)

~1 L.

MILLERS GRAPHICS

JULY 1084
$1.50

THE SMART
PROGRAMMER

To start off this issue we have a couple
announcements to make about some new
products for the 99/4A. We were recently
contracted by SCI TECH to work on the
firmware for a RAM Disk card (Disk
Emulator) for the 99/4A PE Box. SCI TECH is
an established computer related company in
Southern California that is branching out
to manufacture products for the TI 99/4A.

This RAM Disk card is slated to be user
expandable from 64K up to 256K in 64K
increments. There is also space on the
board to plug in an optional 32K for use as
memory expansion, if you don't already have
This card will have an optional
:xternal power supply available for it
which will allow you to turn off your
system without losing the contents of the
RAM Disk. The RAM Disk can hold ALL types
of files and programs, including Forth, and
depending on the size you can have up to
127 different files stored in it at one
time. If the card does not have the
external power supply attached it will
automatically format itself on system power
up. You can also format it from the
complete Advanced Disk Manager that comes
with it. Theé disk manager allows you to
format all or part of the RAM Disk. The
unformatted part can be used by Assembly
programmers as extra ram space., The RAM
Disk looks exactly like a disk drive to the
system except that it has a much higher
transfer rate, approx 10-15 times faster.
The load time for a 50 sector Basic program
in single density format was approx 18 sec.
With the RAM Disk this same program loaded
in 1.5 seconds, very fast!

The RAM Disk can be configured, from a

~~ommand line or a running program, as DSK1

Jgr DSKS5 and it can always be accessed as
RDSK. The card will also add some new

CALL's to both Basic and X-Basic one of
which is:

CALL DIR This command or program statement
will allow you generate a paged Catalog of
any disk in your system WITHOUT losing your
program or data in memory! After the
directory is finished your program is still
intact and can continue execution.

The RAM Disk will be a nice addition to
our systems and a great speed enhanceri I
currently do not know the exact price or
the release date but we will let you know
in the next issue.

Millers Graphics is about to release a
new Memory and Disk Diagnostics program for
the 99/4A that is compatible with the TI
Disk Controller and the CorComp Disk
Controller. This program, which is written
by Steve Mildon, will do a complete memory
check for VDP, Scratch Pad and Memory
Expansion RAM and report any errors it may
find. It will also do a complete disk
diagnostic check which has the following
features:

Check and display the disk drive motor
speed (RPM)}, check the bit map for bad
sectors and report their numbers and check
the disk for fractured files and report
their names. It will also seek out any
sector on command and read it or write to
it with a verify and it will seek out any
track on command and read it or write to it
with a verify. It will allow you select
different head step times to test your
drives with to find the optimum time. After
running this program there won't be any
doubt in your mind as to the status of your
systems memory, diskettes or disk drives.
At 19.95 plus 1.50 shipping and handling we
believe that you will find it to be a nice
utility that is well worth the money. (It
should be ready to ship in approx 4 weeks.)

—

W

Q&A

There have been a number of questions
regarding Basic's and Extended Baﬁic's use
of SAVE and OLD with Disk and Cassette.
These questions have led us to believe that

we should explain their use of memory a
little better.

BASIC -« TI Basic does NOT recognize
memory expansion!! When you load a Basic
program either with cassette or disk it 1is
loaded into VDP RAM and it stays there. A
Basic program loaded through Basic is
always in VDP RAM. If you load a Basic
program through Extended Basic and you have
memory expansion then it is moved out to
high memory expansion after it is fully
loaded. With this in mind it is useless fto
purchase memory expansion unless you are
going to use Extended Basic, Editor
Assembler, Mini Memory or one of the many
programs that require it. If you have a
Mini Memory module and Expansion Memory you
can save and load Basic programs to and
from high memory expansion with SAVE
EXPMEM2 and OLD EXPMEMZ or you can use this
area for files ie; OPEN #1:"EXPMEM2".

EXTENDED BASIC - TI Extended Basic DOES
recognize memory expansion and to get the
full power of Extended Basic we strongly
recommend that you use it with memory
expansion. If you are using a casselte
based system when you SAVE a program the
line number table and crunched program are
moved into VDP RAM and then saved to
cassette. If the program is too large to
fit in VDP RAM the computer returns an
ERROR and you can not save it without
editing out some code. What this means 1is
that with a cassette system and memory
expansion your program size is limited to
the size of VDP RAM. However your programs
can contain a greater amount of string and
numeric variables since the symbol tables
for these are generated AFTER you type in
RUN. You might be able to get it to save by
using more multiple line statements. Each
line number adds 6 bytes to your program. 4
bytes for the line number table entry, 1
byte for the line length and 1 byte for the
end of line marker (character). Another
item to look at is your variable names,
each character in the name is one byte. 5o,
if you have a variable name that is 10
bytes long and you use it 20 times in your
program you've used up 200 bytes of program

space. We've also noticed that shorter
variable names, 1-3 eharaégérs, run faster.
One more item to consider is using single
character numeric variables in place of
constants such as 1,2,3 etc. or any other
number that is quite frequently used in
your program. Each direct number in your
program requires 2 bytes + the number of
digits + the decimal point. So the number
100 uses up 5 bytes and the number 123,45
uses up 8 bytes. If you assignh this number
to a variable like A=100, this assignment
is 7T bytes, 2 for A= and 5 for 100,
However, now whenever you use the variable
A it only uses 1 byte instead of the 5
bytes that 100 uses. This will shorten up
your program length but every variable
added to your program slows it down since
it has to search through the symbol table
each time you reference it. And lastly, as
always, you can remove any REM statements
since they use up 6 bytes for the line
number, 1 byte for the REM token and 1 byte
for EVERY character that follows it. Also,
if a REM statement is logically in line
with your program code it will slow it down
a little. These program shorting tips also
apply to Basic.

If you have a disk system and memor; M)

expansion you are able to write and save
large programs that can use most of the 24K
high memory expansion. Extended Basic only
uses the low memory expansion for Assembly
files, Assembly files can also be loaded
with an Extended Basic program into high
memory expansion provided they do not
overlap onto your Extended Basic program.
With a disk system if you save a program
that is too large to fit in VDP RAM it
changes it from a PROGRAM (memory image)
type file to a INT/VAR 254 type file and
writes out 1 record at a time. When this
happens the save and load times are much
longer and you will notice that your disk
controller light and 32K light alternately
blink on and off. If you load a a PROGRAM
type file you will notice that the disk
controller light blinks rapidly. Then,
after the program has finished loading into
VDP RAM, the 32K light will blink on when
the program is transferred to high memory
expansion.

