Volume 2 Issue 7

$1.76

DECEMBER 1988

"Serving 99'ers Since 1984"

ERROR CHECK FOR
ABASIC PROGRAM ENTRY

by Tom Freeman

Editor: The Smart Programmer hags long
endeavored to provide the best possible
format for programs to be keved in by our
readers. The article that follows provides
8 new means of ensuring that programs get
from us to yvou without errors. While most
of the material in The Smart Programmer
has never appesared elsewhere, this article
was found jin the public domsin. We deemed
It so important to the 99/4A community that
we offer it to our readers. As Is our

“policy, 'we obtained permission from the

author to reprint the grticle from the LA
99'ers newsletter (LA Toplcs). This
article represents a milestone for the
99/4A community. Qur future XBASIC
offerings will follow the guidelines of
this article. RM, FEditor

Have you ever typed in a TI-99/4A
version of a BASIC program from & magazine
and noticed that the.other versions have

little numbers at the end of the lines that
you don't have? They were for error checking
on your typing, to ensure no mistakes.
you ever laboriously typed in a long program
and run it, only to find that it crashes, or
doesn't work as it is supposed to, all
because of a simple typing error that you
can't find? So why doesn't TI have one? NOW
YOU Dot |

Have

This may ‘be the most useful program

that I have published for general use,

(“ because almost everyone does BASIC programs

-'Hi._

at one time or another.

It involves only

December 1986

one eXxtra step for the programmer, and one
for the user who is typing the published
program in. It is really a rather simple
method, and depends on the manner in which TI
stores BASIC programs. Please note,
however, that it requires a memory expansion
and disk drive, and works only in Extended
BASIC (although BASIC programs can be
entered in XBASIC, SAVEd, and then RUN in
BASIC).

You may remember the format in which
"MERGE" type programs are stored on disk.
If you don't, see our article (LA Toplcs) a
couple of months back on the various formats
in which programs are stored. The MERGE
format is actually a duplicate of the way in
which the actual program is stored in memory,
or on disk, the difference being that it
is a display type file, with each record
starting with two bytes for the line number,
and then the actual program line. In
memory, however, the program lines are
stored contiguously, and in seemingly random
order (actually the order depends on the
order in which they were entered),. A
separate line number table is stored below
the program area and keeps track of the line
numbers and pointers to where each line
begins. Now each line consists of one byte
"tokens” for all reserved words (see the
list I published last month in LA Toplcs)
with all strings, including the names of
subprograms such as LCAD, SCREEN, ete.,
being spelled directly.

When you enter any line in XBASIC
(either a command or a program line with the
line number coming first) it is first moved
to the so—called "Edit Buffer" at address
>8C@ in VDP. The BASIC bias is preserved.
The purpose of this is that if you press

PAGE 1

THE SMART PROGRAMMER



FCTN 8 (REDO), then the whole line or lines
can be retrieved. Next, everything Iis
"crunched” by replacing each reserved word
with its token, subtracting the BASIC bias
from strings, computing their length, etc.
and placing the result in the "crunch buffer”
at >82¢ in VDP. Once it is there, it can be

transferred to the appropriate place in
memory expansion. This is the area that is
used when my program computes the "checksum”

by merely adding the value of each byte! The
number is never allowed to go over hex >FF —--
the high byte is ignored (thus, in decimal,
no number over 255). The assumption is that

it is extremely unlikely, probability
approaching zero, that a small number of
mistakes will result in a number that differs
by exactly 266 or a multiple thereof. The
one exception is that if you transpose two
characters, there's nothing I can do about

that!

Now what does the programmer do? First,
his program must be completely debugged, as
no changes can be made after the checksums
are computed, or they will of course differ.
Next he SAVEs his program in MERGE format.
Now, the following program must be run on the
result:

> 100 !CREATE CHECKSUMS FOR XB
ASIC PROGRAMS, BY TOM FREEMA
N, LA 99'ERS 250
> 110 i{SHOULD BE USED TOGETHER
WITH "CHECK" ASSEMBLY FILE
THAT WILL PRINT CHECKSUMS ON
SCREEN !099
> 120 DISPLAY AT(2,1)ERASE ALL
:"CREATE CHECKSUMS FOR XBASI
C ERROR CHECKING": :" by
Tom Freeman" (085
> 130 DISPLAY AT(10,1) :"INPUT
MERGE FILE?":" DSK1." 1007
» 140 DISPLAY AT(13,1) :"OUTPUT
MERGE FILE?":" DSK1." 1108
> 150 ACCEPT AT(11,3)SIZE(-15)
BEEP:IS :: OPEN #1:IS,VARIAB
LE 163, INPUT !192
> 160 ACCEPT AT(14,3)SIZE(-15)
BEEP:0S :: OPEN #2:08,VARIAB
LE 163,0UTPUT (053
> 170 DISPLAY AT(20,1):"ANALYZ
ING LINE":"CHECKSUM IS " !01
4d
> 180 LINPUT #1:A§ :: IF LEN{(A
$)=2 THEN CLOSE #1 :: PRINT
#$2:CHRS(255)&CHRS(255):: CLO
SE #2 :: STOP (1156
> 190 Z=ASC(AS$) *256+ASC(SEGS{A
8$,2,1)):: DISPLAY AT(20,15)B

December 1986

EEP:Z !141

> 200 BS=SEGS(AS$,3,163):: L=LE
N{(BS):: IF L>157 THEN 230 !1
62

» 210 N=0 :: FOR X=1 TO L :: Y
=ASC{(SEGS(BS,X,1)):: N=N+Y :
: NEXT X :: N=N AND 255 :: N
S=STRS(N):: NS=RPTS("0",3-LE
N{NS})&NS 1088

> 220 DISPLAY AT(21,13)BEEP:NS

:: PRINT #2:SEGS(AS,1,L+1)&

CHRS (131 ) &NS&CHRS (@) :: GOTO
180 !252

> 23¢ DISPLAY AT(22,1)BEEP:"WA
RNING!":" LINE":;Z:"IS TOO LO
NG!" :"PRESS ANY KEY TO CONTI
NUE" 1123

> 240 CALL KEY({(90,K,S):: IF s=0
THEN 240 ELSE PRINT #2:AS
: GOTO 180 1232

Notice the "!" and 3 numbers at the end
of each line? The program was RUN on itself!
Here is what happens. Each record of the
MERGE file is read in, the first two bytes
fgnored (we don't need the line number) and
the rest are added up. Next, the identical
record is printed to the output file, with
the addition of the token for "{" (REMark)
and the 8 characters of the checksum. This
will work even if the program line already
contained a REMark (as in lines 1400-110).
THE USER MUST BE WARNED NOT TO TYPE THESE 4
CHARACTERS, since they were not computed into
the checksum. At the end (it may take a
little while with a long program, but only
needs to be RUN once), the programmer types
NEW and MERGEs in the output file, then SAVEs
it in normal mode, or lists it to printer, or
whatever. This is the form to be published.

Now what the user must do once is type
in the source code attached to the end of
this article and assemble it (a CALL LOAD
version is also supplied for those who don't
have the Editor/Assembler). If the object
code created was called "CHECK" then he must
type the following upon entry into XBASIC:
CALL INIT :: CALL LOAD("DSKx.CHECK") :: CALL
LINK("CURSOR"). This one line with a line
number can be SAVEd on disk and then RUN each
time it is needed, rather than type the whole
line. What the assembly routine at CURSOR
does is some housekeeping such as moving the
numbers @—9 to character sets 13—-14, changing
the colors there, redefining the cursor,
putting up the title screen, ete. and then
turning on the user-—-defined interrupt. Now
at every VDP interrupt (each 1/68 second),
the routine at CHECK begins. The Interrupt

PAGE 2

THE SMART PROGRAMMER



-

e

can be turned off with CALL LINK("OFF") and
back on with CALL LINK("ON") at any time and
the shape of the cursor will tell you which
mode you're in.  Now, EVERY TIME you enter a
new program line (and for some reason after
FCTN 8 REDO even if no changes are made) the
checksum will appear at the bottom of the
screen and one extra line scrolled up. HERE
IS THE KEY —- IT SHOULD CORRESPOND TO THE
ONE PUBLISHED THAT YOU ARE ATTEMPTING TO
COPY IN. Hence, no errors! !

I think the source code is sufficiently
commented to explain what is going on. I
must add that I spent many hours with MG
Explorer, by Doug Warren, finding out WHAT is
going on when you enter a line in XBASIC.
The address range in GROM of >6AA@ to >6ADS
should be broad enough to cover the variocus
versions of XBASIC out there, since they
differ by a few bytes here and there (the
actual range needed In my module was >8AAE to
>6ACA. This area contains the loop where the
first key press on entry of a new line is
located. As soon as the first key is
pressed, then the GROM code moves on. |
needed this area so as to reset the flag that
indicates the checksum has been printed, in
order to avoid having it printed again and
again! Notice the fairly cumbersome method of
peeking at the GROM address, which must then
be reset, since just looking at it destroys
it! T discovered that the line number entered
1s SAVEd at BOTH >8364 and >834A and only
when it is at both is the crunch buffer
finished being filled with the ecrunched line.
If you are entering a direct command, >8304
is not used until much later, which is why 1
clear it at the beginning of each entry, so
the routine won't get confused,

Finally, if all the criteria are met,
>8304 = >834A and KEY (>8375) contains the

valid entry key (enter = >@p, up arrow = >@B -

or down arrow = )>@A), then the meat of the
program goes to work, computes the checksum
and puts it on the screen after an extra
scroll (XBASIC does its own scroll after I'm
finished). Please note that I use BLWP
@XMLLNK with DATA SCROLL instead of adding
the whole routine. This saves a lot of
typing. However, for those of you who are
interested, I am also providing the entire
routine done by DISKASSEMBLER™, so that you
can place it in an E/A assembly file if Voul
wish, as this one exists in Bank 1 of
XBASIC's ROM at >600¢->7FFF, and hence can't
be used by E/A.

