VOLUME 2 [SSUE 4 $1.75

SEPTEMBER 1986

"Serving 99'ers Since 1984"

This issue marks the second
anniversary of Bytemaster newsletters.
Well, I'm ready for another two vears
and, judging by the number of renewals
received, vou're ready. too. In fact.
the mailbag has been keeping me much
busier than I anticipated. but that is
a good sign. Thanks for the support!
While on the topic of mail, when vou
write, please include the specifics of
information vou'd like for us to cover.
Though it is not possible to send
individual replies. I do read all of
the mail and almost any topic that
might interest some of our readers is
considered for publication.

—_--‘-——_——__-'--l—lr-_—--——_——d-u—n—--___-.n.-.n....-_—..._..-.,

Artist to XB!

by Richard M. Mitchell

Do vou find it exXxcessively
difficult to do layouts of Extended
BASIC graphics? Worry no more! With the
program listed below, vou c¢an convert a
TI-Artist Instance file (Instances are
supported in Version 2.8 and subsequent
versions of TI—-Artist) into an Extended
BASIC screen!

There are many advantages to
converting from Artist's Bit-mapped
mode to Extended BASIC's graphics mode.
Obviously, from the Extended BASIC
environment, beginners will find it
difficult to implement a bit-mapped
screen and, even if one Kknows how to
invoke bit-mapped mode and load a
screen, bit-mapped Screens require both

September 1986

THE SMART
PROGRAMMER

more file space and more VDP area.
Additionally, some XB statements and

sub-programs are not usable with a
bit-mapped screen (HCHAR. for
example).

Converting bit-mapped graphics to
graphics mode i1s not without 1
down-side. First, bit-mapped screens
allow, with only minor exceptions on the
99/4A, turning on the color of any
pixel, while XB requires colors being
assigned in groups of character codes
called sets. S0, to convert to
graphics mode, we've dropped the color
and worK from a "black—-—and-white"
(actually, any 2 colors) environment.
Additionally, bit-mapped graphics can
have as many different patterns as the
video permits (768 on the 99/4A), while
Extended BASIC's graphics mode permits
only 112 different patterns {character
codes 32 to 143), so we cannot
re—create all of a bit—-mapped screen
that has a lot of scattered pixels
turned on, for we would. as the LQOGO
turtle says, run "out of ink". So,
"Artist to XB" leaves character 32 as a
blank, then re-defines the patterns
from 143 downward until either the
entire Instance is drawn or character
33 is re-~defined.

I first planned to undertake this
project long ago, when I published
"TIW-DUMP" in Super 989 Monthly. I
received dozens of suggestions on how
to do a layout of an XB screen for
building a letterhead to be printed
from the Formatter of TI-Writer, but
all of the suggested methods seemed to
me to be too cumbersome {counting

Page 1

The Smart Programmer

pixels is just not the way I like to
spend my evenings). Well, now users
can create thelr letterheads in a
free—-style format from any of the art
programs supported by TI-Artist, then
use TI-Artist to create an Instance
file, then use "Artist to XB" (below)
to convert to an XB screen and finally
convert the XB screen to TI-Writer
Formatter format with "TIW-DUMP"!

Because many of you who will use
"Artist to XB" are not familiar with
Assembly, I have converted the object
code into XB CALL LOAD's. Because the
source code is rather lengthy, it will
not be offered at this time. Of the 3
A/L routines, one is very simple
("PDCLR" sets the pattern descriptors
of character codes 32 to 143 to all
"@"'s), one would be of only limited
benefit outside of "Artist to XB"
("ARTHEX" converts an Instance record
into pattern descriptor format, an
ASCII hexadecimal string) and 1I'l1
likely publish the source to the third
routine ("PDSRCH") in a future article.

While the XB manual states that
the inverse of CALL CHAR is CALL
CHARPAT, the complement to CALL CHAR is
not resident in XB. PDSRCH (Pattern
Descriptor SeaRCH) is a complement of
CHAR, accepting a character pattern and
returning the character code of the
first occurrence of the pattern.
PDSRCH does not support three of the
characteristics of CALL CHAR's
parameters; PDSRCH does not support
arrays, does not support multiple
definitions and obviously cannot return
a character code for an unused pattern.
Support of arravs would 1likely increase
the size of the Assembly code
substantially. Having PDSRCH support 4
pattern descriptions would also
increase the amount of code required
and might simply be confusing, as the
search that would be a true complement
of CALL CHAR would be for 4 consecutive
patterns. In the case of an unused
pattern, PDSRCH returns a zero in the
character code argument. PDSRCH does
mimic CALL CHAR's support of pattern
descriptions of 16 characters or less.
For instance, CALL LINK("PDSRCH","0",A)

implies trailing "@0"'s, with the
pattern being "000000Q000000Q00GG", 16
HGI"!IS.I

September 1986

Screens created with "Artist to
XB" can be used by other programs by
adding a line of XB code such as RUN

"DSK1.MYPROGRAM" at line 209, You
could use last month's "XB MIRROR" to
save your screen (SIT and PDT) for
access by other XB programs, Also, a
screen dump couid be obtained by
running Danny Michael's "SCREEN DUMP".
Or, you could RUN "DSK1.TIW-DUMP" for
the results described in a preceding
paragraph.

The time from the point at which
the filename is input until an entire
screen is built with "Artist to XB"
runs a little under 4 minutes on my
system, -using a floppy disk drive. RAM
disk or hard disk access would likely
be much quicker. Though I didn't write
a version without Assembly, I suspicion
such a program would run for 3% minutes
or more!

While there were many wayvs in
which I could have approached the
conversion process, the method I've
employed was chosen to make the "magic”
of Assembly a little more under-
standable, s¢ that programmers with
intermediate—-level skills will likely
be able to modify the XB portion of the
program for their own applications.

> 100 CALL OBJECT :: DISPLAY A
T(1,1)ERASE ALL:"ARTIST TO X
B":"THE SMART PROGRAMMER" ::

DISPLAY AT(12,1) :"INSTANCE
FILENAME:" :"DSK1.X_I"

> 110 ACCEPT AT(13,1)BEEP VALI
DATE (UALPHA,DIGIT,"*. ")SIZE
(-15) :F$:: OPEN #1:FS,INPUT

> 120 CALL CLEAR :: CALL LINK({
"PDCLR")

> 130 LINPUT #1:A5 :: A=POS(AS

Mo ",1):: B=LEN(AS):: W=VAL({
SEGS{(AS,1,A~1)})):: H=VAL(SEGS
(AS,A+1,B-A})}:: USE=143

> 140 FOR R=1 TO H :: FOR C=1
TO W

> 15¢ IF FLAG=1 THEN 1990

> 160 LINPUT #1:AS :: CALL LIN
K{"ARTHEX" ,AS$,BS):: CALL LIN

K{"PDSRCH" ,BS.,A)

