MILLERS GRAPHICS

AUGUST 1984
$1.50

THE SMART
PROGRAMMER

I'm very sorry for the lengthy delay in
getting this issue out. I really want to
THANK everyone of you for your patience and
understanding. We truly are trying and we
have NOT lost interest in producing this
publication., I do enjoy writing it.

As you can see we have not gone out of
business nor do we have any such plans, Its
interesting how these rumors get started.
Its almost like someone wants us out of the
99/4A business. Well I have news for them
its going to take a lot more than a couple
of rumors to get us out, We like it too
much! The past few months have been quite
hectic with new product development and
some time consuming legal dribble. In the

new product department we have a lot of new
goodies planned and started and as soonh as

they are ready we will let you know. In the
not so new department we are working on
finishing up that book and program we
talked about last year.

The reason we have been sending back the
renewals, that many of you have sent in, is
because we have not completed your original
subscription yet. I know the subscription
form said "1 Year (12 Issues)" and that the

first year is up. However we still have 5
more issues to go before the "12 Issues"®

are completed. You paid for 12 issues 30 we
owe you 12 issues, I don't care how the
rest of the publishing industry handles it.
After these are completed we are looking at
producing this publication in a different
form., As you know it has been very hard to
get this out in a timely fashion and still
handle other new items. So what we are
looking at is publishing a large issue 3 or
y times a year and sending out a brochure
to let you know its ready. I have a hard
time sleeping at night, since I'm so0 far
behind on this newsletter, knowing that you

believed it would be published every month.
As soon as we know exactly how we are going
to handle the newsletter after the first 12
issues we will let you know. We are NOT
abandoning the 44 or compatible computer,

830 long as you don't. It is still the BEST
Home Computer around and there are a lot of

GOOD things about to happen, for all of us,
from a number of companies. So lets
continue to prove the industry wrong and
show them that there truly is life after
deathl?

b

Within the next couple of months we will
be sending out a new catalog to everyone on
our mailing list. This catalog will contain
some new software and books as well as all
of our other items. What we would also like
to include in this catalog 1is a complete
listing of the 99/4A and TI PC Users Groups
from around the world. Along with the User
Groups list we will als¢o include a complete
listing of all the dealers that are
currently carrying our products,

In order to provide the most up to date
listing of the Users Groups we ask that
every Group that would like to be listed to
please send us the following information:
Group Name, Complete Address, Person to
Contact, Phone Number, Total Group
Membership, Library Size, Group BBS Number
and the subsc¢ription rate for your
newsletter. If your group prefers not to
give out some of the above information
we'll understand and we will place an N/A
in that section of the listing. Even though
our database already contains most of the
Users Groups we will only publish the names
that are sent in. So please help us spread
the word to all Groups, there are a lot of
YA users out there looking for groups and
newsletters.

] e

Q&A

Before we start the Q & A section I must
ask once again to PLEASE not send self
addressed stamped envelopes with your
questions, I hate to see money go to waste
but time does not permit me to respond
except through the newsletter. I alsc feel
this is the best way since we receive many
similar quesftions and I think everyone
would like to read them. OK enough of that
s0 lets get started.

What is the latest information on the
Sci Tech RAM Disk Card?

Well its not a Sc¢i Tech project any more
it has been turned over to another company
by the name of Computronics which is 1in
Corona California. They can be reached at
(714) 369-5964, I've been told that this
phone number is answered 24 hours a day.

This project is way behind schedule so
I'm still not sure when it will be ready or
how much the unit will cost. We were only
contracted to do the software for the unit
in two phases, Phase one of the software
has been completed since QOctober of 84°Y,
all it needs is a prototype card to marry
it to for testing purposes. After it is
tested out we can move on to phase two and
complete the soffware. I believe that the
target price for this unit with 128K of RAM
will be comparable to the Foundation 128K
Card. Since it is now being handled by a
company that is new to the 4A market place
please go easy on them. However, a phone
call with your vote of confidence might
help speed things - up a littlel.

Are the rumors about the 99/8 clone
true? Do you think it is for real this
time? |

From what I currently know about this
new computer it should be much better than
a 99/8! So lets not call it a 99/8 clone
any more lets Jjust call it the the "Mystery
Machine®™,., I know we have all heard this
story many times before but this time it
really looks like we will have a new and
very powerful big brother for our 4A's., The

exact details of this computer are
currently not available for release. 1

believe the company that is working on it

is planning on debuting it at the 1985 June
CES show in Chicago. S0 keep your fingers
crossed and we'll keep you posted.

What the heck is going on between
Millers Graphics and CorComp.

Because of time consuming legal dribble
I cantt say too much at this time. As you
may be aware CorComp filled for Bankruptcy
back in September of 8U4', Well we were one
of the companies that they filled against.
OQuch! We thought we could work things out
with them but alas communications have
broken down. No Pay - No Work, 1Until the
legal system gets through with this mess we
can't say much more 30 stay tuned to this
spot for the next episode of "As The
Electron Turnst®,

P.S. Many thanks to everyone on

Compuserve and The Source for your support
on this matter.

e sl . el e——

LETS GET STARTED WITH THE FUN STUFF

The following XB program loads the
uncompressed assembly file on the next page
to activate an interrupt driven time clock
on your monitor. After assembling the
socurce code, type in and save this XB
program as DSK1.LOAD. Then whenever you

select XB from the menu the ¢lock will
start up., Have fun.

1 1 Clock Loader
(DIS/FIX 80 obj file)
and ¢lock setter program
by Paul Schippnick

2 CALL INIT :: CALL LOAD("DS
K1.CLOCK"):: CALL LINK("CLOC
K")

3 DISPLAY AT(12,1):"TIME?__
__m -+ ACCEPT AT(12,6)SIZE(
-6)BEEP VALIDATE(DIGIT) :TIME
$:: CALL LINK("SETCLK",TIME

$)

4 CALL CLEAR :: CALL LOAD(-3
1962,255,231,255,231)1
This clears the load
program out of memory like
'NEW! does.

Mo

RERREREREARRASRERREEEERNERNRREERRERRERERSRRERNGRERRARRNEERERNERRERERERAEEEESRERARNRRS

CLOCK ROUTINE FOR USE BY EXTENDED BASIC -~ ASSEMBLE THIS FILE UNCOMPRESSED

ROUTINE IS LOADED BY:

CALL INIT
CALL LOAD("DSK1.XCLOCK")
CALL LINK("CLOCK"™)

EXECUTION BEGINS UPON RETURN TO X-BASIC

TO SET CLOCK (ASSUME TIME IS 3:31 PM):
THE FORMAT IS HHMMSS

CALL LINK("SETCLK","153100%)

SERERNERREEREE RN R ER B ER SRR E RS RN AR A RRERARARREEREEREEEREREREERERAEEERAERERAERARRERS

® DOUGLAS C. WARREN

sl smik sinl smie e omee ek dew mhir s e sk b T D S S W e EEE B RS AT TR AP B B DT BN B B EE BN BN I B A whink O B e ol il e o mhh e s me D ek dlar SN S D S BN S A SN BENL N I G NN g NN BN L L JEEE R R PO DD BEE BT W

® 12/05/84
DEF
VMBW EQU
STRREF EQU
GPLWS EQU
STATUS EQU
NEXT EQU
ISR EQU
TIMER EQU
COUNTR DATA
WSR BSS
R3LB EQU
DATA
DATA
R5LB EQU
DATA
R6LB EQU
DATA
R7LB EQU
DATA
RELB EQU
DATA
ROLB EQU
DATA
DATA
R11LB EQU
DATA
R12LB EQU
R13LB EQU
RT14LB EQU
R15LB EQU
DATA
BSS

CLOCK, SETCLK

>2024
>2014
>83E0
»837C
>70
>83CH
60

TIMER
6

S+ 1
>8090
>903GA
$+1
>9090

VDP MULTIPLE BYTE WRITE EQUATE

STRING REFERENCE EQUATE

GPL. WORKSPACE ADDRESS

STATUS BYTE ADDRESS

NEXT ENTRY IN GPL INTERPRETER

ISR HOOK ADDRESS

COUNTER FOR 60th OF SECOND LOCP COUNTER

LOOP COUNTER
RO-R2! BEGINNING OF OUR WORKSPACE REGISTERS

k3!
R41

R5!
R6!
RT
R8!