I'm hoping that everyone finds this

December 1986

program useful and that it is widely used.
I'm only sorry I didn't write it three years
ago! Finally, 1 would like to thank Doug
Warren for writing Explorer, without which 1
could not have done this, since I nheeded to
find out where XBASIC does what! (I also must
blame Doug for my bleary eyes!) And, I
especially would like to thank Crajg Miller
for his invaluable help and advice while 1
was writing the program. As Craig slowly
leaves the TI community, we will all feel the
loss.

> 1 !CALL LOAD VERSION OF OBJE
CT CODE FOR CHECKSUM PROGRAM
,BY TOM FREEMAN,LA 99ERS !20
0

> 108 CALL INIT :: CALL LOAD(9
469,0,0,0,0,0,0,106,160,106,
216,0,10,11,13,0,0¢) '180

> 119 CALL LOAD(9484,0,126,66,
66,66,66,126,0,31,31,32,32,8
8,66,65,83,73,67,32,69)!144

> 120 CALL LOAD(9504,82,82,79,
82,32,67,72,69,67,75,69,82, 3
2,32,32,32,32,32,85,83,73,78
) 1107

> 130 CALL LOAD(9526,71,32,67,
72,69,67,75,83,85,77,83, 32,3
2,32,32,32,66,89,32,84,79,77
) 1119

> 140 CALL LOAD(9548,32,70¢,82,
69,69,77,65,78,44,32,76,65, 3
2,57,57,69,82,83,2,132,0,10)
1 952

> 150 CALL LOAD(9570,17,2,2, 36
,0,7,2,36,0,48,192,68,2,33,0
176,6,193,4,32,32,32) 199

> 160 CALL LOAD(9592,4,91,2,0,
3,240,2,1,37,4,2,2,0,8,4,32,
32,44,2,0,4,128)!1121

> 170 CALL LOAD(9614,2,1,39,22
,2,2,0,80,4,32,32,44,2,0,7, 0
.4,32,32,36,4,32) 1166

> 180 CALL LOAD(9636,32,24,0,23
8,2,2,37,22,2,3,96,96,2,4,0,
36,192,66,172,131,6,4) ! 204

> 190 CALL LOAD(9658,22,253,2.
©,2,228,2,2,0,24,4,32,32, 36,
4,32,32,24,0,38,2,0) 1067

> 200 CALL LOAD(9680,2,228,2.1
,37,46,2,2,0,24,4,32,32,36.4
,32,32,24,0,38,2,0) 1020

> 210 CALL LOAD(9702,2,228.2.1
,37,70,2,2,0,24,4,32,32,36,2
,0,3,240,2,1,37,12) 1006

> 220 CALL LOAD(9724,2,2,0,8,4
,32,32,36,2,0,38,36,200,0,13
1,196,4,91,2,0,3,240) '119

PAGE 3

THE SMART PROGRAMMER



> 230 CALL LOAD(9746,2,1,37.,4,
2,2,0,8,4,32,32,36,4,224,131
,196,4,91,216,32,152,2) 1239

SCROLL ROUTINE -- FOR USE 1IN
OTHER PROGRAMS ﬁ

224,36,248,216,32,152,2,36,2 WORKSPACE MUST BE >83EQ

%
*
> 240 CALL LOAD(9768,36,248,6, *
X
%

48,6,224,36,248,6,32, 36,248,

136,32) 1133 SCROLL LI R12,>02E®

> 250 CALL LOAD{9798@, 36,248, 36 LI R10,>0020
,250,26,8,136,32,36,248, 36, 2 CLR R9
52.27,4,4,224,36,244,4,224,1 MOV R11,R6
31,4)!013 BL, @AA

> 260 CALL LOAD({9812,216,32, 36 LT R5,>8C00Q
248 ,156,2,6,224,36,248, 216, LI R4,>02EQ
32,36,248,156,2,2,0,8,28,2,1 LY R1,>7F80
) 19054 LI R2,>001C

> 270 CALL LOAD(9834,37,20,2,2 BL @AF
,90,2,4,32,32,36,2,0,8,15,2,1 MOVB R1, *R5
,244,9,2,2,0,13)!105 SWPB R1

> 280 CALL LOAD(9856,4,32,32,3 AB MOVB R1, *Rb
2,5,128,6,2,22 “.,1,2,0,7.,4.,4 DEC R2.
r32,32,48,7,96,36,244) 1204 JNE AB

> 298¢ CALL LOAD(9878,22,62,2,1 SWPB R1
,9,3,152,33,36,254,131,117.,1 MOVB R1, *R5
9,3,6,1,22,250,4,91,200,32) ! MOVB R1, *R5
180 B *R6

> 300 CALL LOAD(9900,131,4,131 AA CLR RS8
,4,19,49,136,32,131,4,131,74 MOVB @>83F5, *R15
,22,45,7,32,36,244,208,160,1 STWP R7
31,66)!038 MOVB R10,*R15

> 310 CALL LOAD({(9922,9,130,2,0 AD MOVB @>8800, *R7+
:8,32,2,1,39,22,4,32,32,44,4 INC R10
,224,37,2,184,49,37,3)1195 INC RS

> 320 CALL LOAD(9944,6,2,22,25 DEC R12
2,200,11,36,246,4,32,32,24.,0 JEQ AC
,38,2,0,2,226,193,96,37.,2)!1 CI R8,>000C
38 JLT AD

> 330 CALL LOAD(9966,2,2,0,10, AC MOVB @>83F3, *R15
2,3,9,100,2,6,0,2,4,196,061,3 ORI R9,>4000
,©6,160,37,94,5,128) 1027 MOVB R9, *R15

> 340 CALL LOAD({(9988,192,194.,6 STWP R7
,6,22,248,193,5,6,160,37,94, AE MOVB *R7+,@>8C00
194,224,36,246,4,91)!104 INC RS9

> 350 CALL LOAD({(16376,79,78,32 DEC RS
, 32,32,32,37,244) 1¢42 JNE AE

> 360 CALL LOAD(16368,79,70,70 MOV R12,R12
,32,32,32,38,14)!1240 JNE Al

> 370 CALL LOAD(16360,67,72,69 B *R11
,67,75,32,38,36) 1002 AF MOVB @>83E9, *R15

> 380 CALL LOAD(l16352,67,85,82 ORI R4,>4000
,83,79,82,37,122) 1053 MOVB R4, *R15

> 390 CALL LOAD(8194,39,22,63, NOP
224) :: CALL LINK("CURSOR")!1 MOVB R1,@>8C00
43 B *R11

x
%

x

SQURCE CODE TO WRITE CHECKSUM FOR ENTERED XB LINE ON SCREEN

BY TOM FREEMAN, LA 99ERS

THIS IS PUBLIC DOMAIN, PLEASE DISTRIBUTE IT WIDELY!

DEF ON,OFF,CHECK,CURSOR q
VMBR EQU >202C B
VMBW EQU >2024

December 1986 PAGE 4
THE SMART PROGRAMMER



This unit is without a doubt the most so
date. With over a year of design and
machine has surpassed even our own expectations. Take am

GENEVE ..

MODEL 9640 FAMILY COMPUTER

place this computer in a class of its own.

w

99/4(A) COMPATIBLE RUNS OVER 100
EXISTING T! CARTRIDGE PROGRAMS

IBM TYPE KEYBQARD Included

V9938 ADVANCED VIDEO DISPLAY
PROCESSOR

Is software compatible with TMS9918A (used in
99/4A),

Uses 46 registers for high speed “HARDWARE” gra-
phics commands.

Commands include:

DRAW SEARCH POINT (status) BLINK
FILL MOVE Animation And more

Uses color Pallet of 512 colors on the screen at a
single time. 7 modes of graphics operation: some
modes allow 256 colors. True BMG (Bit-Mapped-
Graphics) operation. Both composite (like the 99/4A)
and analog RGB outputs (like the Atari ST and
Commodore Amiga). Supports up to 256 colors per
screen in the 256 by 424 mode or 16 colors in the 512
by 424 mode. Comes with 128K bytes of video RAM
(8 times the amount of the 99/4A)

Software Support Supplied with the 9640
MYARC DOS (similar to MS-DOS 2.1)
MYARC ADVANCED BASIC

—Compatible with T! Extended BASIC and
MYARC Extended BASIC Il

—Supports all modes of the Video Processor
(including 80 column)

—Supports Windows
~—~Supports easy to program Mouse Commands

—Combined Text and Bit-Mapped-Graphics Modes

—Drawing Commands such as Circle, Rectangle,
etc. are built-in
Program patches to make TI-Writer 1) more power-
ful 2) display 80 columns

Program to SAVE your 99/4A cartridges to disk

phisticated machine ever offered in the family and small business area to
development, including input from more than one hundred users, this

oment to review some of the many features that

99/4(A) COMPATIBLE RUNS OVER 95% OF
ALL ASSEMBLY LANGUAGE PROGRAMS
& UTILITIES

REAL TIME CLOCK CHIP
MULTIPLAN ALSO 80 COLUMNS

SOUND CHIP COMPATIBLE WITH 99/4 A
(3 simulataneous tones, 1 noise)

FASTER—At least 3-4 times

TMS 995 U-Processor

Runs same instruction set as 9900 used in 99/4 A plus
4 new ones. Pipelined processor (i.e. U-processor
performs several functions simultaneously).

