VOLUME 2 ISSUE 2

$1.75

JULY 1986

"Serving 99'ers Since 1984"

THE SMART

PROGRAMMER

Many thanks go to everyone who
commented on last month's first issue
from Bytemaster. Apparently we hit on
many of the subjects of interest.
There were also a lot of requests for

other topics, so this month we offer
an issue that includes several Assembly
articles. We'll continue to diversify

our coverage each month.

For those of you who like to stay
informed of the possibilities of the
future (and are suffering from a streak
of boredom), how would vou like to have
an 8PP megabyte drive? What's that? You
can't add on to your house? No need!
Several firms, including Richo and
Toshiba, have developed WORM (Write
Once Read Mostly) optical drives that
use 5 1/4" removable disks! Before you
rush out to buy one, the Richo drive
without controller is $2,949 and the
Toshiba system with controller is about
$8800. But, an 800 megabyte disk pack
is scheduled to go for only $88! Prices

will likely drop some and hopefully
such products will eventually be priced
for the home market. For now, let's
get back to the realities of our
homes!
Q&A

Can I use GRAM Kracker™ to

eliminate the foreign language menu
options of TI-Writer?

Yes. Use the GK Editor to change

July 1986
The Smart Programmer

address g6@896 from 60
That will re-direct the application

pointer, thereby avoiding display of
the foreign menu options.

190 to 60 CB.

While on the topic of GK and
Ti-Writer, for early versions of the
TIWGRAMDSK, the .IF function did not

work. In setting up, the program does
the equivalent of CALL FILES(1) and
should do a CALL FILES(4). To fix
this, use the GK Editor to change g6323
from @61 to @4. To correct the MILK
disk, edit sector 224, byte 79, with
the change being the same, @1 to @4.

Which version of FORTH supports
the FORTH Recursive Decompiler found in
the June 1986 issue?

As it was published, the program
runs under TI-FORTH. For Wycove users,
add the following to the end of the
definition of CK: (but before the
semi—colon, of course), which we listed
as being on Screen 193:

OVER DUP ' R/W
OVER ' R/W-CLOSE
OR SWAP ' SAVEBLK
OR 9= AND

By the way, our FORTH section,

Mariusz Stanczak's 5th 1- =FORTH, will
be returning soon with more useful
programs and tips.

Rl BN N it e gk el iy SN N PO AN SIS I P SN I DI DN Bamm ammle AR DEEE DEE G B I B BT B TS S S - E—

Page 1

Min1 Memory ROM >6000-)6FFF

— — —

T el oy e o e TS b TN W e s Seeki SE i W R mmas S e CEE R e B

F L] — g ik b 3] —-_— - ol el A e

+ ———
1>6000 | >AAQQ Space for Standard Rom/Grom Header - All >0000
126010 | >605A Start address of NAME LINK routine (i.e. Start Name)
1>6012 i >62CA Start address of Tagged Object Code Loader from GPIL
>6014)} >618C Start address of CIF (Convert Integer to Floating Point)
>6016 ' 20000 not used
>6018 UTILITY VECTOR TABLE (ie: BLWP @KSCAN }
>6818 t >7092 GPLLNK Utility workspace pointer
i >6Q1A | D>60QF6 Start address for BLWP ®@GPLLNK
I >601C | >7092 XMLLNK Utility workspace pointer
>601E | >60C8 Start address for BLWP @XMLLNK
>6020 | >7092 KSCAN Utility workspace pointer
>6022 | >6110 Start address for BLWP @KSCAN
>6024 | >7092 VSBW Utility workspace pointer
it 26026 | >6126 Start address for BLWP @VSBW
I >6028 ! >7092 VMBW Utility workspace pointer
i >602A | >6132 Start address for BLWP @VMBW
>602C | >7092 VSBR Utility workspace pointer
>602E | >61409 Start address for BLWP @VSBR
>6030 | >7092 VMBR Utiility workspace pointer
»6032 | >614C Start address for BLWP @VMBR
>6034 |+ >7092 VWTR Utility workspace pointer
. >6036 | >615A Start address for BLWP @VWTR
I >6038 | >»7098 DSRLNK Utility workspace pointer
, 2603A | >61lE4 Start address for BLWP @DSRLNEK
| >683C | >70D8 LOADER Utility workspace pointer
I >603E | >62EC Start address for BLWP @LOADER
i 26040 | >70F8 NUMASG Utility workspace pointer
>6042 |} D>660E Start address for BLWP @NUMASG
>e044 | >7T0F8 NUMREF Utility workspace pointer
>6P046 | >66FE Start address for BLWP @NUMREF
>6048 | >T70F8 STRASG Utility workspace pointer
>604A | >6768 Start address for BLWP @STRASG
>604C | >70F8 STRREF Utility workspace pointer
>604E | >6888 Start address for BLWP @STRREF
>6050 | >7QF8 ERR Utility workspace pointer
I 26052 | >6966 Start address for BLWP @ERR
1>6054 ! >0064 Data 100
1 >6056 | >2000 Data >2000 (H20 and H2000)
1 >6058 1 >2E Byte Decimal Point °'.'
1 >6059 >0 Byte >00
| >6Q5A | Start of Name Link routine. (Finds Start Name in REF/DEF Table)
1 >60BC i Routine to Return to Assembly Language from GPLLNK
1 >60C8 i Start of XMLLNK Routine. (Link to system Utilities)
| >60F6 ; Start of GPLLNK Routine. (Link to GPL Routines)
>611¢ i Start of KSCAN Routine. {Keyboard Scan)
>6126 } Start of VSBW Routine. (VDP single byte write)
>6132 i Start of VMBW Routine. (VDP multiple byte write)
>6140 i Start of VSBR Routline. (VDP single byte read)
1 >614C i Start of VMBR Routine. (VDP multiple byte read)
' >615A } Start of VWTR Routine. (Write to VDP register)
1>618C i Start of CIF Routine. {(Convert Integer to Floating Point)
1 >61E4 « Start of DSRLNK Routine. {(Link to DSR routines)
| >62CA i Start of Tagged Object Code Loader when coming from GPL
| >62EC i Start of LOADER Routine. {(Loads Tagged Object Code - DIS/FIX 80)
| >660E i Start of NUMASG Routine. (Basic Numeric Variable Assignment)
+ ___
daly 1986 Page 2

The Ymart Programmer

el sy e S WS e gy Sy .

