VOLUME 2 ISSUE 3 $1.76

AUGUST 1986

"Serving 99'ers Since 1984"

THE SMART

PROGRAMMER

Well, before we get started this
month, please check your mailing label
for the date of your subscription
expiration. If you subscribed through
Millers Graphics and have not yet
renewed, you must renew by September 15
to ensure not missing a single issue.

Q&A

It is unfortunate that the Mini
Memory Save and Load program in the
July 1986 issue uses 17 sectors of a
disk to store the contents of the
module when, in some cases, it may only
be necessary to save a small portion of
the memory to be able to reconstruct
the intended purpose of the program.
Could it be modified in some way to use
only the number of sectors necessary to
retain the intended application?

This 1s quite an interesting
questiont! As I pointed out in the
article that accompanied the program,
my intention was to allow gquickly
loading peek and poke values in the MM
space without having to write a program
that would have a REF/DEF table. The
REF/DEF table, by the way, continues to
grow with new entries, even in a new
session (MM is battery-backed), until
cleared. By loading the entire module
RAM space, there is no possibility of
pre—existing REF/DEF table entries
remaining to use up memory oOr cause
problems. But, for those who wish to
save only a portion of the MM space,

August 1986

you might want to refer to this month's
XB MIRROR program for an example of
saving an Image of variable size.
Still, AORG code that does not correct

the FFAM could present a problem in
identifying where code resides in MM.
The Mini Memory Save and Load _._rogram
uses the only safe universal save and
lcad method I've found -- save the
entire MM RAM area. It has aiso come
to my attention that I published the
program as soon as it worked and didn't
correct a few comments and non-fatal
errors. The TEXT for the PAB Filename
used 16 spaces and should have used
only 15, necessitating the addition of
an EVEN directive. Under the BEGPAB
label, hex was used instead of decimal,
s0 the instruction should have read
LI R2,26 instead of >25. The PABBUF EQU
should have been commented as being the
location of the PAB buffer, not its
size, Finally, under the EXIT label, I
omitted a register designation, which
should have read MOV @SAVRTN,R11.

XB MIRROR

by Richard M. Mitchell

Here it is'! New graphics
capabilities for Extended BASIC! With
the XB MIRROR program listed below, you
can create a mirror image of an
Extended BASIC (XB) screen and do a liot
more. Before you get started, please
note that you will need a GPLLNK and a
DSRLNK, such as the ones we published

Page 1

The Smart Programmer

last month.

There are 18 new routines for you
to use. The routines use four buffers
In Low Memory to store VDP information.
In the buffers, you can store copies of
two Screen Image Tables (SIT's) and
coples of two Pattern Descriptor Tables
(PDT's) you have created. The SIT is
the area of Video Display Processor RAM
(VDP) that stores the characters that
are on the screen (XB's GCHAR retrieves
from the SIT). The PDT is the area of
VDP in which the Hex codes that define
the patterns of characters reside (XB's
CHARPAT retrieves from the PDT). You
can use these buffers through the
routines provided by XB MIRROPR to
quickly "page" screens, regardless of
whether you are using the mirroring
routines or not, Refer to the XB demo
and test program that follows the
Assembly source code for examples of
usage of the routines.

There are 2 routines to create a
mirror image:

CALL LINK{"MIRROR",A$,B$) uses a bit
reversal routine to mirror individual
characters in the range A$ to BS. AS
and B$ are single characters. For
instance, if A$="A" and B$="Z", the
patterns defined where the capital
letters originally reside would be
mirrored. B$ should be greater than or
equal to A$ (refers to ASCII values).
"MIRROR” alters the PDT, but does not
affect any of the 4 buffers.
WARNING: This routine does not do
timit checking —-- if AS$ {is greater
than BS$ or either is not in the valid
X3 ASCIH range of 30 to 143, you may
get undesirable occurrences.

CALL LINK("FLIP") "flips" the screen.
In other words, the character at Row
1, Column 1 is replaced by the
character at Row 1, Column 232 and the
character at Row 1, Column 32 is
replaced by the character at Row 1,
Column 1, ete. To truly mirror a
screen, you must use both "FLIP" and
"MIRROR" (separating the functions
provides increased versatility).
"FLIP" alters the SIT. WARNING: This
routine buffers through the first SIT
buffer (SIT!), wiping out the
previous contents of SIT1 (for speed
and byte-efficiency).

August 1988

There are 4 routines to put the
tontents of the VDP tables in the
buffers in Low Memory:

CALL LINK("PUTSI1")
CALL LINK("PUTSI2")
CALL LINK("PUTPD1")
CALL LINK("PUTPD2")

There are 4 routines to get the
contents of the buffers and place the
data in the VDP tables:

CALL LINK("GETSI1")

CALL LINK("GETSI2"),
CALL LINK("GETPD1")
CALL LINK("GETPD2")

There are 4 routines to save the
contents of a buffer in Low Memory to a
disk file, F$ (WARNING: The disk
routines may not do adequate error
checking. Some disk ‘errors may go
undetected.):

CALL LINK("SAVSI1",F$)
CALL LINK("SAVSI2",F$)
CALL LINK("SAVPD1" F$)
CALL LINK("SAVPD2",F$§)

Finally, there are 4 routines to
load the contents of a disk file to s
corresponding buffer in Low Memory:

CALL LINK("LODSI1",F$)
CALL LINK("LODSI2",F$)
CALL LINK("LODPD1",F$)
CALL LINK("LODPD2",F$)

If you are experienced with
Assembly Language, you should find it
quite easy to extract individual
routines to run on their own. Be sure
to Include all EQU's, DEF's, DATA's,
BYTE's and BSS's that would be
required. Once mirrored screens have
been developed and saved to disk, your
applications may require only the load
and get routines (and possibly the put
routines). As the program 1is
presented, it uses 3,360 bytes for the
4 main buffers plus 186 bytes for the
DSRLNK and GPLLNK (from last month) plus
only 698 bytes for the 18 new routines,
for a total of only 4,244 bytes
including all buffers and workspaces!
Note that this month's source code
includes a COPY directive that assumes
you have the DSRLNK and GPLLNK as 2
source files in drive 1.

Page 2

The Smart Programmer

After you have Assembled the
source file, naming the object file
"MIRROR/0", and have keyed in the XB
program, copy the objJect file and the
XB program onto a blank disk (so that
vou have a backup and your "work disk"

has free space).

Next, run the XB program. The
program will display a number in
each corner of the screen and an arrow
near the center of the screen and will
then mirror the screen and proceed to
test and demo all of the routines. Do
not be concerned if you are using a
television and cannot see the numbers
at the edge of the screen ~- a GCHAR
will test the presence of the numbers,
even if you cannot see them. As the
program finishes, you should see the
before and after (mirror) character
patterns of ASCII 50 and 143 and the
before and after values from GCHAR's of
the 4 corners of the screen, as
follows:

0038440810207C00
001C221008043E00

ARKAKK KA KA RKRK KRR AR AR R KRR N k&
FEFCFS8FOEQCO8000
T7F3F1FOF07030100
ARKRARKKNARKAKRRR A AR AR KKK Rk kk &k & &
49

50
AERAKKAAAKKARRRR R KR RA KRR KA Ak &
50

49

AAxkA Rk hkhkkhkhkhkhkhkhkhkhkhkwkikhkikikkxi

51
52
AEARKKRKKRKARK KRR AR KRR Kk ke k ok ok
52
51

Yo drdk de ko Kk %k ok ok vk ok d ko %k ok vk ko ke ok ok ok KX

The 4 disk files for saving the buffers
should occupy 4 sectors each for files
"SITI"™ and "SIT2" and 5 sectors each
for "PDTI" and "123456789¢" (the PDT2
file, which is named to test acceptance
0f the maximum filename length).