Awesome amount of RAM

512K of CPURAM (user configurable between CPU.
RAM, RAM-DISK or PRINT-SPOOLER). Expand-
able to 1 megabyte with MYARC 512K Card. In
99/4A mode 64K of the 512K becomes GROM and
16K CARTRIDGE ROM

T19995 Processor Chip—12 MHz

256 Bytes ULTRA High Speed on Chip RAM. Pre-
fetch on Instructions. Post-store on Instructions.

Built-In Mouse Interface

Installed hardware allows for the MS mouse to be
connected directly to the 9640 board. Basic language
support for the mouse built in. Uses the industry-
standard MacIntosh mouse commands.

Hardware and Software Support for the most
commonly-used peripherals

Floppy Disk Controllers include MYARC, Texas
Instruments, and Corcomp. RS232 cards include
MYARC, Texas Instruments, and Corcomp. Ram-
Disks include Horizon.

L ———
@ ALl ixouy somuam EEss ——
/ P.O. Box 244 —Vﬂ.il
Ao S F 2 Lorton, Virginia 22079 / /A ‘c z YR
0 y
or call S " s

1-800-446-4462. At the tone, enter 897335 for recorded order message. Touchtone phone is required
Alternate is (301) 369-1339. No Touchtone is required.

Delphi: TELEDATA—CompuServe: 74405,1207—MCI: TDG—TELEX: 6501106897 MCI



'BATTLE GOVER TITAN

Your short range acanner has located

Torg cralt thal are ool 10 desligy your
outpost on Titan. Time 18 crucial Can you
maneuyer your Drong Thegugh the dimin:
Ishing weak areas i the Torgs scanngrand

weapon aming systems How long can you

stave ofl the Torgs attack? High speed. tast
achon. special sound effects. high resoili®
- tion lull color graphics, 10 levels of dif-

hculty. random game boards — no two
games piay alike Wil you be abie lo repaw.

additional hghter drones n tume 10 Save
yvour gufpost? :

THE CRASY PN HODSE

Enter the Crazy Fun House at yaur own
nsk where Sruley Grouchy and ther B
frends are waihng lor you 1o make 4 wrong
urn This crazy game has visiple and invis-
Iote passadeways whede you £3n chase or
bechased dodge shootand rack up ponis
for exira men Hpushes your T 99:4 99:44

i extended ase 101t gibmate himets with 9

sereens angd 32 levels i tast action coloriul

graphics and superh sound eflects
Opbhonal est mode atlows you 1 star

al any tevél Joyshcks and exterded basic '

are regy

L anyou earm Ihe secrel ﬂi!lﬁrns of sach

SO TEen?

. -y

THE MUAINRIRT

ancient_ampirg there roled &
great Pharaoh with angrmous

- waalth. He commanced that all

?l‘lis waalth shall be placed in a
spacial tomb that was built ovar
a vary deep pit. '

* Theg myfhs about the tomb tedl
us of trap doars and walls that
move. We've also heard that the
kings ghost is still'there protect-
ing his treasure to this day!
Autamatic multi-level with fras
plays. High rasglution full color
graphics. Special sound effects.
Tha Tomps are different sach
time you play! How long can you

* fast in the Pharachs Tomb?

All

(X—Basic required, Includes shipping)

w i
During the third dynasty of the

=SALC/AL

Casing Black Jack hags been designed
te teach you when to stand, hit, split
pairs and double down. it's like having a
professional Black Jack player helping
you increase your odds of winning by

telling you what to do depending upon
the dealers up card. Along with its high -

resolution coior graphics you have the
loilowing opticns: stand, hit, double
down, spht a pair and insurance.

{Great practice 1or card counters as
you can ¢hoose (o be dealt from a
single deck, 2 decks or 4 decks. Three
modes of play include, teach mode,
test mode and the play only mode.
Hours of educational fun!

MG GAMES

of the above 6 Games
on one Menu—Driven disk

ONLY $20

“Filteen men on the dead mans
chest Yo-Ho-Ho, and a bottla of Rum.™

Your five man diving team has
found the last treasure of Biackbegsrd
the pirste! Unfortunately it is at the
bottom of a shark infeated ses and it |s
protected by two glant Qctopuses!!

w.m in-n LA R LT YT NI iYL L]

The sharks haven't been fad since
-the lawet time somecne played this

~ gama and they iove to sat diversi|!

Automatic mult-level gams with
free plays. Beautitul full color graphios
and spacial sound stfects. Whitten in

_E:t-m:_hd Basic,

At last a cracker that won't get
soggy. Souper Cracker to the
rescua. CRUNCH CAUNCH :
GOBBLE GOBBLE — Out of tha
soup the letters fly. This fast
action game was designed for
the younger computer user, with
a prompt mode that displays the
next letter to ba aaten. Full of
rawards and colorful graphics.
Eating soup has never been this
much fun. Optional apeech. .
Joysticks and utmdnl hnin

required.

OTHER MG ITEMS AVAILABLE

Smart Programming Guide For Sprites
The Orphan Chronicles
Advanced Diagnostics

DISKASSEMBLER

Night Mission — Disk

Night Mission — Cass
Spare Gram Kracker Manual
Gram Kracker Battery =
Gram Kracker Utility | Disk . . _
Prom Set For Corcomp Disk Controller Card .
Video Information Directory Program — IBM

Video Information Directory Program — Tl PRO.
All Other |tems Please Add 2.00 per Order

* Price Includes Shipping & Handling

1475 W. CYPRESS AVE.

SAN DIMAS CA 91773

Order with o Check or Money Order or contact your favorite deaqler

SPGS
BOO/
UTO1
UTOJS
G10D
G10C
GKO4
GKO05
GKOS
PRO1
VID1
VIDZ2

6.95
9.95
19.95
19.95
19.95
19.95
2.90 *
2.50 %
10.00 x
34.95 %
59.95
59.95

(714) 599—1431

A



VSBR
VSBW
VWTR

XMLLNEK
SCROLL
NSAVE
LSAVE
FAC
GRMRA
GRMWA
DONE
SAV11
SAVEGA
LOWAD
HIAD
ENTER
COUNT
CUR1
CUR2
INVVID
TITLE1
TITLE2
TITLE3
GETDEC

GD

CURSOR

CR1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DATA
DATA
DATA
DATA
DATA
DATA

DATA
BSS

DATA
DATA
TEXT
TEXT
TEXT
CI
JLT
ATl
Al
MOV
Al
SWPB
BLWP
RT
LI
LI
LI
BLWP
LI
L1
LI
BLWP
LT
BLWP
BLWP
DATA
LI
LI
LI
MOV

DEC
JNE
LI
LT
BLWP
BLWP
DATA
LI
LI
LT
BLWP

»2028
>2020
>2030

>2018

>0026
>8304
>8342
>834A
>9802
>9C02
¢

0

0

>6AAD
>6ADS8

>000A,>0B0OD

0
8

ADDRESS OF ROUTINE IN ROM INDEXED ON
EQU >7ADA IN MY XB MODULE

ADDRESS WHERE LENGTH OF CRUNCHED LINE IS SAVED

>6010

GROM READ ADDRESS PORT
GROM WRITE ADDRESS PORT

/ADDRESS RANGE IN GROM WHERE FIRST KEY PRESS
\ON COMMAND LINE IS REQUESTED

ENTER KEY, UP AND DOWN ARROW

>POTE,>4242,>4242,>7E00 HOLLOW CURSOR DATA

>1F1F

INVERSE VIDEO COLORS

'  XBASIC ERROR CHECKER '
' USING CHECKSUMS '

'BY TOM FREEMAN, LA 99ERS’

R4,10
GD
R4,7
R4,>30
R4,R1
R1,>B0
R1
@VSBW

RO,>03F0
R1,CUR1
R2,8
@VMBR
RO, >4890
R1,LBUF
R2,80
@VMBR
RO,>700
@VMBW
@XMLLNK
SCROLL
R2, TITLEl
R3,>6060
R4, 36
R2,R1
R3, *R2+
R4

CR1

RO, >2E4
R2,24
@VMBW
@XMLLNK
SCROLIL
RO, >2E4
R1,TITLEZ2
R2,24
@VMBW

/IF NUMBER IS 10+ THEN NEED TO GET TO >41 ("A"“
\NOT >3A
MAKE IT AN ASCII CHARACTER

THIS IS BASIC BIAS OF >60 PLUS >50 TO GET TO

TO MSG ALTERNATE CHARACTER SET AT ASCII 128
WRITE ON SCREEN

SAVE ORIGINAL CURSOR PATTERN AT CURI1

/THE 80 BYTES FROM >480 TO >4CF ARE ASCIT 48~

157 (""" TO "9"). TEMPORARILY STORED AT
\LBUF
NOW PUT THEM AT >700 AS ALTERNATE CHAR. SET

SCROLL UP 1 LINE

ADD BASIC BIAS TO TITLE CHARACTERS

WRITE 1ST LINE

SCROLL AGAIN

WRITE 2ND LINE

December 1986 PAGE 5
THE SMART PROGRAMMER



* CALL
* CALL
ON

OFF

CHECK

CHECK1

BLWP
DATA
LI
LI
LI
BLWP

@XMLLNK

SCROLL SCROLL AGAIN
RO, >2E4

R1,TITLE3

R2,24

@VMBW WRITE 3RD LINE

LINK("CURSOR"”) DOES THE SETUP AND CONTINUES ON TO "ON"
LINK("ON") STARTS HERE AND DOESN'T NEED THE SETUP

LI
LI
LI
BLWP
LI
MOV
RT
LI
LI
LI
BLWP
CLR
RT
MOVB
SWPB
MOVB
SWPB
DEC
C

JL

C

JH
CLR
CLR
MOVB
SWPB
MOVB

RO,>03F0

R1,CURZ

R2,8

@VMBW LOAD THE HOLLOW CURSOR INTO VDP

RO, CHECK LOAD THE INTERRUPT ADDRESS INTO THE ISR
RO,@>83C4 \ {INTERRUPT SERVICE ROUTINE) HOOK AT >83C4
RO®,>Q03F0

R1l,CUR1

R2.,8

SVMBW RELOAD THE ORIGINAL CURSOR

@>83C4d CLEAR THE ISR HOOK (TURN OFF INTERRUPT)