R9!
R101

R111

A SPACE AND THE TEN'S HOUR DIGIT
THE ONE'S HOUR DIGIT AND A COLON

THE TEN'S AND ONE'S MINUTES DIGITS
A COLON AND THE TEN'S SECOND DIGIT
THE ONE'S SECOND DIGIT AND COMPARISTON DATA

COMPARISON DATA

COMPARISON DATA

DATA USED TO CONVERT ASCII DATA FOR BASIC SCREEN

R121! BEGINNING OF STRING BROUGHT IN THROUGH 'SETCLK'
R13-R15! SPACE FOR DATA BROUGHT IN THROUGH 'SETCLK!

HOOK DATA START
CLOCK MOV @HOOK, @ISR
START LWPI WSR
DEC @COUNTR
JNE SCRN
LI RO,TIMER
MOV RO, 8COUNTR
A R10, RY
CB R9,RT
JGT SCRN
MOVB R8,R7

INC R6

CB 6@RSLB, 6R6LB
JGT SCRN

MOVB RS, @R6LB

INC RS

CB R9,6R5LB
JGT SCRN
MOVB R8, @RSLB

A R10,R5
CB 6R8BLB,RS
JGT SCRN
MOVB R8,R5

A R10, R4 |
CB @R7LB, @R3LB
JGT CLK1

CB 8RI9LB, R4
JGT CLK1

MOVB R9,RY

CB @R7LB, 6R3LB

JHE SCRN

MOVB R8,@R3LB
SCRN LI RO,22

LI R1,WSR+6
LI R2,9

BLWP €6VMBW
LWPI GPLWS

-z =======zsz=z==z=x

*# SETCLOCK ROUTINE

SETCLK LWPI WSR
LI R12,>0006
LI RO,TIMER
MOV RO, @COUNTR
CLR RO
LI R1,1

THIS IS THE START OF OUR PROGRAM

LOAD THE ISR HOOK WITH THE START ADDRESS
LOAD OUR WORKSPACE REGISTERS

HAS A MINUTE PASSED YET? ™o
NO! ”
PREPARE TO RELOAD COUNTER

RELOAD COUNTR FOR NEXT MINUTE COUNT
INCREMENT ONE'S SECOND DIGIT

SEE IF 10 SECONDS HAVE PASSED

NO!

RESET ONE'S SECOND DIGIT TO ZERO
INCREMENT TEN'S DIGIT

SEE IF 60 SECONDS HAVE PASSED

NO!

RESET TEN'S SECOND DIGIT

INCREMENT ONE'S MINUTE DIGIT

SEE IF 10 MINUTES HAVE PASSED

NO!

RESET ONE'S MINUTE DIGIT TO ZERO
INCREMENT TEN'S MINUTES DIGIT

SEE IF 60 MINUTES HAVE PASSED

NO!

RESET TEN'S MINUTE DIGIT

INCREMENT ONE'S HOUR DIGIT |
TEN'S HOUR DIGIT A O OR 17 | |
YES!)
IS THE ONE'S HOUR DIGIT PAST 3?

NO!

SET ONE'S HOUR DIGIT BEFORE ENTERING CLK
HAS 12 HOURS PASSED YET?

NO!

CLEAR ONE'S HOUR DIGIT

INCREMENT TEN'S HOUR DIGIT

HAVE 24 HOURS PASSED?

NO!

CLEAR TEN'S HOUR DIGIT

LOAD SCREEN LOCATION FOR CLOCK

LOAD DATA LOCATION TO MOVE

LOAD NUMBER OF BYTES TO MOVE

MOVE THE CLOCK TO THE SCREEN

RELOAD GPL WORKSPACE

RETURN TO INTERRUPT ROUTINE

A B da SEE SR Wer A SN SN S ENp S U DEE DD. DD EEE DD DD TS B B Eam e e el omer B e i wmie N ke TS B B P S S EEL JEN BSr BDE BEE RS ESr B e e s e el e B .
ath o e B O B Bk BN e B BN B BN A N S QU PR AEE NN D DI DN BN AEe By Eam wev uam uiv e ek e cdet e W wlh Sy IS SEL RN EEL N SEE S EEL BEE EEE B S e e whbr -

LOAD GUR WORKSPACE REGISTERS

MAKE SURE K12 HAS A 6 IN THE MSB FOR THE STRREF ROUTINE

LOAD RO WITH 60

RELOCAD OUR MINUTE TIMER 4\
WE WON'T BE LOADING AN ARRAY SO CLEAR RO

ONLY ONE PARAMETER BEING PASSED TO US THROUGH CALL LINK

I\fb___—4—"___—_

LI R2,R12LB
BLWP 6STRREF

WHERE TO PUT THE TIME STRING
GET THE TIME STRING

MOVB R13, @R3LB MOVE THE TEN'S HOUR DIGIT INTO PLACE
MOVB @R13LB,RY MOVE THE ONE'S HOUR DIGIT INTO PLACE

MOV R14,RS

MOVE THE ONE'S AND TEN'S MINUTE DIGITS INTO PLACE

MOVB R15, 6R6LB MOVE THE TEN'S SECOND DIGIT INTO PLACE
MOVB €@R15LB, R7 MOVE THE ONE'S SECOND DIGIT INTO PLACE
AB R11,€@R3LB ADD THE BASIC SCREEN OFFSET TO OUR TIME

AB R11,R4 .
A R11,R5 8
AB R11,€@R6LB .

AB Ri1,R7

MOVB RO, @8STATUS CLEAR THE STATUS BYTE
LOAD THE GPL WORKSPACE REGISTERS
RETURN TO THE GPL INTERPRETER (i.e. BASIC IN OUR CASE)

LWPI GPLWS
B eNEXT
END

10 CALL CLEAR CALL INIT

20 CALL LOAD(16368,83,69,84,
67,76,75,37,152)

30 CALL LOAD(16376,67,76,79,
67,75,32,37,24)

40 CALL LOAD(8194,37,226,63,
240)

5C CALL LOAD(9460,0,60,0,0,0

,0,0,0,128,144,144,154,144,1
b4 ,1548,1484, 144, 146,144,150, 1
54,148)

60 CALL LOAD(9482,1,0,96,96,
0,6,205,75,205,96,33,131,37,

30,200,32,37,22,131,196,2,22

4)

70 CALL LOAD(9504,36,246,6,3

2,36,244,22,45,2,0,0,60,200,
0,36,244%,161,202,145,201,21,
38)

80 CALL LOAD(9526,209,200,5,

134,152,32,37,7,37,3,21,32,2

16,8,37,3,5,133,152,9,37,1)

90 CALL LOAD(9548,21,26,216,
8,37,1,161,74,145,96,37,7,21
,20,209,72,161,10,152,32,371
5)

100 CALL LOAD(9570,36,253,21

,4,145,32,37,9,21,1,209,9,14

5,9,21,8,209,8,5,131,152,32)

¥

Here is the CALL LOAD Version of the CLOCK and SETCLK Assembly routines.

