“etanilel

MILLERS GRAPHICS

THE SMART
PROGRAMMER

- —

There have been quite a few new
developements in Software and Hardware for
us 44 owners since the last newsletter.
First off I would like to apologize for
what 1 was led to believe was a reputable
company. SCI TECH turned out to be a pretty
lousy company when it came to customer
service, They never returned any of the
calls on the RAM DISK mentioned in the last
newsletter and the engineer moved out of
state, Just as well, There is, however,
another RAM DISK on the market which 1is
nmade by MYARC. It is a 128K-512K RAM DISK
with built in Print Spocler. It has most of
the other features we discussed in the past
few issues. They are also about to release
an New and Faster version of Extended Basic
that will use the extra memory in their RAM
DISK card. You can contact them at:

Myarc Inc.
P.0O. Box 140
Basking Ridge. NJ 07920
(201) 766-1T700

They have also released a disk based
Disk Manager for their Double Density Disk
Controller Card.

Morning Star has released a 128K memory
card also that has many bank switching
options to allow you to place RAM in the
Cartridge and DSR spaces as well as many
other configurations. They can be reached
at:

Morning Star Software
4u25 SW 109th Ave.
Beaverton, OR 97005

(800) 82h-2412

Many people and companies are working on
other items of hardware and software. There
sure is a lot of support for the U4A right
now. I think TI jumped the gun when they
bailed out, its still the best home
computer around.

SEFTEMBER 1984
$1.50

We've finished that Extended Basic book
and Cassette combination that we talked
about quite some time ago (The Smart Way to
Award Winning Programming). It is now
entitled 'NIGHT MISSION'. The cassette
contains a new Extended Basic helicopter
rescue game and the book fully documents
the program flow. The book also contains a
chapter on the use of AND to help speed up
your programs. Another chapter contains
some new CALL LOADs. Night Miassion is I1n
our NEW catalog that is currently being
majiled out to everyone on our mailing list.

I would like to thank everyone for the
nice comments and reviews on Advanced
Diagnostics and EXPLORER. Some of you have
had a few questions on these 830 we will
tackle them in the Q & A section.

There is a New 32K 16 BIT RAM console
modification for our 4As. This mod will
allow all of your Assembly programs to run
as if they are in Scratch Pad RHAM - very
fast! By making all of the 32K Memory
Expansion 16 BIT it really opens up the
0900 micro and allows it to run without
WAIT states in between each and every bytel
We've been told that the speed increase is
any where from 20 to 50% FASTER. I've sent
one our consoles in for this mod so I
should have more on this in the next
newsletter, To have one of your consoles
modified Jjust send it to:

TRS Systens
17885 Mount Elliott
Detroit, MI 48212

(313) 366-9088

Along with a check or money order in U.S.
funds for $125.00. This upgrade has a 1
year warranty. Dealer inquiries ilnvited.

]

GRAM KRACKER)'

Boy, do we have something NEW for you!
We have completed the prototype and testing
of some new hardware that Millers Graphics
is going to produce and it should be ready
to ship by November 15. This unit plugs
into the module port and it contains 48K of
RAM and GRAM. That's right GRAM, the RAM
complement to GROM. We call this unit the
GRAM KRACKER'E and we are VERY pleased with
the versatility and power of this little
unit. You will be able to plug ANY module
into the GRAM KRACKER®™ and SAVE its
contents to Disk or Cassette. Once saved,
they can be loaded into the battery backed
up GRAM KRACKER'™ and run.

It is very simple to operate. 0On the
front panel there are 4 switches and a
Reset button. The switches control the
loader, Ram banks and write protect, and
Enable or Disable of GRAMs 0, 1 & 2. The
GRAM KRACKER®™ also contains sockets on its
circuit board to allow you to expand its
total programmable memory to 80K of RAM and
GRAM. This gives you 16K of bank switched
Cartridge ROM/RAM and 64K of Console and
Cartridge GROM/GRAM. This means you can now
modify the contents of GRAM 0, the system
monitor, GRAMs 1&2, TI Basic, and GRAMs
3=-7T, in the cartridge. You can also modify
the contents of Cartridge RAM >6000->7FFF
(2 banks) to suit your needs. So now you
can change the Title Screen, change menus,
have true ascenders and descenders for your
character sets, You can change the default
screen and character colors for any module.
You can change the default printer
configuration for your modules. You can add
many new CALLs to TI Basic or TI Extended
Basic. You can override TI Basiec and put
something else in its place. This would
allow you to have a menu with a couple of
different modules to select from.

With a full 80K GRAM KRACKER'® you can
have a menu that includes Editor/Assembler,
Tl Writer, Extended Basic and 1 more single
Grom chip cartridge like Adventure. Once
you have the GRAM KRACKER'™ configured the
way you want, and the modifications made to
the software in it, you can save it all out
to Disk or Cassette. Since the GRAM
KRACKER'® is battery backed up, you DO NOT
have to reload it each time you turn on
your computer!

Now you can take advantage of the
powerful GPL Language that is built into
our 4As. Through Assembly Language GPL Link
You can execute GPL routines that YOU have
set up. There are many routines in the
interpreter that perform common tasks quite
nicely. For example; the GPL code 07 20 00
will clear a 32 column screen and return to
your Assembly program. This is the opcode
for ALL >20 RETURN. Once you've loaded this
opcode into GRAM just execute a BLWP
@GPLLNK DATA >xxxx, where xxXXx = the GRAM
address where the opcode is. Since GRAM is
auto-incrementing memory,like GROM, it has
an added bonus in that it loves to store
and retrieve DATA. So with only the
Editor/Assembler module loaded into the
GRAM KRACKER®™ you still have 32K of GRAM
DATA storage AND 16K of bank switched
cartridge RAM plus ALL of memory expansion
to use. So that's 80K of Program and DATA
area and we haven't even touched VDP Ram
yet! With an 80K GRAM KRACKER'™ and Memory
Expansion we now have 64K of GRAM, 16K of
Cartridge RAM, 32K of Memory Expansion RAM
and 16K of VDP RAM for a total of 128K of
RAM & GRAM. Oh those clever folks at TI, if
they would have only opened this up to us
sooner! Whe says the TI 99/4A isn't a
programmers machine!

The GRAM KRACKER'™ has an additional 8K
of programming built in to it for the SAVE,
LOAD and EDIT routines, which are enabled
and brought up on the menu with one of the
switches., It also comes with a floppy
diskette that contains some modifications
and enhancements for Extended Basic. The
GRAM KRACKER®® will be produced in limited
quantities at first and the quality will be
guaranteed by us. We are not going to ramp
up production into high gear only to have
to file chapter 11 because of miss
management or over zealous production. We
want to build a Reliable, Long Lasting,
Quality product. After this project is on
the road we have many more items planned.
And you thought the 99/4A was an orphan?
Little Orphan Annie is more like it}

By the time you read this the GRAM
KRACKER'™® will be ready to start production
and as soon as it is ready to ship we will
mall out brochures. The price will be in
the 150 to 200 range, we're finalizing
parts prices with the suppliers now.
Finally the secret world of GPL is open to
us to play, modify and program in, and is
it a lot of FUN!