> 170 IF A=¢0 THEN CALL CHAR(US
E,BS):: CALL HCHAR(R,C,USE}:
: USE=USE-1 :: IF USE=32 THE
N FLAG=]1

> 180 IF A<>0 THEN CALL HCHAR(
R,C,A)

Page 2

The Smart Programmer

N

2

30200 CALL LOAD(9768,4,96,37

> 190 NEXT C NEXT R. :: CLOS
E #1 | ,20,2,132,0,58,26,5,2,132.0,
> 200 CALL KEY(5,K,S):: IF s«1 65,26,11,2,36,255,249,2, 36)
THEN 200 30210 CALL LOAD{(9790, 255,208
210 END ,2,132,0,15,21,4,2,132,0,0,1

30000 SUB OBJECT

30010 CALL INIT

30020 CALL LOAD{16360,80,68,
67,76,82,32,39,86)

30030 CALL LOAD(16368,65,82,
84,72,69,88,38,160)

30049 CALL LOAD(16376,80,68,
83,82,67,72,37,100) |
30050 CALL LOAD(8194,39,112,
63,232)

30060 CALL LOAD(9460,0,0,0,2
y37,45,0,0,0,0,37,45,0,16,0,
48,0,0,0,16,0,32)

30070 CALL LOAD(9482,37,184,
¢,0,9,0,0,5,5,5,2,224,131, 22
4,4,96,0,106,0,4,1,5)

30080 CALL LOAD(9504,0,10,0,
100,31,0,0,0,0,0,0,0,0,48, 44
48,44 ,48,44,48,32,44)

30090 CALL LOAD(9526,48,32,3
2,32,32,48,32,49,57,51,44,49
,27,51,0,32,31,16,48,48,48,4
8)

30100 CALL LOAD(9548,48,48,4
8,48,48,48,48,48,48,48,48,48
,0,0,0,0,0,06,0,0,16,0)

30110 CALL LOAD{9570,0,1,2,2
24,36,244,4,192,2,1,0,1,2,2,
37,71,4,32,32,20,2, 3)

30120 CALL LOAD(9592,37,72,2
,5,37,37,210,96,37,71,9,137,
2,137,0,0,19,33,34,96,37,98)
30130 CALL LOAD(9614,22,5,2,
6,48,0,218,70,37,72,5,137,2,
6,0,2,193,51,4,200,193,196)
301490 CALL LOAD(9636,9,132,1
0,135,9,135,6,160,38,44,10,1
96,162,4,193,7,6,160,38,44,1
0,132)

30150 CALL LOAD(9658,162,4,2
21,72,2,134,0,16,19,10,130,7
9,19,3,5,198,16,233,4,198,5,
198)

30160 CALL LOAD(9680,205,64,
2,134,0,16,22,251,2,10,0,32,
2,9,4,0,2,1,37,88,2,2)

30170 CALL LOAD(9702,0,8,4,3
2,32,44,2,2,37,37,2,3,90,8,15
€,177,22,3,6,3,22,252)

30180 CALL LOAD(9724,16,9,2,

7,1,4,91,2,0,30,0,4,32)
30220 CALL LOAD(9812,32,52,3
2,56,38,90,2,3,131,74,192,83
,2,65,0,255,22,3,4,243,4,211
)

30230 CALL LOAD(9834,16,25,2
,129,0,99,21,5,2,33,64,0,204
,193,4,243,16,15,2,129,0,199
)

30240 CALL LOAD(9856,21.5,2,
33,255,156,2,2,65,1,16,4,2,3
3,255,56,2,2,65,2,204,194)
30250 CALL LOAD(9878,6,193,2
©4,193,4,243,4,211,3,128,2,2
24,36,244,4,192,2,1,0,1,2,2)
30260 CALL LOAD(9900,37,36,4
,32,32,20,5,130,210,160, 37,3
6,9,138,218,160,37,69,37,37,
2,5)

39270 CALL LOAD(9922,37,72,4
,201,4,202,4,196,2,3,37,28,2
10,178,2,138,44,0,19,10,2,13
8)

30280 CALL LOAD(9944,32,0,19
,7.9,138,2,42,255,208,6,202,
220,202,5,132,16,242,6,3,210
»19)

30290 CALL LOAD(9966,9,136,6
,4,19,15,6,3,209,147,9,134,5
7,160,37,32,162,7,6,4,19,7)
30300 CALL LOAD(9988,6,3,209
,147,9,134,57,160,37, 34,162,
7,6,4,193,200,9,72,6,200,10,
199)

30310 CALL LOAD(10010,9,71,2
10,72,6,160,39,68,21¢,71,6,1
60,39,68,2,138,32,0,22,208,2
16,32}

30320 CALL LOAD(10032,37,70,
37,36,2,1,0,2,2,2,37,71,4,32
,32,16,4,96,37,20,2,137)
30330 CALL LOAD(10054,10,0,2
6,2,2,41,7,0,2,41,48,0,221,7
3,4,91,2,224,36,244,2,0)
30340 CALL LOAD(10076,4.0,4,
193,4,32,32,32,5,128,2,128,7
,128,22,250,4,96,37,20,82, 84
)

30350 SUBEND

32,0,8,2,138,0,143,19,2,5,13 You may want to save the

8,16,234,2,10,90,0,200,10) sub-program at lines 30000 to 3@G3568 Iin

> 30190 CALL LOAD{9746,131,74, MERGE format for your own programs.

'F} 4,32,38,86,4,192,2,1,0,2,4,3
| 2,32,8,216,32,37,96,37.,71)

September 1986 Page 3
The Smart Programmer

XB SCREEN EDITOR

by Richard M. Mitchell

Last month, we covered 'saving and
loading Extended BASIC screens quickly
and this month we've covered converting
bit-mapped mode to graphics mode.
There are situations in which other
techniques for creating screen images
are useful, So, how about a simple
screen editor that will allow you to do
layouts of text or even graphics
directly from EXxtended BASIC? Here it
is:

> 100 CALL CLEAR

> 110 I=1

> 120 ACCEPT AT(I,l1)SIZE(-28):
AS

> 130 IF I=24 AND SEGS(AS.,28.,1
y="1" THEN 150 ELSE I=I+1

> 149 IF I<25 THEN 120 ELSE I=
1l :: GOTO 120

> 150 END

To use the editor, simply run the
program and vou'll be able to layout
28 columns of text by 24 rows! You can
continue editing indefinitely, wrapping
from the 24th row to the first. There
are only a couple of stipulations. You
must work from top to bottom and to end
the program you must enter an "!'" at
the end of the 24th row. You can
advance to the next row by either
pressing enter or the up or down arrow.
By inserting your own code at line 15@,
you can add in a screen dump or screen
save utility, such as "XB MIRROR". Oof
course, you'll also want to use a CALL
HCHAR at line 158 to eliminate the "!"
from the end of row 24.