After running the program, some of
you will probably be saying, "Wow!",
but, unfortunately, some of you will
find that you didn't key the program in
properly. So, next month I'll cover
the methods that I used to de~bug the

August 1986

program, in hopes that sgsuch a
discussion might help vyou with both
your own programs and ones you key in
(no, I don't just "whip out" a program
like XB MIRROR in an hour without
errors -- it took me a lot of time and
several de-bugging sessions).

The coding of XB MIRROR ylelds a
couple of tips for beginners. First,
multiplication can be accomplished with
a bit shift. Under the label "MULPLY",
SLA R1,3 was used to multiply the
contents of Register 1 by 8. Each bit
shifted advances by a power of 2.
Shifting three bits is equlvalent to
multiplying by 23, 8. Of course, if
any possible case would cause usable
bits to be shifted out at the MSb (Most
Significant bit, "left side"), a
32-bit MPY would be required. The
second feature of XB MIRROR that is
noteworthy for Assembly beginners is
that the flow of the program does not

jump around in a random, "spaghetti-

code"” fashion, but instead uses
branches wisely to conserve bytes and
make for readable code that was written
from the top downward. The Top Down
Method is a traditional, widely
accepted and very useful programming
technique that can (should?) be applied
to most languages, The boundaries of
routines are clearly discernable and
common routines and values are shared
efficiently.

For the few of you who haven't
noticed by now, I really enjoyed
writing XB MIRROR and I hope you enjoy
using 1it. If interest dictates, 1'll
try to offer a CALL LOAD version in a
future issue -~ possibly a scaled-down
version for Mini Memory, so that memory
expansion and disk would not be
required. As there is still plenty of
memory available for the XB version, it
will also be possible to add many more
routines. Let me know what you would
like to see added to the program! Maybe
we could add a brief routine each
month. I've already received several
interesting suggestions, so it might be
interesting to see how such a project
might develop. You might also be
interested to know that Genial
Traveler's excellent XXB program
AORG's into High Memory, so XB MIRROR
and XXB (in Graphics, not Text mode)
should currently be compatible!l

Page 3

The Smart Programmer

AAERRKRR Ak Rk AkhkkRXRkhkkhAhkkXAkhkkkhhhkhkkkxkik

* XB MIRROR *
* BY RICHARD M. MITCHELL *
* BYTEMASTER COMPUTER SERVICES * |
* COPYRIGHT 1986 . T

AEERARRAATAAA AR A A A AR A Ak XA AR XA XAk kAR

DEF MIRROR,FLIP

DEF PUTSI1,PUTSIZ2,GETSI1,GETSIZ2
DEF PUTPD1,PUTPD2,GETPD1,GETPD2
DEF SAVSI1,SAVSIZ2,SAVPD1l,SAVPDZ2
DEF LODSI1,LODSI2,LODPDl,LODPDZ

PDT EQU >@3F0 VDP ADDRESS OF BEGINNING OF PATTERN DESCRIPTOR TABLE
STRREF EQU >2014 STRING REFERENCE INTERFACE WITH XB
FAC BEQU >834A FLOATING POINT ACCUMULATOR ADDRESS USED BY GPL ROUTINE
STATUS EQU >837C GPL STATUS BYTE (SEE BELOW)
WIPBEG EQU >8300 >8300 THRU >8340 ARE WIPED OUT BY GPL BIT REVERSAL
WIPEND EQU >8340 LAST WORD OF WIPE-OUT AREA
LEN1 BYTE >01 LENGTH (ONE~BYTE CHARACTER FROM BASIC) ({(ALWAYS 1) |
CHR1 BYTE >00 ASCII VALUE OF FIRST CHARACTER FROM BASIC :
LEN2 BYTE >01 LENGTH OF SECOND CHARACTER FROM BASIC (ALWAYS 1) ;
CHR2 BYTE >00 ASCII VALUE OF SECOND CHARACTER FROM BASIC ?
OFFSET BYTE >1E REFERENCE TO BASIC'S FIRST 'REAL' CHARACTER, 30 ;
EVEN GET BACK ON EVEN WORD BOUNDARY |
WIPBUF BSS >42 BUFFER TO STORE >8300 TO >8349 WIPED OUT BY GPL
WBUFEN EQU $-2 LAST WORD OF WIPE-OUT BUFFER
COUNT BSs 2 BUFFER FOR NUMBER OF BYTES TO REVERSE
MYWS BSS >20 16 2-BYTE REGISTERS
MIRROR LWPI MYWS SET OUR WORKSPACE PCINTER
CLR RO =
LI R1,1 ! GET BEGINNING CHARACTER TO REVERSE FROM BASIC

LI R2,LEN1 |
BLWP @STRREF -

INC R1 I

LI R2,LEN2 } GET ENDING CHARACTER TO REVERSE FROM BASIC

BLWP @STRREF -

CLR R1 SET R1=0

MOVB @CHR1,RO GET READY FOR CALCULATIONS

MOVB @CHR2,R1 GET READY FOR CALCULATIONS

BL @MULPLY -

Al R1,8 { CALCULATE NUMBER OF BYTES TO REVERSE

MOV R1l,@COUNT -

CLR RO SET R0G=0

MOVB @OFFSET,R0 SET MSB OF RO=>1E

CLR R1 SET R1=0

MOVB @CHR1 ,R1 SET MSE OF R1=FIRST CHARACTER TO BE REVERSED

BL eMULPLY CALCULATE BYTES INTO PDT

LI RO, PDT SET RO=BEGINNING OF PDT

A R1,R0 ADD BYTES INTO PDT TO PDT TO SET FIRST BYTE TO REVERSE

MOV RO,@FAC SET VDP ADDRESS OF FIRST CHARACTER TO REVERSE
* GPLLNK BIT REVERSAL USES FAC.

MOV @COUNT,@FAC+2 SET NO. OF BYTES TO REVERSE
* GPLLNK BIT REVERSAL USES FAC+2.