Q&A

We have received a number of questions
on Assembly Language so lets look at a few
of them. The first one concerns the use of
a BL or BLWP that is followed by one or
more DATA statements, ie:

BLWP €GPLLNK
DATA >0020

A BLWP or Branch and Load Workspace
Pointer is known as a context switch. When
this instruction is executed it grabs its
New Workspace Pointer and PC (Program
Counter) from a vector table or location.
When the instruction BLWP @GPLLNK is
assembled it is converted into the opcode
>0420 >2100 for the E/A module, Then when
the instruction is executed the micro will
grab the new Workspace Pointer from >2100
and the new PC from >2102 and it will
continue execution starting at the new PC.
Also, when a context switch is performed
the micro automatically places the old
Workspace Pointer, o0ld PC and old status
into R13, R14 & R15 of the New Workspace.
Then when a RTWP is executed the WS, PC &
ST are restored and the program continues
where it left off,

If a DATA statement follows the BLWP you
will find a statement somewhere in the code
that was branched to similar to;

MOV ®*R14+,RO

This will MOVe a word from the location
pointed to by R14 (the old PC value which
is now pointing at the DATA statement) into
RO. Since this is an auto-incrementing word
MOVe R14 will increment by 2 and point to
the word after the DATA statement. Then
when a RTWP is executed, since R14 was
changed, the program will return to the
word following the DATA statement. If the
statement was a BL or Branch and Link ie:

BL eXYZ
DATA >1234

Then you will find or need an
auto~increment MQOVe from R11 since R11
holds the Return address (old PC) for a BL
ie: MOV *R11+,R0
will get the DATA following the BL
statement and put it into RO, it will also
increment R11 by 2 to point to the word
foliowing the DATA statement for the
return., Both the BLWP and BL with DATA
following them are just one method of
transferring DATA or values to the BRANCHed
to routine. However, on a BL statement you
can Jjust keep the DATA 1in one of the

exlisting workspace registers since a
context switch 1is NOT performed and the
workspace is the same. For every DATA
statement following a BLWP or BL you will
need or find an auto-incrementing MOVe from
#R14+ or #R11+,

Why doesn't Extended Basic's XMLLNK work
properly?

The XMLLNK that is loaded into Low
Memory Expansion by Extended Basic's CALL
INIT is different than the XMLLNK loaded by
the Editor/Assembler or the one in the Mini
Memory. In the back of the Editor/Assembler
manual on pages 415=418 you will find a
list of XB Equates. Use the Equates from
FADD through GVWITE for the DATA statement
following BLWP @XMLLNK and XB's XMLLNK will
work properly. I Don't know why TI changed
so many of the routines in XB as compared
to E/A. By the way, the Equates listed from
FADD to NEXT are ABSOLUTE ROM addresses for
ALL consoles! The equates that are a byte
in length like CIF EQU >26 are XML Table
poeinters that use routines built into XB's
Cartridge ROM.

How do you execute CALL FILES(1) in
Assembly Language?

In the Disk Controller card there is a
built in CALL FILES subroutine that can be
CALLed from the Basics or executed from an
Assembly Language program. To get to it you
should use the DSRLNK routine followed by
DATA >A (or DATA 10). Prior to executing
the BLWP €@DSRLNK

DATA >A
you need to place a byte for the number of
open files into location >834C. So, for
CALL FILES(1) you place a 1 there, for CALL
FILES(6) you place a 6 there. The valid
range for the Assembly CALL FILES
subroutine is 1 to 16. You will also need
to set up a PAB in VDP Ram with a name
length of 1 and the subroutine number of
>16 ie:
PABDAT BYTE 0,0,0,0,0,0,0,0,0,1,>16

and place the address of the PAB's name
length byte into >8356. So if your PAB is
at VDP RAM >1000 the value to place in
>8356 is >1000+% or >1009.

If the routine was successful, there was
enough free VDP Ram, then the byte at >8350
will be 2zero otherwise it will be >FF or

]

some other non-zero value, If you place a
value that is out of the valid range (1-16)
into >834C the subroutine will just abort
and no action will be taken. One last
thing, when a BLWP € DSRLNK with DATA >A
following it is executed the normal error
reporting is not active. By this we mean
that the error code is NOT placed in your
RO and the EQual bit is NOT set in the
Status register on return unless there 1is a
Link Error. A Link error can occur if the
Name and Length bytes are not set up right
in the PAB or if the pointer at >8356 is
not pointing to the Name Length byte of the
PAB in VDP. Here is a little exanmple

Assembly listing for the Editor Assembler
module,

CALL FILES(1) example for E/A Module *
* for XB use COPY DSKx.DSRLNK (page 13) %
delete REF and add VMBW EQU >202%4 "

DEF START
REF DSRLNK, VMBW

PABADD EQU >1000
PABDAT BYTE 0,0,0,0,0,0,0,0,0,1,2>16
PABLEN EQU >B

GPLWS EQU >83E0

LENPTR EQU >8356

DSRERR EQU >8350

FILES# EQU >834C

NEXT EQU >6A

WS BSS 220

START LWPI WS
LI RO, PABADD Set up PAB in
LI R1,PABDAT VDP
LI R2, PABLEN RAM
BLWP @VMBW
LI RO, PABADD+9 Set up Len pntr
MOV RO, E@LENPTR in scratch pad
LI RO, >0100 Set up # files
MOVB RO, 8FILES# in scratch pad
BLWP @DSRLNK Execute FILES
DATA >A (subprogram)
JEQ ERROR Link error
MOVB #DSRERR, 8DSRERR enough room
JNE ERROR in VDP Ram?
LWPI GPLWS Yes, get ready
B @NEXT return to GPL

ERROR BLWP €0 go to Title

Screen

END

How do you know where an Assenbly
Program is loaded in Memory with the
Editor/Assembler module?

After you have locaded your program load
the Debugger or EXPLORER. Then look at the
following memory locations:

>2024 (>A000) First Free Address in Hi-Mem
>2026 {>FFD7) Last Free Address in Hi~Mem
>2028 (>2676) First Free Address in Low-Mem
>202A (>3F38) Last Free Address in Low=-Mem

A normal relocatable assembly program
with the E/A loads first at >A000. The
first load address in Low Mem is >2676.

In Extended Basic the pointers are:

>2002 (24FA) First Free Address in Low-Mem
>2004 (4000) Last Free Address in Low-Mem

So in Extended Basic a normal
relocatable assembly program starts to load
at >24FA. If the program contains any AORG
statements then the pointers WILL NOT be
updated by the loader with either module,
Also the Extended Basic lcocader will NOT
load an assembly program into Hi-Mem
(>A000-FFE7) unless it is AORG there.