A EE WS A TN E smieme

Minl Memory ROM >6000->6FFF Continued

! > 66FE i Start of NUMREF Routine. (Basic Numeric¢ Variable Reference) |
1>6768 Start of STRASG Routine. {Basic String Variable Assignment) :
| 6888 i Start of STRREF Routine. (Basic String Variable Reference) !
| 26966 i Start of ERR Routine. (Basic Error Message Routine) !
'!>697E i Thru >6F@C Not Used All >0000 - Can Be used in the Gram Kracker !
I I I
| >6FOE ! Start of Default Mini Memory REF Table I
| >6FQE | UTLTAB >7020 Pointer to Utility Table in MM RAM
i >6F16 | PAD >8300 Start address of Scratch Pad Ram
>6F1E | GPLWS >83EQ GPL: Workspace pointer
>6F26 | SOUND >8400 Location of the Sound Chip :
>6F2E | VDPRD >8800 Address for VDP Read Byte port !
I >6F36 | VDPSTA >8802 Address for VDP Read Status port |
! >6F3E VDPWD >8C00 Address for VDP Write Byte port :
| >6F46 VDPWA >8CH2 Address for VDP Write (set) Address port I
! >6F4E SPCHRD >9080 Address for Speech Read port i
>0F56 SPCHWT >9490 Address for Speech Write port :
>6FS5E | GRMRD >9800 Address for Grom/Gram Read Byte port i
>6F66 | GRMRA >98082 Address for Grom/Gram Read Address port !
! >6F6E | GRMWD >9CO0 Address for Grom/Sram Write Byte port l
I >6F76 | GRMWA >9C02 Address for Grom/Gram Write (set) Address port !
I >6FT7E | SCAN >P00E B, address for key scan routine in Console ROM |}
i >6F86 | XMLLNK »>»601C BLWP address fo:r XMLLNK Routine
i D>6FB8E | KSCAN >6020 BLWP address for Keyboard Scan
i >6F%6 | VSBW >6024 BLWP address for VDP Single Byte Write
) 26F9E | VMBW >6028 BLWP address for VDP Multiple Byte Write I
>6FAE | VSBR >692C BLWP address for VDP Single Byte Read I
>6FAE | VMBR >69039 BLWP address foxr VDP Multiple Byte Read I
>6FB6 | VWTR >6034 BLWP address for VDP Write To VDP Registers I
i 2>6FBE | DSRLNK >6038 BLWP address for DSRLNK Routine I
i >6FC6 | LOADER >6083C BLWP address for Tagged Object Code Loader l
>6FCE | GPLLNK >6018 BLWP address for GPLLNK Routine I
>6FD6 | NUMASG >6040 BLWP address for Numeric Assignment Routine I
>6FDE | NUMREF >6044 BLWP address for Numeric Reference Routine E
>6FE6 | STRASG »>6048 BLWP address for String Assignment Routine :
i D>6FEE | STRREF »>604C BLWP address for String Reference Routine]
! J>6FF6 | ERR >6050 BLWP address for Error Message Routine I
e e e e ———— ————— ————— +
Minl Memory RAM >7000-)7FFF
e e e e o e e e e e e o e e i e e +
i >7000 I >A55A Constant that indicates that INIT MINI MEM has been done !
1>7002 I 20000 sStart of Identifiers for Arguments passed by CALL LINKs |
I I !
1>701C + 27118 First Free address in Mini Memory Ram I
1 >701E ! J>7FFF Last Free address in Mini Memory Ram I
| { also pointer to user's REFs and DEFs thru >7FFF l
| UTLTAB E
>T7T020 it >0000 Default START address for program just loaded I
>7022] >A000 First Free address in High Memory I
>7024 i D>FFEQ® Last Free address in High Memory I
1I>7026 i >2000 First Free address in Low Memory |
1>7028 | >3FFF Last Free address in Low Menmory I
o e e e — —————————— e e +

July 1986 Page 3
The Smart Programmer

Mini Memory RAM >7000-)7FFF Continued

1>7T02A >0000 Saved Checksum
§ >7082C >0000 Saved Pointer to FLAG byte in PAB (in VDP)
1 >702E >0000 Saved GPL return address

I
I
I
1>7030 | >0000 Saved CRU base of Peripheral (>1100 for Disk Controller)
I
I
I
E

l
!
I
I
1>7032 >0000 Saved Entry address of DSR I
1} >T7034 >0000 Saved Device Name Length :
| >7036 >0000 Saved Pointer to Device Name in PAB (in VDP) !
1>7038 >0000 Saved Version Number of DSR (i.e. >0001) |
1 >703A l Start of 80 BYTE RECORD Buffer for LOADER I
| >708A I Start of DEVICE NAME Buffer I
1 >7092 I Start of UTILITY Workspace Registers I
} >7098 I Start of DSRLNK Workspace Registers I
i1 >70B8 I Start of USER Workspace Registers I
1 >70D8 I Start of LOADER Workspace Registers :
1 >TOF8 I Start of Variable Storage area (temp data)
I I
! >7118 I First Free Address in Mini Memory (Pointed to by >701C)
I l
| >7TFFF ! Last Free Address in Mini Memory (Pointed to by >701E) |
| I Also Start of User REF/DEF Table (Grows toward >7118) !
P e e e e e e e e +
Minl Memory HIGH MEMORY EXPANSION >A000-)FFFF
o e e e e e ———— e +
| >AQ00 | >000x File type and record length for EXPMEM2 RAM file !
| I (see MM manual for x values to CALL LOAD) |
P e e e e e e —————————— e ———— e +

NOTE: The Mini Memory Tagged Object Code Loader always loads RORG files
starting at >A000. If you want to load a small file into the Mini Mem RAM it
must be AORG'd to >7118.

If the file contains any AORG (Absolute Origin) Code the loader will load it
where the programmer specified (i.e. AORG >2000). Also, since the Mini Mem
Loader resides entirely in cartridge Rom and uses the Mini Mem Ram for
temporary storage, it can load DIS/FIX 80 Tagged Object Code anywhere in Low
or High Mem according to the RORG and AORG directives in the file.

__———-—ﬂ_—““_———_-"m-ﬂ-————w-——_——“_l—-—-——l--i.-ﬂr--——-—-——#——————“h—————*_————h-_-

Cassette to Disk and Back

Article by Richard M. Mitchell
Programs by Thomas S. Freeman, MD
and Richard M. Mitchell

While many of you may have vowed to stay away from the slow load of
cassette forever, there are times when cassette is a welcome advantage, as can
be evidenced by use of the programs listed below.

Tom Freeman's program was developed to allow Tom's son to carry a somewhat
minimal system on vacation and still be able to run disk—origin Assembly games.
Editor/Assembler and 32K are still required, but if you have a 32K that is not

July 1986 Page 4
The Smart Programmer

in the PEB (in the console, in the Speech Synthesizer or in a "freight train”
model), you're ready to travel light (without a forklift for the PEB)}. Of
course, the program is not limited to use for games and c¢can be used on many
Program Image files.