Due to the nature of the TI operating.\
system and the Disk Controller DSR an,

PROGRAM type file MUST fit into VDP RAM in
order to Save or Load it., This is also true
of the PROGRAM type files that the PRK and

e

M

Adventure modules produce. These files are
mainly data but because of the structure of
a PROGRAM type file they are very compact
~and very quick to load. We seem to get a
‘number of questions on this type of file so
lets explain it a little better. First off
the Diskette doesn't care what is written
on it, it will hold whatever is written to
it. It is only the DSR and Languages that
care what the file type is. The DSR is set
up in such a way that ANY file that has a
FIXED length can be read as a RANDOM type
file. ANY file that is VARIABLE MUST be
read as a SEQUENTIAL type file. And, ANY
PROGRAM (memory image) type file is loaded
into VDP RAM first and then it is moved to
its proper location after it is fully
loaded. Were it is moved to is determined
by the program that loaded it. It may stay
in VDP RAM or it may be moved out to memory
expansion. The loading program can move
pieces of it into different locations, like
TI Forth does with the FORTHSAVE file., Part
of this file, User Variables, is moved into
low mem and the resident vocabulary is
moved into high-mem expansion. A memory
image file 1is just that, it is a copy of a
block of RAM that has been saved out to
disk, there are no control bytes or loader

/> tags mixed in with the code. There are a

‘few bytes in the beginning of files that
pass info to the loader. In X-~-Basics case
the PROGRAM file contains the line number
table and the crunched program as they
reside in memory. In the PRK case this file
is a copy of RAM that contained your data.
You can not RUN this file but the PRK
program can lcocad i1t into memory and use
selected parts of it for data. Forth's
BSAVE function is very similar to a PROGRAM
type file. If TI Forth used file I/0
instead of sector I/0 and put file headers
on the disk these BSAVEd files would
probably be labeled as PROGRAM. I hope this
has helped and not made it more confusing
than it was.

What happened to the rumors about Toys R
Us and/or GE buying the rights to produce
the 99/4A7

Last we item that we herd about this was
that T1 was asking TOO MUCH money for the
rights so both companies decided not to

What is the AVDP chip (TMS 9228) or the
new Video Display processor that TI is
about to produce and can it be used to
replace the TMS 9918A video chip in the

99/4A7

The TMS 9228 is a new development from
ITI. It is not currently in production, it
is still in the testing stages so some of
the specifications may change. According to
our friend, W.R. Moseid, sample chips
should be ready for release in the first
quarter of 85' and production quantities
should be available around the last quarter
of 85'. TI would like to see this chip
become a standard for VideoText interface
units.,

This new chip will address from 16K to
256K of video RAM. It allows up to 10
sprites per row since it has ten sprite
registers. It has 5 graphics modes and 2
text modes. Text mode I is 40 columns and
Text mode II is 80 columns. Both Text modes
allow multicolored text with a special mode
setting. The graphics modes go from the
standard 32 column Basic mode up to a true
bit map mode that has 256 x 210 pixel
resolution and requires 26880 bytes of RAM
to use it., It is a true bit map mode in
that each individual pixel can be set to
one of 16 colors. There is an even higher
resolution mode that has 512 x 192 pixels
know as Graphic¢s IV mode, This mode maps
its c¢olor like our current bit map mode
which i1s 1limited to 2 colors per
character's horizontal pixel row.

Some of the jitems built into this chip
are as follows: Sprites can be labeled into
8 different groups and there is a read only
register that contains the group numbers
that have a coincidence. Sprites may also
be multicolored, up to two colors per
horizontal pixel row. The color palette
allows you to use 16 colors of a 512 color
palette at any one time. This palette is
controlled by VDP register numbers 32-63 so
you have a lot of program control. There is
a hardware horizontal scroll that allows
you to scroll from 1 to 256 pixels at a
time, It can be used in any of the Graphics
modes but not in the Text modes. There is
also a vertical scroll that scrolls from 1
to 192 or 210 pixels and it can be used in

ﬁbuy! Also everything has been quiet on the

' 99/8. At one time we herd that Control Data

- Corp. was thinking about buying this or a
version of the 99/5, but that was a long programmable interrupt and a scund
time ago. generator built into it like the 99/4At's,

i e

all modes. The chip also has a block move
command that can be executed on a

s ———— R ..,

A few of the other nice items about this
chip are that it allows the CPU to directly
access the VDP RAM and it allows a
programmable interrupt on a prespecified
horizontal scan line. This would allow you
to use the block move when the scan got to
the middle of the screen. With this you
¢could move a new sprite attribute and
motion table into place or you could change
the VDP registers for these tables and
easily generate up to 64 sprites on the
screen. Or, you could use the scrolling
registers to sercll different portions of
the screen in different directions
depending on where the scan was. Once again
TI has been able to pack a lot of power in
a small package.

Now that you have the good news here
comes the bad news. NO you can not just
plug this chip into your console. In order
to use this chip you would have to modify
both the VDP RAM and all of the circuit
traces to the AVDP chip. This chip is
available in a 40 pin package similar to
the 9918A but all of the pin outs are
different. Also our consoles currently
contain 4116 RAM chips for VDP and the AVDP
chip can only use 4416 or 4164 RAM chips.
TI's 4416's and 4164's also have different
pin outs than the 4116's but another
manufactures may be pin compatible. There

may also be a problem with TI Basic, in

some of the Basic GROM code TI loads VDP
Register 4§ with >8. This places the pattern

descriptor table at >4000. In a 16K system
this is the same as >0000 since >3FFF=16K.
With more than 16K installed the pattern
descriptor table will be in the wrong place
for most of Basic's character related
statements. Until someone puts one of these
chips in a console we won't know for sure.
This chip also requires a 35 MHz clock with
some added circuitry, the VDP clock in the
A is 10.7 MHz. If anyone is successful in
installing this chip in a console please
lets us know, we would like to publish the
details.

While we are talking about VDP chips let
me add that the 9918A CAN NOT be directly
hooked up to a Red, Green, Blue (RGB)
monitor. You can only hook it to a
composite video input (video in) jack. One
of the Users Groups in Pennsylvania is
going to try and replace the 9918A with a
99284 which does drive a RGB monitor. We'll
keep you posted on the results and the
details.

e e e

A Little something extra for Christmas
.+« but only if you've been REAL goodl

We recently had the opportunity to learn
about a new computer system that TI is
about to release. It is named "The
Explorer®™, This system was designed for
High-Performance Symbolic Processing, to
support the capabilities of LISP and the
systems powerful software development
system, According to TI this set up is
ideal for developing software that uses
Artificial Intelligence.