If you re~-define all or some
character codes at the beginning of
the program, yvyou can also display
graphics. Character codes 128 to 143
can be used by pressing control keys.
The character codes from 128 to 143 and

theilr corresponding keys are as
follows:

character Kkeystroke

code

128 {etr]l >
129 ctrl a>
130 {ctrl b>

September 1986

character keystroke
code ﬂ
131 (ctrl c>
132 Cetrl 4>
133 (ctrl e>
134 (ctrl £>
135 <ctrl g>
136 <ctrl h> |
137 <etrl i> |
138 <ctrl 3> :
139 <ctrl k> f
140 <¢trl 1>
141 (ctrl m
142 (ctrl n>
143 {ctrl o>
Interrupts
Part 1

by D.C. Warren

An important part of micro-
processor {(pgP) architecture is the
interrupt interface. The interrupt
interface allows the PP to deal |
efficiently with external devices which' E
require the attention of the uP. Ve '
will first discuss what the interrupt
interface consists of in general and
then take a look at how the 4A handles
interrupts.

Most processors have an interrupt
line (sometimes several) which is used
to signal the wP that a device needs
Immediate attention. An example might
be an RS232 card which has just
received a byte of information for the
computer. The computer needs to fetch
that byte of information before the
next one comes along or the data will
be lost. One way to deal with this
situation is to have the RS232 device
signal an interrupt to the processor.
The processor checks the interrupt line
at the end of each machine instruction
and if active immediately stops what
its doing and branches (BLWP) to an
Interrupt Routine (IR) which services
the device. When the service is
complete then a return (RTWP) brings
the processor back to the original
program from where it branched and
things proceed as thevy were before the ﬁ
interrupt occurred .

Page 4

The Smart Programmer

(g

There are alternatives to using
the PP interrupt to service devices.
The program which |Is running could
occasionally check the devices to see if
they needed servicing. For example,
let's say that we have a disk
controller, RS232 port and a low-power
SEensor as external devices. The
program that is running would
occasionally check each device to see
If it needed servicing. This is called
"status polling" and if we checked each
device in turn then the program would
be using the "round robin" approach of
status polling. A variation of status
polling might be to check the disk
controller several times for each time
we check the other devices. This may
be necessary because the controller is
a faster device and may need attention
more often than the other devices.

The drawback to status polling is
obvious. Much processor time is wasted
just checking for a service condition.
Also, there could be a relatively large
amount of time go by before a device
which needs service actually gets it.
This happens when the device needs
attention just after the program has
done a status poll. The device has to
wait for the program to come back and
do another poll before it can be
serviced.

Using the pP interrupt interface
avoids the above problems encountered
with status polling. The program which
Is being executed does not need to Kknow
anything about external devices, When
an interrupt occurs the processor, as
described above, branches to an IR
which takes care of the device and then
returns to the main program as if
nothing had happened.

I[f you have several devices
attached to the computer then the IR
must determine which device caused the
interrupt and execute its appropriate
Device Service Routine (DSR). So,
another type of poll must take place
cailed an "interrupt poll"” to actually
find out who caused the interrupt.
This is the type of interrupt structure
which is used by the 4A. A device
signals an interrupt to the uP which
branches to the IR, The IR then does a
pecll to determine which device caused
the iInterrupt so that proper servicing

September 1986

can take place.

Obviously, the interrupt polling
method is more efficlent than status
polling for servicing external devices.
It still, however, has to poll]l to
determine which device caused the
interrupt. The advantage is that the
main program need not have anything to
do with checking for a service
condition. Also, it is faster and does
not needlessly waste processor time as
does status polling.

There jis yet another improvement
that is even more efficient than
interrupt polling. We will be more
specific here and refer to the TMS99@¢
processor since this method varies from
processor to processor. In addition to
the interrupt pin on the processor
there are four additional pins which
are used to signal which device caused
the interrupt. Four pins gives a total
of 16 different levels (#-15) which may
be generated and applied to the uP.
Each level may be assigned to a device
(the 99006 reserves zero for a reset,
though). For example, the disk
controller, RS232 port and low-power
sensor we discussed may have the levels
one, two and three respectively. When
the disk controller needs servicing
then it simply signals an interrupt on
the interrupt line and puts a binary
code of one (@081) on the four vector
pins. The processor then interrupts
out of the main program, reads the
vector code and branches immediately to
the DSR which services the disk
controller. It does not have to poll
to find out which device generated the
interrupt because that information is
made available to it on the vector
pins.

This type of interrupt is known as
"vectored interrupt”. Once the pP has
received an interrupt and has read the
vector code then it needs to know where
the DSR is located in memory so that it
may branch to it and service the
interrupt. With the 9909 this is
accomplished by assigning specific
locations in memory to be used as DSR
vectors. A code of zero (reset) has
its workspace and program location
vectors starting at address H@¢008 In
memory. Level one has its vectors
starting at address H@@064 in memory and

Page §

The Smart Programmer

so on through level fifteen (H@@3E).
For example, if the 998@ received a
second level interrupt from a device it
would immediately grab the workspace
and program location vectors from
memory location H@@#@8 and branch to
that particular DSR. Also, the old
workspace, main program counter and
status words are stored in the DSR's
registers 13, 14 and 15 respectively.
This is done so that when the DSR is
finished the pyP can restore these
pointers and continue execution of the
main program as if nothing had
happened.

Although the vector approach is
the most efficient method of servicing
devices, it is also more complex than
the other approaches we've discussed so
far and has some potential problems.
One problem occurs when more than one
device generates an interrupt at the
same time, Only one device can put its
code on the vector lines or else the uP
will become confused and not service
the devices properly. This is avoided
by using an IC called a Priority
Encoder (PE) interface chip. This IC
only allows one code to be passed to
the YyP at any one time. In addition,
it allows only the lowest numbered code
to pass if more than one device is
generating an Interrupt. For example,
let's say that device two and three
generate Iinterrupts at the same time,
The PE chip will present code two to
the processor and block code three,
When the level two device is finished
then level three will be presented to
the yP for attention. This allows
priority assignment to the servicing of
external devices. You may, for
instance, want to assign the low-power
sensor in the above examples the
highest priority (level one) since it
represents a critical condition.

Another problem occurs when the
main program is ‘executing code which Iis
timing critical like a 28mS delay loop
for an EPROM programmer. If an
interrupt occurs in the middle of this
loop then by the time the interrupt is
serviced and the pP returns to the main
program hundreds of milliseconds may
have passed. So, the 2¢mS delay loop
turns into several hundred milliseconds
which is undesirable for your EPROM
programmer. This problem is common to

September 1986

not only the vector interrupt scheme
but also the polled interrupt scheme.

