Volume 2 Issue 9

$1.75

FEBRUARY 1987

"Serving 99'ers Since 1984"

THE SMART

PROGRAMMER

ANNOUNCEMENTS

by Richard M. Mitchell

Bytemaster has many new plans for 1988.

First, I'm pleased to announce the
MASTER series of software. The first
product, STRING MASTER, was released at the
1987 TI-Faire in Chicago. At least two more
products are planned for the series in '88.
The new products in the MASTER series will
be developed by independent programmers for
release under the Bytemaster label.
Bytemaster will provide input for program
design, but will play a minimal role in
actual development. Some of the products in
the series will run under the STRING MASTER
environment, while others will be
stand—alone packages with options Included
for interfacing to other MASTER series
packages. Some of the MASTER series
products will be for general usage, while
others will be geared toward programmers.

I'm really excited about what's in the
works!

Also, Bytemaster is now a dealer for a
number of products and will expand into
other lines as interest merits. In this
issue, you will find order information for
products from Genial Computerware and Disk
Only Software. And, of course, Bytemaster
products are listed in the catalog.

Effective immediately, all orders will
be processed within 16 days of receipt.
Thanks to a new order entry system, orders
received in the past few weeks have been
going out in 1 to 5 days.

February 1987

> B X MILILIN K :
GET STRING SPACE

by Richard M. Mitchell

A lot of readers have been asking about
using XMLLNK's. In the December '86 issue,
Tom Freeman showed how to use the XMLLNK for
SCROLL. In the January '87 issue, I showed
an example using CFI, convert floating point
to integer. Unfortunately, I must have been
asleep while writing that article, as 1
omitted DEF START and END and improperly
used CI, the occurrences of which should be
changed to CLR R2, C *R3,R2 and LI R2.,>28,
C *"R3,R2, respectively. Anyway, in this
article we'll look at the XB GET STRING
SPACE (note that in BASIC, GET STRING SPACE
is accessed with GPLLNK).

GET STRING SPACE is accessed by
EQUating GETSTR to >92 (E/A manual, p. 4186),
EQUating XMLLNK to >2018, loading the word
>836C and >83¢D with the number of bytes to
assign and then coding as follows:

BLWP @XMLLNK
DATA GETSTR

Well, the above is as defined in the E/A
manual. Unfortunately, the E/A manual (yes,
again!) does not tell the entire story. TI
apparently assumed that the word "string"”
would be interpreted as used elsewhere, as
up to 255 characters. Many users assumed
that the routine was word—-oriented since a
word was to be loaded with the number of
bytes to assign. Well, it's not! The
routine is byte-oriented and therefore only
does error <hecking for up to 256 bytes!
Attempts to assign more than 255 bytes will
result in a more—or-less permanent

PAGE 1

THE SMART PROGRAMMER

assignment. Such assignments are not fully
covered by error checking and can result in
a VDP software crash! Beautiful colors, but
nothing useful!

Also, do note that a garbage collection
would likely affect an assigned space, so |
suggest using an assigned space immediately.
Perhaps garbage collections might be an
interesting topic for a future article.

If the above cautions are observed,
then GET STRING SPACE can be used as
described on page 253 of the E/A manual, for
purposes -such as assuring an assigned area
for a PAB or PAB data buffer. The assigned
space s pointed to by the word at >83iC.

SHOW NEWS
by Richard M. Mitchell

Chicagﬂ Hightlights

Chicago was once again a successful
meeting ground for 99'ers in '87. Below
are descriptions of some of the new items
not mentioned in previous issues.

Ryte Data's Bruce Ryan was showing a
new expansion box, the "“99AT", that he has
been busy designing. The box has 5 card
slots and has a standard power supply that
is rated at about twice that of a TI box
(yes, full power drives!). And, Bruce says
he can accomodate requests for other power
supply ratings. The bhox accomodates up to 4
internal drives., It really looks nice.
Contact Ryte Data, 21¢ Mountain Street,
Haliburton, Ontario, Canada KO&M 1S4@.

Steve Karasek, 855 Diversey Dr., St.
Louis, MO 63126, offered SUPERBASIC, 3
program featuring DOS-type commands, XB
editing functions, and 32 programmable keys.

Genial Computerware's J. Peter Hoddie
introduced new software from his firm and
was again a well-received featured speaker.
Mike Dodd's PC-Transfer (Genial), listed in
the Bytemaster catalog in this issue, was
one of the most popular new software
releases of the show.

Others participating in Chicago
included Asgard Software; B & D Computer
Supplies; Bud Mills Services; Bytemaster
Computer Services; C & G Drives: Central
OChio 99ers; Channel 99 Users' Group; Chicago

February 1987

Area TI-99/4A U.G.; Chicago Bl128 Users'
Group; Competition Computer Products;
Compuserve/TI~FORUM; Corporate Disk Company;

DataBioTics; Data Systems; DIJIT Systems;
Disk Movers; Diskmasters; Fox Valley Users'
Group; Boston Computer Society; GEnie; Great

Lakes Software; Horizon Computer Limited:
Hunter Electronics; Inscebot; L. L. Conner
Enterprise; MYARC, Inc.; Queen Anne Computer
Shoppe; Rave 99 Co.: Service Solutions,
Inc.; T.A.P.E., LTD; Texaments; Tomputer
Software; Trio + Software; and Will County
Users' Group. And, there were at least 5
99'ers from Europe attending!

Show Calendar

Tl XPO 88, Palace Station Hotel & Casino,
Las Vegas, NV. February 27 & 28, 1988.
Speakers: Regena, Jack Riley (MYARC).
Contact John Martin (after 4 pm PST)
(7062) 647-1062, Bob Bieber (742)
878-3167, BBS (300/1200 bps, 24 hrs)
(702) 648-1247. Tickets: Advance, $3,
Door, 85, Hotel guests 81 discount.

New England Fayuh, Diamond Middle School,
LexXington, MA. April 9, 1988. Contact
Walt Howe at (617) 692-27@2 or on GEnie
WALT.HOWE or on CIS 76277,35380 or on
Source TI38564. Or, write Boston Computer
Soclety, TI-99/4A UG, One Center Plaza,
Boston, MA $2148.

TICOFF, Roselle Park High School, Roselle

Park, NJ. March 26, 1988.

Canadian TI FEST, Merivale High School,
Nepean, Ontario (near Ottawa), March 5,
1988. Contact Jane LaFlamme, (613)

837-1719 (home) or (613) 745-2225 (work).

96490 PROGRAMMING
NOTES

Copyright 1987 J. Peter Hoddie

Now that the MYARC 9640 computer has
finally arrived on the scene, there are many
programming issues which must be addressed.
There are some issues of compatibility that
software authors must consider so that their
programs can work on both the 99/4A and the
9640. There is also a whole new set of
rules that programmers must concern
themselves with when writing software for
the 9648. This discussion will primarily
be in reference to the 99/4A mode of the
9640, as at this time most development is

PAGE 2

THE SMART PROGRAMMER

a

still taking place in 99/4A mode. Future
articles will be presented on the details of
the 9640's native mode, which is
considerably less restricting than 99/4A
mode.

CPU PAGING AND MEMORY USAGE

One of the most often asked questions
about the 96406 s, "It has 512K of CPU
memory, but is it accessed?" The answer is
yes, through a paging scheme that is
significantly more advanced than the methods
used for RAM disks and the like on the
99/4A. The 9995 has a 64K address space
just like the 9906, so to access more memory
some sort of paging is required. MYARC
chose to do the paging in 8K blocks because
the architecture of the 99/4A was
essentially made up of separate 8K blocks.
Thus, there are 8 page spaces on the 9640,
numbered from @ to 7. The 9648 is capable
of addressing up to 2 megabytes of memory
(2048K of memory). If this 2 megs of
available memory is divided into 8K pages,
there are a total of 256 pages available.
Conveniently enough, values from ¢ to 255
can be held in a single byte of memory. The
9649 has 8 page registers, each one byte

long. Each register controls a separate 8K
page. By placing a page number into a map
register, that particular page of memory

will be mapped into that page in the 64K
address space. Figure 1 is a listing of
what memory space is controlled by each
map register. The map registers can be

Register number First Address

End Address

The map registers may also be accessed with
the MOV (move word) instruction, so that the
entire map can be saved or loaded in 4
instructions.

Pages >@8 to >3F are contained on the
9640 card itself. This accounts for the
512K of CPU memory that is available. In
99/4A mode, page >03 must be mapped in at

location >C@P@® (map register 6) for
GROM/GRAM and sound to be present. If a
page other than >@3 is present, the 964¢

will essentially ignore any memory mapped
[/O0 to the GROM and sound ports. Also, in
99/4A mode the map register for the >6000
memory space (register 3) can be changed;

however, this will have nho effect, since
this page is locked as >36 by the gate
array. If 2 banks of cartridge RAM are in

use (such as in TI Extended BASIC)., the
second page is >37. Because the 9640
emulates GROM/GRAM using CPU memory, 8 pages
of memory are also reserved for this
purpose. The pages >38 to >3F are the GROM
pages. These pages are offset by one byte.
For example, GROM byte @ is found at.
location >@@81 on page >38 and GROM byte
>FFFF is found at location >0086 on page
>38.

