— VOLUME 1

ISSUE S

JANUARY 19835\

=S UPER99
SUONTHLY

BASIC p. 1
Extended BASIC pP. D
Assembly p. &
TI-Writer P. 7
CorComp Controller p. 8
Multiplan™™ p. B
LOGOD P. 9
FORTH P. 9
99 Potpourri p. 11

BaS IXC

Pr Games and More

ram Development:

STANDARD: 1A 2A (a) %A
Games (and many other
applications) often require special

programming techniques. Action games
have one primary objective spawd.
All of the "fat" must be trimmed from
the program to gain speed. Every
BASIC statement consumes precious time

and must be evaluated for its
necessity. S0, let’s examine some
ways to improve speed and eliminate

unnecessary steps.

It will usually be advantageous
to write a preliminary program, then a

final version. In fact, you may aven
warft several versions leading to a
final program. In the first version,

the program can include plenty of
REM statements to clarify the steps of
the program., In Extended BASIC,
avoiding multiple statement lines will
make the program easier to read. Once
4 skeleton program is completed, move
to a new version in which the REM’s
are removed and you move towards

_1_

trimming out the extra steps. If vyou
use an intermediate version, try to
avoid RESEQUENCE’ing the program, so
that the intermediate version will
sti1ll relate to the REM’s in the first
version. In the final version, use
every trick you know to have a sleek.
efficient program. By maintaining
several versions, you can also revert
to a previous version if you find that
your revisions are not working as you
anticipated.

Timing is crucial
Qood Qame. You can time a statement
by setting it up in a FOR-NEXT loop
that is looped many times, say 1000
times. Subtract the time the loop
requires to determine how 1long the
statement takes. You will find that
some statements, such as DEF, may be
efficient in bytes, but may be very
%1ow to execute, Avoid such
statements in writing games when
possible.

in writing a

There are a number of tricks that
are allowed in BASIC that the TI
manuals either do not mention or do
not emphasize. For instance, to place
& border around the screen that is two
characters wide, a baginner is likely
to read the manuals and then use eight

statements, one for each row and
column. Only two statements are
neaded:

>100 CALL HCHAR(23,1,48, 128)
>110 CALL VCHAR(31,3,48,94)

When using other than console BASIC
alone (E/A, MMM, CorComp Toolshed,
etc.), redefining character 31, the

-y

SUPER 99 MONTHLY




edge character, will provide a
edqge border in some situations.

When uwusing the CALL statements,
many CALL’s allow multiple sets of
parameters in Extended BASIC, saving
bytes and execution time, though the
projram may become difficult to read
and debug (thus the need for several
versions of a program}. Here is an
example of redifining the shapes of
two characters in one statement:

=100 CALL CHAR(128,"FF".129,"
FE716024AARCOCOCF"™)

Note that in redefining character 128,
the last 14 hex digits were omitted.
BASIC will fill in the "O"?’s that are
implied by the statement. All
trailing "O"’s are +filled 1in. At
least one hex digit must be used.
There is no provision for filling
leading "0"’s. By letting BARSIC +ill
trailing "O0"’s, bytes are saved.

Advanced programmers  who are
using other than consale BASIC only
can peek their program to see the
"tokens" used by BASIC. In doing so,
vou may +ind some cases where two
statements that accomplish the same
task do not use the same number of
bytes. For an example, refer to our
September article on using ERASE AlLLl.
In creating programs intended +for
sale, you may want develop the
program outside the console BASIC
environment to have access to the
tokens to determine what statements
are consuming the most bvtes.

to

also
action

actual

mean

Variable 15
important 1in writing
Both common sense and
reveals that extra bvytes
time. in vyour +First version
program, yvyou may want to use
descriptive variable names. In later
VErSlons, trim the length of the
variable name to as short a name as 18
possible, saving bytes and execution
time.

usaqe very
games.
study
extra
of a

very

aspect to the use of
is the number of bytes
to store the values. When a

to be used more than once,

ANnother
variables
required
value 1s

+ast .

_2_

bytes will be saved by storing the
value as a variable. The wvariable
will use less bytes 1n the program

than the value itself. Look for other
ways to save bytes in using variables,

such as our November example of
peeking and poking bits from Extended
BASIC.

Avoid duplication of effort.
This rule is especially 1mportant in
using variables and in defining
characters. If three characters are
to be defined as completely solid
characters (16 hex "FY"’5), just use

they are all the same
variable to insert in
the three are to be
different colors. You will find that
in conserving characters, there will
be cases where a screen created by a
BASIC qgeneral screen design program,
using the extra characters not allowed

one character 1+
color or use one
the CALL CHAKR i+

in Extended BASIC, may later actually
be transferred to Extended BASIC by
not duplicating the character
definitions. As Ffor variables, i+
A=100, then do not set B=100 unless
the two will have unequal values — it
is a waste of bytes to duplicate such
etforts (again, this makes your

program much more difficult to read,
s0 use our multi-version approach).