What is used to prevent such an
occurrence is an internal interrupt
mask within the pP. On the 99088 this
mask can have a value of zero to
fifteen. If the mask is set at three
then only interrupts from devices
three, two, one and zero will be
recognized. The instruction which sets
the mask is the LIMI xx instruction.

The mask is set to zero by the
programmer whenever the main program is
in a timing critical section so that no
interrupts can disturb the flow of that
section {(note that code zero can never
be masked out so reset is always
active). When finished with the
critical section then the programmer
can reset the mask to allow interrupts
once again.

Also, when an interrupt occurs the
uP automatically sets the mask to one
level higher than the device which
caused the interrupt, Let's set up a
condition of an interrupt and step
through what happens to the mask.
Assume that the mask is set to level
four and a level two interrupt occurs.
The uP grabs the appropriate DSR
vectors out of memory and stores return
information, as discussed above, in the
new DSR workspace. Note that the
current mask value of four is stored
within the status word in the new
register 10. The mask is now set by
the uP to level one. That means that
only level one and zero interrupts can
interrupt the currently executing level
two DSR. As you can see, the processor
can get several DSRs deep before it
ultimately returns to the main program,
when the DSR is finished then the mask
is reset to four as the previous
workspace, program counter and status
words are restored (a RTWP
instruction). By this method the main
program can continue execution as 1if
nothing had interrupted it.

This month, we've covered the
general manner Iin which interrupts are
used, with only casual mention of the
99/4A environment. Next month, we'll
continue this discussion and direct our
attention more toward the 99/4A's interrupts.

ﬁ-ﬂ—--——*_“-—F_-ﬂ_--___—__—__*-

Page 6

The Smart Programmer

5th 1- =FORTH
 ®

by Mariusz Stanczak

The past few weeks were really packed, so let's get to it. First off,
there is the latest FORTH issue (#117,July 1986) of Dr. Dobb's Journal of
Sofware Tools for the Professional Programmer. CQooff! The title of that

magazine has grown over the vears into quite a mouthful, but don't let it
intimidate you, it's still good stuff. And, it looks like it's going to get
better for FORTH afficionados. Mr. Michael Ham, new c¢olumnist, with his

"Structured Programming: Forth" will most likely convince me to finally
subscribe. This month his readers get walked through the development of all
sorts of one-dimensional array words. Read it! As a supplement to Mr. Ham's

article, I would like to share a couple of Integer (easily convertible to
double or floating which, as my math professor says, is left as an exercise to
the reader), multi-dimensional array words I picked up a long time ago.
Unfortunately, even though 1've searched all my materials, I wasn't able to
come up with the source and, give the credit, which he really deserves, to the
author. The words follow.

LR

l1ARRAY (n =--) \followed by a word
<BUILDS DUP , © DO 0O , LOOQOP
DOES> SWAP 2 * + ;
ZAIM {nn -- addr)
ROT 1- SWAP DUP @ ROT * ROT + 1+ 2 * + :
2ARRAY ({n n ---) \followed by a word
{BUILDS OVER OVER , , * 0§ DO © , LOOP
DOES> 2AIM
’7. : 3ATM (n n n -- addr)
DUP DUP @ >R 2+ @ >R >R ROT ROT R> 2AIM SWAP 1- R> % R> * 2 % + 2+
3ARRAY (nnn ---) \followed by a word
(BUILDS >R OVER OVER , , R> DUP , = * 0 DO @ , LOOP
DOES> 3AIM :;

LR 3

Usage of the nNnARRAY words is really simple. You put on the stack the
dimensions and follow them with the appropriate nARRAY word and the name of
your structure. For example, an ninety element one-~dimensional array SINES
would be created by typing 96 1ARRAY SINES, a three element per side cube
array CUBE by typing 3 83 3 3ARRAY CUBE etc. Initially, each element in the
newly created data structure will contain zero as it is initialized by the
nNnARRAY word. Subscripting into the created data structures follows the model
accepted Iin subscripting matrices in mathematics, so first x then y or, in
other words, first row and then column, etc. It follows that to store a number
into the cell at second row, third column, first plane of CUBE you would type n
2 3 1 CUBE !. To get the hang of it, build some structures and DUMP them,
store some values into them and DUMP the structures again. The first thing you
are likely to notice is that the first element(s) contain the dimensions of the
structure, which will come In handy in performing matrix arithmetic on the data
structures. |

Two other pieces of FORTH related info came through the malil. In Forth
Dimensions (May/June 1986), Mr. Gene Thomas published a set of words that ease
the installation of ISR's on the 99/4A and supplied an example of an ISR

routine in the form of a current number base display. The installation words
follow.
@ : OISR (-——) \ISR off
- @ 83C4 ! ;
September 1986 Page 7

The Smart Programmer

1ISR { -—-—-) \ISR on
INTLNK @ 83C4 ! ;
INSTALL_ISR (---) \followed by
\word to be installed
OISR [COMPILE] ' BL WORD CFA ISR ! :

The word INSTALL ISR as presented includes an error. Let's see what
happens when INSTALL_ISR executes. TICK grabs the next word from the input
stream and leaves its pfa on PS, then BL WORD sequence also looks up into the
input stream in an attempt to find a string of characters delimited by a blank.
It either finds it (Oh, oh!) and, it will copy the string to HERE advancing the
pointer into the input stream IN past the found token preventing it from being
later properly treated by INTERPRET or, if the stream is exhausted, it will
find a null (>@8 which is the normal and unconditional delimiter standard for
input streams) and the execution of BL WORD will end without causing any harm,
Next, CFA will convert the pfa on PS into c¢fa which gets stored into the
varjable ISR, the intended result. The corrected definition of INSTALL_ISR is:

: INSTALL_ISR
@ISR [COMPILE] ' CFA ISR ! ;

Now, some very good news for those who are more than casually interested
in FORTH. For none, I think, should the name Charles Moore be unfamiliar.
Moore's newest develcepment in FORTH is the NC40688 chip. As you may know, there
is the very expensive 8Mhz Beta Board, then the 4Mhz Delta Board which,
although a lot less expensive, at $9¢6.68 it is still way out of reach for
most. Do not despalr! To the rescue comes Computer Cowboys (410 Star Hill
Road, Woodside, CA 94602, tel. (415)8561-4362) with what appears as the Delta
Board in a kit form (Gamma Board? A never marketed product because of its
unprofitable pricing that was still too high for the mass market). For $4¢006.00
you get the board and all, but memory, chips (of which you have to buy 6) as
well as ¢cmFORTH listing, Application Notes and Brodie on NC4¢@@0

book. Put it all together (11 socketed chips, 3 capacitors, 2 resistors),
connect an RS-232 cable {(from a terminal or a computer) and yvyou have a 4 MIPS
{million instructions per second) computer with 16-bit, parallel, video, floppy

and printer interfaces. But, if you are like me and still can't come up with
enough money to say "YES!" to this great offer, another alternative is to buy
Mr. C. H., Ting's Footsteps in an Empty Valley —-- NC40d9 Single Chip Forth

Engine, which includes, in addition to the description of the architecture,
instruction set and cmFORTH operating system's source code, a schematic of a
single board computer. All for a head spinning price of 825.608. The book |is
avallable from Offete Enterprises, Inc., 1386 S. B Street, San Mateo, CA 94482,
Well, now we are finally in the price range my student packet can accommodate,
even after the 16% for handling and 6.5% California tax is added. The price of
the 4Mhz microprocessor is still about $25¢.6¢ but it is expected to drop to
about $50.6¢ within a year or two.