110 CALL LOAD(9592,37,5,36,2
53,20,2,216,8,36,253,2,0,0,2
2,2,1,36,252,2,2,0,9)

120 CALL LOAD(9614,%4,32,32,3
6,2,224,131,224,4,91,2,224, 3
6,246,2,12,0,6,2,0,0,60)

130 CALL LOAD(9636,200,0,36,
244,4,192,2,1,0,1,2,2,37,15,
4,32,32,20,216,13,36,253)

140 CALL LOAD(9658,209,32,37
y17,193,78,216,15,37,3,209,2

24,37,21,184,11,36,253,177,1

1,161,75)

150 CALL LOAD(9680,184,11,37
,y3,177,203,216,0,131,124,2,2
24,131,224,4,96,0,112,88,79)

160 CALL LINK("CLOCK™")

170 DISPLAY AT(12,1):"TIME?_
" :: ACCEPT AT(12,6)81Z

E(-6)BEEP VALIDATE(DIGIT):TI
ME$:: CALL LINK("SETCLK",TI
ME$)

180 CALL CLEAR :: CALL LOAD(
~-31952,255,231,255,231)!
This is like 'NEW'

m

R5232 CARD - DSR MEMORY MAP

RS3232 DSR HEADER }

I
| Note: This header MUST be at >U4000 for a valid DSR
|
|

I

I

| >4000 >AA01 Header Validation byte and Version Number

| >4002 >0000 Number of Application Programs -~ not used in DSRs

P >H004 >4010 Power Up Header Address

| >H4006 >0000 Application Program Header ~ only used in cart GROM/ROM |

I >4008 >4016 DSR Header Address

| D>H00A | >0000 Subprogram Header Address - none here

I >400C | D>U806C Interrupt Link Header Address

| >400E >0000 Not Used - Reserved

]

'

: POWER UP HEADER I

| >4010 | >0000 Link to next Power Up Header - no more |

| >4012 | DU0F4 Entry Point for this Power Up Routine I

i >H014 | >0000 Not Used !

I I |

: | DSR HEADER(s) |

I >4016 | >4020 Link to next DSR Header I

i >4018 | DU16E Entry Point for this DSR Routine I

P >4014 | >05 Length of DSR Routine Name

| >H01B | >5253323332 RS232 DSR Link Name |

] |

b I

| >4020 | >402C Link to next DSR Header

I >U022 ! >416E Entry Point for this DSR Routine |

I >l4024 >07 Length of DSR Routine Name |

1 >4025 >52533233322F31 RS232/1 DSR Link Name !

{ |

| }

I >h402C >4038 Link to next DSR Header

I >U02E >4174 Entry Point for this DSR Routine

| >4030 >07 Length of DSR Routine Name

I >4031 >h2533233322F32 RS232/2 DSR Link Name !

| ! !

] i }
>4038 | >H040 Link to next DSR Header I

| >H03A | >H15E Entry Point for this DSR Routine !
>403C | >03 Length of DSR Routine Name I
>H03D | >50494F PIO DSR Link Name !

I ' I

{ D040 | >404A Link to next DSR Header I

| >B042 | >U15E Entry Point for this DSR Routine E

[>4084 | >05 Length of DSR Routine Name l

I >4045 | D>50494F2F31 PIO/1 DSR Link Name !

I I I

| >U084A | >4054 Link to next DSR Header I

! DH04C | >H164 Entry Point for this DSR Routine |

| >H04E | >05 Length of DSR Routine Name !

| DUO04F | >50494F2F32 PIO/2 DSR Link Name (for second RS232 Card) |

I I

1 4054 >4060 Link to next DSR Header

| >4056 >4180 Entry Point for this DSR Routine

I >h068 >07 Length of DSR Routine Name

| >H059 | >52533233322F33 RS232/3 DSR Link Name (for second RS232 Card)

I I

| >4060 | >0000 Link to next DSR Header - no more I

I >4062 | >417A Entry Point for this DSR Routine !

| >4064 | >07 Length of DSR Routine Name !

I >4065 | >52533233322F34 RS232/% DSR Link Name (for second RS232 Card) |

rS232 CARD - DSR MEMORY MAP Continued

e S Sy - Ny - - T B sk W el Seeommm e

ey wmess TS smivess SRS ey e sy el B SR Segechhle N e AN SR T ek ke s s

ot e e e e T S e S e e S A e e S e S S T i S5 T S S S S S S (i s vt st e e e e
!) INTERRUPT HEADER
| >406C | >0000 Link to next Interrupt Header - no more

>406E | >40D2 Entry Point for Interrupt Link Routine

>H070 | >0000 Not Used - Reserved

l

I >4072 | >0800 Data for Eight & Zero
| >4074 >0303 Data for Three
! OPTIONS TABLE
| >4076 >4543 EC >4512 Entry Point for EC.
P DU0TA)} >4352 CR >4518 Entry Point for CR.
| >HO0TE | >3C46 LF >451E Entry Point for LF.
} >4082 | >U4ES5 NU >U4r24 Entry Point for NU,
t >4086 | >4441 DA >4570 Entry Point for DA.
I >H08A | >4241 BA >4536 Entry Point for BA.

>408E | >5041 PA >4540 Entry Point for PA.

>4092 | >5U5T TW >4596 Entry Point for TW.

>H096 | >4348 CH >452A Entry Point for CH.
! >409A ! >0000 End of Options Table
| |
| |
! ! CLOCK VALUE POINTER TABLE
I >409C | >0028 Value at >000C in Console ROM for 2.5 MHz Clock
i >H09E | >U0B6 Address of Values for 2.5 MHz Baud Rates
i >H0A0 | >D030 Value at >000C in Console ROM for 3.0 MHz Clock
| >U0AZ2 >40CY4 Address of Values for 3.0 MHz Baud Rates
i DN0A4 20000 End of Table
| BAUD RATE TABLE
! >H40A6 | D>006E 110 Baud
| >U0A8 | >012C 300 Baud
I DUQAA | >D258 600 Baud
! >H0AC | >04BO 1200 Baud
| >HOAE | >00860 2400 Baud
| >40BO | >12C0 14800 Baud
| >U40B2 | >2580 9600 Baud
! DH0B4 | >0000 End of Table
| ! 2.5 MHz CLOCK VALUES
{ DU0B6 { >8563 >8482 >8209 >015B >8082 >8041 >002B
| i 3.0 MHz CLOCK VALUES
I >40CY4)} >85AA >849C >8271 >01A1 >809C D>804E >8027
b |
k i
| >40D2 } INTERRUPT ROUTINE ENTRY POINT

'This is the start of the Interrupt driven Circular Input Buffer
Routine. This routine allows RS232, RS232/1 & RS232/2 inputs on