All forms of BASIC will naturally
require a 1lot of time +or some
operations. Sorting or random
selections are examples of slow BASIC
processes. Most games will have at
least a few points at which the
program pauses, such as to enter the
names of plavers, etc. Make good use
Df these pause points by setting up
subsequent steps at the pause or
before the first screen display. For
instance, if wvou are depicting some
tvpe of race that is independent of
plaver response, establishing the
screen locationse faor all character
movements before the race will make
the race move much faster than if¥ vou
calculate the next screen position
during the race, although more bytes
would be used in this case.
make vour

When possible, program

upwards compatible. For example, make
BASIC programs capable of being run 1in
| — >

SUPER 29 MONTHLY

. ..
. e e a e - [ . . . .
gt - _‘ B _::-1 " ‘{m. - - K .|.-..._-:"_ wal _:-1:-, e Loy . . . . .
& :"Hi.- Py Bk ; X . % ﬁ L LR e I AL o L . . e e
AT AT, ] e R -.ﬁ-':l’.._-\, ..E-wﬁ'\.-"\ et . i I-q,:'_.;F e e T ;.III":c :‘;1-._,5__-_..-'-.-'-'_ Ry X7 : _—
i - - Sl HERE L . S

AR 5

e

IR P N AT ?. _--.':... [ UL
e g Rt A ﬁf*ﬁaﬁmiﬁ%' R




Extended BASIC. Use characters above
143 only when absolutely necessary.
To scroll the screen, separate colons
following a FRINT scstatement with
blanks so that Extended BASIC will not
read them as double colons, which are
multi-statement line separators.
Leave about 200 bhytes free in console
BASIC as Extended BASIC has 864 +fewer
bytes available. I+ the 900 bvytes
presents a problem, some variable
values can oprobably be inserted 1in
vour program by reading a file, which
will often redistribute the bvytes 1n
memory so the proqgram may run without
an out of memory error. RAdditionally,
disk drive buffers require up to about
2K. To be sure yvour program will run
in any BASIC envircnment, allow about
SK for overhead. To determine the
size of vour console BASIC program,
add the following lines at the
beqginning of your program:

>1 A=A+8
»2 GUSUB 1

Type RUN. After a few seconds, vyou
will qget a "Memory Full in 1" error.
Key PRINT A. A is the number of bvtes
free (though not quite exact — 1t can
be up to 7 bytes oft).

There are hundreds of ways to
save bytes, but the best way 15 alwavs
to plan your program. We®ve seen many
beginning proqQrammers spend davys
trimming a ovte at a time when proper
planning would have saved hundreds or
even thousands of bvtes betore the
first line was ever written. Look for
saving the larqge seaments of memory
first. Failing to recognize where a
loop could be used can waste large
areas of memory very aquickly. This
explains why we have dealt so much
with saving the large areas 0f memory

in previous 1ssues. Once a program
has been planned, written and has
underqone preliminary tests,

fine—tuning by trimming a few eaextra
bytes out and adding user—-friendly
techniques comes into play. In case
vou are not +amiliar with
user—-friendly programming, we’ll cover
that topic in an upcoming i1ssue,

_“—___#“---_____—ﬂ“-_-__-ﬁﬁ'#_—-_--__—“

Solitaire Checkers

STANDARD: 1A 9A

The program below is a version of
the popular game commonly
tourist stops. Just as 1n
the object is to jump diagonally until
as few as possible checkers remain.

The program 1s an ex

a
while

program that uses minim

remaining +fast, user

and properly structured. Tho
particular significance, tb

was

written without wusin

variables, despite the
extensive screen displavys.

spld at
checkers,

ample of
al bytes
—friendlv
ugh ot no
e program
g string
use of

Be sure to press <ENTER> after

your

2100 6GOSUB 1000
2110 605UB 2000
>120 6GOSUB 3000

>130

IF Q<>161 THEN 110

>140 PRINT Mj; "MOVES"
»99%9 END

>1000
>1010
21020
>1030

DIM €(3)

DIM Z(64)

CALL. CLEAR

CALL CHAR (128, "FFFFFFFF

FFFFFFFF")

>104Q

CALL CHAR(136,"FF818181

818181FF")

»>1030
21060
>1070
21080
>1090
»1100
>1110
>1120
»>1130
>1140
»>1130
>1160
21170
>1180
48)
>1190
»1200
>1210
>1220
»>1230
>1240
»>1230

FOR 1=8 TO 22 STEFP 2
FOR J=2 TO 16 STEF 2
CALL HCHAR(J,1,.128)
Z({(J/2)XB-8+(1-6) /2) =1
NEXT J

NEXT I

FOR I=12 TO 18 STEF 2
FOR J=6 TO 12 STEF 2
CALL HCHAR(J,I.13&)

Z ((J/2) kB-B+(1-4) /2)=0
NEXT J

NEXT I

FOR I=8 TO 22

CALL HCHAR (1,1, (1-6)/2+

NEXT I

FOR I=2 TO 1&6 STEF 2
CALL VCHAR(1,7,1/2+64)
NEXT I

FOR J=1 TO 4

GOSUB 1310

NEXT J

SUFER 99 MONTHLY

i nput when plaving the game.