The Explorer computer system comes in
three units. The System Unit, the system
Console and the Mass storage unit. The
System unit contains the 32 bit LISP
processor running at 7 MHz, 16K x 56 bits
of what we c¢all scratch pad RAM and 2
megabytes of main memory RAM (standard)
expandable to 16 megabytes per system. It
also contains a 32 bit data and address bus
called NuBus and can address a virtual
memory space of 128 megabytes. This NuBus
(developed by TI) has a transfer rate of
37.5 megabytes per second. There is also an
Eithernet LAN Interface, Parallel and RS232
ports, a graphics control logic with 1
megabit bit map using 120 nanosecond RAM

‘ﬁ

and the interface controller for the system‘ﬁi-

console. This interface hooks the monitor,
keyboard, mouse, microphone and headset to
the System unit via a fiber optics cable.
This allows for a 68 megapixel per second
transfer ratel! The 17 inch monitor has a
resolution of 1024 x 808 pixels. The
keyboard is similar to the TI Pro's except
they have added more keys for a total of
111. The mouse is an optical 3 button unit
with 200 dots per inch resolution. The Mass
storage unit(s) (up to four per system)
house two 5 1/4 devices (ie: hard disk and
tape drive). By placing all hard disks in
these units it is possible to have up to
896 megabytes of formatted hard disk space
with a minimum of 1 megabyte per second
Ltransfer rate. The system also comes with a
TI 855 printer. All this for only $52,500
to $66,500..... Lets see, the 4A started at
$1,400 and came down to ... Hmmmmm

Well.., Dream On... Christmas is just around
the corner!
By the way, if you would like a brochure
to put under your pillow try writing to:
Texas Instruments
P.0. Box 809063
Dallas, TX, T75380-9063

-

M

OOPS!

Well we spoke a little too soon about

,—.the May issue. Right after the May issue

went to press we received the following
info from Heiner Martin, of West Germany.
It appears that the GPL Link program we
published has a bug in it. If you are using
the routine within an assembly language
program that executes a BEEP or HONK sound
and then execute another GPL BEEP or HONK
routine your computer will lock up. The
BEEP and HONK sounds are interrupt driven
and as such they modify R11 of the GPL Work
Space if you access a sound list in GROM,
If you are only using the routine with the
CALL EXEGPL then it returns back to X-Basic
and everything is properly restored. So,
the CALL LOAD version we published is 0K
since you return to X-Basic after every GPL
Link. Listed below is the version that
Heiner Martin sent us. This one works much
better with your assembly language
programs.
-~ Thank you Mr. Martin -

UTLWS EQU >2038
SUBST EQU >8373
GRMRA EQU >9802 .

~ GPWS EQU >83E0

GPLLNK DATA UTLWS

GPLLN1

GPLLNZ2

DATA

MOVB
SWPB
MOVE
SWPB
Al
MOVB
SRL
AT
INCT
MOV
SWPB
MOVB
LI
MOV
LI
MOV
MOV
LWPI
B

LWPI
MOV

RTWP
ERD

GPLLN1

8GRMRA, RO
RO
6GRMRA, RO
RO

RO, -3
@SUBST, R1
R1,8
R1,>8300
R1

RO, #R1

R

R1, @8SUBST
R3, >2000
#R3, R2
RO, GPLLN2
RO, *R3

#R14+,8>83EC

GPWS
8>0060

UTLWS
R2, #R3

Mr. Martin also sent us the following
information on our GROM Chip 0 Memory Map.

We stated that we thought the area from
>16DC to >17FF was not used, well it
appears that we should have done a little
more digging. Mr. Martin has informed us
that this area contains the ASCII code
tables that are used by the SCAN routine.
Here is the list that he sent to us:

16E0 -~ 16FF Joystick Codes

1700 = 172F Small Characters

1730 - 175F Shift Table

1760 - 178F FCTN Table

1790 - 17BF CTRL Table

17C0 = 17EF Table for modes 1 & 2

For everyone with a CorComp Double
Density Disk Controller card Tom Knight
sent us the following program. This short
program allows you to load the CorComp Disk
Manager from the Editor Assembler module
with option 3 - Load and Run. Thanks Tom,

IDT 'LOADMNGR'
AORG >2700
DEF MGR

MGR LWPI >83E0
MOV R11,@>8300
LI R12,>1100
SBO >0000
SBZ >000B
BL @>44F2
NOP
SBZ >0000
MOV €>8300,R11
B #R11
END

PEEKING AROUND

Our GROM maps for this issue became a
little more involved, and time consuming,
then we planned on. There was so much
information that we wanted to pass on to
you they they ended up a little long. For
this reason we took out the PC column this
issue and, as you may have already noticed,
there wasn't much room left for the
programs we wanted to run. Next issue we
will 1lighten up a little on the maps and
devote more space to programs. These GROM
Maps complete the memory mapping of console
GROM, so we will move to another area next
issue.

o |

o e e s B S . P S e i e O o e L - S e e . e e e S R o e e
1>2000 ! GROM HEADER

I 2000 | >AA Valid GROM Header Identification Code

[>2001 | >02 Version number

b 22002 | >01 Number of Programs.

! >2003 | >00 Reserved

I >2004 | >0000 Address of Power Up Header .++» hone here

1 >2006 | >214D Address of Application Program Header

I >2008 | >0000 Address of DSR Routine Header

| >2004 ! >4D1A Address of Subprogram Header (in GROM Chip 2)

I >200C | >0000 Address of Interrupt Link «»«s none in GROM
! >200E | >0000 Reserved for future? expansion,

I I

I | GROM CHIP 1 VECTOR TABLE (>2000 offset)

1>2010 | >4417 Routine to begin execution of Basic program in GROM
1>2012 ! >U195 Routine to clear flags & set up keyboard

1 >2014 ! >460B Routine to parse (scan)} an inputted command line

1>2016 ! >U66C Routine to generate the SYNTAX ERROR message.

1>2018 | >U6T7E Routine to restore cursor position after Error

| >201A | >4192 Secondary entry point for Basic Interpreter

1>201C | >47F1 Routine that CALLs routines in GROM O to load characters
1>201E | >U436D Routine to move blocks of VDP RAM

1 >2020 I >46AB Routine to reset the length byte for strings and numerics
I | ERROR MESSAGES DATA TABLE

| >2022 | The Error messages in this table have a >60 (96) offset added
I ! to them for Basic so they are not readable with the Debugger's
! | M G2022 214D command. (1st byte=zlength -~ Next bytes=message)
I I

I ! APPLICATION PROGRAM Header

1>214D ! >0000 Pointer to next Application Program Header ... none here
| >214F | >216F Start address for this program (Main entry point)

! >2151 | >08 Name length for this program

I >2152 | >54492042 DATA :TI BASIC: (for the menu screen)

| >2156 | O>U1534943

I I

{>215A | >3422B Vector for routine that erases the symbol table (>222B)

1 >215C ! DATA for the cursor character pattern

| >2164 ! DATA for the screen edge character pattern

1>216C | DATA for VDP Registers 2, 3 and 4 (>F0 OC F8).