; interrupts and places the data in a predetermined VDP Buffer.
i I
k |
I>40F4 | POWER UP ROUTINE
| | This is executed when the computer first powers up. This
l | routine initializes the 9901 (PIO) and 9902s (RS232/1 & /2).
I |
k I
! JH01E | This is the balance of the Interrupt handling routine.
I |
1 >415E i PIO & PIO/1 Entry Point
I >4164 | PIO/2 Entry Point (for second RS232 Card)
i >416E RS232 & RS2322/1 Entry Point
PLINL! -RS232/2 Entry Point
1I>417A | RS232/4 Entry Point (for second RS232 Card)
1 >4180 | RS232/3 Entry Point (for second RS232 Card)
T e oy e S S ———

—m ey EEEE A - I S e EE-EE S e s CPewrs s e sk smie et el e SR I

RS232 CARD -~ DSR MEMORY MAP Continued

Lo B TR I T T TR T TR B L I

I>418E | ALL RS232s JUMP TO HERE

I>4190 §{ ALL PIOs JUMP TO HERE

! | and then they jump to one of the routines in the following
I | table depending on the operation requested

) i .

k I

| ! OPCODE VECTOR TABLE

| >4202 | >U4210 Entry Point for OPEN

b >U204 | >446Y4 Entry Point for CLOSE

| >4206 | >u4236 Entry Point for READ

f >4208 | >H2FA Entry Poini for WRITE -

I >4204A | >h450 Entry Point for RESTORE/REWIND Illegal Opcode

I >320C !} >4338 Entry Point for LOAD

! >420E | >u3D2 Entry Point for SAVE

| P

i |

I>4210 ! OPEN Routine (OPEN #1:"RS232",BA=xxxx etc.)

i >4236 | READ Routine (INPUT #1: A$)

I >U2FA | WRITE Routine (PRINT #1: A$)

{>4338 | LOAD Routine (OLD RS232)

I >43D2 ! SAVE Routine (SAVE RS232)

i>b4 444 { Error Handling Routines

1 >4450 ! Illegal Opcode Handler

I>U464 ! CLOSE Routine (CLOSE #1)

i ¢

i |

{>4490 | Routine to parse for the OPTIONS (BA, CR LF etc.)

I |

| 1

| ! ROUTINES TO SET UP THE OPTIONS

| >4512 ! ECHO - EC Option Routine | (.EC)

i>4518 | CARRIAGE RETURN ~ CR Option Routine (.CR)

I>451E | LINE FEED -~ LF Option routine (.LF)

| >4524 ! NULL -~ NOU Option Routine { .NU)

| >U524 ! CHECK PARITY - CH Option Routine (.CH)

I >4536 ! BAUD RATE - BA Option Routine (.BA=1200)

| >U540 ! PARITY - PA Option Routine (.PA=E)

1 24570 | DATA BITS - DA Opticn Routine (.DA=8)

1 >4506 ! TWO STOP BITS - TW Option Routine (TW)

| }

|]

I | MISC SUBROUTINES AND ROUTIKES

| >USA0 i The routines in this area are used by the above routines

| ! -to set up registers and for parsing inputted values for

E ! Baud Rate etc,

I>463A t This routine reads a single character in from an RS232 port.
I >U66A ! This routine reads a single character in from the PIO port.
1 >4686 ! This routine places the block counter values on the screen
: ! during a LOAD or SAVE Opcode

| YU6EE !l This routine sends the Carriage Return character when needed.
1 >4T700 l This routine sends the NULL characters when needed.

1 >4740 ! This routine checks for an INTERNAL Data type.

| >UTHA] This routine checks for a FIXED Record Length.

I>4754 ! This routine converts ASCIXI Values into Binary.

I >4798 ! This is the Scan routine. It finds non-space characters.

I >HTEY | This routine Transmits a character to an RS232 port.

i >4808 | This routine Transmits a character to the PIO port.

| >4822 i These routines set up the RS232 ports and PIO port, clear the
! !l VDP Screen area for the SAVE and LOAD value, check Ready to Read
I | check Status and cause a time delay between PIO characters.
|1>5000 | The 1 Byte buffer used by the RS232 Card (not fully decoded)
o o o v e e e e e e e e o D i . 0 T 0 o e e S D 8 TS P P e e e e e e e 8 S D B - e e

— e ek s gy asaas di-aas e Sapegny e GG S JEEE - - G
““-—-—“-—-—_----—-—-——-—-—-—-—-—'_“—-—'--—'—'-'—'_‘-'-"_-—_ — —-—

M

- ASSEMBLY LANGUAGE PRINT ROUTINES
by Edgar Dohmann ~- JSC User's Group (JUG)

Here are some general print routines
which I have developed for use in assembly
language programs. These routines are set
up as BLWP subroutines to isolate their
register usage from your main assembly
language program which calls them.
Included in the listings is a PAR
definition for my printer ("RS232.BA=600").
Substitute your printer's description in
PNAME and be sure to change the value of
PNAML to reflect the length in bytes of
your printer's description.

The PAB locations used here are >1F00
for the PAB description and >1F40 for the
line buffer to be printed. You may use
other areas of VDP for your PAB and buffer
if you like, but make sure they are not
being used by the computer for something
else,

REF V3SBW, VMBW,DSRLNK

PABLOC EQU >1F00 VDP LOCATION OF PAB
DATLOC EQU >1F40 VDP LOCATION OF LINEP
PABPNT EQU >8356 POINTER TO PAB

DATBUF BSS 8¢
PRTWSP BSS 32

80-BYTE LINE BUFFER
WORKSPACE FOR ROUTINES

#¥PAR DEFINITION®#

PPAB DATA >0012 OPEN CODE & FLAGS
DATA DATLOC LOCATION OF BUFFER
DATA >5050 RECORD LENGTH
DATA O
PNAML DATA 12 LENGTH OF PRINTER NAME
PNAME TEXT 'RS232.BA=600"' PRINTER NAME
PPABE EQU $ END OF PAB DEFINITION
PCLS BYTE 1 CLOSE CODE
PWRT BYTE 3 WRITE CODE
POPEN DATA PRTWSP BLWP VECTOR FOR OPEN
DATA POPN
PCLOS DATA PRTWSP BLWP VECTOR FOR CLOSE
DATA PCLO
POUTP DATA PRTWSP BLWP VECTOR FOR OUTPUT
DATA POUT
POPN LI RO,PABLOC GET VDP ADDRESS
LI R1,PPAB POINT TO PAB DEF

LI R2,PPABE-PPAB LENGTH OF PAB
BLWP @VMBW MOVE PAB TO VDP
LI R6,PABLOC+9 ADDRESS TO SAVE
MOV R6,E@PABPNT IN PAB POINTER
BLWP @DSRLNK OPEN PRINTER
DATA 8

GET VDP ADDRESS
SET FOR WRITE

LI RO,PABLOC
MOVB @PWRT, R1

BLWP @VSBW 1IN PAB
RTWP

PCLO LI RO,PABLOC GET VDP ADDRESS
MOV @PCLS, R1 SET FOR CLOSE
BLWP 6VSBW IN PAB |

LI R6,PABLOC+9 ADDRESS TO SAVE
MOV R6,@PABPNT IN PAB POINTER
BLWP @DSRLNK CLOSE PRINTER

DATA 8
RTWP

POUT LI RO,DATLOC VDP ADDR OF BUFFER
LI R1,DATBUF POINT TO BUFFER
LI R2,80 80-BYTE LINE BUFFER
BLWP @VMBW MOVE LINE TO VDP

LI R6,PABLOC+9 ADDRESS TO SAVE
MOV R6,6PABPNT IN PAR POINTER
BLWP @DSRLNK WRITE A LINE
DATA 8

RTWP

Here is a program that can be used to
test the print routines given above. The
DEF statement will cause the program to be
included in the REF/DEF table when it is
loaded., The assembled object code can be
loaded by either the LOAD AND RUN opticn of
the Editor/Assembler or by a CALL LOAD fromnm
Basic and Extended Basie. If either Basic
is used, a CALL LINK will have to follow
the load to execute the program,

The test program given here will print
two lines over and over until you reset the
computer. For convenience, two additional
routines are included with the program:
PCLEAR will clear the line buffer in RAM
and MOVMSG will copy a message into the
line buffer to prepare it for printing.