»>1260
>1270
»1280

M=0
RETURN
DATA 7,10,18,70,82,79,7

7.22,23,18,84,79 |

1290

.82,

DATA 3,30,21,69,78,84,4
32y39,70,82,79,77,39,32

, &5,83,32,39,81,81,39,32,84,
79,32,81,85,73,84

>1300

3,83,

DATA 3,26,22,80,82,49,8
32,39,469,82, 65,83, 69, 39

,32,84,79,32,467,79,82,82, 69,

&7, 84

21310
21320

>1330
>1340
»1350
>1360
22000
22010
22020
22030
»2040
>2050
»2060
>2070
»>2080
22090
»2100
22110
22120

READ C1,C2,R

FOR I=C1 TD C2
READ K

CALL HCHAR (R, I,K)
NEXT I

RETURN

RESTORE 2210

FOR I=1 TOQ 2

READ C1,C2
C(1)=128

C(2)=32

J=1

IF J<>2 THEN 2080
C(2)=128

CALL HCHAR(19,C1,C(1))

CALL HCHAR(19,C2,C(2))
CALL KEY(S,K,S)

IF S<1 THEN 2100

IF (K<48) X (J<3)X(KLOP)T

HEN 2100

22130
»2140

»2150

»>2160
22170
22180
22190
>2200
»>2210
>3000
»3010
»>3020
»3030
»3040
»>3050
>3060
>3070
»>3080
>3090
>3100
»3110
>31206

C(J)=K
IF K=7 THEN 2030

IF J<3 THEN 2170

IF K<>13 THEN 2100
J=J+1

IF J<4 THEN 2060

NEXT I ~

RETURN

DATA 8,9,22,23

CALL GCHAR(19,8,F1)
CALL GCHAR(19,%,F2)
F=(F1-64) $8-8+F2-48
R=F

IF Qu141 THEN 3220
CALL GCHAR(1%,22,T1)
CALL GCHAR(19,23,T2)
T=((T1-64) X8) —-8+T2-48
F1=INT((F1-1)/8)+1
FR=F-8%(F1-1)+1
TI=INT((T-1)/8)+1
T2=T-8%(T1~1) +1

IF (F1>B)+(T1>8)+(F2>9)

+{(T22F)+(Z((T+F) /2)=0)+(Z (F)
=0)Y+(Z(T)=1)THEN 3230

3130
O

IF ABS(F-T)=14 THEN 315

e

>3140
S0
>3150
»>3160
128)
»>3170
»3180
136)
>31%0
>3200

1IF ABS(F-T)<>18 THEN 32

Z(T)=1
CALL HCHAR(T1%x2, T2%2+4,

L{F)=0
CALL HCHAR(F1x2,F2%x2+4,

Z{(T+F)/2)=0
CALL HCHAR{(((T1+F1)/2) %

2y ((T2+F2)/2) X2+4,1346)

>»3210

»>3220
>3230

»3240
»>3250
»3260
»>3270
»3280
>3290
»3300

>3310
>3320

M=M+1

RETURN

RESTORE 3320

FOR I=3 TO 14

READ K

CALL HCHAR(24,1I,R)
NEXT 1

FOR I=1 TO 4CG0O

NEXT I

CALL HCHAK(24,3,32,12)
RETURN

DATA 73,76,76,69,71,65,

76,32,77,79,86, 469

e ket ) L L ——

STANDARD:

Extending a Line
1A 2A(o) 9A

Here is yet another tip from Jim
Peterson, Tigercub Software, 196
Collingwood Ave., Columbus, OH 43213.

Many bytes can be saved by
putting as much on one BASIC or
Extended BASIC line as possible. One
way to be sure to fit more on one line
is to make the line longer!'!

The easiest way to extend a 1line
in BASIC is to fill all 4 1lines
completely, enter it, then call it
back by typing the 1line number and

<FCTN> <X>, then vyou can run the
cursor onto the Sth line.

In Extended BASIC, if vou type
multiple statements without spaces
before and after the faa 'y, the
computer will +ill in the spaces and
automatically go into the next 1line.
Or, just enter the line and hit <FCTN>
<8> to bring it back.

EDITOR’S NOTE: When Jim issues a
challenge to accomplish a task in one
——>

SUPER 99 MONTHLY




"

line, he may mean one of these
extended lines. He sure caught me on
that one and we had a big laugh about
it! | - Richard Mitchell
EXTENDED BEBASIC
"Mouse'-ing Around in
Extended BASIC

STANDARD: 1A 2A 9A 11A

Most of you have probably seen

the "mouse" devices available for many
computers. They are really just a
fancy Jjoystick, so let’s see what we
can do with a joystick on our T1I Home
Computers.

One wuse 1is +for demonstrations,
such as for retail sales, user group
meetings and business meetings. If

vyou are demonstrating a series of
screens, you can stand back a few
feet, so that vou do not block
anyone’s wview, and change screens as

if you were operating a slide show.
To do this, use the usual CALL KEY
statement, making sure to use 1 and 2

in the first parameter to designate
the joysticks:

»100 CALL KEY(1,K,S)1t KE=S ;
: CALL KEY(2,K,8):: KE=KE+S
2t IF KE<1 THEN 100

The above line will await the pressing
of the fire button on either joystick
or any key.