On the 9640 computer, there is also 32K
of high speed, zero wait-state CPU memory.
This is divided into 4 pages, numbered >EC,
>ED, >EE, and >EF. If one or more of these
pages is available, they should be used for
time-critical portions of code, since they

Map Register Address

0 >0000 >1FFF >8000
1 >2000 > 3FFF >8001
| 2 >4000 >5FFF >8002
| 3 >6000 >7FFF >8003
5 4 >8000 >SFFF >8004
; 5 >A000 >BFFF >8005
i 6 >C000 >DFFF >8006
7 >EQ00 >FFFF >8007

read as well as written to and bhehave as
regular memory locations, thanks to the
magic of the 964@'s gate array. For
example, to put page >45 in the >Epg¢d

space, the assembly programmer could use
the following lines:

LT RO, >4500
MOVB RO,@>800

February 1987

Figure 1

are noticebly faster than the regular pages.
The EPROM that boots the 9648 (including the
swan picture) is 16K long, occupying 2
pages, >F8 and >F9. If the 9644 is running
with a modified MYARC 512K card, it will
appear as pages >80 to >BF.

There are 8 more special pages in the
mapper to be considered. These pages are
>B8 to >BF, and when they are accessed the

PAGE 3

THE SMART PROGRAMMER

memory cycles are passed to the rest of
the expansion box. At present, the only
really useful application of this is to

access memory mapped I/0 in the DSR space.
This is done using page >BA (the third bus
page, corresponding to addresses >40¢08 to
>6FFF). For example, if page >BA was placed
in map register 2 (the >4¢4¢ page) and the
TI RS232 card was turned on {(using a LI
R12,>139¢ followed by a SBO @ instruction) a
MOVB instruction to address >5808¢ would
write a byte to the parallel port. However,
if page >BA was placed in map register @,
then writing to address >1888 would
accomplish the same. Since the 9648 has all
its own DSR's (that is, it ignores the ROM's
in peripherals), a page other than >BA is
mapped in the >4960 space. This means that
print spooler software that directly
accesses the PIO register (for the MYARC and
TI RS232 cards) will no longer work. This
can be easily fixed by having these programs
put page >BA in the appropriate map register
before writing to the parallel port.
However, the program must be careful to
restore the proper page when it is finished
or the system may not behave correctly when
an interrupt occurs, a peripheral access is
attempted, or a software reset occurs.

One difference between the 9648 and the
99/4A is that the 9640 has RAM from >8628 to
>82FF whereas the 99/4A has shadows of the
>830¢ to >83FF memory in that area. A few

programmers accessed the >83¢00 page through
one of its shadows at >800¢, >8180, or >82(0
on the 99/4A. Most of these programs will
not run on the 964@. However, when patching
99/4A software on the 964@, having an extra
700 bytes or so of space that didn't exist
on the 99/4A can be very useful. Another
related difference is that on the 964¢ the
RAM at >8308 is not any faster then the rest
of memory. On the 9649 the fast RAM is from
>FBp8 to >F@FF. When writing assembly code
for the 9649, if at all possible put the
registers at >F@@P for maximum speed. There
is one problem when using the >F@@# to >F@FF
space, and that relates to the 99956. The
fast memory at >F@@0 is actually in the 9995
microprocessor, which means that it can
never be paged out. If the >E@@@ space is
changed using the map register, the bytes
from >F060 to >F@FF will remain the same,
However, there is one more catch. If a
write is performed to memory in the >F@00 to
>FOFF range, the memory in the page behind
it will be trashed. The reasons for this
have to do with memory speed. However, the
point is that it is best not to change the

February 1987

>E0P@® space page. For example, in My-Word
the >E@@8 space is used primarily for the
code which is responsible for switching

between the Editor, Formatter, Catalog, and
Help portions of the program, so the >E@@d9
page itself never changes.

VDP PAGING AND MEMORY USAGE

The 9649 contains 128K of video memory,
whereas the 99/4A contains only 16K. Those
familiar with how routines like VSBW and
VMBR actually work (rather than just how to
use them) will quickly recognize that some
sort of VDP paging must exist in order to
access all 128K of memory. However, VDP
paging is handled quite differently from CPU
paging. The 128K of video memory is divided
into 8 pages of 186K. There is one VDP page
register, and it is VDP register 14. To
select a VDP page, the page number must be
set In this register. In the example below
the VWTR (VDP Write to Register) routine is
used to select page 3:

L1 RO ,>0EB3
BLWP @VWTR

On the 99/4A, when VDP address >3FFF
was accessed the VDP address automatically
wrapped back to >80809. On the 9648, the
situation 1is the same when working in any
graphics mode that was present on the 99/4A.
However, when working in a 9640 graphics
mode, the page register will increment by 1,
and the address will increment to >000¢ on
the next page. Thus, when working in a 9644
graphics mode it is possible to read/write
up to 128K of data without resetting the VDP
address.

To display screens stored on VDP pages
other than zero, information must be passed
to the various VDP registers to specify
which pages. Such information is beyond the
scope of this article,. It is covered in the
9938 manual, which is available from Yamaha
(with a little luck) or from MYARC for $240.
Those planning on doing any serious work for
the 9649 should obtain a copy of this manual
which describes all the capabilities of the
9938 graphics chip. Perhaps a future series
of articles will explore this chip in
detail.

OTHER CONSIDERATIONS

Because the 984% has such a radically
improved kevboard from the 99/4A, the
console KSCAN (keyboard scanning} routine

PAGE 4

THE SMART PROGRAMMER

2 B

was completely changed. From a functional
perspective, the routine in the 964@ is
identical to that in the 99/4A; however, in
terms of how they work, nothing is the same.
This means that any 99/4A program that
scanned the keyboard without using the
console KSCAN routine will not respond to
keyboard input on the 9640. In general,
these programs fall into 2 catagories:
(1) terminal emulators which couldn't use
the console KSCAN because it was too
slow; (2) interrupt routines which would
check to see if a weird key combination
such as Control-Shift-something or
Function-Shift-whatever was pressed to
invoke special commands. If the only reason
for not using the console KSCAN routine was
for speed, then programs can be easily
converted by the author to run on the 9640,
The program simply has to check to see if it
1s running on a 964% (RAM at >0@0¢ is a good
check}) and if so, use the console KSCAN. If
the reason for avoiding the console KSCAN
was for weird key press combinations, then

more drastic changes may be required by the
author. -

The 99/4A emulator for the 9640 is
capable of running at 5 speeds, with speed 5
being the fastest. The only factor that
keeps many 99/4A programs from running at
speed 5 is related to VDP access. TI stated
that in setting the VDP read or write
address, that it was necessary to wait after
writing each byte of the address. On the
98/4A, because of the many wait states
inserted by the computer, there was really
no need for this. On the 964¢, running at
faster speeds, these delays are required.
In general, it has been found that using a
SWPB (swap byte) instruction after each byte
will work. A NOP {(no-operation) or RT
(return} is generally too fast. One Kknown
offender is the GPL/DSRLNK published in The
Smart Programmer by Craig Miller and Doug
Warren. In a related note, TI also said
that is was necessary to insert delays when
accessing GROM/GRAM. This is not so on the
9640 because GROM/GRAM is handled by the
gate array without any delays. (Editor:
The GPL/DSRLNK routine was optimized for the
99/4A, conforming with TI's practices rather
than TI's suggestions. RM)

Those familiar with the MYARC hard disk
personality card are probably aware that it
is capable of transferring data directly to
CPU memory rather then passing all data
through VDP memory. On the 964¢, this
capability has been expanded to include all

February 1987

DSR calls. Note that the PAB must still
reside in VDP memory, regardless of where the
data is passed. To indicate that data is to
be transferred through CPU memory, set the 4
bit of the high nibble of the op-code when
doing a DSRLNK. For example, to read to CPU
memory, use a read opcode of >42 instead of
>02.

When programming for the 9938 video
chip, be careful to consider unused bits in
the VDP registers. Some bits that were not
used on the 9918A are used on the 9938
(rumor has it that some versions of Forth
set certain unused VDP bits to 1 that the
9640 expects to be @, which can produce
weird video displays). For example, the
high bit of VDP register 1 tells the 9918A
whether 4K or 16K of video memory is
available. This bit is not used on the
9938. Setting this bit to § when writing on
the 964¢ will cause the program to bomb when
runring a 99/4A. When working in the new
video modes (like 8¢ columns), it is
important toc set all the bits to 1 that the
manual specifies, even if it doesn't make
sense, Failing to set certain bits can
produce some fascinating results.

o o i e P

5 th 1 — = FPFPORTH

by Mariusz Stanczak

Last time we met, I promised to
introduce you to the brave world of
"artificial intelligence" (AI), on the road
to which goal we will embark in this
installment of 5t 1~ =FORTH, in addition to
having a mini review of a product that was
"dropped at my door" for no other apparent
reason than to be mentioned in this column,
and, at least, a mention it certainly
deserves. (Editor: Due to the length and
significance of this article, the final installment
of PSEUDO83 has been postponed. RM)

The product is a wonderful collection
of functionality and innovation executed
with the best of tastes, and it is
collectively called Super Space. It is so
feature~packed that I'm having a problem
with where to start, but a reasonable way,
if not the only possible given the number of
products included in the package, would be
to "divide and conquer", so that's what 'l
try, my only hesjitation being that the total
of the package is much greater than the sum
of the parts, but I hope that this will
become apparent as we go along.