® #*ROUTINE FOR TESTINGH##
DEF TEST

TSTWSP BSS 32

TEST LWPI TSTWSP
BLWP €ePOPEN

MY WORKSPACE

OPEN PRINTER
BL @PCLEAR CLEAR BUFFER

LI RO,MESG? MESSAGE TO PRINT

LI R1,MESG1E-MESG1 LENGTH OF MESSG

BL 68MOVMSG MOVE TO LINE BUFF
BLWP €POUTP PRINT MESSAGE
BL @PCLEAR CLEAR BUFFER

LI RO,MESG2 NEXT MESSAGE
LI R1,MESG2E-MESG2 LENGTH
BL @MOVMSG MOVE IT
BLWP @POUTP PRINT IT
BLWP €PCLOS CLOSE PRINTER
JMP TEST #2LO0OP BACK#%#

e

o S ndminl

MESG1 TEXT !'TEST MESSAGE!
MESG1E EQU 3

MESG2 TEXT 'ANOTHER MESSAGE!
MESG2E EQU §

PCLEAR LI RO, 22020
LI R1,40
.1 RZ,DATBUF

LOAD 2 BLANKS
80 BYTES = 40 WORDS
LOCATION OF BUFFER

PCLR1 MOV RO, *®*R2+ BLANK 2 BYTES
DEC R DONE 40 WORDS YET?
JNE PCLR1 LOOP TIL DONE
RT
MOVMSG LI R2,DATBUF LOCATION OF BUFFER
MOVM1 MOVB *RO+,%R2+ MOVE A BYTE
DEC R? MESSAGE MOVED?
JNE MOVM1 LOOP TIL DONE

RT

As I mentioned rabove, you can load the
program with either Basic or Extended
Basic. However, as you may know, Extended
Basic does not include a DSRLNK to allow
programs like this to access peripheral
devices. Fortunately there are several
versions of DSRLNK flcating around which
you c¢an include in your program if you have
access to them. John Phillips, John
Clulow, and I have each provided versions
of DSRLNK to User's Groups through the
Q9ters Users Group Association.

Another alternative is to use a
pseudo-DSRLNK routine like the one below.
This is a "stripped down"™ version of DSRLNK
which is only good for one peripheral. The
standard DSELNK searches through all DSR
ROMs until it finds a device name which
matches the one specified in your PAB.
This version only searches one ROM and is
set up here to check the 1st RS232 card
(CRU address of >1300).

This routine is intended for caliling
with a BL so the BLWP O@DSRLNK calls in the
printer routines above should be replaced
with BL 6DSRLK calls, Also the DATA 8
instructions following the BLWP calls must
be deleted. The advantage of this
shortened version is that it is less than
half the size of the standard DSHLNK so¢o it
is easier to type, takes up less memory,
loads faster, and executes faster. One
other change that must be made is to delete
the REF statement for VSBW, VMBW, and
DSRLNK. The Extended Basic loader does not
resolve REFerences and the routines VSBW
and VMBW nust be explicitly EQUated to
their X-Basic values as follows:

VSBW EQU >2020
VMBW EQU >2024

The value of PNAMP must be matched to
the name length of your printer but nmust
only reflect the characters up to the first
period of the name. For a printer
description of PIC.LF set PNAMP to 3.

" << PSEUDO DSRLNK >>>
PNAMP EQU 5 LENGTH OF 'RS232!
DSRLK LWPI >83E0 GPL WORKSPACE
LI RO,PNAMP GET NAME LENGTH
MOV RO, @>8354 SAVE FOR DSR USE
INC RO ADJUST FOR .

A RO,8>8356 ADJUST PAB POINTER
LI R12,>1300 CRU FOR 1ST RS232

LI R1,1 DSR VERSION #

SBO 0 TURN ON DSR
LI R2,>4008 STD ADDR FOR DSR LINK
JMP SGO2

SGO MOV R3,R2 TRY NEXT DEVICE

$SGO2 MOV #R2,R2 GET NEXT LINK ADDR
JEQ NOROM EXIT IF NO MORE
MOV R2,R3 SAVE LINKAGE
INCT R2 POINT DSR FOR DEVICE
MOV #R2+,R$ SAVE IT MIGHT NEED IT
LI R5,PNAMP#>100 NAME LEN IN MSB
CB R5,*R2+ SEE IF LENGTH MATCHES
JNE SGO NO
SRL RS,8 YES
LI R6,PNAME GET ADDRESS OF NAME

NAME1 CB #R6+,®*R2+ SEE IF NAMES MATCH
JNE SGO NO
DEC F5 YES
JNE NAME?
BL ¥R¢ NAME MATCHES
NOP NEED ERROR RTN SPOT
SBZ O TURN OFF DSR

NOROM LWPI PRTWSP PREPARE TO RETURN
RT

One last point to mention is the fact
that the CLOSE operation is not required
for the RS232 peripheral. The PCLOS
subroutine is included here mainly for
completeness, Basic¢ programs require the
CLOSE operation to reclaim the VDP buffer
space that was allocated when the "file"
for the RS232 card was opened. However
this is not necessary in assembly language
and the DSR itself takes no action in
response to a CLOSE command. CLOSE
commands are required for real file
oriented devices like disks because this
causes the sector buffer in memory to be
written to the disk {(on write operations)
and also causes the file directory (which
is kept in memory while the file is open;
to be written to the disk. Such activities
are not necessary for devices like the
RS232 card.

e T

6%

M

SCR #100
;S CHIP'S SOUND ROUTINES... DOCUMENTATION
These screens will allow you to use sound statements similar
to those of TI-Basic in TI-Forth. An example which you may find
useful is also included,
To use sound with the TI99/4A, you must first build a
sound 1list in VDP ram. The words SOUNDBUILD and NOISEBUILD will
help you do this. The format for SOUNDBUILD is:
generator# frequency volume SOUNDBUILD. Note that you must
specify tone generator 1, 2, or 3 for SOUNDBUILD. The frequency
is in hertz, and must be a number between 110 and 32767.
The volume is a number between 0 and 30, 0 being the loudest, an
d 30 being the softest.(silence) The format for NOISEBUILD is:
noise-type volume NOISEBUILD. The noise type is a number from
0 to 7. If noise #7 is specified, the noise shift rate depends
on the frequency you specify for sound generator #3.

#1071
' S CHIP'S SOUND ROUTINES cont.