The program I wrote was developed in response to a number of requests from
readers who wanted to use the Assembly programs they had stored on cassette
prior to their purchase of a disk system. It is written for Mini Memory, 32K
and disk.

Though the two programs are somewhat similar, there are some interesting
contrasts. From the E/A, there was an advantage to pokeing (CALL LOAD'ing, in
TI parlance) the filename, as the E/A's BASIC support must be loaded from disk.
The program logic is dependent on the size of the files, so that adding the
BSCSUP file would have complicated matters without gaining substantial speed in
running the program, From Mini Memory, the BASIC support routines are resident
and all disk files for the program are the same size (17 sectors), so I chose
to pass the filename as a variable.

One very interesting feature of the E/A program is that if you have more
than one disk file, such as UTIL! and UTIL2, you simply save all files to tape.
When lIoading the program, you may be as impressed as | was to watch the second
cassette load prompt appear!

With the Mini Memory program, my intent is for the program to be somewhat
flexible. The program saves a memory image of the entire Mini Mem RAM (>7300
to >»7FFF), so that Assembly code with a pre-existing DEF Table is not a
requirement —-- you could even save data for peeks and pokes.

Another reason for including these programs in this issue is that a lot of
readers are getting started in Assembly and wanted some more examples,

especlally for using DSRLNK and linking to BASIC. I hope these programs
inspire you to write Assembly code.

Ahk AR A E AKX AA AR XA A AR EAKXA AR AT A A A RAA XA A AR RARXEAAA R LA A A ETAARAARAELAA A AAAAAARAERAXARA XA AR A A RN XA XA AR X XX

MINI MEMORY SAVE AND LOAD (DISK)
COPYRIGHT RICHARD M. MITCHELL
JUNE, 1986 -
FOR JULY 1986 ISSUE OF THE SMART PROGRAMMER
TO SAVE MINI MEMORY RAM:
1) INITIALIZE MINI MEMORY
2) LOAD MINI MEMORY RAM WITH CODE OR DATA
3) FROM BASIC, CALL THIS A/L PROGRAM WITH A PROGRAM SUCH AS:
100 CALL LOAD{("DSK1.MM/0O")
110 CALL LINK({("MMSAVE","DSK1.TEST/MM")
120 END
TO LOAD MINI MEMORY RAM:
1) FROM BASIC, CALL THIS A/L PROGRAM WITH A PROGRAM SUCH AS:
100 CALL INIT
110 CALL LOAD("DSK1.MM/OQO")
120 CALL LINK{("MMLOAD","DSK1.TEST/MM")
130 END
2) ACCESS YOUR CODE OR DATA NORMALLY
* QOR, USE PROGRAM LISTED HEREIN THAT PROMPTS FOR FILENAME
****t**tt#t*ttt*t*t*************#ttttt*ttttt*#ttttttttt**t**tt*****t*tt*tttt*ttt
* CAN BE USED TO LOAD THE MINI MEMORY DISPLAY ROUTINE, LINES, OR WHATEVER *
* NOTE: DEF TABLE ENTRY WILL OVER-WRITE PORTION OF CONTENTS OF MINI MEMORY x
% RAM -- MAKE ALLOWANCES! *

R R R R R R e R R R 2 2 2 2 X222 3222233333332 223332222 R R R R R B B b R 0 0t 0

¥ % N N % % ¥ % N ¥ N N N N N X ¥ W
¥ % N % % N N % % N % B N % N N W ¥ *

July 1986 Page 5
The Smart Programmer

t*t**t**tt**ttttt**tttttt**ti*******tt**tt****#****t**t**ttt***ttt***tt***t*****

* CORRECTIONS TO MM A/L DISPLAY AT (MM MANUAL) *
* (FROM NOVEMBER 1984 SUPER 99 MONTHLY) ' o
n * .
* LOCATION TYPOGRAPHICAL ERROR CORRECTION * |
H ——mmm———mer mma e S e ———— et - —————— *
* >T7E60 MOVE MOV *
* >7TE90 Al AT *
* >7E94 L1 LI *
* >7EC4 Al Al *
* >7ECS Al Al *
*:\:tt********tit*t****tt***ttt#*t*t****tttt*t*tt'.t*********tt**t*ttt*t*****tt*tttt

* MINI MEM SAVE AND LOAD

DEF MMSAVE,MMLOAD PROGRAM ENTRY POINTS

STRREF EQU >604C STRING REFERENCE UTILITY BLWP ADDRESS

VMBW EQU >6028 VIDEO MULTIPLE BYTE WRITE BLWP ADDRESS

VMBR EQU >6030 VIDEO MULTIPLE BYTE READ BLWP ADDRESS

DSRLNK EQU >6038 DEVICE SERVICE ROUTINE BLWP ADDRESS

PAB EQU >0F890 VDP ADDRESS OF PERIPHERAL ACCESS BUFFER

PABBUF EQU >1000 SIZE OF PAB BUFFER

MM EQU >7000 ADDRESS OF MINI MEMORY RAM

STATUS EQU >837C GPL STATUS BYTE ADDRESS

PNTR EQU >8356 POINTER TO 1ST CHARACTER AFTER PAB

WS EQU >8300 OUR WORKSPACE

BUF EQU >2001 POINTER TO BUFFER FOR STRING FROM BASIC BUFFER

BUFEND EQU >2010 POINTER TO END OF STRING FROM BASIC BUFFER

FNAME EQU >201C POINTER TO FILENAME PORTION OF PDATA (TO PAB)
AORG >2000 BEGIN AT HEX 2000, BEGINNING OF LOW MEMORY

BUFFER BYTE >0F LENGTH OF STRING FROM BASIC (MAX DECIMAL 15)
BSS >0F BUFFER FOR STRING FROM BASIC

CONST BYTE >0F CONSTANT TO RESTORE MAX BUFFER LENGTH

PDATA DATA >0600,PABBUF,>0000,>1000,>000F PAB INFORMATION (SEE A/L MANUAL)
TEXT ° ' PAB INFO {(FILENAME)

SV BYTE >06 FOR MOVING TO FIRST BYTE OF PDATA (SAVE)

LD BYTE >05 FOR MOVING TO FIRST BYTE OF PDATA (LOAD)

SAVRTN DATA 0 WHERE WE SAVE RETURN TO BASIC

MMSAVE MOV R1l1,@SAVRTN CONTENTS OF REGISTER 11 IS RETURN TO BASIC (KEEP)
LWPI WS LOAD WORKSPACE POINTER IN SCRATCH PAD RAM (>8300)

BL @STRING
MOVB @SV,@PDATA
BL @BEGPAB

GET STRING FROM BASIC
PUT SAVE REPRESENTATION IN PDATA (GOES TO PAB)
BEGIN THE SET-UP OF PERIPHERAL ACCESS BUFFER (PAB)

