VOLUME 2 ISSUE 6 $1.76

OCTOBER 1986

“Serving 99'ers Since 1984"

Well, this month we begin with the
second installment of D.C. Warren's
Interrupts series. Each segment tis
even better than the one before and
next month's article will be another
that programmers will find both useful
and enlightening.

Interrupts

Part 2

by D.C. Warren

The interrupt interface of the
TMS99008 pP, as discussed in the
Sept. '86 issue of The Smart
Programmer, has one pin to signal
interrupts and four other pins used for
developing sixXxteen interrupt vector
levels (remember, level zero is
reserved for reset). For the sake of
completeness we must mention the other
two pins on the uyP, which are
specialized interrupt pins. The [first
is the RESET pin, which executes a
level zero reset when the system Iis
turned on or a cartridge is inserted.
The second pin is the Non-Maskable
Interrupt (NMI or also known as the
LOAD pin) which is used by currently
avallable load interrupt buttons and
single~step hardware. The NMI vectors
reside at the far end of memory at
>FFFC. These latter two interrupts
won't be discussed anymore since they
aren't related to the Interrupt Service
Routine (ISR) In console ROM.

Although the TMS99006 makes
available fifteen of sixteen external

October 1986

THE SMART
PROGRAMMER

interrupt levels to the system, only
level one is implemented in the 99/4A,

That means that the only mask
instructions necessary to work with
interrupts on the 4A are LIMI 1 and
LIMI 6. This may be confusing because
TI recommends using LIM! 2 throughout
much of their literature when
interrupts are needed. Also, there is
a set of level two interrupt vectors at
>898 in ROM. 1 will only speculate
that the recommendation to use the
level two mask was to maintain software
compatibility with future products
(such as a8 99/7 or 99/8, perhaps).
Also, the level two interrupt vectors
in ROM may be there for software to use
jf sereen-blanking Iis desired without
having to enable interrupts {(by using
BLWP @>0008). It will be clear later
that this is one of the functions of
the level one and two routines.

The single interrupt implemented
in the 4A is attached to the TMS9981
Programmable Systems Interface chip.
This IC performs several functions In
the 4A but the function of interest to
us is the interrupt interface section.
The Video Display Processor (VDP)
interrupt and the peripheral interrupts
are both attached to the 9991. Also,
The 9961 has an internal timer which
can cause an jinterrupt. When any one
of these three items cause an interrupt
in the 9961, the 9961 in turn signals a
level one interrupt to the 9968 uP. It
is then the duty of the ISR in _console
ROM to interrogate the 9941 in order to
find out if the timer, VDP or
peripheral caused the interrupt. Once
this is resolved then a specific part
of the ISR is executed.

Page 1

The Smart Programm%

Now that the hardware aspects of the interrupt Interface have been
discussed, it is time to take a look at the software part (the ISR) that we've
been talking about. The following listing is documented source code for the
ISR. One comment is that some sections of the code are hard to follow, notably
the Auto Sprite Motion and Auto Sound Processing. This is because little
information from TI is available explaining just how these pieces of code
function. A good way to understand the Sprite Motion and Sound Processing
parts of the ISR is to set up a small program in XBASIC and watch what happens
to Sprites and Sound with the MG EXPLORER.

EERXRARXRRERRAARRAEAXRAAARRRARAAAEARAAANRA X

* ISR Source

Code

X

* Commented by D.C. Warren *
REEREEARERARERERRXRAARK AR AR R A R A XX

GPLWS EQU >83E9? GPL workspace

R3LB EQU GPLWS+7 LSB of GPL R3

R8LB EQU GPLWS+17 LSB of GPL RS

INTWSP EQU >83C0 Interrupt workspace

AR12LB EQU INTWSP+25 LSB of interrupt R12

SOUND EQU >8400 Sound generator port address

VDPRD EQU >8800 VDP read data port

VDPWD EQU >8C00 VDP write data port

VDPWA EQU >8C02 VDP write address port

WRVDP EQU >4000 Write bit mask for VDP writes

VDPSTA EQU »>FC90 Offset to VDP status port [@VDPSTA(R15)=>8802]
TIME EQU >8379 VDP interrupt timer byte

MOTION EQU >837A Number of sprites in motion

VDPST EBQU >837B Copy of VDP status byte

INTFLG EQU >83C2 Interrupt control byte

INTPTR EQU >83C4 ISR hook

SNDADD EQU >83CC Address of sound list

STFLGS EQU >83CE Sound byte counter

RSMOT EQU >0780 Sprite Motion List address in VDP

QSAML EQU >048¢0 Offset from SML to Sprite Attribute list in VDP
VDELTA EQU >2000 Constant for checking invalid sprite positions
PUTSTK EQU »>0864 [These vary] Routine which stacks GROM address on SRAM stack
GETSTK EQU >0842 [on other] Routine which pops GROM address off SRAM stack
TIMER EQU >1404 [consoles!!] 9901 timer handler within cassette routine
H4000 EQU >4000 Address of peripheral card validation byte
H400C EQU >400C Address of peripheral card interrupt link

HAA EQU §+2 Validation flag comparison byte

HOO DATA >00AA Zero mask byte

C1 DATA >0001 VDP/GROM sound processing bit mask

H20 DATA >0020 Bit mask comparison byte

FNCEQ DATA >1100 Function and = key bit mask

*x

p ===========-==============#================================== ——4— 334411331

LEVEL ONE INTERRUPT SERVICE ROUTINE

x
* Check to see if bit 10 of GPLWS R14 is set. If so then assume interrupt was
* caused by the 9901 timer. If not then check bit two of 9901 to see 1if

* VYDP caused interrupt. If VDP did not cause interrupt then assume that a

* peripheral did.