After executing a series of SQUNDBUILDs and/or a NOISEBUILD,
you execute the word DURATION. The format for DURATION is

duration(in milliseconds) DURATION.

The duration can be from 0 to 4095 milliseconds.
(Actually, the specification isn't exact--if you specify 4095
milliseconds, the sound will play for 4,25 seconds)

When you've finished creating a sound list with a series of
SOUNDBUILDs, NOISEBUILDs, and DURATIONs, you can hear the 1list
you've bullt by executing the word PLAY. If you want to hear
your sound list again, use the word REPLAY. Here is an example:
After loading the screens which contain the sound routines, typ
in the following: |
1 330 0 SOUNDBUILD 2 440 5 SOQUNDBUILD <er>

3000 DURATION {er> PLAY <cr>
and then...REPLAY <cr> if you wish to hear the sounds again
#1102

;S CHIP'S SOUND ROQUTINES 1lzast docs.

The third screen of the sound routines shows another example
of the use of SOUNDBUILD and DURATION.

Words which define musical notes start on the fourth screen.
The format is : generator# octave# NOTENAME
where NOTENAME is one of the notes which is defined in the
fourth screen. For example 1 2 @A 1000 DURATION PLAY would make
generator #1 play the note A natural for 1 second. #A refers to
A sharp and $A refers to A flat. See the screens following the
fourth one for an example of how to use the words on the fourth
screen. (These screens contain a TI99/4A rendition of the theme
to the TV series Star Trek.)

I hope you enjoy using these screens. If you have any
questions, I'd be glad to answer them. My CompuServe user ID# is
7T8206,3252 and my name is Chip Jarvis. I can also be reached c/o
ian Diego TI-SIG. 4013 HONEYCUTT ST. SAN DIEGO, CA 92109

103 —
(TESTED SOUND ROUTINES 2/14/85 CHIP JARVIS) BASE->R : SOUNDS ;
HEX 1400 VARIABLE S-START 1400 VARIABLE L-DUR

1401 VARIABLE S-END

€Y — = o e ek

MM EWN 2 OO0WRITATNMITWN O MU W RN = OW 3 U 250 R s O

n-l—i-.l—l_h—l

n...:....n...t_..n....a_n

MFEFWO 2000~ N W0V WN 200U O-1TUVITEWN = O

VDP-WRITE (...bytes to write, # of bytes)
0 DO S-END € VSBW 1 S-END +! LOOP ;

VOICE 1~ 20 * 80 OR ; DECIMAL

FREQ-CODE (gen freq =--)
111861, ROT M/ SWAP DROP DUP 4 SRA ROT VOICE ROT 15 AND OR
2 VDP-WRITE ;

1 VOL-CODE (gen vol =-)

1 1 SRA SWAP VOICE 16 + OR 1 VDP-WRITE :

1 NOISE-CODPE (noisetype --)

1 7 AND 224 OR 1 VDP-WRITE ;

1 : DUR-CODE (millisec -- 60ths) 4 SRA 1 VDP-WRITE ;

ol

—=>
t5 11

SCR

0 (SOUND

1

n..i.-ln-l—-l-l-—l

2
3
I
5
6
7
8
9
0
1
Z
3
I
5
R
0

n-—-ﬁ-—l-—l-‘-dlﬂl

n-‘_‘.i—l.‘d-—‘

3
1
5
6
T
8
9
G
1
2
3
i
5
R
0
1
2
3
)
5
6
T
8
9
0
1
2
3
N
5

ol el el el gl el

e

1
2
3
i
5
6
T
8
9
0
1
2
3
M
5
R
0
1
2

#104%

: UPDATE~POINTERS (
S-END é L-DUR & - DUP 1-

: SOUNDBUILD (gen freq vol ==)

ROT DOUP ROT VOL-CODE SWAP FREQ-CODE ;
(type vol =-~)
4 DUP ROT VOL-CODE SWAP NOISE~-CODE ;

L

: DURATION

#105

REPLAY

(

NOISEBUILD

(

ROUTINES CONT.

)
)

millisec =~)

UPDATE~POINTERS DUR~-CODE S-END 1 +1! ;
HEX

L-DUR &

replay sound list in vdp ram)

S-START €& 83CC
: PLAY 00 FF DF BF 9F 04
1401 S-END !
R->BASE

83FD C&€ 1 OR 83FD C!
6 VDP-WRITE
1300 L-DUR

REPLAY

VSBW 1+ L=-DUR +!

1

—=>

8§3CE C!

(CHARGE! 2/14/85 T,
1047 0 SOUNDBUILD 125

r-d-‘-d.—l-ﬂ—n‘—‘

P

#106 —

{ NOTE DEFINITIONS 2/16/85 C.JARVIS)
: NOTE <BUILDS ,

: NOTELEN <BUILDS , DOES> @ FULLCOUNT € SWAP / DURATION ;

: NOTELEN. <BUILDS , DOES> € FULLCOUNT @
DUP 2 / + SWAP / DURATION ;
110 NOTE @A
116 NOTE #A : $B #4 ; 6 NOTELEN. SIXT.
123 NOTE 6B 6 NOTELEN SIX
131 NOTE €C $C 6B ; 8 NOTELEN. EIGT.
139 NOTE #C 8 NOTELEN EIGT
147 NOTE €D : $D #C ; 4 NOTELEN. QUAR.
156 NOTE #D : $E #D ; 4 NOTELEN QUAR
165 NOTE €E $F OE ; 2 NOTELEN. HALF.
175 NOTE @F 2 NOTELEN HALF
185 NOTE #F $G #F ; 1 NOTELEN. WHOL.
196 NOTE @G 508 NOTE #G : $A 1 - #G ; 1 NOTELEN WHOL
#107 - = '
(STAR TREK MUSIC 2/16/85 CHIP JARVIS)
: #B @B ; 6B #A ; (B's flat) : CE 1 2 68C 2 2 8E ;
1 2 €C QUAR 1 2 6C 2 1 €C QUAR
1 2 8 2 3 6B 3 1 €F QUAR 1 2 6C 2 3 6B 3 1 @C QUAR
1 2 6C 2 3 @B QUAR 1 3 €A 2 1 ecC QUAR
1 2 866G 2 2 8A 3 1 6F EIGT. 1 2 6F 2 2 6A 3 1 6F EIGT.
1 2 BE 2 2 6A 3 1 OF EIGT. 1 2 #B 2 2 #D HALF
CE 3 1 6F QUAR CE 3 1 @A QUAR
CE QUAR CE 3 1 6E QUAR
CE 3 1 #D QUAR CE 3 1 #C QUAR
1 2 6C QUAR 1 2 6C 2 1 6C QUAR
1 3 6C 2 3 €A 3 2 €A QUAR 1 3 6C 2 3 @A 3 1 €A QUAR
1 3 8C 2 3 @A QUAR 1 3 6B 2 1 €C QUAR
1 3 A 2 2 8A 3 1 @F EIGT. 1 2 866G 2 2 6A 3 1 6F EIGT.
1 2 6F 2 2 €A 3 1 @F EIGT. =D

A

11
131
156
300
131
156
13

8
0
9
8
S

0

CHIP

75 0 SOURDBUILD 125
9 0 SOUNDBUILD 125

0O SOUNDBUILD 125
0 SOUNDBUILD 125 DURATION

0 SOUNDBUILD 175 DURATION

0 SOUNDBUILD 600 DURATION

JARVIS)
DURATION
DURATION

DURATION
DURATION

DOES> 8 2

1000 VARIABLE FULLCOUNT

/ SWAP O DO 2 ® LOOP 0 SOUNDBUILD

?