PAGE 5

THE SMART PROGRAMMER

First of all, Super Space includes
the hardware part, which consists of a
standard cartridge module. Give away your
E/A module, as that's included in the Super
Space, but there's more. In addition to the
standard TI E/A GROM, there is either BKB
(Super Space I), or a whopping 32KB {(Super
Space II}) of battery backed RAM. Brevity is
the aim of this column, so I will just say
that all the hardware's what's and how's are
extensively documented in the supplied
manual. The software's side can be
described as simple, useful, and flexible.
Among the utilities are menu builder,
loader, and editor, which program permits
creation of a custom opening menu (after
the power—up screen). The menu, which is
permanently (subject to well documented
precautions, although I had no problems
whatsoever despite my purposeful violation
of them all) retained in the battery backed
RAM of the Super Space, then will auto-load
and run, from any disk, any one of the seven
program entries that can be created. Another
program, CVAC, permits saving to, and later
loading and executing from, disk of cartrige
ROMs (8KB, none-—paged only). Yet, another
program, SSLDR (Software Support LoaDeR),
which provides a 18 entry menu, can be
loaded into Super Space, Each of the
entries provides for an auto—loading option
designed to make usage of our venerable
consoles in a more efficient way. There are
entries to load Editor, Formatter, and Program
Editor (modified versions of TI-Writer and
Formatter are supplied), an entry to load
assembler (& Macro Assembler from R.A.Green,
a4 fine Fairware program is supplied), and
onhe to load a standard Utility program {(any
program named UTIL1, for eXample a spelling
checker for TI-Writer). Then, there are
entries to Print a file from disk, to
Configure a printer (printer parameters can
be changed dynamically by this option), and
to do a Disk Directory {(ves, without loading
of your favorite disk manager cartridge!, an
option which is als¢ provided in the
supplied versions of editors). Altogether,
two packed "flippies" worth of utilities and
tools, but as if that were not enough, the
Super Space II package also adds another
"flippy" with Mr. Clint Pulley's Fairware C99
compiler and two books (Programs for the TI
Home Computer, and Introduction to Assembly
Language for the TI Home Computer) on
programing. Well (after catching my
breath), what more can I say? Oh yes! The
company is calied PataBioTics Inc. and can
be contacted by writing to PO Box 1194,
Palos Verdes Estates, CA 0@274.

February 1987

By now, you might be asking what all
the above has to do with our column on
Forth, and why Super Space hasn't been
described to you by Richard in his product
reports in TSP? But then, there 1is
something I haven't mentioned yet; namely,
that in the package sent to me there was
also another product, a product tailored to
work with the Super Space of which
environment's features it takes advantage
(read, Super Space is a "must have"
prerequisite to it), but that 1t 1is
purchased separately (also from
DataBioTics). This product is called Super
4TH, and I could only hope I could get as
excited about it as I did about the Super
Space package. Not that it is a bad product
{(in which case 1 wouldn't be writing about
it), but neither can I find in it much
innovation, besides the very initiative of
DataBioTics to support it and to supervise
its further development. Super 4TH intends
to be the evolution of TI-Forth and
version 1.1 furthers that goal by a rather
insignificant step. It is a "bug-fix"
update of the public domian TI-Forth
additionally supported by much of what had
been written by the many "nameless" and
generous Forth enthusiasts in the TI and
Forth community at large. As a collection of
those tools, Super 4TH is a perfect buy for
the latecomers to Forth or to those users
of Forth who haven't done much snooping
around in Forth related publications in the
quest for their own tools.

Having said that, let's have a quick
look at the scope of changes Super 4TH
brings into the TI-Forth environment. The
range goes all the way from "simple" bug
fixes through some new features. On the
"“new" side of things, there is the addition
of an auto-repeat cursor in the 4@-column
editor (but not on the command line; i.e., not
in the "immediate", interpretative mode of
the system), and there is a set of graphics
characters {(re)defined, which allow for
graphics without the need of switching into
bitmap mode. Also provided is a set of
words that permit usage of hard disk for
screen saving and loading in Super 4TH. In
the general system improvements category
are: loading part of the system's kernel
into the Super Space memory space where it
is retained and later available upon
power—up, and having resident system
messages upon loading, and the availability
of an extra disk buffer (six total, as
opposed to five in TI-Forth). There 1is
another improvement claimed that would belong to

PAGE 6

THE SMART PROGRAMMER

N

y

this category, that 1is, optimization of the
kernel code for both speed and space improvement,
and though the space optimization is hard to

verify (the system takes less of the 32KB total
RAM available to TI-Forth, but it adds some

new words, and redefinitions of existing ones, in
additon to using the extra 8KB of the Super
Space), the speed "improvement" in the tests I
ran with "Forth Dimension benchmarks” was about
-19% (yes, minus), which I found a curious,
but insignificant change. In general, the system
has a nice feel of a well setup TI-Forth to it,
with its "image" touched-up, utilities collected
in functicnally well thought out blocks of BSAVED
code (with acompanying source blocks supplied on
the 'flippy' side of the system disk), and a (A5
format) manual that seems to be as extensive as
TI's, so if you're considering the Super Space
package and company support for what you buy
is of importance to you (DataBioTics sounds
serious on this point), maybe then you might
also find Super 4TH a worthwhile addition to your
system.

And speaking of worthwhile additions, let's
switch our attention now to the "main course" in
our gquest for "roll your own" Forth.

The term Al, in my modest opinion, not only
became the most "In" buzzword of the past few
years, mostly for salesmen, but 1t also is
wearing thin, if one considers the products
that this phrase is applied to, and applied it is
quite liberally. But not all is lost and, indeed,
great strides have been made in the evolution and
appiication of Al, and one of the oldest areas to
which Al has been applied with great success is
in the expert systems field. The aim of an expert
system is to capture the knowledge of a
specialist in a given field, after which the
computer is able to react, in an intelligent way,
to a given set of circumstances, as they are
presented to the computer in data fed into it;
net unlike the specialist whose knowledge now had
been "taught" to the machine. The fundamental
vehicle and a programming methodology for
delivering that knowledge to the computer is a
"production system", which is so called not
because it is used to produce an expert system,
but because it uses pairs of conditional IF-THEN
statements to describe the knowledge of a
specialist and each of those pairs is called a
rule, or a production. In addition to rules,
production systems have a way of representing
"facts" to which the productions are applied in
the process of finding a solution, and the
mechanism which performs this application is
called an "inference engine" and lets only say
that there are two major ways by which the
inference engine may tackle a problem: the

February 1987

so—~calied backward chaining in which finding a
solution is goal driven: i.e., to a presented goal
the system will try to match to it the action
portion of a rule, and if the match is found, the
condition portion of that rule becomes the new
subgoal ete. until all goals are satisfied
{success), or no rule is found that matches
the current goal (failure); and the so-called
forward chaining method which is data driven;
i.e., for a given set of facts, the system will
attempt to find a match among the conditional
part of rules, and if the match is found, the
action portion of the rule will be executed, and
the process terminates when no condition matches
given fact(s), or an explicit HALT command is
executed as part of rule's action. Let's leave this
short introduction to production systems at that,
as the specifics get rather invoelved, and of not
much interest to a user (teaching expert) of such
a system, which, I hope, you become. Production
systems, because of the amount of procesing that
they, in general, require {they are mostly
programmed in LISP which pays a heavy price in
performance for its flexibility), come with
dedicated hardware (Tl-explorer, Symbolics, LMI)
and that makes them quite expensive, which still
holds true even when they are delivered as
software—only (OPS5) solutions. Well, not in our
case, and do not think then that it must be
something greatly inferior. FORPS (FORth
Production System) as is presented on these pages,
was developed at Oak Ridge National Laboratory,
which is operated by Martin Marietta Energy
Systems, and designed to be a complete production
system for real-time applications. A number
of "serious” applications have already been
written in FORPS, and the system has been ported
to the Novix Forth chip (on which it runs circles
around the dedicated AI workstations). The design
philosophy, according to the author of the system
(Matheus, C.J.), was driven by three main goals:

- to "provide the representative power of a
production system"”

- to "maintain the advantages of Forth
(including its extensibility and its
interpretative nature) and"

- to maintain "speeds appropriate for many
real-time applications”

In order to satisfy the above goals, FORPS does
sacrifice some of the "bells and whistles" of
more extensive, and slower systems, but because
of its inherent extensibility, such features can
be added if so it would be desired. The unique
quality of FORPS, as compared to other
production systems written in Forth (Expert-2,
which mimics LISP), is that it is written
completely in Forth; it exists as an Iintegral
part of the Forth environment, in which any Forth

PAGE 7

THE SMART PROGRAMMER

word can be executed from within the FORPS rules,
which themselves consist of Forth words.