*x

October 1986 Page 2
The Smart Programmer

REMOTE LIMI 0 Set mask to zero for non-interrupt entries

LWPI GPLWS Load GPL workspace
CLR R12 Clear CRU base to point to 9901
COC @H20,R14 Is the 9901 timer flag set?
JNE TIM1 NO!
B @TIMER YES! Branch to cassette routine area
TIM1 TB 2 Did VDP cause the interrupt?
JNE VDPINT YES! Jump to service VDP interrupt
x
) ============================t==================:-========================= ————]

N % N N R E R RN RN NN

PERIPHERAL INTERRUPT HANDLER

Service all peripheral interrupt routines in CRU base range >1000 to >1F00.
Peripheral interrupt routines may use GPL registers R1 through R1®. Reserved
registers are used as follows:

RO contains next interrupt routine 1link

R1ll contains the return address for the interrupt service routine

R12 contains the CRU base of the peripheral -

R13 contains the current GROM library read data address

R14 contains >01lxx where xx is used by the GPL interpreter

R15 contains the VDP write address address

Also, the allocation of memory from >834A to >836D may be split between the
interrupt routine and the DSR. Interrupt routine returns with a B *R11.

LI R12,>0F00 Initialize CRU base to start checking periphs.
SBO 1 Turn 9901 external interrupt bit off

ILOOP SBZ o Turn last peripheral off

AT R12,>0100 Increment CRU base to next peripheral
CI R12,>2000 Are we finished with all peripherals?
JEQ EMERG2 YES! Exit interrupt service routine
SBO 0 NO! Turn next peripheral on

CB @H4000, @HAA Do we have a validation flag here?
JNE ILOOP NO! Look at next peripheral slot

MOV @H400C,R2 Grab interrupt entry list pointer

LOOP1 JEQ ILOOP If no interrupt routine here then skip

MOV R2,R0 Save next entry pointer

MOV @>0002(R2),R2 Grab interrupt entry address

BL *R2 Branch to interrupt routine

MOV *RO,R2 Restore next entry pointer

JMP LOOP1 Check for more interrupt routines in this card

EMERG2 B @EMERGE Exit interrupt service routine

%

a*

*
x
*
]
x
*
X
X
%
x
R

— 4+t t-1-+—§—§— —_—_-"'==—-‘-—'——"_=—_—-'—""""—"_--""'=—""=--====—_—_-—_==—_—_=======—'-=-—"""'—-_-.—"_===—_=-|—.-—=—'-—_==I==—_—_——===—"'—-=====

VDP INTERRUPT HANDLER

Perform housekeeping on all VDP interrupt related items. These include:
auto-sprite motion, auto-sound processing, quit key check, storage of VDP
status byte, screen blank function and user defined ISR hook routine. The
first three; sprites, sound and quit are controlled by an interrupt flag
byte at >83C2. If the MSBit (bit @) of this flag is a one then servicing

of the above three items is skipped. Otherwise bits 1,2,3 govern whether

or not each individual routine respectively is executed. If the bit is a
zero then the routine is executed otherwise it is skipped and the next bit
is checked. The remainder of the first mentioned items are within the level
two interrupt code and are always executed on a VDP interrupt.

VDPINT SBO 2 Reset the VDP interrupt bit in 9901

MOVB @INTFLG,R1 Fetch interrupt flag byte from Scratch RAM

SLA R1,1 Check first bit

JNC TSTMOT If not set then service sound, sprites and quit
B @VSTAT Else update some values and check screen-blank

October 1986 Page 3
The Smart Programmer

. o e

i
1"

% ¢ ve vk v Jc vk dk de ok v vk gk o vk ok R ok vk e ok e ok ok o gk vk ok vk ok Yk ok ke ok ok vk o 3k ok e ok gk e ok ok e gk ok ke sk de ok ok dk ok vk ok gk ok gk ke kv gk gk ok gk ok gk ok ko %k %k %k ok & % 3

AUTO-SPRITE MOTION
For auto-sprite motion the Sprite Motion List (SML) must always be located

%x

x

* at >7880 in VDP. The first and second bytes of each entry in the list

* represents the Y and X motion of the corresponding sprite. The wvalues >00

* to >7F are the positive directions of down or right. Values >80 to >»FF are

* the negative directions of up or left. The next two bytes are used

* to scale the speed of motion of the sprites. A motion value of one, for

* example, will be scaled to move the sprite one pixel every 16 VDP interrupts.
* A motion value of 16 moves the sprite one pixel every VDP interrupt, etc.

* The Sprite Attribute List (SAL) must be located at >300 in VDP, also, in

X

x

order to use this auto-sprite motion routine.

TSTMOT SLA R1,1 Shift 2nd bit off

JOC TSTSND If set then skip auto-sprite motion processing

MOVB @MOTION,R12 Grab number of sprites in motion from SRAM

JEQ TSTSND If zero then go check for auto-sound processing

SRL,. R12,8 Make number of sprites a word value

LI R2,VDPRD Init. R2 to VDP read data address

LI R3,VDPWD Init. R3 to VDP write data address

LI R8 , RSMOT Init. R8 to sprite motion table address in VDP
MLOOP MOVB @RS8LB, *R15 Set VDP address to sprite motion table

MOVB R8, *R15

CLR R4 Clear out R4

MOVB *R2,R4 Read in delta Y byte

CLR R6 Clear out R6

MOVB *R2,R6 Read in delta X byte

SRA R4.,4 Shift delta Y over a digit

MOVB *R2,R5 Read in temp. Y scaler

SRA R5.,4 Shift temp. Y scaler over a digit

A R4.,R5 AdqQ delta Y to temp. Y scaler

MOVB *R2,R7 Read in temp. X scaler

SRA R6,4 Shift delta X over a digit

SRA R7,4 Shift temp. X scaler over a digit

A R6,R7 Add delta X to temp. X scaler

A R8,-QSAML Back address up to sprite attribute list

MOVB @®RS8LB, *R15 Set VDP address to sprite attribute list

MOVB RS8, *R15

CLR R4 Clear out R4 again

MOVB *R2,R4 Read in present Y location

A R5,R4 Add motion to Y location

b

e R b L L L o o S T A o O I F 0 0 U VI Y KU L N I T U0 A0 W WP W SO AL N T W 0 SO 0 0 T A X
*+++ The following segment was added to fix a sprite flicker problem as sprites
*+++ rolled off the screen (values >C@ to >E® are invalid vertical positions).
*+++ It was removed from consoles dated 03/16/81 and reinstalled in consoles

*+++ dated 07/29/81.

CI R4,6*VDELTA+255 Is vertical position greater than >C0?

JLE ONSCRN NO! So skip rest of checks

CI R4,7*VDELTA Is vertical position less than >E07?

