VOLUME 2 ISSEUE

$1.50

=SUPERYY

NUVEMBER 1%49

SUONTHLY

FDRTHIIIlllll-i-lIlIIllII 1
ASSEMBLY . cavvsvsvannuannes O
99 POTPOURRI«cveesssuesanll

Millers OGraphics has announced
the upcoming release of a new software

package, DisKassembler'™. Written by

Tom Freeman, DisKassembler'™ creates
directly assemblable source files from

99/4A Assembly Language object code
that 1is in either Display Fixed 80 or
memory 1mage tformat (such as game
files). In addition, it will
disassemble console memory and all
valid DESR?’s. Frogram output 1is to
disk or any printer. 0Object files may
be from floppy disk, hard disk or KAM
disk in CorComp, MYARC or TI disk
controller formats, The program is

tor anyone interested in how programs
were constructed and 1in learning new
pragramming techniqgues. Carrying a
suggested price o+f $19.95 (plus
shipping and handling), the package
will include complete and useful
documentation (the hallmark of all MG
products) .

The +irst shipments of GRAM
Kracker'"™, Millers Graphics?’
incredible new hardware device, will

be released on December 16 and 17.
Due to quality control procedures that
ensure that all customers will receive
the product wilthout jumper
modifications, the shipment dates are
behind original projections, which has
prompted Millers Graphics to provide
UPS Blue Label shipping at no extra
charge to ensure arrival by Christmas.
As the 5 optional RAM chips for GRAM

Kracker'™ have been reported to be
difficult to find in some regions, MG
now offers the chips at $4.50 each,
with C.0.D. ($1.90) being available

for U.5. customers (other countries,
prepaid). Installation is pravided
"only for orders initiated with the

optional chips specified (total price
$184.95 plus shipping and handling).

T T TP T T S Sl B S snhil delmb el sk mE—— s SpEy SN A O A T S B S el el slesh shiphr ayjsly deleey SeRy I DI PR B S A W

otrings, Fart 1

by Warren Agee

STANDARD: 1A 2EA 4B 5A 4B 7B 9B

FPREFACE:

With this tutorial (and more to
come!), I humbly submit what I have
learned by programming in the FORTH
language. One reason ] decided to put
down 1into words the knowledge I have
acquired is to share my experiences,
frustrations and triumphs while
hacking away with FORTH. But, on a
more personal level, I give these

tutorials to the TI world as a token
of appreciation for everything I have

gained from knowing such people as
Konald Albright, Barry Traver, and
Howie Rosenberg, just to name a few,
as well as the whole gang on the T1
FORUM, These and many others have
given unselfishly to both me and the
Tl community as a whole, and I am
proud to be part of a community that
refuses to die. Now, on with the
programming, FORTHwith! <ugh!>

——>

— NOVEMBER 1985 1 —
SUPER 99 MUNTHLY




STRINGING ALONG IN FORTH

Of all the peculiarities the beginner confronts in FORTH, string handling
1€ a major obstacle. Nnthin?liﬁ more frustrating than to si1t down and have no
idea how to write something like A$="1234"::A=VAL (A%). No advanced
string—~handling routines come with the TI FORTH systems disk. So, 1t is up to
the programmer to invent his own. Hopefully, this article will maﬁg 1t muc
egasier ta write a FORTH program that involves any string mainpulation at all.

THE BASIULS

Before jumping into the new string words, let’s first take a look at how a
string sits 1n memory. This knowledge is imperative in order to fully explioit
the power of FORTH. Think of a string as a numeric arraE; each character 1in

}hE st;ing represents a number, or byte. The string HOME COMPUTER would look
ike 153

The first "box" represents the address in memory where this string starts.
Determining the location of this address is what we will discuss next.

There are many ways to store strings; we could save them in VDFP RKAM, or in
the disk buftters. In this article, we w1li investigate storing strings directly
in the dictionary. A string variable is no more than a numeric variable
stretched out. In fact, unlike BASIC, there is only one tyge of variable in
FORTH. The only thing {hat differs is the size. First use the word VARIABLE to
create a variable. But when you create it, let’s say 0 VARIABLE TEST, only two
bytes are alloted for storage. This 1s fine for single numbers;i but tor

S rin?s we can use ALLOT to speci+y the length of the variable. For instance,
0 VARIABLE TEST 8 ALLOT will create a variable with a length ot ten bytes. This

gives us room for a string with a maximum length of 10 characters. If the above
1 exectuted, the variable will look like this in memory:

i sl s e s el P el B N SLLY- NN . SN S . NN DS SN, BN S

addr of TEST

Once the string is created i1n the dictinnarz, there may be garbage 1n the
variable. Here we can use BLANKS to clean 1t out: TEST 10 BLANKS. This will
fill ten bytes of memory, starting at TEST., with blanks (ASCII 32).