Another idea is to use the
Joystick to make menu selections.
Below is an example program. Note
that sprites can go 8 rows "below" the
bottom of the screen, so the last data
in line 120 is 32, which represents
"row 3I2". Also note that the MOUSE
subprogram can detect whatever rows
are established by the data statements

in line 120 in case vyou need a
different number of menu options or
vyou wish to relocate the menu on the

SCreen.

2100 CALL MENUSCREEN

110 RESTORE 120 :: CALL MOUS

E (FLAG)

>120 DATA S,7,9, 32

»130 CALL CLEAR :: CALL DELSF
RITE(ALL):: ON FLAG GOSUB 10
00, 2000, 3000, 999

>140 FOR DELAY=1 TO 200 :: NE
XT DELAY :: GOTD 100

>99% END

1000 PRINT "LINE 1000" :: RE
TURN

>2000 PRINT "LINE 2000" t1: RE
TURN

»>3000 PRINT "LINE 3000" :: RE
TURN

»>20000 SUB MENUSCREEN

»20010 CALL CLEAR :: CALL CHA
R(128, "OOFFEOFQOEOFOEQF")
220020 RESTORE 20070

220030 FOR I=4 T0 10 STEF 2
>20040 READ Ls$

>20050 DISPLAY AT(I,5):L%

220060 NEXT 1 =z: SUBEXIT
»20070 DATA "i. LINE 1000"
>20080 DATA "2. LINE 2000"

>20090 DATA "3. LINE 3000"

220100 DATA "4. END"

>20110 SUBEND

221000 SUB MOUSE (FLAG)

221010 CALL SPRITE(#1,128,2,2
8, 40)

221020 CALL JOYST(1,X1i,Y1)::
CALL JOYST(2,X2,Y2)

221030 CALL MOTION(#H1,-6%(Y1+
Y2) ,0)

>21040 CALL KEY(1,K.,S):: IF K
=18 THEN CALL POSITIODN(#1, X,
YYELSE CALL KEY(2,K,S)z: 1IF
Kel8 THEN CALL POSITION(#1, X
s YIELSE 21020

221050 FLAG=INT({(X+7) /E)

»>21060 I=1

»21070 READ MARKER

»>21080 IF FLAGS=MARKER THEN F
LALG=1 :: SUBEXIT :2: ELSE I=1
+1 :: GOTD 21070

»21090 SUBEND

This example shows the basics of how
vou can simulate a "mouse". You could
also do qQraphics designs and many

other activities with a joystick. Let
us know what applications vyou have
come up with.

i ——— A - A ikl i —— A S A e — AP Y AN A M A T N kil s — R R e —

SUFER 99 MONTHLY




Speech_On?
STANDARD: 1A 24 3A 74 94 12A
Many of you are probably already
familiar with the address to peek to
determine whether the speech
synthesizer is attached. The earliest
source Ffor the information that we

have been able to trace was Miller’s
Graphics in late 1983. However, we
have discovered that a few consoles

return different values than those
previously mentioned in print,

Each console has an LTA number on
its wunderside, indicating the period
in which the console was manufactured.
Several small differences in the
various models are known to exist.
Before vyou panic, we assurs you that
most ot these differences do not
atfect most programs at aill.

The address to psek to determine
whether speech is on is -284672. Thea
values usually returned are 96 for
speech attached and O for speech not
attached. Consoles with number
LTA4S583 and possibly other versions
return 255 for attached and 127 for
not attached. Therefore, the proper
Extended BASIC statement to test for
the synthesizer follows (NOTE: Use
CALL INIT only if¥ you have nat already
done S0 in your program):

2100 CALL INIT

»110 CALL SPEECHTEST (FLAG)

»120 IF FLAB=1 THEN CALL SAY(
"VERY GOOD")

>999 END

>20000 SUB SPEECHTEST (FLAG)

>20010 CALL PEEK(-28672,A) 1=
IF (A=926) +{A=255) THEN FLAG=1
ELSE FLAG=O

>20020 SUBEND

Note that we
whether speech

are testing for
is attached. Testing
for speech not being attached would
still cause a system lockup (which is
what happens if you atteampt to access
speech without it being attached) if
€£till more valid values axist, This
is a very good example of a case where
it makes & lot of difference whether
you test for true aor false.

FPlease note that we checked
asveral configQurations to be positive
that this difference 1s in the
console.

ASSEMEL.Y

More on Screen Buffers

STANDARD: 1A 2AC 4B DA &B 7A 9A

Last month we covered building
screen buffers using a memory i1image
file that could be accessed from
Extended BASIC and displayed using the
CorComp Disk Controller Toolshed
statements., This month we have some

more thoughts on the subject.

First, we hope everyone received
the addendum that we inserted in last
month’s mailing. It corrected a few

errors that we caught at the last
moment before mailing. On page 8, in
the section with label DSKRLNK, after

MOV %*R14+,R5 add a line for MOV RO,RY.
In the Extended BASIC test +or the
Assembly program, insert an asterisk
before the 8 in 1lines 140, 200 and
260.