CLR RO GET READY TO CLEAR THE GPL STATUS BYTE

MOVB RO ,@STATUS CLEAR THE GPL STATUS BYTE (MUST DO BEFORE GPLLNK)

L1 R1l,WIPBUF | MOVE >8300 THRU >8340 TO BUFFER
SAVWIP MOV *RO+, *R1+ i MANY THANKS TO CRAICG MILLER FOR REMINDING TO DO THIS
CI RO ,WIPEND | IN THE MAY 1984 SMART PROGRAMMER. -

JNE SAVWIP ~

August 1986 Page 4
The Smart Programmer

BLWP @GPLLNK BRANCH TO GPLLNK AT POINTER INDICATED BY FOLLOWING DATA
DATA >003B POINTER TO GPLLNK BIT REVERSAL ROUTINE
LI RO,WIPBUF -
LI R1,WIPBEG ! RESTORE WHAT GPL BIT REVERSAL WIPED OUT IN SCRATCH
| P.ESWIP MOV *R@+, *R1+ | PAD RAM, >8300 THRU >8340.
y CI RO, WBUFEN |
| JNE RESWIP -
RETURN LWPI GPLWS LOAD WORKSPACE POINTER AT THE GPL WORKSPACE
Jf B @006A BRANCH TO CLEAR STATUS BYTE AND RETURN TO BASIC.
* THANKS FOR THIS TIP IN GENIAL TRAVELLER, CREDITED TO
* PAUL CHARLTON
MULPLY SB RO,R1 SUBTRACT BYTES AND LEAVE DIFFERENCE IN MSB OF R1
SWPB R1 SWAP BYTES TO SWITCH FROM BYTES TO WORDS
SLA R1,3 MULTIPLY BY 8
RT RETURN TO CALLER
VSBR EQU >2028 VIDEO SINGLE BYTE READ BLWP ADDRESS
VMBW EQU >2024 VIDEO MULTIPLE BYTE WRITE BLWP ADDRESS
FLIP LWPI MYWS SET WORKSPACE
CLR R2 SET R2=FIRST COLUMN OF CURRENT ROW
CLR R3 SET R3=OFFSET TO SIT1
ROW MOV R2,R0 SET RO=FIRST BYTE OF CURRENT ROW
AI RO ,>1F SET RO=LAST COLUMN OF CURRENT ROW
RC BLWP @VSBR READ BYTE FROM VDP
MOVB R1,@SIT1(R3) PUT BYTE READ INTO APPROPRIATE BYTE IN SIT1
INC R3 POINT TO NEXT BYTE IN SIT1
C RO,R2 FINISHED ROW?
JEQ RC1 YES, SET UP FOR NEXT ROW
DEC RO POINT TO NEXT COLUMN ON SCREEN
> JMP RC DO NEXT COLUMN, SAME ROW
RC1 CI R2,>2E0 FINISHED SCREEN?
JEQ EXIT YES, EXIT
AI R2,>20 SET R2=BEGINNING OF NEXT ROW
JMP ROW DO NEXT ROW
EXIT CLR RO -
LI R1,SIT1 ! PUT SIT1 IN SIT AND
LI R2,>300 | BRANCH TO RETURN TO BASIC ROUTINE
BLWP @VMBW |
B @RETURN -
SIT1 BSS >300 FIRST BUFFER FOR DATA FROM SIT
SIT2 BSS >300 SECOND BUFFER FOR DATA FROM SIT
VMBR EQU >202C VIDEO MULTIPLE BYTE READ BLWP ADDRESS
PUTSI1 LWPI MYWS SET WORKSPACE
LI R1,SIT1 GET READY TO READ INTO BUFFER SIT1
JMP PUTSI USE COMMON ROUTINE
PUTSI2 LWPI MYWS SET WORKSPACE
LI R1,SIT2 GET READY TO READ INTO BUFFER SIT2
PUPSI CLR RO GET READY TO READ FROM FIRST SCREEN POSITION, 0
LI R2,>300 GET READY TO READ ENTIRE SCREEN
BLWP @VMBR READ SCREEN AND STORE IN BUFFER
B @RETURN BRANCH TO RETURN TO BASIC ROUTINE
GETSI1 LWPI MYWS SET WORKSPACE
LI R1,SIT1 GET READY TO WRITE FROM BUFFER SIT1
JMP GETSI USE COMMON ROUTINE
GETSI2 LWPI MYWS SET WORKSPACE
) LI R1,SIT2 GET READY TO WRITE FROM BUFFER SIT2

August 1986 Page 5
The Smart Programmer

GETSI

PDTI1
PDT2
PUTPD1
PUTPDZ2

PUTPD

GETPD1

GETPD2

GETPD

PABBUF
PAB
PNTR
SV

LD
PDATA
FNAME
CONST
ADDRES
SAVSI1

SAVSI2
SAVSI

SAVPD]1

SAVPD2

SAVPD
SAV

LODSI1

CLR
LI
BLWP

BSS
BSS
LWPI
L1
JMP
LWPI
LI
LI
LI
BLWP

LWP1
LI
JMP
LWPI
LI
LI
LI
BLWP

EQU
EQU
EQU
BYTE
BYTE
DATA
TEXT
BYTE
DATA
LWPI
LT
JMP
LWPI
LI
LI
JMP
LWPI
LI
JIMP
LWPI
LI
LI
BL
MOVB
BL
BL
BLWP
BLWP
DATA

LWPI
LI
JMP

RO
R2,>300

@VMBW
@RETURN

>390
>390
MYWS
R1,PDTI1
PUTPD
MYWS
R1,PDT2
RO, PDT
R2,>390
@vVMBR
@RETURN
MYWS
R1,PDT]1
GETPD
MYWS
R1,PDT2
RO, PDT
R2,>399
@VMBW
@RETURN