Now that space has been reserved for the string, there are basically two
ways to store the Etrinﬂ. I+ the contents ot the wvariable i1is not going to

change, then the word !'" can be used. All this word requires 1s an address on
the stack. Sa, to store STRINGS in the variable TEST defined above. the

sequence TEXT !'" STRINGS" will do the trick. If you wish the user to input the
string, the word EXFECT is available, which is similar to BASIC’ s INFUT
statement; 1t awaits an Entrz from the keyboard. EXPECT requires both an
address and the maximum length of the string on the stack. Using TEST 7 EXFECT

?itl iﬁhieve the same results as TEST !" STRINGS” . The variable will now look
1ke 12

T T T A T B G T T W CEaa mbeer syeheh bl sk SEEES S SELEN oSN S -E—

This presents our first problem. Since the contents ot TEST i1is not
expected to chan?e, the length of the string can be assumed to always be 7.
eng

However, i1+ the th will vary, we must keep track ot it. EXPECT does not do
this for us. Sure, 1t requires a length on the stack, but i1t does not

incorporate this value into the string. Not to worry. This brings us to our
+irst new HDFdE ACCEPT, which replaces EXPECT. The only difference 1s that

ACCEFT stores the actual len?th of the string entered into the b¥ta preceding
the string. This is often called the count byte. I+ we use ACCEPT in the
example above, our string would now look like this:

I I . - Sl eI TTEEF T T T T e v bl . SN SLEEE S S S S—

ddr o+ TEST

i =a =

- NOVEMBER 1985 Z -
SUPER 99 MUNTHLY




As you can see, the first letter of the string, the "S", no longer sits at
TEST: the whole string has moved over one byte to make roem for the cour* . Now,
to print this string is a trivial matter of using TEST COUNT {YPE. TEST
supplies the addr of the complete string. COUNT takes that address, talculates
the address of the actual string (TEST+1), and finally supplies the length of
the string. Everything is ready for TYPE. To summarize what we have done so
t+ar, consider the following example:

G VARIABLE COOKIE 18 ALLOT (reserves 20 bytes)
COOKIE 20 BLANKS

COOKIE 20 ACCEPT _CHOCOLATE CHIP_

COOKIE COUNT TYPE

Note: any words that appear between underscore characters () are to be typed
in as a response to the ACCEPT word.

MOVING AROUND

Up till now, I have discussed performing basic functions on strings which
reside directly in the dictionary. This is not always the ideal situation. A
much better way is to store the string in a temporary spot, do what needs to be
done, then move it back into the dictionary. This temporary spot is called PAD.
Typing in PAD just leaves an address on the stack, just as TEST does.
Typically, instead of typing in TEST 10 ACCEPT, you would type PAD 10 ACCEPT.
Unce any processing is done, the word CMOVE can move the bugger back to where
1t belongs. Here arises our second problem. CMOVE moves a speciflied quantity of
bytes from low memory to high memory. But what if you want to go the other way
around”? Well, define a new word, of course! The new word will be <CMOVE, which
1s included in some versions of FORTH. But wait—isn’t it rather a hassle
having to remember which word to use? Of course it is! Remember, FORTH is
extensible, and we can make it as user—friendly as we like! The next new v _.rd
will be CMOVES$, which decides which way the string is moving, and does the
moving for you.

Here is an example of using CMOVE$ and PAD:

O VARIABLE DRESSER 8 ALLOT
DRESSER 10 BLANKS
PAD 10 ACCEPT _SOCKS

. (string processing done here)

FAD COUNT (get addr and length)
1+ SWAF 1—- SWAP (PAD~1 CNT+1)

DRESSER SWAP (PAD-1 DRESSER CNT+1)
CMOVES

DRESSER COUNT TYPE

Everything should make sense until you get to the i1+ SWAP 1- SWAP. The
reasoning 1s a little hard to grasp at first: we want to move SOCKS from PAD to
DRESSEK. We also want to maintain that ever—important count byte. But when we
use FAD COUNT, we only have the addr and length of the string itself, not
inciuding the count. So we compensate. Add 1 to the count (because we want to
move the count byte along with the string), then subtract one from the address.
COUNT adds 1 to the address, so we have to correct this to catch the count.
Once these two numbers have been corrected to catch the count byte, shift

things around to get everything ready for CMOVE$. 7o better illustrate this,
here is a diagram o+ PAD:

et e — —---————-——-——-—-—-——_-—

iDiIStoiIciKiIs! oy (Contents of PAD)

—-'-h——-.———l-l—ll—_—-————-—un_

E FAD+1 (This is where you are using PAD COUNT)
FAD (This is where you are using PAD COUNT 1+ SWAFP 1-— SWAP)

I+ you can understand the principle of the count byte, and how to keep the
count byte tacked on to the string when moved, then a major obstacle in writing
in FORTH has bheen removed. Next time, I will discuss string arrays. Until then,
experiment, and Keep On FORTHin®!

— NOVEMBER 1985 S =
SUPER 99 MNONTHLY

——>




SUMMARY OF RESIDENT WORDS -

T e T T Yo T S S S T i T e vt . S S T S T oy S I S

VARIABLE (n—) Create a variable.
ALILLOT (n—-—) Reserves n bytes in the dictionary.