I I Note: first nibble is ignored for reg 2 & U4 data.

} ! register 4§ data sets the Pattern Desc. base address
I | to >8%#>800 = >4000 which equates to >0000 for 16K

I l

1>216F | START OF TI BASIC INTERPRETER

| } The input line is scanned for the entries at >2214 and branches
I ! to them. If not one of these it executes the direct command

! ! (ie: CALL CLEAR or PRINT B+C ete.).

! >216F | Entry point for *NEW' routine

I >2192 | Secondary entry point for Basic Interpreter

! >219% | Routine to clear flags, set up keyboard & prepare for input

I | on the command line.

! >21D6 | Edit Routine that CALLs other routines to store the input from
: I the keyboard into the VDP RAM Screen Image Table.

! >21E5 | Routine that CALLs another routine to scan the line just input
! I and convert it into token codes and store it in VDP RAM
| >2214 | CASE branch table for 'RUN NEW CONTINUE LIST BYE NUMBER

! I OLD RESEQUENCE SAVE and EXIT!

o e e e o L = e S e D e e S 4 0 2 S S e R 2 2

CONSOLE GROM CHIP 1 Cont.
T —— T A S S —— -
I | TI BASIC IRTERPREYER Cont. !
| >222B | Entry point for routine that erases the Symbol Table !
| 22245 | Entry point for 'LIST' routine I
| >224D | Entry point for 'RUN!' routine I
! >2268 | Entry point for 'CONTINUE'®' routine !
| >228C | Entry point for *NUMBER' routine I
i >229F | Entry point for 'SAVE' routine I
i 222A7T | Entry point for 'OLD' routine I
i >22AA | Entry point for 'RESEQUENCE' routine |
| >2342 | Entry point for 'BYE' routine]
] >236D | Routine to move blocks of VDP RAM from a Lower address to I
|- | a Higher address as you input program lines. I
I I >8300 = VDP location to move FROM !
I I >8302 = VDP location to move TO I
! | >835C = Number of bytes to move !
i >2377 | Entry point for 'EDIT' (program lines) routine I
| 24817 | Routine to begin execution of Basic program |
| >2457 |} Routine to scan an inputted command line CALLed from »21E5 I
| >266C | Routine to generate the SYNTAX ERROR message. |
! >26TE | Routine to restore cursor position after Error |
i J>26AB | Routine to reset the length byte for strings and numerics |
| >27E3 | Routine that clears the screen, resets the cursor and edge I
I I characters and then executes the following routine !
| 227F1 | Routine that CALLs routines in GROM 0 to load character sets, |
I I then it resets the foreground and background colors |
| ! and resets VDP Registers 2, 3 and 4 I
I ; I
[>2828 i VECTOR TABLE FOR EDIT & PRESCAN ROUTINES (>2000 offset) I
i 22828 | DJHUFFF Prescan (builds symbol table and checks for errors) {
| >282A | DUF43 Generates Bad Line Number error message |
i >282C | DJUCT5 Routine to parse the input line for non space chars !
| >282E | >UDFA Lists a program line to screen {(converts token code I
| ! into ASCII, reserved words) I
| >2830 | >U4CA6 Gets a valid character from the input line |
i 22832 | D>UA42 Main edit routine to read in a line from the keyboard I
1 22834 | O>UC36 Starts auto number with our line # and increment. I
| >2836 | D>4FCY4 Finds where the first token is stored in vdp ram for linel
i >2838 | D>WBD6 Deletes and imserts program lines (moves memory around) |
| >283A | D>AF12 Checks for valid line number |
| >283C | D>YEF9 Converts a line number from ASCII into Binary value I
| >283E | >4F5D Locates a program line in vdp ram I
I 22840 | O>4C2B Starts auto number with default values of 100,10 I
| >2842 | DUFAF Converts line # from Binary to ASCII and displays it I
{ >2884 | >5493 Checks for room for symbol table or pab, this routine I
) I may execute a garbage collection and try again |
| >2846 | >5450 Checks for type of char 0-9 a-z A-Z etc. I
| >2848 | >51E5 Places a variable in the symbol table I
| >284A | >522B Puts dummy entries into the symbol table I
| >284C | >4p28 Prints out the WARNING messages I
| >284E | >4D99 Prints out the ERROR messages |
| >2850 | >4C834 Checks the GPL stack and moves a char into it I
| 22852 | D>4CA0 Increments the VDP pointer for the next char |
! >2854 | >4CCO0 Handles unquoted strings adds unquoted token & len to it |
I >2856 | >ACTA Gets first non space char from the input line I
| >2858 | >4A49 Secondary edit routine, allows different line length |
| >285A | DUANF Third edit routine, allows different starting cursor pos |
o o e e e B B e . B B B e S o e o e e . e +

M

>2BD6

>»2C2B
>2CT5
>2CTA

>2C84
>2CAQ
>2CAL
>2CCO
>2D2Y4
>2D99

>2DFA

>2EF9
>2F12

>2F43

>2¥5D
>2FAF
>2FCY
>2FFF
>31E5
>3450

>3493

RESERVED WORD TOKEN TABLE | :
First 10 words point to the start of reserved word groupings.|
Groups are broken up by number of characters (1~10) per I
reserved word. The Token value follows the reserved word |

LINE EDITOR | - |

Routine that accepts keystrokes into a screen line, This is a I
line editor, it knows Insert, Delete etc. This entry point |
sets the default starting point and line length for Basic I

Second entry point for the line editor. By setting the line :
length in >835E before branching here you can change the I
‘maximum line length |

Third entry point for the line editor. By setting the line I
length in >835E and the start point in >836%1 before branching|
here you can have your input start and stop any place on :
the screen |

Routine that moves memory around for inserting and deleting |
program lines I

Routine that sets up the values for NUMBER (auto line numbering) |

Routine that parses a line and gets the non space chars I

Routine that gets the first non space char. Both this routine I
and the one above CALL the routine at >2CAb I

Routine that checks the stack and moves a char to it |

Routine that increments the VDP pointer and jumps to >2C84 I

Routine that checks for strings or numerics and handles each |

Routine that handles unquoted strings, adds token & length to it]

Routine that prints the WARNING message on the screen !