@GRMRA ,@SAVEGA "PEEK" AT THE' CURRENT GROM ADDRESS AND SAVE

@SAVEGA IT AT SAVEGA, MSB 1ST. GROM ADDRESS IS NOW
@GRMRA ,@SAVEGA INDETERMINATE

@SAVEGA

@SAVEGA ADJUST FOR AUTO INCREMENT

@SAVEGA ,@LOWAD TEST FOR THE LOW END OF RANGE WHERE START OF
CHECK1 COMMAND LINE IS, JUMP OUT IF TOO LOW

@SAVEGA ,@HIAD HIGH END OF RANGE

CHECK1 JUMP OUT 1IF TOO HIGH

@DONE RESET FLAG FROM PREVIOUS CHECKSUM ROUTINE
@NSAVE THIS CORRECTS FOR A MYSTERIOUS ERROR I FOUND!
@SAVEGA ,@GRMWA RESET GROM ADDRESS TRHOUGH GRMWA PORT
@SAVEGA

@SAVEGA , @GRMWA

*NEXT 4 LINES SET THE "INVERSE VIDEO" FOR CHECKSUMS-CAN BE DELETED

LI
LI
LI
BLWP

RO, >81C RESET COLORS FOR CHARACTER SETS 13-14 AT EVERY
R1,INVVID INTERRUPT (XB ALWAYS RESETS TO DEFAULT). DELETE
R2,2 THESE 4 LINES IF YOU DON'T LIKE THE INVERSE
@VMBW VIDEO EFFECT

*NEXT 10 LINES CHANGE SCREEN & CHAR COLORS WHILE IN CHECKSUM MODE
*AND CAN BE

COL

LI
LI
LI
BLWP
INC
DEC
JNE
LI
BLWP

DELETED IF YOU DON'T LIKE THE EFFECT

RO, >80F START OF COLOR TABLE FOR CHAR SET 0
R1,>F400 WHITE ON BLUE

R2,13 13 COLOR SETS

@VSBW WRITE A BYTE TO COLOR TABLE

RO NEXT COLOR SET

R2

COL

RO,>0704 SCREEN COLOR 4 (DARK BLUE)

@VWTR

*END OF OPTIONAL LINES

CHECK2

ABS
JNE
LT
CB
JEQ
DEC
JNE
RT

@DONE /IF THE ROUTINE WAS ALREADY DONE

RETURN \GET OUTTA HERE! |
R1,3 CHECK FOR THE 3 VALID ENTRY KEYS AND LEAVE IF
@ENTER (R1) ,@>8375 THERE AREN'T ANY. NOTE USE OF INDEXING
Cl IF VALID KEY THEN GO ON

R1 GO FOR MORE

CHECK2Z

December 1986 PAGE 6
THE SMART PROGRAMMER



Cl MOV @NSAVE,@NSAVE /WHEN >8304 CONTAINS A NON ZERO KEY AND IS =
JEQ RETURN \WHAT IS IN >834A THEN WE'RE READY TO GO!
C @NSAVE, @FAC
" JNE RETURN

SETO @DONE INDICATE THE CHECKSUM IS ABOUT TO BE WRITTEN
- MOVB @LSAVE,R2 GET THE LENGTH BYTE OF CRUNCHED LINE
. SRL R2,8 MOVE TO LSB
LI RO,>0820 CRUNCH BUFFER
LI R1l, LBUF WHERE WE WILL STORE IT
BLWP @VMBR MOVE IT
CLR @COUNT COUNT WILL CONTAIN CHECKSUM, IN BINARY
C2 AB  *R1+,@COUNT+1 /ADD EACH BYTE OF CRUNCHED LINE T70 IT, 1 BY 1
DEC R2 | BECAUSE WE ARE ADDING BYTES, WHEN WE GO OVER
" JNE C2 \FF, THE CLOCK GQES BACK TO ZERO
DO - MOV. R11,@SAV1l SAVE THE RETURN ADDRESS
BLWP @XMLLNK
DATA SCROLL SCROLL UP THE SCREEN
LI "RO,>2E2 3RD COLUMN, BOTTOM ROW OF SCREEN
MOV @COUNT, RS MOVE THE VALUE AT COUNT (WORD VALUE BUT LESS
LT R2,10 THAN 256, TO RSB
LI R3,100 R2 AND R3 CONTAIN THE DIVISORS
LI R6,2 2 LOOPS FOR 100'S AND 10°'S PLACE
D1 CLR R4 ASL DIVISION IS DONE THIS WAY.VALUE OF 1ST R
DIV R3,R4 IS DIVIDED "INTO" 2ND 4(E.G. R3 INTO R4). THE
® Z2ND REG IS ACTUALLY 2 CONTIGUOUS REGISTERS.
* THE QUOTIENT IS PLACED IN THE FIRST AND THE
x REMAINDER IN THE 2ND.ORIGINALLY THE FIRST MUST
* BE @&, OR THERE WILL BE AN "OVERFLOW"
* SO R4 NOW CONTAINS THE INTEGER QUOTIENT
x BL @GETDEC CONVERT IT TO ASCII AND PUT ON SCREEN
(i . INC RO NEXT SCREEN POSITION
| MOV R2,R3 NEXT DIVISOR
DEC R6 ANY MORE TO DO?
JNE D1
- MOV R5,RA4 1'S PLACE IS THE REMAINDER FROM 2ND DIVISION
~BL  @GETDEC PUT THIS ONE ON SCREEN TOO
MOV @SAV11,R11 RESTORE RETURN ADDRESS
RETURN RT AND RETURN - |
® - - THIS IS END OF PROGRAM AND IS A CONVENIENT PLACE
* | TO PUT THE BUFFER, WHICH HAS NO DATA TO START
LBUF END
L  OPTIONAL XB page 278 of the E/A manual. Thus, a simple
AL, ARGUMENTS compare/jump structure can be employed to

make arguments optional.
by Richard M. Mitchell

The type of argument passed can also

You may have noticed that there are allow options, such as directing branching,
several TI XB statements that allow optional but I have been unable to ascertain from the
arguments. For instance, CALL HCHAR can E/A manual where the argument identifiers’
include the number of repetitions of a reside in the XB environment, as it provides
character or the argument can be omitted. only the locations for BASIC. Well, the
User—written Assembly code can also utilize location is >83@6 through »>836F (thanks to
optional arguments. Scott Darling for providing this info). By

including a compare/jump structure on the

m Once an XB program has LINKed to identifiers, some nifty tricks can be

3 Assembly code, the address >8312 contains the employed. For instance, if a base conversion

number of arguments passed, as explained on program is being written, a number could
December 1986 PAGE 7

THE SMART PROGRAMMER



indicate a branch to a decimal to hex
routine, with a string indicating a branch to
a hex to decimal routine! As detailed on page
278 of the E/A manual, the argument
identifiers are numbered @ through 5.

Here is a simple program that illustrates

some of the techniques described in this
article (see what you can come up with!):

DEF EXAMPL

UTILWS EQU >2038
SETWDA EQU >24CA
ARGIDS EQU >8300
ARGQTY EQU >8312
GPLWS EQU »>83E0
VDPWD EQU >8C00

EXAMPL, LWPI MYWS

MOVB @ARGQTY,R4 ¥ arg's
SRL R4,8
CLR RS
LI RO,->1E

EXAl CI R4,0 -l optional
JEQ EXIT - targuments'

MOVB @ARGIDS (R5),@ARGNOW
AB @ASCIIO, @ARGNOW

AT RO, >20 next row
LI R1,MSG
LI R2,15
BLWP @VMBWBB
INC R5
DEC R4
JMP EXAl
EXIT LWPI GPLWS
B @>0006A
VMBWBB DATA UTILWS,S+2 -—-|VMBW
BL @SETWDA lwith
VWTLOB MOVB *R1l+,R3 I BASIC
AB @BIAS,R3 ibias!

MOVB R3,@VDPWD I

DEC R2 I
JNE VWTLOB I
RTWP - |

MYWS BSS >20

MSG TEXT 'INDENTIFIER = '
ARGNOW BYTE 0

BIAS BYTE >60

ASCIIO BYTE >30
EVEN
END

Note the "Video Multiple—Byte Write, BASIC
Bias", VMBWBB, routine. It operates like a
VMBW, but adds the >6@ bias for XB. While the

December 1986

VMBWBB is not as efficient in speed or bytes as
VMBW with pre~biased text, it does enhance the
readability of the source code and is far more
efficient than similar routines that utilize
VSBW. VSBW resets the VDP address on each
call, while the VMBWBB routine takes advantage
of VDP's auto—-incrementing addressing feature.
I haven't tried using VMBWBB with other biases,
s0 you might want to experiment with that!