BLANKS (addr n—=) Fills n bytes with blanks.
EXPECT (addr n——) Waits for input; stores string at addr.

COUNT (addr—-) Returns addr and count of a string.

CMOVE {adrl adr2 n)Moves n bytes from adri to adr2, from low to
high memory.

FAD (——adr) Temporary storage place for strings.

NEW WORDS

: PICK ( nil -— n2)
2 X SP@ + @ 3

( Copies nlith number to top of stack)
XXXEXX

: LEN (addr —— n)
2099 0 ( string max=259 characters)

DO
DUF I + Ce
O= JF ( looks for null)
I LEAVE ( I=length o+ string)
ENDIF
LOOP

SWAF DROP 3
{ Returns the length of a string at addr.)

XXEXXX
: ACCEPT ( addr n — )
OVER 1+ DUP ROT ( adr+1 )
EXPECT
LEN ( length of string)
SWAP C! 3 ( store count byte at addr )
( Waits for input; stores count at addr and string
starting)
( at adr+l.)
X5XXXX

t: <CMOVE ( adrl adrZ n)

DUP ROT + SWAP ROT
1-DUP ROT +
DO

1- I C& DVER C! -1
+L.00P
DROP 3

(*Huvns n bytes from adrl to adrl2, from high to low memory.)
EXXXXX

: CMOVES (adrl adr2 n)

DVER 4 PICK >
1IF <CMOVE
ELSE CMOVE
ENDIF 3

( Moves N bytes from adrl to adr2; automatically decides on)
( direction.)

A W S S i alal SR LS S SLAN S SRS SN Sk el el kel sl il SR e ok Y N S S S A S N - S A S i S A, S - S S N Sofg A gl A A S AN A P Y S I SN, SN A S U A I A S AN S S n o T s e A S

- NOVEMBER 19895 4 -~
SUPER 99 MONTHLY

- —




ASSEMEBELY

STANDARD:

1A

2XB EA TW

3B 4B OA &B 7B 9B

10B

EXEKEXRRXKERKEXKRXXXXEXKERERXRXKXEXEREEERN XX AEEERERXRER KRR NRRNKEERRRX R R KX K

TI-WRITEK

The following
calling

Wherse

29020

SCREEN DUMP

Insert the +ollowing line in your XB program where you want the dump to
accure

CALL TIW _DUMP(DE,F$,BL,EL,T)23s

DE=
Fe=

BL =
EL=
T =

Type in and save the following sub program in merged format.
into the program that contains the graphics that you want dumped.

25000 SUB TIW DUMP(DE,F$,BL,EL,T)

25010 ON ERROR 25080

(T<O)+(T>40) + (BLYEL) +(BL< 1)+ (BL>24) +(EL< 1)+ (EL>24)
THEN GOSUB 25080

25030 IF DE<>2 THEN DE$="DE1"
25040 CALL INIT 33

I1F

Source code,

routine and Subprogram will create a DISPLAY/VARIABLE BO file
that will print a screen image from the TI-WRITER FORMATTER.

The pragram will work with any EFSON compatible printer.

X FTTFETYYY XTI SZ X FrF 32X X X X 2 2 R X X 2 2 R 3 X X X 2. B & K. X R & 2 2 & J L

inspired by May, 1985 Super 99 Monthly

when assembled and combined with the XB

STOP
Density (1 or 2)
Filename that you want the dump stored under
For example: DSK1.PICTURE

Beginning line of the screen that you want saved
Ending line of the screen that you want saved
Tab value Note: Tab of 20 centers plcture

Merge 1t

E_SE DE$="DE2X"