Routine that prints the ERROR message on the screen. The pointer|
to the length byte in GROM for the WARNING or ERROR message |
is in the Scratch Pad at >8376 I

Routine that lists a program line on the screen. Starting point |
for the line is in >8302 |

Routine that converts an ASCII line number into binary I

Routine that checks for valid line number input |

Routine that generates the BAD LINE NUMBER error message I

Routine that finds a line from the line number table I

Routine that converts line # from binary to ASCII & displays it |

Routine that finds the first token of a program line in VDP !

PreScan routine, scans line or program and builds symbol table |

Routine that places the variable in the symbol table I

Routine that checks char type 0-9, a-z, A-Z etc, Character that |
is checked is at >8342. This routine sets the condition bit |
in the GPL Status register if char is valid for variable name|

Routine that checks for enough room for a symbol table entry |
or a PAB. If there's not enough room between the symbol table|
and the string space it tries to move the string space to a |
lower address, this may execute a garbage collection. If |
there still isn't enough room it generates the MEMORY FULL |
error message. (Word at >834A = space needed in bytes) i

I

NOTE: Most of the above routines use the FAC and ARG sections of|
Seratch Pad RAM for parameter passing. Some of them will use |
the temporary space at >8300 - >8316. Usually whenever a |
a routine does anything with a single character the character|
is at >8342. Also, most of the references to Scratch Pad are |
with an offset of >8300. |
ie: opcode BF 14 0008 = Double byte store 0008 at >8314 :

-

-

L

CONSOLE GROM CHIP 1 Cont.

+---------*-------“----------------------—---._-—--_.---—-_--.---“u_-----------#

l
}1>3510
}>3513
1>3516
1>3519
I
I
|
}>351C
I
1>3527
| >352F
1>3538
I

>360E

v
¥
"
N
b

>3643

v
¥
-3
=
™

A
W
-
¥
<o

>3767

I1>378E
!
| >37BF
I
I
| >37D6
I
I

BRANCH TABLE FOR A FEW OF THE ERROR MESSAGES

>05 5671 = Branch to 5671 - ILLEGAL STATEMENT

>05 567D = Branch to 567D - MEMORY FULL

>05 BDTC = Branch to 4DTC - BAD VALUE

>05 4D81 = Branch to 4D81 - STRING-NUMBER MISMATCH

ERNTRY POINIS FOR A FEW OF THE CALL STATEMENTS

CLEAR - Places the space character + bias (>60) in every screen
position by using the GPL statement of ALL : :
DATA for SOQUND >42,>0B,>12,>22,>00,>00, >00,>00
DATA for SOUND >01,>FF,>01,>04,>9F, >BF, >DF, >FF, >00
SOURD - This routine handles the entire sound statement. First
it checks the duration, then it converts it into 1/60 seconds|
because sounds are interrupt driven. Next it finds the first |
frequency and divides 111834 by it (111834/freq) and passes |
that value to a sound table it is setting up in VDP RAM. Next|
it gets the volume and sets that up and then passes all the |
values to the socund chip (>8400). Interrupt routine is in I
I
|

the console ROM chip.

HCHAR - This routine and the VCHAR routine both call a
subroutine at >37D6 to parse the statement for X,Y,CHAR,#CHRS|
and converts these into integer values. Then it puts them on |
the screen using a FMT statement (Formatted block move) that |
allows for writing over the border characters. I

YCHAR ~ This is very similar to the above statement except that |
it places the characters vertically. The number of charactersi
is at >834A, the character is at >8300, screen row is at |
>837E and the screen column is at >837F. I

CHAR - This routine converts the string into the proper values |
for defining a character and moves these values into VDP RAM |
at the proper character + bias (>60) location. Both FAC |
(>8344A) and ARG (>835C) are heavily used during this CALL. I
This routine appears to set up a temporary string in VDP RAM |
30 it is possible that it could invoke a garbage collection |
and if there isn't enough room it will generate a Memory Full]
error message. l

KEBY - This parses the statement for the key unit, checks it for |
the proper range, CALLs >3767 to move it to >8374 and then |
executes the SCAN routine. After returning it checks the =~ |
Status and places the proper value into your variable. Next |
it evaluates the keycode, converts it into floating point and]
places it in your variable. |

JOYST - This is very similar to the above statement except afier]
returning from >3767 it computes the proper X and Y values |
by CALLing >5755 and then places them into your variables. l

Subprograms to do parsing for left parenthesis and commas, range|
checking for a range of 1-16, >0 or a preselected range. I

Subprogram to parse the row and column values out of a graphics |
statement (ie: CALL HCHAR...). I

SCREEN - This subprogram sets the Screen and border color. I
It uses the above subroutines to parse the statement and I
then places the value into VDP register 7. I

Subprogram to parse HCHAR and VCHAR statements for row, column |
(by CALLing >378E), ASCII character value and number of I
characters. I

#'—-- ------------------“-‘--**---#

e e EEE——

>46FC

OBTHC

L L L e) L L) g Y L L Y L 8 Y g . ¢ ¢ 1 J . ¢ 3 § § t +J 2 3§ | J = | 2 § 1t 1 3 3 | 'y J [3§ [| I J J I

|y T 1 » -+ ¢ §» ¢ 1 21 f T+ 3 Ef 1 1 & J3 R 2 2 1 % [[® 1 3 L %1 L o o ‘¢ ‘. J . 2 [. . % % ‘' 1 1 g3 . . % [1 J J _» 2 & I J 1 &I B B 1 & K 1 1 L . . 1 & _L

VECTOR YABLE FOR FILE ROUTINES (>0000 Offset)
>426C DISPLAY routine

>4160 DELETE routine

>4227 PRINT routine

>4344 INPOUT routine

>401E OPEN routine

>4174 CLOSE routine

>41D7 RESTORE routine

>485E3 READ routine

>4956 GET DATA FROM GROM/GRAM or RAM
>41CF CLOSE ALL OPEN FILES routine
>46FC PROGRAM SAVE routine