In FORPS, a fact is represented by any Forth
word that evaluates to & binary, truth, or
falsity, value, and rule definition is modeled
after a conventional production system by the
provision of the mechanism: RULE: name PRIORITY:
value *IF* condition *THEN"' action *END* which
above words constitute a complete rule
specification, with priority assignment being an
optional part of the specification. In FORPS,
rules are stored in a table, which stores
pointers (CFA's) to a rule's condition part,
action part, and which also contains the
active/not_active flag, and the rule's priority
(if assigned, otherwise zero). The number of
riles in the system is defined by a constant
MAX-#RULES, and the length of each rule by
another constant, RULE~LEN, so the size of the
RULE~-TABLE table is defined by the product of
those two and ALLOTed at the time the system is
compiled. The RULE-TABLE is cleared by the
RESET-FORPS word, after which rules are entered
into the table as described above. After the
rule description is complete, the system is
started by the word FORPS, which contains the
system's inference engine (the portion of code
between the BEGIN-UNTIL construct) which cycles
through the RULE-TABLE {(CLEAR-FIRES
TEST-RULE-CONDS SELECT-BEST-RULE
FIRE-RULE) until there is no more activity
(NO-ACTIVITY @ UNTIL). It is that simple! The
evaluation of rule's condition is reduced to
EXECUTE'ing its CFA (remember the conditions
evaulate, on the stack, to a boolean flag),
and after each condition in the table is

Listing 1, FORPS

\ FORPS -~ rule definition
19 CONSTANT MAX-#RULES
CONSTANT RULE-LEN
VARIABLE NO-ACTIVITY
VARIABLE 'SP-1IF
VARIABLE 'NOOP

VARIABLE >LAST-RULE
VARIABLE >RULE-TABLE
VARIABLE CYCLE

VARIABLE HIGH-PRI
VARIABLE BEST-ACTIVE-RULE

[

L]

11.
12. : FALSE (a —--) @ SWAP ! ;
13. TRUE { a --) -1 SWAP ! ;

14. >ACTION (a -~ a) 2+ ;

15. >FIRE-CELL (a -- a) 2+ 2+ ;
16. >PRIORITY (a -- a) 6 + ;

b
QUMW ES
DO Ce S

k% wmw A2

February 1987

evaluated, each rule's action flag will
contain either 1, or @, which values are then
used by SELECT-BEST—-RULE to find the rule with
the highest priority {(stored in HIGH-PRI, a
variable holding the priority on the current
BEST~ACTIVE-RULE), which rule becomes the
BEST-ACTIVE-RULE (a variable) by having its
action CFA stored in it, and consecutively
EXECUTEd by FIRE-RULE. The rule definition
mechanism, in addition to making an entry in the
RULE~TABLE, also creates a header in the (FORTH)
system dictionary very much like the : word, so
each rule's condition part can be tested
interactively. The structure of this entry is
also alike that of any other colon defined FORTH
word, with the addition of a second CFA that

follows the standard structure (after the regular -

"exit" by compiled ;), which is the CFA of the
rule's action (also terminated by the "exit" word).
That is basically the structure of FORPS; simple,
compact, and the whole is very fast. The code is
below, followed by the Towers of Hanol example.
The interesting aspect of this example is that
although FORPS is based on the backward chaining
approach, the game itself is a simulation of the
backward chaining method, to show that either is
possible. I may also add that the algorithm
implemented in the game is the same as the one
used in the recursive example as presented in the
last column; only the programming methodology
differs. Have fun, and for more information on
FORPS either check out The Journsal of Forth
Application and Research (V4/1), or the East
Coast Forth BBS, which has & separate FORPS
section, or drop me a line, or two, which you are
welcomed to do in any Forth related problem that
comes your way. 'Till the next time, Mariusz.

VARIABLE RULE-TABLE MAX-#RULES RULE-LEN * 2~ ALLOT

PAGE 8

THE SMART PROGRAMMER

M

BYTEMASTER
SPRING 1988 CATALOG

STRING MASTER

{(Bytemaster)

¢ Exciting user environment for
running tommorrow's new generation
of 4A and 9640 software

¢ Powerful programming tool, written
in assembly language for speed

¢ Runs in Extended BASIC
¢ 23 Extended BASIC LINKs

¢ Windows

¢

¢

Compatible with almost all XB
programs and XB LINK code through
selectable memory placement
Conforms to XB standards

Compatible with standard hardware

Allows working with entire arrays
in a single program statement

EBEasy to use

Words Were Just Data Until... STRING MASTER

Many Extended BASIC (XB) programs use text
strings extensively, making STRING MASTER an
ideal companion to XB. STRING MASTER is an
exciting new programming tool and user
environment. The package consists of a set
of assembly macro equivalents of XB string
manipulations, in the form of LINKs to XB.
STRING MASTER can be loaded into the
assembly program memory area {High Mem) or
the XB program area (transparently residing
in Low Mem), enabling full compatability
with almost all assembly LINK code and
XB programs. Because many STRING MASTER
functions are oriented toward string

segments and concatenations ("fields" and
"records"), the package is a perfect
foundation for a database language. STRING

MASTER fully supports every data type
(direct, wvariable, array element, array) for
both numeric and string parameters in either
OPTION BASE (@ or 1), including support of
multi~dimensional arrays {(up to XB's limit
of 7). Working with an entire array in a
single statement can greatly reduce
programming effort and program execution
time. For instance, STRING MASTER's peeks
and pokes (CPU and VDP memory) are not
limited to 1 byte or even 255 bytes, but
rather can utilize an entire array of bytes,
limited only by available string memory {(up
to about 12K bytes)! Perhaps the most

dramatic feature of the package is its
ability to very quickly write and read
screen row, column boxes (WINDOWs) directly
to and from strings or string arrays. An
append function allows use of operators
(>, < =, etc.) to selectively copy array
elements or segments of array elements to
any point in an array and provide a count of
the elements copied or even to simulate the
copy for the purpose of simply obtaining the
count only! Other features include search,
select, replace, sounds (BEEP, HONK,
REBEEP), sorts, base conversions (yes,
convert an entire array in one statementt)
and much more. There are 29 routines in
all. Dr. Ron Albright, writing in Computer
Shopper, called STRING MASTER "...one of the
most valuable software development tools the

99/4A has seen since the Extended BASIC

cartridge.” Talented 4A programmer Mike Dodd

says, "extraordinary.... does to arrays
everything I can think of....". STRING
MASTER includes thorough printed

documentation and an extensive demo program.
Tutorials and applications will be presented
in major 99'er publications. Runs on the
99/4A or MYARC 9648. Requires XB (TI,
Triton, Mechatronics or GK), expanded memory
and disk system {cassette, inquire). Only
$19.95. |

Bytemaster Catalug
Page 1

MG EXPI.ORER

¢ Your window into the 99/4A

Bytemaster is now the exclusive distributor
for this popular program. The package
includes versions of the program to run from
every major 4A programming environment, plus
the famous EXPLORER manual, all packed onto
four flippy disks. The program can now be
run from your RAM disk, hard disk, Gram
Kracker or any floppy drive. EXPLORER
emulates system activity, displaying the
information on screen when desired or

PC—"Transfer

¢ MS-DOS, 4A, 9640 file compatability
Programmed by Mike Dodd, PC-Transfe: is the
fastest and most convenient method available
to transfer data between a 99/4A or MYARC
9640 and an MS—-DOS based machine. Simply
place an MS-DOS disk in one disk drive and a
TI disk in another and PC-Transfer goes to
work. PC-Transfer catalogs disks and allows
selection on screen of text files to copy.

Remind Me!?

4 Manage your schedule
Remind Me! is a program designed to help
manage 8 monthly schedule. Written in
assemnbly, Remind Me! is fast! For each date,
maintain up to 12 lines of text through a
TI-Writer style editor. Reminders are
highlighted to make checking your calendar
easy. A fast search feature is included
which ignores the case of letters and allows
for multiple searches. Print an entire
month's calendar or any range of days in a
month to your printer or to disk. Choose

XB: Bug
¢ Award-Winning Program

J. Peter Hoddie's XB: Bug was overall winner
of the 1st Annual TI Forum Computer Shopper
Programming Contest, XB: Bug 1is written in
assembly and resides transparently until
invoked,. View and modify variable values,
search variables by name and by value,
search the program listing for any group of
characters, see the program line that |s
currently executing, and display all
character definitions, sprite data, and
color settings. Trace GOSUBs and subprogram

{Bytemaster)

¢ Unlocks secrets

¢

¢

displaying the actual screen of a running
application. De-~bug your programs, learn
how XB works, discover what GROM really

does, much more! Hundreds of programmers
have found EXPLORER to be an incredibly
effective tool. Runs on the 99/4A.

Requires XB or E/A or Mini Memory or Gram
Kracker or TI-Writer, memory expansion and
disk system. Only $24.95.

{Genlal Computerware)

Formats MS-DOS disks

PC-Transfer even formats MS~DOS disks! The
program also includes a hook for future
implementations for other file types. Runs

on the 99/4A and MYARC 96449. Regquires
either a CorComp or MYARC disk controller,

two disk drives, and Extended BASIC or
TI-Writer or Editor Assembler cartridge.
Cnly $265.

(Genial Computerware)

Check your calendar

screen colors, printer codes, printer device
and more and store to disk with the program
(not a cumbersome separate file). Though a
clock is not required, Remind Me! will
display the current time if you have a
CorComp Clock or Triple Tech, MBP clock,
John Clulow Clock Board, or a MYARC 9649.
Programmed by John Johnson, author of MENU.
Runs on the 99/4A or MYARC 964#. Requires
Editor/Assembler or TI-Writer or Super <Cart
or Extended BASIC. Only $15.

(Genial Computerware)

4 De-bug XB programs

CALLs and show which, if any, subprogram is
currently active. Access the XB: Bug
program with a keypress or through a
breakpoint, then return to the XB program
exactly where it left off. Several versions
are included, allowing compatability with
the memory locations of other assembly code.
Runs on the 99/4A or MYARC 9648, Requires
Extended BASIC (TI or Triton or Mechatronics
or GK), expanded memory and disk system.

Only 8$15.