CALL LOAD("DSK1l. TIWDUMF-~0")153

X
X
X
X
X
X
X
X
X
X
X
X
X
X
|
X
X
X
X
X
X
X
X
X
X
X
X
X
CALL LINK(DES, :
X
X
X
X
X
¥
X
X
X
X
X
X
X
X

Fs$,BL,EL, T)
25045° 1 LINES 25050 to 25070 MAY BE DELETED IF DESIRED
25050 OPEN #1:F%$,DISPLAY,VARIABLE 80, APPEND
250460 PRINT #1:CHR$(27)&CHR$ (64): " PL 1" ! 27-64 RESETS PRINTER,
PL 1 WILL STOP UNWANTED FORM FEED
25070 CLOSE #1
25075 SUBEXIT
25080 PRINT "BAD PARAMETER" :: STOP :: RETURN
25090 SUBEND
EXERKR AR R RN RN AR MR R RN R R KK KRR K000 3 0K 00 oK oK oK 00K 30K 0K 0 o 0K 330 0K 0 3 0K K 30K 300K 6 K K K X
by Joseph H. Sgiegel
SOURCE ID: T1624C COMPUSERVE 1D 72426,3432
23282303 I T T I T I I T T T T T T T T T T I T T T I I T I I T o T
DEF DE1,DE?
VSEW EGU >2020
VMBW EQU >2024
VSBR EGU >20728
VMBR EQU >202C
STRREF EGU >2014
NUMKEF EQU >200C
FAC EQU >B34A
AORG >2700
DE 1 MOV K11,B@S5AVE SAVE RETURN ADDKESS
LWPI MYREGS
CLK K14 RESET FLAG —> SINGLE DENSITY
JMP  MAIN
DEZ MOV FK11,@SAVE SAVE RETURN ADDRESS
LWPI MYREGS
SETO R14 SET FLAG —-» DOUBLE DENSITY
AR KRR KRR KRR KRNI KRR N R AR AR RN RN
% GET START AND END LINES AND TAB INFO %
S et Rt T Lt I T I Tttt eI IIIIsIe r e
MAIN LI  R4,STARTL POINT TO LOCATION TO HOLD START ADDRESS
LI Ri,2 START LINE IS SECOND VALUE FRDM XB
GLINE CLR RO
BLWP @NUMREF GET VALUE PASSED FROM XB
MOV RBFAC,RS MOVE VALUE FROM FAC TO RS
ANDI RS, >OOFF VALUE IS IN LOWER BYTE
DEC RS LINE 1 STARTS AT >0000V
SLA RS,5 X32 BYTES PER LINE

— NOVEMBER 1985 S5 -
SUPER 299 MOUMNTHLY




MOV RS, ¥R4 SAVE VALUE FOR LATER
INCT R4 END LINE STORED AFTER START LINE
INC K1 GET READY TD GET NEXT VALUE FROM XB
CI  Rl.4 BOTH START AND END LINE STORED?
JLT GLINE NO, GET END LINE
CLR RO
gtgp EEUHREF YES, GET TAB VALUE
MOV @FAC,R4 MOVE VALUE FROM FAC TO R4
ANDI R4.>O0FF VALUE IS IN LOWER BYTE
LOOF3 INC RS START BINAKY TO BCD CONVERSION
Al  Ra4,-10 RS COUNTS "TENS"
JLT C3 kK4 COUNTS "ONES™
JMF  LOOF3
Cc3 DEC KRS
Al R4,10
SWFB RS -
MOVB R5,R4 STORE "TENS" AS HIGH BYTE OF "ONES"
Al R4, >3030 CONVERT TO ASCII
. MOV R4,@TAP STORE IN TAB PORTION OF FIRST TL.
CLR RO
LI Ri.l NOW WE WANT THE FIRST VALUE FROM XB
LI R2.FILE STORE 1T AS FART OF THE PAB
BELWF @STRREF GET THE STRING NOW
LI RO, >1EQ0 VDF BUFFER FOR FAB
LI K1l,PAE
LI R2.>0028
BLWP @VMBW MOVE IT TD VDP FROM CPU
LI  Ré, >1EQ9
MOV Ré.@>8356
BLWP @DSRLNK NOW OFEN THE DISK FILE
DATA 8
LI RO, >1E0QOQ
LI K1, >0300
. BLWP @VSBW MOVE WRITE BYTE TO PAB
MOV R14,R14 SINGLE DENSITY DUMP?
JE@ SD YES, DON’T CHANGE ANYTHING
INC @DENS NGO, CHANGE DENSITY AND
INC @LEN FRINT LINE LENGTH IN FIRST TL.
sD LI RO, >1EQ0S
LI k1, >2B0O LENGTH OF FIRST TL
BELWF @VSBW MOVE 1T TO PAB
AR TR R KRR R KRR KKK KR KRN ERR KRR KRR KKK KKK
% FIRST TL CONTAINS CODES TO INITIALIZE GRAFHICS
AR SRR AR KRR RN KRN KRR AR KR KK KX
LI RO, >1F0O0 DATA BUFFER IN VDF
LI Ri,TL!}
LI R2.>2B
BLWP @VMBW MOVE FIRST TL TO VDP
MOV Ré,@>8356
gh¥2 EDQRLNK SEND IT TO THE PRINTER
T T T T I T I T T T I Tt T Tt T T T I IS I IT I I I I s et
% EACH REDEFINABLE XB CHARACTERS PATTERN WILL BE
% STORED AS A TRANSLITERATE
R XA KN KRR KRR KRR IO XK KKK KKK KRR RN K KRR KK KKK X
LI R10, 1024 FOINT TO START OF IMAGE TABLE
LO MOV R10.RO
L1 E%’%N WE’LL STORE THE PATTERN HERE
BLWF @VMER GET A PATTERN
LI RS,128 kS FPOINTS TO BIT BEING CDONVERTED
CLK KR8 RB POINTS TO BYTE IN CONVERTED PATTERN
L3 LI R9,128 K5 FODINTS TO BYTE NUMBER
CLR R3 R3S POINTS TO BYTE BEING CONVERTED
CLRK KR4 R4 HOLDS CONVERTED BYTE
LZ ELR K7 K7 HOLDS BYTE BEING CONVERTED