BL @SET SET MEMORY AREA (MINI MEMORY RAM)
BLWP @VMBW WRITE THE MEMORY AREA IN VDP
BLWP @DSRLNK BRANCH TO DEVICE SERVICE ROUTINE (DISK ACCESS)
DATA 8 DATA FOR DSRLNK
B @EXTT BRANCH TO EXIT
MMLOAD MOV R1l1l,@SAVRTN -

LWPI WS

BL @STRING
MOVB @LD,@PDATA
BL @BEGPAB

BASICALLY DOING ABOUT THE SAME AS
MMSAVE EXCEPT LOADING FROM DISK TC MEMORY

- aaam v oy

BLWP @DSRLNK INSTEAD OF SAVING MEMORY TO DISK
DATA 8
BL @SET
BLWP @VMBR I
B @EXIT -
STRING CLR RO -
LI R1,1 i GET A STRING FROM BASIC
LI R2,BUFFER) AND PUT IT IN BUFFER =
BLWP @STRREF -
July 1986 Page 6

The Smart Programmer

RESTORE MAX. VALUE FOR LENGTH OF STRING FROM BASIC

RETURN TO CALLING ROUTINE

MOVB @BUFFER,@PDATA+9
MOVB @CONST, @BUFFER
LI RO, BUF —
LI R1, FNAME I
S1 MOVB *R0O+,*R1+ I
CI RO ,BUFEND I
JNE S1 -
RT
BEGPAB LI RO, PAB -
LI R]1.,PDATA I
LI R2,>25 !
BLWP @VMBW I
LI R6,PAB+9 I
MOV Ré&6,@PNTR -
RT
SET LI R@,PABBUF -
LI R1,MM }
LI R2,>1000 -
RT
EXIT CLR RO -
MOVB RO ,@STATUS | RETURN
MOV @SAVRTN,1l1 I
RT -
END
> 100 CALL CLEAR
> 119 PRINT "FOR MINIMEM":" 1
SAVE" :" 2. LOAD" : " 3,
EXIT"
> 120 CALL KEY{(5,K,S)
> 130 IF (S<1})+{(K<49)+{(K>51)TH
EN 120

140 ON K-48 GOTO 1000,2000,9

99

150
160
170

PRINT
CALL KEY(5,K,S)
IF K<91 THEN 18¢
175 K=K-32

180 IF
THEN 160
> 185 KS=K

WeoN N W N

Ak khkkhkkhkkhhAAAxAR kA AR AR TR TR AR A ARkt kAR hkk kA ko hkhkhhkhhkkhkhkhkhkhkrrxhhhkkhhkkhkhkhkikhk

TAPE AND TAPE TO DISK CONVERSION PROGRAM

DISK TO
TOM FREEMAN

515 ALMA REAL DR.
PACIFIC PALISADES,
PROGRAM FILE OPTION (#5)

INSTANCES

MINUS 1.

FILE WITH A

¥ % X ¥ % ¥ ¥ % ¥ X X N ¥ ¥ ¥ »

NOTE :

OTHER, NON-STANDARD, FILES,
OF BL @ CHANGE SHOULD
4TH WORD OF EACH PAB SHOULD BE REPLACED BY >XX00,
WHERE >XX IS THE HEX EQUIVALENT OF THE NUMBER OF
SECTORS TAKEN UP BY THE PROGRAM (PER DISK CATALOG)

IF THE ORIGINAL FILE IS ON TAPE AND THIS
NUMBER IS NOT KNOWN, USE >2F, THEN CHECK THE DISK
SECTOR EDITOR TOC SEE WHERE 00'S BEGIN.
THE PROGRAM CAN THEN BE RERUN WITH THE PROPER NUMBEK.
BECAUSE OF THE REF'S TO GPLLNK AND DSRLNK, THE

"AGAIN (Y OCR N)?"

(S<1)*{R<>78)*(K<(>89)

CA 90272
FOR USE WITH PROGRAMS MEANT TO BE LOADED BY THE RUN
IT MAY BE USED FOR

OF E/A.

July 1986

TO

WW W WY WV Y WV Y WV VY VY VY Y WYV VY

MOVE FILENAME LENGTH

MOVE BASIC STRING BUFFER

BASIC

TO PROPER AREA OF PDATA

(MMSAVE OR MMLOAD)

BEGIN SETTING UP PAB

AREA IN MEMORY ACCESSED (MINI MEMORY RAM)

190 IF K=89 THEN 100
999 END

1000
1010
102¢
1030
2009
2010
2020
2030
3000
301¢
3020
3030
3040
3050
3060

BUT IN THAT CASE THE
BE DELETED, AND THE

Page 7

PRINT "SAVE"

GOSUB 3000

CALL LINK{"MMSAVE",bFS)
GOTO 150

PRINT "LOAD"

GOSUB 3000

CALL LINK{"MMLOAD",FS)
GOTO 150

IF K<>50 THEN 3030

IF KS=89 THEN 3040
CALL INIT

CALL LOAD("DSK1.MM/O")
PRINT "ENTER FILENAME"
INPUT FS

RETURN

PUBLISHED BY PERMISSION

OF TOM FREEMAN
THANKS, TOM!

TWO

The Smart Programmer

TO PDATA FILENAME

* PROGRAM WILL ONLY WORK WITH E/A.
* BASIC.

* DISK TO TAPE AND

STATUS

FAC
PAB
PNTR
WS

*

* THE FOLLOWING IS THE DISK
* AND HAS BEEN PREPARED FROM
*

DEF
REF
EQU
EQU
EQU
EQU
EQU
AORG

TAPE TO

DISTAP,TAPDIS
DSRLNK,GPLLNK, VMBW, VMBR

>837C
>834A
>QF80Q
>8356
»8300
>3000

PABDSK DATA >0500,>1000,0,>2000

» B % W

*

PABCS

CSl
SAVE
LOAD

SAVRTN

DISK

CHANGE

TAPE

e — ———_,a LR T T a4

THE
NOTE:
USE CS1.X

BYTE
BYTE
BSS

IF

DATA
TEXT
BYTE
BYTE
DATA
LI
LI
LI
BLWP
LI
MOV
BLWP
DATA
RT
LI
LI
BLWP
RT
LI
LT
LI
BLWP
LI
MOV
L1
MOVBE
LI
LI
LI
MOV
BLWP
CLR
MOVB
BLWP
DATA
RT

i
0
15

FOLLOWING IS THE

LENGTH

FILE
BASIC

BYTE

FILE NAME

CASSETTE

USING CS1 FOR INPUT
AS DEVICE NAME, NOT CS1

FILE

IN "RUN PROGRAM FILE"