What does % WARNING % CONTROL CHARACTER
REMOVED PRESS ENTER TO CONTINUE mean when a

file is loaded into the Editor/Assembler
Editor?

This warning will appear whenever you
load a file into the E/A Editor that was
previously edited by TI Writer and saved
with the SAVE FILE command instead of the
PRINT FILE command. The SAVE FILE command
saves the TI Writer TABs at the end of the
file in Control code format along with the
file. If you are loading one of these files
do not worry about this message. The editor
just removed the Tab settings and the file
will Assemble properly.

This warning will also appear 1if you
load a DSI/FIX 80 Object code file that was
Assembled with the C (Compressed) option.
In this case the editor has removed all of
the characters that are not in the normal
ASCII range. This is MOST of the object
code. S0 when you edit this file you will
find a lot of blank spaces where the object
code used to be and this file should NOT be
saved since most of it 1s missing.

e

oo

Why doesn't Advanced Diagnostics
currently work with the Myarc Disk
Controller or Myarct's MPES-50 Mini
Peripheral Expansion System?

Advanced Diagnostics 1s its own Disk
Controller DSR. In essence you could remove
the ROM chips from your disk controller
card once Diags is loaded. Currently Diags
contains the info for 2 different DSRs of
the TI and Corcomp hardware differences. We
are looking into the necessary changes to
add a third DSR to it ot make it work with
the Myare CARD hardware. The Myarc MPES-50
System is also different in a lot of low
level ways, so that requires modifications
for a fourth DSR. Whew, its already 2iK.

Why can't we Edit the information that
is in between the sectors?

TOO DANGEROUS! Also, what is read is not
what is written, so you would have to
reconstruct the entire track each time,
Another problem arises in that most of the
Corcomp cards lose DATA on a double density
Read Track (their new design is a little
better). By too dangerous we mean that all
it takes is one BIT out of place and you
will NEVER see that track againil!!

How come you didn't place a sc¢reen dump
feature in EXPLORER?

It was originally specked with a screen
dump but as we got into it we discovered
that it destroyed TOO MUCH of the
environment and as such it required that
the buffer be expanded beyond our
acceptable limit. EXPLORER was not supposed
to be any larger than 16K, to allow more
room for your programs. As it ended up it
is a VERY COMPACT 18K and no matter what we
did we couldn't get it down to 16K and
still keep all of its current features. We
also felt that since there are a number of
memory dump and disassembly programs out
that this did not detract from EXPLORER's
original purpose "To allow you to watch and
experiment with the #4A's internal
operations.” and "To be one of the best
debugger, tracer, single stepper programs
around for ANY computer.® We believe we met
those goals since I don't know of another
utility that lets you watch, manipulate and
trace so many different items in the Basics
or Assembly Language.

What's new in "As The Electron Turns"?

We would like to thank everyone for
their vote of support on the Corcomp legal
issue. No, they are NOT out of bankruptcy
yet and Yes, we are still involved with the
time consuming legal dribble. From what we
are currently hearing about cards going bad
it doesn't sound to good. I also understand
that they are now CHARGING $50.00 to repair
their defective units!

You can tell when your Disk Controller
is starting to go out when it starts to
return NO DISKETTE OR NO DRIVE ERRORs or
I/0 ERROR 06. With their o0ld design this
was an annoyance. However, with their new
design when this occurs some of our friends
have told us that it has erased some of
their files off the diskettel! This has also
happened to us. Bad News. When you are
dealing with a mass storage device it
should either work or not work. It
shouldn't partially go out and start eating
files! Maybe they will get it right
someday, however, I doubt that they will
ever get the few bugs worked out of the
software. Since they REFUSE to honor their
agreements we aren't going to be doing any
work for them, And, it will be awful hard
to find the bugs without the source code
that we hold the Copyrights on. Bankruptcy
or no Bankruptcy that's no way to conduct
business. Speaking of which, most companies
that we know of never made it out of
Bankruptcy.

Many of you have asked about other
publications that are SOLELY devoted to the
99/4A computer. Besides all of the Users!
Groups newsletters there are two other
publications that we are familiar with.

SUPER 99 MONTHLY -~ is a newsletter type
publication that covers a wide diversify of
programming which includes Extended Basic,
Multiplan, some Forth and some Assembly
Language. It is published monthly by
Richard Mitchel:

Bytemaster Compufer Services
171 Mustang Street
Sulphur, LA 70663

The subscription rates in U.S. funds are:
12.00/year - U.S.

16.00/year - Forgein First class (surface)
26.50/year - Forgein Air Mail

A e EEE—

H

MICROPENDIUM - is a monthly publication
that contains Hardware and Software
reviews, articles and a lot of advertising
for the 99/3A. It is published by John
Koloen and Laura Burns:

MICROpendium
P.0. Box 1343
Round Rock, TX 78680

The subscription rates in U.S. funds are:
15.00/year - U.S, Third Class

18.50/year - U.S. First Class

18.50/year - Canadian

21.50/year - Other countries - Surface
28.50/year - QOther countries - Air Mail
(Texas residents add 5.125% sales tax)

When will we receive the other issues of
the Smart Programmer newsletter?

We are currently looking at producing a
large (64 page) newsletter to be mailed out
as the next issue(s), hopefully before
Christmas. This 64 pager would be the
Oct-Jan part of your subscription. It will
contain many of the programs and tips and
tricks that a lot of you have sent in. This
will allow us to complete the 12 issues and
get caught up.

Many of you have asked which Commands or
Statements are faster than others so we
asked Mike McCue to do some timing tests
for us, Mike worked on Night Mission with
us. Here are his results using three
numeric variables A, B & I, two string
variables A$, B$ and with three sprites in
auto-motion. Each Command or Statement was
timed in a FOR I=1 to 1000 Loop. The times
listed are in seconds using Extended Basic
Version 110,

ABS - b COS - 78
ASC - 8 DELSPRITE # =~ 15
ATN - 50 DELSPRITE ALL - 30
CALL sub = 7 DISPLAY AT - 59
CHAR - 86 DISTANCE # # - 33

CHARPAT - 62 DISTANCE # XY - 35
CHARSET - 204 EXP - 87
CHR$ - 16 GCHAR - 21
CLEAR - 20 GOSUB - 1
COINC # # - 34 GOTO - 1
COINC # XY - 36 HCHAR - 21

COINC ALL - 15 + 6 per RPT #
COLOR # - 17 IF THEN ELSE - &
COLOR - 18 INT - 6

JOYST - 27 ! - 4
KEY - 24 RETURN - 1
LEN($) - 8 RETURN NEXT = 1
LOCATE - 22 RETURN # - 1
LOAD(1,2) = 17 RND - 75
LOAD(A,B) = 23 RPT$ - 30
LOG - 117 SCREEN - 10
MAGNIFY - 11 SEG$ - 27
MAX - 12 SGN - 5
MIN - 12 SIN - 70
MOTION - 25 SQUND - 47
PATTERN - 17 + 15 per voice
PEEK - 19 SPRITE - 43
PI - 5 SQR - 81
POS - 22 STR$ - 19
POSITION - 30 TAN - 172
PRINT - 100 VAL - 21
RANDOMIZE - 12 VCHAR - 25

REM -4

+ 2 per RPT #

Why can we have only 4 sprites visible
on a row at one time?