Just before going to press with
this issue, we received a question
from a reader regarding the file

construction on this project. The
7 screens of 768 bytes require 21
sectors. Qur file requires 22
sectors. In aorder to get down to 21

sectors, the +file must be reduced by
one sector, changing the source code

under FPDATA, CPUDSK, and DSKCFPU from
21500 to >1400. The other sector
used is far file overhead. Next month

we’ll try to cover in detail the
construction aof this and some other
files on your disk, explaining Jjust

file overhead o+
this explanation

what makes up the
the files. We haope
will do for now.

We now have a demonstration disk
showing what can be accomplished with
our screen buffer technigues. It
shows several screen, character set
and color changes. The demo 1s set up

to change screens by either pressing
—

-

SUPER 99 MONTHLY

)




the fire button on a joystick or by
pressing any key. Subscribers may
obtain the program by sending an
tnitialized disk, disk mailer, return
label, return postage, and $2.00 to
cover handling. There is no charge
for the programs. In appreciation of
the support shown us by user groups,

non—profit user gQroups are not subject

to the $2.00 handling fee. I+ vour
group has restrictions on meeting
presentations, vyou should be aware

that the demo does reference CorComp
and Super 99 Monthly.

_ﬂ——_“—-__‘——————————_—-——-———__——--—-

TI—WRITER

Accessing Files From
Extended BASIC

STANDARD: 1A 2ACE 4B SA &B 7A 9A

In October we told how to create
& dual-~column right-adjusted TI-Writer
document. The primary problem with
the method was that it was not very
friendly when a lot of changes were
necessary. The solution seemed to bhe
to manipulate the sequence of the file
records in Extended BASIC, at the same
time doing some of the repetitious
formatting required. However, page
157 of the TI-Writer manual states
that accessing TI-Writer +files from
Extended BASIC is not possible. A
file can be created in Extended BASIC
and used in TI-Writer, but the reverse
was said to not be feasihle.

WARNING: THE OPERATIONS DESCRIBED 1IN
THIS AKTICLE PROVIDE A POSSIBILITY OF
FILE ERRORS. USE YOUR DATA DISKETTE
FOR ONLY YOUR ORIGINAL FILE AND YOUR
FINAL FILE. ALL INTERMEDIATE FILES
SHOULD BE CREATED ON A NEWLY
INITIALIZED DISK AS IT IS EASY TO
CREATE A FILE WITHOUT HAVING IT OPEN
OR CLOSE PROFERLY.

However, there is a fairly simple
way to access TI~-Writer files From

Extended BASIC. First, you must load
the file into the Editor/Assembler, as

if it were an Assembly source document
to be edited. When the document
loads, an error message may accur

i

stating that control characters have
been 1lost. You may need to work with
this for awhile to see if the loss of
contral characters has an effect on
what vyou are doing. We have had no
problems with our projects. Next,
instead of selecting EDIT, select
SAVE. You will be prompted “DISFLAY/
80 FORMAT (Y/N)?". Answer "N". This
will give vyou a file in DIS/FIX 80
format, which vyou should note is
usually a much longer file. The DIS/
FIX 80 format is a RELATIVE format.
Be sure to SAVE the file with a new
name. Unlike the DIS/VAR 80 format of
Tl-Writer, the DIS/FIX B0 format is
easy to work with in Extended BASIC.

In Extended BASBIC, the DIS/FIX 80
format can be used as a RELATIVE file.

Here is an example of how to Qet
started in accessing the file:

>100 OPEN #1:"DSK1.TIW",DISPL
AY ,RELATIVE,FIXED 80

>110 LINPUT #1,REC 1:AS$

>120 LINPUT #1,REC 35:B$

>130 PRINT #1,REC 1:Bs$

>140 PRINT #1,REC 35:A%

>150 CLOSE #1

The example above will move line 35 of
the TI-Writer file to line I and 1line
i to line 35. Obviously, this type of
access could be used to manipulate
many records and would be especially

useful if there was a pattern whereby
loops could be used in the Extended
BASIC program. In some cases, more

than one file would be necessary for

manipulating the lines.

Back to our Qctober discussion of

dual —column right—-adjustment, you can
build your TI-Writer file at single-
coiumn width, move the file to
Extended BASIC, then use SEG$ and
concatenate to build the file as we
had described in October. This

virtually eliminates the problem we
mentioned in October of difficulties

in making massive changes to a
document.
Once the file is changed in

Extended BASIC, return to the Editor/
Assembler and LOAD and SAVE again,

this time using the DI5/VAR BO format
e

SUPER 929 MONTHLY




g0 the file can be loaded back into
TI-Writer. To be sure the +File is
ready far TEXT FORMATTER, save the
file again after it has been loaded
into TI-Writer. Also, add any special
techniques that you might f+ind
difficult to carry over from Extended
BASIC.

There are other tricks in using
TI—-Writer files. For instance, a file
does not have to be printed to a
printar. It can be "printed" from

TEXT FORMATTER to disk if you +find a
use for such manipulations. This same
principle is true in many Tl Modules.
For instance, in using Editor/

Assembler, i1nstead of printing a LIST,
direct the "print® to disk. This will

allow you to try the program and print
the listing only if there are bugs in
the program, if that is your desire.