JH ONSCRN NO! So skip rest of segment

MOV R5,R5 Is vertical motion negative?

JGT S+6 >>>>>>>>>> NO! So don't add VDELTA*7 to position

Al R4,6*VDELTA I Bump negative value past forbidden values

Al R4 ,VDELTA <<<<¢! Bump positive value past forbidden values
ahab b b S S L D L D n D E L bk b D L R R R o L T N V¥ ST NS U N T AP U A N T U I W PO TS
x
ONSCRN CLR R6 Clear out R6 again

MOVB *R2,R6 Read in present X location

October 1986 Page 4
The Smart Programmer

f

A R7,R6 Add motion to X locaticn

ORI R8,WRVDP Set MSBit of sprite attribute list address
MOVB @R8LB, *R15 Set VDP address for a write to the

MOVB R8, *R15 sprite attribute list area

MOVB R4, *R3 Install new Y location

AT R8,QSAML+2 Reset address to sprite motion list plus two
MOVB R6, *R3 Install new X location

SWPB Rb Move LSB of temp. Y scaler to MSB

MOVE @RS8LB, *R15 Set VDP address to temp. Y scaler location
MOVB R8,*R15 in sprite motion table

SRL Rb5,4 Adjust temp. Y scaler value

MOVB R5, *R3 Update temp. Y scaler in VDP

SWPB R7 Move LSB of temp. X scaler to MSB

SRL R7,4 Adjust temp. X scaler value

Update temp. X scaler in VDP

Set to sprite motion list and strip write bit
Decrement the number of sprites in motion count
Continue until all sprites are serviced

MOVB R7,*R3
Al R8,>C002
DEC R12

JGT MLOOP

5th 1 _ =FORTH by Mariusz Stanczak

This month we have lots of FORTH code for you. There is the continuing
saga of PSEUDOB83 (see Listing, Part 2, lines 99-181), and then an implementation
of one of many run-time overlay techniques. The latter set of words that
comprise MODULE require some explanation, but I'll try to be brief,. Instead of
repeating what you can find in other places (see references). let's g0 over the
glossary of words that make up the solution presented here with emphasis on the
MODULE lexicon words. But, first, the introductory material.

Being a system extension utility, MODULE relies on the structure of the
system dictionary. Here, we need to know about DP (dictionary pointer),
LATEST, LFA (link field address), NFA (name field address), and some concepts

employed in implementation of VOCABULARY.

The value stored in DP tells the outer Interpreter, INTERPRET, the next
free memory cell for a new dictionary entry. By modifying this wvalue, we can
tell INTERPRET to compile definitions at any arbitrarily chosen address. The
word LATEST leaves on the PS the address of location which points to the NFA of
the topmost word in the current vocabulary, LFA converts PFA (parameter field
address) of a word into its LFA. LFA chains each word in the dictionary to a
word below, it points to NFA of the preceding word. OK! That was al! simple,
and most of you knew it already. Now, the vocabularies. There aren't many
sources that undertake the task of explaining the full scope of the concept,
and the most thorough treatment (that I found) of vocabularies in FORTH was in
FORTH Encyclopedia. In general terms, the word VOCABULARY is FORTH's way
of implementing a multi-dimensional dictionary structure. In FIG-FORTH, one
vocabulary (parent) may contain another (its child), which in turn may contain
its own children vocabularies. The word VOCABULARY is a defining word, and new
vocabulary roots are created by typing:

VOCABULARY Vname

which creates a dictionary entry, Vname, having the following structure:

October 1986 Page §
The Smart Programimer

LFA and NFA are the same as for anyv other definition

- CFA points to the run-—time portion of VOCABULARY (the part that follows DOES>
in the definition of VOCABULARY)

- VLF (vocabulary link field) points to the last definition added to the root
Vname. VLF is to this location to which LATEST is the pointer.

- PNF {(pseudo name field) contains >81A@®, an impossible (a blank, so it can
never be found by -FIND) but legal name. To this l!ocation points, initially,
VLF, but as definitions are added to vocabularies, the LFA of the first word
will point to PNF, and VLF will always point to the word added last.

~ CLF (chronological link field) points to CLF of parent vocabulary. This
location of the most recently created Vname root is referenced by VOC-LINK.

By typing Vname, the run-time part of VOCABULARY is executed, which
changes the few system pointers as described above and makes Vname the context
vocabulary by also stuffing the address of VLF into CONTEXT. That means that
only the words in Vname vocabulary, and the ones contained in wvocabularies to
which Vname was chained, will be searched by =~FIND. This in effect
limits/changes the scope of words known to the system. The word DEFINITIONS
makes the context vocabulary current and all newly defined words will be
appended to that vocabulary's chain of words.

If the above sounds complicated, don't worry. None of it is really needed
to use MODULE in your application, but if you do figure out the ¢trick, it will
be easier for you to understand the do's and don't's imposed on MODULE's
usage.

With vocabularies, MODULE is mainly concerned with links between them, and
to assure that this is the only thing that should be of concern, MODULE makes
the last word of each overlay a part of FORTH vocabulary. This bypasses the
complicated process of properly relinking words located within an overlay that
might belong to some other vocabulary chains, so restriction #1, and the
only one there is, is:

- overlay may only contain vocabularies that are fully enclosed by its physical
boundaries.

"** Note - as long as a given overlay is Iin memory, you are free to select any
of the vocabularies it may contain and add more definitions to it, but those
definitions should be considered temporary, if you're in interactive mode, and
be deleted from dictionary before the overlay they are connected to is deleted.
There is one big unless, and that’s: when the newly defined words are a part of
your application, in which case you control when the words are executed, and
of course if the application is sealed so your exclusive control is assured.
End—of-note ***

As you rightly suspect, all this fuss has to do with linking of each word
to its predecessor through LFA and the word's association to its wvocabulary
through VLF, as well as with chronological linking of vocabularies through CLF.
Your system Iis definitively in trouble if either points to something that does
not exist. The same, of course, goes for system variables CURRENT and CONTEXT,
but it is much less likely to happen.

Glossary:

TH - a tip word from Thinking FORTH. TH indexes the nth item in a word
array. This is taken to the extreme through redefinitions of TH to ST, RD

October 1986 Page 6
The Smart Programmer

a'nd ND.