This is a hardware property of the TMS
99184 VDP Processor. In this processor
there are only 4 Sprite registers so it can
not track the fifth sprite on the row. The
registers are used to hold position etc.
for the current pixel row being drawn.

Is there anyway to use CALL LOAD without
having Memory Expansion?

Up until now the answer was NQ. The
first thing CALL LOAD does is to check to
see if CALL INIT has been executed, and if
it has not it returns with a syntax error.
When CALL INIT is executed it places the
value >AA55 at >2006 in Low Memory
Expansion. When the CHECK INIT routine is
called it checks for >AA55 at >2006 and if
it's not there it returns an error. The way
around this is to modify Extended Basic
with the GRAM KRACKER'® to bypass this test
and just execute the CALL LOAD. This can be
accomplished by changing the GPL Opcode at
Grom/Gram >CO44 in Extended Basic from: 06
C1 EB which is CALL CHECK INIT to: 05 CO 47
which is BRANCH TO >CO47, the address of
the next instruction. The CALL LOAD routine
does not need Memory Expansion when you are
poking values into Scratech Pad Ram so I
don't know why TI locked it out if it isn't
there. Maybe they just didn't want us to
get in trouble with trying to load an
Assembly Program into a non-Memory
Expansion systemn.

some 0f you have asked about a German
made Extended Basic module that contains
many new CALLs and Hi-Resclution Graphics.

This Module is made under licenses by
Texas Instruments and Apesoft and is

distributed by MECHATRONIC GmbH. It is

fully compatible with the current Extended
Bagsic but it has a lot of new enhancements.,
Many of the New CALLS were added to it by
Heiner Martin., They include: GSAVE, GLOAD,
BHCOPY, VPEEK, GPEEK, VPOKE, ALLSET, WAIT,
MOVE, MLOAD, MSAVE, BYE, NEW, RESTORE,
QUITOF, QUITON, SPRON, SPROF, FIND and
APESOFT.

CALL APESCOFT Loads the Hi~Resolution
graphic LINKs into Low Memory Expansion.
They allow you to draw and display line and
graphs on a pixel by pixel basis. It does
not use bit map mode but instead it uses a
technique similar to TI Logo with character
redefinition. The Demo program we received
with the module is very impressive and very
small in size compared to what it does! It
also is very easy to use, no complicated
CHR$(xx) type commands.

Heiner has also written a CONVERT
Program that is available in a module. It
converts DIS/VAR 80 into RUN-able Extended
Basice programs. This allows you to use the
TI-Writer or E/A Editor to write your XB

programs and then convert them t£o run in
XB.

There are also many new Hardware and
Software projects currently in the works
over in Germany of the TI 99/4A. I believe
that you can obtain information on the
above items and the new hardware from the
following companies.

For More info on the Extended Basic
contact which is approx 120 U.S, Dollars

MECHATRONIC GmbH
Dresdener StraBe 21
7032 Sindelfingen
West Germany

(C 70 31) 87 50 42

For info on the CONVERT Program which is
approx 29 U.S, dollars contact:

Elektronik=Service
Linning 37
D=404Y4 Kaarst 2
West Germany.

Starting with this issue we have Mariusz
Stanczak writing the Fourth column., Mariusz
is very good with many different versions
of Forth and has written a number of
programs in Tl and Wycove Forth. He has an
excellent understanding of the Forth
interpreter and the TI Forth Source Code.

In the next issue he has promised to
include his unBASVE routine, which will
convert a BSAVED application back into
normal Forth. We have been giving him your
questions on Forth s0 he will be answering
them also. We are very pleased that he is
writing the Forth column, which is a big
help with the newsletter.

At the end of Mariuszt's c¢olumn we have
also included a revision to the TI Forth 40
column editor. This revision was given to
us from Pete Korner of the LA 99ers Users
Group, It adds Auto-Repeat to the cursor
and it defines the function keys so they a
closer to the Editor/Assenbler editor's
function key assignments. On screen 41 you
will find two constants for the cursor
speed and delay. You can set these to your
liking. If you have BSAVED your system you
will need to start fresh, lcad this editor
and then all of the options you want and
then reBSAVE yocur system.

This is a nice and much need addition to
the TI Forth editor. Thank You Pete,

At the end of Pete's Forth Editor you will
find a DSRLNK Routine for the TI Extended
Basic¢ environment.,

There are so many of these floating
around and we have received a number of
these from different people that we are not
sure whe to credit this to, but Thank You
one and All. This DSRLNK is very similar to
the Editor Assembler DSRLNK that resides in
Low Memory Expansion. To use this in your
Extended Basic Assembly programs just use
the COPY Directive after you have typed it
in and saved it as source code. It works
the same as the E/A version and it is
entered the same way ie:

BLWP @DSRLNK

DATA 8
for actual DSR Links (DSK, PIO etc) or

BLWP @DSRLNK

DATA >A
for subprograms like the one listed on page
I of this issue.

]

m

5™ 11— =FORTH
By Mariusz Stanczak

Since your letters are leading in such a
direction from time to time, in this
edition of 5th 1- we will 'go back to
basics', but with some restrictions as I do
not think I can be of much help to people
who still can not get their copy of the
system loaded. The requirements and
procedures are very straightforward so I
can not imagine anybody failing to follow
them, I would complain to the vendor of
such an uncooperative system diskette..

Assuming everybody is getting instant
gratification in the form of FORTH's
friendly 'ok:' most of the time, lets

begin, by concentrating on the times of
Y

First, a few words of information on the
most frequently asked questions. There are
two variations of FORTH for the 99/4A that
I am familiar with. Both follow what is
known as the FIG model, which specifies the
rules of the logical and partially physical
structure of the FORTH system, but there
are distinct differences in the way each
version implements those rules. The two
are; 1) WYCOVE~-FORTH which is copyrighted,
non-public-domain, and sells for about
$50.00. It has has undergone two major
revisions, and 2) the TI-FORTH. The latter
is what most of you have as it was given
away by TI to the Users'! Groups who in turn
distributed it for a reasonable fee in the
$20.00 range., TI-FORTH has had a few
changes done to it and I am told of five
versions floating around but can not say
much about the seriousness of the
corrective work done to each version. The
version of a given copy was marked, as I am
told, on the original diskette given to the
User's Groups for redistribution, so try
asking them.,

TI-FORTH requires memory expansion, disk
subsystem and Editor/Assembler cartridge.
~NOTE-~ There is a public domalin extended
basic loader available -END OF NOTE-
WYCOVE-FORTH permits more flexibility as
its requirements are; memory expansion and
either Extended Basic, Editor/Assembler or
Mini Memory cartridge with either cassette
or disk subsystem. For those of you who
are new to FORTH, TI-FORTH may present a
less intimldating environment at first. I

have been told that quite a few times but I
still say, it is a initial impression.
TI-FORTH starts-up with presenting a little
user interface that facilitates loading of
elective words and a few other esthetic
touches. Beyond those, both systems are,
one might say, a bare bone implementations
with WYCOVE's supplying better (to my
taste) developed routines to support the
99/44A environment.