Here is an XB program that utilizes -the
above A/L code:

> 100 CALL CLEAR !209

> 110 CALL INIT :: CALL LOAD("
DSK2.ARGID/O") 1015

> 120 CALL LINK{"EXAMPL",1l,'"HE
LLO" ,A,AS,B{().BS()) 044

> 130 CALL KEY{(5,K,S}:: IF s<1
THEN 130 ELSE END !'217

The program will display the argument
identifiers for up to the maximum of 16
arguments that can be passed. The number of
arguments is optionai! Of course, the program
is merely an example and serves no real
practical purpose.

WHEN AN ARRAY
ISN'T !

by Richard M. Mitchell

In the preceding article, I pointed out
that argument identifiers could be located in
A/l code linked to XB. You may have noticed
that as an example of identifiers 4 and 5, I
used B{() and B$(), respectively. Why not
simply use B(3) and B8$(3), for instance? Well,
Tl's protocol for argument identifiers is to
consider array elements to be the same as
non-arrays. And, yes, some sections of the
E/A manual are a bit misleading! Array
elements are handled exactly like non-array
variablest Here is an A/L routine and the XB
XB code to access it to show this point:

DEF NARRAY

STRASG EQU >20190
STRREF EQU >2014
GPLWS EQU >83E0
NARRAY

LWPI MYWS

CLR RO

LI R1,1

LI R2, BUFFER
BLWP @STRREF

PAGE 8

THE SMART PROGRAMMEK




LI R2,BUFFE2
BLWP @STRASG
LWPI GPLWS

B @>006A

MYWS BSS >20

BUFFER BYTE >FF
BSS OFF

BUFFE2 BYTE >3
TEXT 'BYE'’

EVEN

END

> 100 CALL INIT :: CALL LOAD("
DSK1.NARRAY/O") !118

> 110 AS(3)="HELLO" !204

> 120 CALL LINK("NARRAY",AS$(3)
) 1931

> 130 PRINT AS$(3)!1106

> 140 END !139

TRIM & LLTRIM,
With Arravs
Supported!!

By Richard M. Mitchell

You've probably guessed by now that the
articles on the precedeing pages might be
leading up to something. The Assembly
program listed below uses some of the
techniques described in those articles and
adds a few more, including access of
multi-dimensional arrays from Assembly!

KExtended BASIC has every string
function a user could ever need, right?
Well, XB is powerful, but there are
situations that require a bit more brute
force, For instance, strings sometimes
begin or end with a character or multiple
occurrences of a character that is
extraneous. It would be nice to be able to
trim those extra characters from the string
more quickly than can be done from XB.
That's what the Assembly routine listed at
the end of this article does! Here's an XB
example of accessing the Assembly routines.

> 100 CALL INIT !157

> 11¢ CALL LOAD("DSK1.TRIM/O")
1195

> 120 DIM AS(2,2)1005

> 130 FOR I=0 TO 2 :: FOR J=1
TO 2 :: AS(I,J)=RPTS(" ", I+2

December 1986

) «"HELLO"&RPTS (" ",I+2):: PR
INT AS{(I,J);LEN(AS(I.J)):: N
EXT J :: NEXT I !223

> 140 CALL LINK{"LTRIM" ,AS(,),
(1) ll)!043

> 150 CALL LINK("TRIM".AS(,).,"
")1222

> 160 FOR I=0 TO 2 :: FOR J=1
TO 2 :: PRINT AS(I,J);LEN(AS
(I,J)):: NEXT J :: NEXT I !2
51

When LINKing to TRIM and LTRIM, the first
parameter is the string to be trimmed and
can be a string variable, single~dimension
array or even a multi—dimension array! The
second parameter is the character to be
trimmed from the string and must always have
a length of @ (a "null string", which has no
effect on the trim) or 1 (obviously, 1 is
preferred). The program supports either
OPTION BASE 1 or OPTION BASE @ {(thanks to a
great tip from J. Peter Hoddie -- many, many
thanks, Peter!). The program automatically
calculates the number of dimensions and the
number of elements dimensioned and operates
on the entire array extremely quickly. TRIM
parses from right to left, truncating the
string at the first occurrence of a character
other than the specified character (B$ in
the example program). LTRIM parses from
left to right, eliminating occurrences of a
character (again, B$ in the example), until
a character other than the specified
character is parsed.

TRIM and LTRIM are useful for removing
blanks imposed in LINPUTing a FIXED length
file, to remove carriage returns and line
feeds from the ends of a series of strings,
to remove the extraneous "@"'s that are
sometimes derived at the end of a string
while using CHARPAT, to remove characters
resulting from conversions between strings
and numbers, etc. It might be interesting
to see what sorts of games, graphics, etc.
might be possible using these routines. The
Assembly routines occupy only 594 bytes!

The April 1984 issue of The Smart
Programmer, page 14, describes the make-up
of the Symbol Table, describing in detail
the byte structure that the following
routines access. You may also want to refer
to the Extended BASIC Scratchpad Map in the
August, 1986 issue, And, refer to the
material in the BASIC Support section of the
E/A manual for information on array access.
I hope everyone enjoys this article because
if it weren't for this, this issue likely

PAGE 9

THE SMART PROGRAMMER



would have been completed a long time a&ago!

Many thanks go to D.C.

(Doug) Warren for

generously sharing his knowledge with me and

for writing Explorer, which, along with a
lot of patience, made this article
possible.
DEF TRIM,LTRIM
* PARM1=STRING, PARM2=CHAR, PARM3=BASE
STRASG EQU >201¢
STRREF EQU >2014
VMBR EQU >202C
ARGID1 EQU >8300
ARGS EQU >8312
BASE EQU >8343 Thanks, P. Hoddie!
VSTKPT EQU >836E
GPLWS EQU >83E®
TRIM MOVB @ONE,@FLAG
LTRIM LWPI MYWS
'CLR RO |
LI R1,2 | CHARACTER
LI R2,LEN2 I TO TRIM
BLWP @STRREF !
LI  RS8,1
CB '~ @LEN2,@ZERO | NULL?
JNE TR1 |
o B @EXIT?2
TR1 CLR R8
CB @ARGID1,@FIVE ARRAY?
JNE TR4
- MOVB @ARGS,R3 | OFFSET TO
SRL R3,8 | 1ST STACK
DEC R3 | POINTER
SLA R3,3 | ENTRY
- MOV @VSTKPT,R® STK PTR
S R3,R0 OFFSET
LY R1,STACKA | STK ENTRY
LI R2,2 | ADDRESS
BLWP @VMBR
MOV @STACKA,RO
LI R1,DIMS DIMS+80
LI R2,1
BLWP @VMBR
SB @OFFSTD,@DIMS OFFSET
MOVB @DIMS,R4 I
SRL R4,8 |
AI RO, 4 | FIGURE
LI R1,REGY9 ! TOTAL
LI R2,2 | # OF
LI R7,1 { ELEMENTS
LOOP INCT RO I
BLWP @VMBR )
CB @BASE, @ZERO |
JNE TR2 |
INC R9 !
TRZ MPY R9,R7 |
MOV R8,R7 i
DEC R4 I

December 1986

TR3

TR4

JNE
MOV
CB
JNE
DEC
LI
LI
BLWP
CLR
MOVB
SRL
CB

JEQ

TRIM1
T1

T2

EXIT

EXIT2

RETURN

MYWS
LSB3
REGY
STACKA
LEN1

LEN2
CHR2
LEN3
CHR3
OFFSTD
MAX1
FLAG
ZERO
ONE

PAGE

LI

JMP
MOV
CB

JNE
Cl

JEQ
DEC
CB

JEQ
INC
INC
JMP
DEC
JMP

LI
MOVB
LI

A
BLWP
MOVB
MOVB
CB
JNE
DEC
JNE
MOV
MOVB
LWPI
B

BSS

EQU

EQU

DATA
BYTE
BSS

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

19

THE SMART PROGRAMMER

LOOP |
RS ,R0O
@BASE, @ZERO
TR4
RO : ZERO OK
R1,1 | STRING
R2,LEN1 | TO
@STRREF | TRIM
R6 |
@LEN1,R3 |
R3,8 I
@ONE , @FLAG |
TRIM1 !
R2,1 I
T1 l
R3,R2 |
@LEN1 (R2) ,@CHR2 |
EXIT I
R3,0 |
|
|
|
I
I
:
|
l
|

BASE 07?

PARSE
STRING
AND
MARK
FOR
TRIM

EXIT

R3
@ONE , @FLAG
T2

R2

R6

Tl

R2

Tl

R1,1 \
@®LSB3,@LEN1(R6) |
R2,LEN1 |
R6,R2 ]
@STRASG /
@MAX] ,@LEN]1 | PREP
@ONE ,@LEN2 | NEXT
@ARGID1 ,@FIVE ARRAY?
RETURN

R8

TR3

@ONE ,@LEN3 | PREP FOR
@ZERO ,@FLAG | NEXT LINK
GPLWS

@>006A

WRITE
TRIMMED
STRING

FOR

>20 WORKSPACE

MYWS+7 LSB OF R3
MYWS+>12 MSB OF R9

o VALUE STACK ADDR

>FF LEN OF STRING
>FF STRING TO TRIM
1 LEN OF CHARACTER
) CHAR TO TRIM

1 LEN OF BASE

0 OPTION BASE
>80 DIM OFFSET

>FF MAX LENGTH

/] O0=LTRIM,1=TRIM
@ | #'s FOR BYTE
1 i COMPARISONS




SiF
; I‘
!