ADR - a + redefined for linguistic clarity.
MODULE_BUFFER - a pointer to overlay area.
>FORTH ~ makes FORTH vocabulary current and context.

DP>MODULE_BUFFER - aims DP past the parameter array located at the beginning of
each overlay areas.

POINTER@ and POINTER! - words that fetch and store values from the parameter
array. .
HI>LO - aims ﬁP into overlay area, preserving nfa of last word in FORTH

vocabulary residing in high memory along with vocabulary link pointer.

MODULE_LOAD - brings the saved code into overlay area from disk and restores
vocabulary and dictionary links. It is, basically, a simplified BLOAD, but
it does not have any error checking built in so watch out; the correct
floppy had best be in the correct drive!t! *** A NOTE - for any serious
application it is highly recommended to include extensive error checking,
especially in view of the many ways one can refer to the location of a

screen on a disk. — END OF NOTE xr

MODULE_LINK: - a defining word used to create an overlay loading word.

LO>HI - preserves the new DP in low memory and vocabulary link pointer.
Restores the old dictionary pointer value into DP and builds the overlay

loading word.

MODULE - the main word of the overlay utility. At the same time, it is the one
of the two words that constitute this utility's lexicon (the other one is
SAVE_MODULE). MODULE automates the process of creating an overlay; it
needs on PS a list of screen numbers, which are to be included in an
overlay, and it has to be followed by an inline word. This word will be
the overlay's name, and by this name the overlay will be called into
memory from disk. "** A TIP - before using MODULE type SP! to clear PS,
and then put on PS the screen numbers.

DICTIONARY_RELINK - patches Ifa of module_name to point to old_latest.

VOCABULARY_RELINK - restores the content of VOC-LINK variable to fts wvalue
prior to creation of an overlay.

SAVE_MODULE - this word wraps up the process of creation of an overlay. It
preserves the last few bits of information about the state of environment,
writes the overlay to disk, and forgets it, From this point on vou will
use module_name to bring the needed code back to memory for further use.

The overlay techniques had been used extensively on early computers, which
lacked large internal memory space, for program segmentation. Even today, in
the era of mega everything (not the case with our 99/4A's), as the complexity
of software rises along with its hunger for memory, program segmentation still
gets a fair share of use (just take the UNIX and VMS, or any other virtual
memory operating system). The MODULE wutility was written mainly as an exercise
in that idea; although, I found one use for it, that by far exceeded the
usefulness of the original purpose in the interactive environment of Forth. As
a matter of fact, I have built my whole system around this side benefit. I've

October 1986 Page 7
The Smart Programmer

segmented all of FORTH outside of the resident portion into logical chunks of
code, and swap a8 given utility set in and out as needed without disturbing the
high memory portion of the dictionary with my efforts "in progress". Very
useful during development, when things are far from being concrete and need a
lot of patching or redoing, which I can do without wiping out any of the loaded
"helpers" that are located out of the way, in low memory. As for its intended
purpose, most of program code can be segmented, leaving the high memory space
for data structures and for global to each segment entities. Have fun, and
good words to you.

References:

FORTH Encyclopedia, Miteh Derick and Linda Baker, MVP, Inc., 1982,

FORTH Dimensions, Volume V, number 3, page 5, "FIG-~FORTH Vocabulary
Structure”, by Evan Rosen

*** Note for TI-FORTH users - prior to using this utility on your system, the
system has to be reconfigured to make room for overlavs. There are total of
five buffers in the system. The minimum number of buffers on the system,
without disturbing its proper functioning, is two, so up to three buffers can
be taken away from the system for the overlay area; unless, you are Kkeeping
messages memory resident, in which case only two buffers can be had (message
takes one). The following reconfiguration words have to be executed only once
upon booting the system up, so, preferably, they should be located on screen
number 3. -

: BUF~- (n === adr)
EMPTY-~-BUFFERS B/BUF 4 + . LIMITS @ SWAP - DUP LIMITS '

3 BUF—- CONSTANT MODULE_BUF

End of note ***

*** Note for Wycove~-FORTH users - There is about 2.5K bytes free starting at
>2000 so if you reconfigure your system down to two buffers (using CONFIG
word), you get a healthy amount of space for MODULE_BUF. Define this constant
to have the value of >2¢80. - End of note "**

*** Note for both systems - Make sure that the overlay code you are creating
does not exceed the size of the buffer made for it by loading the wanted
screens to high memory first, and checking the value left on PS by HERE before
and after the compilation. — End of note ***

Listing, Part 1

1. : DEPTH (--— n) ~
2. SO0 @ SP®@ - 2- 2 / :
3. :TH (n =---n)
4. 2 * 2~ 3
5. : ST TH ; : RD TH ; : ND T
€. : ADR +
7. : POINTER®@ {n ———— n)
8. MODULE_BUF + @ :
9. : POINTER! (n === n)
10. MODULE BUF + !
11. : DP>MODULE_BUF (=~=-)

QOctober 1986 Page 8
The Smart Programmer

P

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31,
32.
33.
34.
35,
36.
37.
38.
39,
40.
41,
42.
43,
44 .
45.
46.
47 .
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
b2.
63.
64.
65.
66.
67.
68.
69.
70.
71.

LK |

L
k]

MODULE_BUF 19 TH ADR DP ! ,

>FORTH

{(COMPILE] FORTH DEFINITIONS ;

HI>LO (
HERE >

——— KDP>)
FORTH

LATEST 1 ST POINTER!
VOC-~-LINK @ 5 TH POINTER!
DP>MODULE_BUF
MODULE LOAD (scr#
MODULE_BUF

BEGIN

-)

>R DUP 1+ SWAP BLOCK

DUP 4 TH ADR @ R - R> DUP B/ >R
SWAP B/BUF MIN CMOVE -

R

4 TH POINTER@ R>
UNTIL DROP DROP

3 RD POINTER®@

7 TH POINTER@ -DUP

<

2 ND POINTER@ !

IF
6 TH POINTER@ SWAP !
THEN ; |
MODULE_LINK: (~——) \ followed line name
>FORTH
[COMPILE] : \ in Wycove's [COM {:)
COMPILE OFFSET COMPILE DUP COM®

COMPILE LIT HERE 9 TH POINTER!