That's all about near future, Let's go back to present. It was a reail joy
to recieve the recent installments of this newsletter and, if you enjoyed it as
much as I did then hacking assembler is on the rise. Although I'm no old hand
in assembly on the 99/4A, my first job in computers included writing in PLAN,

an ICL-1900 structured assembler. Now, nobody seems to do that {(writing in
assembler) on mainframes and where I work now, the language of choice (read
necessity) is elther Fortran or COBOL. What a3 shame! Anyway, not to stay too

far behind the masters of the previous issues, 1 made an attempt to correct one
of the most annoylng omissions in TI-FORTH, the lack of an auto-repeating
cursor. The system I use only looks like TI-FORTH and, when I tried to
transplant its KEY routine into the original version, I was in for a surprise.
It didn't work as expected! After three days and about twenty less or more
satisfying variations, working and not, it finally came to me. I'm not going

September 1986 Page 8
The Smart Programmer

to fit the thing into the space of the original routine.
not me.
say about all the others I dug up from the pile of printouts before I (re)found
['d give my head there was somewhere a prettier version,
heck. You will have more fun correcting,
inefficiencies of |it.
fjts full functionality

it.

the

Somebody maybe, but

The version that you find below works and that's more than you c¢ould

BASE->R HEX

Co28
DOAD
0203
C120
1509
1308
0420
D801
D081
D043
0420
0205
34Cé6
D806
0420
9806
161B
0629
1311
0584
0284
1305
0284
1204
84C4
10E7
Codaz
10E6
C804
0300
064D
045F
0206
9806
13EA
0205
C8@5
0460
3CDC
0258
0720
D060
04290
DO20
09890
0469
DP |

=

f
r
’
!
r
r
!
!
r
r
’
4
Tt
r
r
r
r
r
!
f
r
’
f
r
r
r
r
F
r
r
r
f
r
r
r
r
F
r
D

r
r
’
r
r
!
r

That's

0016
3CD6

1E00
3CD4

3Al1C
3CD6

3A14
0258

837C
3A10
837C

3CDC

PO96

012C

3CD4
PO02

FFOQ
8375

Q03C
3CDC

3CDE
!

3CD4
3CD6
3A14
8375

3482

- - - -

b] b] - b]

r

R=->BASE

HERE

P i A

\KEY1
\KEY2
\KEY3

P il P Al L P A B A B A B S A A e

o
s
(0
+G
0

\DELAY
\KECONT

\

\
\
\
\
;S

all

KEY4

KEY5

KEY®6

KEY7

for

3654 DP
\KEY?®

MOV
MOVB
LT
MOV
JGT
JEQ
BLWP
MOVB
MOVB
MOVB
BLWP
LI
CLR
MOVB
BLWP
CB
JNE
DEC
JEQ
INC
Cl
JEQ
CI
JLE
CLR
JMP
MOV
JMP
MOV
LIMI
DECT
B

LI
CB
JEQ
LT
MOV
B

DATA
SETO
MOVB
BLWP
MOVB
SRL
B

@CURPOS (U) ,RO

@CURCHR ,R2
R3,>1E00
@KEYCNT,b R4
KEY3

REY 3

@VSBR
R1,@CURCHR
R1,R2
R3,R1
@vSBW
R5,600

R6
R6,@KYSTAT
@KSCAN

R6 ,@KYSTAT
KEYS8
@DELAY
KEY7

R4

R4,150
KEY5

R4, 300
REY6

R4

KEY1l

R2,R1

KEY?2

R4 ,@KEYCNT
2

IP

*NEXT
R6,>FF00
R6,@2KYCHAR
KEY4

RS, 60
R5,@DELAY
@KECONT

600
@KEYCNT
@CURCHR ,R1
@VSBW
@KYCHAR ,RO
RO, 8
@BKLINK

this month.

September 1986

For

but what the

from the most obvious to the subtle,

Have fun and let me know
into the space between >3654 and >36CA

iIf you succeed in squeezing
(inclusive).

addr of current cursor position
last read character from screen
Cursor name

:= =1 initial, 0<= on reentry
1f reentry

read chr at cursor position
save it

flash cursor
delay factor

clear GPL status register

read keyboard

was key pressed

if yes

is it time to check for same key?

is it time to flash original chr?
if ves

is it time to flash cursor chr?
i1f not

prep. for flashing the orig. chr

go do it

preserve flash count
enable interrupts
reenter KEY

'no character' c¢ode

autorepeat factor

set DELAY

initial delay factor

restore original character
return new character in LSB of RO

exit the function

Page 9

The Smart Programmer

XB/Assembly:
De-bugging De-mystified

by Richard M. Mitchell

Any BASIC programmer can write
Assembly instructions! Yes, all that is
required is the E/A manual, a set of
memory maps and maybe a pad of paper.
All one has to do to write the
instructions is to look 'em up in the
E/A manual! Now, before you plunge into
writing the all-time greatest plece of
software, there is one more fact about
writing Assembly. Once programs exceed
about 15 lines long, the 1likelihood of
getting the program to work property
the first time it is run is about 5¢-~5¢@
between a slim chance and no chance at
all! Yes, de-bugging is a fact of life
for Assembly programmers.

In years gone by, de-bugging was,
for many {(most?) users, an arduous
task, offering the ultimate test of a
programmer's patience. There were only
a few de-bugging utilities awvailable,
so If you didn't understand how to use
the de-bugger on the E/A disk, you were
out of luck! Today, several utility
programs for de—-bugging and related
tasks are available. While my
preference lies with Millers Graphics'
MG EXxplorer program, I suggest that if
de-bugging has been your problem in the
past, you need to either try another
de—bugger or seek help with the one you
have used. Keep Iin mind that nearly
every de-bugger available has been used

successfully, so use the one with which
YoUu are most comfortable. The
remainder of this article will deal

with use of Explorer, as I likely would
not do justice to the strong points of
the other programs.