>1000
*QF890
>8356
>06
>05

>0600, PABBUF ,>0000,>0000,>000F

>@F

@

MYWS
RO,SIT1
SAVSI
MYWS
RO,SIT2
R1,>300
SAV
MYWS

RO ,PDT1
SAVPD
MYWS
RO, PDT2
R1,>39%
SSTRETC

@SV ,@PDATA

@SETPAB
@SETADD
@VMBW
@DSRLNK
8
@EXITD

MYWS
RO,SIT1
LODSI

GET
GET

READY TO WRITE TO FIRST SCREEN POSITION,
READY TO WRITE ENTIRE SCREEN

WRITE BUFFER TO SCREEN

BRANCH

FIRST
SECOND BUFFER

SET
GET
USE
SET
GET
GET
GET

TO RETURN TO BASIC ROUTINE

BUFFER FOR DATA FROM PDT

FOR DATA FROM PDT
WORKSPACE

READY TO READ INTO BUFFER PDT1
COMMON ROUTINE

WORKSPACE

READY TO READ INTO BUFFER
READY TO READ FROM PDT
READY TO READ ENTIRE PDT

PDT2

READ PDT INTO BUFFER
BRANCH TO RETURN TO BASIC ROUTINE

SET
GET
USE
SET
GET
GET
GET

WRITE BUFFER

WORKSPACE

READY TO WRITE
COMMON ROUTINE
WORKSPACE

READY TO WRITE
READY TO WRITE
READY TO WRITE

FROM BUFFER PDT1

FROM BUFFER PDT2

TO PDT

ENTIRE BUFFER TO PDT
INTO PDT

BRANCH TO RETURN TO BASIC ROUTINE

DATA BUFFER

ADDRESS IN VDP

PERIPHERAL ACCESS BUFFER ADDRESS IN VDP

POINTER

FOR
FOR

CONSTANT TO
POINTER TO ADDRESS CF SIT1 OR SIT2 OR PDT1 OR PDT2

SET
GET
USE
SET
GET
GET
USE
SET
GET
USE
SET
GET
GET
GET
PUT

TO FIRST BYTE AFTER PAB
FIKST BYTE OF PDATA IF SAVE
FIRST BYTE OF PDATA IF LOAD

PAB INFO (SEE P.
PABR INFO (FILENAME)
RESTORE MAX. FILENAME LENGTH

WORKSPACE
READY TO SAVE
COMMON ROUTINE
WORKSPACE
READY TO SAVE FKCM S51IT2
READY TO SAVE ENTIRE BUFFER
COMMON ROUTINE

WORKSPACE

READY TO SAVE FROM PDT1
COMMON ROUTINE

WORKSPACE

READY TO SAVE FROM PDT2
READY TO SAVE ENTIRE BUFFER
FILENAME FROM BASIC, ETC.
SAVE DESIGNATOR IN PDATA

FROM SIT1

ESTABLISH PAB IN VDP

ESTABLISH MEMORY

AREA TO SAVE FROM

WRITE THE MEMORY AREA IN VDP

USE

DEVICE SERVICE ROUTINE FOR DISK ACCESS

DATA FOR DSRLNK
BRANCH TO EXIT DISK ACCESS ROUTINES

SET
GET
USE

WORKSPACE
READY TO LOAD TO SIT1
COMMON ROUTINE

August 1986 Page 6
The Smart Programmer

294 OF E/A MANUAL)

149 CALL LINK("PUTSIZ2")

August 1986

LODSIZ LWPI MYWS SET WORKSPACE
LI RO,SIT2 GET READY TO LOAD TO SIT2
LODST LI R1,>300 GET READY TO IL,OAD ENTIRE BUFFER
JMP LOD USE COMMON ROUTINE
LODPD1 LWPI MYWS SET WORKSPACE
LI RO,PDT1 GET READY TO LOAD TO PDT1
JMP LODPD USE COMMON ROUTINE
LODPDZ2 LWPI MYWS SET WORKSPACE
LI RO ,PDT2 GET READY TO LOAD TO PDT2
LODPD LI R1,>390 GET READY TO LOAD ENTIRE BUFFER
LOD BL, @STRETC GET FILENAME FROM BASIC, ETC.
MOVB @LD,@PDATA PUT LCAD DESIGNATCR IN PDATA
BL @SETFPAB ESTABLISH PAB IN VDP
BLWP @DSRLNK USE DEVICE SERVICE ROUTINE FOR DISK ACCESS
DATA 8 DATA FOR DSRLNK
Bl, @SETADD ESTABLISH MEMORY AREA TO LOAD INTO
BLWP @VMBR READ FROM VDP TO MEMORY
EXITD MOVB @CONST,@PDATA+9 RESTORE MAX. LENGTH OF STRING FROM BASIC
B @RETURN BRANCH TO RETURN TO BASIC ROUTINE
STRETC MOV RO®,@ADDRES STORE ADDRESS OF DESIGNATED BUFFER FOR LATER USE
MOV Rl ,@PDATA+6 PUT # BYTES TO LATER ACCESS INTO PROPER WORD OF PDATA
CLR RO -
LI R1,1 i GET FILENAME FROM BASIC
LT R2,PDATA+9 |
BLWP @STRREF -
RT RETURN TO CALLER
SETPAB LI R®,PAB -
LI R1,PDATA I
LI R2,25 !
BLWP @VMBW i SET-UP PAB IN VDP AND POINTER IN SCRATCH PAD
LT R6,PAB+9Y i
MOV Rb6,@PNTR i
RT -
SETADD LI RO, PABBUF -
MOV @ADDRES,R1 ! ESTABLISH AREA OF MEMORY TO ACCESS
MOV @PDATA+6,.Ra |
RT ~
COPY 'DSK1.GPLLNK'
COPY 'DSK1.DSRLNK'
END
> 10¢ CALL INIT :: CALL LOAD({(" > 15¢ CALL LINK{"PUTPD2"):: GO
DSK1 .MIRROR/O") SUB 410
119 CALL CHAR({(140,RPTS("0",1 160 AS$S=CHRS{(143):: CALL LINK
2)&"FFFF",141,"FF",142,"80C0 ("MIRROR","” ".,LAS)
EOFOFS8FCFEFF" ,143,"FEFCFSFOE 170 CALL LINK("FLIP")
gcos™) 180 CALL LINK("PUTPD1"):: GO
120 CALL CLEAR :: CALL HCHAR SUB 41@ :: CALL CLEAR
(12,10,140,2):: CALL HCHAR(1 19¢ CALL LINK("SAVSI1","DSK1
3,10,141,2):: CALL HCHAR(12, .SIT1"):: CALL CLEAR :: CALL
12,142) :: CALL HCHAR(13,12,1 CHARSET :: AS="FINISHED" ::
43) BS="SAVING" :: CS="SIT1" ::
130 CALL HCHAR(1,1,49):: CAL GOSUB 420
L HCHAR{(1,32,50):: CALL HCHA 200 CALL LINK("SAVSIZ2","DSK1
R{(24,1,51):: CALL HCHAR(24,3 LSIT2"):: CS="SIT2" :: GOSUB
2,52} 420

> 210 CALL LINK("SAVPD1",6"DSK1

Page 7

The Smart Programmer

LPDT1"):: CS="PDT1" :: GOSUB LL CHARPAT(143,BS)

420 > 320 CALL LINK("GETSI1"™)
> 220 CALL LINK("SAVPD2", "DSK1 > 330 CALL LINK{"GETPD1")
.1234567890"):: C8="12345678 > 340 CALL GCHAR(1,1,E):: CALL
90" :: GOSUB 420 GCHAR(1,32,F):: CALL GCHAR({
> 230 CALL LINK("PUTSI1"):: CA 24.,1,G):: CALL GCHAR(24,32,H
LL LINK("PUTSI2"):: CALL LIN)
K("PUTPD1"):: CALL LINK({("PUT > 350 CALL CHARPAT(50.,CS):: CA
pD2") LI, CHARPAT(143,DS):: ES=RPTS
> 249 CALL LINK{"LODSI1","DSK1 ("% 28):: GOSUB 410
.SIT1"):: BS="LOADING" :: CS > 360 CALL CLEAR :: CALL LINK({
="SIT1" :: GOSUB 420 "GETPDZ2")}:: CALL CHARPAT(60,
> 250 CALL LINK("LCDSI2","DSK1 YS):: CALL CHARPAT(67,2ZS)::
LSIT2"):: CS="SIT2" :: GOSUB CALL CHAR(98,Y$):: CALL CHAR
420 (99,235)
> 260 CALL LINK("LODPD1", "DSK1 > 370 DISPLAY AT(12,1):"ABCD":
.PDT1"):: CS="PDT1" :: GOSUB "only the letters b and c":"
420 ‘ should mirror"
> 2790 CALL LINK("LODPD2","DSK1 > 380 FOR I=1 TO 100 :: CALL L
.1234567890")}:: C8S="12345678 INK("MIRROR"”,"B","C"):: NEXT
30" :: GOSUB 420 :: GOSUB 41 I :: GOSUB 4190
) > 390 CALL CLEAR :: PRINT AS:C
> 280 CALL LINK{("GETSIZ2") S:ES:BS:DS:ES:A:E:ES:B:F:ES:
> 290 CALL LINK("GETPD2") C:G:ES:D:H:ES
> 300 CALL GCHAR({1,1,A):: CALL > 400 END
GCHAR(1,32,B):: CALL GCHAR({ > 410 FOR I=1 TO 500 :: NEXT I
24,1,C):: CALL GCHAR(24.,32.,D : ¢ RETURN
) :: GOSUB 410 > 420 DISPLAY AT(12,1) :AS&" "&
> 319 CALL CHARPAT(506,AS):: CA BS&" "&CS :: RETURN

-—_——______m“Hw“_n---—_--—_***_—."_.-__—_——n—*-—n@ﬁ*"—

Using Multiplan™'s ISERROR

by Richard M. Mitchell

While Multiplan™ hgs often been criticized for being somewhat slow
in execution speed, it is a4 very impressive environment for the speed and ease
of pregram development.