3 COMPILE PICK COMPILE
COMPILE LIT HERE 8 TH POINTER!

COMPILE MODULE LOAD COMPILE SWAMPILE ‘!
[COMPILE} ; \ in Wycove's [COM (:)

COMPILE

LO>HI {

<DP> ———)

HERE 4 TH POINTER!

MODULE_LINK:

MODULE

1 ST POINTER®@

LATEST PFA

VOC-LINK @ 60INTER!

DP

CFA DUPRD POINTER!

|
-

2 ND POINTER!

(any_#_of_screen_#s -~- followed by inline name
HI>L.O DEPTH 1
DO SWAP LOQOAD
LOOP LO>HI ;
DICTIONARY RELINK { -

-)

2 ND POINTER! ;

VOCABULARY RELINK (=--)
5 TH POINTER@ €6 TH POINTER®@ OVER -

IF
VOC-LINK
BEGIN DUP @ 3 PICK OVER -
WHILE SWAP DROP
REPEAT
DROP SWAP DROP DUP 7 TH POINTE
ELSE
DROP DROP @ 7 TH POINTER/!
THEN ;
MODULE_SAVE (scr¥# ——- scri)

DUP 8 TH POINTER®
DICTIONARY_RELINK VOCABULARY REL
MODULE_BUF

BEGIN

OFFSET @ POINTER®

>R DUP 1+ SWAP OFFSET @ + R UPDATE

DUP B
4 TH

/BUF ERASE
POINTER® R -

R> DUP B/B >R

October 1986 Page 9
The Smart Programmer

!

R - 7 N BRELE I T T b R A T

;'.'h""‘. ,,-f.q-.'.;;ﬂl"-!'-"-'"

72. SWAP >R SWAP R> B/BUF MIN CMO

73. R -

74. 4 TH POINTER@ R)> (

75. UNTIL DROP FLUSH ; :S

76.

77. Environment info parameter array. <ans the content of

78. 1 ST - .0ld_latest's nfa (in FORTH voary)

79. 2 ND - module_name's lfa

80. 3 RD - module_name's <lfa>

8l1. 4 TH - low memory (DP)

8§2. 5 TH - old (VOC-LINK)

83. 6 TH — new {(VOC-LINK)

84. 7 TH - adr of new (VOC-LINK)

85, 8 TH - adr in parameter field of modame.

86. 9 TH -~ adr in parameter field of modame
Listing, Part2, PSEUDO83 .

99. (comparators, not, sign, etc.) \ ver 2.1 gtiuls8e
120. \ comparators to leave tf=-1, this screen not copyrighted
101. : = = MINUS ; 0= ©= MINUS : : > > MINUS :
102. : < < MINUS ; : U< U< MINUS ; 10> 0 >
103. ¢ 8< 0 < ; : O = 0= ; s => 1+ < ; ¢ =< 1+ > :
104. : NOT83 (n —-—— "1} \ 1's complement
105. -1 XOR ;

106. : NIP (nl n2 -—-— n2)

107. SWAP DROP ;

108. TUCK (nl n2 --- n2 nl n2)

109. SWAP OVER ; _

110, : ON -1 SWAP ! ;

111. : OFF O SWAP !

112. : INCR 1 SWAP +! : INCR2 2 SWAP +!

113. DECR -1 SWAP +! : : DECR2 =2 SWAP +!

114. PENOUGH (n ---) \ aborts if PS too shallow mapOct83
115. DEPTH 1- > IF ." Not enough parameters"™ ABORT THEN :
116. : SIGN83 3 ?ENOUGH ROT SIGN ;

117. {(span, expect)

118. VARAIBLES3 SPAN

119. : (SPAN) { cnt -—-)

120. SPAN ! ;

121. LENGTH (adr --- ¢nt)

122. 82 0 DO DUP \ dup buf adr

123. I + C& \ get succeeding chars

124. @= IF I LEAVE THEN \ if null leave count
125. LOOP NIP ;

126, EXPECT83 (text_buf adr n --- cnt)

127. 2 7ENOUGH 7?DUP \ text buf needs n+2 bytes for delimiter
128. IF {(n>0) |
129. OVER >R \ save adr

130. EXPECT = R> LENGTH (SPAN)

131. ELSE

132. DROP (adr) SPAN OFF

133. THEN ;

134. (defer, is } \ lines 135- not copyrighted

135. \ modified from Will Baden, FD V.6/5, also see Laxen&Perry's F83
136. \ model and Mastering Forth, Anderson, et al, 1984

137. : DEFER {(——)

138. <BUILDS 2 ALLOT DOES> @ EXECUTE :

139, (IS} (cfa --— } R @ D>BODY ! R> 2+ >R

140. IS {(cfa ~=--)

STATE @

October 1986 Page 10
The Smart Programmer

141. IF COMPILE (IS)

142. ELSE '83 >BODY !
143. THEN ; IMMEDIATE
144. { query, doer/make)
145. VARIABLES3 #TIB

146. : QUERYS83

147. TIB @ 80 2DUP BLANKS >IN OFF

148. EXPECTS83

149. IN OFF BLK OFF

15¢. SPAN @ #TIB ! ;

151. \ DOER/MAKE L. Brodie, Thinking Forth, 1984, p279

152. \ modified, gt .

154. : DOER

1565. <BUILDS ['] NOP >BODY , DOES> @ >R ;

156, VARIABLE83 MARKER

157. : (MAKE) R> DUP 2+ DUP 2+ SWAP @ >BODY ! @ ?DQ? IF >R THEN ;
158. { query, doer/make)

159. : MAKE STATE @ i

160. IF COMPILE (MAKE) HERE MAKER ! 0 ,

161. ELSE 1 17 ?ERROR ABORT

162. THEN ; IMMEDIATE |

163. : ;AND [COMPILE] ;S HERE MAKER @ ! ; IMMEDIATE

164. : UNDO [') NOP >BODY [COMPILE] '83 >BODY ! ;

165. (name, save-buffers)

166. '83 :S CFA CONSTANT DEF-END

167. : NAME (pfa ---) \ displays the name of a word from any adr in

168. \ its pfa field. a handy addition to debugging tools, as it allows
169. \ you to id the numbers on the return stack.