IT

>0600,>1000,0,>2000,>6003

'Cs1l’
>06

>05

0

®,PAB
1,PABDSK

- 2,25

@VMBW
&, PAB+9
6, @PNTR
@DSRLNK
8

0,>1002
2,2
@VMBR

®,PAB
1,PABCS
2,13
@VMBW
1,PAB+13
1l,@PNTR
1,>0800
1,@>836D
Q,PAB+10
1,FAC
2,3

2,@PNTR—-2

@VMBR
@>83D0

@>83D0, @STATUS

@GPLLNK
>3D

IS CALLED FROM

DISK CONVERSION PROGRAM

IN E/A

LAST WORD IS SCR OFFSET & LEN BYTE

LOAD PAB FOR DISK FILE

MOVE FILE TO VDP AT >1000

2ND WORD CONTAINS # BYTES IN FILE

AND BELONGS IN 4TH WORD OF PAB

(R1)

SET UP CASSETTE PAB TO SAVE
1ST CHAR AFTER PAB MUST BE AT PNTR

>836D MUST CONTAIN 8

(DSR CALL)

- >8345 MUST CONTAIN NAME LEN (3)
FAC MUST CONTAIN DEVICE NAME

>83D0

MUST CONTAIN 0

CLEAR STATUS BYTE
BRANCH

TO THE DSR

July 1986
The Smart Programmer

Page &

DISTAP MOV 11 ,@SAVRTN

LWPI WS
MOVB @LOAD,@PABDSK PREPARE DISKFILE FOR LOAD
MOVB @SAVE,@PABCS ~ PREPARE TAPEFILE FOR SAVE

BL @DISK

LI 1l,PABCS+6

BL @CHANGE

BL @TAPE

JMP RETURN
TAPDIS MOV 11,@SAVRTN

LWPI WS
MOVB @LOAD,@PABCS PREPARE TAPEFILE FOR LOAD
MOVB @SAVE,@PABDSK PREPARE DISKFILE FOR SAVE

BL @TAPE

LI 1,PABDSK+6

BL @CHANGE

BL @DISK
RETURN CLR O

MOVB @,@STATUS

MOV @SAVRTN, 11

RT RETURN
END
> 100 DNAME=4096*3+9 > 200 CALL KEY(9®,K,S)
> 110 CALL INIT > 210 IF S=0 THEN 200
> 12¢® CALL LOAD("DSK1.DISKTAPE > 220 IF K=68 THEN 26¢
/0") > 230 IF K«<>84 THEN 209
> 130 INPUT "DISKFILE TO SAVE/ > 240 CALL LINK("TAPDIS")
LOAD ":NAMES > 250 GOTO 2786
> 140 LE=LEN(NAMES) > 260 CALL LINK("DISTAP")
> 150 CALL LOAD(DNAME, LE) > 279 PRINT :"DO ANOTHER? Y/N"
> 160 FOR X=1 TO LE Tt
> 170 CALL LOAD{(DNAME+X,ASC(SE > 280 CALL KEY({(5,K,S)
GS (NAMES ,X,1)})) > 290 IF 5=0 THEN 280
> 180 NEXT X > 300 IF K=89 THEN 130
> 19¢ PRINT :"PRESS D. DISK T > 310 IF K«<>78 THEN 280@
QO TAPE":" OR T. TAPE TO D > 320 STOP
ISK"

'"_———_—ﬂ_-—-————_—_.__-.._—_--——.-——p——.—i—-l‘--——————-———h-l-l-—-——-_--l-“—_——_-_ﬁﬂ_——_—ﬂ

Universal GPLLNK and DSRLNK

code by Craig Milier and D.C. Warren
article by Richard M. Mitchell

Listed below are versions of Assembly Language GPLLNK and DSRLNK
subroutines that will work from virtually any 99/4A (not 99/4) environment (the
addresses used are common to all versions of 99/4A's)! The subroutines will
work with any module loader or disk controller loader, with DIS/FIX 8¢ Auto
Start or Non-Auto Start programs, as well as Program Image type files! Module
GROM addresses are not used for returning to the caller. GROM @ address >176C
is used for XML RTN's.

The DSRLNK uses GROM @¢'s DSR LINK, so it works exactly the same as BASIC's
or Extended BASIC's, It will recognize any valid DSR name, including CS1 and
CS21 Readers are cautioned that unbridled access to cassette can have negative
effects, as the cassette messages are generated for Graphics mode, so that if a
program is not in standard Graphics mode, the prompts would not appear properly

July 1986 Page 9
The Smart Programmer

on the screen. Additionally, for
access. In such cases, a
would be necessary.

some programs,
routine to exclude CS1

one may not want
and CS2

cassette
as valid parameters

Best of all, the subroutines are very compact -- only 186 bytes for both

subroutines! The GPL access in the subroutines is slower than straight Assembly
code, but will likely be satisfactory for most applications.
Enjoy!
T o o A e e L — ShE . —— T — o . ——————————— L A — . ——————————— el S A — e %
* GPLLNK- A Universal GPLLNK - 6/21/85 - MG *
* This routine will work with any GROM library slot since it 1is *
* indexed off of R13 in the GPLWS. (It does require Mem Expansion) *
* This GPLLNK does NOT require a module to be plugged into the *
* GROM port so it will work with the Editor/Assembler, *
* Mini Memory (with Mem Expansion), Extended Basic, the Myarc *
* CALL LR{"DSKx.xxX") or the CorComp Disk Manager Loaders. *
* Tt saves and restores the current GROM Address in case you want *
* to return back to GROM for Basic or Extended Basic CALL LINKs %
* or to return to the loading module. *
X x
* ENTER: The same way as the E/A GPLLNK ie; BLWP @GPLLNK *
* DATA >34 *
x *x
* NOTES: Do Not REF GPLLNK when using this routine 1n your code *
x *
* 70 Bytes - including the GPLLNK Workspace *
B o o e e o . e ——————— — e At A ek il AN N R R T e i AL My e T e AL S G M T R L S e sl —— *

GPLWS EQU »>83E0 GPL workspace

GR4 EQU GPLWS+8 GPL workspace R4

GR6 EQU GPLWS+12 GPL workspace Rb6

STKPNT EQU >8373 GPL Stack pointer

LDGADD EQU >60 Load & Execute GROM address entry poilnt
XTAB27T EQU H>200E Low Mem XML table location 27