! prefer to think of Multiplan™ as a combination of a BASIC
language, 3 text editor and a database. While it is generally referred to as a
spreadsheet program, somehow that term loses the essence of MultiplanTM's
capabilities and calls to mind a bookkeeper laboring over a huge report to
arrive at a bottom line of dollars and cents. Though Multiplan™ can
certainly be used handily for that purpose, it is by no means limited to that
end.

Though Multiplan™ does offer a simplistic yet powerful approach to
modeling solutions, there are some techniques that must be learned to make
optimal use of MultiplanT™¥ For instance, Multiplan™ follows
arithmetic rules and will not accept zero as a divisor, yielding a "#DIV/@!"
error. Are we merely stuck when we have a set of data that would use zero as a
divisor, even though we intend the answer to be expressed as zero In such a
situation? No! Multiplan™ has an ISERROR function to trap out errors
denoted as #NA, #VALUE!, #REF!, #DIV/0!', #NUM!, #NAME?, AND #NULL!.

To tllustrate the use of ISERROR, we'll use the calculation of a baseball
batting average. The batting average 1is calculated by dividing hits by times

August 1986 Page 8
The Smart Programmer

at bat, usually expressed to 3 decimal places (understanding baseball is not
really necessary). If a player has not yet batted, his average is usually said
toc be ".860", even though by arithmetic definition his average Is undefined (it
would sound rather silly if a television announcer stated that a player's
average was "undefined”, not to mention the ambiguity of such a statement!).
Here is a Multiplan™ spreadsheet that calculates the batting average
without use of ISERROR:

1 2 3 4
1 "PLAYER" "HITS" “AT BATS" "AVG."
2 "SMITH" p 3 RC[{-2}/RC[-1]
3 "JONEsS" @ 7/ RC[~2}/RC[-1]

And, here's a report from the above sheet:

PLAYER HITS AT BATS AVG.,
SMITH 2 3 0.667
JONES 0 @ #DIV/0!

By adding an ISERROR as the first eclause of an IF statement, we can trap
out the error, as follows:

1 2 3 4

1 “"PLAYER" "HITS" "AT BATS" "AVG."

2 "SMITH" 2 3 IF (ISERROR(RCI[-
21 /RC{-11),0,.RC
[-2]/RC[-1]1)

3 "JONES" 0 0 IF{ISERROR(RC[-
2}/RC[-1}),0,RC
[-2] /RC[-1])

And, here's the report from the sheet that uses the ISERROR {(much better):

PLAYER HITS AT BATS AVG.
SMITH 2 3 0.667
JONES 0 0 0.000

The IF function is equivalent to BASIC's IF-THEN-ELSE. To translate from
"MPese” to English, if the batting average calculation produces an error, then
the batting average is @, else the batting average equals the calculated value.
By using relative cell references, such as RC[-2], we can simply Copy Down the
formula into as many cells as we require -~ in this case, for as many players
as there are on a team or in a league, for example.

Perhaps at this point you may not yet recoghnize the power of
Multiplan™, One advantage lies in the fact that data can be Sorted by
any column, such as "AVG." or "HITS" or "AT BATS"” or even in alphabetical order
by the player's names without writing a sort routine. Sort is a
Multiplan™ command! Also, there is little effort in laying out the screen
or a printout ~-- simply move the cursor to wherever you wish to input! 99/4A
users often remark that they'd like to have a word processor with a calculator
function -- well, with Multiplan™ you have a text editor that will
perform some of the functions of a word processor and it can be used 8s a
calculator and much more! If you want to send fancy printer controls, you can
print your spreadsheet to disk as a report and switch to TI-Writer to add your
finishing touches, including such functions as incorporating the spreadsheet
data into a form letter!

When using Multiplan™, it is highly recommended that Recalc be left
off most of the time by selecting Options Recale (No) or else the entire sheet

August 1986 Page 9
The Smart Programmer

will be updated after every cell change.
before saving the sheet to disk, as Multiplan™ will do that automatically!

Until next time, have fun with your spreadsheets!

—H_@_—_—-—_____—_—_—_-—---—__ﬂ“u#“—_—_——_—-_#"—"#hm"---—*

T

1>8300

>8300
>8302
>8304
>8306
>8308
>830A
>830C
>830E
>8310
>8312
>8314
>8316

>8318

I

I

|

|

I

|

!

|

'

|

|

I

|

I

I

I

}

! >8318
| >831A
I >831C
! >831E
! >8320
! >8322
| >8324
|} >8326
| >8328
] >832A
| >832C
] >832E
! >8330
| >8332
! >8334
! >8336
! >8338
I >833A
] >833C
i >833E
! >8340
] >8342
I >8344
! >8345
I

|

I

I

I

l

4+
I
I
I
!
I
|
I
}

+
!
|
I
l
!
I
I
l
I
I
I
I
|
I
I
I
I
I
l
|
I
|
|
I

+“ﬂh“‘—ﬂ--“-'—“-—-—"—-ﬂ——

256 BYTES OF SCRATCH PAD RAM - XB USE

TEMPORARY STORAGE AREA
This area of Scratch Ram is used by X-Basic and Basic¢ as a
temporary holding area for the different routines.
temporary variable

temporary variable

temporary variable

temporary variable - Record Length on file access
temporary variable - Address of Sprite Atttribute List
temporary variable
temporary variable
temporary variable - increment value for Auto Num
temporary variable - used in CALL LINK parameter passing
temporary variable - used by CHAR type statements
temporary variable - copy of VDP reg 1 for some commands
temporary variable - DSR Link flag for some commands

XB PERMANENT STORAGE AREA
This area of Scratch Ram is used for specific items by X-Basic
also String space bgn!

also String space end!
Points to allocated str space - PAB Error - Temp string pointer

Used by LINK, LOAD & rtn control to Basic
Points to 1lst free add in VDP RAM

Start of current statement

Current Screen Address

Return error code from Assembly Language Code

VDP value stack base pointer

Return address from Assembly Language Code

NUD Table for Assembly Language Code.