Bytemaster Catalog
Page 2

MBashexr {Genial Computerware)

m‘ ¢ Conserve disk and memory space ¢ Load & execute programs faster

Mike Dodd's XBasher shortens variable names needs. Up to a 33% compaction is not
in XB programs, combines program lines where uncommon. XBasher received a straight A
program logic will not be compromised, review from GEnie TI RT sysop Scott Darling.
removes REM and ! statements {(and even XBasher is ideal for anyone who wishes to
changes references to those lines), shortens decrease execution and load times of XB
the names of functions defined in DEF programs, while also saving disk space.
statements, and uses other innovative Runs on 99/4A or MYARC 9648. Requires TI
compaction methods. All compaction methods Extended BASIC, memory expansion, disk
may be turned on or off to meet the user's system. Only $16.

GRAM Packer (Genial Computerware)

GRAM Packer, by J. Peter Hoddie, allows programs, and even cartridges to reside on
customizing the main TI menu to contain disk, RAM disk or hard disk, but to appear
programs, cartridges, and program loaders. on the main menu, available at a single Kkey
Store multiple E/A option 5 type programs in press. EXxtensive documentation is included.
GRAM space for near instantaneous loading Requires a GRAM emulation device (tested
from main menu, CALL statements, or even the with GRAM Kracker, GRAM Karte, Maximem,
RUN command. Additional special utilities MYARC 9648 computer), expanded memory, disk
allow assembly programs, Extended BASIC system. Only $14.

Graphics Expander {(Genial Computerware)

J. Peter Hoddie's Graphics Expander quickly formats. All graphics are displayed on the
and easily enlarges fonts, rotates screen and images may be scaled horizontally
characters and creates mirror or inverse and/or vertically by factors of 1 to 9.
images. Written in assembly for speed, the Runs on the 99/4A or MYARC 964d. Requires
program is compatible with fonts and = XB or E/A or TI-Writer, expanded memory and
graphics for both TI-Artist and CSGD and can disk system. Only $1¢.

convert fonts and graphics between the two

XBQE (Bytemaster)

XBQB is a Quick BASIC subprogram designed to statement. Requires IBM PC or compatible,
aid PC users in co-developing or 5 1/4" floppy drive, Quick BASIC 3.8 or 4.0.
cross—developing BASIC programs on the 4A Only 81.

and PC. XBQB emulates the XB ACCEPT AT

Orphan Survival Handbook (Disk Only Software)

Dr. Ron Albright's compilation, containing the TI-99/4A and Geneve. Great information
helpful recipes, assertions, advice and and reading. Programs, tips and much more.
other nostrums for owners and custodians of Only $17.

Best of Super 99 Monthly On Disk (Bytemaster)

All of the programs that appeared in Super set. Documentation is not included {(refer
99 Monthly (except FORTH programs) are to the articles in Super 99 Monthiy). Only
included, plus a few bonuses. A two disk $12.

Super 99 Handicapper (Bytemaster)

A program to aid in thoroughbred horse race Requires disk system (2 drives recommended),
handicapping. Provides unique and wuseful expanded memory, Extended BASIC. Printer
data. Documentation with tips included. recommended. Only $15.

Bytemaster Catalog
Page 3

—--__—__-___—_-__“—'ﬂ"ﬂ*"—____-——-"-"I'--—--——i-l-—--_——_---—--——-——————h“--___—_—__-#ﬂ*ﬁﬂﬂ*—_

ITEM EA QTY

SOFTWARE & BOOKS:

AMOUNT

STRING MASTER 19.95
EXPLORER 24.95
PC-Transfer 25.00
Remind Me! 15.00
XB: Bug 15.00
XBasher 10.00
GRAM Packer 10.00

Graphics Expander 10.00

1.00
Orphan Surv. Hbk. 17.00

XBQB

Best of S99M Disk 12.00

S99 Handicapper 15.00

SUBTOTAL, SOFTWARE & BOOKS
OVER $507? DEDUCT 10%
OVER $1507 DEDUCT 15%
OVER $5008? DEDUCT 25%

TOTAL, SOFTWARE & BOOKS

BACK ISSUES:

ITEM EA

BACK ISSUES (CONT.):
SMART PROGRAMMER

QTY AMOUNT

PHOTOSTATS 2.50 _
MONTH QTY MONTH QTY
02/84 ___ 06/84
03/84 ___ 07/84 ___
04/84 ____ 08/84
05/84 ___ 09/84
ORIGINALS 1.75
MONTH QTY MONTH QTY
06/86 ___ 11/86
07/86 ____ 12/86
08/86 ___ 01/87 ___
09/86 ____ 02/87 ___
10/86
SUBSCRIPTIONS, SMART PROGRAMMER
U.S. 18T CLASS 18.00
CANADA 1ST CLASS 20.00
FOREIGN AIR MAIL 32.00

TOTAL THIS COLUMN

PLUS TOTAL FROM COLUMN 1
TOTAL BEFORE TAXES AND SHIPPING

RESIDENTS, ADD SALES TAX:
Lake Charles, Sulphur,
Iowa, DeQuincy, Vinton 3 1/2%
Calcasieu Dist #1 only 2 1/2%

Calcasieu Sch Brd only 1 1/2%

Louisiana - 4%
Add: Shipping & handling,
except for subscriptions

U.S. & prot., Canada

All other

2.00

8.00

TOTAL REMITTANCE ENCLOSED

PRICES ARE IN U.S. DOLLARS.

MUST

BANKS,

U.S.
U.S.,

ORDERS ACCEPTED.
SALES.

CHECKS
BE DRAWN IN U.S." FUNDS ON U.S.

FEDERAL RESERVE BANKING SYSTEM.
CANADIAN & INTERNATIONAL MONEY

4A AND 96406 DISKS SS/SD.

PERMIT BELOW IS NOT FOR REPLY MAIL.

CODED FOR PROCESSING THROUGH THE

NO BILLINGS OR CREDIT
QUANTITY DISCOUNTS AVAILABLE.

SOFTWARE LISTED IS COPYRIGHT & NOT COPY
PROTECTED.

BULK RATE

R g g -

PAID

SUPER 99 MONTHLY 1.00
MONTH OTY MONTH QTY
09/84 06/85
10/84 07/85
11/84 $8/85
12/84 _____ 69/85
01/85 10/85
02/85 11/85
3/85 12/85
04/85 02/86
05/85
0l/86 (photostat) 2.00
TOTAL, COLUMN 1
BYTEMASTER
171 MUSTANG STREET NAME
SULPHUR, LA 70663
STREET
CITY
STATE

21IP

Bytemaster Catalog

Page 4

U.S. POSTAGE

| SULPHUR, LA 70663
| PERMIT NO. 141
COUNTRY o ——— e —

17.
18.
19.
20.
21.
22.
23.
24.
25,
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46,
47.
48.
49.
50.
51.
52.
53.
4.
55.
56.
57.
58.
59.
60.
6l.
62.
63.
64.
65.
66.
67.
68,
69.
70.
71.
712.
73.
74.
75.
76.

HALT NO-ACTIVITY TRUE :

ERROR ." No rules loaded" QUIT ;

RESET-FORPS RULE-TABLE DUP >RULE-TABLE ! MAX-#RULES RULE-LEN * ERASE
[' *ERROR* CFA] LITERAL RULE-TABLE ! :

NOOP ;

NOOP CFA DUP 'NOOP ! @ CONSTANT COLON-CFA

+ COND-CFA! HERE 2~ >RULE-TABLE @ ! :

: ACTION-CFA! HERE 2- >RULE-TABLE @ >ACTION ! :

: '"NUMBER ~-FIND

IF DROP CFA EXECUTE

ELSE HERE NUMBER DROP

ENDIF ;
: PRIORITY: 'NUMBER »>RULE-TABLE @ >PRIORITY ! ; IMMEDIATE
: RULE: D>RULE-TABLE @ RULE-TABLE - RULE-LEN / MAX-#RULES =
IF ." No room" QUIT ENDIF

CURRENT @ CONTEXT ! [COMPILE] : COND-~CFA! SMUDGE .
1f -1 SP® 2- 'SP-IF ! :
IF DRULE-TABLE @ >FIRE-CELL [COMPILE] LITERAL COMPILE *if* ; IMMEDIATE
then -1 'SP-IF @ Spreé

DO AND 2 +LOOP

SWAP ! ;
: *THEN* COMPILE *then* COMPILE :S COLON-CFA . ACTION-CFA! ; IMMEDIATE
: *END* RULE-LEN >RULE-TABLE +! COMPILE ;S [COMPILE] [;: IMMEDIATE
\ FORPS - inference engine

: SET-DEFAULT -1 HIGH-PRI ! '"NOOP BEST-ACTIVE-RULE ! ;
: RT-LIMITS (--n n)} D>LAST-RULE @ RULE-TABLE ;
: CLEAR-FIRES RT-LIMITS

DO ©® I >FIRE-CELL ! RULE-LEN +LOOP :
TEST-RULE-CONDS RT-LIMITS
DO I @ EXECUTE RULE-LEN +LOOP :
SELECT-BEST-RULE NO-ACTIVITY TRUE SET-DEFAULT RT-LIMITS
DO I DUP >FIRE-CELL @
IF DUP >PRIORITY @ DUP HIGH-PRI @ >
IF HIGH-PRI ! >ACTION BEST-ACTIVE-RULE !
NO-ACTIVITY FALSE
ELSE DROP DROP
ENDIF
ELSE DROP
ENDIF RULE-LEN
+LOOP ;
: FIRE-RULE BEST-ACTIVE-RULE @ @ EXECUTE ;
: FORPS D>RULE-TABLE @ 2- >LAST-RULE ! @ CYCLE !
BEGIN
1 CYCLE +!
CLEAR-FIRES
TEST-RULE-CONDS
SELECT-BEST-RULE
FIRE-RULE
NO-ACTIVITY @
UNTIL CR CYCLE ? ." Rules Fired" CR :

;S
FORPS is under the copyright of Martin Marietta Energy Systems.
Author: Christopher J. Matheus

University of Illinois

222 Digital Computer Lab

1304 W. Springfield Ave.

Urbana, IL 61801
This software was developed at Oak Ridge National Laboratory,
Oak Ridge, TN, under the Consolidated Fuel Reprocessing Programn.
Ported from PollyForth-79 to TI-Forth by Mariusz Stanczak.