GETSTK EQU >166C

GPLLNK DATA GLNEWS R7
DATA GLINK1 RS

Set up BLWP Vectors

RTNAD DATA XMLRTN R9 Address where GPL XML returns to us

GXMLAD DATA >176C R10 GROM Address for GPL XML (OF 27 Opcode)
DATA >50 R11 Initialized to >50 where PUTSTK address resides
GLNKWS EQU $->18 GPLLNK's workspace of which only
BSS >08 R12-R15 registers R7 through R15 are used
GLINK1 MOV *R11,@GR4 Put PUTSTK Address into R4 of GPL WS
MOV *R14+,@GR6 Put GPL Routine Address 1n R6 of GPL WS
MOV @XTABZ27,R12 Save the value at >200E
MOV RS ,@XTAB27 Put XMLRTN Address into >200E

LWPI GPLWS

BL *R4

MOV @GXMLAD,@>8302(R4)
INCT @STKENT

B @LDGADD

Load GPL WS

Save current Grom Addres on stack

Push GPL XML Add on stack for GPL RTurn
Adjust the stack polinter

Execute our GPL Routine

July 1986 Page 10
The Smart Programmer

XMLRTN MOV

@GETSTK, R4

Get GETSTK pointer

BL *R4 Restore GROM address off the stack
LWPI GLNEKWS Load our WS
MOV R1l2,@XTAB27 Restore >200E
RTWP All DPone - Return to Caller
K o o o e e e i e e e e e T ———— ——— e e e T ——— k — — — — — —— ———————— - — — — — — — — x
* DSRLNK - A Universal Device Service Routine Link - MG *
* (uses console GROM 0's DSRLNK routine) *
* {do not REF DSRLNK or GPLLNK when using these routines) *
* (this DSRLNK will also handle Subprograms and CS1, CS2) *
x *x
x ENTER: The same way as the E/A DSRLNK ie: BLWP @DSRLNK X
* DATA 8 *
* x
* NOTES: Must be used with a GPLLNK routine *
* Returns ERRORs the same as the E/A DSRLNK x
* EQ bit set on return if error *
* ERROR CODE in callers MSB of Register @ on return *
* *x
* 186 Bytes total - including GPLLNK, DSRLNK and both Workspaces *
R e e e e e e e e e rn v i i o —— ——— A T Y v T —— ——— ————— —————— . o b — m—— =
PUTSTK EQU >50 Push Grom Add to stack pointer
TYPE EQU >836D DSRLNK Type byte for GPL DSLLNK
NAMLEN EQU >8356 Device name length pointer in VDP PAB
VWA EQU >8C02 VDP Write Address location
VRD EQU >8800 VDP Read Data byte location
GR4LB EQU >83E9 GPL Workspace R4 Lower byte
GSTAT EQU >837C GPL Status byte location
DSRLNK DATA DSRWS,DLINKI1 Set BLWP Vectors
DSRWS EQU 8 Start of DSRLNK workspace
DR3LB EQU §+7 R3 lower byte of DSRLNK workspace
DLINK1 MOV R1l2,R1l2 RO Have we already locoked up the LINK address?
JNE DLINK3 R1 YES! Skip loock up routine
K e e > %
* This section of code is only executed once to find the GROM address *
* for the GPL DSRLNK - which is placed at DSRADD and R12 is set to >2000 %
* to indicate that the address is found and to be used as a mask for EQ & CND *
W o o e e e i —— —————— e ok T T T —— A = R M S EE AE RS AL Ao e v v — ———————— —— . Tt Sy AL o} MY e Bl AP it el e v x
LWPI GPLWS R2,R3 Else load GPL workspace
MOV @PUTSTK,R4 R4 ,R5 Store current GROM address on the stack
BL *R4 R6
LI R4,>11 R7.R8 Load R4 with address of LINK routine wvector
MOVB R4,@>402(R13) R9,R10 Set up GROM with address for vector
JMP DLINKZ2 R11 Jump around R12-R15
DATA O R12 contains >2000 flag when set
DATA 0,0,0 R13-R15 contains WS, PC & ST for RTWP
DILINK2 MOVB @GRALB,@>402(R13)} Finish setting up GROM address
MOV @GETSTK,R5 Take some time & set up GETSTK pointer
MOVB *R13,@DSRAD1 Get the GPL DSR LINK vector
INCT @DSRADD Adjust 1t to get past GPL FETCH instruction
BL *R5 Restore the GROM Address off the stack
LWPI DSRWS Reload DSRLNK workspace
LI R12,>2000 Set flag to signify DSRLNK address is set
A e e e e e ———— > %

July 1986 Page 11
The Smart Programmer

DLINK3 INC R14 Adjust R1l4 to point to Callers DSR Type byte

MOVB *R14+,@TYPE Move 1t 1into »>836D for GPL DSRLNK
MOV @NAMLEN,R3 Save VDP address of Name Length
Al R3,-8 Adjust it to point to PAB Flag byte
BLWP @GPLLNK Execute DSR LINK
DSRADD BYTE >03 High byte of GPL DSRLNK address
DSRAD]1 BYTE >008 Lower byte of GPL DSRLNK address
R it Error Check & Report to Callers RO and EQU bit —————— oo __
MOVB @DR3LB,@VWA Set up LSB of VDP Add for Error Flag
MOVB R3,@VWA Set up MSB of VDP Add for Error Flag
SZCB R12,R15 Clear EQ bit for Error Report
MOVE @VRD,R3 Get PAB Error Flag
SRL R3.,5 Adjust it to 0-7 error code
MOVB R3,*R13 Put 1t into Callers RO {(msb)
JNE SETEQ If its not zero set EQ bit
COC @GSTAT,R12 Else test CND bit for Link Error (90)
JNE DSREND No Error Just return
SETEQ SOCB R12,R15 Error so set Callers EQ bit
DSREND RTWP All Done - Return to Caller

--—_—Fm__h_-—-—_—--#———-ﬂ-—-—__ﬂp—-!_—-l——'__-___—-“——---—--Il—-—__*_——“——__—ﬁ—_—ﬂ—_

TMS9995 Performance: An Introduction for 99/4A Owners

By D.C. Warren

The heart of our 99/4A Home Computer is the TMS99@0 microprocessor (uP).
The 999¥¢ was introduced by TI a few years back and represents one of their

first generation uPs. Since its introduction, a couple of "next generation”
devices have been designed and produced by TI with one of them being the
TMS9995 microcomputer (ucC). There has been some interest regarding the 9995,

sO it might be informative to compare its performance to the 9966 uP. To do
this, let's imagine that we could put a 9995 into a 99/4A. We'll call it the
4B for convenience and use it for performance comparisons with the 4A.