>4641 PROGRAM LOAD routine

>YTHC LIST routine

>YBFC OQUTPUT RECORD routine

>382B END OF FILE routine

I
I
I
I
|
|
I
|
|
I
I
I
I
|
I
I
| I
OPEN ROUTINE - This handles OPEN #x:"device.xx",VARIABLE xx,... |
Case branch table for the following OPEN paramelers: |
>H0AB VARIABLE I
>406B RELATIVE |
>40D1 INTERNAL I
>4070 SEQUENTIAL I
>8095 QUTPUT I
>409A UPDATE I
>40A4 APPEND I
>40B0 FIXED |
DELETE ROUTIRE - This handles the various DELETE functions I
CLOSE ROUTINE - This handles CLOSE #x or CLOSE #x:DELETE I
CLOSE ALL FILES ROUTINE - This closes all open files I
RESTORE ROUTIRE - This handles RESTORE (data), RESTORE xx (data) |
RESTORE #x and RESTORE #x,REC x for files I
PRINT ROUTINE - This handles both screen and file PRINT. Both |
this and the Display routine check for Internal or Display |
type records and handle each accordingly. I
DISPLAY - This handles the screen DISPLAY statement (no files) |
IRPUT ROUTIRE - This handles both the screen and file INPUT I
it also checks data type against variable type |
READ ROUTINE ~ This handles the reading of DATA into variables |
it is not used for files. CALL's routines at >48CC - >4992 |
OLD ROUTINE - This is the OLD DSK1.xxxxx or OLD CSt routine, it |
sets up the PAB, Calls the DSR, Tests the Checksum, gets the |
new addresses for the end & start of the line # table, makes |
adjustments for different RAM size (4K?) and stores them at |
>8332 & >8330 respectively. Adjusts the memory and updates I
the line # pointers if different RAM size. Both OLD & SAVE |
CALL routines at >4888 -~ >48CB [
SAVE ROUTIERE -~ This is SAVE DSK1.xxx or SAVE CS1, it closes all |
open files, clears all break points, stores the start and end]
pointers for the line # table, finds the number of bytes used|
(>8370), passes it to the PAB and calls the DSR for a SAVE. |
LIST ROUTIER - This lists out the program lines to the screen |
or to the device specified. Unfortunately it generates a !
Syntax error if you use anything but a : after the device !
name. ie; LIST "PIO®:100-150 is OK but not "PIO™,VARIABLE 28 |
END OF FILE ROUTINE - This is the EOF(x) function.

ﬁTh

8

L b b ke bl) g L L L) T Y) 1 3 1 ¥ 5 3 8§ F J ¥*-"F 7 % 3 F-F ¥ ;O P3P CFCOFCCF ¥ P f YU

iy e geleaiey el e T

L b L) 8 8 L g g) L) g g L L L) L 8 % 1 g % ¢ 8 & 3 3 L ¢ _J L J§ ! | 1L L * J | I |

“—“-““—M—__—“-I-«IIII-—-—l——-“in—l-l-—-ﬂﬂ-—-—ﬁl—l-—--—-“--l—-_&—“ﬂ—-—“““ﬁ-““—-“—-““—“—

SUBROUTINES !

OLD & SAVE SUBROUTINE - This gets the program name, initializes |
many of the program pointers, deletes the symbol table, sets |}
up the PAB and returns.

READ & INPUT SUBROUTINES - These find the symbol table entries,
check for Strings or Numerics, decide if its GROM or RAM
data and pass the Data item to the variable.

- GET DATA FROM GROM OR RAM - Reads the next Data item from
GROM if the GROM Flag at >8389 is in >834D. If >834D is = 0
then the next Data item is read from RAM.

OPEN, CLOSE & RESTORE SUBROUTINES - These parse out the file
number (ie: #1, if its there), check for the proper range
(> 0 and < 256), scan the PAB chain for the proper file.

If any of these items are not right it returns with an error.
On a Close the routine at >4Y9E6 deletes the PAB and adjusts
the memory and PAB chain pointers.

PRINT SUBROUTIRES - These handle the outputting of data to the
screen or to a file. They check for valid separators (,;:)
and handle each accordingly. For screen output they add the
character offset (>60) to each character.

- OUTPUT A RECORD - This is the subroutine that outputs a
a record to either the screen or an output device, depending
on the PAB (file #0 = screen output)

:

I

:

I

|

|

I

|

!

|

|

l

I

I

I

I

I

I

|

|

!
VECTOR TABLE FOR BASIC EXECUTION I
>56CD Screen Scroll Routine |
>5120 Move a String from the Program area to the String Space |
>4DB0 Second entry point for executing a Basic Program |
>56BB Subroutine to find line number after BREAK I
>5613 Subroutine that sets the pointer for next Data item |
>5645 Subroutine to convert line number into ASCII (Trace mode) |
>4DBF Third entry point for executing a Basic program (CONT) |
>H4E38 Subroutine that BREAKs a running program I
>4D8A First entry point for executing a Basic program (RUN) |
>515C Subroutine that sets up room for a String !
»55BB Subroutine that clears out a temporary String |
>56E1 Subroutine to convert a String into a Number !
>51A9 Garbage Collection subroutine. |
|

I

I

|

I

I

|

|

I

:

I

I

!

I

:

|

I

\

SUBPROGRAM POINTER TABLE (For CALL xxxx...)
>4D24 Points to next Subprogram

>3538 Entry point for this Subprogram
>05 Length of this name

>534F554E4Y4 :SOUND:

>4D2E Points to next Subprogram

>351C Entry point for this Subprogram
205 Length of this name

>U34CYH54152 :CLEAR:

>4D38 Points to next Subprogram

>5713 Entry point for this Subprogram
>05 Length of this name

>438F4CYF52 :COLOR:

>4IDh2 Points to next Subprogram

>56EF Entry point for this Subprogranm
>05 Length of this name

>UT43484152 :GCHAR:

e e TEET S e e TR e I By T L T EEeam e e ek oeeass Wlkae ey Sl Eleess SR by

I
>ED42 | DUDYC Points to next Subprogram
>4D4Y | >360E Entry point for this Subprogram
>UDH6 | 05 Length of this name
>UDHT | >4843484152 :HCHAR:
>UDUC | >4D56 Points to next Subprogram
>UDYE | >362A Entry point for this Subprogram
>4D50 | >05 Length of this name
>4D51 | >5643484152 :VCHAR:
>4D56 | DUDSF Points to next Subprogram
>4ps8 | >3643 Entry point for this Subprogram
>HDSA | D04 Length of this name
>4DS5B | >43484152 :CHAR: |
DUDSF | >UD6T7 Points to next Subprogram
>4D61 | >3708 Entry point for this Subprogram
>4D63 | >03 Length of this name
>4D64 | DLBASSG :KEY:
>4D67 | H>UD71 Points to next Subprogram
>4D69 | >3748 Entry point for this Subprogram
>UD6B | >05 Length of this name
>UD6C | DUAHFS595354 :JOYSYT:
>4D71 | >0000 Points to next Subprogram (no more)
UDT3 | >37BF Entry point for this Subprogram
>4D75 | >06 Length of this name
>UDT6 | >53435245454E :SCREEN:
§ >UDTC | Generate 'BAD VALUE' Error Message
| >4D81 i Generate 'STRING-NUMBER MISMATCH! Error Message
1 >4D86 i >56DY4 - Branch to routine that sets up format for screen
1 >4D88 i >566C - Branch to CAN'T DO THAT Error
i>4D8A | RUR - This is where a Basic program first starts to RUN, This
| sets up the line number pointers, scrolls the screen up
| 1 line and falls through to the next entry.
{ >4DBO | EXECUTE -~ This starts execution of the program or if in Command
I mode it executes the statement you just typed in.
| >4DBF ! Third Entry point for Basic program execution., This is where
I the CONTINUE Command branches to.
| >4E38 | Subroutine that BREAKs a running program. It prevents a break
I while GROM 1is executing, sets up the BREAK message and
| displays the line number.
| >4ESH | ®% DONE ## - This is the normal end of program subroutine.
I
| VECTOR TABLE FOR BASIC RESERVED WORDS
>4E8Y4 | >4FB6 FOR
>U4E86 | >5463 BREAK
>UE88 | >5479 UNBREAK
>HE8A | >5459 TRACE
>4E8C | >545E UNTRACE
>YES8E | >400E READ
>4EQ0 | >4004 PRINT
>4EQ2 | >50DB CALL
>HEQGY | >5111 QUOTED STRING CONSTANT
>HE96 | >HB00C RESTORE
>U4EQ8 | >50CB RANDOMIZE
>UEQA | >4006 INPUT
>UEQC | >4008 OPEN
>YEQE | >B00A CLOSE
SHEAQ | DUF99 (Left Parenthesis)

L b L L R L L R)) T X T ¥ O F 1 7 3 ¥ N N T ¥ R R] O R W F Y T R U g g g g e L 7 J 5 2 1 1 ¥ ¥ J

SUBPROGRAM POINTER TABLE Cont.

>UFAS8
>UED1
>HJEDC
>4EE2
>UEES
>YEEE
>YEFA
>YF26
JUFLQ
JUFU6
DYFLC
>52BE
>53EA
>4F00
>4000
>U002
>524A
>531A
>5349
»53A9
>5306

Lt X . r X 2 3 1 J . J 3 »* J 3 X LI I 3 *t 2 3 % J L B § .+ J 3 _°' § B XL J B % J B __1 J 1 L JF _° 0 L L J B L L B [J 3 L X J B L 2 1 L L o L 2 L & L L 2 _J J

VECTOR TABLE FOR BASIC RESERVED WORDS Cont.
>UFB2 +

(Plus)

- {Minus)
ABS
ATN
COS
EXP
INT
LOG
SGN
SIN
SQR
TAN
LEN
CHR$
RND
DISPLAY
DELETE
SEG$
STR$
VAL
POS
ASC

>05 401C EOF

Rather than document each of the above items, which would
require another 4-6 pages of memory maps, we will talk about
these routines in general.

First off, many of these routines end with the Opcode of >10
this is the same as Basic's CONT, so the interpreter will go
back to >UDBF and grab the next statement in your Basic Program.

All of these routines use various parts of Scratch Pad RAM
with FAC (>834A) and ARG (835C) being used very heavily. There
is also a 24 byte segment at the top of Scratch Pad RAM (>8300
through >8316) used by Basic as temporary storage places
for many of its routines. Some of the routines will clear out
any values it has place into the FAC and ARG area or the Row,
Column and Character value area at >837D - >837F.

L ——— S e———— S e R i I I

Most of the String handling routines require that FAC through|
FAC + 7 (>834A - >8351) be set up prior to execution as follows:|

>834A =
>834C
>834E
>8350
#>8352 -

Subroutine to
Subroutine to
Subroutine to
Subroutine to
Subroutine to
Subroutine to
GCHAR subroutine.

COLOR subroutine,

Subroutine to convert floating point to integer.
Subroutines used by CALL JOYST and CALL KEY.
Subroutine to check for the left parenthesis (.
Error Message subroutines.

L ¥ r ¥ r 31 - r J * J Jy ¥ ¥ 5 ¥ ¥ r 3 2 ¥y ' 3 3 ¥ 3 ! J ¥ £ J F 3 L 23 3 J ¥ X ¥ J ¥ L J 5 ¥ I 1 J J B L J 1 L A 1 I 0 B __L 1 L I J _F 3§ 1L _J _L .}

The Symbol table address that points to the string. |
>6500 for a string and >6400 for numerics.

The address in VDP RAM of the string.

The length of the string.

Sometimes the GROM Flag is temporarily stored here

:
I
I
|
handle User Defined Functions (ie: DEF) i
check for String or numeric and set register bits.|
set the pointer for DATA items. I
convert the Line number into ASCII. I
print out an Error Message. I
find line # after BREAK, UNBREAK or RESTORE. |
I
I
I
!
:
i

5™ 1— =FORTH

This month we have a little Forth
routine that turns on the Peripheral DSR
ROMs and searches through them for the
various headers. Each peripheral determines
its own headers, s¢ all the headers will
not be in every ROM. The valid list of
headers are as follows:

>4000 = Header Identification & Version

>4002 = # of Programs (not used in DSRs)
>4004 = Power Up Header Address

>4006 = User Program Header (not used)

>43008 = DSR Link Header Address

>400A = Subprogram Header Address

>H00C = Interrupt Header Address

>Y00E = Reserved (not used)

On a two or more disk drive system just
type in the program exactly as it is
printed and then LOAD the screen you saved
it to.

On a one drive system this program it
will try to load the ~-CRU words from the
Forth system disk. If you haven't saved
this program on your system disk then
delete -CRU from line 0 Screen 110 and type
in -CRU <enter> before LOADing the screen
with the program on it.

SV = /Y) | | S ——

If you use the any of the following
words: ON, DISKON, RS2320N, TPON or PCODEON
be sure to type in ALLOFF when you are
finished. If you do not and you leave a DSR
ROM ON you will lock up your system when
you go to access ANY of the peripherals!l]

This happens because two DSRs can not
occupy the DSR ROM space at the same time
(do not use SWCH for the printer).

SCR #110

0 (Peripheral DSR Peeker - Craig Miller) BASE->R HEX

The words DISKQN, RS2320N, TPON and
PCODEON turn on these DSRs. When some of
them are on, like the Disk, their light
will also come on, However, some of them,
like the RS232, will not turn on the light.
After a DSR is turned on you can DUMP its

contents to the screen with the DUMPDSR
word.