February 1987 PAGE §
THE SMART PROGRAMMER

Listing 2 ~ Towers of Hanoli in FORPS

0. \ constants and variables

1. 10 CONSTANT MAX-#DISKS fﬁ}
2. 1 CONSTANT HOME

3. 2 CONSTANT GOAL

4. 1 CONSTANT MOVE-TOWER

5. 2 CONSTANT MOVE-DISK

6. O VARTABRLE GOALSTACK MAX-#DISKS 1- DUP * 2+ 8 * 22— ALLO.

7. 0 VARIABLE GS.PTR GOALSTACK GS.PTR !

8. & VARIABLE SOURCE

9. 0 VARIABLE TARGET

10. 0 VARIABLE #DISKS
11. 9 VARIABLE STARTED
12. & VARIABLE SPARE |
13. \ GOALSTACK support words
14. : >GSTACK {nn -~ nj DUP ROT SWAP ! 2+
15. : GSTACK> {({ n -— nn}) 2- DUP @ :
16. : SPARE! (-=) SOURCE @ TARGET @ OR 7 XOR SPARE ! ;
18. : ADDGOAL {(——n n n n)
19. GS.PTR @ >GSTACK >GSTACK >GSTACK >GSTACK GS.PTR ! ;
20. : REMOVEGOAL (--)

21. GS.PTR @ GSTACK> DROP GSTACK> #DISKS !
22. GSTACKY> SQURCE ! GSTACK> TARGET ! SPARE! GS.PTR ! ;
23. : IS-GOAL GS.PTR @ 2—- @ = ;

24, : IS-#-OF-DISKS GS.PTR @ 4 - @ = ;

25. : .PEG DUP 1 =

26, 1F ." A" DROP

27 . ELSE 2 =
28. IF ." B"

29. ELSE A o

30. ENDIF

31. ENDIF ; €$}
32. \ towers rules

33, *RESET-FORPS*

34. RULE: START-TOWERS PRIORITY: 10

35. *xTF* STARTED @& 0=

36. *THEN* GOALSTACK GS.PTR !

37. ® 0 0 0 ADDGOAL

38. MOVE-TOWER #DISKS @ HOME GOAL ADDGOAL

39, STARTED TRUE

40. *END*

41. RULE: MOVE-TOWER-RULE

42. xTF* MOVE-TOWER IS-GOAL

43. *THEN* REMOVEGOAL

44. MOVE-TOWER #DISKS @ 1- SPARE @ TARGET @ ADDGOAL
45. MOVE-DISK #DISKS @ SOURCE @ TARGET @ ADDGOAL
46. MOVE-TOWER #DISKS @ 1- SQURCE @ SPARE @ ADDGOAL
47 . *END*

48. RULE: MOVE-SINGLE-DISK-TOWER PRIORITY: 1

49, kTEF % MOVE-TOWER IS-GOAL AND 1 IS-#-OF-DISKS

50. *THEN* REMOVEGOAL

1. MOVE-DISK 1 SOURCE @ TARGET @ ADDGOAL

52. *END*

53. RULE: MOVE-SINGLE-DISK

54. xTp* MOVE-DISK IS-GOAL

55. *THEN* REMOVEGOAL

56. TARGET @ SOURCE @ ." Move disk on peg " .PEG ." to peg " .PEG CR
57. *kEND*

February 1987 PAGE 1@
THE SMART PROGRAMMER

58 .
59 .
60.

.HEADER CR

." Towers of Hanoi,
?NUM ." Number of disks?

TOWERS CR ?NUM #DISKS !

LE LN

Disks: " #DISKS ? CR :

" QUERY BL WORD HERE NUMBER DROP ;
STARTED FALSE CR .HEADER CR FORPS

CR CR ;

KXB FORMATTER

by Richard M. Mitchell

Many of you have inquired about how the
newsletter layout is now done. Well, the
specifics of what I do is surely different
from what most of you could utilize because
printer commands are not very standardized,
but there are some tips that can apply to
use of almost any dot matrix printer,

Every page of the newsletter is printed
in a single pass through the printer by
processing text through an XB program (with
STRING MASTER used to improve execution
times), a personalized formatter, similar in
function to the TI-Writer Formatter.

One can tailor a formatter program to
allow a computer to output to a particular
printer. The formatter approach is easier,
more versatile and more conducive to a
positive attitude than "canned" software
that must be forced to (almost) drive a
printer. The formatter can utilize the same
syntax structure as the TI-Writer Formatter;
j.e,, "dot" commands. With a combination of
dot commands and bullt-in features for
printer set-up commands that are used
consistently, a formatter can be a real
workhorse!

As you have likely noticed, the 8¢
column limit of TI-Writer is a barrier to
efforts to imbed printer commands and still
print 8¢ columns of characters. So, the
example Formatter listed below provides dot
command capability for italicizing (most dot
matrix printers use <esc> <4> and <esc>
for italics on and off) particular sections
of a line of text, thus allowing printing a
full 80 characters of text along with
imbedded italicizing command sequences! Use
the dot commands as in this example (X is
jtalies on, O is italics off):

+JITALICS
X O
Italicizing is easy!

Note that italics are automatically turned
off at the end of each line, so even the
eightieth character can be italicized. AS
you can see, the dot commands can easily be

inlinkh

February 1987
THE SMART PROGRAMMER

PPkl

inserted into completed text, without having
to modify anything while writing!

Here's the program, a minimal
implementation of a formatter to serve as an
example. Note that I save my files from the
TI-Writer Editor with a PF, F DSKx.FNAME for
a Display, Fixed 86 file format. Also note
that the program is written to allow easily
adding additional dot commands inte the DOT
subprogram.

> 100 OPEN #1:"DSK1.FORMAT/X",

DISPLAY ,FIXED 80, INPUT !041
> 110 OPEN #2:"PIO" !254
> 120 LINPUT #1:A$ 1187

> 130 IF SEGS(AS,1,1)="." THEN
CALL DOT(AS) !013

> 149 PRINT #2:A8 !174

> 150 IF EOF(1)THEN CLOSE #l1 E

LSE 120 !1990
> 160 CLOSE #2 :: END
1000 SUB DOT(AS) 1037
> 1810 IF SEGS(AS,2,7)="ITALIC

1165

W

S" THEN GOSUB 1100 !'11e
> 1020 SUBEXIT !167
> 1100 LINPUT #1:BS :: LINPUT

#$#1:AS :: A=LEN(AS)!033
> 1110 FOR I=1 TO A 1127
> 11290 IF SEGS(BS,I,1)}="X" THE
N CS=CS&CHRS(27)&"4" 1212
> 1139 IF SEGS(BS,I,1)="0O" THE
N CS=CS&CHRS(27)&"5" 204
1140 CS=CS&SEGS{(AS,I,1)!151
1150 NEXT I !223
1160 AS=CS&CHRS{(27)&"H"
1170 Cs="" 1236
118¢% RETURN !136
1190 SUBEND !168

1109

VW W WV VY

BY —PASSING "T"H K
MY ARC
RAM DISK POWER—UP

by Mike Dodd

If you have the MYARC XB II cartridge,
vou have probably noticed that the RAM disk
always wipes out your >6680 RAM bsnk unless
you write protect with a Gram Kracker. The
following GK patch will by-pass the power—up
routine in the RAM disk, which prevents it
from clearing out your >689¢ bank. Now you can
leave the write—-protect off (e.g., to act as

PAGE 11

a Super-—cart) and not worry about it being
zapped!

To make the change, enter the GRAM
Kracker Memory editor. Press FCTN 1 to
select GRAM, and FCTN 5 for search. Type
@909 for the start, and @308 for the end.
Press FCTN = for hex, then FCTN 9 to enter
the search window and type 8780D@. Press
FCTN S to back the cursor onto the "@" in
DB, and press ENTER. When it finds the
string (mine was at g@183), press FCTN 5§ to
leave the search and FCTN 9 to enter the
memory field. Write down the address it is
at.

Now disable write protect and type
P519BA. Press FCTN 9 again, use FPCTN S to
back over to the memory address, and type
190A. Press FCTN 9, ENTER to home the
cursor, and type BF 80 D@ 11 ¢¢ BF 8¢ D2 4¢
P2 85. Now take the address you wrote down
and add 3 to it (O@183 + >@@03 = >@186).
Type that address. Turn your write protect
back on, press CTRL = to leave the editor,
and re-save GROM & to disk. To save GROM g,
press 4 for Load/Save conscle, 3 for GROM 4,
and 2 for Save console. Type the filename
and press ENTER. Press space (the correct
GROMs are already enabled), let it finish
saving, and press space again. That's all
there is to it!