FIVE BYTE 5 l

DIMS BYTE 0 # OF DIM'S
EVEN
END

In retrospect, it looks rather simple.
I guess that's the difference between
hindsight and foresight! It's really

interesting that as a program improves, it
often gets smaller!

QuUuote

We should market to our friends, not people
who don't like our style of computing.

Jean—-Louis Gasseée, in Lotus

magazine.

Apple V.P.,

- W iy .

Write GRAM!

program by Mike Dodd
article by Richard Mitchell

Here's an extremely useful XB Assembly
routine for Gram Kracker™ owners. The
advantages of this program are that it
allows you to write to the write—-protected
GRAM's, 3-7, and allows writing an entire
string at a time! See the article that
follows this one for an example of the XB
usage of the program. Note that byte values
above 32767 must be converted to a negative
number by subtracting 65536, as with GK Util
I's PEEKG and POKEG. Many thanks to Mike
Dodd for this outstanding program!

DEF WRTGRM
GWA EQU >9C02
GRA EQU >9802
GWD EQU >9C00
NUMREF EQU >200cC
STRREF EQU >2¢14
FAC EQU >834A
HFF BYTE >FF
BANK1l TEXT 'Enable bank l&press FCTN'
BANKO TEXT 'Restore W/P & press FCTN'
EVEN
PBASIC DATA SUBWS1,PBAS1
PBAS1 MOVB *R13,R0
MOVB @1 (R13),@>8C02
ORI RO,>4000
MOVB RO,@>8C02
MOV @2(R13),RO
MOV @4(R13),R1
PBAS2Z2 MQOVB *R@+,R2

December 1986

WRTGRM

FCTN1

FCTN2

FCTN3

RETURN

AT
MOVB
DEC
INE
RTWP
LWPI
MOVB
JEQ
SRL
LI
LI
LI
BLWP
CLR
TB
JEQ
CLR
CLR
INC
MOV
BLWP
LWPI
BL
LWPI
MOV
CLR
INC
MOV
LI
MOVB
BLWP
MOVB
SWPB
MOVB
SWPB
DEC
MOVB
SWPB
MOVB
MOVB
SRL
LI
MOVB
DEC
JINE
MOVB
SWPB
MOVB
DEC
INE
TB
JINE
LI
LI
LI
BLWP
TB
JEQ
LWPI
B

PAGE 11
THE SMART PROGRAMMER

R2,>6000
R2,@>8C00
R1
PBAS2

MYWS
@>8312,R6
RETURN
R6,9
RO,>184
R1l,BANK1
R2, 24
@PBASIC
R12

7

FCTN1

R8

RO

RE8

R8,R1
@NUMREF
>83E0
@>12B8
MYWS
@FAC,R9
RO

RE8

R&,R1
R2,BYTESL
@HFF , *R2
@STRREF
@GRA ,R7
R7

@GRA ,R7
R7

R7
R9,@GWA
R9
R9,@GWA
@BYTESL, RS9
R9,8

RO ,BYTES
*RO+,@GWD
R9

B
R7,@GWA
R7
R7,@GWA
R6

A
7

FCTN2
RO,>184
R1,BANKO
R2,24
@PBASIC
7

FCTN3
>83E0
@>06A



SUBWS1 DATA 0,0,0,0,0,0,0,0
DATA ©,0,0,0,0,0,0,0
MYWS DATA ©,0,0,0,0,0,0,0
DATA 0,0,0,0,0,0,0,0
BYTESL, BYTE 0
BYTES BSS 255
END

Seven New XB CALL:'s

Code by Mike Dodd -
Article by Mike Dodd and Richard M. Mitchell
Implementation by Richard M. Mitchell

Mike Dodd has developed seven new CALL's
for users of MG's GK Utlility I version of
Extended BASIC!

Because seven CALL's represents more data
than we typically cover, we'll take a different
approach to implementing the CALL's. Rather
than key the data directly, risking an
irrecoverable error, we'll use a program to
checksum the data and write it to GRAM. And,
you'll have a choice as to whether you want to
use Mike Dodd's WRTGRM program.. If you choose
not to use WRTGRM, you'll use POKEG, which
cannot be safely used to write to GRAM 6, where
the code will end up, so we'll write to GRAM 2
and then move it.

The CALL's are as follows:

CALL BEEP -- produces a beep tonhe.
CALL HONK -- produces a honk tone.
CALL STSPRT -~ stops all sprite motion. Note
that sprite motion remains disabled even
after the program is run (while the console
is powered up), so follow CALL STSPRT with
CALL GOSPRT before the end of yvour program.

CALL GOSPRT -- reverses CALL STSPRT, enabling
sprite motion.

CALL SCROFF -- disables all screen displays
(the same thing as happens when the screen
times out when no key has been depressed).

CALL SCRON -- enables the screen, reversing
CALL SCROFF.

CALL COLORS(F,B) —- Sets color sets # through
14 to foreground color F and background
color B. This is similar to the XB routine
FOR X=¢ TO 14 :: CALL COLOR{(X,F,B) :: NEXT
X. This CALL does it much faster. For
maximum flexibility, the border color of the
screen is not affected. The border color
can be changed using CALL SCREEN(Z). If B
in CALL COLORS is set to @ (transparent),
the background color will appear the same as
the color specified in the CALL SCREEN
command.

December 1986

Note: If you have added your own code, be sure
you have not used >D8FB through >D9C4 in GRAM,
as that is where this modification will reside.

To install the changes, be sure to follow
these instructions very carefully:

1) Be sure the contents of your GRAM 2 are
saved to disk (for the POKEG installation
method, the area that GK Utility 1 leaves free
beginning at >5208 will be used for temporary
storage of 207 bytes).

2) A) Key in the following program and save it
to disk if you will not be using Mike Dodd's
WRTGRM program (see 2B for the modifications
for the WRTGRM program):

> 106 DIM A(208)!157

> 11¢ FOR I=1 TO 208 :: READ A
$ :: CALL HEX DEC{AS,D):: A({
I)=D :: N=N+A(I):: NEXT I !¢
88

> 120 IF N<>49018 THEN PRINT "
DATA INTEGRITY ERROR" :: END

1242

> 130 A(1)=A(1l)-1 FOR I=1 T

O 207 :: CALL POKEG(A(1)+I.,A

(I+1)):: NEXT I {053

140 END !139

1000 DATA 5208 046

2000 DATA 06,D8,FB 1193

3000 DATA D9,14 !188

4000 DATA 86,A3,70,86,8F,FC,

FA,BD,00,8F,ED,00 '078

4919 DATA 86,8F,FC,FC,D5,00,

8F,ED,00,59,13,0B !062

> 4020 DATA 00 1189

> 5000 DATA D9,1D,04.,42,45,45,
5¢,D9,5C,D9,26 !012

> 5010 DATA 04,48,4F,4E, 4B, D9,
62,D09,31,06,53,54 !242

> 5020 DATA 53,50,52,54,D9,068,
D9,3C,06,47 ,4F,53 1234

> 5030 DATA 56,52,54,D9,6F,.D9,
47,06,53,43,52,4F '232

> 5040 DATA 46 ,46,D9,78,D9,51,
05,53,43,52,4F ., 48 1237

> 5050 DATA D9,85,00,00,06,43,
4F ,4C,4F,52,53,D9 1234

> 5060 DATA 9A,06,00¢,34,06,00,
12,06,00,36,06,00 !129

> 5070 DATA 12,B6,80,C2,40,006,
$0,12,B2,80,C2,BF !218

> 5080 DATA 06,00,12,2A0,E0,39,
00,01.01,D09,76,BE 1202

> 5090 DATA 80,D4,A0,06,00,12,
39,00,01.,01,D9,77 1175

> 5100 DATA BE,80,D4,EQ,06,00,
12,0F,79,0F,74,B6 {000

VW oW VWV WV

b

PAGE 12

THE SMART PROGRAMMER




®

EXPLORER

YOUR WINDOW INTO THE 99/4A

Gaze into the inner workings of your 99/4A with EXPLORER. Just load it and
with a single keystroke EXPLORER will start up where your console, application
program or module left off, but YOU will be in FULL CONTROL! Watch EXPLORER's
screens, with dynamic Information, or flip to the ACTUAL Program Screen running
in slower motion under YOUR CONTROL. Track, Display, Edit and Search VDP
Memory, CPU Memory or GROM/GRAM Memory. Set breakpoints for pausing execution
at ROM, RAM, VDP, GROM or GRAM addresses. EXPLORER displays the current
Registers, GPL Status and VDP Registers. And, each machine instruction is
disassembled. EXPLORER's Options Screen provides arithmetic and logical
operations in Decimal, Hex and Binary.

Sounds exciting, right? Well, the best part is that EXPLORER is now better than
ever. EXPLORER now loads through standard module loaders, allowing you to load
the program from RAMdisk, floppy disk or hard disk. And, a special transparent
loader 18 provided for quick loading from XB.

System requirements: 99/4A with Disk System, Memory Expansion and a standard
loading environment such as Extended BASIC,
Editor/Assembler, Mini Memory or Gram Kracker™

Only $24.96

™ Gram Kracker is a Trademark of MG

WORDS WERE JUST DATA UNTIL...

STRKRING MASTFER

A POWERFUL STRING MANIPULATION PACKAGE FOR THE 99/4A

STRING MASTER provides the string functions Extended BASIC users have always
wanted. Most of STRING MASTER's functions work on string variables or an entire
string array. TRIM or LTRIM unwanted leading or trailing characters. CONCTL or
CONCTR concatenates any combination of string variables and string arrays.
That's right, concatenate the elements of one array to the elements of another
array in a single Extended BASIC statement! POKE and PEEK string variables to
and from VDP or CPU memory. SEARCH a string variable or string array for a

- word or phrase. Many other features!