For those of you who are not
familiar with Explorer, the program is
ga CPU emulator and does much more,
supplying information on wvirtually
everything an Assembly programmer would

want to know about code that is
eXxecuting and updating the information
on each machine instruction. Explorer

has windows for memory contents,
instruction disassembly, CPU and VDP
register contents, status bit values,
etce. Also, a number base conversion

September 1686

utility is available with a keystroke.
ExXplorer has to be seen to be
believed!

Using Explorer should not be
considered the first step in the
de—bugging process. As ! have stated
ont many occasions, de—bugging should
begin when a program is written.
Planning a program and laying it out in
a Structured fashion reduces problems
later.

Once source code is completed, it
can be assembled, at which time a LIST
file can be produced (use the L and S
options when assembling). I usually
send the LIST file to disk in an effort
to save paper. When | reach the stage
that I feel I must have a printout of
the LIST file, 1 then print it. If you
don't have either a printer or a second
system for referencing information such
as LIST files, you'll likely find it
very cumbersome to write Assembly!
Fortunately, printer prices have
declined in the past couple of years
and good ones are available for $10¢ to
$300 (very good ones for under $609).

While the LIST file is very
helpful, the LIST shows addresses
relative to >00d0¢, which is the offset
to the load address for relocatable
code (this does not apply to AORG code,
as the 1oad address for AORG code 1is
specified with the AORG directive). To
determine the specific address for a
line of code, one must add the LIST
file address to the load address. For
instance, if an A/L program is the
first loaded into XB, the load address
is >24F4 (the First Free Address in Low
Memory in XB), so whatever is at >@06¢0
in the LIST file will load to >24F4
(subsequent 1loads of relocatable code
load at the new FFALM, at the next word
after the preceding file). Well, I'm
not about to add the offset to the load
address for every byte in the LIST file
and Jjot the addresses on the LIST file,
as that {s "busy work"! Instead, I
calculate only the beginning and ending
addresses, then load the program and
then use DISKASSEMBLER™ to disassemble
memory and print the output. Then 1
can use both the LIST file's commented
code and the DISKASSEMBLER™ output's
specific addresses. I have found bugs
simply by running a program and

Page 1@

The Smart Programmer

»

disassembling, locating erroneous
register values, ete, that I tracked to
my errors!

Armed with the LIST and disassembly
printouts, it is fairly easy to run
Explorer. Because we are assuming in
this article a LINK to XB, the CALL
LOAD to load Explorer should
immediately precede the CALL LINK that
we wish to explore. After EXxplorer
loads and is started, we find that a
LINK goes through in excess of 1,000
machine instructions (this number
varies and can range up to 4,000 or
more!) before beginning execution of
the user’'s code! The LINK executes
rather quickly at full speed, but
Explorer slows everything down so we
can follow things. S0, we need to set
a breakpoint so we can go quickly
through the LINK executions (assuming
we aren’'t interested in system
operation, only our own code).

Before discussing breakpoints,
let's take a brief look at all of
those instructions for a LINK! Exactly
what LINK does 1s beyond the scope of
this article, but I think you should
stop to consider that while Assembly
code, even Iincluding the LINK, is much,
much faster than equivalent BASIC code,
LINK'ing to BASIC or XB obviously
cannot begin to compare to the speed of
a 100% Assembly programt! Additionally,
because XB makes use of nearly all of
high-speed Scratchpad RAM (some other
environments make lesser use of
Scratchpad), we generally cannot use
Scratchpad for our own XB A/L code and
therefore cannot execute Assembly code
as quickly from the XB environment as
from a 100% Assembly environment (yes,
there are fancy tricks for using
Scratchpad from XB, such as what [did
in "XB MIRROR"). But, 100% Assembly is
sometimes difficult to code and often
Is not very byte-efficient,. So, XB lis
an environment in which a8 primary
objective should be accomplishing a
task, with only moderate emphasis on
raw speed. Once you have a functioning
program, look for possible improvements
if you have time. Well, the point of
this digression is that Explorer
enabled me to grasp the significance of
the effects of LINK and to deal with XB
from & pragmatic perspective! Often,
explorations are very enlightening!

September 1986

From discussions I've had with
many users, it seems that many people
are not understanding Explorer's
breakpoints. A breakpoint is simply a
point at which you want continuous
instruction executton to pause,
enabling you to examine everything at
that point and/or single execute
instructions beginning at that point.
From XB, we would normally want to set
the first breakpoint as a CPU
breakpoint at the entry point to the
program. Remember, the entry point is
the address of the label you DEF'd and
LINK'ed. Obtain the entry point
address from your disassembly printout.
The degree to which you grasp
breakpoints seems to be what determines
whether you'll call Explorer a "fancy
thingamabob” or a fantastic tool!

Upon reaching your routine's entry
point, keep track of single executions
by comparing vour LIST flile with
Explorer's disassembly window. On each
exXxecution, check the values in the
workspace registers and any other
values you possibly can. If you're a
beginner, at least Jook for the obvious
errors. For instance, if you know that
a register should contain a nibble
value (# to >F), but it contains other
than a zero in other nibbles (an
example would be >25C4), then you
should suspicion that you have placed
an address rather than the contents of
an address into the register, which is
a common error! Continue looking for
errorgs through each execution —-- as you
gailn experience, you'll find it
increasingly easy to spot errors.

After executing a few instructions,
You may come across a BLWP to a
resident routine, such as a BLWP @VMBW,
or a BLWP to a routine of your own that
you've previously de-bugged. Well, it
can take quite awhlle to single-step
through such routines and it is fairly
safe to assume that since you're trying
to improve your own code, you'll not be
interested in examining resident
routines. So, get ready for continuous
execution by setting a breakpoint!
"Where?", you ask! Simple! After the
workspace change of the BLWP, R14
contains the address for your
breakpoint! There is an exception,
though. If the BLWP is followed by

DATA, then Rl14 will be incremented as

Page 11

The Smart Programmer

the DATA is used within the routine in the new workspace. Because of the DATA
exception just noted, I expand EXxplorer's disassembly window to 3 lines either
all of the time or when I encounter & BLWP. If no DATA follows the BLWP, then
I know R14 will contain the address for the breakpoint. If DATA does follow,
R14 will be incremented in relation to the words of DATA encountered. When
DATA does follow the BLWP, you may find it easier to obtain the address for the
breakpoint from your LIST and/or disassembly printouts. Continuous execution
through the resident routines will make your de-bugging go much faster!

Well, discussions of Explorer and de-bugging could easily ramble on
through volumes, so for now I'll simply ask that you write in to let me Kknow
what you'd like to see covered more extensively.