Ending screen display pointer

Program text or token code pointer

Pointer to current line number in line number table
Start ¢of Line number table pointer

End of Line number table pointer

Data pointer for read

Line number table pointer for read

Address of intrinsic Poly constants

Subprogram symbol table pointer

PAB address in VDP RAM (first link) PAB list
Symbol table pointer

VDP Ram free space pointer
Current char/token
Extended Basic Program RUN
Extended Baslc System Flags

255 STOP = O (w/o 'READY')

The Smart Programmer

Don't worry about recalcuilating

-——-—“—ﬂ*_*__——-—lllllll-l-l-lllllll_---——_——-—lliﬂll-ll'llﬁl-'-llllﬂllll-llll—l—-—-————-.n—ﬂ—u—n--—u----ll--y-—_#____“‘_ﬁ-__u+

el - ol TR S —— T s S Ter O g

ey amgmy ks SmagEy T ap-as Bk pnam SRS s SRk gy PEEEE Sl ST O e

Bit © 1 = Auto-Num Bit 4 1 = Edit Mode

1 1 = On Break Next 5 1 = On Warning Stop
2 6 1 = On Warning Next
3 1 = Trace 7

Crunch buffer destruction level

Last subprogram block on stack

__ +
August 19886 Page 10

fﬂ

256 BYTES OF SCRATCH PAD RAM Continued

o ——————— e e e 4t i e S e i e +
1 >834A !FLOATING POINT and DSR usage, 36 bytes |
>834A | FAC (Floating point accumulator) PAB 1/0 OPCODE I
>834B | for floating point routines PAB FLAG/STATUS I
»>834C | this area holds a number in PAB DATA BUFFER ADDRESS I
I >834E | radix 100 notation. PAB LOGICAL REC LENGTH I
i >834F | PAB CHARACTER COUNT I
] >8350 PAB RECORD NUMBER I
] >8352 PAB SCREEN OFFSET I
t >8353 PAB OPTION LENGTH I
I >835H4 FLOATING POINT ERROR CODE PAB DEVICE LENGTH |
I >8356 | SUBRTN POINTER / DSR's pnts to 1st char after PAB in VDP I
i >8358 | DSR I
I >835A | DSR I
! >»835C { ARG (Floating point argument) DSR |
I and DSR usage - DSR I
DSR I
>836C FPERAD (float pnt err add in Grom 7?7) DSR I
>836D Set to >08 for DSR call DSR I
-------- et ———————— — e i — i}
1 >836E I INTERPRETER and FLOATING POINT GPL VALUE STACK POINTER)
1>8370 ! HIGHEST AVAILABLE ADDRESS IN VDP RAM I
1>8372 ! LSByte OF DATA STACK POINTER = AQ = (>83A0)]
128373 I LSByte OF SUBROUTINE STACK POINTER = 80 = (>8380) :
| >8374 { KEYBOARD NUMBER TO BE SCANNED Default =0 I
1 >8375 ASCII CODE DETECTED by SCAN routine also SGN for float/point |
}>8376 JOYSTICK Y~STATUS by SCAN routine also EXP for flocat/point |
>8377 JOYSTICK X-STATUS by SCAN rocutine I
>8378 I RANDOM NUMBER GENERATOR RND's >0 —->63 ({0—99) I
»8379 ! VDP INTERRUPT TIMER >d —~>FF (0—255) I
>837A i HIGHEST SPRITE # IN AUTO-MOTION >0 —>20 (0-32) I
>837B | COPY OF VDP STATUS REGISTER I
>837C | GPL STATUS BYTE (Set to @ for a DSR CALL) (>20 =Key Press) I
{>837D ' CHARACTER BUFFER BYTE to VDP RAM screen table I
1 >837E t POINTS TO THE CURRENT ROW on the screen I
i >837F ! POINTS TO THE CURRENT COLUMN on the screen I
b o e o e o o e o e e e o ot e i e AL S T e e e e o +
1>8380 | PHE DEFAULT SUBROUTINE STACK (Used by GPL Routines)
| »>8380 | Reserved For Basics interpreter
it >8382 | Reserved For Basics interpreter
] >8384 | Reserved Highest Address in Expansion Memory
| >8386 ! Reserved Highest Free Address in Mem-Expansion
! >8388 | Reserved For the Basic interpreter Sub stack bkase I
| >8389 | Reserved For the Basic interpreter Exp—-Mem Flag I
I >838A | RETURN ADDRESS STACK FOR GROM SUBROUTINES I
- I (current Grom Address pushed to top of stack during Key Scan) I
i >839E | I
| >83A0 | THE DEFAULT DATA STACK (Used by GPL Routines) I
I this area holds various information according to the GROM
: routine being executed.
I
I I I
1 | l
!>83BF | |
o e e e o T +

August 1986 Page 11
The Smart Programmer

1>83C0 ! INTERRUPT WORKSPACE REGISTERS v I
! >83C0 | RO RANDOM NUMBER SEED 2 Bytes >O-FF >0-FF I
| 2>83C2 | R1 Bit ©® 1 = disable ALL of the following :
I I 1 1 = disable Auto Sprite Motion I
I I 2 1 = disable Auto Socund Processing

| I 3" 1 = disable The QUIT Key

I I Bits 4-15 not used |

i >83C4 | R2 ISR HOOK -~ Start address of User Interrupt Routine I
{ >83C6 | R3 Reserved for Keyboard state and debounce info I
| >83C8 | R4 Reserved for Keyboard state and debounce info

| >83CA | R5 Reserved for Keyboard state and debounce info

| >83CC | R6 Pointer to Scund Table - alsoc see >83FD

] >83CE | R7 Number of Sound Bytes for Auto Sound Processing (0100)

! >83D0 t RS Varies (>0000 for Cassette DSR Link)

| >83D2 | R9 vVaries |

! >83D4 | R1@ CONTENTS OF VDP REGISTER 1 {(used for key scan)

} >83D6é | R1l1l SCREEN TIME OUT COUNTER {(blanks when incremented to 0000)

i >83D8 | R12 RETURN ADDRESS SAVED BY THE SCAN ROUTINE (01ld R1l1)

i >83DA | R1l3 Return WS for context switch (RTWP)

i} >83DC | Rl1l4 Return PC for context switch (RTWP)

| >83DE i R15 Return ST for context switch (RTWP)

I I

! I

| e e e e e e e e e e +
I | I
I : | I
| >83E0 |GPL, WORKSPACE REGISTERS (ALL Registers used by GPL interpreter) |
I >83E0 | RO Varies NOTE: R® - R7, R11 and R12 I
! >83E2 | R1 Varies are modified by Key Scan |
] >83E4 | R2 Varies I
] >83E6 | R3 Varies I
}] >83E8 | R4 varies I
] >83EA | R5 Varies - Used by Interrupt Routine !
!} >83EC | R6 Varies - Used by Interrupt Routine |
} >83EE | R7 Varies - Used by Interrupt Routine I
] >83F0 | RS Cleared on Return from Interrupt Routine

| >83F2 | RS GPL Interpreter use

| >83F4 | R1l0 GPL Interpreter use

! >83F6 | R1l1 RETURN ADDRESS for BL instruction and User Interrupt

y 2»8B3F8 | Rl2 Varies - CRU Base Address for Key Scan and DSRs

I >83FA | R13 GROM/GRAM READ DATA port (9800) I
| >833FC | R1l4 STATUS FLAGS

I I Bits O - 7 Control the cursor blink speed &

I I Auto sound processing. The value in this byte

I I increments the counter at >8379 I
! >83FD | Bit @ 4 1 = 16K Vdp Ram I
I | 1 5 |
I I 2 1 = Cass Interrupt Timer €6 1 = Multi-Color mode l
i I 3 1 = Cass Verify 7 Sound table location I
I I 1 = VDP 0 = Grom/Gram |
| >83FE I R15 VDP WRITE ADDRESS port (8C02) I
I I I
e b e ——————— i ———————— +

256 BYTES OF SCRATCH PAD RAM Continued

August 1986 Page 12
The Smart Programmer

Oops!