2132383333333 38353308332 7332 3333333332823 323203 00322228223 3222202
X CONVERT

1 3333823333333 823323 8323383233333 ¢33 3333333333238 83 2333032222

MOVE
SWFB
C
JLT
A

@IN(3) ,R7
R7

R7, RS

L1

R9,R4

FATTERN

- NOVEMBER 19835 & -
SUPER 99 MONTHLY




= RS,R7

SWFB R7

MOVE R7.RIN(3)

L1 INC K3

SRA R9, 1

J6T L2

SWPB R4

MOVB R4 ,@&D0(8)

INC RS

SRA RS, 1

CI RB.8

JLT L3
3P I i T I T T e T T T T I T I e T T T i o m
X CHANGE TO ASCII VALUES AND STORE IN OUTPUT BUFFER X
3K 30K 3 300K 3K 0 3K 3K K 3K K K 3K 3K 3K oK 0K K 3K 0K 30K 03K K KK 30K 3K 3K 30K K 2K K 0K K 3K 0K 3 3K 3K KK 3 K oK XK X

CLR R9 POINTS TO BYTE IN CONVERTED PATTERN

CLR R8 OFFSET FOR OUTPUT BUFFEK
% ANOTHER BINARY TO BCD CONVERSION X
LDTL CLR R4 R4 COUNTS "ONES™

CLR RS RS COUNTS "TENS"

CLR R7 R7 COUNTS "HUNDREDS"

MOVB @DO(9),R4

SWFB R4
LOOP  INC RS

Al  R4,-10

JLT C1

JMP LOOF
C1 DEC RS

Al  R4,10

I R5.10

JLT L100
LOOPZ INC R7

Al  RS,-10

JLT C2

JMFP  LODOFP2
C2 DEC R7

AT RS, 10
X DON’T PRINT ANY LEADING ZEROS HERE X
L1OO MOV R7.R7

JEQ@ ze&Ot

MOVB @ASCII(7),@TLDATA(8)

INC RS
ZEROI MOV KRS,KS

JEQ ZEROZ

?HEB 235811(5),ﬁTLDﬁTA<E)

ZERO?2 ?HEB ggsc1114).ﬂTLDﬁTA<BJ

MOVE @COMMA, @TLLDATA (8)

INC RS

MOV R14,R14 SINGLE DENSITY?

JEB SD&

MOV R7.R7 IF NOT, REPEAT LAST CHARACTER IN BUFFER

JER ZERO3

MOVB @ASCII(7),@TLDATA(S)

INC RSB
ZERD3 MOV RS,RS

JEQ ZERDA

MOVB @ASCII(S),@TLDATA (8)

INC RS
ZEROA4 ?ﬂEB Egsc11c4>,ETLnaTA{a>

MOVB @COMMA, @TLDATA (8)

INC RS
SDhé INC R9

Cl k9,8 LAST BYTE?

JLT LbTfL IF NOT, GET NEXT
ettt It I I I mmmmmr
X OUTPUT TRANSL ITERATE X
3 Tt 3283 3ttt T I I I I I I I I mmm

Al RB.7 COMPUTE TOTAL LINE LENGTH

BL  @NXT GET NEXT ASCII TRANSLITERATE VALUE

LI RO, >1E0S

MOV R8.R1

SWPB R1

BLWF @VSBW WRITE LINE LENGTH TO FAE

LI RO, >1F00

~ NOVEMBER 19895 7 -
SUPER 99 MONTHLY




L1 R1, TLBUF

MOV R8,R2
SD4 BLWP @BVMBW FUT LINE IN VDF

MOV Ré&,@>8356

BLWP EDSRLNK NOW OUTPUT IT TO DISK

DATA 8

Al K10,8 POINT TO NEXT IMAGE

CcI R10,1903 LAST ONE?

JGT SCDMF

B @LO IF NOT. DO NEXT ONE
KRR KKK KRR E KRR E RN AR RER RN ARX AR XK
X DUMF IMAGE TO DISK FILE X
A KRR KRR R KRR KK KRR KRN KRR R KRR TR RN AT RR R AR A RN AR K

SCDMF LI RO, >1EO0S
LI Kl,>2100
avs

BLWF BW PUT LENGTH OF IMAGE LINE IN PAB
MOV ®BSTARTL.RS GET STARTING LOCATION AND
MOV @ENDL,R7 ENDING LOCATION
INC R7
LOOPB CLR KR4
LOOPC MOV RS,.RO
BLWF @VSBR READ CHARACTER FROM IMAGE TABLE
SRL R1,8 MOVE TO LOWER ORDER BYTE
Al Ri,-94 ADJUST FOR BASIC
CI R1.32 LESS THAN LEGAL GRAPHIC CHAR?
JGT CONT1
LI Ri,32 IF S0, DEFAULT TO CHR$(32)
CONT1 CI R1,143 GREATER THAN LEGAL?
JLT CONT?Z
LI Ri,143 IF SO, DEFAULT TO CHR$(143)
CONT2 Al R1,-32 ADJUST R1I TO BECOME OFFSET FOR “SCREEN" DATA
MOVB @SCREEN(1),@BUFDTA(4)
INC R4
INC RS
€I  R4,32 END OF LINE?
JLT LobprC IF NOT, GET NEXT IMAGE
LI RO, >iF00
LI R1,BUFFER
INC R4
MOV R4,R2
BLWF @VMBW IF S0, MOVE LINE TO VDP
MOV Ré&,@>8356
BLWP BDSRLNK THEN OQUTPUT TO DISK
DATA 8
C RS5.R7 LAST LINE?
JLT LOOPE IF NOT, DO NEXT