__—-__—-__-—_-_—___'—-—---'___—“--"—_—-__—'-—--——--——_—-__“_-—-——_—_H—-_—

Extracting Values from Spreadsheet Strings

by Richard M. Mitchell

In a previous issue, I described using Multiplan™'s MID and VALUE to
extract a value from a string. With the formula given in that issue, the
number had to fall at a specific position and be a specific length. Not being
satisfied with those limitations, I set about trying to extract the first
number that occurs within a string, regardless of its position or its length.
Unlike BASIC, Multiplan™ has no POS (position) function and no formal loop
structure. Ouch! So, after pondering the problem, the only solution I have
come up with is to use iteration in a somewhat unique fashion. By using
ITERCNT(), we can .increment the parameters of MID until ISERROR returns FALSE
(no error), incorporating all of that into an IF! If the formulae shown below
initially confuse you, I won't be surprised! It took me about 9 hours to figure
it out! Here is the spreadsheet:

1 2 3 4
1
o) 6 7 8
1 LEN{(RC[-5]) IF (ISERROR (VALU IF{ISERROR (VALU
E(MID(RC[-6],MI E{MID(RC[-7}.RC
N(RC,ITERCNT()) [-1]-1,2))}),RC{
:1))),MIN(ITERC ~1],RC[~1]-1)
NT() ,RC[~1]),IF
(ISNA(RC),1,RC)
)
9 10 11 12
1 MID(RC{-8]},RC{~ IF(ISERROR(VALU MIN(ITERCNT(),L IF(ISERROR{VALU
1] ,RC{-3]-RC[-1 E(MID(RC[-1],1, EN(RC[-2])) E(MID(RC[-3],1,
]+1) ITERCNT()))}),RC RC[-21))).,0,VAL
MIN(ITERCNT (), UE(MID{RC[-31.1
LEN(RC[-11))}) JROF-21))

September 1986 Page 12
The Smart Programmer

After Keving the formulae, the
iteration function from (O)ptions must
be turned on with (Y)es. Your string
goes into column 1. The first
occurrence of a number (ves, even in
scientific notation!) in that string is
returned in column 12. If there is no
number, a @ is returned. Columns 2
through 5 are not used, as I set the
spreadsheet up to support SYLK files
created from Extended BASIC with the
"80SYLK" program that appeared in Super
99 Monthly. While this was primarily
just an interesting project, it will
allow you to obtain numbers from text
files that were created by other users.
For numbers you generate, a better
solution would be to modify "88SYLK" to
support numerics instead of strings.
I must warn you that the above
spreadsheet is slow!

The real significance of the above
spreadsheet is that it is an example of
using loops, a CASE structure to be
more precise, if you are familiar with

CASE, which is used in many languages,
including FORTH. And you thought
Multiplan™ didn't support loops, eh?
If you come up with an interesting CASE
structure using ITERCNT(), let us hear
from you!

Oops'!

In the "XB MIRROR" article last
month, I really blundered in stating
that "XXB" AORG's into High Mem. The
program uses the XBALT method to load
into the normal Low Mem area, at >24F4,
For those who wish to use both programs
together, you might try AORG'ing XB
MIRROR into High Mem.

In the August News section, I
falled to disclose that the photographer
who so kindly sent pictures of the
German 88-column card was Ken Davies.
Many thanks, Ken.

N - R T e A ek wek W i ol BEE M AR e G iR S B e S e T e . P s whie s o oy Sl Seed s

Q&A

The Scratchpad Memory map in the
August 1986 issue includes several

September 1988

references to temporary variables, etc.
Will you be disclosing more information
on those addresses?

Yes, I have several projects in
the works that will clarify the use of
many of the addresses in Scrathpad.
We certainly intend to continue to
provide, as space and time permits, all
0f the details that we are familiar
with. Some addresses cannot be
adequately explained within the format
of a map, so0o future articles will
include code and discussions that will
shed much more light on the uses of
many of the addresses. "XB MIRROR" has
been well-received and between my own
research and the suggestions of several
experts, the enhancements and expanded
capabilities that I'm working on for
that program should prove enlightening.

Piracy Crackdown

The Software Publishers Assocjation
has announced that it is extending an
open offer to all BBS users to join
the fight against software piracy.
The Association, which represents
over 15¢ firms in the software industry,
issued the offer of $1686 to the first
individual who provides all of the
following iformation about a pirate
bulletin board in the U.S. or Canada:

1) The name of the bulletin board (if
any), telephone number and necessary
log-on information.

2) The full street address of the board
and the full name of the System Operator

(Sysop).

3) A disk containing copyrighted
materials downloaded from the system.

4) A printout showing all other
copyrighted materials available on the
Board, with the date on which the

printout was made.

Upon receipt of the above information,
the SPA may, at its option, either
contact the Board and request its
immediate shut down or refer the
evidence to the local office of the F.B.l.
for an investigation into possible

Page 13

The Smart Programmer

criminal violations of the Federal
Copyright Laws. Upon verification of
the information provided, the SPA will
send a $10¢ check to the individual who
provided the information.

Ken Wasch, Executive Director of
the SPA, emphasized that the industry
appreciates the valuable service most
electronic bulletin boards provide of
facilitating the exchange of information
among users. Wasch added, "The
'pirate’ bulletin boards unfortunately
are stealing from both users and the
software industry, which depends on
software sales to recover the enormous
development costs of each software
application.” The SPA expects to
initiate few prosecutions, since it
anticipates that most offenders will
comply with requests to remove
copyrighted software from their boards.

In announcing the offer, the SPA
added the following terms and conditions:

* The offer opened on September 1, 1986,
and will continue until Nevember 1,
1986, unless otherwise extended or
modified.

* The SPA reserves the right to modify
terms of the offer to ensure that the

reward money is not claimed in a
fraudulent manner.

* The determination of whether a
claimant has complied with the terms of
the offer shall be made exclusively by
the Software Publishers Association.
" The identity of persons providing
information in response to this offer
will be held strictly confidential.

For more information about the offer,
please contact the SPA at (2862)
452~-1600,

I T T T T I IS I A G S P G A S DS IS DS DDES DpES DS DS DS DS D e e e b e skl e e

Reports from Seattle indicate that
the recent show there was a big
success!

In Seattle, Craig Miller announced
that he is engaged in a joint venture
with a major U.S. firm (the firm has
not previously been involved in 99/4A
projects) to produce a device that will

September 1986

provide full hardware and software
interface between the 99/4A and an
IBMl-type microcomputer environment.
An announcement with further details
will be made in January, 1987.
According to Craig Miller, the device
is now substantially completed and will
likely be available by early
1987.

Tape, Ltd.'s Franz Waggenbach was
in Seattle and showed the 880-column
card that we mentioned iast month and
also brought in an EPROM'er. Word has it
that an EPROM'er was released for
evaluation, so we'll try to have more
on it in an upcoming issue.

MYARC, Inc.'s Lou Phillips
provided information on the firm's
Genéve computer card project to the
Seattle show audience. According to
Phillips, the Genéve, which utilizes =a
9995 processor and a 9938 video chip,
is nearly completed. Phillips also
stated that MYARC will soon be
releasing a new controller that will
inelude hard disk controller
capabilities, thereby substantially
reducing the cost for 99/4A owners to
get into hard disks.

