I
5 BUFFER 1024 VMBR UPDATE LOOP FLUSH PL & 28 + PL @ 25 +
6 DO 5120 I PL € - 20 - 1024 ® 4+ I BUFFER 1024 VMBR UPDATE
T LOOP 3072 PL € 28 + BUFFER 1024 VMBR UPDATE 11&
8 1122 PL € 29 + BUFFER 1024 VMBR UPDATE FLUSH ; ?
9 : PAS M2 . BPU PU BU BDR DR ;
10 CHR 2048 98 255 20 SYSTEM 3072 1024 255 20 SYSTEM ;

anmll
=

CY O PL ! 30 / 2+ 1 DO I PAS 30 PL +1 LOOP
SP! M3 CR CR CHR ABORT ;
: W 89 CY ; (Note: or 29 CY , 59 CY copies part of the disk)
0 DISK_LO ! 0O 33730 Ct (QUIT ON)
R->BASE TX PR

—2
N

— ek b
Sy Qg B

{n
¢
=y

#100
(Instructions for 3 Pass Single Drive Disk Copy

This program does not require any - (dash) Options to be
Loaded into memory. It will automatically clear out any that may
be loaded, since it requires almost all of the available memory.
After you are finshed copying your disks place your Forth
system disk in drive one and type in COLD and press ENTER to
reload the Forth system back into memory. To copy an entire
single sided disk type W and press ENTER, then follow the
prompts on the screen untill the command 1is done.,

-
OWoO~IOWU WM -—=O0

e
bl

Given Free To Public Domain

12 Doug Smith

13 5021 Nicholas Rd.

14 Waldorf, MD 20601

15 301 645-14132 ‘*g

A

p—

___-_—___—__—

PC NOTES

This month we have a little Basic
program that allows you to PEEK any where
within the entire system memory (1 MEG).
Before we get started on that I would like
to let you know about a magazine for the TI
PC. It is called 'TI Professional
Computing' and it is published monthly by
Publications & Communications, Inc..
are located at 12416 Hymeadow Drive, Suite
2, Austin, Texas T78750-1896. Their toll
free number for out of the state of Texas
is 1-800-531-5093 and for Texas their
number is 512-250-9023. The subscription
rates for 1 year are; U.S. - $39.00 &
International - $79.00. They carry a lot of
nice articles, software/hardware reviews
and ads for the TI PC.

Now back to Basic. After you have typed
in the program at the bottom of the page
save 1t in ASC format with the SAVE
"PEEK,.ASC",A command. This will allow you
to MERGE it to the top of any other Basic
program that starts at line number 10 with
the MERGE "PEEK.ASC" command. Once it is
loaded and you type RUN it asks you to
input the Memory segment you want to PEEK
at in Hexadecimal form. If you want to look
through the Basic Data segment (Basic's
program space) just press RETURN otherwise
input a hex value between >0 and >FFFF.
Next it asks for the starting address and
the number of bytes to display, both of
these inputs are in decimal form. Once
these are input it takes off and starts
displaying the contents of the memory you
asked for. While its running you can press
the BRK/PAUSE to stop it or you can press
any other key to change the Memory segment
or PEEK addresses. With a few simple
changes you could easily OPEN LPT1: as #1
and print out the data to your printer or
you can press PAUSE and SHIFT-PRINT to dump
the screen to your printer. If you have a
monochrome monitor you might want to change
the COLOR statements in Lines 3 & 7.

They’

Here are some Memory segments you might

want to PEEK into:
>00%40 - IO SYS
>C000 - 3 Planes Graphics RAM Blue Plane
>C800 - 3 Planes Graphics RAM Red Plane
>D000 - 3 Planes Graphics RAM Green Plane
>DEO0 - Active Screen Display memory
>F800 - Winchester Option ROM
>FEQO - Pegasus System ROM

In the Basic Data segment you can find
the Function Key assignments at address
1587 and your Basic program in crunched
form starts around address 3457. The
variable symbol table usually follows right
after the crunched program.,

While we are talking about Basic I would
like to mention a few commands that TI
forgot to tell you about. The first is
BEEP, you can type this in direct or place
it in a program and it will generate the
BEEP sound. The next is ON EKRY(xx) and
KEY(xx) ON/OFF. This is a very handy set of
comriands for programming and using the
function keys. To program a function kKey
you place the command ON KEY(#) GOSUB xxxx
in the beginning of your program. The valid
values for # are 1 through 16, 1 - 12 are
the function keys at the top of the
keyboard and 13 - 16 are the cursor control
keys, 13 = Up, 14 = Left, 15 = Right and 16
= Down. Now when ever you want to use your
assignments just issue the command in your
program, KEY(#) ON or to stop them from
branching to your subroutine use KEY(#)
OFF. You can also use a FOR NEXT LOOP like
FOR I=1 to 16: KEY(I) ON: NEXT - to turn
them all on or off. Once they are turned on
and assigned a subroutine to branch to you
do not need an INKEY$ to check for them.
They are checked on interrupts, and if
pressed your program automatically branches
to the subroutine you specified, executes
it and then returns were it left off.
Another nice feature is that by turning
them all on but not assigning a subroutine
to them disables the INKEY$ command from
checking for the function keys. Have Fun.

1 '<<< Memory PEEKer >>> by Craig Miller 6-04-84°

FOR A=A TO A+B STEP 10: M=nw.

O O~ Oh "M LN

CLS: KEY OFF: DEFINT C: DEFSTR H,S,M: H="0123456789ABCDEF": LOCATE y 0

COLOR 4,0: PRINT: INPUT "MEMORY SEG (HEX or Null for BASIC Seg) >",8: A=0

IF 3S="%" THEN DEF SEG: S="Basic": GOTO 6 ELSFE S=">"+LEFT$("0000", 4~LEN(S))+S
FOR I=2 TO 5: A=A+(INSTR(H,MID$(S,I,1))-1)%16"(5-I): NEXT: DEF SEG=A

PRINT "MEMORY SEG = "+S,A,A%16: PRINT: INPUT ®"START ADDRESS, # OF BYTES " ,A,B
COLOR 4: PRINT USING "&: ###i#
FOR B=0 TO 9: C=PEEK(A+B): PRINT USING "###
M=M+CHR$(C): NEXT: PRINT TAB(70);M: IF INKEY$="" THEN NEXT: GOTO 3 ELSE 3

b 15

".S;A:: COLOR 6
n:C;: IF C<32 THEN C=4%6

SUBSCRIPTION INFORMATION

Sl e S e S e e e e e B L e S e .

THE SMART PROGRAMMER - a monthly 16+ page newsletter published by MILLFRS GRAPHICS
U.S. 12.50 year - Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

Back issues are available. We can start your subscription with the FEB. 84 issue
To subscribe send a Check, Money Order or Cashiers Check, payable in U.S. currency

TO: MILLERS GRAPHICS
1475 W. Cypress Ave,
San Dimas, CA 91773 C >

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W, Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
A1]1 mail directed tc THE SMART PROGRAMMER will be treated as unconditionally
assigned for publication and copyright purposes and is subject to THE SMART
PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAPHICS
Texas Instruments, TI, Hex-~Bus and Solid State Software are trademarks of Texas
Instruments Inc. |

MILLERS GRAPHICS | BULK RATE

1475 W. Cypress Ave. U'S;EISEJAGE
San Dimas, CA 91773 |San Dimas. CA 91773

PERMIT NO. 1

THE SMART PROGRAMMER