EXXEXXRXKXE XK XK XX XK XK KK KK K KKK KKK KK KK KK KKK KK KKK KK KK KKK KKK KKK XXX
X RESET TRANSLITERATE CODES X
232208323328 03 3208020002023 2338232300383 3233232333230 0838314,
LI RO, >1E05
LI K1, >0BOO

BLWF @VSBW CHANGE LINE LENGTH IN PAE
LI R4, >3030 \
MOV R4, @DEC3 \ RESET TRANSLITERATE BUFFER
AI R4, >0100 / TO .TL oot
MOVB R4.@DEC1 /
RST MOVB @DEC3, @TL.DATA TRANSLITERATE THE
MOVE GDECZ2,@TLDATA+1 VALUE
MOVB @DEC1,@TLDATA+2 TO ITSELF
LI RO, >iF00

LI R1.TLBUF
LI R2.>000B
avM

BLWF BW PUT IT IN VDP

MOV Ré, @>8356

BLWP @DSRLNK OUTPUT IT TO THE DISK

DATA 8

MOV RDEC3.RS \

CI RS, >3132 \

JLT Li> \ HAV™ ALL VALUES

MOVEB @DEC1,RS / BEEN RESET?

SRL RS, 8 /

CI RS, >32 /

JEQ EXIT IF YES, GET READY TO RETURN
L12 ghp Eg¥T IF NOT, CALCLLATE NEXT TL VALUE
KK 0K 0K K 0K 0K 3K 3K 3K 00K 2 K 3 K 3K K 0K K0 KK 0K 0K K KKK KK KK K KX KKK K KKK
X CLOSE DISK FILE AND RETURN TO XB X
KR K KK 3K 30K 000K 3K 30K 33K o 2 0K 2K 0K 3 302 o 2 0K K 3 0 30K 0K K 2K 0K 3 0K 3 KK 3K KK K K K K K

- NOVEMBER 19835 8 -
SUPER 99 MUNTHLY




EXIT LI RO, >1EQQ
LI R&i.>0100
avs

BLWP BW PUT CLOSE BYTE IN PAB
MOV Ré&,@>8356

BLWP @DSRLNK CLOSE FILE

DATA 8

LWPI >83E0 RESET WS POINTER

MOV @SAVE,R11 GET RETURN VALUE
B Xk11 RETURN TO XB

AXRBAREEE LR R R R EERRE RN R ERR R AR AR R R R RN R AR R ARk
% ROUTINE TO INCREMENT ASCII TL VALUE %
-ﬁ;#ttttgtéltg:ttttt!ttltlttttt!ttt!tttt!ttttttttttttttttttt#ttt

MOVB @DEC1,.R4 MOVE "ONES" BYTE TO R4

AI R4, >0100 INCREMENT IT AND MOVE

MOVB R4,@DEC1 IT BACK

CI R4, >IA00 IS IT GREATER THAN ASCII 9 (CHR$(57))7

JLT L1

LI R4, >3000

MOVB R4.@DEC1 IF S0, REPLACE THE VALUE WITH ASCII O

MOVB BDEC2.R4 AND INCREMENT

Al R4, >0100 THE “TENS"

MOVE R4, QDECZ2 VALUE

EET E?b}snoo 1S THE “TENS" VALUE GREATER THAN ASCII 97

LI R4, >3000

MOVB R4.@DEC?2 IF S0, REPLACE THE VALUE WITH ASCII ©O

MOVE @DEC3,.R3 AND INCREMENT THE

Al R4, >0100 " HMUNDREDS "
x MOVE R4,@DEC3 VALUE
L% CHECK IF THE VALUE IS ONE THAT WE DON’T
:: WANT TO TRANSLITERATE
L10O MOVB @DEC1,R%Y

SWPE R9

MOVB @DEC2,.R9

CI R9, >3130

JE@ Nx¥

CI R9,>3133

JE@ NXxT

CI R9, >3237

JEa@ Nxt

CI R9,>3332

JEQ@ Nx¥

CI R9, >3338

JEQ NxT

CI R9, >3432

Jea Nxt

CI R9,>3436

JE@ NxT

CI R9, >3634

JER nNx¥

CI R9,>3934

JEQ Nxt

RT RETURN WHEN OK
:ttt#tttttttttttltttttttltttt#ltll:lttttttttltltttttttt*ttttttttttt#lt!t##tt#tt
2 NOTE: SINCE THE EXTENDED BASIC LOADER DOES NOT RECOGNIZE THE DSRLNK
: UTILITY, IT WAS NECESSARY TO INCLUDE IT.
:tttt*#ttttlttl*ttttttttttttt#t!*tltttttttttttltltttt*ttlttll#ttlttt#tttttt#ttt
: BEGINNING OF DSRLNK ROUTINE