If you wish to run MYARC XB I, disable
your write protection, change switch 2 from
GRAM @ to Op Sys, and press reset.
OP SYS selected, the patch is not in effect,
50 the MYARC RAM disk will execute its
normal power up routine. When the title
screen appears, you can re—enable GRAM # and
proceed as normal to load MYARC XB II.

Final note: if your RAM disk is not
backed up by an external power supply, you
MUST run the power—~up routine when you first
turn the computer on. After that, if you
reset the system you will not need to run
the power-up routine again. You have to run
it the first time, otherwise the CALL PART
and CALL EMDK commands will crash. To run
it without it crashing your RAM bank, disable
GRAM @ (switch to Op Sys) when you turn on the
computer, making sure that the write—protect
is on. When the title screen appears,
enable GRAM @ and don't worry about it
again.

Editor: The above modification by-passes
the power—up of whatever card is at CRU
>1000. MYARC RAM disks are factory set at

February 1987

With

>1089. But. if you have changed the CRU
address (for instance, for coexisting with
a8 MYAKC Personality card. which Is also
factory set at >i1d809). then the Gram @
patch will not help the XB II situation.
In that case, a circular power—up Sequence

beginning at >1209 would be regquired. RM

CALLL. CHAR
AUTO ——PROGRAM

by Richard M. Mitchell

The program listed below runs under
STRING MASTER and writes a MERGE format
program that sets up a character set based
on the character set in use when this
program is run. It is especially useful if
you want to provide a printed listing (in a
user group newsletter, for instance) of a
character set, The CALL CHAR'S are in
console BASIC format (no multiple definitions)
and trailing "@"'s are omitted. You may
want to change the disk drive number
references for your system configuration.

> 10¢ CALL INIT ::
DSK1.SM/0") ! 968

> 119 OPTION BASE 1 !137

> 120 DIM AS{(112),BS(112)!'160

> 130 OPEN #1:"DSK1.CHARSET".D
ISPLAY ,VARIABLE 163,0UTPUT
{115

> 149 FOR I=1 TO 37 :: READ A
:: LINE1QOS=LINE1Q0OS&CHRS (A)
:: NEXT I :: PRINT #1:LINE1l¢
0s 910

> 150 CALL LINK("SVPEEK".,1024,
®,896,A5(),8):: CALL LINK("B
INHEX" ,AS() ,BS{)):: CALL LIN
K{"TRIM",BS{).,"0")!201

> 160 FOR I=1 TO 112 :: IF LEN
(BS{X))}=0 THEN BS(I)="0Q0" !05
8

> 170 THISLINES=CHRS{(0)&CHRS (I
+100)&CHRS (147) &CHRS$(199) &CH
RS{LEN(BS(I}))&BS(I)&CHRS (D)

CALL LOAD("

:: PRINT #1:THISLINES :: NEX
T T 1122

> 180 PRINT #1:CHRS(255)&CHRS (
255):: CLOSE #1 !109

> 190 DATA ©,100,140,73,190,20
,2,51,50,177,200,3,49,52,51
,130,151,65,36,130,157,200,4
1159
> 200 DATA 67,72,65,82,183,73,
179,65,36,182,130,150,73,0 !
P63

PAGE 12

THE SMART PROGRAMMER

D

COMMUNICATIONS
NEWS

by Richard M. Mitchell

Fast-Term's XMODEM protocol does not
always effectively interface with some host
computer systems, with timeouts sometimes
occurring while Fast~Term is accessing a
disk. Proper implementation of XMODEM is a
controversial topic that 1is best left to
communications experts, but a simple way to
skirt the issue is to set the number of
XMODEM blocks to access at a time, thereby
eliminating the possibility of a timeout.
Good news is at hand! Read the following
message, left on GEnlie by Barry Traver (the
file is available on GEnie, CIS, etc.):

Xk hkhkhkhkhhkRkkhhkhkhhkhhkhkkkkkkhhkhkkhhkkhhhkhxk

x

* FAST-TERM 1.16/23ph NOW AVAILABLE!

x

* Paul Charlton's Fairware program
as modified by J. Peter Hoddie

x

%

*x

X
® %
w x
* (1) File size is shown for Xmodem *
* uploads _and_ downlocads at start *
* of transfer, and record numbers *
* (decimal) shown during transfer. *
* (2) A variable size Xmodem buffer *
* can be set for 64, 32, 16, 8, or *
* 4 records (32 recommended for PC *
* Pursuit). *
* {(3) Catalog routine can now access *
* drives 1-9, can be paused, and *
* gives full information on files. *
* (4) Files can be protected, unpro- *
* tected, or deleted while on-line. *
* (5) Log file opens in APPEND mode *
* rather than OUTPUT (so that old *
* files will not be accidentally *
* overwritten). *
* (6) Inverse video feature has been *
* disabled. *
* (7) DSRLNK routine device search *
* improved to work better with var- *
* jous ramdisk configurations. *
b »n
x X
*x x
* %
*x %
N .
b] *x
® *x
x]
n x
4 x
* %

THIS PROGRAM IS FAIRWARE!

Peter's not asking for money
for his modifications, but he is
asking that if you like and use
the program and have never paid
for Fast-Term, _please_ send $515
to Paul Charlton. (No, that's
not robbing Peter to pay Paul!)

i I I mmMm MM MmN T T ™

February 1987

Please note that the Hoddie version of
Fast=-Term wiil not run on a MYARC 9640.

By the way, Barry Traver recently had
surgery for a detached retina. Barry is
back at the computer, but the doctors say
that the full recovery period may be as long
as a year. Best wishes, Barry!

For those of you who have a PC or PC
compatible, I have completed XBQB.BAS, an
equivalent of XB's ACCEPT AT. XBQB.BAS, a
subprogram that runs in Quick BASIC 3.8 or 4.4,
greatly simplifies co- or cross—-development
of programs on the 4A and PC. The file is
available in Section 12 of the TI RT on
GEnie or in DL 8 of the TI FORUM on
CIS. For those of you who do not access
the networks, the file is available at a
nominal price in the Bytemaster catalog in
this issue.

Retrospecacntlve:
DSK1.1..OAD

by Richard M. Mitchell

A recent letter inquired as to why the
loader program in the first issue of Super
99 Monthly always attempts to access &a
file named "DSK1.LOAD". The code for that
s programmed into the Extended BASIC
cartridge (at >6382 in GROM in one module
examined) and the filename can only be
changed through hardware with programmable
GRAM. Perhaps the reader purchased all or a
portion of his system second-hand, a common
situation today, and did not receive the
documentation that covered that feature of
XB.

Unlike loaders that "hard—-code" either
the filenames available or the memory
address of a filename to over-write, the
S99M loader calculates the address of
the memory location to over—write and
therefore is flexible and easy to customize.
The little trick involved is the use of a
GOSUB in line 4¢@ to contain the address
calculation in a single line of code,
thereby eliminating dependence on line 4006
being at a specific memory location. of
course, over—-writing code in memory is not,
generally, a recommended programming
practice, but for writing XB loaders, most
alternatives are too cumbersome for the
average XB programmer to tackle.

PAGE 13

THE SMART FROGRAMMER

FPLAY A 0037 JEQ NEXT3
OUND 1.IST! 0038 CI RS, 3
0039 JEQ NEXT3
by Richard M. Mitchell 0040 CI R8,5
0041 JEQ NEXT2
Well, I've been working with assembly 0042 LY RO,ERRSNM
language sound routines recently, so 1 043 BLWP @ERR
decided to share what Is completed. The 6044 NEXTZ2 LI R1,REG10
following a/l code links to XB and will play 0045 LI R2,2
a sound list. Unfortunately, I haven't 0046 BLWP @VMBR
worked out anything that I consider of 0047 MOV R10,R0
adequate quality for publication for 0048 BLWP @VSBR
creating sound lists yet. I am working on 0049 SB @0OFFSTD,R1
routines that will allow far more intricate 0050 SRL. R1.8
sound processing than can be accomplished in 2051 SLA R1,1
the relatively slow XB environment. For 0052 A R1,R0O
now, I have included an XB listing that will 0053 AT R@,6
play the chimes demo from the E/A manual. 0054 LI R1,REG1O
Note that I have added "line numbers" to aid @055 BLWP @VMBR
in working from the E/A Editor. Also, 0056 JMP NEXT4
remember to omit the remarks from the XB @857 NEXT3 Al RO, 4
program, those are checksums (see 12/86 0058 LI R1,REG1l0
issue). 0859 LI R2.,2
0060 BLWP @VMBR
0001 *» PARMS: @061 NEXT4 MOV R10,@STABAD
0002 =* 1 TO 16 PARMS OF STRINGS 0062 SOCB @HOl,@STABLO
0003 =* THAT ARE SOUND LISTS. 0063 MOVB @HOl,@SNDBYT
0004 * PARMS CAN BE DIRECT STRINGS 0064 LIMI 2
0005 = OR IN THE FORM AS, AS(0), 0065 LOOP MOVB @SNDBYT,@SNDBYT
0006 * AS(0,0), AS(), AS(,), ETC. 0066 JNE LOOP
0007 * ENTIRE ARRAYS, SUCH AS AS{(,) Po67 INC R9
0008 =* OR AS{) ARE ALLOWED, BUT 0068 LIMI o i
0009 =* ONLY THE FIRST ELEMENT, 0069 CB @LSB9,@ARGS
001¢ = SUCH AS AS(0,0), WILL BE 0070 JLE NEXT
0011 = USED. 2071 RETURN LWPI GPLWS
0012 0072 B @>006A
0013 DEF PLAY 0073
0014 ARGS EQU >8312 0074 MYWS BSS >20
@015 VSBR EQU >2028 0075 LSBY EQU MYWS+>13
0016 VMBR EQU >202C Pd76 REG1O0 EQU MYWS+>14
0017 VSTKPT EQU >836E 0077 HO1 BYTE >@1
0018 GPLWS EQU >83E® 0078 OFFSTD BYTE >80
0019 STABAD EQU >83CC 0079 END
0020 STABLO EQU >83FD
0021 SNDBYT EQU >83CE > 100 CALL INIT :: CALL LOAD("
0022 ARGID EQU >8300 DSK1.PLAY/O") 1220
0023 ERRSNM EQU »>0700 > 119 FOR I=1 TO 118 :: READ A
0024 ERR EQU >2034 :: AS=AS&CHRS(A):: NEXT I !
025 164
0026 PLAY LWPI MYWS > 120 CALL LINK("PLAY" ,AS,AS)!
0027 LIMI 0 053
0028 I.T R9,1 > 139 END 1139
0929 NEXT MOVB @ARGID-1(R9),R8 > 1000 DATA 5,159,191,223,255,
0030 SRL RS8,8 227,1 1188
0031 MOV R9,R3 > 1010 DATA 9,142,1,164,2,197,
0032 DEC R3 1,144,182,211,6 !222
0033 SLA R3,3 > 1029 DATA 3,145,183,212,5 11
0034 MOV @VSTKPT,RO 33
0Q35 S R3,R0O > 1830 DATA 3,146,184,213,4 !1
0036 CI RS8,1 35