Many of TI~-FORTH users write about
problems with getting their printers to
work, and in most cases the offender seens
to be the Axiom Parallax interface working
in the parallel mode. Modify scr# 72 line

4 (all screen and line numbers given in

reference to the original system diskette)
to read:

SET-PAB OUTPT F-D" PIO.CR"™ OPN 3

The solution to another common problem
requires a little introduction into the
internals of FORTH which, by the way,
recelive excellent treatment in the FORTH
classie, "Starting FORTH" by Leo Brodie.
Highly recommended basic reading.

~DIGRESSION-

There are a number of books and
publications on FORTH that are worthy of
your time and money. They present varied
level of difficulty but keep on reading.
Things will fall into their proper places

in time. The books that I enjoyed most
are:

"Thinking FORTH", Leo Brodie, Spectrum
Books <a c¢ollection of essays on FORTH
philosophy and conventions>)>

"FORTH Programming", Leo J. Scanlon,
Blacsburg Group <an introductory text to
the T79-STANDARD with many, many useful
examples, Differences between the
T9-STANDARD and FIG models clearly pointed
out>

"FORTH Encyclopedia™, Mitch Derick and
Linda Baker, Mountain View Press <an
essential reference into FIG=-FORTH. For
advanced programmers and, definitively for
all curious>

Then, there are publications of which
the foremost is FIG's own "FORTH
DIMENSIONS" <mostly for advanced
programmers>

"DPr. DOBB's Journal" yearly FORTH issue
#9, September <many full length articles
and complete programs>

e

o
R
e

k1
'l:

M

"Computer Language®" <a monthly
publication with a self explanatory title.
Periodically publishes discussions and
articles on FORTH and FORTH tools as well
as many information of general interest.
For advanced programmers,

And, at last but not least, the most
basic and the most valuable source of
information about the particular FORTH
system one is using must be the source
code. It is invaluable help for people who
know assembly language and who think of
enhancing their systems, A big help for
those who try to gain better understanding
of how FORTH works and of what really
happens when things do not work as
expected. In this area, the biggest
surprise awaits those inclined to look,
need or just simply desire the access to
such information, which for TI-FORTH is
available for about $15.00. Wycove Systems
Limited wants you to dish out a cool
$100.00 for the source code of the
interface between the public domain FIG
version (developed for the TMS39900
processor by 9900 Software Services and
available through FIG for $15.00) and the
99/44A., A quite distasteful proposition if
you consider that 80% of that $100.00
source code was copied from the FIG's
release. I would think that, more effort
was consumed at producing the wealth of
tools supplied with the initial system
diskette of this otherwise attractive
product (it placed fifth out of fifteen in
a recent test of FORTH implementations on
different machines conducted by a british
computer magazine), than was spent writing
the 1.5K or so of assembly code that went
into the development of the disk and screen
I/0 routines making the asking price
completely unjustifiable.
~END OF DIGRESSION=-

This next common problem is with copying
screens between floppies which arises when
the screen numbers need to be changed also
i.e. the screens are moved to different
locations. Owners of multi drive systems
running TI-FORTH do not have a problem at

all. TI has supplied words SCOPY and
SMOVE. Consult the system manual; chapter
5s page T.

~NOTE- The least confusing way to do it 1is
to keep the value in OFFSET equal to 0 (by
typing DRO which sets drive 0 as the system
drive) and by referring to screens by their

absolute numbers in reference to screen 0
in drive 0, i.e. screens 0-89 are in drive
0, 90~179 in drive 1 and screens 180-269
are in drive 2. This amounts to adding the
proper offset yourself, which in TI-FORTH

equals 90 for drive 1 and 180 for drive 2.
Also, do not forget to set the user

variable DISK HI to the appropriate value
for the number of drives on your system,
which is 180 for two drives, and 270 for
three. ~END OF NOTE-

For one drive systems the easiest would be
to modify the word SMOVE to prompt you when
to change diskettes, or see the word SSMOVE
below.

FORTH employs a virtual memory technique
in it's disk access. Lets take a closer
look at how it happens that we find the
screens available to us for editing, or for
whatever we want to do with them. The area
into which the screens are loaded is called
buffer area, which depending on the system
may contain any number of buffers (minimum
2 in the FIG model). Each buffer consists
of a one word header, a 1024 byte data
portion and a terminator word. The portion
of buffer essential to our solution is the
header which contains the block number and
an update flag in the high order bit (the
sign bit). The buffers are located in
memory as a contiguous array but are
treated logically as a circular array. The
word +BUF has this function of returning
the address of next buffer in this circular
array and it is called by BLOCK, PREV,
UPDATE AND BUFFER. The buffer area 1looks
something like this:

update flag
FIRST ==>

scerf#

00GO0

E buffers maximum in
TI=-FORTH. From 2 to T
buf'fers in WYCOVE FORTH

scer#

el

e

T ———

When we type scr# BLOCK , the word BLOCK
will add the value stored in the user
variable OFFSET to the value on the stack
(scer#), check the buffer area for the
presence of the arrived at screen number.
If the screen is found then the address of
its data area is left on the stack and the
execution of BLOCK ends, If the screen is
not found in the memory, BLOCK will call
BUFFER which will check the update flag of
the buffer pointed to by another user
variable USE. If the flag is set, BLOCK
will request (word R/W) to write such
marked block to disk prior to calling the
Screen we requested from disk which is
written into such freed buffer, agzin
pushing the address of its data area on the
stack. All we have to do, to accomplish
moving of screens around, is to change the
screen number in the control word which is
located at the value left on the stack by
BLOCK minus two bytes, UPDATE the buffer
and the buffer management mechanism will
take care of the rest for us, or its action
can be forced by word SAVE-BUFFERS.