DSRLNK DATA DSRREG,DSRO
DSRO MOV %14+,5
SZCB @DATAZ, 15
MOV @>8354, 0
MOV 0,9
Al 9. >FFF8
ELWF @aVSBR
MOVB 1,3
SRL 3.8

SETOD 4

LI 24 NAME
DSR2 INC O

INC 4

- NOVEMBER 1985 ? -
SUPER 99 MONTHLY

X
X
X
X
X
X




DSER1

DSKé

DSR4

DSK%
DSR7

DSR10

DSR8

DERS
DSR3
DSR11

NAME
DSRREG
DATA1
DATAZ
DATAZ
BUFFO
BUFF 1
BUFF2

C 4,%
JE@ DSRK1

BL WF avSBR
MOVE 1, X2+

CB T @DATAS
JNE Dé

MOV

JEG DéRE

CI 4,7

JGT DR

CLR 8@>83D0
MOV 4,@>8354
MOV 4, @BUFF3
INC 4

A 4,@>8356
MOV 238354, @GBUFF4
LWPI }5350
CLR 1

L1 12 >0Foo
MOV

JEQ Dsﬁ4

SBZ

AT 0100
CLR ésno
CI 52000
JEQ Dsﬁ

MOV 12, @>83DO0
SBO o

LI >4000
CB :h @DATA1
JINE Dsné

A @DSRREG+10, 2
JMP DSR7

MOV @>83D2,2
SBO O

MOV %x2,2

JEQ DSR&

MOV 2,@>83D2
INCT 2’

MOV X2+

MOVE e>3355 5
JEQ DSRB

ChB X2+
JINE é

SRL

L1 NnnE
CB xé 22+
INE DER®

DEC S

JINE DSHIO
INC

MOV 1,@BUFFS
MOV 9., @8BUFF2
EEv 1é @BUFF 1
JMF DSR?

SBZ O

LWPI DSRREG
MOV 9.0

BLWF abssﬁ
SRL

JINE Dé&11
RTWP

LWFPI DSRREG
CLR 1

SWFB 1

MOVB 1, %13
SOCB @DATAZ, 1S
RTWP

BSS 14

BSS 32

DATA SAACO
DATA >2000
DATA >2E00
BSS 2

BSS§ 2

BSS 3

NAME BUFFER
WORKSPACE FOR DSRINK

— NOVEMBER 1985

10 -

SUPER 99 MONTHLY




BUFF 4
BUFFS

Bl Yt

BES
BHE

b1}

Y

-

: END UF D&ERLNE ROUTINE
MYREGS BSS 32

SAVE DATA >0000
ASCII DATA >3031, >3233, >3435, >3637, >3839
CLOMMA DATA >2C00
FAE DATA »0012, >1F00, >35000, 0000
BYTE »0Q0Q
FILE BYTE >1F
BSS >1F
EVEN
TL1 TEXT 7 .TL 1:27,65,8,10,13,27,.68,°
TAB TEXT 7187
TEXT ° G;9,27,’
DENS TEXT ’75
TEXT *,0,°
LEN TEXT *1°
CK BYTE >0D
EVEN
IN BSS 8
DO BSS 8
TLBUF TEXT *.TL °?
DEC3 BYTE >30
DEC2 BYTE >30
DEC1 BYTE >31
BYTE >3A
TLDATA BSS 72
EVEN
BUFFER BYTE >01
BUFDTA BES 32
EVEN
STARTL DATA >0000
ENDL DATA >0300
SCREEN DATA >0203, >0405, »>0607, >0809 THIS IS A TABLE 0OF
DATA >0BOC, >0EOF, >1011, >1213, >1415
DATA »1617,>1819,2>1A1C, >1D1E, >1F21 ALL THE CHARACTERS
DATA »2223, >2425, >2728, >292B, >2C2D
DATA >2F30, >3132, >3334, »3536, >3738 (IN HEX) THAT WE WILL
DATA >393A, »3B3C, >3D3E, >3F41, >4243
DATA >4445, >4647, »4849, >4A48, >4C4D TRANSL.ITERATE
DATA »>4E4F, »>5051, >5253, >5455, >»5657
DATA >585%9., »>SASE, >SCSD, »SF60, »6162
DATA >&6364, >6566, 26768, >696A, >6B6C
DATA 2>6D&E, »6F70, >7172, »7374, »7576
DARTA >7778, >797A
END
Yo FPOTFOURRKIX
News, Corrections, Updates, Editorials, Kudos and Come-what—may
I WISH I HAD: Hicksville, NY.
Fulfillments: = e

F2:

For John Singleton,

Westlake, LA.