We will be covering a number of
other uses for accessing TI-Writer
files +From Extended BASIC in upcoming
months. |

CORCOMF CONTROLLER

Avoiding Some Problems

STANDARD: 1&4 2 (various) 4B 35A
&B (no) 7A 9A

The CorComp 9900 Disk Controller

is substantially free of bugs.
However, there is one peculiar problem

that is easlily solved.

Instead of the regular TI title
screen on power—-up, the CorComp Card
vields a special menu selection
screen, which is similar to the screen
that is naormally seen after the TI
title screen. Selecting from the
CorComp menu sometimes gives problems.
To be sure to avoid these problems,
press the space bar to get the color
bar screen, then press the space bhar

again to get the regular TI menu.

Problems have bean noted in
attempting to use Plato and in trying
to OPEN a file +for the Speech
Synthesizer from the Terminal Emulator

I1 if the selections are made from the
CorComp menu screen. Using the TI
menu prevents such problems. You may
want to make a habit of always using
the TI menu +or cartridges that you
are not sure about. We are not aware
of a fix yet by CorComp. I+ you have
knowledge of a fix, please write to
let us know,

A b o o o N N U SN o R o SN el ks S ki mile sy M S BN S AN AN LA SR SN S G G SN S SN L S S

MUL.T IFL AN

Multiplan™ vs. Extended BASIC

STANDARD: 1A 2D 4B S5A 6B 7A 9A

One of the first things to be
noticed in using Multiplan™ is that
inputs are painfully s)oOw when

compared to Extended BASILC. So, why
use Multiplan™™?

Multiplan™ is a spreadsheet
program. What does that really mean?
First, it means that nearly all of the
programming has already bessn done --
one need only ill in the numbers,
names, formulae, etc. Next, it is a

spreadsheet, which means that all
inputs are automatically placed into a

format.

In analyzing whether to write an

Extended BASIC Program or USSR
Multiplan™, one must consider the
+ollowing:

1. Will the program be used more than

once? If not, Multiplan™ will
likely ba the best choice.

2. Will it be difficult to write a
program for the amount of print
+ormatting involved? It is very
easy to generate a report that is

pertectly +formatted when using
Multiplan™. If very much print
formatting is involved, consider

using Multiplan™™.

S. fAre you a very qood programmer?

If not, use Multiplan'™™ whenever
possible.

4. How much data manipulation is

involved”? Sorts, comparisons and

——

-
SUPER 99 MONTHLY




complex cross—-references
easy to program.
Multiplan™",

are not
Consider using

9. Do you like to be able to reformat
your printouts? If so, definitely
use Multiplan™™, Changing a
print layout in a program can be
very involved.

6. Can vyou key input quickly? I¥f
not, you may never notice that the

major drawback to Multiplan™ is
how slowly the input is

accomplished.

In short, if you are confident
you can write an Extended BASIC
program 1in what you consider a
reasonable time to accomplish vyour
task satisfactorily, by all means do
sO0 —— 1t should run much faster than
Multiplan™, especially if you know
how to make use of Assembly sorts,

etc. Otherwise, use Multiplan™ and
save yourselt a lot of time and
frustration.

O0f course, there is one other
alternative. Do your input in
Extended BASIC and store the data in
a4 +file that will link to Multiplan™™,
This is not a beginner’s projaect and
will be a topic for a future article.

S . N S S S s R S —-——I-—_“--‘--_----H—-—lllr__—i--_——

L. OGO
LOGO —- The Challenge
to Explore
STANDARD: 1A 2F 4B(o) 5A &B(o) 7A 94

With most computer lanquages, the
objective is to cause the computer to
do something significant. That is why
LO6O presents a problem to experienced
computer users -—-- the definition of
significant must be revised. LOGO 15
oriented toward the user instead of
the computer. It is very effective
when wused as a step—by-step learning
experience or for recreation. In
attempting to force LOGOH away from

creative processes, one is likely to
bog down in a futile effort. LOGO
challenges you to explore.

wors o

That is why we’ve chosen a vary
simple project for this month. It
moves sprites on the screen. But try
looking at the pattern of the movement
and think about why it appears the way
it does. If you begin to contemplate

why the pattern repeats when it does,
then you are on the path to
understanding the power of LOGD.

MAKE “FLAKE 7
MAKESHAPE :FLAKE

X0 00000 XX000000O0X
OX 000000000000 XO
OO0 X 0000 X XO0000XO0OO
O 00X 00 Q00000 XO0O0O0
O 000000000 0C0D00O0OO0
O0000X0000X00000O0
OO0 0000000000000 O0
OO0 00000 XXO0O00CO0O0O0OO
Q000000 XXO000CO0O0OO
C000000000C0000O0 O
OO0 00O X QOO0 OXO0D00O0O0
Q0000000 0CO0O00OD000QO0O
QOO0 X00000000X0O00O0
OO0 X 0000000000 XO0O0
OXO000D0000O0OO0ODO0OOO0OXDO
X 00000 COO0O0OO0OO00CO0O0 X
TELL :zALL

SETSPEED O

SETHEADING O

HOME

CARRY :FLAKE
SETCOLOR :WHITE
EACH [SETSPEED 1 % YOURNUMBER ]

FORTH

Shooting on the Move Game

STANDARD: 1A 2C 4B 5A &B 74 9A

FORTH offers an excellent set of
graphics and sprite commands. Mast of
the commands are very similar to
Extended BASILC, but offer more
flexibility. For instance, instead of
working with 112 characters with 28
sprites, as in Extended BASIC, FORTH
offers 255 characters and 32 sprites,
To accomplish this, FORTH allows
the Sprite Description Table to be
easlly segreqgated from the Pattern
Description Table. In Extended BASIC,

—D

- SUPER 99 MONTHLY




the 28 sprites take on the shape of
regular characters as the SDT and FDT
are one in the same table. There are

many other such advantages to using
FORTH —— it is very flexible.