One of the features most commonly desired in golng to a new processor is
to run 1t at a higher clock rate than the old processor. If we can run the 4B
at a higher clock speed than the 4A, then our software might run faster. The
2900 can handle about a 3MHz (4-phase) clock speed internally with the
development of these c¢lock signals coming from an external IC (since the 99¢¢
is not capable of the chore by itself). The 9995, on the other hand, can
handle a 12MHz crystal directly at its clock inputs. At first it appears
favorable since the input clock frequency of the 9995 is FOUR times that of the
9999. Unfortunately, the 9995 divides this input frequency by four and runs
internally at S3MHz. S0, 1t turns out that both the 9966 and 9995 run at the

same internal clock frequency, the difference being that the 9995 has the
convenience of built—in clock circuitry.

The data bus width of the two processors 2also differs, with the 99¢4¢
having a 16-bit bus and the 9995 having an 8-bit bus. The data bus width can
be important in the performance of a system because it determines how much
information can be passed to and from the processor at any one time (i.e. the
wider the bus the faster a system can be). Well, that means that the 4B must
make two memory fetches in order to grab a word out of memory whereas the 4A
can do the same in one memory fetch. It at first appears that we have taken a

July 1986 Page 12
The Smart Programmer

0

N

step backwards with the 4B. However, a couple of other factors come into play
to balance out performance of the two processors. The 9995 is capable of
making a byte memory fetch (no wait states) in just one 3MHz clock cycle. The
9993 must take two cycles (no wait states) to make a word {(two bytes) memory
fetch. Two times one equals one times two and they're even.

Another thing to consider is that the bus in the Peripheral EXxpansion Box
(PEB) is only 8-bits in width. The 9906 couldn't grab a complete word from
memory expansion in one memory fetch if it wanted to! In fact, one wait state
minimum (some devices insert more) is Iinserted with each byte fetch. That means
the 4A has to expend six clock cycles instead of two jJjust to get a word from
expansion memory. The trouble spills over to the 4B since it must be {(should
be) compatible with any card residing in the Expansion Box. Two wait states
per byte fetch must be inserted to match the six clock cycles per word fetch of
the 4A. One could reduce the number of wait states inserted by the 4B but at
the risk of not being compatible with some of the cards in the PEB. So, it
appears that the present 4A equipment is part of our performance bottle neck.

If the 9995 runs at the same internal clock frequency as the 9988 and both
processors take about the same amount of time to fetch a word from memory then
what have we gained with the 4B? Well, there are factors other than internal

clock frequencies and memory cycle times that are often overlooked which can be

important to performance. Three of these factors are processor efficiency, the
9995 Iinstruction pre-fetch and the fact that the 9988 has to do a "read before
write" memory sequence not required by the 9995.

What does it mean when we say that the 9995 is more efficient than the
99007 For every machine instruction, LI or BLWP for example, known to the
processor, there is a microprogram (composed of microcode) inside the processor
which executes the instruction. So, after a machine instruction is fetc¢ched,
the processor decides what instruction it has and executes its own microprogram
to accomplish the task defined by the machine instruction. The 9995 can do
this on the average using fewer clock cycles per machine instruction than the

9900.

The Instruction pre—-fetch of the 9995 also helps increase performance by
"pre—fetching” the next instruction to be executed by the processor. While the
processor 1s exXxecuting one of its microprograms, the pre—-fetch 1is busy going

back out to memory and grabbing the next machine instruction. When the
processor finishes with the current machine instruction, the next one is
already decoded and waiting for it. This saves on some time—consuming memory
cycles.

The last area mentioned is the "read before write" performed by the 9990

on every write memory cycle. Because of the way the 99¢@¢ was designed, it is
necessary for the processor to do a read memory cycle before it can perform a
write memory cycle,. We won't go into the why's here but those interested can

investigate further by reading page 22 of the TI-99/4A CONSOLE and
PERIPHERAL EXPANSION SYSTEM TECHNICAL DATA book. The 9995 does not have
to go through the same "read before write" process with every write memory
cycle and can, therefore, execute a write memory cycle in less time than the

9900,

Now that we've touched upon some of the major performance differences
between the 99080 and 9995, let's see what kind of difference it might make in
the speed of the 4B. We'll take a piece of code from the key scan routine in
the 4A and calculate the speed at which the 99686 and the 9995 execute the code.
When the console is executing the key scan routine its workspace is in the GPL
workspace area and the routine itself is in console ROM. The method of
calculating processor instruction speed can be found in the data manual of each

July 1986 Page 13
The Smart Programmer

respective processor.

9995 CYCLES

I I I

INSTRUCTION |ADDR MODE! INSTR | ADDR | INSTR | ADDR -~

——————————————————— e e — -~ — o}

CLR R3 I WR (/*106,3 | ¢, 1+ 5,4 + 0,0 |

SETO R4 l WR 1,3 + 2.9 | 5,4 | 0,0 |

STCR R4,5 i WR | 42,4 | ©,0 | 28,8 | 0,0 !

SRL R4,9 I WR y 30,3 1 o@,¢ | 17,6 { 0,0 |

JOC JSCAN i - ¢ 8,1 {+ ©,0 } 4,2 + 0,0 |

MOVE @H1D(RS5) ,@R3LB: INDX ! 14,4 { 8,2 | 4,4 | 5,4 |

] SYMB E ¢ 8,1 | . 2,2 |
SLA R4.,1 I WR | 14,3 | 0, | 9,6 | 0,0 |
AI R4,BBJOY - } 14,4 { 0,0 | 8,8 | 0,0 |
R D g e dm o ———
TOTALS 142,25 | 16,3 | 80,42 | 7,6
I
GRAND TOTALS| 158,28 87,48
* First coperand=clock cycles
and second operand=memory accesses
if there are wait states.

We find that the 999090 must expend 158 c¢ycles with 28 additional memory
cycles per wait state to exXxecute the above code segment while the 9998 expends
87 cycles and 48 cycles respectively on the same segment. Now we want to
translate our results into total time and do a comparison between the two
processors. The conversion formulas are:

9900: T=tc{CH+{W*M}} T—-->Totrtal time in microseconds
tc~->Clock period in microseconds -
C-=->Clock cycles
#1) W——>Number of wait states inserted
M——>Memory accesses
NOTE: No wait states in SRAM and console ROM!
T=0.333{158+(0*x28) })=52.614uS
1995: T=tc[Cl+C2+Wx {XM1+XM2)] T-—->Total time in microseconds
tc2-->CLEOUT clock period in microseconds
Cl-->Clock cycles
C2-->Clock cycles for coperand address derivation
2) W-->Wait states
XM1-->0ff chip memory cycles
XM2-->0ff chip memory cycles for operand address
derivation
T=0.333[80+7+0*%(42+6)]=28.9T71us

Taking a ratio: ©52.614-28.971

#3) e *100=81.61%
28.971

S0, the 4B can execute the above code from the key scan routine about 80%

faster than the 4A, On the average, this is representative of most of the code =~

July 1986 Page 14
The Smart Programmer

executed from console ROM (GPL
interpreter, key scan, interrupt
routine, etc.).