Avallable June, 1987
System Requirements: 99/4A, Disk System, Memory Expansion, Extended BASIC

Only $19.96

Bytemaster Computer Services
171 Mustang Street
Sulphur, LA 796863

Please add $2.¢0 shipping and haadling per software order
Payments accepted by personal check or money order.
Foreign payments by International money order, please.



Asgard Software

is proud to present a
piece of the future:

The first two commercial programs
written in ¢99 for the 99/4A —

The fastest language for the 99/4A
outside of assembly!

High Gravity

B Is High Gravity an educational game or a game

™

program that’s educational? Who knows which, and
it really doesnt matter considering that this
incredible simulation written in <99 (a language
faster than Forth and easier to use than BASIC) is
one of the best programs ever written for the 99/4A
in any language!

High Gravity, by Tom Wible {(a professional
programmer), puts you in command of a relief
spacecraft sent to aid a space station trapped in a
strange solar system. The planets in the system are
thick as flies, and prevent anyone from leaving or
entering the solar system to rescue the unfortunate
people in the space station. Your mission is to shoot
a capsule of supplies to the stranded astronauts, and
you only have ten capsules of supplies on hand.
Worse yet, you can't guide the capsules through
since they have no engines. Fantastic graphics make
this game colorful as well as exciting.

28 High Gravity is also an extremely accurate

simulation of the Laws of Gravity and the motion
of projectiles. The fact that this program is a
sophisticated lesson on physics is not apparant —
it's a really fun game that gives hours of enjoyment
to children AND adults. However, for the
educational user all varibles of the program may
be pre-set; including the initial velocity, the density,
size, and spacing of the planets, and much more.
High Gravity will even let you save and load
interesting flight paths of projectiles for later study
— a library of such paths is included with the
program, .

In short, High Gravity is a sophisticated simulation
of space flight that is both entertaining and
educational. It is an ideal teacher for the physics
student (of all levels), and an ideal game for all ages.

. e ' - T -:.-

+ Fad =
3 + F+
d N, +
+ +
F+ + s s
T X ]
Computer o * *
+ n + =
+ ' h o , v f ¥ e
+
. erse|,
B, LT + o
+ Y, + 4 -
+
s & :
+ , +
) x B
eflovare : i
+ -+
+
+
the Hean :
+
+
e

T e e s :;5-'+'.:¢~';:::5;:+::£-:::-:-:-:-:-:-'-:-5-
O e
b M, z

"

Lty =
Tar e r':,::' ¥ '1'5_.' [ ]
[ ]
e ey 5

It is simple to use and fully documented. It requires
the Editor/Assembler module, 32 K and a disk
system, Available for only $14.95.

Total Filer

&%

A

[2O. Box 10306
Rockville, MD 20850

Do you have disks and disks full of TI-Writer text
tiles cluttering up your disk library? Do you often
catalog one of your TI-Writer disks and tind tiles
that yvou didn’t know you had, or even know what
they are? Well then, we would like to introduce to
you the greatest tool for user's of TI-Writer since
the spelling checker; the first and only database
designed for text — Total Filer by Warren Agee,
Some database programs say they will let you
organize anything, but nothing matches the speed,
power and flexibility of a program exclusively
designed to let you organize text when it comes to
organizing your T1-Writer files. Total Filer is a very
easy-to-use solution for a complex problem. It is
written in €99, an incredibly tast language for the
99/4A, and was designed specitically for handling
text.

With Total Filer you can easily create a file-by-file
reference of all your text files. Your index can
include multiple keyword references for quick
searches, as well as several layers of keywords for
in-depth descriptions. For searching, Total Filer even
includes utilities tor creating a master listing of the
index, as well as letting you compress it to save
space on your data disks. Total Filer is truly a tool
for the “power user.”

Total Filer is also very tlexible, allowing users to
do everything from configure the program for any
hardware combination to setting the names of the
prompts for different functions. Total Fler is the
penultimate tool for organizing text of any sort,
from magazine articles to computer files, yet it is
easy to use and fully documented. It requires the
Editor/ Assembler module, 32K and a disk system.
Available for only $24.95.

sgard Software

(301) 345-2492
“Serving the Tl Community”

Note: ¢99 compiler for the 99-4A by Clint Pulley




5110 DATA OF,12,00,06,A9,D6,
$6,D9,92,93,4A,BD !004

5120 DATA 00,4A,.E3,00,00,0C,
06,D9,92,93,4A,E3 227

5130 DATA 4A,00,08,B4,00, 44,
BC,A8,00,00,35,00 !202

5149 DATA 1F,A8,01,A8,00,0F,
79,06,00,12 1251

30070 SUB HEX_DEC(HS,D):: D=
@ :: L=LEN(HS):: FOR I=1 TO
I, :: P=POS("012345678SABCDEF
", SEGS{HS,I,1),1)~-1 D=D+P
*16" (L-I):: NEXT I :: SUBEND

t185

B} If you want to use WRTGRM {(and not have
to manually move bytes from the GK
Editor), omit lines 168 through 1606 above
and add these lines to the above program:

10¢ CALL INIT :: CALL LOADI("

DSK1.WRTGRM/0") :: DISPLAY AT
{7,1)ERA“_. ALL:"NEXT PROMPT

IN ABOUT 70 SECONDS"™
1995

119 READ AS,A,BS$,B,CS$,C,DS,D
:: CALL HEX_DEC M(AS,Al)::

CALL HEX_DEC_M(B$,Bl1l):: CALL
HEX_ _DEC M{(CS,Cl):: CALL HEX

_DEC_M{(DS$S,D1)!184 -

120 CALL PREPWRT(A,Wl,W1S)!2

32

130 CALL PREPWRT(B,W2,W25)!2

35

140 CALL PREPWRT{(C,W3,W38)1!2

38

150 CALL PREPWRT{(D,W4,W4s$)!2

41

160 IF (W14+W2+W3+W4d)<>19018

THEN PRINT "DATA INTEGRITY E

RROR" :: END 1128

17@ DISPLAY AT(15,1)ERASE AL

L:"DO YOU HAVE A MYARC EXTEN

DEDBASIC PROM INSTALLED?":"Y
" 1991

189® ACCEPT AT(17,1)BEEP VALI

DATE{"YN")SIZE(-1):R$S 1232

190 IF RS="Y" THEN CALL LINK
("WRTGRM" ,B1,W28,D1,W4S)ELSE
CALL LINK("WRTGRM" ,Al,W1lS.B

1,W25,C1,W3S,D1,W4s8)!158

200 END 1139

1000 DATA 6372,3,D789,2,D8FB
,25,D914,177 1222

30080 SUB HEX_DEC M(HS,D)::

D=0 :: L=LEN(HS):: FOR I=1 T

O L :: P=POS{"0123456789ABCD

EF" ,SEGS{(HS,I,1),1)-1 :: D=D

+P*16”" (L-I):: NEXT I 061

30090 IF D>32767 THEN D=D-65

December 1986
THE SMART PROGRAMMER

536 1236
> 30100 SUBEND !1¢68

> 30110 SUB PREPWRT(A,W1l,W1S$)!
236

> 30120 FOR I=1 TO A :: READ 2
S :: CALL HEX DEC(ZS$,Z):: Wi
=W1l+Z :: W1S=W1S&CHRS(Z):: N
EXT I SUBEND !239

e =
ra #

3) Run the program. If "DATA INTEGRITY ERROR"
is printed on your screen, then the checksum
total is in error, indicating you have keyed
the DATA and/or program in improperly. If you
used the WRTGRM method in 2B above, do not
perform the actions in steps 4 through 9,
though you may want to read step 6.

4) Switch to the Gram Kracker™ editor. Switch
write protect off. Press <FCTN 1> until you
are in the G(RAM) window.

5) This is where things get a bit sticky. If
you have a MYARC XB PROM installed, skip to
Step 8. Steps 6 and 7 cause a return to the
Power—up Title Screen if the W/P switch on the
GK is disabled. However, the MYARC PROM has
power-up pricrity and may load data from the
PROM if the W/P switch is disabled (when this
happens, you'll see "128K 0.8." on your Main
Menu). Checking for the position of the W/P
switch through Mike's routine is very useful,
as XB will go "out to lunch" if W/P is disabled
because XB has 2 banks of ROM that are banked
by doing a pseudo—write to ROM, so that if an
actual write is done, XB will not bank and will
be left in the wrong bank of ROM for the
current activity. MYARC XB owners will have to
continue to visually inspect the W/P switch.
Note that WRTGRM is not affected by the MYARC
PROM because there is no power—up during the
execution of WRTGRM.

6) Set the following wvalues for a8 MOVE:

START FINISH DEST
5208 520A g6372

Press <FCTN 2).
7) Set the following wvalues for a MOVE:

START FINISH DEST
520D 5225 gD8FB

Press <FCTN 2>.
8) Set the following values for a MOVE:

START FINISH DEST
520B 520C gD789

PAGE 13



Press <{FCTN 2>.

Note: If you have added your own CALL's,
change DEST gD789 to the address of the end of
your link table for subprogram CALL's, which
can be determined by using Subprogram Finder.

9) Set the following values for a MOVE:

START FINISH DEST
5226 523D6 gD914

Press <FCTN 2>.

18) If you have the MYARC XB PROM, be
absolutely certain your W/P switch is on W/P!

11) Save the revised module to disk, using a
filename different from the previous XB
filename,

12) Run Mike Dodd's Subprogram Finder program
if you wish. .

13) Test the new CALL's.