0Of course, the biggest advantage
to using FORTH for games is the speed
of FDORTH. Sprite coincidences can be
checked so +fast that a caincidence
will seldom be missed. Entire screens
can be set up very quickly, toao.

The biggest disadvantage toD using
FORTH for games is the difficulty 1in
slowing it down. A FORTH delay loop
is sometimes one of the 1onqest
definitions in a program!

For the game we wrote, we decided
that since FORTH uses SO many raverse
implementations, we’d write a reverse
game as a symbolic gesture (pun
intended). Instead of shooting a
moving object, our game uses a moving
"gun" and a still target.

Most of the definitions we’ve
used are straight-forward from reading
the TI FORTH manual, but a few special
techniques were used. Note that 7FIRE
tests both joysticks. The JAOYST
statement will return 255 as the third
value on the stack if no key has been
pressed. Therefore, we are looking
for any value other than 255. This
allaows us to shoot by pressing any key
or pressing the fire button on either

joystick. To do this, we subtract
255, which 1is FF in hex, from the
value aoan the stack after two DROP’s.

We then continue this test UNTIL

neither key value is 2395.

Since mixing HEX and DECIMAL

sometimes gets very confusing, we have
chosen to stay with HEX throughout the

praogram. This is in keeping with the
standard notations for CHAR
statements.

The game is not intended to bDa
one that will likely fascinate you for
hours, but rather is just an example
of the use of some of the graphics and
sprite statements available in FOKRTH.

Here is the program listing:

SCR #1272
BASE->R ( S99M GAME ) GRAFHICS HEX
O VARIABLE SCORE
: SET1 CLS
FFFF 0000 0000 FFFF 80 CHAR
FFOO 0000 0000 0000 81 CHAR 3
¥ SET2 O 5 20 80 HCHAR
FS 2 88 HCHAR 1 F 10 CDLOR
7 SCREEN 3
: SP1 2000 SSDT

BOBO 8080 FFFF FFFF 1 SPCHAR
Q000 1010 0000 0000 O SFPCHAR

FF BO 1 1 1 SPRITE
CO O 1 MOTION O O O MOTION
2 #MOTION
1 MAGNIFY 3
—=» ( GO TO NEXT SCREEN )

b et b b b e
NPAN=OOBNDPARWNS-D

SCR #123
({ S99M GAME cont. )}
. CHECKi 1 JOYST DROP DROF FF -
s CHECKZ 2 JOYST DROF DROP FF -
: 7FIRE BEGIN CHECK1 CHECK2 +
UNTIL 3
SHOOT 1 #MOTION
1 SPRGET SWAP 5 — SWAP
1 0 O SPRITE
0 ES O MOTION 3

e 'an

QONOCURDHN» O

10
11
12 : CHECK3 80 BO i1 SPRDISTXY
13 SCORE ! 3
14
15 —>
SCR #124
0 ( S99M GAME cont. )
1
2
3
4 : GAME SET! SET2 SF1 ?FIRE SHOOT
i’ CHECK3I 09 03 GOTOXY
b ." SCORE = " SCORE 7 3
7
8 : RUN 9 O DO GAME
Q 8 O DO
10 1000 O DO LOOF
11 LOOF
12 ILOOP
13 ABORT :
i4
15 R—>BASE

SUFPER 29 MONTHLY

~




% FPFOTFRFOURRI
News, Corrections, Updates, Editorials, Kudos, and Come—-what-may

CORRECTIONS:

OUTOBER: The subscription price for
The National Ninety-Niner, the
publication of the 9%er Users
broup Association, was misquoted.
The correct price is $12.00 per
vear. The Association is an
excellent non-profit organization.
If vou remitted the amount we
quoted, please remit the balance to
the Association.

DECEMBER: See this month’s Asssmbly
article for corrections to the
December Assembly article.

TIBBS'™ should have been stated to

be a Registered Trademark of Ralph
Fowler.
Computer Show!
Apparently the show in the

Chicago area in December was a big
success, as there is already another
one planned —- and soon!

The Computer Central Show will be
Sunday, March 3, 1985, from 2:30 am to
4: 00 pm at Rand Park Field House, 2025
Dempster /Miner, Des Plaines, IL..
Admission will be %4, $2 for kids 8-15
and under 8 free. Infaormation 1is
available by phoning 1-312-940-7547,
TI—-99/4A products were available at
the December show and are expected for
the March show. This sounds like a
great way to spend a weekend!'