WYICOVE-FORTH users have the equivalent
of SCOPY supplied on screen 58. The word
1s called COPY (which in slightly modified
form you have it in the listing below) and
while using it, do not forget about the
proper offset which is equal to § for disk
#1, 2000 for disk #2, 3000 for disk #3,
6000 and 8000 for cassette drive #1 and #2
respectively. The word SMOVE has to be
written, and it could look like this:

SCOPY (from+offset to+offset =~)
SWAP BLOCK 2= | UPDATE -
: DOCOPY+ (from to hi_limit lo_limit)
DO OVER OVER SCOPY
1+ SWAP 1+ SWAP LOOP H
SMOVE (from+offset to+offset cnt we—=)
DUP 0>
IF R/W-CLOSE >R OVER OVER <
IF \ move back>front
R 1= + SWAP R 1= + SWAP
R> O
DO OVER OVER SCOPY
1= SWAP 1~ SWAP
LOOP
ELSE
R> 0 DOCOPY+
THEN
ELSE DROP
THEN DROP DROP SAVE~BUFFERS H

\ move front>back

For one drive systems, the above gets a
little bit more complicated. I have
written it as a multiple DO-LOOP structure
to keep track of when to prompt for
changing the floppies, but try rewriting it
aS a recursive construct using MYSELF
(called RECURSE in earlier WYCOVE's
implementation). The following will work
with either TI's or WYCOVE's system
installed.

: 7BUFFERS (--- number_of_buffers)
1 PREV € BEGIN +BUF
WHILE SWAP 1+
REPEAT

SWAP

DROP ;
: MSG1 (===)
." Insert source disk"
KEY DROP CR ;
: MSG2 (===)
" Insert destination disk"™
KEY DROP CR SAVE-BUFFERS ;
: SSMOVE (from to ent ===)
DUP 0>
IF >R >R >R 7?BUFFERS

R> R> R> 4§ PICK /MOD -DUP
IF CR SWAP >R O
DO R/W-CLOSE MSG1 3 PICK O
DOCOPY+ R/W~CLOSE MSG2
LOOP R>
THEN <~DUP
IF
R/WCLOSE MSG1 O
DOCOPY+ R/W-CLOSE MSG2
THEN

THEN DROP DROP DROP :

To load the above definitions your system
will have to have the following defined:

in TI-FORTH-~
20> (D= f) 0 >;
CODE PICK (item# ~-- item) HEX

C019 , 0A10 , AD09 , C650 , OUS5F , DECIMAL
in WYCOVE-FORTH--

CREATE PICK (item# ~~- item) SMUDGE HEY
C016 , 0A10 , A006 , C590 , 0459 s DECIMAL

~NOTE~ This version of the word PICK, which
is required in the 79-STANDARD, does not do
the parameter stack range check. It counts
the items on stack starting with one i.e 1
PICK (not 0 PICK) is equal to DUP. ~END OF
NOTE- ,..and end of this edition of 5th 1-.
Until the next time around. Happy

r 1 FORTHing. MS
| 10

SCR #34
0 (SCREEN EDITOR 09JUL82 LCT) 0 CLOAD RKEY
1 BASE=->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
2 BASE~D>R HEX VOCABULARY EDITOR?T IMMEDIATE EDITOR1 DEFINITIONS

3 : BOX 8F7 8F1 DO 84 I VSBEW LOOP ;

4 : CUR R# ;

5 + ICUR 0 MAX B/SCR B/BUF ® 1~ MIN CUR !

6 : +CUR CUR @€ + I1CUR ;

7 : «LIN CUR @8 C/L / + C/L % ICUR ;

8 O VARIABLE S_H DECIMAL

9 : FTYPE 40 #® 124 4+ SWAP VMBW ;

10 : LISTA O 0 GOTOXY DUP SCR 1t . SCR# ™ DUP .

11 ." (decimal "™ DECIMAL ., .m)n CR CR CR

12 16 0 b0 I 3 .R CR LOOP ; : ROWCAL S_H € IF 29 + ENDIF ;
13 : LINE. DO I SCR € (LINE) DROP ROWCAL 35 I FTYPE LOOP ;
14 : LISTB L/SCR 0 LINE. ;

15 R=->BASE ==->

SCR #35%
0 (SCREEN EDITOR 09JULS82 LCT)
1 : LISTL BASE=->R LISTA 4 1 GOTOXY
2 N 1 2 3 " 4 2 GOTOXY
3 " e teeesDeieseteroeeDoessetesoslDaaso+?
4 0 S_H ! LISTB R->BASE ;
5 ¢+ LISTR BASE->R DROP 4 1 GOTOXY
6 ." 3 4 5 6 " 4§ 2 GOTOXY
T " OueseteossleaesreeesOsveotassslane®
8 1 S_H | LISTB R->BASE ;
9 :+ BCK O L/SCR 2+ GOTOXY QUIT
10 ¢+ PTR SCKR @ B/SCR ® CUR € B/BUF /MOD ROT + BLOCK + ;
11 ¢+ R/C CUR @ C/L /MOD ; (-~=-= COL ROW)
12 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;
13
14 ==>
15
SCR #36

(SCREEN EDITOR 12JUL82 LCT) BASE->R DECIMAL
: .CUR CUR @ C/L /MOD 3 + SWAP 4 + DUP S_H @
IF 32 > IF 29 -~ ELSE SCR €& LISTL ENDIF
ELSE 39 < 0= IF SCR & LISTR 29 -~ ENDIF
ENDIF SWAP GOTOXY ; *
DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
0 +LIN PTR C/L 32 FILL C/L ¥ ICUR ;
INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
DO PTR =1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
FAD PTR C/L CMOVE C/L # ICUR ;
: RELINE R/C SWAP DROP DUP 13 EMIT LINE. UPDATE .CUR ;
+.CUR +CUR .CUR ; |
TAB PTR DUP € 32 = 0= IF BEGIN 1+ DUP 1 +CUR C€ 32 = UNTIL
ENDIF CUR €@ 1023 = IF .CUR 1 ELSE BEGIN 1+ DUP 1 +CUR Cé 32 >
UNTIL .CUR ENDIF ; R->BASE -->

e B

S N A I U Y
VW N==0 00~ WM =0

NIT—___“_——

SCR #37 |
0 (SCREEN EDITOR 12JUL82 LCT) BASE->R DECIMAL

sl
CWOO-1 Ch\U =W HN —

i1
12
13
14
15

(e
<3
=

WO~ LN =0

10
11
12
13
14
15

SCR

vl
QO OO~ £&2WN - O

T N N T)
M EWN -

#3
(

R

4
(

-
L

-TAB PTR DUP C€ 32 > IF BEGIN 1- DUP -1 +CUR C€ 32 = UNTIL -
ENDIF BEGIN CUR € IF 1- DUP -1 +CUR C& 32 > ELSE .CUR 1 ENDIF !
UNTIL BEGIN CUR € IF 1- DUP -1 +CUR C€ 32 = DUP IF 1 +.CUR
ENDIF ELSE .CUR 1 ENDIF UNTIL ; : IBLK PTR C! UPDATE 1 +.CUR ;
BLNKS PTR R/C DROP C/L SWAP - 32 FILL :
FLIP S_H @€ IF -29 ELSE 29 ENDIF +.CUR ;
REDRAW SCR @ S_H € IF LISTR ELSE LISTL ENDIF UPDATE .CUR :
NEWSCR 0 SWAP LISTL !CUR .CUR ;
+SCR SCR @ 1+ NEWSCR ;
~-SCR SCR € 1- 0 MAX NEWSCR
DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32
PTR R/C DROP - C/L + 1~ CI
INS 32 PTR DUP R/C DRCP C/L SWAP - + SWAP DO
I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
DO I C! -1 +LOOP : R=->BASE -~>