TECHNICAL INFORMATION:

CALL BEEP and CALL HONK operate by using
GPL routines >34 and >36, respectively.

CALL STSPRT and CALL GOSPRT operate by

setting and resetting, respectively, bit 1 at
»83C2.

CALL SCROFF and CALL SCRON operate by

setting and resetting, respectively, bit 1 of
VDP Register 1.

Important GRAM addresses:

GRAM &

>D861 (>30,>88). This is the new end of
the link tabie used by subprogram CALL's in XB.

There are now 1,571 free bytes of memory
In GRAM 6 from >D9CS5 through >DFE7.

OCops!?

Well, due to a goof by the Editor, last
issue's GK Menu article didn't cover the new
revisions for the alpha menu. Here are Tom
Freeman's revisions:

1} Search for BE 58 30 and change the 3¢ to 44.
Your search should locate at about g@275.

December 1986

2) Search for A6 75 31 and change the 31 to 41.
Your search should locate at about g@2FC.

3) Save the revised GRAM 4.

An additional note is that if you are
using Gram Packer to create menu's, you should
plan the number of menu items to be 16 minus
the maximum number of menu options of a loaded
module. For instance, if the Navarone Database
Manager 1s to be loaded, it will generate 4
menu options, so there should be no more than
12 items on the original main menu.

The 8@SYLK program in Super 99 Monthly
(and on the Best of Super 99 Monthly diskettes)
used an early version of the R_A W assembly
program, so it may not work with some (not
all) MYARC disk controllers. XXB/1-2, as
appeared in the Genial TRAVelIER diskazine,
includes an improved R_A_W routine and should
alleviate any problems experienced with the
8@SYLK program. The R_A_W modification
involved changing the location of a buffer in VDP.

BasicSort version 2
A special report by Richard M. Mitchell

BasicSort is an excellent program. The
program will sort numerics, strings or string
segments and will perform up to 16 levels of
sorts with a single program statement! BasicSort
is written in Assembly, so it is extremely fast
and is ideal for use with your BASIC or Extended
BASIC programs. The documentation is
thorough and well-written, on an intermediate
level. A Dbetter bargain is not available in
computerdom, as BasicSort is only $15 plus $3
shipping and handling from Andreas L.
Dessoff, 1841 Church Hill Road, Fairfield,
CT @6432.

E/ A EFnhancements

Code by Cralg Miller
Article by Richard M. Mitchell

Craig Miller has used DISKASSEMBLER™ to
disassemble the EDIT1 file of the Editor/
Assembler and has come up with some useful
modifications. The instructions that follow
are for implementation for GK Utility I E/A
version, but may be modifiable for other
implementations of E/A.

PAGE 14

THE SMART PROGRAMMER

)

0 . .= 0 - - . L] o - .'_
- FERPCEPR U PP U W AL L b - =



L,

1) Using the GK Memory Editor, search for:

6 FF 00 03

I found the above at g7AA2., Change it to:

3 FF 00 03

This is part of the delay before a key goes
into auto-repeat. You can also change the
83 to any number from @1 through @F to
make the cursor blink faster (#1) or slower
(6F) (1 like @5).

2) Search for:

PA 00 06 00

I found this at g7BB4. Change it to:

20 01 06 00
This is the delay loop between keystrokes.

With the above changes in place you will
notice that the cursor moves quite a bit faster
and goes into auto-repeat quite a bit faster.

After making the changes, you'll need to
follow the instructions on page 22 of the GK

Utllity ] manual to change the checksum for
your new E/A,

Some other interesting addresses (based on
the files I'm using) for possible changes are:

g981C—-g9826
g9El1®

End of File marker.
Command Line teXxt.

You may also want to search for the default
Tabs (they're offset by minus one).

On—line Conference

On May 16, Los Angeles (USA), Ottawsa
(Canada) and Derby (England) will hold 99/4A
Fairs. The 3 shows will be linked via an
on—-line conference on GEnie™. The event is
set for 18 AM in LA, 1 PM in Ottawa and 6 PM
in Derby. Figure out what time it will be
in your area and you can join in!

Triton XB

Triton Products Company has announced
Super Extended BASIC, which adds many new
features to XB. Included are the XB
enhancements that appeared in MG's GK Utility I

December 1986

package (see The Smart Programmer, July 1986
for features), the code of Mike Dodd that
appears in this issue, plus CALL ALL(Xx),
fills screen with a character; CALL CHIMES,
chimes sound; CALL GOSUB(num var), allows
numeric varlable; CALL GOTO(num var), allows
numeric variable; CALL KEYS{("keylist",num
var), allows valid key list;: CALL ALOCK(x),
checks alpha lock key; CALL SHIFT(X), checks
shift key; CALL CTRL(x), checks control key:
CALL FCTN(x), checks function key. Two
other enhancements were pending at press
time. CALL VERSION will return 126 instead
of the previous 114 {(or the 10¢ of the
original XB). The package is 1080%
compatible with all TI XB programs. The new
package is priced at $59.956 in the Spring
Triton catalog.

In other news from Triton, the firm has
now shipped its Triton Turbo XT computer (see
The Smart Programmer, November, 1986), a PC
clone that can interface with the 99/4A
keyboard or a standard XT keyboard.

"INnNverted Mouse':
Reprise

by Richard M. Mitchell

A number of you have asked how to add a
keyboard scan (for the keys "1" through "4")
to the "Mouse" XB program that appeared in
the January 1985 issue of Super 99 Monthly
(and the S99M disks). Simply relocate the

sprite to a position next to the appropriate
number, as follows:

21049 CALL KEY(2,K1,S):: CAL
L KEY(1,K,S):: IF K1=18 OR K
=18 THEN 21046 !150

21044 IF K=19 THEN K=K-13 EL
SE IF K<7 OR K>9 THEN 210290
1114

21045 X=(K-5)*16e+9 ::
OCATE(#1,X,40) {058
21046 CALL POSITION(#1.,X,Y)!
093

CALL L

For those of you who haven't caught on,
an "inverted mouse" is a joystick! Ha!

For Sale: Extra Equipment. 99/4A, PEB,
TI Disk Controller, CorComp RS-232,
TI SS/SD drive, TI 32K, TI XB, E/A
with manual. Good condition. 82448,
FOB Sulphur, LA. Phone (318) 527-9@35.

PAGE 16

THE SMART PROGRAMMER



BYTEMASTER ORDER FORM
NAME

ADD ESS

The Smart Programmer

SP1l $18.060 U.S. AND CANADA FIRST CLASS
SP2 $15.00 U.S. THIRD CLASS (no back issues) CITY

]
|
I =
! I
I I
I I
‘ |
: SP3 $20.00 FOREIGN SURFACE (no back issues) |
| sp4 §32.00 FOREIGN AIRMAIL STA | |
| SP5A-G $ 1.75 U.S. JUNE ~ DEC 1986, ea. |
| SP6A-G § 2.75 FOREIGN JUNE - DEC 1986, ea. ZIP CODE | |
| SPTA-G $ 2.50 U.S. JAN 84-AUG 84,photostats,ea. |
| SP8A-G $§ 3.50 FOREIGN JAN 84 - AUG 84, ea. COUNTRY :
I
| Super 99 Monthly ! i
I ;
] SM1 $18.00 Complete set of 18 back issues Pay |
)] SM2A-R S 1,00 Back issues - ea. (U.S. Third Class) he |
| SM3A-R $ 1.50 Back issues - ea. {(Canada and U.S. an |
1 First Class) for |
| SM6A-R $ 2.50 Back issues - ea. (Foreign Air Mail) the
] SM4 $12.20 Programs on disk (non-FORTH) Res
| SM5 $15.900 Super 99 Handicapper (thoroughbreds) Syst
I (regq. XB, 32K, Disk, Printer) oY
| Deal
| ITEM # QTY EACH AMOUNT New Renewal invi
! - +-+ +-+ dvai
I _ P b orde
| +-—+ +-+ :
I
I
|

Louisiana residents must add 4% sales tax. Calcasieu 1*.

The Smart Programmer is published monthly by Bytemaster

Services, 171 Mustang Street, Sulphur, LA 70663. Allico
received will be considered unconditionally assigned for publ
copyright and subject to editing and comments by thejiEdikor jof
Smart Programmer. Each contribution to this issue agd
whole COPYRIGHT 1986 by Bytemaster Computer Services. Alliri
Copying done for other than personal archival or internal refefence use
without the permission of Bytemaster Computer Services is prnh bltﬁﬂ#‘“

Bytemaster Computer Services assumes no liability for errn s 1in f%;ﬁl E‘
Editor Richard M. Mitchell IL / —r ’S:?
Staff Craig Miller Steven J. Szymk1&w1cz, E;
Charles M. Robertson Barry A. Traver -
Mariusz Stanczak D.C. Warren . i . it
o ot e . o S S e S o i S P B S B S A £ T e e e e o e £ e e 0 e 7 .+ e e 2 e e e e o .._.'.:-...i_......_"'ﬁs___ i
DISKASSEMBLER and Gram Kracker are trademarks of Millers Griph\qs - ﬂ;
________________________________________________________ +'_""-_“i‘-“_"“"_fl .

" Bytemaster Computer Services
171 Mustang Street

Sulphur, LA 70663-6724 FIRST CLASS MA".

U.S.A.

S ——— . .

POSTMASTER: ADDRESS CORRECTION REQUESTED
RUSH —— TIME DATED MATERIAL

.+““'_——-——H————---— +- +——“—-_-—_—-———“

December 1986 {' __.. :
THE SMART PROGRAMMER f s : :