In the November 19865 issue of
Super 99 Monthly, the TI-Writer Dump
program requires a modification. Add
to the beginning of label L1866 the
following code:

L10Q MOVB @DEC3,R4
C1l R4,>3100
JEQ RET

Then, at the end of L196, add a label at
the RT, as follows:

RET RT

For those with the Best of Super
89 Monthly disk, if vour filename for
the source code is "TIWDUMP-S", then
you should make these modifications.
If your filename is "TIWDUMP-S2", the
changes already appear on both your
source and object [files. An error that
was not in the publication exists in the

source code on some of the disks. At
line 264, under the label CONT2, a "2"
appears lnstead of a ">". T he

corrected line should be:

LI RO,>1IF00

In the March 1984 issue of The
Smart Programmer, in the Low Memory
Expansion After CALL INIT map, the
value at >20082, the FFAM, should be
>24F4 instead of >24FA.

--i-—-——--l-ﬂ-——_—i“-ﬁ—_—“'___**—_—___-“-—

The State of Washington TI~99/4A
Home Computer User Groups will sponsor
The 1986 State of Washington TI-99/4A
Convention September 27, at the Sea-Tac
Holiday Inn, Seattle, Washington, with
assocliated events scheduled Friday
through Sunday. For more information,
contact Barbara Wiederhold, 6 1/2
Boston St. #4, Seattle, Washington
98109. Ms. Wiederhold can be reached
at Queen Anne Computer Shoppe, phone
(206) 283-0953. The phone line is
operated as a BBS from 8&pm to 8am PDT.

August 1986

Some of you might be interested to
know that I recently received some
photographs of Heiner Martin's
80—-column video card, as well as photos
of the monitor displays produced by the
card. The card, which will be produced
In Germany and may be available soon,
was salid by the photographer (a
subscriber who was travelling in
Europe) to be working properly. The
card plugs into the /0 port on the
right side of the console. For color
displays, the card will require an RGB
monitor (about twice as expensive as a
regular color monitor, but the
difference in quality between RGB and
composite color is quite significant).
For price and availability of the
8@—-column card and other products from
Germany, the U.S. distributor tis
T.A.P.E., Ltd., 1439 Solano Place,
Ontario, CA 091764, U.S.A.

Version 3.3 of DM-10@86, the
popular disk manager Fairware program
from the Ottawa User Group, is
scheduled for release very soon. Among
the updates for the release will be a
16—sector DS/DD option and support of
up to 8 disk drives (an optimistic
approach that goes beyond current
hardware capablilities). The program is
availlable from the Ottawa TI-99/4A
U.G., Box 2144 Station D, Ottawa,
Canada KI1P 5W3.

P-Term, a widely-used terminal
emulator program now at version 2.5,
has been converted to the Fairware
marketing concept. The program is now
available on GEnie™,

Fast—Term users should note that
the program was written for XMODEM D/F
128 file transfers to be compatible for
use by other computers and therefore
does not send a TI file header on such
files. Barry Traver has discovered
that protecting a file prior to uploads
will trigger sending the TI file
header. The program is current]ly at
version 1.16. Later versions are
scheduled te have a simplified option
for sending TI file headers, as well as
severai other new features. Version
1.16 also has occasional problems with
lengthy files {(longer than >48 sectors),
but a fix is now available on GEnieTH.

s gl Gy e L S S

Page 13

The Smart Programmer

Enhancements for XB and E/A!

Danny Michael's new enhancements
package for Gram Kracker™ is now
available from Millers Graphics! Danny,
famous for his SCREEN DUMP and NEATLIST
programs, has added many very impressive
new features for TI Extended BASIC and
Editor/Assembler (TI modules not included).

For Extended BASIC., here are some
of the new features:

LIST will list with a designated output
line length.

RES will reseguence all or a part of a
program.

TRACE can be output to a selected
device and can be toggled on and off
from within a program.

CALL QUITON will enable use of the QUIT

key.
CALL QUITOFF will disable use of the
QUIT key.

Screen and character colors have been
modified.

Error messages will appear in upper and
lower case.

Auto—load of file DSK1.LOAD can be
by—-passed with the press of any Kkey.

New cursor control for program editing,
INPUT's and ACCEPT's allows gquick
entries and editing.

COPY will copy blocks of one or more
program lines, retaining the source
lines.

DELETE will delete blocks of program
lines.

MOVE will move blocks of program lines,
deleting the source lines.

CALL EA will move directly to the
Editor/Assembler.

CALL PEEKG will allow peeking GRAM or
GROM addresses.

CALL POKEG will allow poking GRAM
addresses.

CALL PEEKV will allow peeking VDP
memory.

CALL POKEV will allow poking VDP
memory.

All of the XBCALLS from the MILK disk
will still be available (NEW, BYE,
CLSALL, CLOCK, CLKOFF, CAT).

A new character set is placed in GRAM 4.

For the Editor/Assembler, here are
some of the enhancements:

Repeating keys.

August 1986

Erase key.

Clear line to the right with <FCTN 4>.

The last filename accessed will always
be retained (even after powering
off).

Item 6 on the main E/A menu will be
Extended BASIC, allowing moving
directly to Extended BASIC.

Item 7 on the main E/A menu will be
Format Ramdisk, which will format a
MYARC Ramdisk with the equivalent of
CALL PART and CALL EMDK.

Item 8 on the main E/A menu will be
Catalog Disk.

Installing the Editor/Assembler
and Extended BASIC simultaneocusly is

optional.

The package will come complete
with 22 pages of documentation,
including details of the memory
locations of the enhancements. Best of
all, the price is a mere $1@¢ plus $1.60
shipping and handling, available now
from Millers Graphles.

T A S L e e S S e e IR O N S S T B el e e e vt sl wrah e bl b e bl e e vehis

New PROM For CorComp Controller

Millers Graphies will soon be
releasing a newy PROM for the CorComp
Disk Controller Card. Here are the new
features:

Gets rid of the CorComp title screen!

The CorComp Disk Manager can be
accessed from BASIC or by holding
down the space bar on power—up.

Several new CALL's wiil be avallable
from BASIC or Extended BASIC, from a
running program or from immediate
mode, or from a Gram Kracker™
MSAVE'd BASIC program! Toolshed
statements will also be available
from MSAVE'd BASIC programs for the
first time!

CALL LLR is a Link, Load and Run option
that links to a Start name.

CALL ILR is an Initialize, Load and Run.

CALL LR is a Load and Run.

CALL RUN will run a Program Image file.

The four above-~named CALL's are, of
course, for linking to Assembly
programs. The first three provide
compatibility with the MYARC disk
controller's reutines of the same
names.