Most of the attention at the show
in Seattle apparently focused around
hardware. With so many programmers
working on the wvarious hardware
projects, there's sales to be had by
any talented programmers who pursue
the market! Go for it!

The fourth annual Chicago TI-99/4A
Computer Falire, sponsored by the
Chicago—-Area TI 99/4A Users Group, will
take place November 1, 1986, from 9 am
to 6 pm. The show will again be held
at the Ironwood Room, Triton College,
2086 North Fifth Avenue, River Grove,
Illinois, about 15 minutes from O'Hare
Alrport. The show has consistently
attracted about 2080 99'ers from about
15 states! Many of the folks vou've
heard about and corresponded with over
the years will be there, s¢o don't miss
it! Barry Traver and I (Richard
Mitchell) will be there and invite vyou
to drop by our booths.

o wmy g e sjem e wmed il e G S B WS e =l I I I TS L DI I DI BT A N WA IS P DT B e e .

Page 14

The Smart Programmer

~ CONSOLE CRU BIT MAP (9901)

o i ke S S +
! ! All of the Data for the 99901 on the 99/4A is inverted. |
| === ! On or Set = 0 and Off or Reset =1 |
!Cru Base! Bit |~——————— e e e e S T TS e ST e I
| Address | No. | Description I
———————— mm e | e e e e — e —— e m = |
1 I l
I % I
1>0000 @ + © = Internal 9901 Control 1 = Clock Control !
>0002 1 | Set by an External Interrupt (Peripheral Device)
>0004 2 |} Set by TMS 9918A on Vertical Retrace Interrupt
>0006 3 | Set by Clock Interrupt for Cassette read/write routines
I I Also used for Keyboard Matrix Row 7
I I I
I) KEYBOARD 8 x 8 MATRIX
I I Column @ 1 2 3 4 5 6 7
I I e e e e e e +
>Q006 3 Row 7 | = . ' M N / Jovyl Joy2 Fire |
>0008 4 Row © | SPACE L K J H : Joyl Joy2 Left
1>000A 5 Row 5 ENTER 0 I U Y P Joyl Joy2 Right
1 >000C 6 | Row 4 9 8 7 6 f Joyl Joy2 Down
>Q00E i 7 | Row 3 FCTN 2 3 4 5 1 Joyl Joy2 Up
>0010 i 8 | Row 2 | SHIFT S D F G A |
r >0012 9 : Row 1 | CTRL W E R T Q I
- >0014 16 | Row 0 | X C vV B Z !
e, +
>P016 11 Not Used
>0018 12 Reserved — High Level
>001A 13 ! Not Used
>001C 14 | Not Used !
>001E 15 Not Used I
i
1
>0020 16 Reserved I
>0022 17 | Reserved I
1>0024 18 ! Bit 2 of Keyboard Matrix Column select (8x8 matrix) I
1>0026 19 |} Bit 1 of Keyboard Matrix Column select
{>0028 20 | Bit 0 of Keyboard Matrix Column select (MSB)
l ! (set up the column to read - R1 = 08xx thru 07xx)
I I { LI R12,>0024 LDCR R1,3)
I I ({ and read the row bits (3-10) with }
; (LI R12,>0006 STCR R4,8 INV R4)
I
>002A 21 | Set Alpha Lock I
>002C 22 | Cassette CS1 motor control On/Off !
>002E 23 Cassette CS2 motor control On/Off l
>0030 24 Audio Gate enable/disable I
>0032 25 Cassette Tape Out I
>0034] 26 | Reserved
>0036 | 27 Cassette Tape In
>0038 ! 28 X
: * Not Used - causes lock up.
ﬂ >QOFE 1128 X
4 ot o A e e e ko o e = o T e i e +

September 1986 Page 15
The Smart Programmer

l
| BYTEMASTER ORDER FORM
l NAME |
I The Smart Programmer
l ADDRESS
{ SP1 $18.00 U.S. AND CANADA FIRST CLASS
SP2 $15.00 U.S. THIRD CLASS (no back issues) CITY
| SP3 $20.00 FOREIGN SURFACE (no back issues)
SP4 $32.00 FOREIGN AIRMAIL STATE I
{ SPSA-D $§ 1.75 U.S. JUNE - SEPT. 1986, ea.
SP6A-D S 2.75 FOREIGN JUNE -~ SEPT. 1986, ea. Z21IP CODE
l
Super 99 Monthly COUNTRY |
l I
| SM1 $18.00 Complete set of 18 back issues Payments accepted by |
SM2A-R 8 1.00 Back issues - ea. (U.S. Third Class) check or money order I
SM3A-R § 1.50 Back issues -~ ea. (Canada and U.S. in U.8. funds, coded i
| First Class) for processing through |
SM6A-R $ 2.50 Back issues - ea. (Foreign Air Mail) the U.S. Federal !
SM4 $12.00 Programs on disk (non-FORTH) Reserve Banking 1
SM5 $15.00 Super 99 Handicapper System. No billings :
(req. XB, 32K, Disk, Printer) or credit sales. !
Dealer inquiries |
ITEM # QTY EACH AMOUNT New Renewal invited. Discounts I
+ + -+ available on gquantity
b I orders. I
+—+ +—+
!
Louisiana residents must add 4% sales tax. Calcasieu 1%. Sulphur 2%. l

The Smart Programmer is published monthly by Bytemaster Computer
! Services, 171 Mustang Street, Sulphur, LA 70663. All correspondence :
received will be considered unconditionally assigned for publication and
copyright and subject to editing and comments by the Editor of The
Smart Programmer. Each contribution to this issue and the issue as a I
whole COPYRIGHT 1986 by Bytemaster Computer Services. All rights reserved. |
! Copying done for other than personal archival or internal reference use E
I
|
I

! without the permission of Bytemaster Computer $ervices is prohibited.
Bytemaster Computer Services assumes no liability for errors in articles.

Editor Richard M. Mitchell o
Staff Craig Miller Steven J. Szymkiewlicz, MD
Charles M. Robertson Barry A. Traver
Mariusz Stanczak D.C. Warren :
i
e e e e e o e e +

DISKASSEMBLER is a trademark of Millers Graphics :
Multiplan is a trademark of Microsoft Corp. _ !
1) IBM is a registered trademark of International Business Machines I

o e e e e e +
| Bulk Rate :
Bytemaster Computer Services U.S. Postage
171 Mustang Street PATID
Sulphur, LA 70663-6724 Sulphur, LA 70663
! U.S.A. ! Permit No. 141 I
e +

POSTMASTER: ADDRESS CORRECTION REQUESTED
. RUSH ~- TIME DATED MATERIAL

September 1986
The Smart Programmer