MENGEN, available on the TI FORUM on
CIS, converts an Extended BASIC screen
to Aﬁsembly object code for linking to
your grngram. Graphics are supported,
exce character 130. A few screens
can _be loaded at once and using CALL
INIT will allow loading another set of
screens (your RAM Disk will help!).

Wishes:
W3: A program to

text tom #Bglﬁ
I’d like to press a {CTRL>
key for the dump. F.J.

and

printer.
or <FCTN>
Bubenik,

dump

raphics
Fro-Writer

JIra,

The former manager of NCC has now

tormed her own discount disk <firm.
Contact Renee’ Dezarn B7 Khoades
Court, San Jose, CA 95126 today!
COMING SOON:

Surprises! New products from
Bytemaster and more new staff members

for Super 99 Monthly!

e kil S S S L B sl g R NS TN S RN e B B Bl sl T - T B S B e e B S Sk ekl s L X Fr " F ]

#########################################################################*#####

# NEXT MONTH: Warren Agee’s second FORTH tutorial #
¥ Navarone DBM tips #
¥ Tl-Artist II tuEurial #
# Extended BASIC ti And Much More!!! $#

s
############ﬁ###################g##############################################

- NOVEMBER 1985

—=>
11 -

SUPER 99 MONTHLY




—_-—__“—__—___*ﬂ__d—lillrl-—--!_—-—l-r-—-.-_l-l-n_-—-__—-__-l-_-_-.u—n-..hl-q—-.-uqi*_-n—._—hm--|.._—.u.,-n_—_-—_—_—_—_—__--“‘_

SUBSCRIFTIONS (FER YEAR):

I U.S. AND FOSSESSIONS NAME _ _ _
I FIRST CLASS $16.00
i THIRD CLASS $12.00 ADDRESS _ _ __
I OTHER COUNTRIES
# AIR MAIL $26. 30 CIivTY__ STATE__
SURFACE MAIL $14.00
INDIVIDUAL COFIES: ZI1IP COUNTRY

L e e, e L L, T - S B S N N S TR U AN R B vl vl ablink sl

U.5. SUBSCRIBERS

FIKST CLASS $ 1.30 For back i1ssues, specify whichs
TRIRD CLASS $ 1.00
CANADA SUBSCRIBERS $ 1.39 e —
ODTHER $ 1.50
Check or Money Order in U.S. funds, READERK FEEDBACK: (Attach comments)

coded +or processing through the
U.5. Federal KRKeserve Bank System.

Noy billings or credit sales.

(all 1ssues avallable at press time)

I G AT BT i S A EE .. s i B

T WA I TEEEE IS TEEE W T P ST W SEE W T TR TP A G R S el S S Bl Skl bl B bl bt M gl N alegey dejiye ey — Ay T TS T T T ST TN DS SIS TN D S BN S S - SN LN S N R el o SN e Fe R SIS e e DR S Bl vl e

SURPER 9% MUNTHLY is published monthly STANDAKD KEY
by Bytemaster Computer Services, 171

1
i Mustang Street, Sulphur, LA 70663. 1 Computer A TI-99/4A
i All correspondence received will be 2 Module XB Extended BASIC
« considered unconditionally assigned TW TI—-Writer
i for publication and copyright and EA Editor/Assembler
sub ject to editing and comments by S KRS5-232 B TI1
the editors ot SUPER 99 MOUNTHLY. 4 Disk Drive B TEAC 535B
Each contribution to this issue and o Expansion Box T1
the issue as a whole Copyright 1985 & Disk CorComp
by Bytemaster Computer Services. All Controller
rights reserved. Copvying done +for 7

other than personal archival or
internal reference use without the
permission of Bytemaster Computer
Services is prohibited. Bytemaster
Computer Services assumes NO
liahility for errors in articles.

({128K)
Tl Color Monitor
Gemini 15-X

(4
B
Memory Card E MYARC MEXP-1
9 Monitor or TV B
10 Prainter B
GRAM Kracker and DiskKassembler are
registered trademarks of Millers

Lbraphics.

N ———,, . /N
/
i EDITOK CORRESFONDING STAFF WRITERS
¢ Richard M. Mitchell (CIS 70337,1011) Barry A. Traver
: Charles M. Robhertson
I\ Steven J. Szymkiewicz, MD
/T T T T T T T T T T T T T T T T T T T Bul k  Rate T \
' Bytemaster Computer Services i U.5. Fostage
i 171 Mustang Street I FAID
v Sulphur, LA 70663 I Sulphur, LA 70643
: i Permit No. 141
;
I
I FOSTMASTER: ADDRESS CDRRECTIUN REEUESTED.
1\ KUSH —— TIME DATED MATER1AL.

/

-—_-_h_“__——_—“-—_ﬂ“_-——_——_'—'—-“Hﬂ___—_—___—_—__—_——___‘__—__——__-_—__*H—-_____

NOVEMBER 1983
SUPER 99 MUNTHLY

s ERES Sk B Eris

migh mras meaE W ST WA map dmEE gyEE .

e S Ay stemh ey shem el DR T BN ENEF AEREE TPEE SRS TN WA WA B A ke