February 1987 PAGE 14
THE SMART PROGRAMMER

1040 DATA
4,5 1089
1050 DATA
43

1060 DATA
47

1070 DATA
8,6 1078
1080 DATA
33

1090 DATA
26

1100 DATA
1,5 1072
1110 DATA
34

1120 DATA
38

113¢ DATA
4,6 !085
1140 DATA
42

115¢ DATA
44 |
1160 DATA
8,5 089
1170 DATA
34
1180
29
1190
34

DATA

DATA

5,167,4,147,176, 21
3,148,177,215,6 !1
3,149,178,216,7 '1
5,202,2,150,179,20
3,151,180,209,5 !1
3,152,181,210,4 !1
5,133,3,144,182,21
3,145,183,212,6 !1
3,146,184,213,7 11
5,164,2,147,176,21
3,148,177,215,5 !1
3,149,178,216,4 !1
5,197,1,150,179,20
3,151,180,209,6 !1
3,152,181,210,7 !1
3,159,191,223,0 !1

A/, INPUT

by Richard M. Mitchell

Someone on GEnie recently requested a
minimal implementation of an assembly INPUT

routine,

so0 I quickly roughed this one out.

The routine also re—displays the input on

the next screen row.

It uses only R@, R1

and R2, so it could likely be accessed by BL
or BLWP with little modification.
it was written for E/A (REF 1is used).

0001

0002

D003 VDPWA
2004 VDPWD
0005 KEYBRD
0006 KEYCOD
0807 STATUS
Q008 MYWS
P909 R1LB
2019 R2LB
0011 TABSIZ
0012

0013 INPUT

DEF
REF
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

MOV

INPUT
KSCAN
>8C02
>8C00
>8374
>8375
>837C
>8300
MYWS+3
MYWS+5
5

R11l,@STRRET

Note that

February 1987

0014
9015
P016
0017
0018
2919
0020
0921
0022
0023
0024
0025
0a26
0027
2028
0029
0930
Pu3l
0032
0033
P034
@835
0036
0037
2038
0039
2040
0041
0042
0043
0044
0045

0046

0047
0048
0049
00590
P051
0852
2053
0054
8055
PO56
0057
0058
0059
0060
0061
0062
Pd63
P064
0065
PB66
0067
po6e8
0069
0070
0071
0072
0073

CLRBUF

LOOP

SWAP1
SWAP2

CKSCAN

TSTTAB
DELAY 2

CKTAB

LOKTAB

LEFT

RIGHT

ASCII

PAGE 16
THE SMART PROGRAMMER

LWPI
MOV
MOV
DEC
DEC
MOVB
MOV
JNE
MOVB
CLR
CB
JEQ
MOVB
JMP

MOVB

BL
LI
BLWP
CB
JEQ
CB
JEQ
CB
JEQ
DEC
INE
LI
DEC
INE
CB
JLE
INC
cI
JINE
JIMP
SLA
AL

JMP
JMP
JMP
JMP
JMP
CB

JNE
MOV
JEQ
BL

DEC
JMP

JEQ
BL
INC
JMP
MOVB
BL

JEQ
INC

MYWS

@SIZE,R1

R1,RO

RO

R1

@BLANK, @BUFFER (R1)
R1,R1

CLRBUF

@KEYBRD, @STRBRD
@KEYBRD
@CURSOR , @CURSWP
SWAP1
@CURSOR , @CURSWP
SWAP2
@BUFFER (R1) ,@CURSWP
@PUTCH2

R2,120

@KSCAN
@KEYCOD , @CHRTAB
TSTTAB
@KEYCOD , @CHRTAB+1
TSTTAB

@BLANK ,@STATUS
TSTTAB

R2

CKSCAN

R2,22200

R2

DELAY2
@KEYCOD , @CHRTAB (R2)
LOKTAB

R2

R2,TABSIZ

CKTAB

LOOP

R2.,1

R2,5+6

*R2

LEFT

RIGHT

RETURN

LOOP

ASCII

@KEYCOD, @CHRTAB
LOOP

R1,R1

LOOP

@PUTCHR

R1

LOOoP

R1,R0

LOOP

@PUTCHR

R1

LOOP

@KEYCOD, @BUFFER (R1)
@PUTCHR

R1,R0O

LOOP

R1

0074 JMP LOOP 0100 . CLR RO :
0075 RETURN CB @KEYCOD,@CHRTAB+2 0101 " MOVB RO,@STATUS g
0076 JNE LOOP 0102 MOV @STRRET,R11 i

0077 BL @PUTCHR 0103 RT :]
0078 MOV @SIZE,R1 0104 _ S Y
@079 RET1 CB @BUFFER-1(R1l),@BLANK 9105 PUTCHR MOVE @BUFFER (R1) , @CURSWP :
0080 JNE RET2 0106 PUTCH2 MOV R1,R2

0081 DEC R1 0107 A @SCRLOC,R2

2082 JNE RET1 0108 ORI R2,>4000

0083 RET2 MOVB @R1LB, @BUFLEN 0109 MOYB @R2LB; @VDPWA | 4
0084 MOV R1,R0 0110 Moi RE, @VDPW '
085 CLR R1 111 MOVYB @EURS %PDP

086 MOV @SCRLOC,R2 0112 1 RT? F ?D

0087 AI R2,32 0113 3 |
0088 ORI R2,>4000 @114 BUFLEN BYTE 0

0089 MOVB @R2LB,@VDPWA 0115 BUFFER BS§ 28

0090 MOVB R2,@VDPWA 9116 CURSOR BYTE 30 . *

9091 SHWBUF C R1,R0 0117 CURSWP BYTE 30

0092 JEQ SHWBFE 118 BLANK BYTE 32

0093 MOVB @BUFFER (R1)},@VDPWD #119 STRBRD BYTE 0 B

094 -INC R1 0120 CHRTAB BYJE 8.9,13.301,126 ;
0095 JMP SHWBUF 9121 SIZE JDA A2 Y] .,

0096 SHWBFE SETO R1 8122 SCRLOQ DAJA 2 e ‘ !
0097 DELAY DEC R1 0123 STRRET DA®A 0

0098 JNE DELAY 0124 ~ END e

0099 MOVB @STRBRD,@KEYBRD | : -

The Smart Programmer is published by Bytemaster Cﬂmputer Servlces,
All correspondence redeived w111 be

Mustang Street,
considered unconditionally assigned for publication #@and copyright and 'subject

to editing and comments by the Editor of The Smart Programmer.
contributieon to this issue and the issue as a whole COPYRIGHT 1987 by

Sulphur, LA 70663.

171

Each

Bytemaster Computer Services. All rights reserved. pying on her
than personal archival or internal reference use th ut the miskio of:
Bytemaster Computer Services is prohibited. rv ces'

assumes no liability for errors in articles.

+-—'--—L———-—-j--—.—-+-

mhss FEEF s - sy whea S TN ey A asas A s
.
[.
- *1-‘—. .:. —ﬁ -

Fm e e ——— e e e 4
| : £y Pog %IJ.J 19208 o i
| Bytemaster Computer Services ; S s i
] 171 Mustang Street i . | {
| Sulphur, LA 70663 g e!; :
| U.S.A. ;‘ I i
I _ { i 3
| FIRST CLASS MaiL C
: |
' _
I
1 |
I !
l 3
| - B
I | - :
| Postmaster: Address Correction Requested f
j.._.._____...___._..........__....._._...._____...__.__.._____._; ______ E IB_SJ_H-AS.S..im ______.;-f ________
February 1987 e E !
THE SMART PROGRAMMER *- ?