170. CR

171. BEGIN 2- DUP @ DEF-END =

172. UNTIL 4+ ID. ;

173. BASE—->R HEX

174. : SAVE-BUFFERS (-—-) \ flush updated buffers to disk but do not
175. \ deallocate the buffers. an 83 version

176. LIMITS @ FIRSTS @

177. DO I @ 0«

178. IF 1 @ 8000 — DUP 2+ SWAP O R/W I !
179. THEN 404

180. +LO0OP ;

181. R->BASE

e sk sy sk bl sele s Sbky ik bes ek osbe sk il bk b S TS S S S S S SIS P S S B S S B DL S DS N S S G . N P . SR e S SN SR S N Ep AL P I . L S D I S D G D A SIS S B D T T S S G B IS D S S T

NEWS AND NOTES

Chicago Faire

The Chicago TI-Faire, held November 1, was again a big success. About
1,808 99'ers braved the rain for an outstanding show. Users from Canada and at
least 28 states of the U.S. were in attendance. As 3¢ vendors participated, a
lady, sporting a smile, was heard to observe, "Until now, I'd only dreamed of a
day like this. It's unbelievable, the variety of products available!".
Indeed, products ranged from the not—-yet—-released to those not produced in
vears (items such as TI stand-alone products were not uncommon!).

A bright new star of the 99/4A world emerged in Chicago, J. Peter Hoddie.
Hoddie had already received considerable acclaim in 1986 and his talents are
quite well-known in the Boston area, where he resides, but the Chicago show Iis

October 1986 Page 11
The Smart Programmer

he gained the respect of an inter-
national audience. Hoddie offered two
recent software efforts, Gram PFPacker
(Genial Computerware) and Font Writer
(Asgard). Hoddie also gave a very
entertaining musical presentation,
which included a selection with a 93/4A
playing music while controlling music
through another 99/4A, with the two
linked via the cassette ports, and a
number featuring Hoddie on the cello
accompanied by the 99/4A on "piano".
Hoddie also announced his participation
in a joint venture, Genial Computer-
ware, with Corson Wyman, another

talented Boston-area 99'er, and Barry"

Traver, Genial's charter owner.
Anticipated projects from Genial
include both software and hardware, in

addition to continuation of the firm's
Genial TRAVelER diskazine.

Many outstanding products and
lectures vied for attention in Chicago.
Among the most notable were a 99/4A
compatible computer prototype (now
known as the MYARC 964¢) from MYARC, an
Instantly popular program called
Printer's Apprentice from McCann
Software, products from both Europe and
North America available from Ryte Data,
Joypaint 99 from Great Lakes Software,
and a PC-type keyboard interface from
Rave 99. Clint Pulley provided a very
informative talk on ¢99.

Addresses for the above vendors are:

Genial Computerware, P.O. Box 183,
Grafton, MA ©1519, Genial TRAVelER
address: 838 Green Valley Drive,
Philadelphia, PA 19128.

Asgard, POB 103066, Rockville, MD 2¢85¢

MYARC, Inc., P.O. Box 1440, Basking
Ridge, NJ @792¢

Clint Pulley, 38 Townsend Avenue,
Burlington, Ontario, Canada L7T 1Y86

McCann Software, P.O. Box 34169, Omaha,
NE 8¢134

Ryte Data, 2190 Mountain Street,
Haliburton, Ontario, Canada K@M 18d

Great Lakes Software, P.O., Box 241,
Howell, MI 48843

October 1986

Rave 99, 23 Florence Rd., Bloomfield,
CT 06932

Editor's Note

Well, there's plenty in store for
you in upcoming months!

Next month, we'll have a really
jmportant announcement! We'll be
releasing a software package that many
of you have been asking for!

Yes, things have slowed to a
snail's pace with our recent peak
renewal period and a few unexpected
matters. Things are looking much better
now, though. We've got some great
material lined up for upcoming issues.
And, we'll haver another memory map for
you next month -- it was a bit long for
this issue.

RM

Gram Packer
Notes from Richard Mitchell

Wow! Gram Packer (Genial
Computerware, address above) is a
fantastic package! Gram Packer works
with Gram Kracker™ or Maxi—-Mem or Gram
Karte to allow you to create your own
custom menu of programs and modules
that you use most often. The files
load into GRAM space. Programs must be
Memory Image Programs (the ones that
load from E/A Option 5, TI-Writer
Option 3, etc.). Using our June Gram
Kracker™ ¢tip for 16 items on a4 menu,
you c8n really create some very
elaborate menu schemes and also c¢hain
from one menu to the next, so you can
reduce the number of filenames to
memorize to only one! Though I've only
just begun working with the package,
I've already created a menu that
includes Turbo, MultiplanT™ ,6 Mini
Memory, Disk Manager II, TE II (120¢
bps), Navarone DBM, DM-100686 3.5,
Fast—Term 1.16rj8, Editor/Assembler
(Regular), EA/XB (created with MG's GK
Utilities I), TI-Writer GRAM Disk and
Next Menu! Gram Packer allows choosing

Page 12

The Smart Programmer

from as many files as you can access
from your system's disks, including
hard disks, RAM disks and floppies!
Priced at only $1¢, Gram Packer 1is
certainly a program that should be in
the library of every GRAM device owner!
We'll bring you more info on Gram
Packer in the future,

FILE OVERLAYS

by Richard M. Mitchell

Files are normally useful in the
format in which originally c¢reated.
However, occasionally there are files
which cannot be gquickly and easily
modified. For instance, to depict
boXxes with questionnaire responses, a
primary file with the boxes could be
created, followed by directing the
responses to an overlay file, then the
overlay file could be overlaid onto
the primary file, as shown below.

PRIMARY FILE:

/Al IB! lCl (DI

— —

The program listed below will
replace a character in the primary file
with any non-space (space is ASCII 32)
character in the overlay file. Of
course, the output device name can be a
disk file name, as well as a printer
name, ete. Because there might be many
possible wvariations on this theme, the
program {s one I wrote rather quickly
as an example,. The idea came from a
request for a method of printing a
teacher's gradebook and attendance
sheet, output from Multiplan™ into D/V
80 files, into a single output. If

October 1986

vyou find other uses for the program,
please drop me a note in the mail.