The two main words for this program are
SEARCH and SHOWALL. These words are just
typed in, nothing needs to be on the stack
for them to execute., If you just want to
see a selected DSR header type in:

HEX cru base HEAD <enter)
ie: HEX 1100 HEAD displays the Disk DSR
header.

ALLOFF loops through all of the CRU
bases and turns off all of the DSR ROMs.
Make sure they are all off when you are
finished!!

Quite a few of our readers have written
asking how to convert their Forth systen
disks into Double sided and/or Double
density.

CorComp recently sent out a newsletter
called the CorComp Cursor that contained a
two page article on converting your Forth
systems disks that was written by Jim
Vincent. This article covered all of the
changes you need to make to the screens
that are disk size dependent including the
changes to the FORMAT-DISK word. Rather
than use up space here to repeat Jims
instructions try to get a copy of this
newsletter from your Group. If you can not
get this info AND if we get a lot of
requests for it we will publish it in a
future issue. Have Fun.

-CRU

1 : OFF 2 [/ SBZ ; (Turns OFF selected DSR ROM)
2 : ALLOFF 2000 1000 DO I OFF 100 +LOOP ; (Turns OFF all DSRs)
3 : ON ALLOFF 2 / SBO DECIMAL ; (Turns ON selected DSR)
i : DISKON 1100 ON ; (TI Disk Controller Card ON)
5 ¢ R32320N 1300 ON ; { TI RS232 Interface Card ON)
6 : TPON 1800 ON (TI Thermal Printer DSR ON)
7T : PCODEON 1F00 ON ; (TI P-Code Card ON)
8 : DUMPDSR 4000 1FFF DUMP ; (Dumps Enabled DSR ROM to screen)
G : SEARCH PAGE ."™ Peripheral DSRs found at :™ CR CH

10 ." CRU Base Version™ CR CR ALLOFF HEX

11 2000 1000 DO I DUP 2 / SBO 4000 Ce@ AA = IF I 5 .R

12 4001 C6 9 .R CR ENDIF OFF 100 +LOOP CR DECIMAL “"
13 ." To enable DSR ROM type in" CR

14 ." HEX c¢ru base ON <Enter> " ;

15 -=> (Note: PAGE = 0 0 GOTOXY CLS from Screen 3)

SCR #1111

0 (Peripheral DSR Peeker cont.)

1 ¢ P 5 U.R ;

2 : PR DUP P 8 P ; (HEX cru base HEAD lists DSR header)
3 : HEAD1 DOP 2 / SBO HEX 4000 C@ AA = IF CR CR

4 K000 PR .M Header Ident & Version?® CR

5 4002 PR .°® # of Programs (not used)"™ CR

6 4004 PR .W Power Up Header Address® CR

T 4006 PR .7 User Program Header n/u® CR

8 4008 PR ." DSR Header Address”™ CR

9 400A PR .™ Subprogram Header Address® CR

10 400C PR ." Interrupt Header Address®™ CR

11 Y00E PR ." Reserved not used®™ CR

12 ELSE . - No DSR here®

13 ENDIF CR ;

14 : HEAD CR ALLOFF HEAD1 OFF DECIMAL ;
15 ==>

SCR #112

0 (Peripheral DSR Peeker cont.)

1 ¢« 7PAUS PAUSE IF ALLOFF DECIMAL SP! QUIT ENDIF ;

2 : FINI 7PAUS 8 0= DUP IF SWAP DROP ENDIF ;

3 ¢+ EMITASC DUP DUP 19 > SWAP TF < AND IF EMIT ELSE . ENDIF ;

y : ?HEAD DUP @ 0 > DUP 0= IF SWAP DROP ."™ none® ENDIF CR CR
5 : 3DUP & DUP DUP DUP ;

6 : NAMES CR 4 <+ DUP DUP DUP P CE€ P .M Name Length" CR

(f C@&@ 1+ + SWAP § + ." name= W

8 DO I Ce& EMITASC LOOP CR CR FINI ;

9 : PWUHDS ROOH THEAD 1F BEGIN 3DUP PR
10 . Next Power Up Header™ CR 2+ PR
11 N Entry for this Power Up®™ CR FINI UNTIL ENDIF ;
12 : DSRHDS 4008 ?HEAD IF BEGIN 3DUP DUP DUP PR
13 . Next DSR Link Header™ CR 2+ PR

14 . Entry for this DSR Link" NAMES UNTIL ENDIF ;
15 =-=>
SCR #113

0 (Peripheral DSR Peeker cont.)

1 : SUBHDS HN00A ?HEAD IF BEGIN 3DUP DUP DUP PR

2 . Next Subprogram Header® CR 2+ PR

3 o M Entry for this Subprogram™ NAMES UNTIL ENDIF ;
K INTHDS 400C 7?HEAD IF BEGIN 3DUP PR

5 M Next Interrupt Header® CR 2+ PR

6 . Entry for this Interrupt?®™ CR FINI UNTIL ENDIF H
T

8 SHOWALL PAGE ALLOFF HEX 2000 1000 DO CR I DOUP U.

9 ." DSR Header " HEAD1 ?PAUS 4000 Cé IF

10 .®" Power Up Header " PWOHDS CR
11 ." DSR Link Header ™ DSRHDS CR

12 ." Subprogram Header " SUBHDS CR
13 ." Interrupt Header ™ INTHDS CR CR ENDIF

14 OFF ?PAUS 100 +LOOP DECIMAL ;

15 R->BASE

v-—

SUBSCRIPTION I NFORMATION

=k el il i - . . il

THE SMART PROGRAMMER - a monthly 16+ page newsletter published by MILLERS GRAPHICS
U.S. 12.50 year - Foreign Surface Mail 16.00 year ~ Foreign Air Mail 26.00 year

Back issues are available. We can start your subscription with the FEB, 84 issue
To subscribe send a Check, Money Order or Cashiers Check, payable in U.S. currency

TO: MILLERS GRAPHICS
1475 W. Cypress Ave.
>an Dimas, CA 91773

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. A1l rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
All mail directed to THE SMART PROGRAMMER will be treated as unconditionally
assigned for publication and copyright purposes and is subject to THE SMART
PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PRCGRAMMING GUIDE are trademarks of MILLERS GRAPHICS

Texas Instruments, TI, Hex-Bus and Solid State Software are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE
1475 W. Cypress Ave. U-SFEE%’*GE
San Dimas, CA 91773 San Dimas, CA 91773

PERMIT NO. 191

THE SMART PROGRAMMER