Overall, we see that the 4B can
run programs at an increased speed
compared to the 4A. There are other
things to consider, however, before
running out and trying to put a 9995
into the 99/4A. The internal memory
and CRU structure of the 9995 1is
different than that of the 4A. The
9995 has an internal timer and on-chip
memory which may affect some eXxisting
4A software. It also reserves CRU bits
for its own use, so that in evaluating
possible configurations, one might
consider the possibility of a system
override of & particular card, as 1
have not investigated the consequences
of the CRU structure.

Major changes to the 4A console
would also be in order. The fact that
the two processors have different data
bus widths implies a major modification.
There are also timing signal changes,
etc. which would have to be dealt with.

[f one is serious about such a
project, there is another alternative
which may be even more attractive. The
next set of processors introduced by TI
after the 9995 is the 9990860 family.
Technologically, the 990@¢0's are an
improvement over the 9995 in just about
every way (The significantly higher
price of the 9906606's is one possible
explanation of why 998@8¢@d's have
apparently not yet been considered a
commercially viable option in today's
price-conscious marketplace.). The
9900@'s do not have any special memory
mappilng or CRU reservations and, like
the 9990, are on a 16-bit bus. The
performance increase over the 4A could
be more than double that of the 4B we
discussed (maybe more). Someone may
wish to Investigate that possibility
some more.

In this article, I've tried to
give a brief performance overview of
the TMS9995 uC chip produced by TI. I
hope that comparing its operation to
the more well-known TMS9988-based 99/4A
was interesting as well as informative.

Editor: The above article
discusses only one of many possible

July 1986

implementations of a TMS9995. Other
configurations might present advantages
or problematic ramifications not
covered herein, As | have stated
before. applications dictate hardware.
Whether you have an interest in using
a TMS$995 is your decision. I simply
hope this article will allow readers
the basis for a portion of the insight
required to make such an evaluation.
Richard Mitchell

New Software

Public Domain

Program: MAX/RLE

Author: Travis Watford

Avallablility: Communications networks
and user groups

Significance: Uses RLE (Run Length
Encoded) standard format to provide
break—-through interface with graphics
from other computers.

Fairware

Program: RAG Macro Assembler

Author: R.A. Green, 1032 Chantenay
Drive, Gloucester, Ontario, Canada
K1C 2K9.

Availability: Author, user groups.
2 disks. $15 suggested to author.

Significance: Many useful features
plus user-extensible macro facility.
Source code for several programs
included in package.

Pubiication

Program: XXB

Author: Barry Traver, et. al.

Availability: GCENIAL TRAVelER, 835
Green Valley Drive, Philadelphia, PA
19128 (by subscription, a "diskazine")

Significance: First major simplified
Assembly interface with EXxtended
BASIC.

Commercial
Program: DISKASSEMBLER™
Author: Tom Freeman
Availability: Millers Graphics, 1475 W.
Cypress Ave., San Dimas, CA 91773.
$19.95 plus shipping and handling.
Significance: Very quick and accurate
disassembly from disk or memory.
Revise, de-bug or move programs. Easy
to use. Most programs re—assemble
with little or no further work.

Page 15

The Smart Programmer

-————-_---__-_-_-—-——-——-—_—-—-——i_hd——_—_______--..p_q__.._-___—__—__i__"__-___ﬁ_______“_'-—

BYTEMASTER ORDER FORM

! $ 1.75 U.S. JUNE 1986 ISSUE
$ 2.75 FOREIGN JUNE 1986 ISSUE

Name
The Smart Programmer
a Address
| | $18.00 U.S. AND CANADA FIRST CLASS
- | City
| | $15.00 U.S. THIRD CLASS (no back issues)
- State
| | $20.00 FOREIGN SURFACE (no back issues)
— Zip Code
| | §$32.00 FOREIGN AIRMAIL
— Country

Super 99 Monthly

Payments accepted by

check or money order

in U.S. Funds, coded

S 1.00 Back issues - ea. (U.S. Third Class) for processing through
the U.S. Federal

l $18.00 Complete set of back issues

! $ 1.50 Back issues - ea. {Canada and U.S. Reserve Banking System.
_ _ First Class) No billings or credit
P S 2.50 Back 1ssues - ea. {Foreign Air Mail) sales. Dealer

inguiries invited.
Discounts available on
quantity orders.

! | $12.00 Programs on disk (non-FQRTH)

i | $15.00 Super 99 Handicapper
(req. XB, 32K, Disk, Printer)

I - - I S T SR S SRR PR ki sl Gt IS AT BT IS B T IS B S B S Y NN SR L shipkl sk sl byl b dppee ey TS I WS T B TS DI TEE BT I BT SIS DEDT DEDS DD SDDT DT SDDS DDEE SEET DEES DN SENE DN DN SEEE BEEE A Al B o ukih B B Bl mlEE B el s skl

The Smart Programmer 1s published monthly by Bytemaster Computer
Services, 171 Mustang Street, Sulphur, LA 70663. All correspondence
received will be considered unconditionally assigned for publication and
copyright and subject to editing and comments by the Editor of The
Smart Programmer. Each contribution to this issue and the issue as a

whole COPYRIGHT 1986 by Bytemaster Computer Services. All rights reserved.

Cgpying done for other than personal archival or internal reference use
without the permission of Bytemaster Computer Services is prohibited.
Bytemaster Computer Services assumes no liability for errors in articles.

Editor Richard M. Mitchell Staff Craig Miller
Charles M. Robertson
Mariusz Stanczak
Steven J. Szymkiewlicz, MD
Barry A. Traver
D.C. Warren

N SN S S B S S R el skl sheofle il sk s sy T ST S BN IS B IS DI DI DI DS DI DI B DI I S I D DI S B I LA I I D B I - I I S T B BT D I I B T DT T - T T AT T I BT T BT S DT T B T T B R G -

Gram Kracker and DISkKkASSEMBLER are trademarks of Millers Graphics

*_--—@_-_—_-—_-_—_—_-“H_“—hu-h*ﬂ_uu“‘-h_—-—--—_—-_-—+—“H--“~“__

' Bulk Rate
Bytemaster Computer Services | U.S. Postage
171 Mustang Street I PAID
Sulphur, LA 70663 I

! Permit No. 141

L & B B N & _§F N N N I & B N N I I _F N I & I W I W W R NI R U R T R TT AR T T TR T TR W T TN T W W W W I W B L I I I I R]

July 1986
The Smart Programmer

Sulphur, LA 78663

v e S S EE N A W e e RN e ey W B gy A gy s S AR

miglp. sl

mepy EFEE ssas TEEE ess sk TESY el TFEE OB -

ol N S v ey R ey B B gl e