100 DISPLAY AT(3,1)ERASE ALL
:"D/V 80 Output Overlays":"T

he Smart Programmer":"1986"
110 DISPLAY AT(8,1) :"Primary
Filename:":"DSK1.":"":"QOver
lay Filename:":"DSK1.":"":"O

utput Device Name:":"PIO"
120 ACCEPT AT{(9,1)BEEP SIZE(

-15) :AS

130 ACCEPT AT(12,1)BEEP SIZE
(-15) :BS

1490 ACCEPT AT(15,1)BEEP SIZE
(-28) : P$S

150 OPEN #1:AS

160 OPEN #2:BS

170 OPEN #3:PS

180 LINPUT #1:S§

190 IF EOF{(2)=0 THEN LINPUT

#2:78

200 L=MIN{(80,MIN(LEN(SS),LEN
(TS)))

219 FOR I=1 TO L

220 IF SEGS(TS,I,1)=" " THEN
240

230 IF I>1 THEN S$=SEGS(8$.1
,I-1)&SEGS(TS,I,1)&SEGS(SS,1I
+1,LEN(SS)-I)ELSE S$=SEGS({TS
I1,1)&SEGS{(SS,I+1,LEN(SS)-I)
240 NEXT I

250 IF LEN(TS)>LEN(SS)}THEN S
S=SS&SEGS (TS, LEN(SS)+1,LEN(T
$)~LEN(S$))}

260 PRINT #3:8§ :: PRINT S$
279 IF EOF(1)=0 THEN 180

289 IF EOF(2)=0 THEN S8="" :
¢+ GOTO 1990

290 CLOSE #1 :: CLOSE #2 ::
CLOSE #3 :: END

i wlee e e sk b wsl ke B R W B A W RSN I A WS IS R B I S S S B s s i e e e wiish A S

QR & A

In the September, 1686, issue, you
referred to using DISKASSEMBLERT™™ to
determine all addresses in a source
file. Why not simply AORG the file?

Using the AORG directive to ioad
the object code at a specific address
is an alternative method. However,
when more than one file is to be loaded
or various combinations of files are to
be tested, the AORG method c¢can become
cumbersome. Additionally, since AORG

Page 13

The Smart Programmer

code does not update program memory
allocations {(such as XB's FFALM, the
First Free Address in Low Memory),
non-AORG files may be the final
preference and one may find having both
AORG and non-AQORG flles on disk
confusing. When an option is avallable
for accomplishing a task, we try to
present the method that covers the
widest range of possible cases.

Could you éupply the addresses of
public domain software authors?

No. In many instances, software
Is released Into the public domain
because the author has no interest in
providing support functions, such as
reading and answering mail. Most
public domain software is available
through telecommunications services and
user groups. One of the many groups
that makes avalilable to its members
many of the latest public domain
releases for a nominal library fee |is
LA 99'ers Computer Group, P.O. Box
3647, Gardena, CA 98247-7247. LA
99'ers also offers many other services
to its members, including a monthly
newsletter, within which new library
acquisitions are listed.

Is there a guick way to update a
Multiplan™ cell while Recalc is off?

Yes. Because updating an entire
spreadsheet ls a very slow process, it
Is generally best, as we've covered
before, to select Options Recalc (No)
§0 that the sheet will not update all
of its formulae with each input.
However, it would often be convenient
to update a particular cell. To do so,
simply select Edit and press enter! Of
course, you must proceed with caution,
as the cell may be dependent upon other
cells that might not be updated by this
procedure {(in such a case, Recalc (Yes)
must be selected).

The mention of a reward in your
article on piracy insulted my good
intentions. Why did vou offer the
grticle?

October 1986

Certainly there are no easy
answers to the piracy issue. The
article points up the need for the
private sector to aggressively monitor
itself, before government intervention
results in excessive laws governing
telecommunications. Currently, there
js great latitude in establishing a
telecommunications service, such as a
BBS, and in disseminating information
through such services, affording
computer users an avenue for grassroots
support for both computer-related and
other issues. Blatant disregard of
copyright laws by a few individuals is
one of many factors endandering the
liberties enjoyed by many.

a
- -

Can you offer advice on printers?

We receive many requests for
specific printer information. Though
we'd really like to help, it would be
impossible for us to try every possible
combination of printers, parallel
interfaces, serial interfaces, print
buffers, print spoolers, software, etc.
Essentially, printer support 1s the
function of a dealer. And, do remember
that while a good dealer will charge
more than a discount mail-order firm,
the service and support available from
the good dealer is often the real
long—-term bargain! As a basic guideline
for purchasing a printer, because the
Tl Impact Printer was the early
standard for the 99/4A and it is a
9-pin dot-matrix printer that uses
Epson print codes, most 99'ers have
purchased printers compatible with it.
For typewriter quality print, a
daisy—-wheel printer is required, but
such printers have practically no
graphics capabilities. We use an NEC
P6 to produce The Smart Programmer and
it is a 24-pin printer that handles
most of the Epson print codes. The P6
is an excellent printer within its
price range, often discounted at under
£8580, plus about $25 to $75 for
uni-directional or bi-directional
tractor. Printers adequate for most
home users begin at about $2¢8. If you
have already purchased a printer and
your dealer cannot or will not assist
you, then you need to locate & user
with a configuration similar to your
own, with the best avenues being your

Page 14

The Smart Programmer

local user group and/or the major
telecommunications networks.

What should I do to test a program
that I want to market?