8
SCREEN EDITOR 12JUL82 LCT) BASE->R HEX 29 LOAD
VED BOX SWAP CLS LISTL ICUR .CUR BEGIN RKEY CASE

OF OF BCK ENDOF 01 OF DELHALF BLNKS RELINE ENDOF
08 OF -1 +.CUR ENDOF O0C OF +SCR ENDOF
OA OF C/L +.CUR ENDOF 02 OF -SCR ENDOF
0B OF C/L MINUS +.CUR ENDOF 03 OF DEL RELINE ENDOF
09 OF 1 +.CUR ENDOF 04 OF INS RELINE ENDOF
OD OF 1 +LIN .CUR ENDOF €67 OF DELLIN REDRAW ENDOF
CE CF FLIP ENDOF 06 OF INSLIN REDRAW ENDOF iﬁ
1E OF INSLIN BLNKS REDRAW ENDOF 16 OF TAB ENDOF :

F OF =-TAB ENDOF
DUP 1F > OVER 7TF < AND IF DUP EMIT DUP !BLK ELSE 7T EMIT

THEN ENDCASE AGAIN ; FORTH DEFINITIONS

WHERE EDITOR?1 B/SCR /MOD SWAP B/BUF #® ROT + 2- VED ;
EDIT EDITORT O VED ; : ED€ EDITOR1 SCR €@ EDIT ;
>BASE

1
EDITOR REPEAT KEY ROUTINE Pete Korner 12/3/814)
BASE=->R DECIMAL 0 VARIABLE MY

BLINK CURPOS € DUP VSBR MY C!

3 0 DO DUP 30 SWAP VSBW LOOP MY C8@ SWAP VSBW ;

I CONSTANT W (repeat speed) 30 CONSTANT X (delay)
O VARIABLE Y X VARIABLE Z O VARIABLE 0K

RKEY BEGIN %7KEY =-DUP BLINK BLINK

IF Y @ 1 Y +1 IF Z @8 Y e <

IF W Z ! 1 Y |

1 ELSE OK @ OVER = IF DROP O

ELSE 1 DUP Y | THEN THEN

ELSE 1 THEN

ELSE X Z1 0 Y |

O THEN UNTIL DUP OK ! ; R=>BASE

W

Here is the DSRLNK Routine for use in the Extended Basic environment
that we promised you last issue. I'm not sure where this one came fronm,
there are so many of them floating around. It is basically the same one
used in the Editor Assembler Module.

B e e e A - e A - e M A A e A A . e A A e A e A e A S e A o e . e = e = = = o = — #
DSRLNK routine for XB -~ Save as source code and add it to your desired
¥ Assembly program with the COPY directive. ®
#® VSBR equate must be included in the Calling Program or DSRLNK routine . #
B e e e e o e e e e o = = e b e e e o o A e e e e A A A A e A o o o o o e = - »
VSBR EQU >2028 VDP single byte read XB= >2028

PNTR EQU >8356 Pointer to search name address
SCLEN EQU >8355 in VDP XB= >8356
CRULST EQU >83D0

SADDR EQU >83D2

GPLWS EQU »>83EQ GPL/Extended Basic workspace
SAVCRU DATA O CRU address of peripheral
SAVENT DATA O Entry address of DSR

SAVLEN DATA O Save device name length
SAVPAB DATA O pointer to device name in PAB
SAVVER DATA O Version number of DSR

DLNKWS DATA 0,0,0,0,0

TYPE DATA 0,0,0,0,0,0,0,0,0,0,0

NAMBUF DATA 0,0,0,0

H20 DATA >2000

DECMAL TEXT '.,°?

HAA BYTE >AA

B o e e e o o " - e = e o o = o = o Am o o 4 2o Y " *

* DSRLNK - Workspace,Program Counter for BLWP @DSRLNK *
I e A e e e *
DSRLNK DATA DLNKWS,DLENTR

DLENTR MOV *R14+,R5 Fetch program type for 1link

SZCB €H20,R15
MOV @PNTR, RO

Reset equal bit
Fetch pointer into PAB

MOV RO,R9 Save pointer

AT R9, -8 Adjust pointer to flag byte
BLWP @VSBR Read device name length
MOVB R1,R3 Store it

SRL. R3,8 Make it a word value

SETQO R4 Initialize counter

LI R2,NAMBUF
LNK$LP INC RO

Point to NAMBUF
Point to next char of name

INC R4 Increment char counter
C R4,R3 End of name ?

JEQ LNKS$LN Yes

BLWP €@VSBR Read current char

MOVB R1,#R2+
CB R1,@DECMAL

Move it to NAMBUF
Is it a decimal point 2

JNE LNK3LP No

LNK$LN MOV R4,R4Y Is name length zero
JEQ LNKERR Yes - Error
CI RY, T Is name length > T ?