Page 14

The Smart Programmer

A new feature will be avallable from
virtually any environment (BASIC,
Extended BASIC, MultiplanTH,
Editor/Assembier, TI-Writer, etc.).
An asterisk (*) will denote a
wildcard drive reference! Once a
drive has been referenced once, the
"*" will maintain that drive
reference! Prior to referencing a
drive, the default will be drive 1.

A price has not yet been set for
the new PROM. Millers Graphics will be
mailing brochures on their new products
once & price has been set. If you are
not on the MG mailing list, the address
is Millers Graphics, 14786 W. Cypress
Ave., San Dimas, CA 91773.

Just think what you'll be able to
do from Extended BASIC with MG's new
Gram Kracker™ Extended BASIC
enhancements, MG's new CorComp
Controller PROM, Genial Traveler's XXB
and our XB MIRROR &2ll functioning at
one time! Wow!

T Gl mall ek GEE ST T B T O B . P Sk wek e T VI I G I I A D S B S . e el wmbe bl el e

DM AID

by Richard M. Mitchell

Displaying graphics has been very
popular among 99'ers recently, with
many users turning to programs such as
Display Master ($14.95 plus $1.50
U.S.A. shipping from Inscebot, P.0O. BoXx
260, Arnold, MD 218412, U.S.A.).
Display Master uses command files to
pass instructions such as LOADPIC,
PAUSE, DELAY, LOOP, etc. to the
program. Pictures must be in TI-Artist
format, so the pictures can be created
directly through Inscebot's TI-Artist
program or converted to TI-Artist
format by MAX/RLE ({(see July '86 issue).

I was rather content in creating
the Display Master command files
through the E/A Editor until friends
began sending several disks of Artist
pictures at a time. Though I was very
appreciative of the generosity of the
senders, I soon wondered whether 1
would ever find time to view several
DS/DD disks of pictures every weekl
There had to be a way to view the
pictures automatically. My solution

August 1986

was to write a8 simple but useful
program to create a Display Master
command file. So, the Extended BASIC
program listed below, which I c¢all DM
AID, will allow you to name your
command file, checking to see that the
filename selected is not already on the
disk, and then create a command file to
include all TI-Artist picture files on
the disk (Artist picture filenames end
with "_P"). Note that the command file
should be written to the same disk
drive as the drive you wish to read
from via Display Master, as that is the
drive the LOADPIC commands will
reference.

> 100 DISPLAY AT(1,1)ERASE ALL
+"DM AID":"THE SMART PROGRAM
MER"™

> 110 OPTION BASE 1

> 120 DIM N$S{(127)

> 130 DISPLAY AT{19,1):"NAME F
OR DISPLAY MASTER COMMAN
D FILE:":"DSK1.CFILE"

> 140 ACCEPT AT(12,1)BEEP VALI

DATE (UALPHA ,DIGIT,".*")SIZE(

-15):FS :: DISPLAY AT(5,1):"

150 CPEN #1:SEGS{FS$.,1,5),INP

UT ,RELATIVE, INTERNAL

160 I=1

170 INPUT #1:AS,U,U,U

180 INPUT #1:NS(1I),U,U,V

190 IF NS(I)=SEGS{(FS,6,10)TH

EN DISPLAY AT(5.,1) :"DUPLICAT

E FILENAME, ":"TRY AGAIN" ::

CLOSE #1 :: GOTO 130

> 200 IF NS(I)<>"" THEN I=I+1

:: IF I<128 THEN 18¢

> 210 CLOSE #1

> 220 OPEN #2:F$,DISPLAY ,VARI
ABLE 89,0UTPUT

> 230 FOR J=1 TO I

> 240 IF POS(NS{(J)," _P",2)<>0
THEN PRINT #2:".LOADPIC "&CH
RS(34)&SEGS(FS,1,5)&SEGS (NS {
J),1,LEN(NS(J))-2)&CHRS(34) &
":":"-DELAY 5:"

> 250 NEXT J

260 CLOSE #2 :: END

b

W W VvV ¥

W

Display Master will generate &
misleading error if a LOADPIC command
fails, referencing the followling
command line, so carefully key line 249
of DM AID to avoid confuslion.

Page 16

The Smart Programmer

G o e e e e e e e e e e e e e e e s e e A e e e e e e R e i o o e o e o
Bulk Rate
Bytemaster Computer Services U.S. Postage
171 Mustang Street PAID

e e R .

BYTEMASTER ORDER FORM
NAME
The Smart Programmer
| ADDRESS
SPl $18.00 U.S. AND CANADA FIRST CLASS
SP2 $15.00 U.S. THIRD CLASS (no back issues) CITY
SP3 $20.990 FOREIGN SURFACE (no back issues)
SP4 $32.00 FOREIGN AIRMAIL STATE
SPSA-C $ 1.75 U.S. JUNE - AUGUST 1986, ea. _
SP6A-C S 2.75 FOREIGN JUNE - AUGUST 1986, ea. ZIP CODE
Super 99 Monthly COUNTRY
SM1 S18.00 Complete set of 18 back issues Payments accepted by
SM2A-R $ 1.0¢ Back issues - ea. (U.S. Third Class) check or money order
SM3A-R § 1.50 Back issues - ea. (Canada and U.S. in U.S. funds, coded
First Class) for processing through
SM3A-R $ 2.50 Back issues - ea. (Foreign Air Mail) the U.S. Federal
SM4 $12.90 Programs on disk (non-FORTH) Reserve Banking
SM5 $15.00 Super 99 Handicapper System. No billings
(req. XB, 32K, Disk, Printer) or c¢redit sales.
Dealer inguiries
ITEM # QTY EACH AMOUNT invited. Discounts
available on quantity
crders.

The Smart Programmer is published monthly by Bytemaster Computer
Services, 171 Mustang Street, Sulphur, LA 70663. All correspondence
received will be considered unconditionally assigned for publication and
copyright and subject to editing and comments by the Editor of The
Smart Programmer. Each contribution to this issue and the issue as a

whole COPYRIGHT 1986 by Bytemaster Computer Services. All rights reserved.

Copying done for other than personal archival or internal reference use
without the permission of Bytemaster Computer Services is prohibited.
Bytemaster Computer Services assumes no liability for errors in articles.

Editor Richard M. Mitchell

Staff Craig Miller Steven J. Szymkiewicz, MD
Charles M. Robertson Barry A. Traver
Mariusz Stanczak D.C. Warren

_‘—___-H“ﬂ_*—————_-“h————————-———d—l-—l—-—_—__-—_-_—--F"_-“H-r—-ﬁ-nlﬁ-l-_!—___n#—-____“#__-_*—*—

Gram Kracker 1s a trademark of Millers Graphics

GEnle 1s a trademark of General Electric Information Services Company,
U.S.A.

Multiplan 1s a trademark of Microsoft Corp.

Sulphur, LA 70663-6724

U.S.A. Permit No. 141

4 e

POSTMASTER: ADDRESS CORRECTION REQUESTED
RUSH -- TIME DATED MATERIAL

-_—__——--H___““ﬁ_——_‘___—_'_—————--——————.-_H“-__—_-.l__——--ll-_lﬂ-'—i_ﬁ__——“-_—“____-____—_-

AUGUST 1986
The Smart Programmer

Sulphur, LA 70663

I
+