R P S S s w———— Y Py P e e il G E— - S W S P S S S S il s S S - P S SR T S S S

COMING IN FEBRUARY

Hardware Construction Project’!

Great tips on TI-Writer and
Multiplan"™!

Much, much more!

e il S - N A i — . S S A wmiles e S S S skl sleak nlees S SN S B BN e sk L 4 8§ 3 rFr 7§ rFr "7 "y

Effective immediately, we are
accepting applications for free
advertisements for unique or difficult
to obtain i1tems and Freeware (pay what
you think the software is worth).
Only a very small portion of this
section will be used for such ads. We
make absolutely no quarantees relating
to submission, publication, or the
information in such ads. This will
simply be a service to our readers.

. A e skl S N S S N AR U D T S S A S shleed sl S S S A B el L F - F 3 § § ¥y ¥ F ¥ ¥ "]

St. touis 9%ers, a
user group, published an outstanding
article in their December newsletter.

The article includes a program listing
for using a true 40 column screen from

non—-profit

Extended BASIC. A memory expansion
card 1s required. To obtain a copy,
send $1.00 for a back issue to 85t.
Louis 9%ers, 6112 Staely Ave., St.
Louis, MO 63123. The article is
credited to Roy T. Tamashiro. bood
work, Mr. Tamashiro! Remember, rights
to the article and the program belong

to St. Louis 9%9ers.

L ., o . . 4§ » § ¢ ¥ ¥ _F £ £ _J T P T T TP P T T A TR W T TR T T g T e A e g ey g

received a number of
complaints recently about the
policies of some of the commercial
"user groups” or "clubs". "Dues'" does
not entitle "members" tao the right to
vote, which makes the label "club”
very misleading, to say the least. 1+
you pay such "dues", vour only
assurance is +For a smaller checkbook

balance. Let the buyer beware!

We have

L L e ey ¢ Y 1T ¥y § ¢ ¥ ¢ ¢ ¢ ¥ ¥ § T T ¥ ¥ § W P

We have confirmed that the
Mvarc RE-232 and Disk Controller cards
do use TI clamshell cases. The
primary advantage of such cases is

that hinges are provided for qra5p1ng
the card for removal.

T FEE T - B St e Sy Sy S— - S S e bk s S s S BN BN S B BN SN SN S SN S SN S Y S SR R S b m——

Multiplan and Microsoft are Registered Trademarks of Microsoft Corporation.

SUPER 99 MONTHLY




I A B ke priey s saibir TS T . T B S LS S Y e el aslel e skl e bl ke whekis S bl bk ek wiliaye SIS SN - - S . I xF 3 L b 2 _ °r_ 1 2 _=2 5 11 r ¥ ¥ 3 3 ¥ §y ¥ 5§ r T I " "B __BE __B_ 42 N 4 N _J ]

- / N/ \
Super 99 Monthly is published manthly STANDARD KEY

by Bytemaster Computer Services, 171
Mustang Street, Sulphur, LA 70663.

Subscription rate in U.S. and

1 Computer A TI-99/4A
(LTA4583)

Services 1s prohibited. Bytemaster

Computer Servies assumes no liability
for errors in articles.

Prostick 1l is a trademark of
Cal-Tron Corporation

Multiplan and Microsoft are
trademarks of Microsoft
Corporation

: : l
: I i
i I '
| possessions is $12.00 per year;i all i 2 Cartridge A Extended BASIC :
i other countries %156.00 U.S. funds for | C EBEditor/Assembler |
| surface mail. All correspondence I D Multiplan (TM) :
| received will be considersd i E TI-Writer |
| unconditionally assigned for ! F LOGD !
i publication and copyright and subject { 4 Disk Drive B TEAC 55B '
i to editing and comments by the i O Expansion Baox A TI1 |
i editors of Super 99 Monthly. Each I & Disk B CorComp !
{ contribution to this issue and the I Controller i
{ issue as a whole Copyright 1984 by } 7 32K Card A TI !
! Byteamaater Computer Services. All ] 9 Monitor or TV A TV & RF ;
| rights reserved. Copying done for I | Modul ator :
| other than personal archival or i 11 Joystick A Prostick II (TM) |
' internal reference use without the I 12 Speech A TI !
{ permission of Bytemaster Computer i Synthesizer I
; I !
H i I
: I

L. L 4 B _ L _ L _: L _r _: P 2 3 2 2 £ _r 3 £ F rF £ 1 S5 5 £ F 3y 3 r 3 _J 3 35 3 3 3 5 _J f 3 3 7 3 3 3 P " "¥r P " 5 "33 3 3 3 3y 3 3 3 3 T £ £ £ "7 7 37" 7 3 37 £ "3 ¥ T "]

/ | |
Bytemaster Computer Services
171 Mustang Street
Sulphur, LA 70&463

FIRST CLASS MAIL C R

08/ &S

N PP PP e [ — — - S ol el wls S Wkl dalal il Sy i S S S S S S iy i — " —— i —— Y N . S i S R i S A i S—— Y TFEF W T AR SRRV Y S S S R SR Sk S Sl S SN B SPEFY SR W S i S B S

SUPER 99 MONTHLY

o — maras bk

P P,