1))

m

SCR #108
0 (STAR TREK cont. 2/16/85 TCJ)
1 CE QUAR CE 3 1 8D QUAR
2 CE 3 1 #G QUAR CE 3 1 6D QUAR
3 CE QUAR CE 3 1 @D QUAR
”~ 4 CE 3 1 #G QUAR 1 2 #D 2 1 6D QUAR
5 1 2 #B 2 2 @D QUAR 1 2 #B 2 2 @D 3 1 €D QUAR
6 1 2 %B 2 2 @D 3 1 €G QUAR 1 2 6E 2 2 @D QUAR
7 |
8 1 2 #F QUAR 1 2 66 2 1 6G QUAR
9 1 3 6A 2 1 @D QUAR 1 3 #B EIGT 1 3 €C EIGT
10 1 2 6E 2 2 #G 3 3 6D HALF
11 1 2 @F 2 3 @A 3 3 #D WHOL.
12
{3
14
15 N
SCR #109 —— :
0 (STAR TREK cont. 2/16/85 TCJ)
1 1 2 68C 2 2 #D QUAR 1 2 6C 2 2 #D 3 1 #D QUAR
2 12 8C 2 2 #D 3 1 #G QUAR { 2 @F 2 1 6E QUAR
3 12 8C 2 2 @G QUAR 1 2 #G 2 1 #D QUAR
5 1 3 8B 2 2 6C 3 1 #G EIGT. 1 3 8C 2 2 8C 3 1 #G EIGT.
5 1 3 #C 2 2 8C 3 1 #G EIGT.
6 1 2 6E 2 2 #G 3 3 #D HALF 1 2 6G 2 3 #A 3 1 6E HALF
T
8 126G 2 3 #4 3 1 6E WHOL
9 1 2 @C QUAR 1 2 8C 2 1 €C QUAR
10 1 2 6C 2 3 6B 3 1 @F QUAR 1 2 6C 2 3 €B 3 1 @8C QUAR
11 1 2 6C 2 3 @B QUAR 1 3 64 2 1 €C QUAR
12 1 2 66 2 2 6A 3 1 6F EIGT. 1 2 6F 2 2 6A 3 1 @F EIGT.
13 1 2 @E 2 2 8A 3 1 &F EIGT.
1
15 N
~ SCR #110 —
0 (STAR TREK cont. 2/16/85 TCJ)
1 1 2 %8B 2 2 #D HALF
2 12 8C 2 2 8E 3 1 6F QUAR 1 2 8C 2 2 @E 3 1 €A QUAR
3 1 2 @C 2 2 6E QUAR 1 2 6C 2 2 6E 3 1 O6F QUAR
b 1 2 6C 2 2 @E 3 1 #D QUAR 1 2 #C 2 1 #C QUAR
5 1 2 @C QUAR 1 2 6C 2 1 6C QUAR
6 1 3 @A 2 3 6C 3 2 @A QUAR 1 3 @A 2 3 6C 3 1 6C QUAR
7
8 1 3 @A 2 3 @C QUAR 1 3 8B 2 1 6C QUAR
9 13 6A 2 2 6A 3 1 6F EIGT. 1 2 66 2 2 6A 3 1 @F EIGT.
10 1 2 6F 2 2 @A 3 1 @F EIGT.
11 1 2 6E 2 2 6D 3 1 #G HALF
12 1 2 @E 3 1 #G HALF
13 1 2 @E 2 2 #C 3 1 6G HALF.
1§ 1 2 #D 3 1 8G QUAR
15 N
SCR #111
0 (STAR TREK cont. 2/16/85 T. CHIP JARVIS)
1 12 6B 2 2 €D 3 1 6B HALF
2 12 @B 2 2 @D QUAR 1 2 @E QUAR
3 12 #C 2 2 @F QUAR 1 2 #C 2 2 6G 3 1 6B QUAR
L 1 3 @A 2 2 #C 3 1 #D EIGT. 1 3 8B 2 2 #C 3 1 #D EIGT.
5 1 3 64 2 2 #C 3 1 #D EIGT.
6 1 3 @4 2 3 @C QUAR 1 3 8A 2 3 6C 3 1 @6C QUAR
E 1 3 @A 2 3 6C 3 2 B6A QUAR 1 3 8A 2 3 6C 3 1 8C QUAR
G 1 2 #F 2 3 #A 3 3 #D HALF. 1 2 #F 2 3 #4 3 3 @D QUAR
10 1 2 @F 2 3 @C QUAR 1 2 6F 2 3 8C 3 1 @D QUAR
P t1 1 2 6D 2 2 6F 3 2 @B QUAR 1 2 8D 2 2 @6F 3 1 6D QUAR
-' 12 1 2 @D 2 2 @F 3 1 6C HALF
13 1 2 @E 2 2 6G 3 2 6B EIGT. 1 2 8E 2 9 6A 3 2 @B SIX
1, 1 2 6E 2 2 G 3 2 6B EIGT. 12 6E 2 9 @4 3 2 6B SIX
15 1 2 @E 2 2 @G 3 2 @B EIGT. 1 2 @E 2 9 684 3 2 6B SIX ~->

e —

SCR #112

STAR
2 @A
2 @B
e €C
2 @cC

NN —=0000-I1NNEWN =0
b ek ek

. .

TREK last 2/16/85 T. CHIP JARVIS)
2 2 €D 3 2 e€F WHOL
2 2 #D 3 2 @F WHOL
2 3 €A WHOL

3 €A WHOL :+ S

e

Many thanks to Chip Jarvis. - We also received this method of
generating sounds in TI Forth from Rex Nielsen -~ Thanks.

L
P
=

#92

(Sound Routine - 3 Notes, 1 Noise Vol 1-16 by Rex Nielsen)
BASE->R HEX
80 VARIABLE OPER
30017 VARIABLE SDTAB
0 VARIABLE TIME 0 VARIABLE NOISY 2 ALLOT
OQ49F VARIABLE SDOFF 4 ALLOT BFDF SDOFF 2+ 1 FFO0O SDOFF 2+ 2+ |

OTEST BEGIN 83CE € 0 = UNTIL ;
: +SDTAB 1 SDTAB +! ;
: +OPER 10 OPER +1 ;
: DUR ABS 4 SRL DUP 1 < IF DROP 1 ENDIF TIME ! ;
i : TONEYt 0 3000 VSBW 1B4FS5. ROT U/ DUP F AND OPER €& +
1 SDTAB €& VSBW +0PER +SDTAB 4 SRA 3F AND SDTAB € VSBW
1 +SDTAB DROP OPER € + SDTAB & VSBW +SDTAB +0QOPER ;
1 TONE2 TIME €& SDTAB € VSBW SDTAB € 3001 - 3000 VSBW +SDTAB
1 SDOFF SDTAB 6 6 VMBW 3000 83CC ' 83FD DUP @ 01 OR
1 SWAP ! 0100 83CE ! ; R->BASE -=>
SCR #93
Sound Cont - Syntax = 0 VN -N V3 F3 V2 F2 V1 F1 DUR SOUND

: NOILISE

SEWN=200~-10WA -0 X NMEBEWNN200O~-TO0AEWN =0

freq's F1 F2 F3 are like BASIC's

vol's VN V1 V2 V3 are from 1 through 16

dur is also like BASIC's - positive or negative
you can use from 1 to 3 notes and/or 1 noise.