JGT LNKERR

CLR €@CRULST

MOV RY4,@8SCLEN-1
MOV RY,E@SAVLEN
INC RY4

A RY4Y, 8PNTR

MOV 6PNTR,@SAVPAB

Yes - Error

Store name length for search
Save device name length
Adjust it

Point to position after name
Save pointer into device name

Mo

%
#%¥%%%8% SEARCH ROM FOR DSR

SROM LWPI GPLWS Use GPL workspace to search
CLR Rt Version found of DSR
LI R12,>0F00 Start over again ‘ﬂﬁ
NOROM MOV R12,R12 Anything to turn off ? 4
JEQ NOOFF No
SBZ 0 Yes, turn it off
NOOFF Al R12, 20100 Next DSR ROM's turn on
CLR @CRULST Clear in case we are finished
CI R12, 22000 At the end ?
JEQ NODSR No more ROM's to turn on
MOV R12,6@CRULST Save address of next CRU
SBO O Turn on RCM
LI R2, >4000 Start at the beginning
CB ®R2, 0HAA Is it a valid ROM 7
JNE NOROM No
A @TYPE,R? Go to the first pointer
JMP SGO02
SGO MOV @SADDR,R?2 Continue where we left off
SBO O Turn ROM back on
SG02 MOV ®#RZ2,R2 Is address a zero ?
JEQ NOROM Yes, no program to look at
MOV R2,@SADDR Remember where to go next
INCT R2 Go to entry point
MOV ®R2+,R9 Get entry address
#%®een"® CHECK AND SEE IF NAME MATCHES
MOVB @SCLEN, RS Get length as counter
JEQ NAMEZ Zero length ? Don't do match
CB R5, #R2+ Does length match ? m
JNE SGO No N
SRL R5,8 Move to right place
LI R6 ,NAMBUF Point to NAMBUF
NAME1 CB ¥R6+,*R2+ Is character correct 7
JNE SGO No
DEC RS More to look at ?
JNE NAME1 Yes
NAMEZ INC R1 Next version found
MOV R1,E6SAVVER Save version number | Could be used to
MOV RG,B8SAVENT Save entry address { avoid another lookup
MOV R12,€@SAVCRU Save CRU address | on subsequent calls
BL ®R9 EXECUTE ROUTINE
JMP SGO Not right version
SBZ O Turn off ROM
LWPI DLNKWS Select DSRLNK workspace
MOV R9,RO Point to flag byte in PAB
BLWP @8VSBR Read flag byte
SRL R1,13 Just want the error flags
JNE IOERR Error !
RTWP -
kREe®® KRROR HANDLING
NODSR LWPI DLNKWS Select DSRLNK workspace
LNKERR CLR R? Clear the error flags
JOERR SWPB R1
MOVB R1,%R13 Store error flags in calling RO X
SOCB €H20,R15 Indicate an error occurred ’
RTWP - Return to caller

® END Only if not assembled by COPY directive.

~

M

PC NOTES

A number of you have asked about the
software we use on the TI PC. There are two
main pieces of software used for our
business.,

For Word Processing we are currently
using Easy Writer II with Easy Speller II.
It is not the most powerful word processor
around but, it is very easy to use. It is a
File/ Document/ Page type word processor in
that you name a file folder which can hold
approximately 100 documents of any number
of pages. Once a file folder is opened you
select the document and the page to edit.
If you do not select a page number to edit
it defaults with page 1. For example: This
page is in file folder F:SPNL84, document
number 9 - September 84, page 25.

Easy Writer II has served us quite well
and we have used it to produce all of our
newsletters, brochures, manuals and
letters,

For a Data Base we are currently using
dBASE II but we are looking to upgrade to
dBASE III. Do we highly recommend dBASE?
Well, lets Jjust say that for us it gets the
Job done. There are a lot more Data Base

type programs out there that are MUCH
easier to set up and use. dBASE, in our

opinion, requires an understanding of
Pascal programming to take FULL advantage

of its power. And even with that, dBASE II

still has some problems. First off its SLOW
on its screen I/0 and VERY SLOW when it
packs and re-indexes an entire large data

base. Luckily, packing and re-indexing is

done only a couple of times a year. When
dBASE packs a data base it removes all
records marked for deletion. Indexing is
performed to build an index file for quick
FINDs. When we Pack and Index on Name and
Index on Zip code it takes approximately &
hours to complete. We've been told that
dBASE III 1s much faster on its sSorts,
Packs and Indexing.

The next problem is the fact that dBASE
Il executes the command files, that you
generate in a Pascal like fashion,
interpretively. Unfortunately it does not
tokenize the command files so it must
interpret ASCII files each time they are
run, this gives it the blinding speed of TI
BASIC. No, maybe TI BASIC is faster. If the

speed 1sn't enough to annoy you then we're
sure that the little quirks in the way the
interpreter handles variables and strings
will raise your blood pressure. The next
problem is that I do not care for the heavy
structured programming of Pascal. I miss
the GOTOs, GOSUBs, JMPs, BLs and BLWPs, of
the Basics and Assembly. Without them I
find that there is too much duplication of
code that could very easily be a
subroutine,

By now you are probably asking WHY we
are using this software if we dislike it so
much. Well it has its good points. It is
very flexible, so once you have mastered
its command files you can build a complete
custom business system with it. Over the
past few years we have set it up for our
mail order business with the following
features. Order Entry & Invoicing, Brochure
Requests, Subscription Entry - Tracking -
and Label Printing - sorted by Country and
Zip for bulk mailing. Automatic Deposit
slip entry, printing and reporting which is
tied to our book keeping for income
reports. Automatic end of the month and end
of the year book keeping updates and
reports including sales reports for each
item. It also has many other editing, label
and report printing and book keeping
features built into it. So at this point we
are very used to it and as such we do not
want to start all over again with another
system, thus the to upgrade to dBASE III.

Do we recommend it? Only if you 1like
Pascal programming, have lots of time to
get it set up, and enjoy programming. Or,
if you have LOTS of money to pay a
freelance dBASE programmer. For every 100
dBASE programs sold, I'm willing to bet
that only 10-20 of them are in actual
everyday use. Personally we think that the
success of dBASE has more to do with the
advertising hype and some strange prestige
thing about owning it. It wasn't due to
it's user friendliness or its blinding
speed. There are a lot of other Data Base
programs available for the PC that are
easier to set up and use and many of them
are faster and will hold more records than
dBASE II. So before you buy one, take a
GOOD look at all of them.,

Our other software includes things like
Cross Talk for our Terminal Emulator
package, Microsoft Macro Assembler for
assembly, Forth, and some other utilities.

Ve

SUBSCRIPTIOR INFORMATION

_— - -

Pl e ki il

THE SMART PROGRAMMER - a monthly 16+ page newsletter published by MILLERS GRAPHICS
U.3. 12.50 year - Foreign Surface Mail 16.00 year - Foreign Air Mail 26.00 year

Back issues are available. We can start your subscription with the FEB. 84 issue
To subscribe send a Check, Money Order or Cashiers Check, payable in U.S. currency

TO: MILLERS GRAPHICS

1475 W. Cypress Ave,
San Dimas, CA 91773

v erwhiil L il .

T il el i Al el

THE SMART PROGRAMMER is published by MILLERS GRAPHICS, 1475 W. Cypress Ave., San
Dimas, CA 91773. Each separate contribution to this issue and the issue as a whole
Copyright 1984 by MILLERS GRAPHICS. All rights reserved. Copying done for other
than personal use without the prior permission of MILLERS GRAPHICS is prohibited.
All mail directed to THE SMART PROGRAMMER will be treated as unconditionally

assigned for publication and copyright purposes and is subject to THE SMART

PROGRAMMER'S unrestricted right to edit and comment. MILLERS GRAPHICS assumes no
liability for errors in articles.

SMART PROGRAMMER & SMART PROGRAMMING GUIDE are trademarks of MILLERS GRAPHICS

Texas Instruments, TI, Hex-Bus and Solid State Software are trademarks of Texas
Instruments Inc.

MILLERS GRAPHICS BULK RATE

1475 W. Cypress Ave. u.sPPEISBAGE

San Dimas, CA 91773 San Dimas, CA 91773
PERMIT NO. 191

THE SMART PROGRAMMER