The program should be tested
in-house first, of course. Next, the
program needs to be Beta tested, tested
by individuals who have never before
seen the package. Beta testers should
receive proposed filnal versions of both
the software package and the package's
documentation. Beta testers should be
individuals with unquestionable morals,
of course. Also, at least some of the
Beta testers should assume the role of
a typical customer and not have easy
phone access to the author. Beta
testing should be done by "Joe Bright"
and "Joe Dim". Most folks who go the
Beta test route seek Joe Bright; he's
the guy with an incredible IQ, he's
completely computer literate and an
English grammar whiz -~ he can tell
nearly everything a package does that
it shouldn't and nearly everything |t
doesn't that it should. Unfortunately,
few firms employ the services of Joe
Dim, who is somewhat of a dim-wit when
it comes to computers. If Joe Dim can
run the package properly, though,
anyone can! If the program is updated,
subsequent rounds of Beta testing would
be advisable, with at least some new
testers selected in each round. If the
program is based on a useful idea and
Joe Bright and Joe Dim approve the
package, then with a good marketing
strategy the program should become a
sales success. It usually takes a few
trials before a firm recognizes the
benefits of Beta testing and learns the
best Beta test procedures, but most
eventually get around to it {(or fail)!

SHOW SCHEDULE

Fest-West '87, May 1 and 2, 1987,
contact LA 99'ers, P.O. Box 83547,
Gardena, CA 9@247-7247.

Texas Instruments Computer Owners' Fun
Fest (TICOFF '87), March 28, 1987,
contact TICOFF '87, ¢/o0 Bob Guellnitz,

October 1986

directly.

Roselle Park High School, 185 W.
Webster Ave., Roselle Park, NJ P7204.

TI-Writer Tips
by Richard M. Mitchell

In using Ti-Writer, there are
several simple but often overlooked
ways to save Keystrokes. And, of
course, saving keystrokes means saving time!

Except as noted below, all of the
commands of TI-Writer can be accessed
For instance, to use LF
(Load File), it is not necessary to use
the F (File) command first.

L (Lines) , F (Files) and SH
(SearcH) serve no function and simply
provide a list of Command options.

Q@ (Quit) also serves no direct
function, but offers access to three
options, S8 (Save file), P (Purge) and E
(Exit).
the only unique acronym following use
of Q@ is P (Purge). S (Save file) 1is
otherwise used as S (Show Line) and E
(Exit) is otherwise used as E (Edit).
Use of unique acronyms would have been
less confusing, but that's not the way
it works.

A tip that is more easily
overlooked is that using LF (Load File)
without line parameters automatically
purges the current document. So, P
(Purge) is generally not necessary
before using LF.

-—‘__-_—‘-_--__-_-_—-_—-_---—H*-_--___

Special Offer

We have Jocated a limited number
of new TI-Writer packages. The price
is 8$20.606, C.0.D., U.S. only. The
price Includes all fees, etc. To
obtain one, send a self-addressed
stamped postcard (so you can be
notified if quantities aren't adegquate
to fill your order). Due to the

limited supply, do not send any money!

Page 15

The Smart Programmer

Q 1s rather peculiar in that

il ——— -

' -

—— -

BYTEMASTER ORDER FORM

NAME_ : SR
The Smart Programmer a ? e K

ADDRESS_ -
SP1l $18.00 U.S. AND CANADA FIRST CLASS : ; . S
SP2 $15.00 U.S. THIRD CLASS (no back issues) CITY
SP3 $20.00 FOREIGN SURFACE (no back issues) ; 4
SP4 $32.00 FOREIGN AIRMAIL STATE !
SP5A-D 1.75 U.S. JUNE - SEPT. 1986, ea. ’

L L T

S
SP6A-D § 2.75 FOREIGN JUNE - SEPT 1986, ea. ZIP CODE
SP7TA-G § 2.50 U.S. JAN 84-AUG 84,photostats, ea. :
SP8A-G § 3.50 FOREIGN JAN 84 - AUG 84, ea. counTRY__} %
or L
SM1 $18.00 Complete set of 18 back issues Paymentsi acdeptgd I
SM2A-R $ 1.00 Back issues - ea. (U.S. Third Class). dheck or] morey prd I
SM3A-R $ 1.50 Back issues - ea. (Canada and U.S. : in U;S. Funds, fod i
First Class) for processing Fhrough
SM6A-R $§ 2.50 Back issues - ea. (Foreign Air Mail) the U.S. Federa! |)
SM4 $12.00 Programs on disk (non-FORTH) Reserve Bankingi ' ; ;
- SM5 $15.00 Super 99 Handicapper ystem No ibil k
{req. XB, 32K, Disk, Printer) Y cEed s3les
Deal ingquirie
ITEM # QTY EACH AMOUNT New Renewal invited.! Disco
= +=4 available Ol
— e I b orders. |

+
I
I
I
I
|
I
|
I
I
I
I
I
:
: Super 99 Monthly
I
}
I
I
i
i
I
I
|
I
I
l
! +—4 s
I

I

I

Louisiana residents must add 4% sales tax. Calcasieu*lk fSuﬁbhuj E%E

The Smart Programmer is published monthly by Bytemaster Compute
Services, 171 Mustang Street, Sulphur, LA 706663. All carrespﬁnﬁéﬁbet
received will be considered uncandltlanally assigned for publication”
copyright and subject to editing and comments by the Editor of «The y
Smart Programmer. Each contribution to this issue and thé“igsue as:
whole COPYRIGHT 1986 by Bytemaster Computer Services. All rights - -reservgd.
Copying done for other than personal archival or 1nterna1 reiﬁ %8 usén
without the permission of Bytemaster Computer Services is prohibited..
Bytemaster Computer Services assumes no liability for errors in artigl

v. . 4

Editor Richard M. Mitchell ﬁ\ﬂu;“‘
Staff ~ Craig Miller Steven J. Szymkiewicz, MD
Charles M. Robertson Barry A. Traver = |
Mariusz Stanczak D.C. Warren , I

B g o = =

| Multiplan is a trademark of Microsoft Corp. | . . |
o e R e S St bl

Bytemaster Computer Services FlHST ELASS MA“_

171 Mustang Street

DISKASSEMBLER and Gram Kracker are trademarks of Millers Graj[lc

- o -z

+——ﬁ-—*ﬂ'-

{

I

| Sulphur, LA 70663-6724 Su

; U.S.A. Pe

| P

| .

|

I

I

: — o | L

| POSTMASTER: ADDRES TI i
, IDDRESS COMECTION KQUESTED [lpey .-:LIss A
+

T L e W TEE S S S jenh SR T W T S T T S B S AN nile Yur W S S T mmiae mlaf S s e D S WY S N T WY G S DR B S B nble B N A .

October 1986
The Smart Programmer