N
=
!
v
o
o
2]
=1

first item on the stack MUST be a 0, 2z2erc, or the
empty stack error message will come up.

HEX

ABS 1 - 7 AND EO + NOISY ! FO + NOISY 2 + 1 ;

T3 NOISY @€ 0 > IF 3 0 DO NOISY I + @ SDTAB € VSBW +SDTAB
2 +LOOP ENDIF ;

-TEST DUP FFF7 U< IF TONE1 ELSE NOISE ENDIF ;

SOUND DUP 0 > IF OTEST ENDIF DUR BEGIN -TEST DUP 0

DROP TONE2 80 COPER ! 3001 SDTAB ! 0 NOISY ! ;

UNTIL T3

Here are a few examples using the SOUND word on screens 92-93:

FORTH

14 -1 100

OO0 0

BASIC

1 110 100 SOUND <enter> CALL SOUND(100,110,1)
2 220 3 330 4 440 100 SOUND <enter>

CALL SOUND(100,440,4,330,3,220,2)
SOUND <enter> CALL SOUND(100,-1,14)

3 -3 2 660 3 880 -200 SOUND <enter> CALL SOUND(-200,880,3,660,2,-3,3)

Mo

“B

i

PCNOTES

We have two subprograms that save and
restore the function key assignments in
Basic and a program that generates
Piecharts for you this issue.

The Piechart program requires the Three
Planes Graphic¢s board. This program allows
you to title your chart and then input up
to 100 values and names for each of the
sections of the chart. We have found that
charts with more than 20 items start to get

a little cluttered so it is best to keep
the number of pie sections limited. If you
need to constantly generate piecharts with
more than 20 items you might want to modify
the program to label each section with a
letter of the alphabet (A,B,C, etc.). Then
modify the code to print the label and your

el . il Pl

section name down the sides of the screen.
If you have the PRTSCN.DEV file installed
(see the May issue) you can press ALT SHIFT
PRINT and dump the piechart to your dot
matrix printer.

The subprograms FKEY1 and FKEY2 should
be saved in ASCII format so you can merge
one of them into your other programs. FKEY1
has the proper address for Basic Version
1.1 and FKEYZ is set up for Basic Version
1.2. Both versions save the function keys
into one 192 byte string. When the keys are
restored with this subprogram you will have
to execute a KEY ON to see them. You should
place one of these in any of your programs
that change the function keys and execute a
GOSUB 65500 at the beginning of the program
and a GOSUB 65520 at the end of the
program, Have Fun.

FEEY1 -~ MS-Basic Version 1.1
65500 FOR I=1587 TO 1778: FKEY$=FKEY$+CHRS$(PEEK(I)): NEXT: RETURN ! Save
65520 FOR I=1 TO 192: POKE I+1586,ASC(MID$(FKEY$,I,1)): NEXT: RETURN ' Restore
FKEY2? - MS5-Basic Version 1.2
65500 FOR I=2324 TO 2515: FKEY$=FKEY$+CHR$(PEEK(I)): NEXT: RETURN ! Save
65520 FOR I=1 TO 192: POKE I+2323,ASC(MID$(FKEY$,I,1)): NEXT: RETURN ' Restore

PIECHART - MS-Basic Version 1.1 & 1.2
10 CLS: KEY OFF

1<K TI PC PIECHART >>> Version 2.0 CGM 8-20-84

20 COLOR 7,0,,0: LOCATE,,0: PRINT: DEFINT I: DEFDBL A-D,X,Y: DIM A(100),A$(100)

30 FOR I=1 TO 16: KEY(I) ON: NEXT:
40 LINE(40,40)-(680,140),2,BF:
50 LINE(48,46)-(672,134),1,BF:
60 LOCATE 6,22:
70 COLOR 2: LOCATE 8,22:
80 COLOR 7: LOCATE 10,22:
90 COLOR 1: LOCATE 14,22: PRINT "
100 COLOR 2: LOCATE 24,22: PRINT "

PRINT "

KEY(14)OFF: KEY(15)OFF
LINE(4Y4,43)-(676,137),7,BF
LINE(52,49)-(668,131),0,BF
PRINT " TE X A S

I NSTRUMENT S";

Professional Computer®:
PRINT "P T ECHART

GENERAT O R";
Version 2.07;

{ Press Any Key To Contlnue >

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

T$=INKEY$: IF T$-"“ GOTO 110 ELSE IF T$<>CHR$(27) GOTO 130

RUN "FILEMENU

T=0: C#=1D-38: CLS: COLOR 6: LINE(0,0)-(719,299),,B

LLOCATE 2,1: INPUT " Title of Piechart : N TS

INPUT "™ Number of Items in Chart: ",N : PRINT: COLOR 4

FOR I=1 TO N:INPUT ™ Numeric Value, Name " A(I),A$(I): T=T+A(I): NEXT
FOR I=1 TO N: A#(I}=(A(I)/T)%6.28318530718#: NEXT: CLS: COLOR 6: T=LEN(T$)%g
LINE (0,17)-(719,299),,B: IF T THEN I=40-T/18: LOCATE 2,I: I=I®9 ELSE 200
LINE(I-28,17)~(T+I+9,17),0: LINE (I-28,7)-(T+I+9,27),,B: PRINT T$;

FOR I=1 TO N: B#=C#: C#=C#+A#(I): D#=(B#+C#)/2: T=(C#-B#>.079#)%6
X=360+COS(D#)*14.3: Y=150-SIN(D#)%*7.914: CIRCLE(X,Y),150,7+T,~B#,-C#+.000001
IF T THEN PAINT(X+COS(D#)%*143,Y-SIN(D#)%79.14466),I MOD 6+1,1

T=LEN(A$(I)): IF T THEN COLOR 7,0 ELSE 260

X=(X+COS(D#) #*200-4#LEN(A$(I)))\9: Y=(Y-SIN(D#)*100)\12+1

LOCATE Y,X+1: PRINT A$(I): LINE (X%9,Y®12)-(X¥9+9#LEN(A$(I)),Y*12),1

NEXT: BEEP

A$=INKEY$: IF A¢="" THEN 270 ELSE IF A$="N" OR A$="n" THEN 120

IF A$="Y"™ OR A$="y" THEN 130 ELSE BEEP: GOTO 270

t; 15

SUBSCRIPTION INFORMATION

.

THE SMART PROGRAMMER - a monthly 16+ page newsletter published by MILLERS GRAPHICS
U.S5., 12.50 year - Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

Back issues are available. We can start your subscription with the FEB. 84 issue
To subscribe send a Check, Money Order or Cashiers Check, payable in U.S. currency

TO: MILLERS GRAPHICS
1475 ¥W. Cypress Ave.
San Dimas, CA 91773

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
A1l mail directed to THE SMART PROGRAMMER will be treated as unconditionally
assigned for publication and copyright purposes and is subject to THE SMART
PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAPHICS

Texas Instruments, TI, Hex~Bus and Solid State Software are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE

1475 W. Cypress Ave. US-;E?EJAGE

San Dimas, CA 91773 San Dimas, CA 91773
PERMIT NO. 191

THE SMART PROGRAMMER

